17 #include "uct/dynkomi.h"
18 #include "uct/internal.h"
19 #include "uct/search.h"
24 #define DESCENT_DLEN 512
27 uct_progress_status(struct uct
*u
, struct tree
*t
, enum stone color
, int playouts
)
33 struct tree_node
*best
= u
->policy
->choose(u
->policy
, t
->root
, t
->board
, color
, resign
);
35 fprintf(stderr
, "... No moves left\n");
38 fprintf(stderr
, "[%d] size=%lu/%lu ", playouts
, t
->nodes_size
, t
->max_tree_size
);
39 fprintf(stderr
, "best %f ", tree_node_get_value(t
, 1, best
->u
.value
));
42 if (t
->use_extra_komi
)
43 fprintf(stderr
, "komi %.1f ", t
->extra_komi
);
46 fprintf(stderr
, "| seq ");
47 for (int depth
= 0; depth
< 4; depth
++) {
48 if (best
&& best
->u
.playouts
>= 25) {
49 fprintf(stderr
, "%3s ", coord2sstr(best
->coord
, t
->board
));
50 best
= u
->policy
->choose(u
->policy
, best
, t
->board
, color
, resign
);
57 fprintf(stderr
, "| can ");
59 struct tree_node
*can
[cans
];
60 memset(can
, 0, sizeof(can
));
61 best
= t
->root
->children
;
64 while ((!can
[c
] || best
->u
.playouts
> can
[c
]->u
.playouts
) && ++c
< cans
);
65 for (int d
= 0; d
< c
; d
++) can
[d
] = can
[d
+ 1];
66 if (c
> 0) can
[c
- 1] = best
;
71 fprintf(stderr
, "%3s(%.3f) ",
72 coord2sstr(can
[cans
]->coord
, t
->board
),
73 tree_node_get_value(t
, 1, can
[cans
]->u
.value
));
79 fprintf(stderr
, "\n");
84 record_amaf_move(struct playout_amafmap
*amaf
, coord_t coord
, enum stone color
)
86 if (amaf
->map
[coord
] == S_NONE
|| amaf
->map
[coord
] == color
) {
87 amaf
->map
[coord
] = color
;
88 } else { // XXX: Respect amaf->record_nakade
89 amaf_op(amaf
->map
[coord
], +);
91 amaf
->game
[amaf
->gamelen
].coord
= coord
;
92 amaf
->game
[amaf
->gamelen
].color
= color
;
94 assert(amaf
->gamelen
< sizeof(amaf
->game
) / sizeof(amaf
->game
[0]));
98 struct uct_playout_callback
{
101 struct tree_node
*lnode
;
106 uct_playout_hook(struct playout_policy
*playout
, struct playout_setup
*setup
, struct board
*b
, enum stone color
, int mode
)
108 /* XXX: This is used in some non-master branches. */
113 uct_playout_prepolicy(struct playout_policy
*playout
, struct playout_setup
*setup
, struct board
*b
, enum stone color
)
115 return uct_playout_hook(playout
, setup
, b
, color
, 0);
119 uct_playout_postpolicy(struct playout_policy
*playout
, struct playout_setup
*setup
, struct board
*b
, enum stone color
)
121 return uct_playout_hook(playout
, setup
, b
, color
, 1);
126 uct_leaf_node(struct uct
*u
, struct board
*b
, enum stone player_color
,
127 struct playout_amafmap
*amaf
,
128 struct uct_descent
*descent
, int *dlen
,
129 struct tree_node
*significant
[2],
130 struct tree
*t
, struct tree_node
*n
, enum stone node_color
,
133 enum stone next_color
= stone_other(node_color
);
134 int parity
= (next_color
== player_color
? 1 : -1);
136 /* We need to make sure only one thread expands the node. If
137 * we are unlucky enough for two threads to meet in the same
138 * node, the latter one will simply do another simulation from
139 * the node itself, no big deal. t->nodes_size may exceed
140 * the maximum in multi-threaded case but not by much so it's ok.
141 * The size test must be before the test&set not after, to allow
142 * expansion of the node later if enough nodes have been freed. */
143 if (n
->u
.playouts
>= u
->expand_p
&& t
->nodes_size
< u
->max_tree_size
144 && !__sync_lock_test_and_set(&n
->is_expanded
, 1)) {
145 tree_expand_node(t
, n
, b
, next_color
, u
, parity
);
148 fprintf(stderr
, "%s*-- UCT playout #%d start [%s] %f\n",
149 spaces
, n
->u
.playouts
, coord2sstr(n
->coord
, t
->board
),
150 tree_node_get_value(t
, parity
, n
->u
.value
));
152 struct uct_playout_callback upc
= {
155 /* TODO: Don't necessarily restart the sequence walk when
156 * entering playout. */
160 struct playout_setup ps
= {
161 .gamelen
= u
->gamelen
,
162 .mercymin
= u
->mercymin
,
163 .prepolicy_hook
= uct_playout_prepolicy
,
164 .postpolicy_hook
= uct_playout_postpolicy
,
167 int result
= play_random_game(&ps
, b
, next_color
,
168 u
->playout_amaf
? amaf
: NULL
,
169 &u
->ownermap
, u
->playout
);
170 if (next_color
== S_WHITE
) {
171 /* We need the result from black's perspective. */
175 fprintf(stderr
, "%s -- [%d..%d] %s random playout result %d\n",
176 spaces
, player_color
, next_color
, coord2sstr(n
->coord
, t
->board
), result
);
182 scale_value(struct uct
*u
, struct board
*b
, int result
)
184 floating_t rval
= result
> 0 ? 1.0 : result
< 0 ? 0.0 : 0.5;
185 if (u
->val_scale
&& result
!= 0) {
186 int vp
= u
->val_points
;
188 vp
= board_size(b
) - 1; vp
*= vp
; vp
*= 2;
191 floating_t sval
= (floating_t
) abs(result
) / vp
;
192 sval
= sval
> 1 ? 1 : sval
;
193 if (result
< 0) sval
= 1 - sval
;
195 rval
+= u
->val_scale
* sval
;
197 rval
= (1 - u
->val_scale
) * rval
+ u
->val_scale
* sval
;
198 // fprintf(stderr, "score %d => sval %f, rval %f\n", result, sval, rval);
204 record_local_sequence(struct uct
*u
, struct tree
*t
,
205 struct uct_descent
*descent
, int dlen
, int di
,
206 enum stone seq_color
, floating_t rval
)
208 #define LTREE_DEBUG if (UDEBUGL(6))
210 /* Ignore pass sequences. */
211 if (is_pass(descent
[di
].node
->coord
))
214 /* Transform the rval appropriately, based on the expected
215 * result at the root of the sequence. */
216 if (u
->local_tree_rootseqval
) {
217 float expval
= descent
[di
- 1].value
.value
;
218 rval
= stats_temper_value(rval
, expval
, u
->local_tree
);
221 LTREE_DEBUG
fprintf(stderr
, "recording result %f in local %s sequence: ",
222 rval
, stone2str(seq_color
));
224 /* Sequences starting deeper are less relevant in general. */
225 int pval
= LTREE_PLAYOUTS_MULTIPLIER
;
226 if (u
->local_tree
&& u
->local_tree_depth_decay
> 0)
227 pval
= ((floating_t
) pval
) / pow(u
->local_tree_depth_decay
, di
- 1);
229 LTREE_DEBUG
fprintf(stderr
, "too deep @%d\n", di
);
233 /* Pick the right local tree root... */
234 struct tree_node
*lnode
= seq_color
== S_BLACK
? t
->ltree_black
: t
->ltree_white
;
237 /* ...and record the sequence. */
239 while (di
< dlen
&& (di
== di0
|| descent
[di
].node
->d
< u
->tenuki_d
)) {
240 LTREE_DEBUG
fprintf(stderr
, "%s[%d] ",
241 coord2sstr(descent
[di
].node
->coord
, t
->board
),
242 descent
[di
].node
->d
);
243 lnode
= tree_get_node(t
, lnode
, descent
[di
++].node
->coord
, true);
245 stats_add_result(&lnode
->u
, rval
, pval
);
248 /* Add lnode for tenuki (pass) if we descended further. */
250 LTREE_DEBUG
fprintf(stderr
, "pass ");
251 lnode
= tree_get_node(t
, lnode
, pass
, true);
253 stats_add_result(&lnode
->u
, rval
, pval
);
256 LTREE_DEBUG
fprintf(stderr
, "\n");
261 uct_playout(struct uct
*u
, struct board
*b
, enum stone player_color
, struct tree
*t
)
266 struct playout_amafmap
*amaf
= NULL
;
267 if (u
->policy
->wants_amaf
) {
268 amaf
= calloc2(1, sizeof(*amaf
));
269 amaf
->map
= calloc2(board_size2(&b2
) + 1, sizeof(*amaf
->map
));
270 amaf
->map
++; // -1 is pass
273 /* Walk the tree until we find a leaf, then expand it and do
274 * a random playout. */
275 struct tree_node
*n
= t
->root
;
276 enum stone node_color
= stone_other(player_color
);
277 assert(node_color
== t
->root_color
);
279 /* Tree descent history. */
280 /* XXX: This is somewhat messy since @n and descent[dlen-1].node are
282 struct uct_descent descent
[DESCENT_DLEN
];
283 descent
[0].node
= n
; descent
[0].lnode
= NULL
;
285 /* Total value of the sequence. */
286 struct move_stats seq_value
= { .playouts
= 0 };
287 /* The last "significant" node along the descent (i.e. node
288 * with higher than configured number of playouts). For black
290 struct tree_node
*significant
[2] = { NULL
, NULL
};
291 if (n
->u
.playouts
>= u
->significant_threshold
)
292 significant
[node_color
- 1] = n
;
295 int pass_limit
= (board_size(&b2
) - 2) * (board_size(&b2
) - 2) / 2;
296 int passes
= is_pass(b
->last_move
.coord
) && b
->moves
> 0;
299 static char spaces
[DESCENT_DLEN
];
303 fprintf(stderr
, "--- UCT walk with color %d\n", player_color
);
305 while (!tree_leaf_node(n
) && passes
< 2) {
306 /*** Choose a node to descend to: */
308 /* Parity is chosen already according to the child color, since
309 * it is applied to children. */
310 node_color
= stone_other(node_color
);
311 int parity
= (node_color
== player_color
? 1 : -1);
313 assert(dlen
< DESCENT_DLEN
);
314 spaces
[dlen
- 1] = ' '; spaces
[dlen
] = 0;
315 descent
[dlen
] = descent
[dlen
- 1];
316 if (u
->local_tree
&& (!descent
[dlen
].lnode
|| descent
[dlen
].node
->d
>= u
->tenuki_d
)) {
317 /* Start new local sequence. */
318 /* Remember that node_color already holds color of the
319 * to-be-found child. */
320 descent
[dlen
].lnode
= node_color
== S_BLACK
? t
->ltree_black
: t
->ltree_white
;
323 if (!u
->random_policy_chance
|| fast_random(u
->random_policy_chance
))
324 u
->policy
->descend(u
->policy
, t
, &descent
[dlen
], parity
, b2
.moves
> pass_limit
);
326 u
->random_policy
->descend(u
->random_policy
, t
, &descent
[dlen
], parity
, b2
.moves
> pass_limit
);
329 /*** Perform the descent: */
331 if (descent
[dlen
].node
->u
.playouts
>= u
->significant_threshold
) {
332 significant
[node_color
- 1] = descent
[dlen
].node
;
335 seq_value
.playouts
+= descent
[dlen
].value
.playouts
;
336 seq_value
.value
+= descent
[dlen
].value
.value
* descent
[dlen
].value
.playouts
;
337 n
= descent
[dlen
++].node
;
338 assert(n
== t
->root
|| n
->parent
);
340 fprintf(stderr
, "%s+-- UCT sent us to [%s:%d] %d,%f\n",
341 spaces
, coord2sstr(n
->coord
, t
->board
),
342 n
->coord
, n
->u
.playouts
,
343 tree_node_get_value(t
, parity
, n
->u
.value
));
345 /* Add virtual loss if we need to; this is used to discourage
346 * other threads from visiting this node in case of multiple
347 * threads doing the tree search. */
349 stats_add_result(&n
->u
, node_color
== S_BLACK
? 0.0 : 1.0, u
->virtual_loss
);
351 assert(n
->coord
>= -1);
352 if (amaf
&& !is_pass(n
->coord
))
353 record_amaf_move(amaf
, n
->coord
, node_color
);
355 struct move m
= { n
->coord
, node_color
};
356 int res
= board_play(&b2
, &m
);
358 if (res
< 0 || (!is_pass(m
.coord
) && !group_at(&b2
, m
.coord
)) /* suicide */
359 || b2
.superko_violation
) {
361 for (struct tree_node
*ni
= n
; ni
; ni
= ni
->parent
)
362 fprintf(stderr
, "%s<%"PRIhash
"> ", coord2sstr(ni
->coord
, t
->board
), ni
->hash
);
363 fprintf(stderr
, "marking invalid %s node %d,%d res %d group %d spk %d\n",
364 stone2str(node_color
), coord_x(n
->coord
,b
), coord_y(n
->coord
,b
),
365 res
, group_at(&b2
, m
.coord
), b2
.superko_violation
);
367 n
->hints
|= TREE_HINT_INVALID
;
372 if (is_pass(n
->coord
))
379 amaf
->game_baselen
= amaf
->gamelen
;
380 amaf
->record_nakade
= u
->playout_amaf_nakade
;
383 if (t
->use_extra_komi
&& u
->dynkomi
->persim
) {
384 b2
.komi
+= round(u
->dynkomi
->persim(u
->dynkomi
, &b2
, t
, n
));
388 /* XXX: No dead groups support. */
389 floating_t score
= board_official_score(&b2
, NULL
);
390 /* Result from black's perspective (no matter who
391 * the player; black's perspective is always
392 * what the tree stores. */
393 result
= - (score
* 2);
396 fprintf(stderr
, "[%d..%d] %s p-p scoring playout result %d (W %f)\n",
397 player_color
, node_color
, coord2sstr(n
->coord
, t
->board
), result
, score
);
399 board_print(&b2
, stderr
);
401 board_ownermap_fill(&u
->ownermap
, &b2
);
403 } else { // assert(tree_leaf_node(n));
404 /* In case of parallel tree search, the assertion might
405 * not hold if two threads chew on the same node. */
406 result
= uct_leaf_node(u
, &b2
, player_color
, amaf
, descent
, &dlen
, significant
, t
, n
, node_color
, spaces
);
409 if (amaf
&& u
->playout_amaf_cutoff
) {
410 unsigned int cutoff
= amaf
->game_baselen
;
411 cutoff
+= (amaf
->gamelen
- amaf
->game_baselen
) * u
->playout_amaf_cutoff
/ 100;
412 /* Now, reconstruct the amaf map. */
413 memset(amaf
->map
, 0, board_size2(&b2
) * sizeof(*amaf
->map
));
414 for (unsigned int i
= 0; i
< cutoff
; i
++) {
415 coord_t coord
= amaf
->game
[i
].coord
;
416 enum stone color
= amaf
->game
[i
].color
;
417 if (amaf
->map
[coord
] == S_NONE
|| amaf
->map
[coord
] == color
) {
418 amaf
->map
[coord
] = color
;
419 /* Nakade always recorded for in-tree part */
420 } else if (amaf
->record_nakade
|| i
<= amaf
->game_baselen
) {
421 amaf_op(amaf
->map
[n
->coord
], +);
426 /* Record the result. */
428 assert(n
== t
->root
|| n
->parent
);
429 floating_t rval
= scale_value(u
, b
, result
);
430 u
->policy
->update(u
->policy
, t
, n
, node_color
, player_color
, amaf
, &b2
, rval
);
432 if (t
->use_extra_komi
) {
433 stats_add_result(&u
->dynkomi
->score
, (floating_t
) 0.5 * result
, 1);
434 stats_add_result(&u
->dynkomi
->value
, rval
, 1);
437 if (u
->local_tree
&& n
->parent
&& !is_pass(n
->coord
) && dlen
> 0) {
438 /* Possibly transform the rval appropriately. */
439 if (!u
->local_tree_rootseqval
) {
440 floating_t expval
= seq_value
.value
/ seq_value
.playouts
;
441 rval
= stats_temper_value(rval
, expval
, u
->local_tree
);
444 /* Get the local sequences and record them in ltree. */
445 /* We will look for sequence starts in our descent
446 * history, then run record_local_sequence() for each
447 * found sequence start; record_local_sequence() may
448 * pick longer sequences from descent history then,
449 * which is expected as it will create new lnodes. */
450 enum stone seq_color
= player_color
;
451 /* First move always starts a sequence. */
452 record_local_sequence(u
, t
, descent
, dlen
, 1, seq_color
, rval
);
453 seq_color
= stone_other(seq_color
);
454 for (int dseqi
= 2; dseqi
< dlen
; dseqi
++, seq_color
= stone_other(seq_color
)) {
455 if (u
->local_tree_allseq
) {
456 /* We are configured to record all subsequences. */
457 record_local_sequence(u
, t
, descent
, dlen
, dseqi
, seq_color
, rval
);
460 if (descent
[dseqi
].node
->d
>= u
->tenuki_d
) {
461 /* Tenuki! Record the fresh sequence. */
462 record_local_sequence(u
, t
, descent
, dlen
, dseqi
, seq_color
, rval
);
465 if (descent
[dseqi
].lnode
&& !descent
[dseqi
].lnode
) {
466 /* Record result for in-descent picked sequence. */
467 record_local_sequence(u
, t
, descent
, dlen
, dseqi
, seq_color
, rval
);
474 /* We need to undo the virtual loss we added during descend. */
475 if (u
->virtual_loss
) {
476 floating_t loss
= node_color
== S_BLACK
? 0.0 : 1.0;
477 for (; n
->parent
; n
= n
->parent
) {
478 stats_rm_result(&n
->u
, loss
, u
->virtual_loss
);
487 board_done_noalloc(&b2
);
492 uct_playouts(struct uct
*u
, struct board
*b
, enum stone color
, struct tree
*t
, struct time_info
*ti
)
495 if (ti
&& ti
->dim
== TD_GAMES
) {
496 /* We must halt if uct_search_check_stop() decides that it is time to stop. For
497 * example, if memory gets full, we may well have to stop early; in any case since
498 * uct_search_progress() is no longer called to update the dynkomi information and
499 * show progress information, continuing might well give strange results. Normally
500 * uct_search_check_stop() will stop at s->stop.worst.playouts, which is equal to
501 * ti->len.games according to timeinfo.c:time_stop_conditions(). */
502 for (i
= 0; !uct_halt
&& t
->root
->u
.playouts
<= ti
->len
.games
; i
++)
503 uct_playout(u
, b
, color
, t
);
505 for (i
= 0; !uct_halt
; i
++)
506 uct_playout(u
, b
, color
, t
);