GTP uct_evaluate: Add a hacker-friendly description
[pachi/pachi-r6144.git] / timeinfo.c
blob15bc3abc895276898f895f9ecc09c30a3dc4fdb2
1 #include <assert.h>
2 #include <ctype.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <math.h>
6 #include <time.h>
7 #include <sys/time.h>
9 #define DEBUG
11 #include "debug.h"
12 #include "tactics/util.h"
13 #include "timeinfo.h"
15 /* Max net lag in seconds. TODO: estimate dynamically. */
16 #define MAX_NET_LAG 2.0
17 /* Minimal thinking time; in case reserved time gets smaller than MAX_NET_LAG,
18 * this makes sure we play minimally sensible moves even in massive time
19 * pressure; we still keep MAX_NET_LAG-MIN_THINK_WITH_LAG safety margin.
20 * Note that this affects only lag adjustmnet - if reserved time *before*
21 * lag adjustment gets too small, we still respect it and don't apply
22 * MIN_THINK_WITH_LAG. */
23 #define MIN_THINK_WITH_LAG (MAX_NET_LAG / 2)
24 /* Reserve 15% of byoyomi time as safety margin if risk of losing on time */
25 #define RESERVED_BYOYOMI_PERCENT 15
27 /* For safety, use at most 3 times the desired time on a single move
28 * in main time, 2 times in sudden death and 1.1 times in byoyomi. */
29 #define MAX_MAIN_TIME_EXTENSION 3.0
30 #define MAX_SUDDEN_DEATH_EXTENSION 2.0
31 #define MAX_BYOYOMI_TIME_EXTENSION 1.1
33 bool
34 time_parse(struct time_info *ti, char *s)
36 switch (s[0]) {
37 case '_': ti->period = TT_TOTAL; s++; break;
38 default: ti->period = TT_MOVE; break;
40 switch (s[0]) {
41 case '=':
42 ti->dim = TD_GAMES;
43 ti->len.games = atoi(++s);
44 break;
45 default:
46 if (!isdigit(s[0]))
47 return false;
48 ti->dim = TD_WALLTIME;
49 ti->len.t.timer_start = 0;
50 if (ti->period == TT_TOTAL) {
51 ti->len.t.main_time = atof(s);
52 ti->len.t.byoyomi_time = 0.0;
53 ti->len.t.byoyomi_time_max = 0.0;
54 ti->len.t.byoyomi_periods = 0;
55 ti->len.t.byoyomi_stones = 0;
56 ti->len.t.byoyomi_stones_max = 0;
57 } else { assert(ti->period == TT_MOVE);
58 ti->len.t.main_time = 0.0;
59 ti->len.t.byoyomi_time = atof(s);
60 ti->len.t.byoyomi_time_max = ti->len.t.byoyomi_time;
61 ti->len.t.byoyomi_periods = 1;
62 ti->len.t.byoyomi_stones = 1;
63 ti->len.t.byoyomi_stones_max = 1;
65 break;
67 return true;
70 /* Update time settings according to gtp time_settings or kgs-time_settings command. */
71 void
72 time_settings(struct time_info *ti, int main_time, int byoyomi_time, int byoyomi_stones, int byoyomi_periods)
74 if (main_time < 0) {
75 ti->period = TT_NULL; // no time limit, rely on engine default
76 } else {
77 ti->period = main_time > 0 ? TT_TOTAL : TT_MOVE;
78 ti->dim = TD_WALLTIME;
79 ti->len.t.timer_start = 0;
80 ti->len.t.main_time = (double) main_time;
81 ti->len.t.byoyomi_time = (double) byoyomi_time;
82 ti->len.t.byoyomi_periods = byoyomi_periods;
83 ti->len.t.byoyomi_stones = byoyomi_stones;
84 ti->len.t.canadian = byoyomi_stones > 0;
85 if (byoyomi_time > 0) {
86 /* Normally, only one of byoyomi_periods and
87 * byoyomi_stones arguments will be > 0. However,
88 * our data structure uses generalized byoyomi
89 * specification that will assume "1 byoyomi period
90 * of N stones" for Canadian byoyomi and "N byoyomi
91 * periods of 1 stone" for Japanese byoyomi. */
92 if (ti->len.t.byoyomi_periods < 1)
93 ti->len.t.byoyomi_periods = 1;
94 if (ti->len.t.byoyomi_stones < 1)
95 ti->len.t.byoyomi_stones = 1;
96 } else {
97 assert(!ti->len.t.byoyomi_periods && !ti->len.t.byoyomi_stones);
99 ti->len.t.byoyomi_time_max = ti->len.t.byoyomi_time;
100 ti->len.t.byoyomi_stones_max = ti->len.t.byoyomi_stones;
104 /* Update time information according to gtp time_left command.
105 * kgs doesn't give time_left for the first move, so make sure
106 * that just time_settings + time_stop_conditions still work. */
107 void
108 time_left(struct time_info *ti, int time_left, int stones_left)
110 assert(ti->period != TT_NULL);
111 ti->dim = TD_WALLTIME;
113 if (!time_left && !stones_left) {
114 /* Some GTP peers send time_left 0 0 at the end of main time. */
115 ti->period = TT_MOVE;
116 ti->len.t.main_time = 0;
117 /* byoyomi_time kept fully charged. */
119 } else if (!stones_left) {
120 /* Main time */
121 ti->period = TT_TOTAL;
122 ti->len.t.main_time = time_left;
123 /* byoyomi_time kept fully charged. */
125 } else {
126 /* Byoyomi */
127 ti->period = TT_MOVE;
128 ti->len.t.main_time = 0;
129 ti->len.t.byoyomi_time = time_left;
130 if (ti->len.t.canadian) {
131 ti->len.t.byoyomi_stones = stones_left;
132 } else {
133 // field misused by kgs
134 ti->len.t.byoyomi_periods = stones_left;
139 /* Start our timer. kgs does this (correctly) on "play" not "genmove"
140 * unless we are making the first move of the game. */
141 void
142 time_start_timer(struct time_info *ti)
144 if (ti->period != TT_NULL && ti->dim == TD_WALLTIME)
145 ti->len.t.timer_start = time_now();
148 void
149 time_sub(struct time_info *ti, double interval, bool new_move)
151 assert(ti->dim == TD_WALLTIME && ti->period != TT_NULL);
153 if (ti->period == TT_TOTAL) {
154 ti->len.t.main_time -= interval;
155 if (ti->len.t.main_time >= 0)
156 return;
157 if (ti->len.t.byoyomi_time <= 0) {
158 /* No byoyomi to save us. */
159 fprintf(stderr, "*** LOST ON TIME internally! (%0.2f, spent %0.2fs on last move)\n",
160 ti->len.t.main_time, interval);
161 /* What can we do? Pretend this didn't happen. */
162 ti->len.t.main_time = 1.0f;
163 return;
165 /* Fall-through to byoyomi. */
166 ti->period = TT_MOVE;
167 interval = -ti->len.t.main_time;
168 ti->len.t.main_time = 0;
171 ti->len.t.byoyomi_time -= interval;
172 if (ti->len.t.byoyomi_time < 0) {
173 /* Lost a period. */
174 if (--ti->len.t.byoyomi_periods < 1) {
175 fprintf(stderr, "*** LOST ON TIME internally! (%0.2f, spent %0.2fs on last move)\n",
176 ti->len.t.byoyomi_time, interval);
177 /* Well, what can we do? Pretend this didn't happen. */
178 ti->len.t.byoyomi_periods = 1;
180 ti->len.t.byoyomi_time = ti->len.t.byoyomi_time_max;
181 ti->len.t.byoyomi_stones = ti->len.t.byoyomi_stones_max;
182 return;
184 if (new_move && --ti->len.t.byoyomi_stones < 1) {
185 /* Finished a period. */
186 ti->len.t.byoyomi_time = ti->len.t.byoyomi_time_max;
187 ti->len.t.byoyomi_stones = ti->len.t.byoyomi_stones_max;
191 /* Returns the current time. */
192 double
193 time_now(void)
195 #if _POSIX_TIMERS > 0
196 struct timespec now;
197 clock_gettime(CLOCK_REALTIME, &now);
198 return now.tv_sec + now.tv_nsec/1000000000.0;
199 #else
200 struct timeval now;
201 gettimeofday(&now, NULL);
202 return now.tv_sec + now.tv_usec/1000000.0;
203 #endif
206 /* Sleep for a given interval (in seconds). Return immediately if interval < 0. */
207 void
208 time_sleep(double interval)
210 struct timespec ts;
211 double sec;
212 ts.tv_nsec = (int)(modf(interval, &sec)*1000000000.0);
213 ts.tv_sec = (int)sec;
214 nanosleep(&ts, NULL); /* ignore error if interval was < 0 */
218 /* Returns true if we are in byoyomi (or should play as if in byo yomi
219 * because remaining time per move in main time is less than byoyomi time
220 * per move). */
221 static bool
222 time_in_byoyomi(struct time_info *ti) {
223 assert(ti->dim == TD_WALLTIME);
224 if (!ti->len.t.byoyomi_time)
225 return false; // there is no byoyomi!
226 assert(ti->len.t.byoyomi_stones > 0);
227 if (!ti->len.t.main_time)
228 return true; // we _are_ in byoyomi
229 if (ti->len.t.main_time <= ti->len.t.byoyomi_time / ti->len.t.byoyomi_stones + 0.001)
230 return true; // our basic time left is less than byoyomi time per move
231 return false;
234 /* Set worst.time to all available remaining time (main time plus usable
235 * byoyomi), to be spread over returned number of moves (expected game
236 * length minus moves to be played in final byoyomi - if we would not be
237 * able to spend more time on them in main time anyway). */
238 static int
239 time_stop_set_remaining(struct time_info *ti, struct board *b, double net_lag, struct time_stop *stop)
241 int moves_left = board_estimated_moves_left(b);
242 stop->worst.time = ti->len.t.main_time;
244 if (!ti->len.t.byoyomi_time)
245 return moves_left;
247 /* Time for one move in byoyomi. */
248 assert(ti->len.t.byoyomi_stones > 0);
249 double move_time = ti->len.t.byoyomi_time / ti->len.t.byoyomi_stones;
251 /* (i) Plan to extend our thinking time to make use of byoyom. */
253 /* For Japanese byoyomi with N>1 periods, we use N-1 periods
254 * as main time, keeping the last one as insurance against
255 * unexpected net lag. */
256 if (ti->len.t.byoyomi_periods > 2) {
257 stop->worst.time += (ti->len.t.byoyomi_periods - 2) * move_time;
258 // Will add 1 more byoyomi_time just below
261 /* In case of Canadian byoyomi, include time that can be spent
262 * on its first move. */
263 stop->worst.time += move_time;
265 /* (ii) Do not play faster in main time than we would in byoyomi. */
267 /* Maximize the number of moves played uniformly in main time,
268 * while not playing faster in main time than in byoyomi.
269 * At this point, the main time remaining is stop->worst.time and
270 * already includes the first (canadian) or N-1 byoyomi periods. */
271 double real_move_time = move_time - net_lag;
272 if (real_move_time > 0) {
273 int main_moves = stop->worst.time / real_move_time;
274 if (moves_left > main_moves) {
275 /* We plan to do too many moves in main time,
276 * do the rest in byoyomi. */
277 moves_left = main_moves;
279 if (moves_left <= 0) // possible if too much lag
280 moves_left = 1;
283 return moves_left;
286 /* Adjust the recommended per-move time based on the current game phase.
287 * We expect stop->worst to be total time available, stop->desired the current
288 * per-move time allocation, and set stop->desired to adjusted per-move time. */
289 static void
290 time_stop_phase_adjust(struct board *b, int fuseki_end, int yose_start, struct time_stop *stop)
292 int bsize = (board_size(b)-2)*(board_size(b)-2);
293 fuseki_end = fuseki_end * bsize / 100; // move nb at fuseki end
294 yose_start = yose_start * bsize / 100; // move nb at yose start
295 assert(fuseki_end < yose_start);
297 /* No adjustments in yose. */
298 if (b->moves >= yose_start)
299 return;
300 int moves_to_yose = (yose_start - b->moves) / 2;
301 // ^- /2 because we only consider the moves we have to play ourselves
302 int left_at_yose_start = board_estimated_moves_left(b) - moves_to_yose;
303 if (left_at_yose_start < MIN_MOVES_LEFT)
304 left_at_yose_start = MIN_MOVES_LEFT;
306 /* This particular value of middlegame_time will continuously converge
307 * to effective "yose_time" value as we approach yose_start. */
308 double middlegame_time = stop->worst.time / left_at_yose_start;
309 if (middlegame_time < stop->desired.time)
310 return;
312 if (b->moves < fuseki_end) {
313 assert(fuseki_end > 0);
314 /* At the game start, use stop->desired.time (rather
315 * conservative estimate), then gradually prolong it. */
316 double beta = b->moves / fuseki_end;
317 stop->desired.time = middlegame_time * beta + stop->desired.time * (1 - beta);
319 } else { assert(b->moves < yose_start);
320 /* Middlegame, start with relatively large value, then
321 * converge to the uniform-timeslice yose value. */
322 stop->desired.time = middlegame_time;
326 void
327 lag_adjust(double *time, double net_lag)
329 double nolag_time = *time;
330 *time -= net_lag;
331 if (*time < MIN_THINK_WITH_LAG && nolag_time > MIN_THINK_WITH_LAG)
332 *time = MIN_THINK_WITH_LAG;
335 /* Pre-process time_info for search control and sets the desired stopping conditions. */
336 void
337 time_stop_conditions(struct time_info *ti, struct board *b, int fuseki_end, int yose_start, struct time_stop *stop)
339 /* We must have _some_ limits by now, be it random default values! */
340 assert(ti->period != TT_NULL);
342 /* Special-case limit by number of simulations. */
343 if (ti->dim == TD_GAMES) {
344 if (ti->period == TT_TOTAL) {
345 ti->period = TT_MOVE;
346 ti->len.games /= board_estimated_moves_left(b);
349 stop->desired.playouts = ti->len.games;
350 /* We force worst == desired, so note that we will NOT loop
351 * until best == winner. */
352 stop->worst.playouts = ti->len.games;
353 return;
356 assert(ti->dim == TD_WALLTIME);
359 /* Minimum net lag (seconds) to be reserved in the time for move. */
360 double net_lag = MAX_NET_LAG;
361 if (!ti->len.t.timer_start) {
362 ti->len.t.timer_start = time_now(); // we're playing the first game move
363 } else {
364 net_lag += time_now() - ti->len.t.timer_start;
365 // TODO: keep statistics to get good estimate of lag not just current move
369 if (ti->period == TT_TOTAL && time_in_byoyomi(ti)) {
370 /* Technically, we are still in main time, but we can
371 * effectively switch to byoyomi scheduling since we
372 * have less time available than one byoyomi move takes. */
373 ti->period = TT_MOVE;
377 if (ti->period == TT_MOVE) {
378 /* We are in byoyomi, or almost! */
380 /* The period can still include some tiny remnant of main
381 * time if we are just switching to byoyomi. */
382 double period_len = ti->len.t.byoyomi_time + ti->len.t.main_time;
384 stop->worst.time = period_len;
385 assert(ti->len.t.byoyomi_stones > 0);
386 stop->desired.time = period_len / ti->len.t.byoyomi_stones;
388 /* Use a larger safety margin if we risk losing on time on
389 * this move; it makes no sense to have 30s byoyomi and wait
390 * until 28s to play our move). */
391 if (stop->desired.time >= period_len - net_lag) {
392 double safe_margin = RESERVED_BYOYOMI_PERCENT * stop->desired.time / 100;
393 if (safe_margin > net_lag)
394 net_lag = safe_margin;
397 /* Make recommended_old == average(recommended_new, max) */
398 double worst_time = stop->desired.time * MAX_BYOYOMI_TIME_EXTENSION;
399 if (worst_time < stop->worst.time)
400 stop->worst.time = worst_time;
401 stop->desired.time *= (2 - MAX_BYOYOMI_TIME_EXTENSION);
403 } else { assert(ti->period == TT_TOTAL);
404 /* We are in main time. */
406 assert(ti->len.t.main_time > 0);
407 /* Set worst.time to all available remaining time, to be spread
408 * over returned number of moves. */
409 int moves_left = time_stop_set_remaining(ti, b, net_lag, stop);
411 /* Allocate even slice of the remaining time for next move. */
412 stop->desired.time = stop->worst.time / moves_left;
413 assert(stop->desired.time > 0 && stop->worst.time > 0);
414 assert(stop->desired.time <= stop->worst.time + 0.001);
416 /* Furthermore, tweak the slice based on the game phase. */
417 time_stop_phase_adjust(b, fuseki_end, yose_start, stop);
419 /* Put final upper bound on maximal time spent on the move.
420 * Keep enough time for sudden death (or near SD) games. */
421 double worst_time = stop->desired.time;
422 if (ti->len.t.byoyomi_time_max > ti->len.t.byoyomi_stones_max) {
423 worst_time *= MAX_MAIN_TIME_EXTENSION;
424 } else {
425 worst_time *= MAX_SUDDEN_DEATH_EXTENSION;
427 if (worst_time < stop->worst.time)
428 stop->worst.time = worst_time;
429 if (stop->desired.time > stop->worst.time)
430 stop->desired.time = stop->worst.time;
433 if (DEBUGL(1))
434 fprintf(stderr, "desired %0.2f, worst %0.2f, clock [%d] %0.2f + %0.2f/%d*%d, lag %0.2f\n",
435 stop->desired.time, stop->worst.time,
436 ti->dim, ti->len.t.main_time,
437 ti->len.t.byoyomi_time, ti->len.t.byoyomi_stones,
438 ti->len.t.byoyomi_periods, net_lag);
440 /* Account for lag. */
441 lag_adjust(&stop->desired.time, net_lag);
442 lag_adjust(&stop->worst.time, net_lag);