12 #include "tactics/util.h"
15 /* Max net lag in seconds. TODO: estimate dynamically. */
16 #define MAX_NET_LAG 2.0
17 /* Minimal thinking time; in case reserved time gets smaller than MAX_NET_LAG,
18 * this makes sure we play minimally sensible moves even in massive time
19 * pressure; we still keep MAX_NET_LAG-MIN_THINK_WITH_LAG safety margin.
20 * Note that this affects only lag adjustmnet - if reserved time *before*
21 * lag adjustment gets too small, we still respect it and don't apply
22 * MIN_THINK_WITH_LAG. */
23 #define MIN_THINK_WITH_LAG (MAX_NET_LAG / 2)
24 /* Reserve 15% of byoyomi time as safety margin if risk of losing on time */
25 #define RESERVED_BYOYOMI_PERCENT 15
27 /* For safety, use at most 2 times the desired time on a single move
28 * in sudden death and 1.1 times in byoyomi. */
29 #define MAX_SUDDEN_DEATH_RATIO 2.0
30 #define MAX_BYOYOMI_TIME_RATIO 1.1
33 time_parse(struct time_info
*ti
, char *s
)
36 case '_': ti
->period
= TT_TOTAL
; s
++; break;
37 default: ti
->period
= TT_MOVE
; break;
42 ti
->len
.games
= atoi(++s
);
47 ti
->dim
= TD_WALLTIME
;
48 ti
->len
.t
.timer_start
= 0;
49 if (ti
->period
== TT_TOTAL
) {
50 ti
->len
.t
.main_time
= atof(s
);
51 ti
->len
.t
.byoyomi_time
= 0.0;
52 ti
->len
.t
.byoyomi_time_max
= 0.0;
53 ti
->len
.t
.byoyomi_periods
= 0;
54 ti
->len
.t
.byoyomi_stones
= 0;
55 ti
->len
.t
.byoyomi_stones_max
= 0;
56 } else { assert(ti
->period
== TT_MOVE
);
57 ti
->len
.t
.main_time
= 0.0;
58 ti
->len
.t
.byoyomi_time
= atof(s
);
59 ti
->len
.t
.byoyomi_time_max
= ti
->len
.t
.byoyomi_time
;
60 ti
->len
.t
.byoyomi_periods
= 1;
61 ti
->len
.t
.byoyomi_stones
= 1;
62 ti
->len
.t
.byoyomi_stones_max
= 1;
69 /* Update time settings according to gtp time_settings or kgs-time_settings command. */
71 time_settings(struct time_info
*ti
, int main_time
, int byoyomi_time
, int byoyomi_stones
, int byoyomi_periods
)
74 ti
->period
= TT_NULL
; // no time limit, rely on engine default
76 ti
->period
= main_time
> 0 ? TT_TOTAL
: TT_MOVE
;
77 ti
->dim
= TD_WALLTIME
;
78 ti
->len
.t
.timer_start
= 0;
79 ti
->len
.t
.main_time
= (double) main_time
;
80 ti
->len
.t
.byoyomi_time
= (double) byoyomi_time
;
81 ti
->len
.t
.byoyomi_periods
= byoyomi_periods
;
82 ti
->len
.t
.byoyomi_stones
= byoyomi_stones
;
83 ti
->len
.t
.canadian
= byoyomi_stones
> 0;
84 if (byoyomi_time
> 0) {
85 /* Normally, only one of byoyomi_periods and
86 * byoyomi_stones arguments will be > 0. However,
87 * our data structure uses generalized byoyomi
88 * specification that will assume "1 byoyomi period
89 * of N stones" for Canadian byoyomi and "N byoyomi
90 * periods of 1 stone" for Japanese byoyomi. */
91 if (ti
->len
.t
.byoyomi_periods
< 1)
92 ti
->len
.t
.byoyomi_periods
= 1;
93 if (ti
->len
.t
.byoyomi_stones
< 1)
94 ti
->len
.t
.byoyomi_stones
= 1;
96 assert(!ti
->len
.t
.byoyomi_periods
&& !ti
->len
.t
.byoyomi_stones
);
98 ti
->len
.t
.byoyomi_time_max
= ti
->len
.t
.byoyomi_time
;
99 ti
->len
.t
.byoyomi_stones_max
= ti
->len
.t
.byoyomi_stones
;
103 /* Update time information according to gtp time_left command.
104 * kgs doesn't give time_left for the first move, so make sure
105 * that just time_settings + time_stop_conditions still work. */
107 time_left(struct time_info
*ti
, int time_left
, int stones_left
)
109 assert(ti
->period
!= TT_NULL
);
110 ti
->dim
= TD_WALLTIME
;
112 if (!time_left
&& !stones_left
) {
113 /* Some GTP peers send time_left 0 0 at the end of main time. */
114 ti
->period
= TT_MOVE
;
115 ti
->len
.t
.main_time
= 0;
116 /* byoyomi_time kept fully charged. */
118 } else if (!stones_left
) {
120 ti
->period
= TT_TOTAL
;
121 ti
->len
.t
.main_time
= time_left
;
122 /* byoyomi_time kept fully charged. */
126 ti
->period
= TT_MOVE
;
127 ti
->len
.t
.main_time
= 0;
128 ti
->len
.t
.byoyomi_time
= time_left
;
129 if (ti
->len
.t
.canadian
) {
130 ti
->len
.t
.byoyomi_stones
= stones_left
;
132 // field misused by kgs
133 ti
->len
.t
.byoyomi_periods
= stones_left
;
138 /* Start our timer. kgs does this (correctly) on "play" not "genmove"
139 * unless we are making the first move of the game. */
141 time_start_timer(struct time_info
*ti
)
143 if (ti
->period
!= TT_NULL
&& ti
->dim
== TD_WALLTIME
)
144 ti
->len
.t
.timer_start
= time_now();
148 time_sub(struct time_info
*ti
, double interval
, bool new_move
)
150 assert(ti
->dim
== TD_WALLTIME
&& ti
->period
!= TT_NULL
);
152 if (ti
->period
== TT_TOTAL
) {
153 ti
->len
.t
.main_time
-= interval
;
154 if (ti
->len
.t
.main_time
>= 0)
156 if (ti
->len
.t
.byoyomi_time
<= 0) {
157 /* No byoyomi to save us. */
158 fprintf(stderr
, "*** LOST ON TIME internally! (%0.2f, spent %0.2fs on last move)\n",
159 ti
->len
.t
.main_time
, interval
);
160 /* What can we do? Pretend this didn't happen. */
161 ti
->len
.t
.main_time
= 1.0f
;
164 /* Fall-through to byoyomi. */
165 ti
->period
= TT_MOVE
;
166 interval
= -ti
->len
.t
.main_time
;
167 ti
->len
.t
.main_time
= 0;
170 ti
->len
.t
.byoyomi_time
-= interval
;
171 if (ti
->len
.t
.byoyomi_time
< 0) {
173 if (--ti
->len
.t
.byoyomi_periods
< 1) {
174 fprintf(stderr
, "*** LOST ON TIME internally! (%0.2f, spent %0.2fs on last move)\n",
175 ti
->len
.t
.byoyomi_time
, interval
);
176 /* Well, what can we do? Pretend this didn't happen. */
177 ti
->len
.t
.byoyomi_periods
= 1;
179 ti
->len
.t
.byoyomi_time
= ti
->len
.t
.byoyomi_time_max
;
180 ti
->len
.t
.byoyomi_stones
= ti
->len
.t
.byoyomi_stones_max
;
183 if (new_move
&& --ti
->len
.t
.byoyomi_stones
< 1) {
184 /* Finished a period. */
185 ti
->len
.t
.byoyomi_time
= ti
->len
.t
.byoyomi_time_max
;
186 ti
->len
.t
.byoyomi_stones
= ti
->len
.t
.byoyomi_stones_max
;
190 /* Returns the current time. */
194 #if _POSIX_TIMERS > 0
196 clock_gettime(CLOCK_REALTIME
, &now
);
197 return now
.tv_sec
+ now
.tv_nsec
/1000000000.0;
200 gettimeofday(&now
, NULL
);
201 return now
.tv_sec
+ now
.tv_usec
/1000000.0;
205 /* Sleep for a given interval (in seconds). Return immediately if interval < 0. */
207 time_sleep(double interval
)
211 ts
.tv_nsec
= (int)(modf(interval
, &sec
)*1000000000.0);
212 ts
.tv_sec
= (int)sec
;
213 nanosleep(&ts
, NULL
); /* ignore error if interval was < 0 */
217 /* Returns true if we are in byoyomi (or should play as if in byo yomi
218 * because remaining time per move in main time is less than byoyomi time
221 time_in_byoyomi(struct time_info
*ti
) {
222 assert(ti
->dim
== TD_WALLTIME
);
223 if (!ti
->len
.t
.byoyomi_time
)
224 return false; // there is no byoyomi!
225 assert(ti
->len
.t
.byoyomi_stones
> 0);
226 if (!ti
->len
.t
.main_time
)
227 return true; // we _are_ in byoyomi
228 if (ti
->len
.t
.main_time
<= ti
->len
.t
.byoyomi_time
/ ti
->len
.t
.byoyomi_stones
+ 0.001)
229 return true; // our basic time left is less than byoyomi time per move
233 /* Set worst.time to all available remaining time (main time plus usable
234 * byoyomi), to be spread over returned number of moves (expected game
235 * length minus moves to be played in final byoyomi - if we would not be
236 * able to spend more time on them in main time anyway). */
238 time_stop_set_remaining(struct time_info
*ti
, struct board
*b
, double net_lag
, struct time_stop
*stop
)
240 int moves_left
= board_estimated_moves_left(b
);
241 stop
->worst
.time
= ti
->len
.t
.main_time
;
243 if (!ti
->len
.t
.byoyomi_time
)
246 /* Time for one move in byoyomi. */
247 assert(ti
->len
.t
.byoyomi_stones
> 0);
248 double move_time
= ti
->len
.t
.byoyomi_time
/ ti
->len
.t
.byoyomi_stones
;
250 /* (i) Plan to extend our thinking time to make use of byoyom. */
252 /* For Japanese byoyomi with N>1 periods, we use N-1 periods
253 * as main time, keeping the last one as insurance against
254 * unexpected net lag. */
255 if (ti
->len
.t
.byoyomi_periods
> 2) {
256 stop
->worst
.time
+= (ti
->len
.t
.byoyomi_periods
- 2) * move_time
;
257 // Will add 1 more byoyomi_time just below
260 /* In case of Canadian byoyomi, include time that can be spent
261 * on its first move. */
262 stop
->worst
.time
+= move_time
;
264 /* (ii) Do not play faster in main time than we would in byoyomi. */
266 /* Maximize the number of moves played uniformly in main time,
267 * while not playing faster in main time than in byoyomi.
268 * At this point, the main time remaining is stop->worst.time and
269 * already includes the first (canadian) or N-1 byoyomi periods. */
270 double real_move_time
= move_time
- net_lag
;
271 if (real_move_time
> 0) {
272 int main_moves
= stop
->worst
.time
/ real_move_time
;
273 if (moves_left
> main_moves
) {
274 /* We plan to do too many moves in main time,
275 * do the rest in byoyomi. */
276 moves_left
= main_moves
;
278 if (moves_left
<= 0) // possible if too much lag
285 /* Adjust the recommended per-move time based on the current game phase.
286 * We expect stop->worst to be total time available, stop->desired the current
287 * per-move time allocation, and set stop->desired to adjusted per-move time. */
289 time_stop_phase_adjust(struct board
*b
, int fuseki_end
, int yose_start
, struct time_stop
*stop
)
291 int bsize
= (board_size(b
)-2)*(board_size(b
)-2);
292 fuseki_end
= fuseki_end
* bsize
/ 100; // move nb at fuseki end
293 yose_start
= yose_start
* bsize
/ 100; // move nb at yose start
294 assert(fuseki_end
< yose_start
);
296 /* No adjustments in yose. */
297 if (b
->moves
>= yose_start
)
299 int moves_to_yose
= (yose_start
- b
->moves
) / 2;
300 // ^- /2 because we only consider the moves we have to play ourselves
301 int left_at_yose_start
= board_estimated_moves_left(b
) - moves_to_yose
;
302 if (left_at_yose_start
< MIN_MOVES_LEFT
)
303 left_at_yose_start
= MIN_MOVES_LEFT
;
305 /* This particular value of middlegame_time will continuously converge
306 * to effective "yose_time" value as we approach yose_start. */
307 double middlegame_time
= stop
->worst
.time
/ left_at_yose_start
;
308 if (middlegame_time
< stop
->desired
.time
)
311 if (b
->moves
< fuseki_end
) {
312 assert(fuseki_end
> 0);
313 /* At the game start, use stop->desired.time (rather
314 * conservative estimate), then gradually prolong it. */
315 double beta
= b
->moves
/ fuseki_end
;
316 stop
->desired
.time
= middlegame_time
* beta
+ stop
->desired
.time
* (1 - beta
);
318 } else { assert(b
->moves
< yose_start
);
319 /* Middlegame, start with relatively large value, then
320 * converge to the uniform-timeslice yose value. */
321 stop
->desired
.time
= middlegame_time
;
326 lag_adjust(double *time
, double net_lag
)
328 double nolag_time
= *time
;
330 if (*time
< MIN_THINK_WITH_LAG
&& nolag_time
> MIN_THINK_WITH_LAG
)
331 *time
= MIN_THINK_WITH_LAG
;
334 /* Pre-process time_info for search control and sets the desired stopping conditions. */
336 time_stop_conditions(struct time_info
*ti
, struct board
*b
, int fuseki_end
, int yose_start
,
337 floating_t max_maintime_ratio
, struct time_stop
*stop
)
339 /* We must have _some_ limits by now, be it random default values! */
340 assert(ti
->period
!= TT_NULL
);
342 /* Special-case limit by number of simulations. */
343 if (ti
->dim
== TD_GAMES
) {
344 if (ti
->period
== TT_TOTAL
) {
345 ti
->period
= TT_MOVE
;
346 ti
->len
.games
/= board_estimated_moves_left(b
);
349 stop
->desired
.playouts
= ti
->len
.games
;
350 /* We force worst == desired, so note that we will NOT loop
351 * until best == winner. */
352 stop
->worst
.playouts
= ti
->len
.games
;
356 assert(ti
->dim
== TD_WALLTIME
);
359 /* Minimum net lag (seconds) to be reserved in the time for move. */
360 double net_lag
= MAX_NET_LAG
;
361 net_lag
+= time_now() - ti
->len
.t
.timer_start
;
362 // TODO: keep statistics to get good estimate of lag not just current move
365 if (ti
->period
== TT_TOTAL
&& time_in_byoyomi(ti
)) {
366 /* Technically, we are still in main time, but we can
367 * effectively switch to byoyomi scheduling since we
368 * have less time available than one byoyomi move takes. */
369 ti
->period
= TT_MOVE
;
373 if (ti
->period
== TT_MOVE
) {
374 /* We are in byoyomi, or almost! */
376 /* The period can still include some tiny remnant of main
377 * time if we are just switching to byoyomi. */
378 double period_len
= ti
->len
.t
.byoyomi_time
+ ti
->len
.t
.main_time
;
380 stop
->worst
.time
= period_len
;
381 assert(ti
->len
.t
.byoyomi_stones
> 0);
382 stop
->desired
.time
= period_len
/ ti
->len
.t
.byoyomi_stones
;
384 /* Use a larger safety margin if we risk losing on time on
385 * this move; it makes no sense to have 30s byoyomi and wait
386 * until 28s to play our move). */
387 if (stop
->desired
.time
>= period_len
- net_lag
) {
388 double safe_margin
= RESERVED_BYOYOMI_PERCENT
* stop
->desired
.time
/ 100;
389 if (safe_margin
> net_lag
)
390 net_lag
= safe_margin
;
393 /* Make recommended_old == average(recommended_new, max) */
394 double worst_time
= stop
->desired
.time
* MAX_BYOYOMI_TIME_RATIO
;
395 if (worst_time
< stop
->worst
.time
)
396 stop
->worst
.time
= worst_time
;
397 stop
->desired
.time
*= (2 - MAX_BYOYOMI_TIME_RATIO
);
399 } else { assert(ti
->period
== TT_TOTAL
);
400 /* We are in main time. */
402 assert(ti
->len
.t
.main_time
> 0);
403 /* Set worst.time to all available remaining time, to be spread
404 * over returned number of moves. */
405 int moves_left
= time_stop_set_remaining(ti
, b
, net_lag
, stop
);
407 /* Allocate even slice of the remaining time for next move. */
408 stop
->desired
.time
= stop
->worst
.time
/ moves_left
;
409 assert(stop
->desired
.time
> 0 && stop
->worst
.time
> 0);
410 assert(stop
->desired
.time
<= stop
->worst
.time
+ 0.001);
412 /* Furthermore, tweak the slice based on the game phase. */
413 time_stop_phase_adjust(b
, fuseki_end
, yose_start
, stop
);
415 /* Put final upper bound on maximal time spent on the move.
416 * Keep enough time for sudden death (or near SD) games. */
417 double worst_time
= stop
->desired
.time
;
418 if (ti
->len
.t
.byoyomi_time_max
> ti
->len
.t
.byoyomi_stones_max
) {
419 worst_time
*= max_maintime_ratio
;
421 worst_time
*= MAX_SUDDEN_DEATH_RATIO
;
423 if (worst_time
< stop
->worst
.time
)
424 stop
->worst
.time
= worst_time
;
425 if (stop
->desired
.time
> stop
->worst
.time
)
426 stop
->desired
.time
= stop
->worst
.time
;
430 fprintf(stderr
, "desired %0.2f, worst %0.2f, clock [%d] %0.2f + %0.2f/%d*%d, lag %0.2f\n",
431 stop
->desired
.time
, stop
->worst
.time
,
432 ti
->dim
, ti
->len
.t
.main_time
,
433 ti
->len
.t
.byoyomi_time
, ti
->len
.t
.byoyomi_stones
,
434 ti
->len
.t
.byoyomi_periods
, net_lag
);
436 /* Account for lag. */
437 lag_adjust(&stop
->desired
.time
, net_lag
);
438 lag_adjust(&stop
->worst
.time
, net_lag
);