Revert "Catalog NOT NULL constraints" and fallout
[pgsql.git] / src / backend / optimizer / util / plancat.c
blobe3824efe9b5f0342e266e21fbbaaeb3bdf8c195d
1 /*-------------------------------------------------------------------------
3 * plancat.c
4 * routines for accessing the system catalogs
7 * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
11 * IDENTIFICATION
12 * src/backend/optimizer/util/plancat.c
14 *-------------------------------------------------------------------------
16 #include "postgres.h"
18 #include <math.h>
20 #include "access/genam.h"
21 #include "access/htup_details.h"
22 #include "access/nbtree.h"
23 #include "access/sysattr.h"
24 #include "access/table.h"
25 #include "access/tableam.h"
26 #include "access/transam.h"
27 #include "access/xlog.h"
28 #include "catalog/catalog.h"
29 #include "catalog/heap.h"
30 #include "catalog/pg_am.h"
31 #include "catalog/pg_proc.h"
32 #include "catalog/pg_statistic_ext.h"
33 #include "catalog/pg_statistic_ext_data.h"
34 #include "foreign/fdwapi.h"
35 #include "miscadmin.h"
36 #include "nodes/makefuncs.h"
37 #include "nodes/nodeFuncs.h"
38 #include "nodes/supportnodes.h"
39 #include "optimizer/clauses.h"
40 #include "optimizer/cost.h"
41 #include "optimizer/optimizer.h"
42 #include "optimizer/plancat.h"
43 #include "optimizer/prep.h"
44 #include "parser/parse_relation.h"
45 #include "parser/parsetree.h"
46 #include "partitioning/partdesc.h"
47 #include "rewrite/rewriteManip.h"
48 #include "statistics/statistics.h"
49 #include "storage/bufmgr.h"
50 #include "utils/builtins.h"
51 #include "utils/lsyscache.h"
52 #include "utils/partcache.h"
53 #include "utils/rel.h"
54 #include "utils/snapmgr.h"
55 #include "utils/syscache.h"
57 /* GUC parameter */
58 int constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
60 /* Hook for plugins to get control in get_relation_info() */
61 get_relation_info_hook_type get_relation_info_hook = NULL;
64 static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
65 Relation relation, bool inhparent);
66 static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
67 List *idxExprs);
68 static List *get_relation_constraints(PlannerInfo *root,
69 Oid relationObjectId, RelOptInfo *rel,
70 bool include_noinherit,
71 bool include_notnull,
72 bool include_partition);
73 static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
74 Relation heapRelation);
75 static List *get_relation_statistics(RelOptInfo *rel, Relation relation);
76 static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
77 Relation relation);
78 static PartitionScheme find_partition_scheme(PlannerInfo *root,
79 Relation relation);
80 static void set_baserel_partition_key_exprs(Relation relation,
81 RelOptInfo *rel);
82 static void set_baserel_partition_constraint(Relation relation,
83 RelOptInfo *rel);
87 * get_relation_info -
88 * Retrieves catalog information for a given relation.
90 * Given the Oid of the relation, return the following info into fields
91 * of the RelOptInfo struct:
93 * min_attr lowest valid AttrNumber
94 * max_attr highest valid AttrNumber
95 * indexlist list of IndexOptInfos for relation's indexes
96 * statlist list of StatisticExtInfo for relation's statistic objects
97 * serverid if it's a foreign table, the server OID
98 * fdwroutine if it's a foreign table, the FDW function pointers
99 * pages number of pages
100 * tuples number of tuples
101 * rel_parallel_workers user-defined number of parallel workers
103 * Also, add information about the relation's foreign keys to root->fkey_list.
105 * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
106 * cases these are left as zeroes, but sometimes we need to compute attr
107 * widths here, and we may as well cache the results for costsize.c.
109 * If inhparent is true, all we need to do is set up the attr arrays:
110 * the RelOptInfo actually represents the appendrel formed by an inheritance
111 * tree, and so the parent rel's physical size and index information isn't
112 * important for it, however, for partitioned tables, we do populate the
113 * indexlist as the planner uses unique indexes as unique proofs for certain
114 * optimizations.
116 void
117 get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
118 RelOptInfo *rel)
120 Index varno = rel->relid;
121 Relation relation;
122 bool hasindex;
123 List *indexinfos = NIL;
126 * We need not lock the relation since it was already locked, either by
127 * the rewriter or when expand_inherited_rtentry() added it to the query's
128 * rangetable.
130 relation = table_open(relationObjectId, NoLock);
133 * Relations without a table AM can be used in a query only if they are of
134 * special-cased relkinds. This check prevents us from crashing later if,
135 * for example, a view's ON SELECT rule has gone missing. Note that
136 * table_open() already rejected indexes and composite types; spell the
137 * error the same way it does.
139 if (!relation->rd_tableam)
141 if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
142 relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
143 ereport(ERROR,
144 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
145 errmsg("cannot open relation \"%s\"",
146 RelationGetRelationName(relation)),
147 errdetail_relkind_not_supported(relation->rd_rel->relkind)));
150 /* Temporary and unlogged relations are inaccessible during recovery. */
151 if (!RelationIsPermanent(relation) && RecoveryInProgress())
152 ereport(ERROR,
153 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
154 errmsg("cannot access temporary or unlogged relations during recovery")));
156 rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
157 rel->max_attr = RelationGetNumberOfAttributes(relation);
158 rel->reltablespace = RelationGetForm(relation)->reltablespace;
160 Assert(rel->max_attr >= rel->min_attr);
161 rel->attr_needed = (Relids *)
162 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
163 rel->attr_widths = (int32 *)
164 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
167 * Estimate relation size --- unless it's an inheritance parent, in which
168 * case the size we want is not the rel's own size but the size of its
169 * inheritance tree. That will be computed in set_append_rel_size().
171 if (!inhparent)
172 estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
173 &rel->pages, &rel->tuples, &rel->allvisfrac);
175 /* Retrieve the parallel_workers reloption, or -1 if not set. */
176 rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
179 * Make list of indexes. Ignore indexes on system catalogs if told to.
180 * Don't bother with indexes from traditional inheritance parents. For
181 * partitioned tables, we need a list of at least unique indexes as these
182 * serve as unique proofs for certain planner optimizations. However,
183 * let's not discriminate here and just record all partitioned indexes
184 * whether they're unique indexes or not.
186 if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
187 || (IgnoreSystemIndexes && IsSystemRelation(relation)))
188 hasindex = false;
189 else
190 hasindex = relation->rd_rel->relhasindex;
192 if (hasindex)
194 List *indexoidlist;
195 LOCKMODE lmode;
196 ListCell *l;
198 indexoidlist = RelationGetIndexList(relation);
201 * For each index, we get the same type of lock that the executor will
202 * need, and do not release it. This saves a couple of trips to the
203 * shared lock manager while not creating any real loss of
204 * concurrency, because no schema changes could be happening on the
205 * index while we hold lock on the parent rel, and no lock type used
206 * for queries blocks any other kind of index operation.
208 lmode = root->simple_rte_array[varno]->rellockmode;
210 foreach(l, indexoidlist)
212 Oid indexoid = lfirst_oid(l);
213 Relation indexRelation;
214 Form_pg_index index;
215 IndexAmRoutine *amroutine;
216 IndexOptInfo *info;
217 int ncolumns,
218 nkeycolumns;
219 int i;
222 * Extract info from the relation descriptor for the index.
224 indexRelation = index_open(indexoid, lmode);
225 index = indexRelation->rd_index;
228 * Ignore invalid indexes, since they can't safely be used for
229 * queries. Note that this is OK because the data structure we
230 * are constructing is only used by the planner --- the executor
231 * still needs to insert into "invalid" indexes, if they're marked
232 * indisready.
234 if (!index->indisvalid)
236 index_close(indexRelation, NoLock);
237 continue;
241 * If the index is valid, but cannot yet be used, ignore it; but
242 * mark the plan we are generating as transient. See
243 * src/backend/access/heap/README.HOT for discussion.
245 if (index->indcheckxmin &&
246 !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
247 TransactionXmin))
249 root->glob->transientPlan = true;
250 index_close(indexRelation, NoLock);
251 continue;
254 info = makeNode(IndexOptInfo);
256 info->indexoid = index->indexrelid;
257 info->reltablespace =
258 RelationGetForm(indexRelation)->reltablespace;
259 info->rel = rel;
260 info->ncolumns = ncolumns = index->indnatts;
261 info->nkeycolumns = nkeycolumns = index->indnkeyatts;
263 info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
264 info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
265 info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
266 info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
267 info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
269 for (i = 0; i < ncolumns; i++)
271 info->indexkeys[i] = index->indkey.values[i];
272 info->canreturn[i] = index_can_return(indexRelation, i + 1);
275 for (i = 0; i < nkeycolumns; i++)
277 info->opfamily[i] = indexRelation->rd_opfamily[i];
278 info->opcintype[i] = indexRelation->rd_opcintype[i];
279 info->indexcollations[i] = indexRelation->rd_indcollation[i];
282 info->relam = indexRelation->rd_rel->relam;
285 * We don't have an AM for partitioned indexes, so we'll just
286 * NULLify the AM related fields for those.
288 if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
290 /* We copy just the fields we need, not all of rd_indam */
291 amroutine = indexRelation->rd_indam;
292 info->amcanorderbyop = amroutine->amcanorderbyop;
293 info->amoptionalkey = amroutine->amoptionalkey;
294 info->amsearcharray = amroutine->amsearcharray;
295 info->amsearchnulls = amroutine->amsearchnulls;
296 info->amcanparallel = amroutine->amcanparallel;
297 info->amhasgettuple = (amroutine->amgettuple != NULL);
298 info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
299 relation->rd_tableam->scan_bitmap_next_block != NULL;
300 info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
301 amroutine->amrestrpos != NULL);
302 info->amcostestimate = amroutine->amcostestimate;
303 Assert(info->amcostestimate != NULL);
305 /* Fetch index opclass options */
306 info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
309 * Fetch the ordering information for the index, if any.
311 if (info->relam == BTREE_AM_OID)
314 * If it's a btree index, we can use its opfamily OIDs
315 * directly as the sort ordering opfamily OIDs.
317 Assert(amroutine->amcanorder);
319 info->sortopfamily = info->opfamily;
320 info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
321 info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
323 for (i = 0; i < nkeycolumns; i++)
325 int16 opt = indexRelation->rd_indoption[i];
327 info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
328 info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
331 else if (amroutine->amcanorder)
334 * Otherwise, identify the corresponding btree opfamilies
335 * by trying to map this index's "<" operators into btree.
336 * Since "<" uniquely defines the behavior of a sort
337 * order, this is a sufficient test.
339 * XXX This method is rather slow and also requires the
340 * undesirable assumption that the other index AM numbers
341 * its strategies the same as btree. It'd be better to
342 * have a way to explicitly declare the corresponding
343 * btree opfamily for each opfamily of the other index
344 * type. But given the lack of current or foreseeable
345 * amcanorder index types, it's not worth expending more
346 * effort on now.
348 info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
349 info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
350 info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
352 for (i = 0; i < nkeycolumns; i++)
354 int16 opt = indexRelation->rd_indoption[i];
355 Oid ltopr;
356 Oid btopfamily;
357 Oid btopcintype;
358 int16 btstrategy;
360 info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
361 info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
363 ltopr = get_opfamily_member(info->opfamily[i],
364 info->opcintype[i],
365 info->opcintype[i],
366 BTLessStrategyNumber);
367 if (OidIsValid(ltopr) &&
368 get_ordering_op_properties(ltopr,
369 &btopfamily,
370 &btopcintype,
371 &btstrategy) &&
372 btopcintype == info->opcintype[i] &&
373 btstrategy == BTLessStrategyNumber)
375 /* Successful mapping */
376 info->sortopfamily[i] = btopfamily;
378 else
380 /* Fail ... quietly treat index as unordered */
381 info->sortopfamily = NULL;
382 info->reverse_sort = NULL;
383 info->nulls_first = NULL;
384 break;
388 else
390 info->sortopfamily = NULL;
391 info->reverse_sort = NULL;
392 info->nulls_first = NULL;
395 else
397 info->amcanorderbyop = false;
398 info->amoptionalkey = false;
399 info->amsearcharray = false;
400 info->amsearchnulls = false;
401 info->amcanparallel = false;
402 info->amhasgettuple = false;
403 info->amhasgetbitmap = false;
404 info->amcanmarkpos = false;
405 info->amcostestimate = NULL;
407 info->sortopfamily = NULL;
408 info->reverse_sort = NULL;
409 info->nulls_first = NULL;
413 * Fetch the index expressions and predicate, if any. We must
414 * modify the copies we obtain from the relcache to have the
415 * correct varno for the parent relation, so that they match up
416 * correctly against qual clauses.
418 info->indexprs = RelationGetIndexExpressions(indexRelation);
419 info->indpred = RelationGetIndexPredicate(indexRelation);
420 if (info->indexprs && varno != 1)
421 ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
422 if (info->indpred && varno != 1)
423 ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
425 /* Build targetlist using the completed indexprs data */
426 info->indextlist = build_index_tlist(root, info, relation);
428 info->indrestrictinfo = NIL; /* set later, in indxpath.c */
429 info->predOK = false; /* set later, in indxpath.c */
430 info->unique = index->indisunique;
431 info->immediate = index->indimmediate;
432 info->hypothetical = false;
435 * Estimate the index size. If it's not a partial index, we lock
436 * the number-of-tuples estimate to equal the parent table; if it
437 * is partial then we have to use the same methods as we would for
438 * a table, except we can be sure that the index is not larger
439 * than the table. We must ignore partitioned indexes here as as
440 * there are not physical indexes.
442 if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
444 if (info->indpred == NIL)
446 info->pages = RelationGetNumberOfBlocks(indexRelation);
447 info->tuples = rel->tuples;
449 else
451 double allvisfrac; /* dummy */
453 estimate_rel_size(indexRelation, NULL,
454 &info->pages, &info->tuples, &allvisfrac);
455 if (info->tuples > rel->tuples)
456 info->tuples = rel->tuples;
459 if (info->relam == BTREE_AM_OID)
462 * For btrees, get tree height while we have the index
463 * open
465 info->tree_height = _bt_getrootheight(indexRelation, relation);
467 else
469 /* For other index types, just set it to "unknown" for now */
470 info->tree_height = -1;
473 else
475 /* Zero these out for partitioned indexes */
476 info->pages = 0;
477 info->tuples = 0.0;
478 info->tree_height = -1;
481 index_close(indexRelation, NoLock);
484 * We've historically used lcons() here. It'd make more sense to
485 * use lappend(), but that causes the planner to change behavior
486 * in cases where two indexes seem equally attractive. For now,
487 * stick with lcons() --- few tables should have so many indexes
488 * that the O(N^2) behavior of lcons() is really a problem.
490 indexinfos = lcons(info, indexinfos);
493 list_free(indexoidlist);
496 rel->indexlist = indexinfos;
498 rel->statlist = get_relation_statistics(rel, relation);
500 /* Grab foreign-table info using the relcache, while we have it */
501 if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
503 rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
504 rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
506 else
508 rel->serverid = InvalidOid;
509 rel->fdwroutine = NULL;
512 /* Collect info about relation's foreign keys, if relevant */
513 get_relation_foreign_keys(root, rel, relation, inhparent);
515 /* Collect info about functions implemented by the rel's table AM. */
516 if (relation->rd_tableam &&
517 relation->rd_tableam->scan_set_tidrange != NULL &&
518 relation->rd_tableam->scan_getnextslot_tidrange != NULL)
519 rel->amflags |= AMFLAG_HAS_TID_RANGE;
522 * Collect info about relation's partitioning scheme, if any. Only
523 * inheritance parents may be partitioned.
525 if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
526 set_relation_partition_info(root, rel, relation);
528 table_close(relation, NoLock);
531 * Allow a plugin to editorialize on the info we obtained from the
532 * catalogs. Actions might include altering the assumed relation size,
533 * removing an index, or adding a hypothetical index to the indexlist.
535 if (get_relation_info_hook)
536 (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
540 * get_relation_foreign_keys -
541 * Retrieves foreign key information for a given relation.
543 * ForeignKeyOptInfos for relevant foreign keys are created and added to
544 * root->fkey_list. We do this now while we have the relcache entry open.
545 * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
546 * until all RelOptInfos have been built, but the cost of re-opening the
547 * relcache entries would probably exceed any savings.
549 static void
550 get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
551 Relation relation, bool inhparent)
553 List *rtable = root->parse->rtable;
554 List *cachedfkeys;
555 ListCell *lc;
558 * If it's not a baserel, we don't care about its FKs. Also, if the query
559 * references only a single relation, we can skip the lookup since no FKs
560 * could satisfy the requirements below.
562 if (rel->reloptkind != RELOPT_BASEREL ||
563 list_length(rtable) < 2)
564 return;
567 * If it's the parent of an inheritance tree, ignore its FKs. We could
568 * make useful FK-based deductions if we found that all members of the
569 * inheritance tree have equivalent FK constraints, but detecting that
570 * would require code that hasn't been written.
572 if (inhparent)
573 return;
576 * Extract data about relation's FKs from the relcache. Note that this
577 * list belongs to the relcache and might disappear in a cache flush, so
578 * we must not do any further catalog access within this function.
580 cachedfkeys = RelationGetFKeyList(relation);
583 * Figure out which FKs are of interest for this query, and create
584 * ForeignKeyOptInfos for them. We want only FKs that reference some
585 * other RTE of the current query. In queries containing self-joins,
586 * there might be more than one other RTE for a referenced table, and we
587 * should make a ForeignKeyOptInfo for each occurrence.
589 * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
590 * too hard to identify those here, so we might end up making some useless
591 * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
592 * them again.
594 foreach(lc, cachedfkeys)
596 ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
597 Index rti;
598 ListCell *lc2;
600 /* conrelid should always be that of the table we're considering */
601 Assert(cachedfk->conrelid == RelationGetRelid(relation));
603 /* Scan to find other RTEs matching confrelid */
604 rti = 0;
605 foreach(lc2, rtable)
607 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
608 ForeignKeyOptInfo *info;
610 rti++;
611 /* Ignore if not the correct table */
612 if (rte->rtekind != RTE_RELATION ||
613 rte->relid != cachedfk->confrelid)
614 continue;
615 /* Ignore if it's an inheritance parent; doesn't really match */
616 if (rte->inh)
617 continue;
618 /* Ignore self-referential FKs; we only care about joins */
619 if (rti == rel->relid)
620 continue;
622 /* OK, let's make an entry */
623 info = makeNode(ForeignKeyOptInfo);
624 info->con_relid = rel->relid;
625 info->ref_relid = rti;
626 info->nkeys = cachedfk->nkeys;
627 memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
628 memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
629 memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
630 /* zero out fields to be filled by match_foreign_keys_to_quals */
631 info->nmatched_ec = 0;
632 info->nconst_ec = 0;
633 info->nmatched_rcols = 0;
634 info->nmatched_ri = 0;
635 memset(info->eclass, 0, sizeof(info->eclass));
636 memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
637 memset(info->rinfos, 0, sizeof(info->rinfos));
639 root->fkey_list = lappend(root->fkey_list, info);
645 * infer_arbiter_indexes -
646 * Determine the unique indexes used to arbitrate speculative insertion.
648 * Uses user-supplied inference clause expressions and predicate to match a
649 * unique index from those defined and ready on the heap relation (target).
650 * An exact match is required on columns/expressions (although they can appear
651 * in any order). However, the predicate given by the user need only restrict
652 * insertion to a subset of some part of the table covered by some particular
653 * unique index (in particular, a partial unique index) in order to be
654 * inferred.
656 * The implementation does not consider which B-Tree operator class any
657 * particular available unique index attribute uses, unless one was specified
658 * in the inference specification. The same is true of collations. In
659 * particular, there is no system dependency on the default operator class for
660 * the purposes of inference. If no opclass (or collation) is specified, then
661 * all matching indexes (that may or may not match the default in terms of
662 * each attribute opclass/collation) are used for inference.
664 List *
665 infer_arbiter_indexes(PlannerInfo *root)
667 OnConflictExpr *onconflict = root->parse->onConflict;
669 /* Iteration state */
670 RangeTblEntry *rte;
671 Relation relation;
672 Oid indexOidFromConstraint = InvalidOid;
673 List *indexList;
674 ListCell *l;
676 /* Normalized inference attributes and inference expressions: */
677 Bitmapset *inferAttrs = NULL;
678 List *inferElems = NIL;
680 /* Results */
681 List *results = NIL;
684 * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
685 * specification or named constraint. ON CONFLICT DO UPDATE statements
686 * must always provide one or the other (but parser ought to have caught
687 * that already).
689 if (onconflict->arbiterElems == NIL &&
690 onconflict->constraint == InvalidOid)
691 return NIL;
694 * We need not lock the relation since it was already locked, either by
695 * the rewriter or when expand_inherited_rtentry() added it to the query's
696 * rangetable.
698 rte = rt_fetch(root->parse->resultRelation, root->parse->rtable);
700 relation = table_open(rte->relid, NoLock);
703 * Build normalized/BMS representation of plain indexed attributes, as
704 * well as a separate list of expression items. This simplifies matching
705 * the cataloged definition of indexes.
707 foreach(l, onconflict->arbiterElems)
709 InferenceElem *elem = (InferenceElem *) lfirst(l);
710 Var *var;
711 int attno;
713 if (!IsA(elem->expr, Var))
715 /* If not a plain Var, just shove it in inferElems for now */
716 inferElems = lappend(inferElems, elem->expr);
717 continue;
720 var = (Var *) elem->expr;
721 attno = var->varattno;
723 if (attno == 0)
724 ereport(ERROR,
725 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
726 errmsg("whole row unique index inference specifications are not supported")));
728 inferAttrs = bms_add_member(inferAttrs,
729 attno - FirstLowInvalidHeapAttributeNumber);
733 * Lookup named constraint's index. This is not immediately returned
734 * because some additional sanity checks are required.
736 if (onconflict->constraint != InvalidOid)
738 indexOidFromConstraint = get_constraint_index(onconflict->constraint);
740 if (indexOidFromConstraint == InvalidOid)
741 ereport(ERROR,
742 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
743 errmsg("constraint in ON CONFLICT clause has no associated index")));
747 * Using that representation, iterate through the list of indexes on the
748 * target relation to try and find a match
750 indexList = RelationGetIndexList(relation);
752 foreach(l, indexList)
754 Oid indexoid = lfirst_oid(l);
755 Relation idxRel;
756 Form_pg_index idxForm;
757 Bitmapset *indexedAttrs;
758 List *idxExprs;
759 List *predExprs;
760 AttrNumber natt;
761 ListCell *el;
764 * Extract info from the relation descriptor for the index. Obtain
765 * the same lock type that the executor will ultimately use.
767 * Let executor complain about !indimmediate case directly, because
768 * enforcement needs to occur there anyway when an inference clause is
769 * omitted.
771 idxRel = index_open(indexoid, rte->rellockmode);
772 idxForm = idxRel->rd_index;
774 if (!idxForm->indisvalid)
775 goto next;
778 * Note that we do not perform a check against indcheckxmin (like e.g.
779 * get_relation_info()) here to eliminate candidates, because
780 * uniqueness checking only cares about the most recently committed
781 * tuple versions.
785 * Look for match on "ON constraint_name" variant, which may not be
786 * unique constraint. This can only be a constraint name.
788 if (indexOidFromConstraint == idxForm->indexrelid)
790 if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
791 ereport(ERROR,
792 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
793 errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
795 results = lappend_oid(results, idxForm->indexrelid);
796 list_free(indexList);
797 index_close(idxRel, NoLock);
798 table_close(relation, NoLock);
799 return results;
801 else if (indexOidFromConstraint != InvalidOid)
803 /* No point in further work for index in named constraint case */
804 goto next;
808 * Only considering conventional inference at this point (not named
809 * constraints), so index under consideration can be immediately
810 * skipped if it's not unique
812 if (!idxForm->indisunique)
813 goto next;
815 /* Build BMS representation of plain (non expression) index attrs */
816 indexedAttrs = NULL;
817 for (natt = 0; natt < idxForm->indnkeyatts; natt++)
819 int attno = idxRel->rd_index->indkey.values[natt];
821 if (attno != 0)
822 indexedAttrs = bms_add_member(indexedAttrs,
823 attno - FirstLowInvalidHeapAttributeNumber);
826 /* Non-expression attributes (if any) must match */
827 if (!bms_equal(indexedAttrs, inferAttrs))
828 goto next;
830 /* Expression attributes (if any) must match */
831 idxExprs = RelationGetIndexExpressions(idxRel);
832 foreach(el, onconflict->arbiterElems)
834 InferenceElem *elem = (InferenceElem *) lfirst(el);
837 * Ensure that collation/opclass aspects of inference expression
838 * element match. Even though this loop is primarily concerned
839 * with matching expressions, it is a convenient point to check
840 * this for both expressions and ordinary (non-expression)
841 * attributes appearing as inference elements.
843 if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
844 goto next;
847 * Plain Vars don't factor into count of expression elements, and
848 * the question of whether or not they satisfy the index
849 * definition has already been considered (they must).
851 if (IsA(elem->expr, Var))
852 continue;
855 * Might as well avoid redundant check in the rare cases where
856 * infer_collation_opclass_match() is required to do real work.
857 * Otherwise, check that element expression appears in cataloged
858 * index definition.
860 if (elem->infercollid != InvalidOid ||
861 elem->inferopclass != InvalidOid ||
862 list_member(idxExprs, elem->expr))
863 continue;
865 goto next;
869 * Now that all inference elements were matched, ensure that the
870 * expression elements from inference clause are not missing any
871 * cataloged expressions. This does the right thing when unique
872 * indexes redundantly repeat the same attribute, or if attributes
873 * redundantly appear multiple times within an inference clause.
875 if (list_difference(idxExprs, inferElems) != NIL)
876 goto next;
879 * If it's a partial index, its predicate must be implied by the ON
880 * CONFLICT's WHERE clause.
882 predExprs = RelationGetIndexPredicate(idxRel);
884 if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
885 goto next;
887 results = lappend_oid(results, idxForm->indexrelid);
888 next:
889 index_close(idxRel, NoLock);
892 list_free(indexList);
893 table_close(relation, NoLock);
895 if (results == NIL)
896 ereport(ERROR,
897 (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
898 errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
900 return results;
904 * infer_collation_opclass_match - ensure infer element opclass/collation match
906 * Given unique index inference element from inference specification, if
907 * collation was specified, or if opclass was specified, verify that there is
908 * at least one matching indexed attribute (occasionally, there may be more).
909 * Skip this in the common case where inference specification does not include
910 * collation or opclass (instead matching everything, regardless of cataloged
911 * collation/opclass of indexed attribute).
913 * At least historically, Postgres has not offered collations or opclasses
914 * with alternative-to-default notions of equality, so these additional
915 * criteria should only be required infrequently.
917 * Don't give up immediately when an inference element matches some attribute
918 * cataloged as indexed but not matching additional opclass/collation
919 * criteria. This is done so that the implementation is as forgiving as
920 * possible of redundancy within cataloged index attributes (or, less
921 * usefully, within inference specification elements). If collations actually
922 * differ between apparently redundantly indexed attributes (redundant within
923 * or across indexes), then there really is no redundancy as such.
925 * Note that if an inference element specifies an opclass and a collation at
926 * once, both must match in at least one particular attribute within index
927 * catalog definition in order for that inference element to be considered
928 * inferred/satisfied.
930 static bool
931 infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
932 List *idxExprs)
934 AttrNumber natt;
935 Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
936 Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
937 int nplain = 0; /* # plain attrs observed */
940 * If inference specification element lacks collation/opclass, then no
941 * need to check for exact match.
943 if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
944 return true;
947 * Lookup opfamily and input type, for matching indexes
949 if (elem->inferopclass)
951 inferopfamily = get_opclass_family(elem->inferopclass);
952 inferopcinputtype = get_opclass_input_type(elem->inferopclass);
955 for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
957 Oid opfamily = idxRel->rd_opfamily[natt - 1];
958 Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
959 Oid collation = idxRel->rd_indcollation[natt - 1];
960 int attno = idxRel->rd_index->indkey.values[natt - 1];
962 if (attno != 0)
963 nplain++;
965 if (elem->inferopclass != InvalidOid &&
966 (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
968 /* Attribute needed to match opclass, but didn't */
969 continue;
972 if (elem->infercollid != InvalidOid &&
973 elem->infercollid != collation)
975 /* Attribute needed to match collation, but didn't */
976 continue;
979 /* If one matching index att found, good enough -- return true */
980 if (IsA(elem->expr, Var))
982 if (((Var *) elem->expr)->varattno == attno)
983 return true;
985 else if (attno == 0)
987 Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
990 * Note that unlike routines like match_index_to_operand() we
991 * don't need to care about RelabelType. Neither the index
992 * definition nor the inference clause should contain them.
994 if (equal(elem->expr, nattExpr))
995 return true;
999 return false;
1003 * estimate_rel_size - estimate # pages and # tuples in a table or index
1005 * We also estimate the fraction of the pages that are marked all-visible in
1006 * the visibility map, for use in estimation of index-only scans.
1008 * If attr_widths isn't NULL, it points to the zero-index entry of the
1009 * relation's attr_widths[] cache; we fill this in if we have need to compute
1010 * the attribute widths for estimation purposes.
1012 void
1013 estimate_rel_size(Relation rel, int32 *attr_widths,
1014 BlockNumber *pages, double *tuples, double *allvisfrac)
1016 BlockNumber curpages;
1017 BlockNumber relpages;
1018 double reltuples;
1019 BlockNumber relallvisible;
1020 double density;
1022 if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1024 table_relation_estimate_size(rel, attr_widths, pages, tuples,
1025 allvisfrac);
1027 else if (rel->rd_rel->relkind == RELKIND_INDEX)
1030 * XXX: It'd probably be good to move this into a callback, individual
1031 * index types e.g. know if they have a metapage.
1034 /* it has storage, ok to call the smgr */
1035 curpages = RelationGetNumberOfBlocks(rel);
1037 /* report estimated # pages */
1038 *pages = curpages;
1039 /* quick exit if rel is clearly empty */
1040 if (curpages == 0)
1042 *tuples = 0;
1043 *allvisfrac = 0;
1044 return;
1047 /* coerce values in pg_class to more desirable types */
1048 relpages = (BlockNumber) rel->rd_rel->relpages;
1049 reltuples = (double) rel->rd_rel->reltuples;
1050 relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1053 * Discount the metapage while estimating the number of tuples. This
1054 * is a kluge because it assumes more than it ought to about index
1055 * structure. Currently it's OK for btree, hash, and GIN indexes but
1056 * suspect for GiST indexes.
1058 if (relpages > 0)
1060 curpages--;
1061 relpages--;
1064 /* estimate number of tuples from previous tuple density */
1065 if (reltuples >= 0 && relpages > 0)
1066 density = reltuples / (double) relpages;
1067 else
1070 * If we have no data because the relation was never vacuumed,
1071 * estimate tuple width from attribute datatypes. We assume here
1072 * that the pages are completely full, which is OK for tables
1073 * (since they've presumably not been VACUUMed yet) but is
1074 * probably an overestimate for indexes. Fortunately
1075 * get_relation_info() can clamp the overestimate to the parent
1076 * table's size.
1078 * Note: this code intentionally disregards alignment
1079 * considerations, because (a) that would be gilding the lily
1080 * considering how crude the estimate is, and (b) it creates
1081 * platform dependencies in the default plans which are kind of a
1082 * headache for regression testing.
1084 * XXX: Should this logic be more index specific?
1086 int32 tuple_width;
1088 tuple_width = get_rel_data_width(rel, attr_widths);
1089 tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1090 tuple_width += sizeof(ItemIdData);
1091 /* note: integer division is intentional here */
1092 density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1094 *tuples = rint(density * (double) curpages);
1097 * We use relallvisible as-is, rather than scaling it up like we do
1098 * for the pages and tuples counts, on the theory that any pages added
1099 * since the last VACUUM are most likely not marked all-visible. But
1100 * costsize.c wants it converted to a fraction.
1102 if (relallvisible == 0 || curpages <= 0)
1103 *allvisfrac = 0;
1104 else if ((double) relallvisible >= curpages)
1105 *allvisfrac = 1;
1106 else
1107 *allvisfrac = (double) relallvisible / curpages;
1109 else
1112 * Just use whatever's in pg_class. This covers foreign tables,
1113 * sequences, and also relkinds without storage (shouldn't get here?);
1114 * see initializations in AddNewRelationTuple(). Note that FDW must
1115 * cope if reltuples is -1!
1117 *pages = rel->rd_rel->relpages;
1118 *tuples = rel->rd_rel->reltuples;
1119 *allvisfrac = 0;
1125 * get_rel_data_width
1127 * Estimate the average width of (the data part of) the relation's tuples.
1129 * If attr_widths isn't NULL, it points to the zero-index entry of the
1130 * relation's attr_widths[] cache; use and update that cache as appropriate.
1132 * Currently we ignore dropped columns. Ideally those should be included
1133 * in the result, but we haven't got any way to get info about them; and
1134 * since they might be mostly NULLs, treating them as zero-width is not
1135 * necessarily the wrong thing anyway.
1137 int32
1138 get_rel_data_width(Relation rel, int32 *attr_widths)
1140 int32 tuple_width = 0;
1141 int i;
1143 for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1145 Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1146 int32 item_width;
1148 if (att->attisdropped)
1149 continue;
1151 /* use previously cached data, if any */
1152 if (attr_widths != NULL && attr_widths[i] > 0)
1154 tuple_width += attr_widths[i];
1155 continue;
1158 /* This should match set_rel_width() in costsize.c */
1159 item_width = get_attavgwidth(RelationGetRelid(rel), i);
1160 if (item_width <= 0)
1162 item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1163 Assert(item_width > 0);
1165 if (attr_widths != NULL)
1166 attr_widths[i] = item_width;
1167 tuple_width += item_width;
1170 return tuple_width;
1174 * get_relation_data_width
1176 * External API for get_rel_data_width: same behavior except we have to
1177 * open the relcache entry.
1179 int32
1180 get_relation_data_width(Oid relid, int32 *attr_widths)
1182 int32 result;
1183 Relation relation;
1185 /* As above, assume relation is already locked */
1186 relation = table_open(relid, NoLock);
1188 result = get_rel_data_width(relation, attr_widths);
1190 table_close(relation, NoLock);
1192 return result;
1197 * get_relation_constraints
1199 * Retrieve the applicable constraint expressions of the given relation.
1201 * Returns a List (possibly empty) of constraint expressions. Each one
1202 * has been canonicalized, and its Vars are changed to have the varno
1203 * indicated by rel->relid. This allows the expressions to be easily
1204 * compared to expressions taken from WHERE.
1206 * If include_noinherit is true, it's okay to include constraints that
1207 * are marked NO INHERIT.
1209 * If include_notnull is true, "col IS NOT NULL" expressions are generated
1210 * and added to the result for each column that's marked attnotnull.
1212 * If include_partition is true, and the relation is a partition,
1213 * also include the partitioning constraints.
1215 * Note: at present this is invoked at most once per relation per planner
1216 * run, and in many cases it won't be invoked at all, so there seems no
1217 * point in caching the data in RelOptInfo.
1219 static List *
1220 get_relation_constraints(PlannerInfo *root,
1221 Oid relationObjectId, RelOptInfo *rel,
1222 bool include_noinherit,
1223 bool include_notnull,
1224 bool include_partition)
1226 List *result = NIL;
1227 Index varno = rel->relid;
1228 Relation relation;
1229 TupleConstr *constr;
1232 * We assume the relation has already been safely locked.
1234 relation = table_open(relationObjectId, NoLock);
1236 constr = relation->rd_att->constr;
1237 if (constr != NULL)
1239 int num_check = constr->num_check;
1240 int i;
1242 for (i = 0; i < num_check; i++)
1244 Node *cexpr;
1247 * If this constraint hasn't been fully validated yet, we must
1248 * ignore it here. Also ignore if NO INHERIT and we weren't told
1249 * that that's safe.
1251 if (!constr->check[i].ccvalid)
1252 continue;
1253 if (constr->check[i].ccnoinherit && !include_noinherit)
1254 continue;
1256 cexpr = stringToNode(constr->check[i].ccbin);
1259 * Run each expression through const-simplification and
1260 * canonicalization. This is not just an optimization, but is
1261 * necessary, because we will be comparing it to
1262 * similarly-processed qual clauses, and may fail to detect valid
1263 * matches without this. This must match the processing done to
1264 * qual clauses in preprocess_expression()! (We can skip the
1265 * stuff involving subqueries, however, since we don't allow any
1266 * in check constraints.)
1268 cexpr = eval_const_expressions(root, cexpr);
1270 cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1272 /* Fix Vars to have the desired varno */
1273 if (varno != 1)
1274 ChangeVarNodes(cexpr, 1, varno, 0);
1277 * Finally, convert to implicit-AND format (that is, a List) and
1278 * append the resulting item(s) to our output list.
1280 result = list_concat(result,
1281 make_ands_implicit((Expr *) cexpr));
1284 /* Add NOT NULL constraints in expression form, if requested */
1285 if (include_notnull && constr->has_not_null)
1287 int natts = relation->rd_att->natts;
1289 for (i = 1; i <= natts; i++)
1291 Form_pg_attribute att = TupleDescAttr(relation->rd_att, i - 1);
1293 if (att->attnotnull && !att->attisdropped)
1295 NullTest *ntest = makeNode(NullTest);
1297 ntest->arg = (Expr *) makeVar(varno,
1299 att->atttypid,
1300 att->atttypmod,
1301 att->attcollation,
1303 ntest->nulltesttype = IS_NOT_NULL;
1306 * argisrow=false is correct even for a composite column,
1307 * because attnotnull does not represent a SQL-spec IS NOT
1308 * NULL test in such a case, just IS DISTINCT FROM NULL.
1310 ntest->argisrow = false;
1311 ntest->location = -1;
1312 result = lappend(result, ntest);
1319 * Add partitioning constraints, if requested.
1321 if (include_partition && relation->rd_rel->relispartition)
1323 /* make sure rel->partition_qual is set */
1324 set_baserel_partition_constraint(relation, rel);
1325 result = list_concat(result, rel->partition_qual);
1328 table_close(relation, NoLock);
1330 return result;
1334 * Try loading data for the statistics object.
1336 * We don't know if the data (specified by statOid and inh value) exist.
1337 * The result is stored in stainfos list.
1339 static void
1340 get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
1341 Oid statOid, bool inh,
1342 Bitmapset *keys, List *exprs)
1344 Form_pg_statistic_ext_data dataForm;
1345 HeapTuple dtup;
1347 dtup = SearchSysCache2(STATEXTDATASTXOID,
1348 ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1349 if (!HeapTupleIsValid(dtup))
1350 return;
1352 dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1354 /* add one StatisticExtInfo for each kind built */
1355 if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1357 StatisticExtInfo *info = makeNode(StatisticExtInfo);
1359 info->statOid = statOid;
1360 info->inherit = dataForm->stxdinherit;
1361 info->rel = rel;
1362 info->kind = STATS_EXT_NDISTINCT;
1363 info->keys = bms_copy(keys);
1364 info->exprs = exprs;
1366 *stainfos = lappend(*stainfos, info);
1369 if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1371 StatisticExtInfo *info = makeNode(StatisticExtInfo);
1373 info->statOid = statOid;
1374 info->inherit = dataForm->stxdinherit;
1375 info->rel = rel;
1376 info->kind = STATS_EXT_DEPENDENCIES;
1377 info->keys = bms_copy(keys);
1378 info->exprs = exprs;
1380 *stainfos = lappend(*stainfos, info);
1383 if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1385 StatisticExtInfo *info = makeNode(StatisticExtInfo);
1387 info->statOid = statOid;
1388 info->inherit = dataForm->stxdinherit;
1389 info->rel = rel;
1390 info->kind = STATS_EXT_MCV;
1391 info->keys = bms_copy(keys);
1392 info->exprs = exprs;
1394 *stainfos = lappend(*stainfos, info);
1397 if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1399 StatisticExtInfo *info = makeNode(StatisticExtInfo);
1401 info->statOid = statOid;
1402 info->inherit = dataForm->stxdinherit;
1403 info->rel = rel;
1404 info->kind = STATS_EXT_EXPRESSIONS;
1405 info->keys = bms_copy(keys);
1406 info->exprs = exprs;
1408 *stainfos = lappend(*stainfos, info);
1411 ReleaseSysCache(dtup);
1415 * get_relation_statistics
1416 * Retrieve extended statistics defined on the table.
1418 * Returns a List (possibly empty) of StatisticExtInfo objects describing
1419 * the statistics. Note that this doesn't load the actual statistics data,
1420 * just the identifying metadata. Only stats actually built are considered.
1422 static List *
1423 get_relation_statistics(RelOptInfo *rel, Relation relation)
1425 Index varno = rel->relid;
1426 List *statoidlist;
1427 List *stainfos = NIL;
1428 ListCell *l;
1430 statoidlist = RelationGetStatExtList(relation);
1432 foreach(l, statoidlist)
1434 Oid statOid = lfirst_oid(l);
1435 Form_pg_statistic_ext staForm;
1436 HeapTuple htup;
1437 Bitmapset *keys = NULL;
1438 List *exprs = NIL;
1439 int i;
1441 htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1442 if (!HeapTupleIsValid(htup))
1443 elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1444 staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1447 * First, build the array of columns covered. This is ultimately
1448 * wasted if no stats within the object have actually been built, but
1449 * it doesn't seem worth troubling over that case.
1451 for (i = 0; i < staForm->stxkeys.dim1; i++)
1452 keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1455 * Preprocess expressions (if any). We read the expressions, run them
1456 * through eval_const_expressions, and fix the varnos.
1458 * XXX We don't know yet if there are any data for this stats object,
1459 * with either stxdinherit value. But it's reasonable to assume there
1460 * is at least one of those, possibly both. So it's better to process
1461 * keys and expressions here.
1464 bool isnull;
1465 Datum datum;
1467 /* decode expression (if any) */
1468 datum = SysCacheGetAttr(STATEXTOID, htup,
1469 Anum_pg_statistic_ext_stxexprs, &isnull);
1471 if (!isnull)
1473 char *exprsString;
1475 exprsString = TextDatumGetCString(datum);
1476 exprs = (List *) stringToNode(exprsString);
1477 pfree(exprsString);
1480 * Run the expressions through eval_const_expressions. This is
1481 * not just an optimization, but is necessary, because the
1482 * planner will be comparing them to similarly-processed qual
1483 * clauses, and may fail to detect valid matches without this.
1484 * We must not use canonicalize_qual, however, since these
1485 * aren't qual expressions.
1487 exprs = (List *) eval_const_expressions(NULL, (Node *) exprs);
1489 /* May as well fix opfuncids too */
1490 fix_opfuncids((Node *) exprs);
1493 * Modify the copies we obtain from the relcache to have the
1494 * correct varno for the parent relation, so that they match
1495 * up correctly against qual clauses.
1497 if (varno != 1)
1498 ChangeVarNodes((Node *) exprs, 1, varno, 0);
1502 /* extract statistics for possible values of stxdinherit flag */
1504 get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1506 get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1508 ReleaseSysCache(htup);
1509 bms_free(keys);
1512 list_free(statoidlist);
1514 return stainfos;
1518 * relation_excluded_by_constraints
1520 * Detect whether the relation need not be scanned because it has either
1521 * self-inconsistent restrictions, or restrictions inconsistent with the
1522 * relation's applicable constraints.
1524 * Note: this examines only rel->relid, rel->reloptkind, and
1525 * rel->baserestrictinfo; therefore it can be called before filling in
1526 * other fields of the RelOptInfo.
1528 bool
1529 relation_excluded_by_constraints(PlannerInfo *root,
1530 RelOptInfo *rel, RangeTblEntry *rte)
1532 bool include_noinherit;
1533 bool include_notnull;
1534 bool include_partition = false;
1535 List *safe_restrictions;
1536 List *constraint_pred;
1537 List *safe_constraints;
1538 ListCell *lc;
1540 /* As of now, constraint exclusion works only with simple relations. */
1541 Assert(IS_SIMPLE_REL(rel));
1544 * If there are no base restriction clauses, we have no hope of proving
1545 * anything below, so fall out quickly.
1547 if (rel->baserestrictinfo == NIL)
1548 return false;
1551 * Regardless of the setting of constraint_exclusion, detect
1552 * constant-FALSE-or-NULL restriction clauses. Because const-folding will
1553 * reduce "anything AND FALSE" to just "FALSE", any such case should
1554 * result in exactly one baserestrictinfo entry. This doesn't fire very
1555 * often, but it seems cheap enough to be worth doing anyway. (Without
1556 * this, we'd miss some optimizations that 9.5 and earlier found via much
1557 * more roundabout methods.)
1559 if (list_length(rel->baserestrictinfo) == 1)
1561 RestrictInfo *rinfo = (RestrictInfo *) linitial(rel->baserestrictinfo);
1562 Expr *clause = rinfo->clause;
1564 if (clause && IsA(clause, Const) &&
1565 (((Const *) clause)->constisnull ||
1566 !DatumGetBool(((Const *) clause)->constvalue)))
1567 return true;
1571 * Skip further tests, depending on constraint_exclusion.
1573 switch (constraint_exclusion)
1575 case CONSTRAINT_EXCLUSION_OFF:
1576 /* In 'off' mode, never make any further tests */
1577 return false;
1579 case CONSTRAINT_EXCLUSION_PARTITION:
1582 * When constraint_exclusion is set to 'partition' we only handle
1583 * appendrel members. Partition pruning has already been applied,
1584 * so there is no need to consider the rel's partition constraints
1585 * here.
1587 if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1588 break; /* appendrel member, so process it */
1589 return false;
1591 case CONSTRAINT_EXCLUSION_ON:
1594 * In 'on' mode, always apply constraint exclusion. If we are
1595 * considering a baserel that is a partition (i.e., it was
1596 * directly named rather than expanded from a parent table), then
1597 * its partition constraints haven't been considered yet, so
1598 * include them in the processing here.
1600 if (rel->reloptkind == RELOPT_BASEREL)
1601 include_partition = true;
1602 break; /* always try to exclude */
1606 * Check for self-contradictory restriction clauses. We dare not make
1607 * deductions with non-immutable functions, but any immutable clauses that
1608 * are self-contradictory allow us to conclude the scan is unnecessary.
1610 * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1611 * expecting to see any in its predicate argument.
1613 safe_restrictions = NIL;
1614 foreach(lc, rel->baserestrictinfo)
1616 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1618 if (!contain_mutable_functions((Node *) rinfo->clause))
1619 safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1623 * We can use weak refutation here, since we're comparing restriction
1624 * clauses with restriction clauses.
1626 if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1627 return true;
1630 * Only plain relations have constraints, so stop here for other rtekinds.
1632 if (rte->rtekind != RTE_RELATION)
1633 return false;
1636 * If we are scanning just this table, we can use NO INHERIT constraints,
1637 * but not if we're scanning its children too. (Note that partitioned
1638 * tables should never have NO INHERIT constraints; but it's not necessary
1639 * for us to assume that here.)
1641 include_noinherit = !rte->inh;
1644 * Currently, attnotnull constraints must be treated as NO INHERIT unless
1645 * this is a partitioned table. In future we might track their
1646 * inheritance status more accurately, allowing this to be refined.
1648 include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1651 * Fetch the appropriate set of constraint expressions.
1653 constraint_pred = get_relation_constraints(root, rte->relid, rel,
1654 include_noinherit,
1655 include_notnull,
1656 include_partition);
1659 * We do not currently enforce that CHECK constraints contain only
1660 * immutable functions, so it's necessary to check here. We daren't draw
1661 * conclusions from plan-time evaluation of non-immutable functions. Since
1662 * they're ANDed, we can just ignore any mutable constraints in the list,
1663 * and reason about the rest.
1665 safe_constraints = NIL;
1666 foreach(lc, constraint_pred)
1668 Node *pred = (Node *) lfirst(lc);
1670 if (!contain_mutable_functions(pred))
1671 safe_constraints = lappend(safe_constraints, pred);
1675 * The constraints are effectively ANDed together, so we can just try to
1676 * refute the entire collection at once. This may allow us to make proofs
1677 * that would fail if we took them individually.
1679 * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1680 * an obvious optimization. Some of the clauses might be OR clauses that
1681 * have volatile and nonvolatile subclauses, and it's OK to make
1682 * deductions with the nonvolatile parts.
1684 * We need strong refutation because we have to prove that the constraints
1685 * would yield false, not just NULL.
1687 if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1688 return true;
1690 return false;
1695 * build_physical_tlist
1697 * Build a targetlist consisting of exactly the relation's user attributes,
1698 * in order. The executor can special-case such tlists to avoid a projection
1699 * step at runtime, so we use such tlists preferentially for scan nodes.
1701 * Exception: if there are any dropped or missing columns, we punt and return
1702 * NIL. Ideally we would like to handle these cases too. However this
1703 * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1704 * for a tlist that includes vars of no-longer-existent types. In theory we
1705 * could dig out the required info from the pg_attribute entries of the
1706 * relation, but that data is not readily available to ExecTypeFromTL.
1707 * For now, we don't apply the physical-tlist optimization when there are
1708 * dropped cols.
1710 * We also support building a "physical" tlist for subqueries, functions,
1711 * values lists, table expressions, and CTEs, since the same optimization can
1712 * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1713 * NamedTuplestoreScan, and WorkTableScan nodes.
1715 List *
1716 build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
1718 List *tlist = NIL;
1719 Index varno = rel->relid;
1720 RangeTblEntry *rte = planner_rt_fetch(varno, root);
1721 Relation relation;
1722 Query *subquery;
1723 Var *var;
1724 ListCell *l;
1725 int attrno,
1726 numattrs;
1727 List *colvars;
1729 switch (rte->rtekind)
1731 case RTE_RELATION:
1732 /* Assume we already have adequate lock */
1733 relation = table_open(rte->relid, NoLock);
1735 numattrs = RelationGetNumberOfAttributes(relation);
1736 for (attrno = 1; attrno <= numattrs; attrno++)
1738 Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1739 attrno - 1);
1741 if (att_tup->attisdropped || att_tup->atthasmissing)
1743 /* found a dropped or missing col, so punt */
1744 tlist = NIL;
1745 break;
1748 var = makeVar(varno,
1749 attrno,
1750 att_tup->atttypid,
1751 att_tup->atttypmod,
1752 att_tup->attcollation,
1755 tlist = lappend(tlist,
1756 makeTargetEntry((Expr *) var,
1757 attrno,
1758 NULL,
1759 false));
1762 table_close(relation, NoLock);
1763 break;
1765 case RTE_SUBQUERY:
1766 subquery = rte->subquery;
1767 foreach(l, subquery->targetList)
1769 TargetEntry *tle = (TargetEntry *) lfirst(l);
1772 * A resjunk column of the subquery can be reflected as
1773 * resjunk in the physical tlist; we need not punt.
1775 var = makeVarFromTargetEntry(varno, tle);
1777 tlist = lappend(tlist,
1778 makeTargetEntry((Expr *) var,
1779 tle->resno,
1780 NULL,
1781 tle->resjunk));
1783 break;
1785 case RTE_FUNCTION:
1786 case RTE_TABLEFUNC:
1787 case RTE_VALUES:
1788 case RTE_CTE:
1789 case RTE_NAMEDTUPLESTORE:
1790 case RTE_RESULT:
1791 /* Not all of these can have dropped cols, but share code anyway */
1792 expandRTE(rte, varno, 0, -1, true /* include dropped */ ,
1793 NULL, &colvars);
1794 foreach(l, colvars)
1796 var = (Var *) lfirst(l);
1799 * A non-Var in expandRTE's output means a dropped column;
1800 * must punt.
1802 if (!IsA(var, Var))
1804 tlist = NIL;
1805 break;
1808 tlist = lappend(tlist,
1809 makeTargetEntry((Expr *) var,
1810 var->varattno,
1811 NULL,
1812 false));
1814 break;
1816 default:
1817 /* caller error */
1818 elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1819 (int) rte->rtekind);
1820 break;
1823 return tlist;
1827 * build_index_tlist
1829 * Build a targetlist representing the columns of the specified index.
1830 * Each column is represented by a Var for the corresponding base-relation
1831 * column, or an expression in base-relation Vars, as appropriate.
1833 * There are never any dropped columns in indexes, so unlike
1834 * build_physical_tlist, we need no failure case.
1836 static List *
1837 build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
1838 Relation heapRelation)
1840 List *tlist = NIL;
1841 Index varno = index->rel->relid;
1842 ListCell *indexpr_item;
1843 int i;
1845 indexpr_item = list_head(index->indexprs);
1846 for (i = 0; i < index->ncolumns; i++)
1848 int indexkey = index->indexkeys[i];
1849 Expr *indexvar;
1851 if (indexkey != 0)
1853 /* simple column */
1854 const FormData_pg_attribute *att_tup;
1856 if (indexkey < 0)
1857 att_tup = SystemAttributeDefinition(indexkey);
1858 else
1859 att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
1861 indexvar = (Expr *) makeVar(varno,
1862 indexkey,
1863 att_tup->atttypid,
1864 att_tup->atttypmod,
1865 att_tup->attcollation,
1868 else
1870 /* expression column */
1871 if (indexpr_item == NULL)
1872 elog(ERROR, "wrong number of index expressions");
1873 indexvar = (Expr *) lfirst(indexpr_item);
1874 indexpr_item = lnext(index->indexprs, indexpr_item);
1877 tlist = lappend(tlist,
1878 makeTargetEntry(indexvar,
1879 i + 1,
1880 NULL,
1881 false));
1883 if (indexpr_item != NULL)
1884 elog(ERROR, "wrong number of index expressions");
1886 return tlist;
1890 * restriction_selectivity
1892 * Returns the selectivity of a specified restriction operator clause.
1893 * This code executes registered procedures stored in the
1894 * operator relation, by calling the function manager.
1896 * See clause_selectivity() for the meaning of the additional parameters.
1898 Selectivity
1899 restriction_selectivity(PlannerInfo *root,
1900 Oid operatorid,
1901 List *args,
1902 Oid inputcollid,
1903 int varRelid)
1905 RegProcedure oprrest = get_oprrest(operatorid);
1906 float8 result;
1909 * if the oprrest procedure is missing for whatever reason, use a
1910 * selectivity of 0.5
1912 if (!oprrest)
1913 return (Selectivity) 0.5;
1915 result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
1916 inputcollid,
1917 PointerGetDatum(root),
1918 ObjectIdGetDatum(operatorid),
1919 PointerGetDatum(args),
1920 Int32GetDatum(varRelid)));
1922 if (result < 0.0 || result > 1.0)
1923 elog(ERROR, "invalid restriction selectivity: %f", result);
1925 return (Selectivity) result;
1929 * join_selectivity
1931 * Returns the selectivity of a specified join operator clause.
1932 * This code executes registered procedures stored in the
1933 * operator relation, by calling the function manager.
1935 * See clause_selectivity() for the meaning of the additional parameters.
1937 Selectivity
1938 join_selectivity(PlannerInfo *root,
1939 Oid operatorid,
1940 List *args,
1941 Oid inputcollid,
1942 JoinType jointype,
1943 SpecialJoinInfo *sjinfo)
1945 RegProcedure oprjoin = get_oprjoin(operatorid);
1946 float8 result;
1949 * if the oprjoin procedure is missing for whatever reason, use a
1950 * selectivity of 0.5
1952 if (!oprjoin)
1953 return (Selectivity) 0.5;
1955 result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
1956 inputcollid,
1957 PointerGetDatum(root),
1958 ObjectIdGetDatum(operatorid),
1959 PointerGetDatum(args),
1960 Int16GetDatum(jointype),
1961 PointerGetDatum(sjinfo)));
1963 if (result < 0.0 || result > 1.0)
1964 elog(ERROR, "invalid join selectivity: %f", result);
1966 return (Selectivity) result;
1970 * function_selectivity
1972 * Returns the selectivity of a specified boolean function clause.
1973 * This code executes registered procedures stored in the
1974 * pg_proc relation, by calling the function manager.
1976 * See clause_selectivity() for the meaning of the additional parameters.
1978 Selectivity
1979 function_selectivity(PlannerInfo *root,
1980 Oid funcid,
1981 List *args,
1982 Oid inputcollid,
1983 bool is_join,
1984 int varRelid,
1985 JoinType jointype,
1986 SpecialJoinInfo *sjinfo)
1988 RegProcedure prosupport = get_func_support(funcid);
1989 SupportRequestSelectivity req;
1990 SupportRequestSelectivity *sresult;
1993 * If no support function is provided, use our historical default
1994 * estimate, 0.3333333. This seems a pretty unprincipled choice, but
1995 * Postgres has been using that estimate for function calls since 1992.
1996 * The hoariness of this behavior suggests that we should not be in too
1997 * much hurry to use another value.
1999 if (!prosupport)
2000 return (Selectivity) 0.3333333;
2002 req.type = T_SupportRequestSelectivity;
2003 req.root = root;
2004 req.funcid = funcid;
2005 req.args = args;
2006 req.inputcollid = inputcollid;
2007 req.is_join = is_join;
2008 req.varRelid = varRelid;
2009 req.jointype = jointype;
2010 req.sjinfo = sjinfo;
2011 req.selectivity = -1; /* to catch failure to set the value */
2013 sresult = (SupportRequestSelectivity *)
2014 DatumGetPointer(OidFunctionCall1(prosupport,
2015 PointerGetDatum(&req)));
2017 /* If support function fails, use default */
2018 if (sresult != &req)
2019 return (Selectivity) 0.3333333;
2021 if (req.selectivity < 0.0 || req.selectivity > 1.0)
2022 elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2024 return (Selectivity) req.selectivity;
2028 * add_function_cost
2030 * Get an estimate of the execution cost of a function, and *add* it to
2031 * the contents of *cost. The estimate may include both one-time and
2032 * per-tuple components, since QualCost does.
2034 * The funcid must always be supplied. If it is being called as the
2035 * implementation of a specific parsetree node (FuncExpr, OpExpr,
2036 * WindowFunc, etc), pass that as "node", else pass NULL.
2038 * In some usages root might be NULL, too.
2040 void
2041 add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
2042 QualCost *cost)
2044 HeapTuple proctup;
2045 Form_pg_proc procform;
2047 proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2048 if (!HeapTupleIsValid(proctup))
2049 elog(ERROR, "cache lookup failed for function %u", funcid);
2050 procform = (Form_pg_proc) GETSTRUCT(proctup);
2052 if (OidIsValid(procform->prosupport))
2054 SupportRequestCost req;
2055 SupportRequestCost *sresult;
2057 req.type = T_SupportRequestCost;
2058 req.root = root;
2059 req.funcid = funcid;
2060 req.node = node;
2062 /* Initialize cost fields so that support function doesn't have to */
2063 req.startup = 0;
2064 req.per_tuple = 0;
2066 sresult = (SupportRequestCost *)
2067 DatumGetPointer(OidFunctionCall1(procform->prosupport,
2068 PointerGetDatum(&req)));
2070 if (sresult == &req)
2072 /* Success, so accumulate support function's estimate into *cost */
2073 cost->startup += req.startup;
2074 cost->per_tuple += req.per_tuple;
2075 ReleaseSysCache(proctup);
2076 return;
2080 /* No support function, or it failed, so rely on procost */
2081 cost->per_tuple += procform->procost * cpu_operator_cost;
2083 ReleaseSysCache(proctup);
2087 * get_function_rows
2089 * Get an estimate of the number of rows returned by a set-returning function.
2091 * The funcid must always be supplied. In current usage, the calling node
2092 * will always be supplied, and will be either a FuncExpr or OpExpr.
2093 * But it's a good idea to not fail if it's NULL.
2095 * In some usages root might be NULL, too.
2097 * Note: this returns the unfiltered result of the support function, if any.
2098 * It's usually a good idea to apply clamp_row_est() to the result, but we
2099 * leave it to the caller to do so.
2101 double
2102 get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2104 HeapTuple proctup;
2105 Form_pg_proc procform;
2106 double result;
2108 proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2109 if (!HeapTupleIsValid(proctup))
2110 elog(ERROR, "cache lookup failed for function %u", funcid);
2111 procform = (Form_pg_proc) GETSTRUCT(proctup);
2113 Assert(procform->proretset); /* else caller error */
2115 if (OidIsValid(procform->prosupport))
2117 SupportRequestRows req;
2118 SupportRequestRows *sresult;
2120 req.type = T_SupportRequestRows;
2121 req.root = root;
2122 req.funcid = funcid;
2123 req.node = node;
2125 req.rows = 0; /* just for sanity */
2127 sresult = (SupportRequestRows *)
2128 DatumGetPointer(OidFunctionCall1(procform->prosupport,
2129 PointerGetDatum(&req)));
2131 if (sresult == &req)
2133 /* Success */
2134 ReleaseSysCache(proctup);
2135 return req.rows;
2139 /* No support function, or it failed, so rely on prorows */
2140 result = procform->prorows;
2142 ReleaseSysCache(proctup);
2144 return result;
2148 * has_unique_index
2150 * Detect whether there is a unique index on the specified attribute
2151 * of the specified relation, thus allowing us to conclude that all
2152 * the (non-null) values of the attribute are distinct.
2154 * This function does not check the index's indimmediate property, which
2155 * means that uniqueness may transiently fail to hold intra-transaction.
2156 * That's appropriate when we are making statistical estimates, but beware
2157 * of using this for any correctness proofs.
2159 bool
2160 has_unique_index(RelOptInfo *rel, AttrNumber attno)
2162 ListCell *ilist;
2164 foreach(ilist, rel->indexlist)
2166 IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2169 * Note: ignore partial indexes, since they don't allow us to conclude
2170 * that all attr values are distinct, *unless* they are marked predOK
2171 * which means we know the index's predicate is satisfied by the
2172 * query. We don't take any interest in expressional indexes either.
2173 * Also, a multicolumn unique index doesn't allow us to conclude that
2174 * just the specified attr is unique.
2176 if (index->unique &&
2177 index->nkeycolumns == 1 &&
2178 index->indexkeys[0] == attno &&
2179 (index->indpred == NIL || index->predOK))
2180 return true;
2182 return false;
2187 * has_row_triggers
2189 * Detect whether the specified relation has any row-level triggers for event.
2191 bool
2192 has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
2194 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2195 Relation relation;
2196 TriggerDesc *trigDesc;
2197 bool result = false;
2199 /* Assume we already have adequate lock */
2200 relation = table_open(rte->relid, NoLock);
2202 trigDesc = relation->trigdesc;
2203 switch (event)
2205 case CMD_INSERT:
2206 if (trigDesc &&
2207 (trigDesc->trig_insert_after_row ||
2208 trigDesc->trig_insert_before_row))
2209 result = true;
2210 break;
2211 case CMD_UPDATE:
2212 if (trigDesc &&
2213 (trigDesc->trig_update_after_row ||
2214 trigDesc->trig_update_before_row))
2215 result = true;
2216 break;
2217 case CMD_DELETE:
2218 if (trigDesc &&
2219 (trigDesc->trig_delete_after_row ||
2220 trigDesc->trig_delete_before_row))
2221 result = true;
2222 break;
2223 /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2224 case CMD_MERGE:
2225 result = false;
2226 break;
2227 default:
2228 elog(ERROR, "unrecognized CmdType: %d", (int) event);
2229 break;
2232 table_close(relation, NoLock);
2233 return result;
2237 * has_stored_generated_columns
2239 * Does table identified by RTI have any STORED GENERATED columns?
2241 bool
2242 has_stored_generated_columns(PlannerInfo *root, Index rti)
2244 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2245 Relation relation;
2246 TupleDesc tupdesc;
2247 bool result = false;
2249 /* Assume we already have adequate lock */
2250 relation = table_open(rte->relid, NoLock);
2252 tupdesc = RelationGetDescr(relation);
2253 result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2255 table_close(relation, NoLock);
2257 return result;
2261 * get_dependent_generated_columns
2263 * Get the column numbers of any STORED GENERATED columns of the relation
2264 * that depend on any column listed in target_cols. Both the input and
2265 * result bitmapsets contain column numbers offset by
2266 * FirstLowInvalidHeapAttributeNumber.
2268 Bitmapset *
2269 get_dependent_generated_columns(PlannerInfo *root, Index rti,
2270 Bitmapset *target_cols)
2272 Bitmapset *dependentCols = NULL;
2273 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2274 Relation relation;
2275 TupleDesc tupdesc;
2276 TupleConstr *constr;
2278 /* Assume we already have adequate lock */
2279 relation = table_open(rte->relid, NoLock);
2281 tupdesc = RelationGetDescr(relation);
2282 constr = tupdesc->constr;
2284 if (constr && constr->has_generated_stored)
2286 for (int i = 0; i < constr->num_defval; i++)
2288 AttrDefault *defval = &constr->defval[i];
2289 Node *expr;
2290 Bitmapset *attrs_used = NULL;
2292 /* skip if not generated column */
2293 if (!TupleDescAttr(tupdesc, defval->adnum - 1)->attgenerated)
2294 continue;
2296 /* identify columns this generated column depends on */
2297 expr = stringToNode(defval->adbin);
2298 pull_varattnos(expr, 1, &attrs_used);
2300 if (bms_overlap(target_cols, attrs_used))
2301 dependentCols = bms_add_member(dependentCols,
2302 defval->adnum - FirstLowInvalidHeapAttributeNumber);
2306 table_close(relation, NoLock);
2308 return dependentCols;
2312 * set_relation_partition_info
2314 * Set partitioning scheme and related information for a partitioned table.
2316 static void
2317 set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
2318 Relation relation)
2320 PartitionDesc partdesc;
2323 * Create the PartitionDirectory infrastructure if we didn't already.
2325 if (root->glob->partition_directory == NULL)
2327 root->glob->partition_directory =
2328 CreatePartitionDirectory(CurrentMemoryContext, true);
2331 partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2332 relation);
2333 rel->part_scheme = find_partition_scheme(root, relation);
2334 Assert(partdesc != NULL && rel->part_scheme != NULL);
2335 rel->boundinfo = partdesc->boundinfo;
2336 rel->nparts = partdesc->nparts;
2337 set_baserel_partition_key_exprs(relation, rel);
2338 set_baserel_partition_constraint(relation, rel);
2342 * find_partition_scheme
2344 * Find or create a PartitionScheme for this Relation.
2346 static PartitionScheme
2347 find_partition_scheme(PlannerInfo *root, Relation relation)
2349 PartitionKey partkey = RelationGetPartitionKey(relation);
2350 ListCell *lc;
2351 int partnatts,
2353 PartitionScheme part_scheme;
2355 /* A partitioned table should have a partition key. */
2356 Assert(partkey != NULL);
2358 partnatts = partkey->partnatts;
2360 /* Search for a matching partition scheme and return if found one. */
2361 foreach(lc, root->part_schemes)
2363 part_scheme = lfirst(lc);
2365 /* Match partitioning strategy and number of keys. */
2366 if (partkey->strategy != part_scheme->strategy ||
2367 partnatts != part_scheme->partnatts)
2368 continue;
2370 /* Match partition key type properties. */
2371 if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2372 sizeof(Oid) * partnatts) != 0 ||
2373 memcmp(partkey->partopcintype, part_scheme->partopcintype,
2374 sizeof(Oid) * partnatts) != 0 ||
2375 memcmp(partkey->partcollation, part_scheme->partcollation,
2376 sizeof(Oid) * partnatts) != 0)
2377 continue;
2380 * Length and byval information should match when partopcintype
2381 * matches.
2383 Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2384 sizeof(int16) * partnatts) == 0);
2385 Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2386 sizeof(bool) * partnatts) == 0);
2389 * If partopfamily and partopcintype matched, must have the same
2390 * partition comparison functions. Note that we cannot reliably
2391 * Assert the equality of function structs themselves for they might
2392 * be different across PartitionKey's, so just Assert for the function
2393 * OIDs.
2395 #ifdef USE_ASSERT_CHECKING
2396 for (i = 0; i < partkey->partnatts; i++)
2397 Assert(partkey->partsupfunc[i].fn_oid ==
2398 part_scheme->partsupfunc[i].fn_oid);
2399 #endif
2401 /* Found matching partition scheme. */
2402 return part_scheme;
2406 * Did not find matching partition scheme. Create one copying relevant
2407 * information from the relcache. We need to copy the contents of the
2408 * array since the relcache entry may not survive after we have closed the
2409 * relation.
2411 part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2412 part_scheme->strategy = partkey->strategy;
2413 part_scheme->partnatts = partkey->partnatts;
2415 part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2416 memcpy(part_scheme->partopfamily, partkey->partopfamily,
2417 sizeof(Oid) * partnatts);
2419 part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2420 memcpy(part_scheme->partopcintype, partkey->partopcintype,
2421 sizeof(Oid) * partnatts);
2423 part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2424 memcpy(part_scheme->partcollation, partkey->partcollation,
2425 sizeof(Oid) * partnatts);
2427 part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2428 memcpy(part_scheme->parttyplen, partkey->parttyplen,
2429 sizeof(int16) * partnatts);
2431 part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2432 memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2433 sizeof(bool) * partnatts);
2435 part_scheme->partsupfunc = (FmgrInfo *)
2436 palloc(sizeof(FmgrInfo) * partnatts);
2437 for (i = 0; i < partnatts; i++)
2438 fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2439 CurrentMemoryContext);
2441 /* Add the partitioning scheme to PlannerInfo. */
2442 root->part_schemes = lappend(root->part_schemes, part_scheme);
2444 return part_scheme;
2448 * set_baserel_partition_key_exprs
2450 * Builds partition key expressions for the given base relation and fills
2451 * rel->partexprs.
2453 static void
2454 set_baserel_partition_key_exprs(Relation relation,
2455 RelOptInfo *rel)
2457 PartitionKey partkey = RelationGetPartitionKey(relation);
2458 int partnatts;
2459 int cnt;
2460 List **partexprs;
2461 ListCell *lc;
2462 Index varno = rel->relid;
2464 Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2466 /* A partitioned table should have a partition key. */
2467 Assert(partkey != NULL);
2469 partnatts = partkey->partnatts;
2470 partexprs = (List **) palloc(sizeof(List *) * partnatts);
2471 lc = list_head(partkey->partexprs);
2473 for (cnt = 0; cnt < partnatts; cnt++)
2475 Expr *partexpr;
2476 AttrNumber attno = partkey->partattrs[cnt];
2478 if (attno != InvalidAttrNumber)
2480 /* Single column partition key is stored as a Var node. */
2481 Assert(attno > 0);
2483 partexpr = (Expr *) makeVar(varno, attno,
2484 partkey->parttypid[cnt],
2485 partkey->parttypmod[cnt],
2486 partkey->parttypcoll[cnt], 0);
2488 else
2490 if (lc == NULL)
2491 elog(ERROR, "wrong number of partition key expressions");
2493 /* Re-stamp the expression with given varno. */
2494 partexpr = (Expr *) copyObject(lfirst(lc));
2495 ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2496 lc = lnext(partkey->partexprs, lc);
2499 /* Base relations have a single expression per key. */
2500 partexprs[cnt] = list_make1(partexpr);
2503 rel->partexprs = partexprs;
2506 * A base relation does not have nullable partition key expressions, since
2507 * no outer join is involved. We still allocate an array of empty
2508 * expression lists to keep partition key expression handling code simple.
2509 * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2511 rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2515 * set_baserel_partition_constraint
2517 * Builds the partition constraint for the given base relation and sets it
2518 * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2519 * given relation.
2521 static void
2522 set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
2524 List *partconstr;
2526 if (rel->partition_qual) /* already done */
2527 return;
2530 * Run the partition quals through const-simplification similar to check
2531 * constraints. We skip canonicalize_qual, though, because partition
2532 * quals should be in canonical form already; also, since the qual is in
2533 * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2534 * format and back again.
2536 partconstr = RelationGetPartitionQual(relation);
2537 if (partconstr)
2539 partconstr = (List *) expression_planner((Expr *) partconstr);
2540 if (rel->relid != 1)
2541 ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2542 rel->partition_qual = partconstr;