[ScopDetect] Conservatively handle inaccessible memory alias attributes
[polly-mirror.git] / lib / Analysis / ScopDetection.cpp
blobd23b9d5a1d0fabfe810e0c73d97058431f74400b
1 //===----- ScopDetection.cpp - Detect Scops --------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Detect the maximal Scops of a function.
12 // A static control part (Scop) is a subgraph of the control flow graph (CFG)
13 // that only has statically known control flow and can therefore be described
14 // within the polyhedral model.
16 // Every Scop fullfills these restrictions:
18 // * It is a single entry single exit region
20 // * Only affine linear bounds in the loops
22 // Every natural loop in a Scop must have a number of loop iterations that can
23 // be described as an affine linear function in surrounding loop iterators or
24 // parameters. (A parameter is a scalar that does not change its value during
25 // execution of the Scop).
27 // * Only comparisons of affine linear expressions in conditions
29 // * All loops and conditions perfectly nested
31 // The control flow needs to be structured such that it could be written using
32 // just 'for' and 'if' statements, without the need for any 'goto', 'break' or
33 // 'continue'.
35 // * Side effect free functions call
37 // Function calls and intrinsics that do not have side effects (readnone)
38 // or memory intrinsics (memset, memcpy, memmove) are allowed.
40 // The Scop detection finds the largest Scops by checking if the largest
41 // region is a Scop. If this is not the case, its canonical subregions are
42 // checked until a region is a Scop. It is now tried to extend this Scop by
43 // creating a larger non canonical region.
45 //===----------------------------------------------------------------------===//
47 #include "polly/ScopDetection.h"
48 #include "polly/CodeGen/CodeGeneration.h"
49 #include "polly/LinkAllPasses.h"
50 #include "polly/Options.h"
51 #include "polly/ScopDetectionDiagnostic.h"
52 #include "polly/Support/SCEVValidator.h"
53 #include "polly/Support/ScopLocation.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/PostDominators.h"
58 #include "llvm/Analysis/RegionIterator.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/IR/DebugInfo.h"
62 #include "llvm/IR/DiagnosticInfo.h"
63 #include "llvm/IR/DiagnosticPrinter.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/Support/Debug.h"
67 #include <set>
68 #include <stack>
70 using namespace llvm;
71 using namespace polly;
73 #define DEBUG_TYPE "polly-detect"
75 // This option is set to a very high value, as analyzing such loops increases
76 // compile time on several cases. For experiments that enable this option,
77 // a value of around 40 has been working to avoid run-time regressions with
78 // Polly while still exposing interesting optimization opportunities.
79 static cl::opt<int> ProfitabilityMinPerLoopInstructions(
80 "polly-detect-profitability-min-per-loop-insts",
81 cl::desc("The minimal number of per-loop instructions before a single loop "
82 "region is considered profitable"),
83 cl::Hidden, cl::ValueRequired, cl::init(100000000), cl::cat(PollyCategory));
85 bool polly::PollyProcessUnprofitable;
86 static cl::opt<bool, true> XPollyProcessUnprofitable(
87 "polly-process-unprofitable",
88 cl::desc(
89 "Process scops that are unlikely to benefit from Polly optimizations."),
90 cl::location(PollyProcessUnprofitable), cl::init(false), cl::ZeroOrMore,
91 cl::cat(PollyCategory));
93 static cl::opt<std::string> OnlyFunction(
94 "polly-only-func",
95 cl::desc("Only run on functions that contain a certain string"),
96 cl::value_desc("string"), cl::ValueRequired, cl::init(""),
97 cl::cat(PollyCategory));
99 static cl::opt<std::string> OnlyRegion(
100 "polly-only-region",
101 cl::desc("Only run on certain regions (The provided identifier must "
102 "appear in the name of the region's entry block"),
103 cl::value_desc("identifier"), cl::ValueRequired, cl::init(""),
104 cl::cat(PollyCategory));
106 static cl::opt<bool>
107 IgnoreAliasing("polly-ignore-aliasing",
108 cl::desc("Ignore possible aliasing of the array bases"),
109 cl::Hidden, cl::init(false), cl::ZeroOrMore,
110 cl::cat(PollyCategory));
112 bool polly::PollyUseRuntimeAliasChecks;
113 static cl::opt<bool, true> XPollyUseRuntimeAliasChecks(
114 "polly-use-runtime-alias-checks",
115 cl::desc("Use runtime alias checks to resolve possible aliasing."),
116 cl::location(PollyUseRuntimeAliasChecks), cl::Hidden, cl::ZeroOrMore,
117 cl::init(true), cl::cat(PollyCategory));
119 static cl::opt<bool>
120 ReportLevel("polly-report",
121 cl::desc("Print information about the activities of Polly"),
122 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
124 static cl::opt<bool> AllowDifferentTypes(
125 "polly-allow-differing-element-types",
126 cl::desc("Allow different element types for array accesses"), cl::Hidden,
127 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
129 static cl::opt<bool>
130 AllowNonAffine("polly-allow-nonaffine",
131 cl::desc("Allow non affine access functions in arrays"),
132 cl::Hidden, cl::init(false), cl::ZeroOrMore,
133 cl::cat(PollyCategory));
135 static cl::opt<bool>
136 AllowModrefCall("polly-allow-modref-calls",
137 cl::desc("Allow functions with known modref behavior"),
138 cl::Hidden, cl::init(false), cl::ZeroOrMore,
139 cl::cat(PollyCategory));
141 static cl::opt<bool> AllowNonAffineSubRegions(
142 "polly-allow-nonaffine-branches",
143 cl::desc("Allow non affine conditions for branches"), cl::Hidden,
144 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
146 static cl::opt<bool>
147 AllowNonAffineSubLoops("polly-allow-nonaffine-loops",
148 cl::desc("Allow non affine conditions for loops"),
149 cl::Hidden, cl::init(false), cl::ZeroOrMore,
150 cl::cat(PollyCategory));
152 static cl::opt<bool, true>
153 TrackFailures("polly-detect-track-failures",
154 cl::desc("Track failure strings in detecting scop regions"),
155 cl::location(PollyTrackFailures), cl::Hidden, cl::ZeroOrMore,
156 cl::init(true), cl::cat(PollyCategory));
158 static cl::opt<bool> KeepGoing("polly-detect-keep-going",
159 cl::desc("Do not fail on the first error."),
160 cl::Hidden, cl::ZeroOrMore, cl::init(false),
161 cl::cat(PollyCategory));
163 static cl::opt<bool, true>
164 PollyDelinearizeX("polly-delinearize",
165 cl::desc("Delinearize array access functions"),
166 cl::location(PollyDelinearize), cl::Hidden,
167 cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
169 static cl::opt<bool>
170 VerifyScops("polly-detect-verify",
171 cl::desc("Verify the detected SCoPs after each transformation"),
172 cl::Hidden, cl::init(false), cl::ZeroOrMore,
173 cl::cat(PollyCategory));
175 bool polly::PollyInvariantLoadHoisting;
176 static cl::opt<bool, true> XPollyInvariantLoadHoisting(
177 "polly-invariant-load-hoisting", cl::desc("Hoist invariant loads."),
178 cl::location(PollyInvariantLoadHoisting), cl::Hidden, cl::ZeroOrMore,
179 cl::init(false), cl::cat(PollyCategory));
181 /// The minimal trip count under which loops are considered unprofitable.
182 static const unsigned MIN_LOOP_TRIP_COUNT = 8;
184 bool polly::PollyTrackFailures = false;
185 bool polly::PollyDelinearize = false;
186 StringRef polly::PollySkipFnAttr = "polly.skip.fn";
188 //===----------------------------------------------------------------------===//
189 // Statistics.
191 STATISTIC(ValidRegion, "Number of regions that a valid part of Scop");
193 class DiagnosticScopFound : public DiagnosticInfo {
194 private:
195 static int PluginDiagnosticKind;
197 Function &F;
198 std::string FileName;
199 unsigned EntryLine, ExitLine;
201 public:
202 DiagnosticScopFound(Function &F, std::string FileName, unsigned EntryLine,
203 unsigned ExitLine)
204 : DiagnosticInfo(PluginDiagnosticKind, DS_Note), F(F), FileName(FileName),
205 EntryLine(EntryLine), ExitLine(ExitLine) {}
207 virtual void print(DiagnosticPrinter &DP) const;
209 static bool classof(const DiagnosticInfo *DI) {
210 return DI->getKind() == PluginDiagnosticKind;
214 int DiagnosticScopFound::PluginDiagnosticKind =
215 getNextAvailablePluginDiagnosticKind();
217 void DiagnosticScopFound::print(DiagnosticPrinter &DP) const {
218 DP << "Polly detected an optimizable loop region (scop) in function '" << F
219 << "'\n";
221 if (FileName.empty()) {
222 DP << "Scop location is unknown. Compile with debug info "
223 "(-g) to get more precise information. ";
224 return;
227 DP << FileName << ":" << EntryLine << ": Start of scop\n";
228 DP << FileName << ":" << ExitLine << ": End of scop";
231 //===----------------------------------------------------------------------===//
232 // ScopDetection.
234 ScopDetection::ScopDetection() : FunctionPass(ID) {
235 // Disable runtime alias checks if we ignore aliasing all together.
236 if (IgnoreAliasing)
237 PollyUseRuntimeAliasChecks = false;
240 template <class RR, typename... Args>
241 inline bool ScopDetection::invalid(DetectionContext &Context, bool Assert,
242 Args &&... Arguments) const {
244 if (!Context.Verifying) {
245 RejectLog &Log = Context.Log;
246 std::shared_ptr<RR> RejectReason = std::make_shared<RR>(Arguments...);
248 if (PollyTrackFailures)
249 Log.report(RejectReason);
251 DEBUG(dbgs() << RejectReason->getMessage());
252 DEBUG(dbgs() << "\n");
253 } else {
254 assert(!Assert && "Verification of detected scop failed");
257 return false;
260 bool ScopDetection::isMaxRegionInScop(const Region &R, bool Verify) const {
261 if (!ValidRegions.count(&R))
262 return false;
264 if (Verify) {
265 DetectionContextMap.erase(getBBPairForRegion(&R));
266 const auto &It = DetectionContextMap.insert(std::make_pair(
267 getBBPairForRegion(&R),
268 DetectionContext(const_cast<Region &>(R), *AA, false /*verifying*/)));
269 DetectionContext &Context = It.first->second;
270 return isValidRegion(Context);
273 return true;
276 std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
277 // Get the first error we found. Even in keep-going mode, this is the first
278 // reason that caused the candidate to be rejected.
279 auto *Log = lookupRejectionLog(R);
281 // This can happen when we marked a region invalid, but didn't track
282 // an error for it.
283 if (!Log || !Log->hasErrors())
284 return "";
286 RejectReasonPtr RR = *Log->begin();
287 return RR->getMessage();
290 bool ScopDetection::addOverApproximatedRegion(Region *AR,
291 DetectionContext &Context) const {
293 // If we already know about Ar we can exit.
294 if (!Context.NonAffineSubRegionSet.insert(AR))
295 return true;
297 // All loops in the region have to be overapproximated too if there
298 // are accesses that depend on the iteration count.
300 for (BasicBlock *BB : AR->blocks()) {
301 Loop *L = LI->getLoopFor(BB);
302 if (AR->contains(L))
303 Context.BoxedLoopsSet.insert(L);
306 return (AllowNonAffineSubLoops || Context.BoxedLoopsSet.empty());
309 bool ScopDetection::onlyValidRequiredInvariantLoads(
310 InvariantLoadsSetTy &RequiredILS, DetectionContext &Context) const {
311 Region &CurRegion = Context.CurRegion;
313 if (!PollyInvariantLoadHoisting && !RequiredILS.empty())
314 return false;
316 for (LoadInst *Load : RequiredILS)
317 if (!isHoistableLoad(Load, CurRegion, *LI, *SE))
318 return false;
320 Context.RequiredILS.insert(RequiredILS.begin(), RequiredILS.end());
322 return true;
325 bool ScopDetection::isAffine(const SCEV *S, Loop *Scope,
326 DetectionContext &Context) const {
328 InvariantLoadsSetTy AccessILS;
329 if (!isAffineExpr(&Context.CurRegion, Scope, S, *SE, &AccessILS))
330 return false;
332 if (!onlyValidRequiredInvariantLoads(AccessILS, Context))
333 return false;
335 return true;
338 bool ScopDetection::isValidSwitch(BasicBlock &BB, SwitchInst *SI,
339 Value *Condition, bool IsLoopBranch,
340 DetectionContext &Context) const {
341 Loop *L = LI->getLoopFor(&BB);
342 const SCEV *ConditionSCEV = SE->getSCEVAtScope(Condition, L);
344 if (IsLoopBranch && L->isLoopLatch(&BB))
345 return false;
347 if (isAffine(ConditionSCEV, L, Context))
348 return true;
350 if (AllowNonAffineSubRegions &&
351 addOverApproximatedRegion(RI->getRegionFor(&BB), Context))
352 return true;
354 return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB,
355 ConditionSCEV, ConditionSCEV, SI);
358 bool ScopDetection::isValidBranch(BasicBlock &BB, BranchInst *BI,
359 Value *Condition, bool IsLoopBranch,
360 DetectionContext &Context) const {
362 // Constant integer conditions are always affine.
363 if (isa<ConstantInt>(Condition))
364 return true;
366 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
367 auto Opcode = BinOp->getOpcode();
368 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
369 Value *Op0 = BinOp->getOperand(0);
370 Value *Op1 = BinOp->getOperand(1);
371 return isValidBranch(BB, BI, Op0, IsLoopBranch, Context) &&
372 isValidBranch(BB, BI, Op1, IsLoopBranch, Context);
376 // Non constant conditions of branches need to be ICmpInst.
377 if (!isa<ICmpInst>(Condition)) {
378 if (!IsLoopBranch && AllowNonAffineSubRegions &&
379 addOverApproximatedRegion(RI->getRegionFor(&BB), Context))
380 return true;
381 return invalid<ReportInvalidCond>(Context, /*Assert=*/true, BI, &BB);
384 ICmpInst *ICmp = cast<ICmpInst>(Condition);
386 // Are both operands of the ICmp affine?
387 if (isa<UndefValue>(ICmp->getOperand(0)) ||
388 isa<UndefValue>(ICmp->getOperand(1)))
389 return invalid<ReportUndefOperand>(Context, /*Assert=*/true, &BB, ICmp);
391 Loop *L = LI->getLoopFor(&BB);
392 const SCEV *LHS = SE->getSCEVAtScope(ICmp->getOperand(0), L);
393 const SCEV *RHS = SE->getSCEVAtScope(ICmp->getOperand(1), L);
395 if (isAffine(LHS, L, Context) && isAffine(RHS, L, Context))
396 return true;
398 if (!IsLoopBranch && AllowNonAffineSubRegions &&
399 addOverApproximatedRegion(RI->getRegionFor(&BB), Context))
400 return true;
402 if (IsLoopBranch)
403 return false;
405 return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, LHS, RHS,
406 ICmp);
409 bool ScopDetection::isValidCFG(BasicBlock &BB, bool IsLoopBranch,
410 bool AllowUnreachable,
411 DetectionContext &Context) const {
412 Region &CurRegion = Context.CurRegion;
414 TerminatorInst *TI = BB.getTerminator();
416 if (AllowUnreachable && isa<UnreachableInst>(TI))
417 return true;
419 // Return instructions are only valid if the region is the top level region.
420 if (isa<ReturnInst>(TI) && !CurRegion.getExit() && TI->getNumOperands() == 0)
421 return true;
423 Value *Condition = getConditionFromTerminator(TI);
425 if (!Condition)
426 return invalid<ReportInvalidTerminator>(Context, /*Assert=*/true, &BB);
428 // UndefValue is not allowed as condition.
429 if (isa<UndefValue>(Condition))
430 return invalid<ReportUndefCond>(Context, /*Assert=*/true, TI, &BB);
432 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
433 return isValidBranch(BB, BI, Condition, IsLoopBranch, Context);
435 SwitchInst *SI = dyn_cast<SwitchInst>(TI);
436 assert(SI && "Terminator was neither branch nor switch");
438 return isValidSwitch(BB, SI, Condition, IsLoopBranch, Context);
441 bool ScopDetection::isValidCallInst(CallInst &CI,
442 DetectionContext &Context) const {
443 if (CI.doesNotReturn())
444 return false;
446 if (CI.doesNotAccessMemory())
447 return true;
449 if (auto *II = dyn_cast<IntrinsicInst>(&CI))
450 if (isValidIntrinsicInst(*II, Context))
451 return true;
453 Function *CalledFunction = CI.getCalledFunction();
455 // Indirect calls are not supported.
456 if (CalledFunction == nullptr)
457 return false;
459 if (AllowModrefCall) {
460 switch (AA->getModRefBehavior(CalledFunction)) {
461 case llvm::FMRB_UnknownModRefBehavior:
462 return false;
463 case llvm::FMRB_DoesNotAccessMemory:
464 case llvm::FMRB_OnlyReadsMemory:
465 // Implicitly disable delinearization since we have an unknown
466 // accesses with an unknown access function.
467 Context.HasUnknownAccess = true;
468 Context.AST.add(&CI);
469 return true;
470 case llvm::FMRB_OnlyReadsArgumentPointees:
471 case llvm::FMRB_OnlyAccessesArgumentPointees:
472 for (const auto &Arg : CI.arg_operands()) {
473 if (!Arg->getType()->isPointerTy())
474 continue;
476 // Bail if a pointer argument has a base address not known to
477 // ScalarEvolution. Note that a zero pointer is acceptable.
478 auto *ArgSCEV = SE->getSCEVAtScope(Arg, LI->getLoopFor(CI.getParent()));
479 if (ArgSCEV->isZero())
480 continue;
482 auto *BP = dyn_cast<SCEVUnknown>(SE->getPointerBase(ArgSCEV));
483 if (!BP)
484 return false;
486 // Implicitly disable delinearization since we have an unknown
487 // accesses with an unknown access function.
488 Context.HasUnknownAccess = true;
491 Context.AST.add(&CI);
492 return true;
493 case FMRB_DoesNotReadMemory:
494 case FMRB_OnlyAccessesInaccessibleMem:
495 case FMRB_OnlyAccessesInaccessibleOrArgMem:
496 return false;
500 return false;
503 bool ScopDetection::isValidIntrinsicInst(IntrinsicInst &II,
504 DetectionContext &Context) const {
505 if (isIgnoredIntrinsic(&II))
506 return true;
508 // The closest loop surrounding the call instruction.
509 Loop *L = LI->getLoopFor(II.getParent());
511 // The access function and base pointer for memory intrinsics.
512 const SCEV *AF;
513 const SCEVUnknown *BP;
515 switch (II.getIntrinsicID()) {
516 // Memory intrinsics that can be represented are supported.
517 case llvm::Intrinsic::memmove:
518 case llvm::Intrinsic::memcpy:
519 AF = SE->getSCEVAtScope(cast<MemTransferInst>(II).getSource(), L);
520 if (!AF->isZero()) {
521 BP = dyn_cast<SCEVUnknown>(SE->getPointerBase(AF));
522 // Bail if the source pointer is not valid.
523 if (!isValidAccess(&II, AF, BP, Context))
524 return false;
526 // Fall through
527 case llvm::Intrinsic::memset:
528 AF = SE->getSCEVAtScope(cast<MemIntrinsic>(II).getDest(), L);
529 if (!AF->isZero()) {
530 BP = dyn_cast<SCEVUnknown>(SE->getPointerBase(AF));
531 // Bail if the destination pointer is not valid.
532 if (!isValidAccess(&II, AF, BP, Context))
533 return false;
536 // Bail if the length is not affine.
537 if (!isAffine(SE->getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L), L,
538 Context))
539 return false;
541 return true;
542 default:
543 break;
546 return false;
549 bool ScopDetection::isInvariant(const Value &Val, const Region &Reg) const {
550 // A reference to function argument or constant value is invariant.
551 if (isa<Argument>(Val) || isa<Constant>(Val))
552 return true;
554 const Instruction *I = dyn_cast<Instruction>(&Val);
555 if (!I)
556 return false;
558 if (!Reg.contains(I))
559 return true;
561 if (I->mayHaveSideEffects())
562 return false;
564 if (isa<SelectInst>(I))
565 return false;
567 // When Val is a Phi node, it is likely not invariant. We do not check whether
568 // Phi nodes are actually invariant, we assume that Phi nodes are usually not
569 // invariant.
570 if (isa<PHINode>(*I))
571 return false;
573 for (const Use &Operand : I->operands())
574 if (!isInvariant(*Operand, Reg))
575 return false;
577 return true;
580 /// Remove smax of smax(0, size) expressions from a SCEV expression and
581 /// register the '...' components.
583 /// Array access expressions as they are generated by gfortran contain smax(0,
584 /// size) expressions that confuse the 'normal' delinearization algorithm.
585 /// However, if we extract such expressions before the normal delinearization
586 /// takes place they can actually help to identify array size expressions in
587 /// fortran accesses. For the subsequently following delinearization the smax(0,
588 /// size) component can be replaced by just 'size'. This is correct as we will
589 /// always add and verify the assumption that for all subscript expressions
590 /// 'exp' the inequality 0 <= exp < size holds. Hence, we will also verify
591 /// that 0 <= size, which means smax(0, size) == size.
592 class SCEVRemoveMax : public SCEVRewriteVisitor<SCEVRemoveMax> {
593 public:
594 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
595 std::vector<const SCEV *> *Terms = nullptr) {
596 SCEVRemoveMax Rewriter(SE, Terms);
597 return Rewriter.visit(Scev);
600 SCEVRemoveMax(ScalarEvolution &SE, std::vector<const SCEV *> *Terms)
601 : SCEVRewriteVisitor(SE), Terms(Terms) {}
603 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
604 if ((Expr->getNumOperands() == 2) && Expr->getOperand(0)->isZero()) {
605 auto Res = visit(Expr->getOperand(1));
606 if (Terms)
607 (*Terms).push_back(Res);
608 return Res;
611 return Expr;
614 private:
615 std::vector<const SCEV *> *Terms;
618 SmallVector<const SCEV *, 4>
619 ScopDetection::getDelinearizationTerms(DetectionContext &Context,
620 const SCEVUnknown *BasePointer) const {
621 SmallVector<const SCEV *, 4> Terms;
622 for (const auto &Pair : Context.Accesses[BasePointer]) {
623 std::vector<const SCEV *> MaxTerms;
624 SCEVRemoveMax::rewrite(Pair.second, *SE, &MaxTerms);
625 if (MaxTerms.size() > 0) {
626 Terms.insert(Terms.begin(), MaxTerms.begin(), MaxTerms.end());
627 continue;
629 // In case the outermost expression is a plain add, we check if any of its
630 // terms has the form 4 * %inst * %param * %param ..., aka a term that
631 // contains a product between a parameter and an instruction that is
632 // inside the scop. Such instructions, if allowed at all, are instructions
633 // SCEV can not represent, but Polly is still looking through. As a
634 // result, these instructions can depend on induction variables and are
635 // most likely no array sizes. However, terms that are multiplied with
636 // them are likely candidates for array sizes.
637 if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) {
638 for (auto Op : AF->operands()) {
639 if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op))
640 SE->collectParametricTerms(AF2, Terms);
641 if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) {
642 SmallVector<const SCEV *, 0> Operands;
644 for (auto *MulOp : AF2->operands()) {
645 if (auto *Const = dyn_cast<SCEVConstant>(MulOp))
646 Operands.push_back(Const);
647 if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) {
648 if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) {
649 if (!Context.CurRegion.contains(Inst))
650 Operands.push_back(MulOp);
652 } else {
653 Operands.push_back(MulOp);
657 if (Operands.size())
658 Terms.push_back(SE->getMulExpr(Operands));
662 if (Terms.empty())
663 SE->collectParametricTerms(Pair.second, Terms);
665 return Terms;
668 bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
669 SmallVectorImpl<const SCEV *> &Sizes,
670 const SCEVUnknown *BasePointer,
671 Loop *Scope) const {
672 Value *BaseValue = BasePointer->getValue();
673 Region &CurRegion = Context.CurRegion;
674 for (const SCEV *DelinearizedSize : Sizes) {
675 if (!isAffine(DelinearizedSize, Scope, Context)) {
676 Sizes.clear();
677 break;
679 if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) {
680 auto *V = dyn_cast<Value>(Unknown->getValue());
681 if (auto *Load = dyn_cast<LoadInst>(V)) {
682 if (Context.CurRegion.contains(Load) &&
683 isHoistableLoad(Load, CurRegion, *LI, *SE))
684 Context.RequiredILS.insert(Load);
685 continue;
688 if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion, Scope, false))
689 return invalid<ReportNonAffineAccess>(
690 Context, /*Assert=*/true, DelinearizedSize,
691 Context.Accesses[BasePointer].front().first, BaseValue);
694 // No array shape derived.
695 if (Sizes.empty()) {
696 if (AllowNonAffine)
697 return true;
699 for (const auto &Pair : Context.Accesses[BasePointer]) {
700 const Instruction *Insn = Pair.first;
701 const SCEV *AF = Pair.second;
703 if (!isAffine(AF, Scope, Context)) {
704 invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
705 BaseValue);
706 if (!KeepGoing)
707 return false;
710 return false;
712 return true;
715 // We first store the resulting memory accesses in TempMemoryAccesses. Only
716 // if the access functions for all memory accesses have been successfully
717 // delinearized we continue. Otherwise, we either report a failure or, if
718 // non-affine accesses are allowed, we drop the information. In case the
719 // information is dropped the memory accesses need to be overapproximated
720 // when translated to a polyhedral representation.
721 bool ScopDetection::computeAccessFunctions(
722 DetectionContext &Context, const SCEVUnknown *BasePointer,
723 std::shared_ptr<ArrayShape> Shape) const {
724 Value *BaseValue = BasePointer->getValue();
725 bool BasePtrHasNonAffine = false;
726 MapInsnToMemAcc TempMemoryAccesses;
727 for (const auto &Pair : Context.Accesses[BasePointer]) {
728 const Instruction *Insn = Pair.first;
729 auto *AF = Pair.second;
730 AF = SCEVRemoveMax::rewrite(AF, *SE);
731 bool IsNonAffine = false;
732 TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
733 MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
734 auto *Scope = LI->getLoopFor(Insn->getParent());
736 if (!AF) {
737 if (isAffine(Pair.second, Scope, Context))
738 Acc->DelinearizedSubscripts.push_back(Pair.second);
739 else
740 IsNonAffine = true;
741 } else {
742 SE->computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
743 Shape->DelinearizedSizes);
744 if (Acc->DelinearizedSubscripts.size() == 0)
745 IsNonAffine = true;
746 for (const SCEV *S : Acc->DelinearizedSubscripts)
747 if (!isAffine(S, Scope, Context))
748 IsNonAffine = true;
751 // (Possibly) report non affine access
752 if (IsNonAffine) {
753 BasePtrHasNonAffine = true;
754 if (!AllowNonAffine)
755 invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second,
756 Insn, BaseValue);
757 if (!KeepGoing && !AllowNonAffine)
758 return false;
762 if (!BasePtrHasNonAffine)
763 Context.InsnToMemAcc.insert(TempMemoryAccesses.begin(),
764 TempMemoryAccesses.end());
766 return true;
769 bool ScopDetection::hasBaseAffineAccesses(DetectionContext &Context,
770 const SCEVUnknown *BasePointer,
771 Loop *Scope) const {
772 auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer));
774 auto Terms = getDelinearizationTerms(Context, BasePointer);
776 SE->findArrayDimensions(Terms, Shape->DelinearizedSizes,
777 Context.ElementSize[BasePointer]);
779 if (!hasValidArraySizes(Context, Shape->DelinearizedSizes, BasePointer,
780 Scope))
781 return false;
783 return computeAccessFunctions(Context, BasePointer, Shape);
786 bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const {
787 // TODO: If we have an unknown access and other non-affine accesses we do
788 // not try to delinearize them for now.
789 if (Context.HasUnknownAccess && !Context.NonAffineAccesses.empty())
790 return AllowNonAffine;
792 for (auto &Pair : Context.NonAffineAccesses) {
793 auto *BasePointer = Pair.first;
794 auto *Scope = Pair.second;
795 if (!hasBaseAffineAccesses(Context, BasePointer, Scope)) {
796 if (KeepGoing)
797 continue;
798 else
799 return false;
802 return true;
805 bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF,
806 const SCEVUnknown *BP,
807 DetectionContext &Context) const {
809 if (!BP)
810 return invalid<ReportNoBasePtr>(Context, /*Assert=*/true, Inst);
812 auto *BV = BP->getValue();
813 if (isa<UndefValue>(BV))
814 return invalid<ReportUndefBasePtr>(Context, /*Assert=*/true, Inst);
816 // FIXME: Think about allowing IntToPtrInst
817 if (IntToPtrInst *Inst = dyn_cast<IntToPtrInst>(BV))
818 return invalid<ReportIntToPtr>(Context, /*Assert=*/true, Inst);
820 // Check that the base address of the access is invariant in the current
821 // region.
822 if (!isInvariant(*BV, Context.CurRegion))
823 return invalid<ReportVariantBasePtr>(Context, /*Assert=*/true, BV, Inst);
825 AF = SE->getMinusSCEV(AF, BP);
827 const SCEV *Size;
828 if (!isa<MemIntrinsic>(Inst)) {
829 Size = SE->getElementSize(Inst);
830 } else {
831 auto *SizeTy =
832 SE->getEffectiveSCEVType(PointerType::getInt8PtrTy(SE->getContext()));
833 Size = SE->getConstant(SizeTy, 8);
836 if (Context.ElementSize[BP]) {
837 if (!AllowDifferentTypes && Context.ElementSize[BP] != Size)
838 return invalid<ReportDifferentArrayElementSize>(Context, /*Assert=*/true,
839 Inst, BV);
841 Context.ElementSize[BP] = SE->getSMinExpr(Size, Context.ElementSize[BP]);
842 } else {
843 Context.ElementSize[BP] = Size;
846 bool IsVariantInNonAffineLoop = false;
847 SetVector<const Loop *> Loops;
848 findLoops(AF, Loops);
849 for (const Loop *L : Loops)
850 if (Context.BoxedLoopsSet.count(L))
851 IsVariantInNonAffineLoop = true;
853 auto *Scope = LI->getLoopFor(Inst->getParent());
854 bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Scope, Context);
855 // Do not try to delinearize memory intrinsics and force them to be affine.
856 if (isa<MemIntrinsic>(Inst) && !IsAffine) {
857 return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
858 BV);
859 } else if (PollyDelinearize && !IsVariantInNonAffineLoop) {
860 Context.Accesses[BP].push_back({Inst, AF});
862 if (!IsAffine)
863 Context.NonAffineAccesses.insert(
864 std::make_pair(BP, LI->getLoopFor(Inst->getParent())));
865 } else if (!AllowNonAffine && !IsAffine) {
866 return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
867 BV);
870 if (IgnoreAliasing)
871 return true;
873 // Check if the base pointer of the memory access does alias with
874 // any other pointer. This cannot be handled at the moment.
875 AAMDNodes AATags;
876 Inst->getAAMetadata(AATags);
877 AliasSet &AS = Context.AST.getAliasSetForPointer(
878 BP->getValue(), MemoryLocation::UnknownSize, AATags);
880 if (!AS.isMustAlias()) {
881 if (PollyUseRuntimeAliasChecks) {
882 bool CanBuildRunTimeCheck = true;
883 // The run-time alias check places code that involves the base pointer at
884 // the beginning of the SCoP. This breaks if the base pointer is defined
885 // inside the scop. Hence, we can only create a run-time check if we are
886 // sure the base pointer is not an instruction defined inside the scop.
887 // However, we can ignore loads that will be hoisted.
888 for (const auto &Ptr : AS) {
889 Instruction *Inst = dyn_cast<Instruction>(Ptr.getValue());
890 if (Inst && Context.CurRegion.contains(Inst)) {
891 auto *Load = dyn_cast<LoadInst>(Inst);
892 if (Load && isHoistableLoad(Load, Context.CurRegion, *LI, *SE)) {
893 Context.RequiredILS.insert(Load);
894 continue;
897 CanBuildRunTimeCheck = false;
898 break;
902 if (CanBuildRunTimeCheck)
903 return true;
905 return invalid<ReportAlias>(Context, /*Assert=*/true, Inst, AS);
908 return true;
911 bool ScopDetection::isValidMemoryAccess(MemAccInst Inst,
912 DetectionContext &Context) const {
913 Value *Ptr = Inst.getPointerOperand();
914 Loop *L = LI->getLoopFor(Inst->getParent());
915 const SCEV *AccessFunction = SE->getSCEVAtScope(Ptr, L);
916 const SCEVUnknown *BasePointer;
918 BasePointer = dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFunction));
920 return isValidAccess(Inst, AccessFunction, BasePointer, Context);
923 bool ScopDetection::isValidInstruction(Instruction &Inst,
924 DetectionContext &Context) const {
925 for (auto &Op : Inst.operands()) {
926 auto *OpInst = dyn_cast<Instruction>(&Op);
928 if (!OpInst)
929 continue;
931 if (isErrorBlock(*OpInst->getParent(), Context.CurRegion, *LI, *DT))
932 return false;
935 if (isa<LandingPadInst>(&Inst) || isa<ResumeInst>(&Inst))
936 return false;
938 // We only check the call instruction but not invoke instruction.
939 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
940 if (isValidCallInst(*CI, Context))
941 return true;
943 return invalid<ReportFuncCall>(Context, /*Assert=*/true, &Inst);
946 if (!Inst.mayWriteToMemory() && !Inst.mayReadFromMemory()) {
947 if (!isa<AllocaInst>(Inst))
948 return true;
950 return invalid<ReportAlloca>(Context, /*Assert=*/true, &Inst);
953 // Check the access function.
954 if (auto MemInst = MemAccInst::dyn_cast(Inst)) {
955 Context.hasStores |= isa<StoreInst>(MemInst);
956 Context.hasLoads |= isa<LoadInst>(MemInst);
957 if (!MemInst.isSimple())
958 return invalid<ReportNonSimpleMemoryAccess>(Context, /*Assert=*/true,
959 &Inst);
961 return isValidMemoryAccess(MemInst, Context);
964 // We do not know this instruction, therefore we assume it is invalid.
965 return invalid<ReportUnknownInst>(Context, /*Assert=*/true, &Inst);
968 /// Check whether @p L has exiting blocks.
970 /// @param L The loop of interest
972 /// @return True if the loop has exiting blocks, false otherwise.
973 static bool hasExitingBlocks(Loop *L) {
974 SmallVector<BasicBlock *, 4> ExitingBlocks;
975 L->getExitingBlocks(ExitingBlocks);
976 return !ExitingBlocks.empty();
979 bool ScopDetection::canUseISLTripCount(Loop *L,
980 DetectionContext &Context) const {
981 // Ensure the loop has valid exiting blocks as well as latches, otherwise we
982 // need to overapproximate it as a boxed loop.
983 SmallVector<BasicBlock *, 4> LoopControlBlocks;
984 L->getExitingBlocks(LoopControlBlocks);
985 L->getLoopLatches(LoopControlBlocks);
986 for (BasicBlock *ControlBB : LoopControlBlocks) {
987 if (!isValidCFG(*ControlBB, true, false, Context))
988 return false;
991 // We can use ISL to compute the trip count of L.
992 return true;
995 bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
996 // Loops that contain part but not all of the blocks of a region cannot be
997 // handled by the schedule generation. Such loop constructs can happen
998 // because a region can contain BBs that have no path to the exit block
999 // (Infinite loops, UnreachableInst), but such blocks are never part of a
1000 // loop.
1002 // _______________
1003 // | Loop Header | <-----------.
1004 // --------------- |
1005 // | |
1006 // _______________ ______________
1007 // | RegionEntry |-----> | RegionExit |----->
1008 // --------------- --------------
1009 // |
1010 // _______________
1011 // | EndlessLoop | <--.
1012 // --------------- |
1013 // | |
1014 // \------------/
1016 // In the example above, the loop (LoopHeader,RegionEntry,RegionExit) is
1017 // neither entirely contained in the region RegionEntry->RegionExit
1018 // (containing RegionEntry,EndlessLoop) nor is the region entirely contained
1019 // in the loop.
1020 // The block EndlessLoop is contained in the region because Region::contains
1021 // tests whether it is not dominated by RegionExit. This is probably to not
1022 // having to query the PostdominatorTree. Instead of an endless loop, a dead
1023 // end can also be formed by an UnreachableInst. This case is already caught
1024 // by isErrorBlock(). We hence only have to reject endless loops here.
1025 if (!hasExitingBlocks(L))
1026 return invalid<ReportLoopHasNoExit>(Context, /*Assert=*/true, L);
1028 if (canUseISLTripCount(L, Context))
1029 return true;
1031 if (AllowNonAffineSubLoops && AllowNonAffineSubRegions) {
1032 Region *R = RI->getRegionFor(L->getHeader());
1033 while (R != &Context.CurRegion && !R->contains(L))
1034 R = R->getParent();
1036 if (addOverApproximatedRegion(R, Context))
1037 return true;
1040 const SCEV *LoopCount = SE->getBackedgeTakenCount(L);
1041 return invalid<ReportLoopBound>(Context, /*Assert=*/true, L, LoopCount);
1044 /// Return the number of loops in @p L (incl. @p L) that have a trip
1045 /// count that is not known to be less than MIN_LOOP_TRIP_COUNT.
1046 static int countBeneficialSubLoops(Loop *L, ScalarEvolution &SE) {
1047 auto *TripCount = SE.getBackedgeTakenCount(L);
1049 int count = 1;
1050 if (auto *TripCountC = dyn_cast<SCEVConstant>(TripCount))
1051 if (TripCountC->getType()->getScalarSizeInBits() <= 64)
1052 if (TripCountC->getValue()->getZExtValue() < MIN_LOOP_TRIP_COUNT)
1053 count -= 1;
1055 for (auto &SubLoop : *L)
1056 count += countBeneficialSubLoops(SubLoop, SE);
1058 return count;
1061 int ScopDetection::countBeneficialLoops(Region *R) const {
1062 int LoopNum = 0;
1064 auto L = LI->getLoopFor(R->getEntry());
1065 L = L ? R->outermostLoopInRegion(L) : nullptr;
1066 L = L ? L->getParentLoop() : nullptr;
1068 auto SubLoops =
1069 L ? L->getSubLoopsVector() : std::vector<Loop *>(LI->begin(), LI->end());
1071 for (auto &SubLoop : SubLoops)
1072 if (R->contains(SubLoop))
1073 LoopNum += countBeneficialSubLoops(SubLoop, *SE);
1075 return LoopNum;
1078 Region *ScopDetection::expandRegion(Region &R) {
1079 // Initial no valid region was found (greater than R)
1080 std::unique_ptr<Region> LastValidRegion;
1081 auto ExpandedRegion = std::unique_ptr<Region>(R.getExpandedRegion());
1083 DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");
1085 while (ExpandedRegion) {
1086 const auto &It = DetectionContextMap.insert(std::make_pair(
1087 getBBPairForRegion(ExpandedRegion.get()),
1088 DetectionContext(*ExpandedRegion, *AA, false /*verifying*/)));
1089 DetectionContext &Context = It.first->second;
1090 DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n");
1091 // Only expand when we did not collect errors.
1093 if (!Context.Log.hasErrors()) {
1094 // If the exit is valid check all blocks
1095 // - if true, a valid region was found => store it + keep expanding
1096 // - if false, .tbd. => stop (should this really end the loop?)
1097 if (!allBlocksValid(Context) || Context.Log.hasErrors()) {
1098 removeCachedResults(*ExpandedRegion);
1099 DetectionContextMap.erase(It.first);
1100 break;
1103 // Store this region, because it is the greatest valid (encountered so
1104 // far).
1105 if (LastValidRegion) {
1106 removeCachedResults(*LastValidRegion);
1107 DetectionContextMap.erase(getBBPairForRegion(LastValidRegion.get()));
1109 LastValidRegion = std::move(ExpandedRegion);
1111 // Create and test the next greater region (if any)
1112 ExpandedRegion =
1113 std::unique_ptr<Region>(LastValidRegion->getExpandedRegion());
1115 } else {
1116 // Create and test the next greater region (if any)
1117 removeCachedResults(*ExpandedRegion);
1118 DetectionContextMap.erase(It.first);
1119 ExpandedRegion =
1120 std::unique_ptr<Region>(ExpandedRegion->getExpandedRegion());
1124 DEBUG({
1125 if (LastValidRegion)
1126 dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n";
1127 else
1128 dbgs() << "\tExpanding " << R.getNameStr() << " failed\n";
1131 return LastValidRegion.release();
1133 static bool regionWithoutLoops(Region &R, LoopInfo *LI) {
1134 for (const BasicBlock *BB : R.blocks())
1135 if (R.contains(LI->getLoopFor(BB)))
1136 return false;
1138 return true;
1141 unsigned ScopDetection::removeCachedResultsRecursively(const Region &R) {
1142 unsigned Count = 0;
1143 for (auto &SubRegion : R) {
1144 if (ValidRegions.count(SubRegion.get())) {
1145 removeCachedResults(*SubRegion.get());
1146 ++Count;
1147 } else
1148 Count += removeCachedResultsRecursively(*SubRegion);
1150 return Count;
1153 void ScopDetection::removeCachedResults(const Region &R) {
1154 ValidRegions.remove(&R);
1157 void ScopDetection::findScops(Region &R) {
1158 const auto &It = DetectionContextMap.insert(std::make_pair(
1159 getBBPairForRegion(&R), DetectionContext(R, *AA, false /*verifying*/)));
1160 DetectionContext &Context = It.first->second;
1162 bool RegionIsValid = false;
1163 if (!PollyProcessUnprofitable && regionWithoutLoops(R, LI))
1164 invalid<ReportUnprofitable>(Context, /*Assert=*/true, &R);
1165 else
1166 RegionIsValid = isValidRegion(Context);
1168 bool HasErrors = !RegionIsValid || Context.Log.size() > 0;
1170 if (HasErrors) {
1171 removeCachedResults(R);
1172 } else {
1173 ++ValidRegion;
1174 ValidRegions.insert(&R);
1175 return;
1178 for (auto &SubRegion : R)
1179 findScops(*SubRegion);
1181 // Try to expand regions.
1183 // As the region tree normally only contains canonical regions, non canonical
1184 // regions that form a Scop are not found. Therefore, those non canonical
1185 // regions are checked by expanding the canonical ones.
1187 std::vector<Region *> ToExpand;
1189 for (auto &SubRegion : R)
1190 ToExpand.push_back(SubRegion.get());
1192 for (Region *CurrentRegion : ToExpand) {
1193 // Skip invalid regions. Regions may become invalid, if they are element of
1194 // an already expanded region.
1195 if (!ValidRegions.count(CurrentRegion))
1196 continue;
1198 // Skip regions that had errors.
1199 bool HadErrors = lookupRejectionLog(CurrentRegion)->hasErrors();
1200 if (HadErrors)
1201 continue;
1203 Region *ExpandedR = expandRegion(*CurrentRegion);
1205 if (!ExpandedR)
1206 continue;
1208 R.addSubRegion(ExpandedR, true);
1209 ValidRegions.insert(ExpandedR);
1210 removeCachedResults(*CurrentRegion);
1212 // Erase all (direct and indirect) children of ExpandedR from the valid
1213 // regions and update the number of valid regions.
1214 ValidRegion -= removeCachedResultsRecursively(*ExpandedR);
1218 bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
1219 Region &CurRegion = Context.CurRegion;
1221 for (const BasicBlock *BB : CurRegion.blocks()) {
1222 Loop *L = LI->getLoopFor(BB);
1223 if (L && L->getHeader() == BB && CurRegion.contains(L) &&
1224 (!isValidLoop(L, Context) && !KeepGoing))
1225 return false;
1228 for (BasicBlock *BB : CurRegion.blocks()) {
1229 bool IsErrorBlock = isErrorBlock(*BB, CurRegion, *LI, *DT);
1231 // Also check exception blocks (and possibly register them as non-affine
1232 // regions). Even though exception blocks are not modeled, we use them
1233 // to forward-propagate domain constraints during ScopInfo construction.
1234 if (!isValidCFG(*BB, false, IsErrorBlock, Context) && !KeepGoing)
1235 return false;
1237 if (IsErrorBlock)
1238 continue;
1240 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I)
1241 if (!isValidInstruction(*I, Context) && !KeepGoing)
1242 return false;
1245 if (!hasAffineMemoryAccesses(Context))
1246 return false;
1248 return true;
1251 bool ScopDetection::hasSufficientCompute(DetectionContext &Context,
1252 int NumLoops) const {
1253 int InstCount = 0;
1255 if (NumLoops == 0)
1256 return false;
1258 for (auto *BB : Context.CurRegion.blocks())
1259 if (Context.CurRegion.contains(LI->getLoopFor(BB)))
1260 InstCount += BB->size();
1262 InstCount = InstCount / NumLoops;
1264 return InstCount >= ProfitabilityMinPerLoopInstructions;
1267 bool ScopDetection::hasPossiblyDistributableLoop(
1268 DetectionContext &Context) const {
1269 for (auto *BB : Context.CurRegion.blocks()) {
1270 auto *L = LI->getLoopFor(BB);
1271 if (!Context.CurRegion.contains(L))
1272 continue;
1273 if (Context.BoxedLoopsSet.count(L))
1274 continue;
1275 unsigned StmtsWithStoresInLoops = 0;
1276 for (auto *LBB : L->blocks()) {
1277 bool MemStore = false;
1278 for (auto &I : *LBB)
1279 MemStore |= isa<StoreInst>(&I);
1280 StmtsWithStoresInLoops += MemStore;
1282 return (StmtsWithStoresInLoops > 1);
1284 return false;
1287 bool ScopDetection::isProfitableRegion(DetectionContext &Context) const {
1288 Region &CurRegion = Context.CurRegion;
1290 if (PollyProcessUnprofitable)
1291 return true;
1293 // We can probably not do a lot on scops that only write or only read
1294 // data.
1295 if (!Context.hasStores || !Context.hasLoads)
1296 return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
1298 int NumLoops = countBeneficialLoops(&CurRegion);
1299 int NumAffineLoops = NumLoops - Context.BoxedLoopsSet.size();
1301 // Scops with at least two loops may allow either loop fusion or tiling and
1302 // are consequently interesting to look at.
1303 if (NumAffineLoops >= 2)
1304 return true;
1306 // A loop with multiple non-trivial blocks migt be amendable to distribution.
1307 if (NumAffineLoops == 1 && hasPossiblyDistributableLoop(Context))
1308 return true;
1310 // Scops that contain a loop with a non-trivial amount of computation per
1311 // loop-iteration are interesting as we may be able to parallelize such
1312 // loops. Individual loops that have only a small amount of computation
1313 // per-iteration are performance-wise very fragile as any change to the
1314 // loop induction variables may affect performance. To not cause spurious
1315 // performance regressions, we do not consider such loops.
1316 if (NumAffineLoops == 1 && hasSufficientCompute(Context, NumLoops))
1317 return true;
1319 return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
1322 bool ScopDetection::isValidRegion(DetectionContext &Context) const {
1323 Region &CurRegion = Context.CurRegion;
1325 DEBUG(dbgs() << "Checking region: " << CurRegion.getNameStr() << "\n\t");
1327 if (CurRegion.isTopLevelRegion()) {
1328 DEBUG(dbgs() << "Top level region is invalid\n");
1329 return false;
1332 if (!CurRegion.getEntry()->getName().count(OnlyRegion)) {
1333 DEBUG({
1334 dbgs() << "Region entry does not match -polly-region-only";
1335 dbgs() << "\n";
1337 return false;
1340 // SCoP cannot contain the entry block of the function, because we need
1341 // to insert alloca instruction there when translate scalar to array.
1342 if (CurRegion.getEntry() ==
1343 &(CurRegion.getEntry()->getParent()->getEntryBlock()))
1344 return invalid<ReportEntry>(Context, /*Assert=*/true, CurRegion.getEntry());
1346 if (!allBlocksValid(Context))
1347 return false;
1349 DebugLoc DbgLoc;
1350 if (!isReducibleRegion(CurRegion, DbgLoc))
1351 return invalid<ReportIrreducibleRegion>(Context, /*Assert=*/true,
1352 &CurRegion, DbgLoc);
1354 DEBUG(dbgs() << "OK\n");
1355 return true;
1358 void ScopDetection::markFunctionAsInvalid(Function *F) {
1359 F->addFnAttr(PollySkipFnAttr);
1362 bool ScopDetection::isValidFunction(llvm::Function &F) {
1363 return !F.hasFnAttribute(PollySkipFnAttr);
1366 void ScopDetection::printLocations(llvm::Function &F) {
1367 for (const Region *R : *this) {
1368 unsigned LineEntry, LineExit;
1369 std::string FileName;
1371 getDebugLocation(R, LineEntry, LineExit, FileName);
1372 DiagnosticScopFound Diagnostic(F, FileName, LineEntry, LineExit);
1373 F.getContext().diagnose(Diagnostic);
1377 void ScopDetection::emitMissedRemarks(const Function &F) {
1378 for (auto &DIt : DetectionContextMap) {
1379 auto &DC = DIt.getSecond();
1380 if (DC.Log.hasErrors())
1381 emitRejectionRemarks(DIt.getFirst(), DC.Log);
1385 bool ScopDetection::isReducibleRegion(Region &R, DebugLoc &DbgLoc) const {
1386 /// Enum for coloring BBs in Region.
1388 /// WHITE - Unvisited BB in DFS walk.
1389 /// GREY - BBs which are currently on the DFS stack for processing.
1390 /// BLACK - Visited and completely processed BB.
1391 enum Color { WHITE, GREY, BLACK };
1393 BasicBlock *REntry = R.getEntry();
1394 BasicBlock *RExit = R.getExit();
1395 // Map to match the color of a BasicBlock during the DFS walk.
1396 DenseMap<const BasicBlock *, Color> BBColorMap;
1397 // Stack keeping track of current BB and index of next child to be processed.
1398 std::stack<std::pair<BasicBlock *, unsigned>> DFSStack;
1400 unsigned AdjacentBlockIndex = 0;
1401 BasicBlock *CurrBB, *SuccBB;
1402 CurrBB = REntry;
1404 // Initialize the map for all BB with WHITE color.
1405 for (auto *BB : R.blocks())
1406 BBColorMap[BB] = WHITE;
1408 // Process the entry block of the Region.
1409 BBColorMap[CurrBB] = GREY;
1410 DFSStack.push(std::make_pair(CurrBB, 0));
1412 while (!DFSStack.empty()) {
1413 // Get next BB on stack to be processed.
1414 CurrBB = DFSStack.top().first;
1415 AdjacentBlockIndex = DFSStack.top().second;
1416 DFSStack.pop();
1418 // Loop to iterate over the successors of current BB.
1419 const TerminatorInst *TInst = CurrBB->getTerminator();
1420 unsigned NSucc = TInst->getNumSuccessors();
1421 for (unsigned I = AdjacentBlockIndex; I < NSucc;
1422 ++I, ++AdjacentBlockIndex) {
1423 SuccBB = TInst->getSuccessor(I);
1425 // Checks for region exit block and self-loops in BB.
1426 if (SuccBB == RExit || SuccBB == CurrBB)
1427 continue;
1429 // WHITE indicates an unvisited BB in DFS walk.
1430 if (BBColorMap[SuccBB] == WHITE) {
1431 // Push the current BB and the index of the next child to be visited.
1432 DFSStack.push(std::make_pair(CurrBB, I + 1));
1433 // Push the next BB to be processed.
1434 DFSStack.push(std::make_pair(SuccBB, 0));
1435 // First time the BB is being processed.
1436 BBColorMap[SuccBB] = GREY;
1437 break;
1438 } else if (BBColorMap[SuccBB] == GREY) {
1439 // GREY indicates a loop in the control flow.
1440 // If the destination dominates the source, it is a natural loop
1441 // else, an irreducible control flow in the region is detected.
1442 if (!DT->dominates(SuccBB, CurrBB)) {
1443 // Get debug info of instruction which causes irregular control flow.
1444 DbgLoc = TInst->getDebugLoc();
1445 return false;
1450 // If all children of current BB have been processed,
1451 // then mark that BB as fully processed.
1452 if (AdjacentBlockIndex == NSucc)
1453 BBColorMap[CurrBB] = BLACK;
1456 return true;
1459 bool ScopDetection::runOnFunction(llvm::Function &F) {
1460 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1461 RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
1462 if (!PollyProcessUnprofitable && LI->empty())
1463 return false;
1465 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1466 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1467 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1468 Region *TopRegion = RI->getTopLevelRegion();
1470 releaseMemory();
1472 if (OnlyFunction != "" && !F.getName().count(OnlyFunction))
1473 return false;
1475 if (!isValidFunction(F))
1476 return false;
1478 findScops(*TopRegion);
1480 // Prune non-profitable regions.
1481 for (auto &DIt : DetectionContextMap) {
1482 auto &DC = DIt.getSecond();
1483 if (DC.Log.hasErrors())
1484 continue;
1485 if (!ValidRegions.count(&DC.CurRegion))
1486 continue;
1487 if (isProfitableRegion(DC))
1488 continue;
1490 ValidRegions.remove(&DC.CurRegion);
1493 // Only makes sense when we tracked errors.
1494 if (PollyTrackFailures)
1495 emitMissedRemarks(F);
1497 if (ReportLevel)
1498 printLocations(F);
1500 assert(ValidRegions.size() <= DetectionContextMap.size() &&
1501 "Cached more results than valid regions");
1502 return false;
1505 ScopDetection::DetectionContext *
1506 ScopDetection::getDetectionContext(const Region *R) const {
1507 auto DCMIt = DetectionContextMap.find(getBBPairForRegion(R));
1508 if (DCMIt == DetectionContextMap.end())
1509 return nullptr;
1510 return &DCMIt->second;
1513 const RejectLog *ScopDetection::lookupRejectionLog(const Region *R) const {
1514 const DetectionContext *DC = getDetectionContext(R);
1515 return DC ? &DC->Log : nullptr;
1518 void polly::ScopDetection::verifyRegion(const Region &R) const {
1519 assert(isMaxRegionInScop(R) && "Expect R is a valid region.");
1521 DetectionContext Context(const_cast<Region &>(R), *AA, true /*verifying*/);
1522 isValidRegion(Context);
1525 void polly::ScopDetection::verifyAnalysis() const {
1526 if (!VerifyScops)
1527 return;
1529 for (const Region *R : ValidRegions)
1530 verifyRegion(*R);
1533 void ScopDetection::getAnalysisUsage(AnalysisUsage &AU) const {
1534 AU.addRequired<LoopInfoWrapperPass>();
1535 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
1536 AU.addRequired<DominatorTreeWrapperPass>();
1537 // We also need AA and RegionInfo when we are verifying analysis.
1538 AU.addRequiredTransitive<AAResultsWrapperPass>();
1539 AU.addRequiredTransitive<RegionInfoPass>();
1540 AU.setPreservesAll();
1543 void ScopDetection::print(raw_ostream &OS, const Module *) const {
1544 for (const Region *R : ValidRegions)
1545 OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
1547 OS << "\n";
1550 void ScopDetection::releaseMemory() {
1551 ValidRegions.clear();
1552 DetectionContextMap.clear();
1554 // Do not clear the invalid function set.
1557 char ScopDetection::ID = 0;
1559 Pass *polly::createScopDetectionPass() { return new ScopDetection(); }
1561 INITIALIZE_PASS_BEGIN(ScopDetection, "polly-detect",
1562 "Polly - Detect static control parts (SCoPs)", false,
1563 false);
1564 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
1565 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
1566 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
1567 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
1568 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
1569 INITIALIZE_PASS_END(ScopDetection, "polly-detect",
1570 "Polly - Detect static control parts (SCoPs)", false, false)