flash/nor/stm32l4x: Remove redundant error messages
[openocd.git] / src / target / aarch64.c
blob1c056a015e06cd72756157c9b885c4dc0ff36eb1
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /***************************************************************************
4 * Copyright (C) 2015 by David Ung *
5 * *
6 ***************************************************************************/
8 #ifdef HAVE_CONFIG_H
9 #include "config.h"
10 #endif
12 #include "breakpoints.h"
13 #include "aarch64.h"
14 #include "a64_disassembler.h"
15 #include "register.h"
16 #include "target_request.h"
17 #include "target_type.h"
18 #include "armv8_opcodes.h"
19 #include "armv8_cache.h"
20 #include "arm_coresight.h"
21 #include "arm_semihosting.h"
22 #include "jtag/interface.h"
23 #include "smp.h"
24 #include <helper/nvp.h>
25 #include <helper/time_support.h>
27 enum restart_mode {
28 RESTART_LAZY,
29 RESTART_SYNC,
32 enum halt_mode {
33 HALT_LAZY,
34 HALT_SYNC,
37 struct aarch64_private_config {
38 struct adiv5_private_config adiv5_config;
39 struct arm_cti *cti;
42 static int aarch64_poll(struct target *target);
43 static int aarch64_debug_entry(struct target *target);
44 static int aarch64_restore_context(struct target *target, bool bpwp);
45 static int aarch64_set_breakpoint(struct target *target,
46 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int aarch64_set_context_breakpoint(struct target *target,
48 struct breakpoint *breakpoint, uint8_t matchmode);
49 static int aarch64_set_hybrid_breakpoint(struct target *target,
50 struct breakpoint *breakpoint);
51 static int aarch64_unset_breakpoint(struct target *target,
52 struct breakpoint *breakpoint);
53 static int aarch64_mmu(struct target *target, int *enabled);
54 static int aarch64_virt2phys(struct target *target,
55 target_addr_t virt, target_addr_t *phys);
56 static int aarch64_read_cpu_memory(struct target *target,
57 uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
59 static int aarch64_restore_system_control_reg(struct target *target)
61 enum arm_mode target_mode = ARM_MODE_ANY;
62 int retval = ERROR_OK;
63 uint32_t instr;
65 struct aarch64_common *aarch64 = target_to_aarch64(target);
66 struct armv8_common *armv8 = target_to_armv8(target);
68 if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
69 aarch64->system_control_reg_curr = aarch64->system_control_reg;
70 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
72 switch (armv8->arm.core_mode) {
73 case ARMV8_64_EL0T:
74 target_mode = ARMV8_64_EL1H;
75 /* fall through */
76 case ARMV8_64_EL1T:
77 case ARMV8_64_EL1H:
78 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
79 break;
80 case ARMV8_64_EL2T:
81 case ARMV8_64_EL2H:
82 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
83 break;
84 case ARMV8_64_EL3H:
85 case ARMV8_64_EL3T:
86 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
87 break;
89 case ARM_MODE_SVC:
90 case ARM_MODE_ABT:
91 case ARM_MODE_FIQ:
92 case ARM_MODE_IRQ:
93 case ARM_MODE_HYP:
94 case ARM_MODE_UND:
95 case ARM_MODE_SYS:
96 instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
97 break;
99 default:
100 LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
101 armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
102 return ERROR_FAIL;
105 if (target_mode != ARM_MODE_ANY)
106 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
108 retval = armv8->dpm.instr_write_data_r0_64(&armv8->dpm, instr, aarch64->system_control_reg);
109 if (retval != ERROR_OK)
110 return retval;
112 if (target_mode != ARM_MODE_ANY)
113 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
116 return retval;
119 /* modify system_control_reg in order to enable or disable mmu for :
120 * - virt2phys address conversion
121 * - read or write memory in phys or virt address */
122 static int aarch64_mmu_modify(struct target *target, int enable)
124 struct aarch64_common *aarch64 = target_to_aarch64(target);
125 struct armv8_common *armv8 = &aarch64->armv8_common;
126 int retval = ERROR_OK;
127 enum arm_mode target_mode = ARM_MODE_ANY;
128 uint32_t instr = 0;
130 if (enable) {
131 /* if mmu enabled at target stop and mmu not enable */
132 if (!(aarch64->system_control_reg & 0x1U)) {
133 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
134 return ERROR_FAIL;
136 if (!(aarch64->system_control_reg_curr & 0x1U))
137 aarch64->system_control_reg_curr |= 0x1U;
138 } else {
139 if (aarch64->system_control_reg_curr & 0x4U) {
140 /* data cache is active */
141 aarch64->system_control_reg_curr &= ~0x4U;
142 /* flush data cache armv8 function to be called */
143 if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
144 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
146 if ((aarch64->system_control_reg_curr & 0x1U)) {
147 aarch64->system_control_reg_curr &= ~0x1U;
151 switch (armv8->arm.core_mode) {
152 case ARMV8_64_EL0T:
153 target_mode = ARMV8_64_EL1H;
154 /* fall through */
155 case ARMV8_64_EL1T:
156 case ARMV8_64_EL1H:
157 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
158 break;
159 case ARMV8_64_EL2T:
160 case ARMV8_64_EL2H:
161 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
162 break;
163 case ARMV8_64_EL3H:
164 case ARMV8_64_EL3T:
165 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
166 break;
168 case ARM_MODE_SVC:
169 case ARM_MODE_ABT:
170 case ARM_MODE_FIQ:
171 case ARM_MODE_IRQ:
172 case ARM_MODE_HYP:
173 case ARM_MODE_UND:
174 case ARM_MODE_SYS:
175 instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
176 break;
178 default:
179 LOG_DEBUG("unknown cpu state 0x%x", armv8->arm.core_mode);
180 break;
182 if (target_mode != ARM_MODE_ANY)
183 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
185 retval = armv8->dpm.instr_write_data_r0_64(&armv8->dpm, instr,
186 aarch64->system_control_reg_curr);
188 if (target_mode != ARM_MODE_ANY)
189 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
191 return retval;
195 * Basic debug access, very low level assumes state is saved
197 static int aarch64_init_debug_access(struct target *target)
199 struct armv8_common *armv8 = target_to_armv8(target);
200 int retval;
201 uint32_t dummy;
203 LOG_DEBUG("%s", target_name(target));
205 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
206 armv8->debug_base + CPUV8_DBG_OSLAR, 0);
207 if (retval != ERROR_OK) {
208 LOG_DEBUG("Examine %s failed", "oslock");
209 return retval;
212 /* Clear Sticky Power Down status Bit in PRSR to enable access to
213 the registers in the Core Power Domain */
214 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
215 armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
216 if (retval != ERROR_OK)
217 return retval;
220 * Static CTI configuration:
221 * Channel 0 -> trigger outputs HALT request to PE
222 * Channel 1 -> trigger outputs Resume request to PE
223 * Gate all channel trigger events from entering the CTM
226 /* Enable CTI */
227 retval = arm_cti_enable(armv8->cti, true);
228 /* By default, gate all channel events to and from the CTM */
229 if (retval == ERROR_OK)
230 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
231 /* output halt requests to PE on channel 0 event */
232 if (retval == ERROR_OK)
233 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN0, CTI_CHNL(0));
234 /* output restart requests to PE on channel 1 event */
235 if (retval == ERROR_OK)
236 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN1, CTI_CHNL(1));
237 if (retval != ERROR_OK)
238 return retval;
240 /* Resync breakpoint registers */
242 return ERROR_OK;
245 /* Write to memory mapped registers directly with no cache or mmu handling */
246 static int aarch64_dap_write_memap_register_u32(struct target *target,
247 target_addr_t address,
248 uint32_t value)
250 int retval;
251 struct armv8_common *armv8 = target_to_armv8(target);
253 retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
255 return retval;
258 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
260 struct arm_dpm *dpm = &a8->armv8_common.dpm;
261 int retval;
263 dpm->arm = &a8->armv8_common.arm;
264 dpm->didr = debug;
266 retval = armv8_dpm_setup(dpm);
267 if (retval == ERROR_OK)
268 retval = armv8_dpm_initialize(dpm);
270 return retval;
273 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
275 struct armv8_common *armv8 = target_to_armv8(target);
276 return armv8_set_dbgreg_bits(armv8, CPUV8_DBG_DSCR, bit_mask, value);
279 static int aarch64_check_state_one(struct target *target,
280 uint32_t mask, uint32_t val, int *p_result, uint32_t *p_prsr)
282 struct armv8_common *armv8 = target_to_armv8(target);
283 uint32_t prsr;
284 int retval;
286 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
287 armv8->debug_base + CPUV8_DBG_PRSR, &prsr);
288 if (retval != ERROR_OK)
289 return retval;
291 if (p_prsr)
292 *p_prsr = prsr;
294 if (p_result)
295 *p_result = (prsr & mask) == (val & mask);
297 return ERROR_OK;
300 static int aarch64_wait_halt_one(struct target *target)
302 int retval = ERROR_OK;
303 uint32_t prsr;
305 int64_t then = timeval_ms();
306 for (;;) {
307 int halted;
309 retval = aarch64_check_state_one(target, PRSR_HALT, PRSR_HALT, &halted, &prsr);
310 if (retval != ERROR_OK || halted)
311 break;
313 if (timeval_ms() > then + 1000) {
314 retval = ERROR_TARGET_TIMEOUT;
315 LOG_DEBUG("target %s timeout, prsr=0x%08"PRIx32, target_name(target), prsr);
316 break;
319 return retval;
322 static int aarch64_prepare_halt_smp(struct target *target, bool exc_target, struct target **p_first)
324 int retval = ERROR_OK;
325 struct target_list *head;
326 struct target *first = NULL;
328 LOG_DEBUG("target %s exc %i", target_name(target), exc_target);
330 foreach_smp_target(head, target->smp_targets) {
331 struct target *curr = head->target;
332 struct armv8_common *armv8 = target_to_armv8(curr);
334 if (exc_target && curr == target)
335 continue;
336 if (!target_was_examined(curr))
337 continue;
338 if (curr->state != TARGET_RUNNING)
339 continue;
341 /* HACK: mark this target as prepared for halting */
342 curr->debug_reason = DBG_REASON_DBGRQ;
344 /* open the gate for channel 0 to let HALT requests pass to the CTM */
345 retval = arm_cti_ungate_channel(armv8->cti, 0);
346 if (retval == ERROR_OK)
347 retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
348 if (retval != ERROR_OK)
349 break;
351 LOG_DEBUG("target %s prepared", target_name(curr));
353 if (!first)
354 first = curr;
357 if (p_first) {
358 if (exc_target && first)
359 *p_first = first;
360 else
361 *p_first = target;
364 return retval;
367 static int aarch64_halt_one(struct target *target, enum halt_mode mode)
369 int retval = ERROR_OK;
370 struct armv8_common *armv8 = target_to_armv8(target);
372 LOG_DEBUG("%s", target_name(target));
374 /* allow Halting Debug Mode */
375 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
376 if (retval != ERROR_OK)
377 return retval;
379 /* trigger an event on channel 0, this outputs a halt request to the PE */
380 retval = arm_cti_pulse_channel(armv8->cti, 0);
381 if (retval != ERROR_OK)
382 return retval;
384 if (mode == HALT_SYNC) {
385 retval = aarch64_wait_halt_one(target);
386 if (retval != ERROR_OK) {
387 if (retval == ERROR_TARGET_TIMEOUT)
388 LOG_ERROR("Timeout waiting for target %s halt", target_name(target));
389 return retval;
393 return ERROR_OK;
396 static int aarch64_halt_smp(struct target *target, bool exc_target)
398 struct target *next = target;
399 int retval;
401 /* prepare halt on all PEs of the group */
402 retval = aarch64_prepare_halt_smp(target, exc_target, &next);
404 if (exc_target && next == target)
405 return retval;
407 /* halt the target PE */
408 if (retval == ERROR_OK)
409 retval = aarch64_halt_one(next, HALT_LAZY);
411 if (retval != ERROR_OK)
412 return retval;
414 /* wait for all PEs to halt */
415 int64_t then = timeval_ms();
416 for (;;) {
417 bool all_halted = true;
418 struct target_list *head;
419 struct target *curr;
421 foreach_smp_target(head, target->smp_targets) {
422 int halted;
424 curr = head->target;
426 if (!target_was_examined(curr))
427 continue;
429 retval = aarch64_check_state_one(curr, PRSR_HALT, PRSR_HALT, &halted, NULL);
430 if (retval != ERROR_OK || !halted) {
431 all_halted = false;
432 break;
436 if (all_halted)
437 break;
439 if (timeval_ms() > then + 1000) {
440 retval = ERROR_TARGET_TIMEOUT;
441 break;
445 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
446 * and it looks like the CTI's are not connected by a common
447 * trigger matrix. It seems that we need to halt one core in each
448 * cluster explicitly. So if we find that a core has not halted
449 * yet, we trigger an explicit halt for the second cluster.
451 retval = aarch64_halt_one(curr, HALT_LAZY);
452 if (retval != ERROR_OK)
453 break;
456 return retval;
459 static int update_halt_gdb(struct target *target, enum target_debug_reason debug_reason)
461 struct target *gdb_target = NULL;
462 struct target_list *head;
463 struct target *curr;
465 if (debug_reason == DBG_REASON_NOTHALTED) {
466 LOG_DEBUG("Halting remaining targets in SMP group");
467 aarch64_halt_smp(target, true);
470 /* poll all targets in the group, but skip the target that serves GDB */
471 foreach_smp_target(head, target->smp_targets) {
472 curr = head->target;
473 /* skip calling context */
474 if (curr == target)
475 continue;
476 if (!target_was_examined(curr))
477 continue;
478 /* skip targets that were already halted */
479 if (curr->state == TARGET_HALTED)
480 continue;
481 /* remember the gdb_service->target */
482 if (curr->gdb_service)
483 gdb_target = curr->gdb_service->target;
484 /* skip it */
485 if (curr == gdb_target)
486 continue;
488 /* avoid recursion in aarch64_poll() */
489 curr->smp = 0;
490 aarch64_poll(curr);
491 curr->smp = 1;
494 /* after all targets were updated, poll the gdb serving target */
495 if (gdb_target && gdb_target != target)
496 aarch64_poll(gdb_target);
498 return ERROR_OK;
502 * Aarch64 Run control
505 static int aarch64_poll(struct target *target)
507 enum target_state prev_target_state;
508 int retval = ERROR_OK;
509 int halted;
511 retval = aarch64_check_state_one(target,
512 PRSR_HALT, PRSR_HALT, &halted, NULL);
513 if (retval != ERROR_OK)
514 return retval;
516 if (halted) {
517 prev_target_state = target->state;
518 if (prev_target_state != TARGET_HALTED) {
519 enum target_debug_reason debug_reason = target->debug_reason;
521 /* We have a halting debug event */
522 target->state = TARGET_HALTED;
523 LOG_DEBUG("Target %s halted", target_name(target));
524 retval = aarch64_debug_entry(target);
525 if (retval != ERROR_OK)
526 return retval;
528 if (target->smp)
529 update_halt_gdb(target, debug_reason);
531 if (arm_semihosting(target, &retval) != 0)
532 return retval;
534 switch (prev_target_state) {
535 case TARGET_RUNNING:
536 case TARGET_UNKNOWN:
537 case TARGET_RESET:
538 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
539 break;
540 case TARGET_DEBUG_RUNNING:
541 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
542 break;
543 default:
544 break;
547 } else
548 target->state = TARGET_RUNNING;
550 return retval;
553 static int aarch64_halt(struct target *target)
555 struct armv8_common *armv8 = target_to_armv8(target);
556 armv8->last_run_control_op = ARMV8_RUNCONTROL_HALT;
558 if (target->smp)
559 return aarch64_halt_smp(target, false);
561 return aarch64_halt_one(target, HALT_SYNC);
564 static int aarch64_restore_one(struct target *target, int current,
565 uint64_t *address, int handle_breakpoints, int debug_execution)
567 struct armv8_common *armv8 = target_to_armv8(target);
568 struct arm *arm = &armv8->arm;
569 int retval;
570 uint64_t resume_pc;
572 LOG_DEBUG("%s", target_name(target));
574 if (!debug_execution)
575 target_free_all_working_areas(target);
577 /* current = 1: continue on current pc, otherwise continue at <address> */
578 resume_pc = buf_get_u64(arm->pc->value, 0, 64);
579 if (!current)
580 resume_pc = *address;
581 else
582 *address = resume_pc;
584 /* Make sure that the Armv7 gdb thumb fixups does not
585 * kill the return address
587 switch (arm->core_state) {
588 case ARM_STATE_ARM:
589 resume_pc &= 0xFFFFFFFC;
590 break;
591 case ARM_STATE_AARCH64:
592 resume_pc &= 0xFFFFFFFFFFFFFFFCULL;
593 break;
594 case ARM_STATE_THUMB:
595 case ARM_STATE_THUMB_EE:
596 /* When the return address is loaded into PC
597 * bit 0 must be 1 to stay in Thumb state
599 resume_pc |= 0x1;
600 break;
601 case ARM_STATE_JAZELLE:
602 LOG_ERROR("How do I resume into Jazelle state??");
603 return ERROR_FAIL;
605 LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
606 buf_set_u64(arm->pc->value, 0, 64, resume_pc);
607 arm->pc->dirty = true;
608 arm->pc->valid = true;
610 /* called it now before restoring context because it uses cpu
611 * register r0 for restoring system control register */
612 retval = aarch64_restore_system_control_reg(target);
613 if (retval == ERROR_OK)
614 retval = aarch64_restore_context(target, handle_breakpoints);
616 return retval;
620 * prepare single target for restart
624 static int aarch64_prepare_restart_one(struct target *target)
626 struct armv8_common *armv8 = target_to_armv8(target);
627 int retval;
628 uint32_t dscr;
629 uint32_t tmp;
631 LOG_DEBUG("%s", target_name(target));
633 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
634 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
635 if (retval != ERROR_OK)
636 return retval;
638 if ((dscr & DSCR_ITE) == 0)
639 LOG_ERROR("DSCR.ITE must be set before leaving debug!");
640 if ((dscr & DSCR_ERR) != 0)
641 LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
643 /* acknowledge a pending CTI halt event */
644 retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
646 * open the CTI gate for channel 1 so that the restart events
647 * get passed along to all PEs. Also close gate for channel 0
648 * to isolate the PE from halt events.
650 if (retval == ERROR_OK)
651 retval = arm_cti_ungate_channel(armv8->cti, 1);
652 if (retval == ERROR_OK)
653 retval = arm_cti_gate_channel(armv8->cti, 0);
655 /* make sure that DSCR.HDE is set */
656 if (retval == ERROR_OK) {
657 dscr |= DSCR_HDE;
658 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
659 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
662 if (retval == ERROR_OK) {
663 /* clear sticky bits in PRSR, SDR is now 0 */
664 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
665 armv8->debug_base + CPUV8_DBG_PRSR, &tmp);
668 return retval;
671 static int aarch64_do_restart_one(struct target *target, enum restart_mode mode)
673 struct armv8_common *armv8 = target_to_armv8(target);
674 int retval;
676 LOG_DEBUG("%s", target_name(target));
678 /* trigger an event on channel 1, generates a restart request to the PE */
679 retval = arm_cti_pulse_channel(armv8->cti, 1);
680 if (retval != ERROR_OK)
681 return retval;
683 if (mode == RESTART_SYNC) {
684 int64_t then = timeval_ms();
685 for (;;) {
686 int resumed;
688 * if PRSR.SDR is set now, the target did restart, even
689 * if it's now already halted again (e.g. due to breakpoint)
691 retval = aarch64_check_state_one(target,
692 PRSR_SDR, PRSR_SDR, &resumed, NULL);
693 if (retval != ERROR_OK || resumed)
694 break;
696 if (timeval_ms() > then + 1000) {
697 LOG_ERROR("%s: Timeout waiting for resume"PRIx32, target_name(target));
698 retval = ERROR_TARGET_TIMEOUT;
699 break;
704 if (retval != ERROR_OK)
705 return retval;
707 target->debug_reason = DBG_REASON_NOTHALTED;
708 target->state = TARGET_RUNNING;
710 return ERROR_OK;
713 static int aarch64_restart_one(struct target *target, enum restart_mode mode)
715 int retval;
717 LOG_DEBUG("%s", target_name(target));
719 retval = aarch64_prepare_restart_one(target);
720 if (retval == ERROR_OK)
721 retval = aarch64_do_restart_one(target, mode);
723 return retval;
727 * prepare all but the current target for restart
729 static int aarch64_prep_restart_smp(struct target *target, int handle_breakpoints, struct target **p_first)
731 int retval = ERROR_OK;
732 struct target_list *head;
733 struct target *first = NULL;
734 uint64_t address;
736 foreach_smp_target(head, target->smp_targets) {
737 struct target *curr = head->target;
739 /* skip calling target */
740 if (curr == target)
741 continue;
742 if (!target_was_examined(curr))
743 continue;
744 if (curr->state != TARGET_HALTED)
745 continue;
747 /* resume at current address, not in step mode */
748 retval = aarch64_restore_one(curr, 1, &address, handle_breakpoints, 0);
749 if (retval == ERROR_OK)
750 retval = aarch64_prepare_restart_one(curr);
751 if (retval != ERROR_OK) {
752 LOG_ERROR("failed to restore target %s", target_name(curr));
753 break;
755 /* remember the first valid target in the group */
756 if (!first)
757 first = curr;
760 if (p_first)
761 *p_first = first;
763 return retval;
767 static int aarch64_step_restart_smp(struct target *target)
769 int retval = ERROR_OK;
770 struct target_list *head;
771 struct target *first = NULL;
773 LOG_DEBUG("%s", target_name(target));
775 retval = aarch64_prep_restart_smp(target, 0, &first);
776 if (retval != ERROR_OK)
777 return retval;
779 if (first)
780 retval = aarch64_do_restart_one(first, RESTART_LAZY);
781 if (retval != ERROR_OK) {
782 LOG_DEBUG("error restarting target %s", target_name(first));
783 return retval;
786 int64_t then = timeval_ms();
787 for (;;) {
788 struct target *curr = target;
789 bool all_resumed = true;
791 foreach_smp_target(head, target->smp_targets) {
792 uint32_t prsr;
793 int resumed;
795 curr = head->target;
797 if (curr == target)
798 continue;
800 if (!target_was_examined(curr))
801 continue;
803 retval = aarch64_check_state_one(curr,
804 PRSR_SDR, PRSR_SDR, &resumed, &prsr);
805 if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
806 all_resumed = false;
807 break;
810 if (curr->state != TARGET_RUNNING) {
811 curr->state = TARGET_RUNNING;
812 curr->debug_reason = DBG_REASON_NOTHALTED;
813 target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
817 if (all_resumed)
818 break;
820 if (timeval_ms() > then + 1000) {
821 LOG_ERROR("%s: timeout waiting for target resume", __func__);
822 retval = ERROR_TARGET_TIMEOUT;
823 break;
826 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
827 * and it looks like the CTI's are not connected by a common
828 * trigger matrix. It seems that we need to halt one core in each
829 * cluster explicitly. So if we find that a core has not halted
830 * yet, we trigger an explicit resume for the second cluster.
832 retval = aarch64_do_restart_one(curr, RESTART_LAZY);
833 if (retval != ERROR_OK)
834 break;
837 return retval;
840 static int aarch64_resume(struct target *target, int current,
841 target_addr_t address, int handle_breakpoints, int debug_execution)
843 int retval = 0;
844 uint64_t addr = address;
846 struct armv8_common *armv8 = target_to_armv8(target);
847 armv8->last_run_control_op = ARMV8_RUNCONTROL_RESUME;
849 if (target->state != TARGET_HALTED) {
850 LOG_TARGET_ERROR(target, "not halted");
851 return ERROR_TARGET_NOT_HALTED;
855 * If this target is part of a SMP group, prepare the others
856 * targets for resuming. This involves restoring the complete
857 * target register context and setting up CTI gates to accept
858 * resume events from the trigger matrix.
860 if (target->smp) {
861 retval = aarch64_prep_restart_smp(target, handle_breakpoints, NULL);
862 if (retval != ERROR_OK)
863 return retval;
866 /* all targets prepared, restore and restart the current target */
867 retval = aarch64_restore_one(target, current, &addr, handle_breakpoints,
868 debug_execution);
869 if (retval == ERROR_OK)
870 retval = aarch64_restart_one(target, RESTART_SYNC);
871 if (retval != ERROR_OK)
872 return retval;
874 if (target->smp) {
875 int64_t then = timeval_ms();
876 for (;;) {
877 struct target *curr = target;
878 struct target_list *head;
879 bool all_resumed = true;
881 foreach_smp_target(head, target->smp_targets) {
882 uint32_t prsr;
883 int resumed;
885 curr = head->target;
886 if (curr == target)
887 continue;
888 if (!target_was_examined(curr))
889 continue;
891 retval = aarch64_check_state_one(curr,
892 PRSR_SDR, PRSR_SDR, &resumed, &prsr);
893 if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
894 all_resumed = false;
895 break;
898 if (curr->state != TARGET_RUNNING) {
899 curr->state = TARGET_RUNNING;
900 curr->debug_reason = DBG_REASON_NOTHALTED;
901 target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
905 if (all_resumed)
906 break;
908 if (timeval_ms() > then + 1000) {
909 LOG_ERROR("%s: timeout waiting for target %s to resume", __func__, target_name(curr));
910 retval = ERROR_TARGET_TIMEOUT;
911 break;
915 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
916 * and it looks like the CTI's are not connected by a common
917 * trigger matrix. It seems that we need to halt one core in each
918 * cluster explicitly. So if we find that a core has not halted
919 * yet, we trigger an explicit resume for the second cluster.
921 retval = aarch64_do_restart_one(curr, RESTART_LAZY);
922 if (retval != ERROR_OK)
923 break;
927 if (retval != ERROR_OK)
928 return retval;
930 target->debug_reason = DBG_REASON_NOTHALTED;
932 if (!debug_execution) {
933 target->state = TARGET_RUNNING;
934 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
935 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
936 } else {
937 target->state = TARGET_DEBUG_RUNNING;
938 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
939 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
942 return ERROR_OK;
945 static int aarch64_debug_entry(struct target *target)
947 int retval = ERROR_OK;
948 struct armv8_common *armv8 = target_to_armv8(target);
949 struct arm_dpm *dpm = &armv8->dpm;
950 enum arm_state core_state;
951 uint32_t dscr;
953 /* make sure to clear all sticky errors */
954 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
955 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
956 if (retval == ERROR_OK)
957 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
958 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
959 if (retval == ERROR_OK)
960 retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
962 if (retval != ERROR_OK)
963 return retval;
965 LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), dscr);
967 dpm->dscr = dscr;
968 core_state = armv8_dpm_get_core_state(dpm);
969 armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
970 armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
972 /* close the CTI gate for all events */
973 if (retval == ERROR_OK)
974 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
975 /* discard async exceptions */
976 if (retval == ERROR_OK)
977 retval = dpm->instr_cpsr_sync(dpm);
978 if (retval != ERROR_OK)
979 return retval;
981 /* Examine debug reason */
982 armv8_dpm_report_dscr(dpm, dscr);
984 /* save the memory address that triggered the watchpoint */
985 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
986 uint32_t tmp;
988 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
989 armv8->debug_base + CPUV8_DBG_EDWAR0, &tmp);
990 if (retval != ERROR_OK)
991 return retval;
992 target_addr_t edwar = tmp;
994 /* EDWAR[63:32] has unknown content in aarch32 state */
995 if (core_state == ARM_STATE_AARCH64) {
996 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
997 armv8->debug_base + CPUV8_DBG_EDWAR1, &tmp);
998 if (retval != ERROR_OK)
999 return retval;
1000 edwar |= ((target_addr_t)tmp) << 32;
1003 armv8->dpm.wp_addr = edwar;
1006 retval = armv8_dpm_read_current_registers(&armv8->dpm);
1008 if (retval == ERROR_OK && armv8->post_debug_entry)
1009 retval = armv8->post_debug_entry(target);
1011 return retval;
1014 static int aarch64_post_debug_entry(struct target *target)
1016 struct aarch64_common *aarch64 = target_to_aarch64(target);
1017 struct armv8_common *armv8 = &aarch64->armv8_common;
1018 int retval;
1019 enum arm_mode target_mode = ARM_MODE_ANY;
1020 uint32_t instr;
1022 switch (armv8->arm.core_mode) {
1023 case ARMV8_64_EL0T:
1024 target_mode = ARMV8_64_EL1H;
1025 /* fall through */
1026 case ARMV8_64_EL1T:
1027 case ARMV8_64_EL1H:
1028 instr = ARMV8_MRS(SYSTEM_SCTLR_EL1, 0);
1029 break;
1030 case ARMV8_64_EL2T:
1031 case ARMV8_64_EL2H:
1032 instr = ARMV8_MRS(SYSTEM_SCTLR_EL2, 0);
1033 break;
1034 case ARMV8_64_EL3H:
1035 case ARMV8_64_EL3T:
1036 instr = ARMV8_MRS(SYSTEM_SCTLR_EL3, 0);
1037 break;
1039 case ARM_MODE_SVC:
1040 case ARM_MODE_ABT:
1041 case ARM_MODE_FIQ:
1042 case ARM_MODE_IRQ:
1043 case ARM_MODE_HYP:
1044 case ARM_MODE_UND:
1045 case ARM_MODE_SYS:
1046 instr = ARMV4_5_MRC(15, 0, 0, 1, 0, 0);
1047 break;
1049 default:
1050 LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
1051 armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
1052 return ERROR_FAIL;
1055 if (target_mode != ARM_MODE_ANY)
1056 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
1058 retval = armv8->dpm.instr_read_data_r0_64(&armv8->dpm, instr, &aarch64->system_control_reg);
1059 if (retval != ERROR_OK)
1060 return retval;
1062 if (target_mode != ARM_MODE_ANY)
1063 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
1065 LOG_DEBUG("System_register: %8.8" PRIx64, aarch64->system_control_reg);
1066 aarch64->system_control_reg_curr = aarch64->system_control_reg;
1068 if (armv8->armv8_mmu.armv8_cache.info == -1) {
1069 armv8_identify_cache(armv8);
1070 armv8_read_mpidr(armv8);
1072 if (armv8->is_armv8r) {
1073 armv8->armv8_mmu.mmu_enabled = 0;
1074 } else {
1075 armv8->armv8_mmu.mmu_enabled =
1076 (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1078 armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1079 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1080 armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1081 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1082 return ERROR_OK;
1086 * single-step a target
1088 static int aarch64_step(struct target *target, int current, target_addr_t address,
1089 int handle_breakpoints)
1091 struct armv8_common *armv8 = target_to_armv8(target);
1092 struct aarch64_common *aarch64 = target_to_aarch64(target);
1093 int saved_retval = ERROR_OK;
1094 int poll_retval;
1095 int retval;
1096 uint32_t edecr;
1098 armv8->last_run_control_op = ARMV8_RUNCONTROL_STEP;
1100 if (target->state != TARGET_HALTED) {
1101 LOG_TARGET_ERROR(target, "not halted");
1102 return ERROR_TARGET_NOT_HALTED;
1105 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1106 armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1107 /* make sure EDECR.SS is not set when restoring the register */
1109 if (retval == ERROR_OK) {
1110 edecr &= ~0x4;
1111 /* set EDECR.SS to enter hardware step mode */
1112 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1113 armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
1115 /* disable interrupts while stepping */
1116 if (retval == ERROR_OK && aarch64->isrmasking_mode == AARCH64_ISRMASK_ON)
1117 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
1118 /* bail out if stepping setup has failed */
1119 if (retval != ERROR_OK)
1120 return retval;
1122 if (target->smp && (current == 1)) {
1124 * isolate current target so that it doesn't get resumed
1125 * together with the others
1127 retval = arm_cti_gate_channel(armv8->cti, 1);
1128 /* resume all other targets in the group */
1129 if (retval == ERROR_OK)
1130 retval = aarch64_step_restart_smp(target);
1131 if (retval != ERROR_OK) {
1132 LOG_ERROR("Failed to restart non-stepping targets in SMP group");
1133 return retval;
1135 LOG_DEBUG("Restarted all non-stepping targets in SMP group");
1138 /* all other targets running, restore and restart the current target */
1139 retval = aarch64_restore_one(target, current, &address, 0, 0);
1140 if (retval == ERROR_OK)
1141 retval = aarch64_restart_one(target, RESTART_LAZY);
1143 if (retval != ERROR_OK)
1144 return retval;
1146 LOG_DEBUG("target step-resumed at 0x%" PRIx64, address);
1147 if (!handle_breakpoints)
1148 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1150 int64_t then = timeval_ms();
1151 for (;;) {
1152 int stepped;
1153 uint32_t prsr;
1155 retval = aarch64_check_state_one(target,
1156 PRSR_SDR|PRSR_HALT, PRSR_SDR|PRSR_HALT, &stepped, &prsr);
1157 if (retval != ERROR_OK || stepped)
1158 break;
1160 if (timeval_ms() > then + 100) {
1161 LOG_ERROR("timeout waiting for target %s halt after step",
1162 target_name(target));
1163 retval = ERROR_TARGET_TIMEOUT;
1164 break;
1169 * At least on one SoC (Renesas R8A7795) stepping over a WFI instruction
1170 * causes a timeout. The core takes the step but doesn't complete it and so
1171 * debug state is never entered. However, you can manually halt the core
1172 * as an external debug even is also a WFI wakeup event.
1174 if (retval == ERROR_TARGET_TIMEOUT)
1175 saved_retval = aarch64_halt_one(target, HALT_SYNC);
1177 poll_retval = aarch64_poll(target);
1179 /* restore EDECR */
1180 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1181 armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1182 if (retval != ERROR_OK)
1183 return retval;
1185 /* restore interrupts */
1186 if (aarch64->isrmasking_mode == AARCH64_ISRMASK_ON) {
1187 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
1188 if (retval != ERROR_OK)
1189 return ERROR_OK;
1192 if (saved_retval != ERROR_OK)
1193 return saved_retval;
1195 if (poll_retval != ERROR_OK)
1196 return poll_retval;
1198 return ERROR_OK;
1201 static int aarch64_restore_context(struct target *target, bool bpwp)
1203 struct armv8_common *armv8 = target_to_armv8(target);
1204 struct arm *arm = &armv8->arm;
1206 int retval;
1208 LOG_DEBUG("%s", target_name(target));
1210 if (armv8->pre_restore_context)
1211 armv8->pre_restore_context(target);
1213 retval = armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1214 if (retval == ERROR_OK) {
1215 /* registers are now invalid */
1216 register_cache_invalidate(arm->core_cache);
1217 register_cache_invalidate(arm->core_cache->next);
1220 return retval;
1224 * Cortex-A8 Breakpoint and watchpoint functions
1227 /* Setup hardware Breakpoint Register Pair */
1228 static int aarch64_set_breakpoint(struct target *target,
1229 struct breakpoint *breakpoint, uint8_t matchmode)
1231 int retval;
1232 int brp_i = 0;
1233 uint32_t control;
1234 uint8_t byte_addr_select = 0x0F;
1235 struct aarch64_common *aarch64 = target_to_aarch64(target);
1236 struct armv8_common *armv8 = &aarch64->armv8_common;
1237 struct aarch64_brp *brp_list = aarch64->brp_list;
1239 if (breakpoint->is_set) {
1240 LOG_WARNING("breakpoint already set");
1241 return ERROR_OK;
1244 if (breakpoint->type == BKPT_HARD) {
1245 int64_t bpt_value;
1246 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1247 brp_i++;
1248 if (brp_i >= aarch64->brp_num) {
1249 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1250 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1252 breakpoint_hw_set(breakpoint, brp_i);
1253 if (breakpoint->length == 2)
1254 byte_addr_select = (3 << (breakpoint->address & 0x02));
1255 control = ((matchmode & 0x7) << 20)
1256 | (1 << 13)
1257 | (byte_addr_select << 5)
1258 | (3 << 1) | 1;
1259 brp_list[brp_i].used = 1;
1260 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFCULL;
1261 brp_list[brp_i].control = control;
1262 bpt_value = brp_list[brp_i].value;
1264 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1265 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1266 (uint32_t)(bpt_value & 0xFFFFFFFF));
1267 if (retval != ERROR_OK)
1268 return retval;
1269 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1270 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1271 (uint32_t)(bpt_value >> 32));
1272 if (retval != ERROR_OK)
1273 return retval;
1275 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1276 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1277 brp_list[brp_i].control);
1278 if (retval != ERROR_OK)
1279 return retval;
1280 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1281 brp_list[brp_i].control,
1282 brp_list[brp_i].value);
1284 } else if (breakpoint->type == BKPT_SOFT) {
1285 uint32_t opcode;
1286 uint8_t code[4];
1288 if (armv8_dpm_get_core_state(&armv8->dpm) == ARM_STATE_AARCH64) {
1289 opcode = ARMV8_HLT(11);
1291 if (breakpoint->length != 4)
1292 LOG_ERROR("bug: breakpoint length should be 4 in AArch64 mode");
1293 } else {
1295 * core_state is ARM_STATE_ARM
1296 * in that case the opcode depends on breakpoint length:
1297 * - if length == 4 => A32 opcode
1298 * - if length == 2 => T32 opcode
1299 * - if length == 3 => T32 opcode (refer to gdb doc : ARM-Breakpoint-Kinds)
1300 * in that case the length should be changed from 3 to 4 bytes
1302 opcode = (breakpoint->length == 4) ? ARMV8_HLT_A1(11) :
1303 (uint32_t) (ARMV8_HLT_T1(11) | ARMV8_HLT_T1(11) << 16);
1305 if (breakpoint->length == 3)
1306 breakpoint->length = 4;
1309 buf_set_u32(code, 0, 32, opcode);
1311 retval = target_read_memory(target,
1312 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1313 breakpoint->length, 1,
1314 breakpoint->orig_instr);
1315 if (retval != ERROR_OK)
1316 return retval;
1318 armv8_cache_d_inner_flush_virt(armv8,
1319 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1320 breakpoint->length);
1322 retval = target_write_memory(target,
1323 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1324 breakpoint->length, 1, code);
1325 if (retval != ERROR_OK)
1326 return retval;
1328 armv8_cache_d_inner_flush_virt(armv8,
1329 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1330 breakpoint->length);
1332 armv8_cache_i_inner_inval_virt(armv8,
1333 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1334 breakpoint->length);
1336 breakpoint->is_set = true;
1339 /* Ensure that halting debug mode is enable */
1340 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
1341 if (retval != ERROR_OK) {
1342 LOG_DEBUG("Failed to set DSCR.HDE");
1343 return retval;
1346 return ERROR_OK;
1349 static int aarch64_set_context_breakpoint(struct target *target,
1350 struct breakpoint *breakpoint, uint8_t matchmode)
1352 int retval = ERROR_FAIL;
1353 int brp_i = 0;
1354 uint32_t control;
1355 uint8_t byte_addr_select = 0x0F;
1356 struct aarch64_common *aarch64 = target_to_aarch64(target);
1357 struct armv8_common *armv8 = &aarch64->armv8_common;
1358 struct aarch64_brp *brp_list = aarch64->brp_list;
1360 if (breakpoint->is_set) {
1361 LOG_WARNING("breakpoint already set");
1362 return retval;
1364 /*check available context BRPs*/
1365 while ((brp_list[brp_i].used ||
1366 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1367 brp_i++;
1369 if (brp_i >= aarch64->brp_num) {
1370 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1371 return ERROR_FAIL;
1374 breakpoint_hw_set(breakpoint, brp_i);
1375 control = ((matchmode & 0x7) << 20)
1376 | (1 << 13)
1377 | (byte_addr_select << 5)
1378 | (3 << 1) | 1;
1379 brp_list[brp_i].used = 1;
1380 brp_list[brp_i].value = (breakpoint->asid);
1381 brp_list[brp_i].control = control;
1382 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1383 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1384 brp_list[brp_i].value);
1385 if (retval != ERROR_OK)
1386 return retval;
1387 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1388 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1389 brp_list[brp_i].control);
1390 if (retval != ERROR_OK)
1391 return retval;
1392 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1393 brp_list[brp_i].control,
1394 brp_list[brp_i].value);
1395 return ERROR_OK;
1399 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1401 int retval = ERROR_FAIL;
1402 int brp_1 = 0; /* holds the contextID pair */
1403 int brp_2 = 0; /* holds the IVA pair */
1404 uint32_t control_ctx, control_iva;
1405 uint8_t ctx_byte_addr_select = 0x0F;
1406 uint8_t iva_byte_addr_select = 0x0F;
1407 uint8_t ctx_machmode = 0x03;
1408 uint8_t iva_machmode = 0x01;
1409 struct aarch64_common *aarch64 = target_to_aarch64(target);
1410 struct armv8_common *armv8 = &aarch64->armv8_common;
1411 struct aarch64_brp *brp_list = aarch64->brp_list;
1413 if (breakpoint->is_set) {
1414 LOG_WARNING("breakpoint already set");
1415 return retval;
1417 /*check available context BRPs*/
1418 while ((brp_list[brp_1].used ||
1419 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1420 brp_1++;
1422 LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1423 if (brp_1 >= aarch64->brp_num) {
1424 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1425 return ERROR_FAIL;
1428 while ((brp_list[brp_2].used ||
1429 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1430 brp_2++;
1432 LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1433 if (brp_2 >= aarch64->brp_num) {
1434 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1435 return ERROR_FAIL;
1438 breakpoint_hw_set(breakpoint, brp_1);
1439 breakpoint->linked_brp = brp_2;
1440 control_ctx = ((ctx_machmode & 0x7) << 20)
1441 | (brp_2 << 16)
1442 | (0 << 14)
1443 | (ctx_byte_addr_select << 5)
1444 | (3 << 1) | 1;
1445 brp_list[brp_1].used = 1;
1446 brp_list[brp_1].value = (breakpoint->asid);
1447 brp_list[brp_1].control = control_ctx;
1448 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1449 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].brpn,
1450 brp_list[brp_1].value);
1451 if (retval != ERROR_OK)
1452 return retval;
1453 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1454 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].brpn,
1455 brp_list[brp_1].control);
1456 if (retval != ERROR_OK)
1457 return retval;
1459 control_iva = ((iva_machmode & 0x7) << 20)
1460 | (brp_1 << 16)
1461 | (1 << 13)
1462 | (iva_byte_addr_select << 5)
1463 | (3 << 1) | 1;
1464 brp_list[brp_2].used = 1;
1465 brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFCULL;
1466 brp_list[brp_2].control = control_iva;
1467 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1468 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].brpn,
1469 brp_list[brp_2].value & 0xFFFFFFFF);
1470 if (retval != ERROR_OK)
1471 return retval;
1472 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1473 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].brpn,
1474 brp_list[brp_2].value >> 32);
1475 if (retval != ERROR_OK)
1476 return retval;
1477 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1478 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].brpn,
1479 brp_list[brp_2].control);
1480 if (retval != ERROR_OK)
1481 return retval;
1483 return ERROR_OK;
1486 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1488 int retval;
1489 struct aarch64_common *aarch64 = target_to_aarch64(target);
1490 struct armv8_common *armv8 = &aarch64->armv8_common;
1491 struct aarch64_brp *brp_list = aarch64->brp_list;
1493 if (!breakpoint->is_set) {
1494 LOG_WARNING("breakpoint not set");
1495 return ERROR_OK;
1498 if (breakpoint->type == BKPT_HARD) {
1499 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1500 int brp_i = breakpoint->number;
1501 int brp_j = breakpoint->linked_brp;
1502 if (brp_i >= aarch64->brp_num) {
1503 LOG_DEBUG("Invalid BRP number in breakpoint");
1504 return ERROR_OK;
1506 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1507 brp_list[brp_i].control, brp_list[brp_i].value);
1508 brp_list[brp_i].used = 0;
1509 brp_list[brp_i].value = 0;
1510 brp_list[brp_i].control = 0;
1511 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1512 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1513 brp_list[brp_i].control);
1514 if (retval != ERROR_OK)
1515 return retval;
1516 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1517 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1518 (uint32_t)brp_list[brp_i].value);
1519 if (retval != ERROR_OK)
1520 return retval;
1521 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1522 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1523 (uint32_t)brp_list[brp_i].value);
1524 if (retval != ERROR_OK)
1525 return retval;
1526 if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1527 LOG_DEBUG("Invalid BRP number in breakpoint");
1528 return ERROR_OK;
1530 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1531 brp_list[brp_j].control, brp_list[brp_j].value);
1532 brp_list[brp_j].used = 0;
1533 brp_list[brp_j].value = 0;
1534 brp_list[brp_j].control = 0;
1535 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1536 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].brpn,
1537 brp_list[brp_j].control);
1538 if (retval != ERROR_OK)
1539 return retval;
1540 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1541 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].brpn,
1542 (uint32_t)brp_list[brp_j].value);
1543 if (retval != ERROR_OK)
1544 return retval;
1545 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1546 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].brpn,
1547 (uint32_t)brp_list[brp_j].value);
1548 if (retval != ERROR_OK)
1549 return retval;
1551 breakpoint->linked_brp = 0;
1552 breakpoint->is_set = false;
1553 return ERROR_OK;
1555 } else {
1556 int brp_i = breakpoint->number;
1557 if (brp_i >= aarch64->brp_num) {
1558 LOG_DEBUG("Invalid BRP number in breakpoint");
1559 return ERROR_OK;
1561 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1562 brp_list[brp_i].control, brp_list[brp_i].value);
1563 brp_list[brp_i].used = 0;
1564 brp_list[brp_i].value = 0;
1565 brp_list[brp_i].control = 0;
1566 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1567 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1568 brp_list[brp_i].control);
1569 if (retval != ERROR_OK)
1570 return retval;
1571 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1572 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1573 brp_list[brp_i].value);
1574 if (retval != ERROR_OK)
1575 return retval;
1577 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1578 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1579 (uint32_t)brp_list[brp_i].value);
1580 if (retval != ERROR_OK)
1581 return retval;
1582 breakpoint->is_set = false;
1583 return ERROR_OK;
1585 } else {
1586 /* restore original instruction (kept in target endianness) */
1588 armv8_cache_d_inner_flush_virt(armv8,
1589 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1590 breakpoint->length);
1592 if (breakpoint->length == 4) {
1593 retval = target_write_memory(target,
1594 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1595 4, 1, breakpoint->orig_instr);
1596 if (retval != ERROR_OK)
1597 return retval;
1598 } else {
1599 retval = target_write_memory(target,
1600 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1601 2, 1, breakpoint->orig_instr);
1602 if (retval != ERROR_OK)
1603 return retval;
1606 armv8_cache_d_inner_flush_virt(armv8,
1607 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1608 breakpoint->length);
1610 armv8_cache_i_inner_inval_virt(armv8,
1611 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1612 breakpoint->length);
1614 breakpoint->is_set = false;
1616 return ERROR_OK;
1619 static int aarch64_add_breakpoint(struct target *target,
1620 struct breakpoint *breakpoint)
1622 struct aarch64_common *aarch64 = target_to_aarch64(target);
1624 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1625 LOG_INFO("no hardware breakpoint available");
1626 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1629 if (breakpoint->type == BKPT_HARD)
1630 aarch64->brp_num_available--;
1632 return aarch64_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1635 static int aarch64_add_context_breakpoint(struct target *target,
1636 struct breakpoint *breakpoint)
1638 struct aarch64_common *aarch64 = target_to_aarch64(target);
1640 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1641 LOG_INFO("no hardware breakpoint available");
1642 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1645 if (breakpoint->type == BKPT_HARD)
1646 aarch64->brp_num_available--;
1648 return aarch64_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1651 static int aarch64_add_hybrid_breakpoint(struct target *target,
1652 struct breakpoint *breakpoint)
1654 struct aarch64_common *aarch64 = target_to_aarch64(target);
1656 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1657 LOG_INFO("no hardware breakpoint available");
1658 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1661 if (breakpoint->type == BKPT_HARD)
1662 aarch64->brp_num_available--;
1664 return aarch64_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1667 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1669 struct aarch64_common *aarch64 = target_to_aarch64(target);
1671 #if 0
1672 /* It is perfectly possible to remove breakpoints while the target is running */
1673 if (target->state != TARGET_HALTED) {
1674 LOG_WARNING("target not halted");
1675 return ERROR_TARGET_NOT_HALTED;
1677 #endif
1679 if (breakpoint->is_set) {
1680 aarch64_unset_breakpoint(target, breakpoint);
1681 if (breakpoint->type == BKPT_HARD)
1682 aarch64->brp_num_available++;
1685 return ERROR_OK;
1688 /* Setup hardware Watchpoint Register Pair */
1689 static int aarch64_set_watchpoint(struct target *target,
1690 struct watchpoint *watchpoint)
1692 int retval;
1693 int wp_i = 0;
1694 uint32_t control, offset, length;
1695 struct aarch64_common *aarch64 = target_to_aarch64(target);
1696 struct armv8_common *armv8 = &aarch64->armv8_common;
1697 struct aarch64_brp *wp_list = aarch64->wp_list;
1699 if (watchpoint->is_set) {
1700 LOG_WARNING("watchpoint already set");
1701 return ERROR_OK;
1704 while (wp_list[wp_i].used && (wp_i < aarch64->wp_num))
1705 wp_i++;
1706 if (wp_i >= aarch64->wp_num) {
1707 LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1708 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1711 control = (1 << 0) /* enable */
1712 | (3 << 1) /* both user and privileged access */
1713 | (1 << 13); /* higher mode control */
1715 switch (watchpoint->rw) {
1716 case WPT_READ:
1717 control |= 1 << 3;
1718 break;
1719 case WPT_WRITE:
1720 control |= 2 << 3;
1721 break;
1722 case WPT_ACCESS:
1723 control |= 3 << 3;
1724 break;
1727 /* Match up to 8 bytes. */
1728 offset = watchpoint->address & 7;
1729 length = watchpoint->length;
1730 if (offset + length > sizeof(uint64_t)) {
1731 length = sizeof(uint64_t) - offset;
1732 LOG_WARNING("Adjust watchpoint match inside 8-byte boundary");
1734 for (; length > 0; offset++, length--)
1735 control |= (1 << offset) << 5;
1737 wp_list[wp_i].value = watchpoint->address & 0xFFFFFFFFFFFFFFF8ULL;
1738 wp_list[wp_i].control = control;
1740 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1741 + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1742 (uint32_t)(wp_list[wp_i].value & 0xFFFFFFFF));
1743 if (retval != ERROR_OK)
1744 return retval;
1745 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1746 + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1747 (uint32_t)(wp_list[wp_i].value >> 32));
1748 if (retval != ERROR_OK)
1749 return retval;
1751 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1752 + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1753 control);
1754 if (retval != ERROR_OK)
1755 return retval;
1756 LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, wp_i,
1757 wp_list[wp_i].control, wp_list[wp_i].value);
1759 /* Ensure that halting debug mode is enable */
1760 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
1761 if (retval != ERROR_OK) {
1762 LOG_DEBUG("Failed to set DSCR.HDE");
1763 return retval;
1766 wp_list[wp_i].used = 1;
1767 watchpoint_set(watchpoint, wp_i);
1769 return ERROR_OK;
1772 /* Clear hardware Watchpoint Register Pair */
1773 static int aarch64_unset_watchpoint(struct target *target,
1774 struct watchpoint *watchpoint)
1776 int retval;
1777 struct aarch64_common *aarch64 = target_to_aarch64(target);
1778 struct armv8_common *armv8 = &aarch64->armv8_common;
1779 struct aarch64_brp *wp_list = aarch64->wp_list;
1781 if (!watchpoint->is_set) {
1782 LOG_WARNING("watchpoint not set");
1783 return ERROR_OK;
1786 int wp_i = watchpoint->number;
1787 if (wp_i >= aarch64->wp_num) {
1788 LOG_DEBUG("Invalid WP number in watchpoint");
1789 return ERROR_OK;
1791 LOG_DEBUG("rwp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, wp_i,
1792 wp_list[wp_i].control, wp_list[wp_i].value);
1793 wp_list[wp_i].used = 0;
1794 wp_list[wp_i].value = 0;
1795 wp_list[wp_i].control = 0;
1796 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1797 + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1798 wp_list[wp_i].control);
1799 if (retval != ERROR_OK)
1800 return retval;
1801 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1802 + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1803 wp_list[wp_i].value);
1804 if (retval != ERROR_OK)
1805 return retval;
1807 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1808 + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1809 (uint32_t)wp_list[wp_i].value);
1810 if (retval != ERROR_OK)
1811 return retval;
1812 watchpoint->is_set = false;
1814 return ERROR_OK;
1817 static int aarch64_add_watchpoint(struct target *target,
1818 struct watchpoint *watchpoint)
1820 int retval;
1821 struct aarch64_common *aarch64 = target_to_aarch64(target);
1823 if (aarch64->wp_num_available < 1) {
1824 LOG_INFO("no hardware watchpoint available");
1825 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1828 retval = aarch64_set_watchpoint(target, watchpoint);
1829 if (retval == ERROR_OK)
1830 aarch64->wp_num_available--;
1832 return retval;
1835 static int aarch64_remove_watchpoint(struct target *target,
1836 struct watchpoint *watchpoint)
1838 struct aarch64_common *aarch64 = target_to_aarch64(target);
1840 if (watchpoint->is_set) {
1841 aarch64_unset_watchpoint(target, watchpoint);
1842 aarch64->wp_num_available++;
1845 return ERROR_OK;
1849 * find out which watchpoint hits
1850 * get exception address and compare the address to watchpoints
1852 static int aarch64_hit_watchpoint(struct target *target,
1853 struct watchpoint **hit_watchpoint)
1855 if (target->debug_reason != DBG_REASON_WATCHPOINT)
1856 return ERROR_FAIL;
1858 struct armv8_common *armv8 = target_to_armv8(target);
1860 target_addr_t exception_address;
1861 struct watchpoint *wp;
1863 exception_address = armv8->dpm.wp_addr;
1865 if (exception_address == 0xFFFFFFFF)
1866 return ERROR_FAIL;
1868 for (wp = target->watchpoints; wp; wp = wp->next)
1869 if (exception_address >= wp->address && exception_address < (wp->address + wp->length)) {
1870 *hit_watchpoint = wp;
1871 return ERROR_OK;
1874 return ERROR_FAIL;
1878 * Cortex-A8 Reset functions
1881 static int aarch64_enable_reset_catch(struct target *target, bool enable)
1883 struct armv8_common *armv8 = target_to_armv8(target);
1884 uint32_t edecr;
1885 int retval;
1887 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1888 armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1889 LOG_DEBUG("EDECR = 0x%08" PRIx32 ", enable=%d", edecr, enable);
1890 if (retval != ERROR_OK)
1891 return retval;
1893 if (enable)
1894 edecr |= ECR_RCE;
1895 else
1896 edecr &= ~ECR_RCE;
1898 return mem_ap_write_atomic_u32(armv8->debug_ap,
1899 armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1902 static int aarch64_clear_reset_catch(struct target *target)
1904 struct armv8_common *armv8 = target_to_armv8(target);
1905 uint32_t edesr;
1906 int retval;
1907 bool was_triggered;
1909 /* check if Reset Catch debug event triggered as expected */
1910 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1911 armv8->debug_base + CPUV8_DBG_EDESR, &edesr);
1912 if (retval != ERROR_OK)
1913 return retval;
1915 was_triggered = !!(edesr & ESR_RC);
1916 LOG_DEBUG("Reset Catch debug event %s",
1917 was_triggered ? "triggered" : "NOT triggered!");
1919 if (was_triggered) {
1920 /* clear pending Reset Catch debug event */
1921 edesr &= ~ESR_RC;
1922 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1923 armv8->debug_base + CPUV8_DBG_EDESR, edesr);
1924 if (retval != ERROR_OK)
1925 return retval;
1928 return ERROR_OK;
1931 static int aarch64_assert_reset(struct target *target)
1933 struct armv8_common *armv8 = target_to_armv8(target);
1934 enum reset_types reset_config = jtag_get_reset_config();
1935 int retval;
1937 LOG_DEBUG(" ");
1939 /* Issue some kind of warm reset. */
1940 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1941 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1942 else if (reset_config & RESET_HAS_SRST) {
1943 bool srst_asserted = false;
1945 if (target->reset_halt && !(reset_config & RESET_SRST_PULLS_TRST)) {
1946 if (target_was_examined(target)) {
1948 if (reset_config & RESET_SRST_NO_GATING) {
1950 * SRST needs to be asserted *before* Reset Catch
1951 * debug event can be set up.
1953 adapter_assert_reset();
1954 srst_asserted = true;
1957 /* make sure to clear all sticky errors */
1958 mem_ap_write_atomic_u32(armv8->debug_ap,
1959 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1961 /* set up Reset Catch debug event to halt the CPU after reset */
1962 retval = aarch64_enable_reset_catch(target, true);
1963 if (retval != ERROR_OK)
1964 LOG_WARNING("%s: Error enabling Reset Catch debug event; the CPU will not halt immediately after reset!",
1965 target_name(target));
1966 } else {
1967 LOG_WARNING("%s: Target not examined, will not halt immediately after reset!",
1968 target_name(target));
1972 /* REVISIT handle "pulls" cases, if there's
1973 * hardware that needs them to work.
1975 if (!srst_asserted)
1976 adapter_assert_reset();
1977 } else {
1978 LOG_ERROR("%s: how to reset?", target_name(target));
1979 return ERROR_FAIL;
1982 /* registers are now invalid */
1983 if (target_was_examined(target)) {
1984 register_cache_invalidate(armv8->arm.core_cache);
1985 register_cache_invalidate(armv8->arm.core_cache->next);
1988 target->state = TARGET_RESET;
1990 return ERROR_OK;
1993 static int aarch64_deassert_reset(struct target *target)
1995 int retval;
1997 LOG_DEBUG(" ");
1999 /* be certain SRST is off */
2000 adapter_deassert_reset();
2002 if (!target_was_examined(target))
2003 return ERROR_OK;
2005 retval = aarch64_init_debug_access(target);
2006 if (retval != ERROR_OK)
2007 return retval;
2009 retval = aarch64_poll(target);
2010 if (retval != ERROR_OK)
2011 return retval;
2013 if (target->reset_halt) {
2014 /* clear pending Reset Catch debug event */
2015 retval = aarch64_clear_reset_catch(target);
2016 if (retval != ERROR_OK)
2017 LOG_WARNING("%s: Clearing Reset Catch debug event failed",
2018 target_name(target));
2020 /* disable Reset Catch debug event */
2021 retval = aarch64_enable_reset_catch(target, false);
2022 if (retval != ERROR_OK)
2023 LOG_WARNING("%s: Disabling Reset Catch debug event failed",
2024 target_name(target));
2026 if (target->state != TARGET_HALTED) {
2027 LOG_WARNING("%s: ran after reset and before halt ...",
2028 target_name(target));
2029 if (target_was_examined(target)) {
2030 retval = aarch64_halt_one(target, HALT_LAZY);
2031 if (retval != ERROR_OK)
2032 return retval;
2033 } else {
2034 target->state = TARGET_UNKNOWN;
2039 return ERROR_OK;
2042 static int aarch64_write_cpu_memory_slow(struct target *target,
2043 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2045 struct armv8_common *armv8 = target_to_armv8(target);
2046 struct arm_dpm *dpm = &armv8->dpm;
2047 struct arm *arm = &armv8->arm;
2048 int retval;
2050 if (size > 4 && arm->core_state != ARM_STATE_AARCH64) {
2051 LOG_ERROR("memory write sizes greater than 4 bytes is only supported for AArch64 state");
2052 return ERROR_FAIL;
2055 armv8_reg_current(arm, 1)->dirty = true;
2057 /* change DCC to normal mode if necessary */
2058 if (*dscr & DSCR_MA) {
2059 *dscr &= ~DSCR_MA;
2060 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2061 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2062 if (retval != ERROR_OK)
2063 return retval;
2066 while (count) {
2067 uint32_t opcode;
2068 uint64_t data;
2070 /* write the data to store into DTRRX (and DTRTX for 64-bit) */
2071 if (size == 1)
2072 data = *buffer;
2073 else if (size == 2)
2074 data = target_buffer_get_u16(target, buffer);
2075 else if (size == 4)
2076 data = target_buffer_get_u32(target, buffer);
2077 else
2078 data = target_buffer_get_u64(target, buffer);
2080 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2081 armv8->debug_base + CPUV8_DBG_DTRRX, (uint32_t)data);
2082 if (retval == ERROR_OK && size > 4)
2083 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2084 armv8->debug_base + CPUV8_DBG_DTRTX, (uint32_t)(data >> 32));
2085 if (retval != ERROR_OK)
2086 return retval;
2088 if (arm->core_state == ARM_STATE_AARCH64)
2089 if (size <= 4)
2090 retval = dpm->instr_execute(dpm, ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 1));
2091 else
2092 retval = dpm->instr_execute(dpm, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 1));
2093 else
2094 retval = dpm->instr_execute(dpm, ARMV4_5_MRC(14, 0, 1, 0, 5, 0));
2095 if (retval != ERROR_OK)
2096 return retval;
2098 if (size == 1)
2099 opcode = armv8_opcode(armv8, ARMV8_OPC_STRB_IP);
2100 else if (size == 2)
2101 opcode = armv8_opcode(armv8, ARMV8_OPC_STRH_IP);
2102 else if (size == 4)
2103 opcode = armv8_opcode(armv8, ARMV8_OPC_STRW_IP);
2104 else
2105 opcode = armv8_opcode(armv8, ARMV8_OPC_STRD_IP);
2107 retval = dpm->instr_execute(dpm, opcode);
2108 if (retval != ERROR_OK)
2109 return retval;
2111 /* Advance */
2112 buffer += size;
2113 --count;
2116 return ERROR_OK;
2119 static int aarch64_write_cpu_memory_fast(struct target *target,
2120 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2122 struct armv8_common *armv8 = target_to_armv8(target);
2123 struct arm *arm = &armv8->arm;
2124 int retval;
2126 armv8_reg_current(arm, 1)->dirty = true;
2128 /* Step 1.d - Change DCC to memory mode */
2129 *dscr |= DSCR_MA;
2130 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2131 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2132 if (retval != ERROR_OK)
2133 return retval;
2136 /* Step 2.a - Do the write */
2137 retval = mem_ap_write_buf_noincr(armv8->debug_ap,
2138 buffer, 4, count, armv8->debug_base + CPUV8_DBG_DTRRX);
2139 if (retval != ERROR_OK)
2140 return retval;
2142 /* Step 3.a - Switch DTR mode back to Normal mode */
2143 *dscr &= ~DSCR_MA;
2144 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2145 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2146 if (retval != ERROR_OK)
2147 return retval;
2149 return ERROR_OK;
2152 static int aarch64_write_cpu_memory(struct target *target,
2153 uint64_t address, uint32_t size,
2154 uint32_t count, const uint8_t *buffer)
2156 /* write memory through APB-AP */
2157 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2158 struct armv8_common *armv8 = target_to_armv8(target);
2159 struct arm_dpm *dpm = &armv8->dpm;
2160 struct arm *arm = &armv8->arm;
2161 uint32_t dscr;
2163 if (target->state != TARGET_HALTED) {
2164 LOG_TARGET_ERROR(target, "not halted");
2165 return ERROR_TARGET_NOT_HALTED;
2168 /* Mark register X0 as dirty, as it will be used
2169 * for transferring the data.
2170 * It will be restored automatically when exiting
2171 * debug mode
2173 armv8_reg_current(arm, 0)->dirty = true;
2175 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2177 /* Read DSCR */
2178 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2179 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2180 if (retval != ERROR_OK)
2181 return retval;
2183 /* Set Normal access mode */
2184 dscr = (dscr & ~DSCR_MA);
2185 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2186 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2187 if (retval != ERROR_OK)
2188 return retval;
2190 if (arm->core_state == ARM_STATE_AARCH64) {
2191 /* Write X0 with value 'address' using write procedure */
2192 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2193 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2194 retval = dpm->instr_write_data_dcc_64(dpm,
2195 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
2196 } else {
2197 /* Write R0 with value 'address' using write procedure */
2198 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
2199 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2200 retval = dpm->instr_write_data_dcc(dpm,
2201 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2204 if (retval != ERROR_OK)
2205 return retval;
2207 if (size == 4 && (address % 4) == 0)
2208 retval = aarch64_write_cpu_memory_fast(target, count, buffer, &dscr);
2209 else
2210 retval = aarch64_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2212 if (retval != ERROR_OK) {
2213 /* Unset DTR mode */
2214 mem_ap_read_atomic_u32(armv8->debug_ap,
2215 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2216 dscr &= ~DSCR_MA;
2217 mem_ap_write_atomic_u32(armv8->debug_ap,
2218 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2221 /* Check for sticky abort flags in the DSCR */
2222 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2223 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2224 if (retval != ERROR_OK)
2225 return retval;
2227 dpm->dscr = dscr;
2228 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2229 /* Abort occurred - clear it and exit */
2230 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2231 armv8_dpm_handle_exception(dpm, true);
2232 return ERROR_FAIL;
2235 /* Done */
2236 return ERROR_OK;
2239 static int aarch64_read_cpu_memory_slow(struct target *target,
2240 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2242 struct armv8_common *armv8 = target_to_armv8(target);
2243 struct arm_dpm *dpm = &armv8->dpm;
2244 struct arm *arm = &armv8->arm;
2245 int retval;
2247 if (size > 4 && arm->core_state != ARM_STATE_AARCH64) {
2248 LOG_ERROR("memory read sizes greater than 4 bytes is only supported for AArch64 state");
2249 return ERROR_FAIL;
2252 armv8_reg_current(arm, 1)->dirty = true;
2254 /* change DCC to normal mode (if necessary) */
2255 if (*dscr & DSCR_MA) {
2256 *dscr &= DSCR_MA;
2257 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2258 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2259 if (retval != ERROR_OK)
2260 return retval;
2263 while (count) {
2264 uint32_t opcode;
2265 uint32_t lower;
2266 uint32_t higher;
2267 uint64_t data;
2269 if (size == 1)
2270 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRB_IP);
2271 else if (size == 2)
2272 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRH_IP);
2273 else if (size == 4)
2274 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRW_IP);
2275 else
2276 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRD_IP);
2278 retval = dpm->instr_execute(dpm, opcode);
2279 if (retval != ERROR_OK)
2280 return retval;
2282 if (arm->core_state == ARM_STATE_AARCH64)
2283 if (size <= 4)
2284 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 1));
2285 else
2286 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 1));
2287 else
2288 retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 1, 0, 5, 0));
2289 if (retval != ERROR_OK)
2290 return retval;
2292 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2293 armv8->debug_base + CPUV8_DBG_DTRTX, &lower);
2294 if (retval == ERROR_OK) {
2295 if (size > 4)
2296 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2297 armv8->debug_base + CPUV8_DBG_DTRRX, &higher);
2298 else
2299 higher = 0;
2301 if (retval != ERROR_OK)
2302 return retval;
2304 data = (uint64_t)lower | (uint64_t)higher << 32;
2306 if (size == 1)
2307 *buffer = (uint8_t)data;
2308 else if (size == 2)
2309 target_buffer_set_u16(target, buffer, (uint16_t)data);
2310 else if (size == 4)
2311 target_buffer_set_u32(target, buffer, (uint32_t)data);
2312 else
2313 target_buffer_set_u64(target, buffer, data);
2315 /* Advance */
2316 buffer += size;
2317 --count;
2320 return ERROR_OK;
2323 static int aarch64_read_cpu_memory_fast(struct target *target,
2324 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2326 struct armv8_common *armv8 = target_to_armv8(target);
2327 struct arm_dpm *dpm = &armv8->dpm;
2328 struct arm *arm = &armv8->arm;
2329 int retval;
2330 uint32_t value;
2332 /* Mark X1 as dirty */
2333 armv8_reg_current(arm, 1)->dirty = true;
2335 if (arm->core_state == ARM_STATE_AARCH64) {
2336 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2337 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
2338 } else {
2339 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2340 retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
2343 if (retval != ERROR_OK)
2344 return retval;
2346 /* Step 1.e - Change DCC to memory mode */
2347 *dscr |= DSCR_MA;
2348 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2349 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2350 if (retval != ERROR_OK)
2351 return retval;
2353 /* Step 1.f - read DBGDTRTX and discard the value */
2354 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2355 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2356 if (retval != ERROR_OK)
2357 return retval;
2359 count--;
2360 /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2361 * Abort flags are sticky, so can be read at end of transactions
2363 * This data is read in aligned to 32 bit boundary.
2366 if (count) {
2367 /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2368 * increments X0 by 4. */
2369 retval = mem_ap_read_buf_noincr(armv8->debug_ap, buffer, 4, count,
2370 armv8->debug_base + CPUV8_DBG_DTRTX);
2371 if (retval != ERROR_OK)
2372 return retval;
2375 /* Step 3.a - set DTR access mode back to Normal mode */
2376 *dscr &= ~DSCR_MA;
2377 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2378 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2379 if (retval != ERROR_OK)
2380 return retval;
2382 /* Step 3.b - read DBGDTRTX for the final value */
2383 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2384 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2385 if (retval != ERROR_OK)
2386 return retval;
2388 target_buffer_set_u32(target, buffer + count * 4, value);
2389 return retval;
2392 static int aarch64_read_cpu_memory(struct target *target,
2393 target_addr_t address, uint32_t size,
2394 uint32_t count, uint8_t *buffer)
2396 /* read memory through APB-AP */
2397 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2398 struct armv8_common *armv8 = target_to_armv8(target);
2399 struct arm_dpm *dpm = &armv8->dpm;
2400 struct arm *arm = &armv8->arm;
2401 uint32_t dscr;
2403 LOG_DEBUG("Reading CPU memory address 0x%016" PRIx64 " size %" PRIu32 " count %" PRIu32,
2404 address, size, count);
2406 if (target->state != TARGET_HALTED) {
2407 LOG_TARGET_ERROR(target, "not halted");
2408 return ERROR_TARGET_NOT_HALTED;
2411 /* Mark register X0 as dirty, as it will be used
2412 * for transferring the data.
2413 * It will be restored automatically when exiting
2414 * debug mode
2416 armv8_reg_current(arm, 0)->dirty = true;
2418 /* Read DSCR */
2419 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2420 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2421 if (retval != ERROR_OK)
2422 return retval;
2424 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2426 /* Set Normal access mode */
2427 dscr &= ~DSCR_MA;
2428 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2429 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2430 if (retval != ERROR_OK)
2431 return retval;
2433 if (arm->core_state == ARM_STATE_AARCH64) {
2434 /* Write X0 with value 'address' using write procedure */
2435 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2436 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2437 retval = dpm->instr_write_data_dcc_64(dpm,
2438 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
2439 } else {
2440 /* Write R0 with value 'address' using write procedure */
2441 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2442 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2443 retval = dpm->instr_write_data_dcc(dpm,
2444 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2447 if (retval != ERROR_OK)
2448 return retval;
2450 if (size == 4 && (address % 4) == 0)
2451 retval = aarch64_read_cpu_memory_fast(target, count, buffer, &dscr);
2452 else
2453 retval = aarch64_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2455 if (dscr & DSCR_MA) {
2456 dscr &= ~DSCR_MA;
2457 mem_ap_write_atomic_u32(armv8->debug_ap,
2458 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2461 if (retval != ERROR_OK)
2462 return retval;
2464 /* Check for sticky abort flags in the DSCR */
2465 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2466 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2467 if (retval != ERROR_OK)
2468 return retval;
2470 dpm->dscr = dscr;
2472 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2473 /* Abort occurred - clear it and exit */
2474 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2475 armv8_dpm_handle_exception(dpm, true);
2476 return ERROR_FAIL;
2479 /* Done */
2480 return ERROR_OK;
2483 static int aarch64_read_phys_memory(struct target *target,
2484 target_addr_t address, uint32_t size,
2485 uint32_t count, uint8_t *buffer)
2487 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2489 if (count && buffer) {
2490 /* read memory through APB-AP */
2491 retval = aarch64_mmu_modify(target, 0);
2492 if (retval != ERROR_OK)
2493 return retval;
2494 retval = aarch64_read_cpu_memory(target, address, size, count, buffer);
2496 return retval;
2499 static int aarch64_read_memory(struct target *target, target_addr_t address,
2500 uint32_t size, uint32_t count, uint8_t *buffer)
2502 int mmu_enabled = 0;
2503 int retval;
2505 /* determine if MMU was enabled on target stop */
2506 retval = aarch64_mmu(target, &mmu_enabled);
2507 if (retval != ERROR_OK)
2508 return retval;
2510 if (mmu_enabled) {
2511 /* enable MMU as we could have disabled it for phys access */
2512 retval = aarch64_mmu_modify(target, 1);
2513 if (retval != ERROR_OK)
2514 return retval;
2516 return aarch64_read_cpu_memory(target, address, size, count, buffer);
2519 static int aarch64_write_phys_memory(struct target *target,
2520 target_addr_t address, uint32_t size,
2521 uint32_t count, const uint8_t *buffer)
2523 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2525 if (count && buffer) {
2526 /* write memory through APB-AP */
2527 retval = aarch64_mmu_modify(target, 0);
2528 if (retval != ERROR_OK)
2529 return retval;
2530 return aarch64_write_cpu_memory(target, address, size, count, buffer);
2533 return retval;
2536 static int aarch64_write_memory(struct target *target, target_addr_t address,
2537 uint32_t size, uint32_t count, const uint8_t *buffer)
2539 int mmu_enabled = 0;
2540 int retval;
2542 /* determine if MMU was enabled on target stop */
2543 retval = aarch64_mmu(target, &mmu_enabled);
2544 if (retval != ERROR_OK)
2545 return retval;
2547 if (mmu_enabled) {
2548 /* enable MMU as we could have disabled it for phys access */
2549 retval = aarch64_mmu_modify(target, 1);
2550 if (retval != ERROR_OK)
2551 return retval;
2553 return aarch64_write_cpu_memory(target, address, size, count, buffer);
2556 static int aarch64_handle_target_request(void *priv)
2558 struct target *target = priv;
2559 struct armv8_common *armv8 = target_to_armv8(target);
2560 int retval;
2562 if (!target_was_examined(target))
2563 return ERROR_OK;
2564 if (!target->dbg_msg_enabled)
2565 return ERROR_OK;
2567 if (target->state == TARGET_RUNNING) {
2568 uint32_t request;
2569 uint32_t dscr;
2570 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2571 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2573 /* check if we have data */
2574 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2575 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2576 armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2577 if (retval == ERROR_OK) {
2578 target_request(target, request);
2579 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2580 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2585 return ERROR_OK;
2588 static int aarch64_examine_first(struct target *target)
2590 struct aarch64_common *aarch64 = target_to_aarch64(target);
2591 struct armv8_common *armv8 = &aarch64->armv8_common;
2592 struct adiv5_dap *swjdp = armv8->arm.dap;
2593 struct aarch64_private_config *pc = target->private_config;
2594 int i;
2595 int retval = ERROR_OK;
2596 uint64_t debug, ttypr;
2597 uint32_t cpuid;
2598 uint32_t tmp0, tmp1, tmp2, tmp3;
2599 debug = ttypr = cpuid = 0;
2601 if (!pc)
2602 return ERROR_FAIL;
2604 if (!armv8->debug_ap) {
2605 if (pc->adiv5_config.ap_num == DP_APSEL_INVALID) {
2606 /* Search for the APB-AB */
2607 retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2608 if (retval != ERROR_OK) {
2609 LOG_ERROR("Could not find APB-AP for debug access");
2610 return retval;
2612 } else {
2613 armv8->debug_ap = dap_get_ap(swjdp, pc->adiv5_config.ap_num);
2614 if (!armv8->debug_ap) {
2615 LOG_ERROR("Cannot get AP");
2616 return ERROR_FAIL;
2621 retval = mem_ap_init(armv8->debug_ap);
2622 if (retval != ERROR_OK) {
2623 LOG_ERROR("Could not initialize the APB-AP");
2624 return retval;
2627 armv8->debug_ap->memaccess_tck = 10;
2629 if (!target->dbgbase_set) {
2630 /* Lookup Processor DAP */
2631 retval = dap_lookup_cs_component(armv8->debug_ap, ARM_CS_C9_DEVTYPE_CORE_DEBUG,
2632 &armv8->debug_base, target->coreid);
2633 if (retval != ERROR_OK)
2634 return retval;
2635 LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
2636 target->coreid, armv8->debug_base);
2637 } else
2638 armv8->debug_base = target->dbgbase;
2640 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2641 armv8->debug_base + CPUV8_DBG_OSLAR, 0);
2642 if (retval != ERROR_OK) {
2643 LOG_DEBUG("Examine %s failed", "oslock");
2644 return retval;
2647 retval = mem_ap_read_u32(armv8->debug_ap,
2648 armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
2649 if (retval != ERROR_OK) {
2650 LOG_DEBUG("Examine %s failed", "CPUID");
2651 return retval;
2654 retval = mem_ap_read_u32(armv8->debug_ap,
2655 armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
2656 retval += mem_ap_read_u32(armv8->debug_ap,
2657 armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
2658 if (retval != ERROR_OK) {
2659 LOG_DEBUG("Examine %s failed", "Memory Model Type");
2660 return retval;
2662 retval = mem_ap_read_u32(armv8->debug_ap,
2663 armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp2);
2664 retval += mem_ap_read_u32(armv8->debug_ap,
2665 armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp3);
2666 if (retval != ERROR_OK) {
2667 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2668 return retval;
2671 retval = dap_run(armv8->debug_ap->dap);
2672 if (retval != ERROR_OK) {
2673 LOG_ERROR("%s: examination failed\n", target_name(target));
2674 return retval;
2677 ttypr |= tmp1;
2678 ttypr = (ttypr << 32) | tmp0;
2679 debug |= tmp3;
2680 debug = (debug << 32) | tmp2;
2682 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2683 LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
2684 LOG_DEBUG("debug = 0x%08" PRIx64, debug);
2686 if (!pc->cti) {
2687 LOG_TARGET_ERROR(target, "CTI not specified");
2688 return ERROR_FAIL;
2691 armv8->cti = pc->cti;
2693 retval = aarch64_dpm_setup(aarch64, debug);
2694 if (retval != ERROR_OK)
2695 return retval;
2697 /* Setup Breakpoint Register Pairs */
2698 aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
2699 aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
2700 aarch64->brp_num_available = aarch64->brp_num;
2701 aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2702 for (i = 0; i < aarch64->brp_num; i++) {
2703 aarch64->brp_list[i].used = 0;
2704 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2705 aarch64->brp_list[i].type = BRP_NORMAL;
2706 else
2707 aarch64->brp_list[i].type = BRP_CONTEXT;
2708 aarch64->brp_list[i].value = 0;
2709 aarch64->brp_list[i].control = 0;
2710 aarch64->brp_list[i].brpn = i;
2713 /* Setup Watchpoint Register Pairs */
2714 aarch64->wp_num = (uint32_t)((debug >> 20) & 0x0F) + 1;
2715 aarch64->wp_num_available = aarch64->wp_num;
2716 aarch64->wp_list = calloc(aarch64->wp_num, sizeof(struct aarch64_brp));
2717 for (i = 0; i < aarch64->wp_num; i++) {
2718 aarch64->wp_list[i].used = 0;
2719 aarch64->wp_list[i].type = BRP_NORMAL;
2720 aarch64->wp_list[i].value = 0;
2721 aarch64->wp_list[i].control = 0;
2722 aarch64->wp_list[i].brpn = i;
2725 LOG_DEBUG("Configured %i hw breakpoints, %i watchpoints",
2726 aarch64->brp_num, aarch64->wp_num);
2728 target->state = TARGET_UNKNOWN;
2729 target->debug_reason = DBG_REASON_NOTHALTED;
2730 aarch64->isrmasking_mode = AARCH64_ISRMASK_ON;
2731 target_set_examined(target);
2732 return ERROR_OK;
2735 static int aarch64_examine(struct target *target)
2737 int retval = ERROR_OK;
2739 /* don't re-probe hardware after each reset */
2740 if (!target_was_examined(target))
2741 retval = aarch64_examine_first(target);
2743 /* Configure core debug access */
2744 if (retval == ERROR_OK)
2745 retval = aarch64_init_debug_access(target);
2747 if (retval == ERROR_OK)
2748 retval = aarch64_poll(target);
2750 return retval;
2754 * Cortex-A8 target creation and initialization
2757 static int aarch64_init_target(struct command_context *cmd_ctx,
2758 struct target *target)
2760 /* examine_first() does a bunch of this */
2761 arm_semihosting_init(target);
2762 return ERROR_OK;
2765 static int aarch64_init_arch_info(struct target *target,
2766 struct aarch64_common *aarch64, struct adiv5_dap *dap)
2768 struct armv8_common *armv8 = &aarch64->armv8_common;
2770 /* Setup struct aarch64_common */
2771 aarch64->common_magic = AARCH64_COMMON_MAGIC;
2772 armv8->arm.dap = dap;
2774 /* register arch-specific functions */
2775 armv8->examine_debug_reason = NULL;
2776 armv8->post_debug_entry = aarch64_post_debug_entry;
2777 armv8->pre_restore_context = NULL;
2778 armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2780 armv8_init_arch_info(target, armv8);
2781 target_register_timer_callback(aarch64_handle_target_request, 1,
2782 TARGET_TIMER_TYPE_PERIODIC, target);
2784 return ERROR_OK;
2787 static int armv8r_target_create(struct target *target, Jim_Interp *interp)
2789 struct aarch64_private_config *pc = target->private_config;
2790 struct aarch64_common *aarch64;
2792 if (adiv5_verify_config(&pc->adiv5_config) != ERROR_OK)
2793 return ERROR_FAIL;
2795 aarch64 = calloc(1, sizeof(struct aarch64_common));
2796 if (!aarch64) {
2797 LOG_ERROR("Out of memory");
2798 return ERROR_FAIL;
2801 aarch64->armv8_common.is_armv8r = true;
2803 return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
2806 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2808 struct aarch64_private_config *pc = target->private_config;
2809 struct aarch64_common *aarch64;
2811 if (adiv5_verify_config(&pc->adiv5_config) != ERROR_OK)
2812 return ERROR_FAIL;
2814 aarch64 = calloc(1, sizeof(struct aarch64_common));
2815 if (!aarch64) {
2816 LOG_ERROR("Out of memory");
2817 return ERROR_FAIL;
2820 aarch64->armv8_common.is_armv8r = false;
2822 return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
2825 static void aarch64_deinit_target(struct target *target)
2827 struct aarch64_common *aarch64 = target_to_aarch64(target);
2828 struct armv8_common *armv8 = &aarch64->armv8_common;
2829 struct arm_dpm *dpm = &armv8->dpm;
2831 if (armv8->debug_ap)
2832 dap_put_ap(armv8->debug_ap);
2834 armv8_free_reg_cache(target);
2835 free(aarch64->brp_list);
2836 free(dpm->dbp);
2837 free(dpm->dwp);
2838 free(target->private_config);
2839 free(aarch64);
2842 static int aarch64_mmu(struct target *target, int *enabled)
2844 struct aarch64_common *aarch64 = target_to_aarch64(target);
2845 struct armv8_common *armv8 = &aarch64->armv8_common;
2846 if (target->state != TARGET_HALTED) {
2847 LOG_TARGET_ERROR(target, "not halted");
2848 return ERROR_TARGET_NOT_HALTED;
2850 if (armv8->is_armv8r)
2851 *enabled = 0;
2852 else
2853 *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2854 return ERROR_OK;
2857 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2858 target_addr_t *phys)
2860 return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2864 * private target configuration items
2866 enum aarch64_cfg_param {
2867 CFG_CTI,
2870 static const struct jim_nvp nvp_config_opts[] = {
2871 { .name = "-cti", .value = CFG_CTI },
2872 { .name = NULL, .value = -1 }
2875 static int aarch64_jim_configure(struct target *target, struct jim_getopt_info *goi)
2877 struct aarch64_private_config *pc;
2878 struct jim_nvp *n;
2879 int e;
2881 pc = (struct aarch64_private_config *)target->private_config;
2882 if (!pc) {
2883 pc = calloc(1, sizeof(struct aarch64_private_config));
2884 pc->adiv5_config.ap_num = DP_APSEL_INVALID;
2885 target->private_config = pc;
2889 * Call adiv5_jim_configure() to parse the common DAP options
2890 * It will return JIM_CONTINUE if it didn't find any known
2891 * options, JIM_OK if it correctly parsed the topmost option
2892 * and JIM_ERR if an error occurred during parameter evaluation.
2893 * For JIM_CONTINUE, we check our own params.
2895 * adiv5_jim_configure() assumes 'private_config' to point to
2896 * 'struct adiv5_private_config'. Override 'private_config'!
2898 target->private_config = &pc->adiv5_config;
2899 e = adiv5_jim_configure(target, goi);
2900 target->private_config = pc;
2901 if (e != JIM_CONTINUE)
2902 return e;
2904 /* parse config or cget options ... */
2905 if (goi->argc > 0) {
2906 Jim_SetEmptyResult(goi->interp);
2908 /* check first if topmost item is for us */
2909 e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
2910 goi->argv[0], &n);
2911 if (e != JIM_OK)
2912 return JIM_CONTINUE;
2914 e = jim_getopt_obj(goi, NULL);
2915 if (e != JIM_OK)
2916 return e;
2918 switch (n->value) {
2919 case CFG_CTI: {
2920 if (goi->isconfigure) {
2921 Jim_Obj *o_cti;
2922 struct arm_cti *cti;
2923 e = jim_getopt_obj(goi, &o_cti);
2924 if (e != JIM_OK)
2925 return e;
2926 cti = cti_instance_by_jim_obj(goi->interp, o_cti);
2927 if (!cti) {
2928 Jim_SetResultString(goi->interp, "CTI name invalid!", -1);
2929 return JIM_ERR;
2931 pc->cti = cti;
2932 } else {
2933 if (goi->argc != 0) {
2934 Jim_WrongNumArgs(goi->interp,
2935 goi->argc, goi->argv,
2936 "NO PARAMS");
2937 return JIM_ERR;
2940 if (!pc || !pc->cti) {
2941 Jim_SetResultString(goi->interp, "CTI not configured", -1);
2942 return JIM_ERR;
2944 Jim_SetResultString(goi->interp, arm_cti_name(pc->cti), -1);
2946 break;
2949 default:
2950 return JIM_CONTINUE;
2954 return JIM_OK;
2957 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2959 struct target *target = get_current_target(CMD_CTX);
2960 struct armv8_common *armv8 = target_to_armv8(target);
2962 return armv8_handle_cache_info_command(CMD,
2963 &armv8->armv8_mmu.armv8_cache);
2966 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2968 struct target *target = get_current_target(CMD_CTX);
2969 if (!target_was_examined(target)) {
2970 LOG_ERROR("target not examined yet");
2971 return ERROR_FAIL;
2974 return aarch64_init_debug_access(target);
2977 COMMAND_HANDLER(aarch64_handle_disassemble_command)
2979 struct target *target = get_current_target(CMD_CTX);
2981 if (!target) {
2982 LOG_ERROR("No target selected");
2983 return ERROR_FAIL;
2986 struct aarch64_common *aarch64 = target_to_aarch64(target);
2988 if (aarch64->common_magic != AARCH64_COMMON_MAGIC) {
2989 command_print(CMD, "current target isn't an AArch64");
2990 return ERROR_FAIL;
2993 int count = 1;
2994 target_addr_t address;
2996 switch (CMD_ARGC) {
2997 case 2:
2998 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
2999 /* FALL THROUGH */
3000 case 1:
3001 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3002 break;
3003 default:
3004 return ERROR_COMMAND_SYNTAX_ERROR;
3007 return a64_disassemble(CMD, target, address, count);
3010 COMMAND_HANDLER(aarch64_mask_interrupts_command)
3012 struct target *target = get_current_target(CMD_CTX);
3013 struct aarch64_common *aarch64 = target_to_aarch64(target);
3015 static const struct nvp nvp_maskisr_modes[] = {
3016 { .name = "off", .value = AARCH64_ISRMASK_OFF },
3017 { .name = "on", .value = AARCH64_ISRMASK_ON },
3018 { .name = NULL, .value = -1 },
3020 const struct nvp *n;
3022 if (CMD_ARGC > 0) {
3023 n = nvp_name2value(nvp_maskisr_modes, CMD_ARGV[0]);
3024 if (!n->name) {
3025 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3026 return ERROR_COMMAND_SYNTAX_ERROR;
3029 aarch64->isrmasking_mode = n->value;
3032 n = nvp_value2name(nvp_maskisr_modes, aarch64->isrmasking_mode);
3033 command_print(CMD, "aarch64 interrupt mask %s", n->name);
3035 return ERROR_OK;
3038 COMMAND_HANDLER(aarch64_mcrmrc_command)
3040 bool is_mcr = false;
3041 unsigned int arg_cnt = 5;
3043 if (!strcmp(CMD_NAME, "mcr")) {
3044 is_mcr = true;
3045 arg_cnt = 6;
3048 if (arg_cnt != CMD_ARGC)
3049 return ERROR_COMMAND_SYNTAX_ERROR;
3051 struct target *target = get_current_target(CMD_CTX);
3052 if (!target) {
3053 command_print(CMD, "no current target");
3054 return ERROR_FAIL;
3056 if (!target_was_examined(target)) {
3057 command_print(CMD, "%s: not yet examined", target_name(target));
3058 return ERROR_TARGET_NOT_EXAMINED;
3061 struct arm *arm = target_to_arm(target);
3062 if (!is_arm(arm)) {
3063 command_print(CMD, "%s: not an ARM", target_name(target));
3064 return ERROR_FAIL;
3067 if (target->state != TARGET_HALTED) {
3068 command_print(CMD, "Error: [%s] not halted", target_name(target));
3069 return ERROR_TARGET_NOT_HALTED;
3072 if (arm->core_state == ARM_STATE_AARCH64) {
3073 command_print(CMD, "%s: not 32-bit arm target", target_name(target));
3074 return ERROR_FAIL;
3077 int cpnum;
3078 uint32_t op1;
3079 uint32_t op2;
3080 uint32_t crn;
3081 uint32_t crm;
3082 uint32_t value;
3084 /* NOTE: parameter sequence matches ARM instruction set usage:
3085 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
3086 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
3087 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
3089 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], cpnum);
3090 if (cpnum & ~0xf) {
3091 command_print(CMD, "coprocessor %d out of range", cpnum);
3092 return ERROR_COMMAND_ARGUMENT_INVALID;
3095 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], op1);
3096 if (op1 & ~0x7) {
3097 command_print(CMD, "op1 %d out of range", op1);
3098 return ERROR_COMMAND_ARGUMENT_INVALID;
3101 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], crn);
3102 if (crn & ~0xf) {
3103 command_print(CMD, "CRn %d out of range", crn);
3104 return ERROR_COMMAND_ARGUMENT_INVALID;
3107 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], crm);
3108 if (crm & ~0xf) {
3109 command_print(CMD, "CRm %d out of range", crm);
3110 return ERROR_COMMAND_ARGUMENT_INVALID;
3113 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], op2);
3114 if (op2 & ~0x7) {
3115 command_print(CMD, "op2 %d out of range", op2);
3116 return ERROR_COMMAND_ARGUMENT_INVALID;
3119 if (is_mcr) {
3120 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[5], value);
3122 /* NOTE: parameters reordered! */
3123 /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
3124 int retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
3125 if (retval != ERROR_OK)
3126 return retval;
3127 } else {
3128 value = 0;
3129 /* NOTE: parameters reordered! */
3130 /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
3131 int retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
3132 if (retval != ERROR_OK)
3133 return retval;
3135 command_print(CMD, "0x%" PRIx32, value);
3138 return ERROR_OK;
3141 static const struct command_registration aarch64_exec_command_handlers[] = {
3143 .name = "cache_info",
3144 .handler = aarch64_handle_cache_info_command,
3145 .mode = COMMAND_EXEC,
3146 .help = "display information about target caches",
3147 .usage = "",
3150 .name = "dbginit",
3151 .handler = aarch64_handle_dbginit_command,
3152 .mode = COMMAND_EXEC,
3153 .help = "Initialize core debug",
3154 .usage = "",
3157 .name = "disassemble",
3158 .handler = aarch64_handle_disassemble_command,
3159 .mode = COMMAND_EXEC,
3160 .help = "Disassemble instructions",
3161 .usage = "address [count]",
3164 .name = "maskisr",
3165 .handler = aarch64_mask_interrupts_command,
3166 .mode = COMMAND_ANY,
3167 .help = "mask aarch64 interrupts during single-step",
3168 .usage = "['on'|'off']",
3171 .name = "mcr",
3172 .mode = COMMAND_EXEC,
3173 .handler = aarch64_mcrmrc_command,
3174 .help = "write coprocessor register",
3175 .usage = "cpnum op1 CRn CRm op2 value",
3178 .name = "mrc",
3179 .mode = COMMAND_EXEC,
3180 .handler = aarch64_mcrmrc_command,
3181 .help = "read coprocessor register",
3182 .usage = "cpnum op1 CRn CRm op2",
3185 .chain = smp_command_handlers,
3189 COMMAND_REGISTRATION_DONE
3192 static const struct command_registration aarch64_command_handlers[] = {
3194 .name = "arm",
3195 .mode = COMMAND_ANY,
3196 .help = "ARM Command Group",
3197 .usage = "",
3198 .chain = semihosting_common_handlers
3201 .chain = armv8_command_handlers,
3204 .name = "aarch64",
3205 .mode = COMMAND_ANY,
3206 .help = "Aarch64 command group",
3207 .usage = "",
3208 .chain = aarch64_exec_command_handlers,
3210 COMMAND_REGISTRATION_DONE
3213 struct target_type aarch64_target = {
3214 .name = "aarch64",
3216 .poll = aarch64_poll,
3217 .arch_state = armv8_arch_state,
3219 .halt = aarch64_halt,
3220 .resume = aarch64_resume,
3221 .step = aarch64_step,
3223 .assert_reset = aarch64_assert_reset,
3224 .deassert_reset = aarch64_deassert_reset,
3226 /* REVISIT allow exporting VFP3 registers ... */
3227 .get_gdb_arch = armv8_get_gdb_arch,
3228 .get_gdb_reg_list = armv8_get_gdb_reg_list,
3230 .read_memory = aarch64_read_memory,
3231 .write_memory = aarch64_write_memory,
3233 .add_breakpoint = aarch64_add_breakpoint,
3234 .add_context_breakpoint = aarch64_add_context_breakpoint,
3235 .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
3236 .remove_breakpoint = aarch64_remove_breakpoint,
3237 .add_watchpoint = aarch64_add_watchpoint,
3238 .remove_watchpoint = aarch64_remove_watchpoint,
3239 .hit_watchpoint = aarch64_hit_watchpoint,
3241 .commands = aarch64_command_handlers,
3242 .target_create = aarch64_target_create,
3243 .target_jim_configure = aarch64_jim_configure,
3244 .init_target = aarch64_init_target,
3245 .deinit_target = aarch64_deinit_target,
3246 .examine = aarch64_examine,
3248 .read_phys_memory = aarch64_read_phys_memory,
3249 .write_phys_memory = aarch64_write_phys_memory,
3250 .mmu = aarch64_mmu,
3251 .virt2phys = aarch64_virt2phys,
3254 struct target_type armv8r_target = {
3255 .name = "armv8r",
3257 .poll = aarch64_poll,
3258 .arch_state = armv8_arch_state,
3260 .halt = aarch64_halt,
3261 .resume = aarch64_resume,
3262 .step = aarch64_step,
3264 .assert_reset = aarch64_assert_reset,
3265 .deassert_reset = aarch64_deassert_reset,
3267 /* REVISIT allow exporting VFP3 registers ... */
3268 .get_gdb_arch = armv8_get_gdb_arch,
3269 .get_gdb_reg_list = armv8_get_gdb_reg_list,
3271 .read_memory = aarch64_read_phys_memory,
3272 .write_memory = aarch64_write_phys_memory,
3274 .add_breakpoint = aarch64_add_breakpoint,
3275 .add_context_breakpoint = aarch64_add_context_breakpoint,
3276 .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
3277 .remove_breakpoint = aarch64_remove_breakpoint,
3278 .add_watchpoint = aarch64_add_watchpoint,
3279 .remove_watchpoint = aarch64_remove_watchpoint,
3280 .hit_watchpoint = aarch64_hit_watchpoint,
3282 .commands = aarch64_command_handlers,
3283 .target_create = armv8r_target_create,
3284 .target_jim_configure = aarch64_jim_configure,
3285 .init_target = aarch64_init_target,
3286 .deinit_target = aarch64_deinit_target,
3287 .examine = aarch64_examine,