GTP uct_evaluate: Add a hacker-friendly description
[pachi/pachi-r6144.git] / HACKING
blob59947d52d72f42b1d2f37bec521975a02f8da82a
1 This is brief developer-oriented overview in Pachi structure.
3 Pachi is completely Go-specific (c.f. Fuego; though e.g. atari go support
4 should be easy to add), but fairly modular. It has been built with focus
5 on MonteCarlo-based play, but it can in principle be used for other
6 play engines as well.
9 Basic architecture
10 ==================
12 Pachi consists of the following components:
15   +------+    +--------+    +---------+
16   | core | -- | engine | -- | playout |
17   +------+    +--------+    +---------+
18                      |        |
19                   +-------------+
20                   | aux library |
21                   +-------------+
23 * "core" takes care of the program's lifetime, GTP interface and basic
24   fast Go board implementation
26         zzgo.c          global initialization and the main loop
27         version.h       current version information
28         debug.h         debugging infrastructure
29         random.[ch]     fast random number generator
30         gtp.[ch]        GTP protocol interface
31         timeinfo.[ch]   Time-keeping information
32         stone.[ch]      one board point coloring definition
33         move.[ch]       one board move definition
34         board.[ch]      board definition and basic interface
36 * "aux library" provides extra functions like static tactical evaluation
37   and pattern matching; it is somewhat interwound with "core" component
39         mq.h            "move queue" data structure
40         stats.h         "move statistics" data structure
41         probdist.[ch]   "probability distribution" data structure
42         ownermap.[ch]   simulation-based finalpos. "owner map" data structure
43         pattern3.[ch]   fast 3x3 spatial pattern matcher
44         pattern.[ch]    general multi-feature pattern matcher
45         network.[ch]    Network interface (useful for distributed engine)
47 * "tactical library" provides extended interfaces for the go board,
48   most important non-trivial tactical information
50         util.[ch]       the universal catch-all for extended board interfaces
52 * "engine" receives notifications about opponent moves and is asked
53   to generate a move to play on given board
55         engine.h        abstract engine interface
56         random/         example "random move generator" engine
57         replay/         example "playout move generator" engine
58         montecarlo/     simple treeless Monte Carlo engine, quite bitrotten
59         uct/            the main UCT-player engine, see below
60         distributed/    "meta-engine" for distributed play by orchestrating
61                                 several UCT engines on different computers
62         patternscan/    auxiliary engine for harvesting patterns from
63                                 existing games
64         joseki/         auxiliary engine for generating joseki patterns
66 * "playout" policy is asked to generate moves to play during the Monte Carlo
67   simulations, and to provide rough evaluation of moves feasibility for
68   the engine
70         playout.[ch]    abstract playout policy interface,
71                                 Monte Carlo simulation execution
72         playout/light   uniformly random playout policy
73         playout/moggy   rule-based "Mogo-like" playout policy
74         playout/elo     probdist-based "CrazyStone-like" playout policy
76 * Also, several ways of testing Pachi are provided:
78         t-unit/         interface for writing unit-tests for specific
79                                 functionality, mainly tactics
80         t-play/         interface for testing performance by playing games
81                                 against a fixed opponent (e.g. GNUGo)
84 UCT architecture
85 ================
87 The UCT engine has non-trivial structure by itself:
89   +-------------+    +-----+     +-------------------+
90   | node policy | -- | UCT | --- | node prior-hinter |
91   +-------------+    +-----+     +-------------------+
92                         |           |
93                    +---------+      |
94                    | playout | -----'
95                    +---------+
97 * "UCT" is the core of the engine
99         uct.[ch]        engine initialization, public interface
100         internal.h      internal state and data structures
101         tree.[ch]       minimax move tree with success statistics
102         walk.[ch]       filling the tree by walking it many times
103                                 and running MC simulations from leaves
104         slave.[ch]      engine interface for the distributed engine
106 * "node prior-hinter" assigns newly created nodes preliminary success
107   statistics ("prior values") to focus the search better
109         prior.[ch]      variety of methods for setting the priors
111 * "node policy" mainly chooses the current node's child to descend
112   through during the tree walk, based on the already recorded statistics;
113   it must balance exploration and exploitation well during the selection
115         policy/ucb1     the old-school original simple policy
116         policy/ucb1amaf the AMAF/RAVE-based policy gathering statistics rapidly
118 * "dynkomi driver" dynamically determines self-imposed extra virtual komi
120         dynkomi.[ch]
123 Board Implementation
124 ====================
126 The infrastructure is optimized for speed to make it well suited
127 for bruteforce engines, however tradeoffs are made to make it useful
128 for heavier MonteCarlo playouts as well (e.g. real liberties are
129 tracked instead of pseudoliberties). If you are looking for raw
130 light playout speed, libEGO is better choice.
132 In general, arbitrary board sizes are supported; however, board sizes
133 smaller than 9x9 have not been tested and board sizes larger than 25x25
134 are not supported by GTP - also, in theory some buffer overflows might
135 happen with board sizes larger than 19x19. The engine parameters are
136 primarily tuned for 19x19 play.
138 Ruleset
139 -------
141 While the Pachi engines generally play according to Chinese rules,
142 internally, Pachi uses Tromp-Taylor rules because they are simple,
143 fast and universal; they are very close to the New Zealand rules.
144 That means, it simply counts the number of stones and one-point eyes
145 of each color on the board, plus komi and handicap correction.
147 Tromp-Taylor rules also mean that multi-stone suicide is allowed! If you
148 do not like that (basically if you want to pretend it plays according
149 to Chinese rules), you need to rule that out in your engine, currently.
150 The provided engines DO avoid multi-stone suicide, though it is allowed
151 in the playouts for performance reasons (perhaps we should re-visit that
152 decision in light of heavy playouts).
154 Tromp-Taylor rules have positional superko; the board implementation
155 will set a flag if it is violated, but play the move anyway. You need
156 to enforce the superko rule in your engine.
159 GTP Implementation
160 ==================
162 ...is a very sad hack. ENSURE that only trusted parties talk to Pachi's
163 GTP interface, as it is totally non-resilient to any kind of overflow
164 or bad input attacks and allowing arbitrary input to be entered within
165 is a major security hole. Yes, this needs to be cleaned up. Also, currently
166 engines cannot plug in their own commands and there is no GoGui interface.
168 Pachi supports only few GTP commands now. Most importantly, it does not
169 support the undo command.  The final_status_list command requires engine
170 support.
173 General Pattern Matcher
174 =======================
176 Pachi has in-development general pattern matcher that can match various
177 sets of features (spatial and others), inspired by the CrazyStone pattern
178 model. Please see pattern.h for detailed description of the pattern concept
179 and recognized features.
181 To harvest patterns, use 'zzgo -e patternscan' (see patternscan/patternscan.c
182 for available options).  The output of the pattern scanner are two data
183 structures: The matched patterns
185         (feature1:payload feature2:payload ...)
187 and spatial dictionary. "Spatial" feature represents a particular
188 configuration of stones in a circle around the move-to-play; each
189 configuration has its own record in the dictionary and the spatial
190 feature references only the id in the dictionary; so you need to keep
191 both the patterns and the "patterns.spat" file.  Normally, 'patternscan'
192 will only match already existing dictionary entries, but you
193 can pass it "gen_spat_dict" so that it appends all newly found spatial
194 features to the dictionary - use "spat_threshold" to limit recording
195 only to frequently occuring spatial features; to start the dictionary
196 from scratch, simply remove any existing "patterns.spat" file.
198 There are few pre-made scripts to make the initialization of the pattern
199 matcher easy:
201 * pattern_byplayer.sh: Sorts out patterns from given SGF collection by
202   player names, one player per file in a dedicated directory. This is
203   useful if you want to use the patterns to e.g. recognize games of a
204   player by characteristic patterns. Spatial dictionary is autogenerated
205   in full.
207 * pattern_spatial_gen.sh: Initializes spatial dictionary by spatial features
208   found at least N times in given SGF collection.  This is useful for
209   further gathering of general pattern statistics while keeping the amount
210   of spatial features manageable.
212 * pattern_spatial_show.pl ID: Shows spatial pattern of given id in 2D plane.
214 * pattern_mm.sh: Combines patternsacn engine and the MM tool (see below),
215   producing gamma values for harvested patterns.
217 Minorization-majorization (CrazyStone patterns)
218 -----------------------------------------------
220 The pattern harvester can be used together with the MM tool by Remi Coulom:
222         http://remi.coulom.free.fr/Amsterdam2007/mm.tar.bz2
224 This tool will compute relative strength of individual features for teaming
225 them up and using the outcoming probability distribution for generating moves.
226 There is a script that will take you from SGF game collection to gamma values
227 in single shot - "pattern_mm.sh".
229 The resulting "patterns.gamma" file contains mapping from feature instances
230 to gamma floats, representing the features strength; note that it is totally
231 meaningless without the accompanying "patterns.spat" file generated by the
232 pattern_gather script. This file is used for "full-scale" pattern matching
233 used for tree node priors. Another "fast" pattern feature set is used for
234 generation of in-playout probability distribution - gamma values for these
235 features are stored in "patterns.gammaf".
237 To make Pachi use the gamma values for tree bias and in MC playouts, use the
238 "elo" playout policy - but note that it's still in heavy development.
241 Plugin API
242 ==========
244 The UCT engine allows external plugins to be loaded and provide external
245 knowledge for various heuristics - currently just biasing the MCTS priors,
246 but more can be added easily. The plugins should follow the API in
247 <uct/plugin.h> - see that file for details.
250 Joseki Patterns
251 ===============
253 Joseki patterns can be generated from variations of a SGF file. Josekis
254 are matched per-quadrant, no other move must be within the quadrant. See
255 joseki/README for details on usage of the auxiliary engine and a full
256 recipe for making Pachi play according to joseki sequences extracted from
257 the Kogo dictionary.