target: Do not use LOG_USER() for error messages
[openocd.git] / src / target / aarch64.c
blob6a70b2ddf87f493fef55dabfdd3ec708b6b819f4
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /***************************************************************************
4 * Copyright (C) 2015 by David Ung *
5 * *
6 ***************************************************************************/
8 #ifdef HAVE_CONFIG_H
9 #include "config.h"
10 #endif
12 #include "breakpoints.h"
13 #include "aarch64.h"
14 #include "a64_disassembler.h"
15 #include "register.h"
16 #include "target_request.h"
17 #include "target_type.h"
18 #include "armv8_opcodes.h"
19 #include "armv8_cache.h"
20 #include "arm_coresight.h"
21 #include "arm_semihosting.h"
22 #include "jtag/interface.h"
23 #include "smp.h"
24 #include <helper/nvp.h>
25 #include <helper/time_support.h>
27 enum restart_mode {
28 RESTART_LAZY,
29 RESTART_SYNC,
32 enum halt_mode {
33 HALT_LAZY,
34 HALT_SYNC,
37 struct aarch64_private_config {
38 struct adiv5_private_config adiv5_config;
39 struct arm_cti *cti;
42 static int aarch64_poll(struct target *target);
43 static int aarch64_debug_entry(struct target *target);
44 static int aarch64_restore_context(struct target *target, bool bpwp);
45 static int aarch64_set_breakpoint(struct target *target,
46 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int aarch64_set_context_breakpoint(struct target *target,
48 struct breakpoint *breakpoint, uint8_t matchmode);
49 static int aarch64_set_hybrid_breakpoint(struct target *target,
50 struct breakpoint *breakpoint);
51 static int aarch64_unset_breakpoint(struct target *target,
52 struct breakpoint *breakpoint);
53 static int aarch64_mmu(struct target *target, int *enabled);
54 static int aarch64_virt2phys(struct target *target,
55 target_addr_t virt, target_addr_t *phys);
56 static int aarch64_read_cpu_memory(struct target *target,
57 uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
59 static int aarch64_restore_system_control_reg(struct target *target)
61 enum arm_mode target_mode = ARM_MODE_ANY;
62 int retval = ERROR_OK;
63 uint32_t instr;
65 struct aarch64_common *aarch64 = target_to_aarch64(target);
66 struct armv8_common *armv8 = target_to_armv8(target);
68 if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
69 aarch64->system_control_reg_curr = aarch64->system_control_reg;
70 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
72 switch (armv8->arm.core_mode) {
73 case ARMV8_64_EL0T:
74 target_mode = ARMV8_64_EL1H;
75 /* fall through */
76 case ARMV8_64_EL1T:
77 case ARMV8_64_EL1H:
78 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
79 break;
80 case ARMV8_64_EL2T:
81 case ARMV8_64_EL2H:
82 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
83 break;
84 case ARMV8_64_EL3H:
85 case ARMV8_64_EL3T:
86 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
87 break;
89 case ARM_MODE_SVC:
90 case ARM_MODE_ABT:
91 case ARM_MODE_FIQ:
92 case ARM_MODE_IRQ:
93 case ARM_MODE_HYP:
94 case ARM_MODE_UND:
95 case ARM_MODE_SYS:
96 case ARM_MODE_MON:
97 instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
98 break;
100 default:
101 LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
102 armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
103 return ERROR_FAIL;
106 if (target_mode != ARM_MODE_ANY)
107 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
109 retval = armv8->dpm.instr_write_data_r0_64(&armv8->dpm, instr, aarch64->system_control_reg);
110 if (retval != ERROR_OK)
111 return retval;
113 if (target_mode != ARM_MODE_ANY)
114 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
117 return retval;
120 /* modify system_control_reg in order to enable or disable mmu for :
121 * - virt2phys address conversion
122 * - read or write memory in phys or virt address */
123 static int aarch64_mmu_modify(struct target *target, int enable)
125 struct aarch64_common *aarch64 = target_to_aarch64(target);
126 struct armv8_common *armv8 = &aarch64->armv8_common;
127 int retval = ERROR_OK;
128 enum arm_mode target_mode = ARM_MODE_ANY;
129 uint32_t instr = 0;
131 if (enable) {
132 /* if mmu enabled at target stop and mmu not enable */
133 if (!(aarch64->system_control_reg & 0x1U)) {
134 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
135 return ERROR_FAIL;
137 if (!(aarch64->system_control_reg_curr & 0x1U))
138 aarch64->system_control_reg_curr |= 0x1U;
139 } else {
140 if (aarch64->system_control_reg_curr & 0x4U) {
141 /* data cache is active */
142 aarch64->system_control_reg_curr &= ~0x4U;
143 /* flush data cache armv8 function to be called */
144 if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
145 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
147 if ((aarch64->system_control_reg_curr & 0x1U)) {
148 aarch64->system_control_reg_curr &= ~0x1U;
152 switch (armv8->arm.core_mode) {
153 case ARMV8_64_EL0T:
154 target_mode = ARMV8_64_EL1H;
155 /* fall through */
156 case ARMV8_64_EL1T:
157 case ARMV8_64_EL1H:
158 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
159 break;
160 case ARMV8_64_EL2T:
161 case ARMV8_64_EL2H:
162 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
163 break;
164 case ARMV8_64_EL3H:
165 case ARMV8_64_EL3T:
166 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
167 break;
169 case ARM_MODE_SVC:
170 case ARM_MODE_ABT:
171 case ARM_MODE_FIQ:
172 case ARM_MODE_IRQ:
173 case ARM_MODE_HYP:
174 case ARM_MODE_UND:
175 case ARM_MODE_SYS:
176 case ARM_MODE_MON:
177 instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
178 break;
180 default:
181 LOG_DEBUG("unknown cpu state 0x%x", armv8->arm.core_mode);
182 break;
184 if (target_mode != ARM_MODE_ANY)
185 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
187 retval = armv8->dpm.instr_write_data_r0_64(&armv8->dpm, instr,
188 aarch64->system_control_reg_curr);
190 if (target_mode != ARM_MODE_ANY)
191 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
193 return retval;
197 * Basic debug access, very low level assumes state is saved
199 static int aarch64_init_debug_access(struct target *target)
201 struct armv8_common *armv8 = target_to_armv8(target);
202 int retval;
203 uint32_t dummy;
205 LOG_DEBUG("%s", target_name(target));
207 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
208 armv8->debug_base + CPUV8_DBG_OSLAR, 0);
209 if (retval != ERROR_OK) {
210 LOG_DEBUG("Examine %s failed", "oslock");
211 return retval;
214 /* Clear Sticky Power Down status Bit in PRSR to enable access to
215 the registers in the Core Power Domain */
216 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
217 armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
218 if (retval != ERROR_OK)
219 return retval;
222 * Static CTI configuration:
223 * Channel 0 -> trigger outputs HALT request to PE
224 * Channel 1 -> trigger outputs Resume request to PE
225 * Gate all channel trigger events from entering the CTM
228 /* Enable CTI */
229 retval = arm_cti_enable(armv8->cti, true);
230 /* By default, gate all channel events to and from the CTM */
231 if (retval == ERROR_OK)
232 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
233 /* output halt requests to PE on channel 0 event */
234 if (retval == ERROR_OK)
235 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN0, CTI_CHNL(0));
236 /* output restart requests to PE on channel 1 event */
237 if (retval == ERROR_OK)
238 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN1, CTI_CHNL(1));
239 if (retval != ERROR_OK)
240 return retval;
242 /* Resync breakpoint registers */
244 return ERROR_OK;
247 /* Write to memory mapped registers directly with no cache or mmu handling */
248 static int aarch64_dap_write_memap_register_u32(struct target *target,
249 target_addr_t address,
250 uint32_t value)
252 int retval;
253 struct armv8_common *armv8 = target_to_armv8(target);
255 retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
257 return retval;
260 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
262 struct arm_dpm *dpm = &a8->armv8_common.dpm;
263 int retval;
265 dpm->arm = &a8->armv8_common.arm;
266 dpm->didr = debug;
268 retval = armv8_dpm_setup(dpm);
269 if (retval == ERROR_OK)
270 retval = armv8_dpm_initialize(dpm);
272 return retval;
275 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
277 struct armv8_common *armv8 = target_to_armv8(target);
278 return armv8_set_dbgreg_bits(armv8, CPUV8_DBG_DSCR, bit_mask, value);
281 static int aarch64_check_state_one(struct target *target,
282 uint32_t mask, uint32_t val, int *p_result, uint32_t *p_prsr)
284 struct armv8_common *armv8 = target_to_armv8(target);
285 uint32_t prsr;
286 int retval;
288 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
289 armv8->debug_base + CPUV8_DBG_PRSR, &prsr);
290 if (retval != ERROR_OK)
291 return retval;
293 if (p_prsr)
294 *p_prsr = prsr;
296 if (p_result)
297 *p_result = (prsr & mask) == (val & mask);
299 return ERROR_OK;
302 static int aarch64_wait_halt_one(struct target *target)
304 int retval = ERROR_OK;
305 uint32_t prsr;
307 int64_t then = timeval_ms();
308 for (;;) {
309 int halted;
311 retval = aarch64_check_state_one(target, PRSR_HALT, PRSR_HALT, &halted, &prsr);
312 if (retval != ERROR_OK || halted)
313 break;
315 if (timeval_ms() > then + 1000) {
316 retval = ERROR_TARGET_TIMEOUT;
317 LOG_DEBUG("target %s timeout, prsr=0x%08"PRIx32, target_name(target), prsr);
318 break;
321 return retval;
324 static int aarch64_prepare_halt_smp(struct target *target, bool exc_target, struct target **p_first)
326 int retval = ERROR_OK;
327 struct target_list *head;
328 struct target *first = NULL;
330 LOG_DEBUG("target %s exc %i", target_name(target), exc_target);
332 foreach_smp_target(head, target->smp_targets) {
333 struct target *curr = head->target;
334 struct armv8_common *armv8 = target_to_armv8(curr);
336 if (exc_target && curr == target)
337 continue;
338 if (!target_was_examined(curr))
339 continue;
340 if (curr->state != TARGET_RUNNING)
341 continue;
343 /* HACK: mark this target as prepared for halting */
344 curr->debug_reason = DBG_REASON_DBGRQ;
346 /* open the gate for channel 0 to let HALT requests pass to the CTM */
347 retval = arm_cti_ungate_channel(armv8->cti, 0);
348 if (retval == ERROR_OK)
349 retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
350 if (retval != ERROR_OK)
351 break;
353 LOG_DEBUG("target %s prepared", target_name(curr));
355 if (!first)
356 first = curr;
359 if (p_first) {
360 if (exc_target && first)
361 *p_first = first;
362 else
363 *p_first = target;
366 return retval;
369 static int aarch64_halt_one(struct target *target, enum halt_mode mode)
371 int retval = ERROR_OK;
372 struct armv8_common *armv8 = target_to_armv8(target);
374 LOG_DEBUG("%s", target_name(target));
376 /* allow Halting Debug Mode */
377 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
378 if (retval != ERROR_OK)
379 return retval;
381 /* trigger an event on channel 0, this outputs a halt request to the PE */
382 retval = arm_cti_pulse_channel(armv8->cti, 0);
383 if (retval != ERROR_OK)
384 return retval;
386 if (mode == HALT_SYNC) {
387 retval = aarch64_wait_halt_one(target);
388 if (retval != ERROR_OK) {
389 if (retval == ERROR_TARGET_TIMEOUT)
390 LOG_ERROR("Timeout waiting for target %s halt", target_name(target));
391 return retval;
395 return ERROR_OK;
398 static int aarch64_halt_smp(struct target *target, bool exc_target)
400 struct target *next = target;
401 int retval;
403 /* prepare halt on all PEs of the group */
404 retval = aarch64_prepare_halt_smp(target, exc_target, &next);
406 if (exc_target && next == target)
407 return retval;
409 /* halt the target PE */
410 if (retval == ERROR_OK)
411 retval = aarch64_halt_one(next, HALT_LAZY);
413 if (retval != ERROR_OK)
414 return retval;
416 /* wait for all PEs to halt */
417 int64_t then = timeval_ms();
418 for (;;) {
419 bool all_halted = true;
420 struct target_list *head;
421 struct target *curr;
423 foreach_smp_target(head, target->smp_targets) {
424 int halted;
426 curr = head->target;
428 if (!target_was_examined(curr))
429 continue;
431 retval = aarch64_check_state_one(curr, PRSR_HALT, PRSR_HALT, &halted, NULL);
432 if (retval != ERROR_OK || !halted) {
433 all_halted = false;
434 break;
438 if (all_halted)
439 break;
441 if (timeval_ms() > then + 1000) {
442 retval = ERROR_TARGET_TIMEOUT;
443 break;
447 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
448 * and it looks like the CTI's are not connected by a common
449 * trigger matrix. It seems that we need to halt one core in each
450 * cluster explicitly. So if we find that a core has not halted
451 * yet, we trigger an explicit halt for the second cluster.
453 retval = aarch64_halt_one(curr, HALT_LAZY);
454 if (retval != ERROR_OK)
455 break;
458 return retval;
461 static int update_halt_gdb(struct target *target, enum target_debug_reason debug_reason)
463 struct target *gdb_target = NULL;
464 struct target_list *head;
465 struct target *curr;
467 if (debug_reason == DBG_REASON_NOTHALTED) {
468 LOG_DEBUG("Halting remaining targets in SMP group");
469 aarch64_halt_smp(target, true);
472 /* poll all targets in the group, but skip the target that serves GDB */
473 foreach_smp_target(head, target->smp_targets) {
474 curr = head->target;
475 /* skip calling context */
476 if (curr == target)
477 continue;
478 if (!target_was_examined(curr))
479 continue;
480 /* skip targets that were already halted */
481 if (curr->state == TARGET_HALTED)
482 continue;
483 /* remember the gdb_service->target */
484 if (curr->gdb_service)
485 gdb_target = curr->gdb_service->target;
486 /* skip it */
487 if (curr == gdb_target)
488 continue;
490 /* avoid recursion in aarch64_poll() */
491 curr->smp = 0;
492 aarch64_poll(curr);
493 curr->smp = 1;
496 /* after all targets were updated, poll the gdb serving target */
497 if (gdb_target && gdb_target != target)
498 aarch64_poll(gdb_target);
500 return ERROR_OK;
504 * Aarch64 Run control
507 static int aarch64_poll(struct target *target)
509 enum target_state prev_target_state;
510 int retval = ERROR_OK;
511 int halted;
513 retval = aarch64_check_state_one(target,
514 PRSR_HALT, PRSR_HALT, &halted, NULL);
515 if (retval != ERROR_OK)
516 return retval;
518 if (halted) {
519 prev_target_state = target->state;
520 if (prev_target_state != TARGET_HALTED) {
521 enum target_debug_reason debug_reason = target->debug_reason;
523 /* We have a halting debug event */
524 target->state = TARGET_HALTED;
525 LOG_DEBUG("Target %s halted", target_name(target));
526 retval = aarch64_debug_entry(target);
527 if (retval != ERROR_OK)
528 return retval;
530 if (target->smp)
531 update_halt_gdb(target, debug_reason);
533 if (arm_semihosting(target, &retval) != 0)
534 return retval;
536 switch (prev_target_state) {
537 case TARGET_RUNNING:
538 case TARGET_UNKNOWN:
539 case TARGET_RESET:
540 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
541 break;
542 case TARGET_DEBUG_RUNNING:
543 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
544 break;
545 default:
546 break;
549 } else
550 target->state = TARGET_RUNNING;
552 return retval;
555 static int aarch64_halt(struct target *target)
557 struct armv8_common *armv8 = target_to_armv8(target);
558 armv8->last_run_control_op = ARMV8_RUNCONTROL_HALT;
560 if (target->smp)
561 return aarch64_halt_smp(target, false);
563 return aarch64_halt_one(target, HALT_SYNC);
566 static int aarch64_restore_one(struct target *target, int current,
567 uint64_t *address, int handle_breakpoints, int debug_execution)
569 struct armv8_common *armv8 = target_to_armv8(target);
570 struct arm *arm = &armv8->arm;
571 int retval;
572 uint64_t resume_pc;
574 LOG_DEBUG("%s", target_name(target));
576 if (!debug_execution)
577 target_free_all_working_areas(target);
579 /* current = 1: continue on current pc, otherwise continue at <address> */
580 resume_pc = buf_get_u64(arm->pc->value, 0, 64);
581 if (!current)
582 resume_pc = *address;
583 else
584 *address = resume_pc;
586 /* Make sure that the Armv7 gdb thumb fixups does not
587 * kill the return address
589 switch (arm->core_state) {
590 case ARM_STATE_ARM:
591 resume_pc &= 0xFFFFFFFC;
592 break;
593 case ARM_STATE_AARCH64:
594 resume_pc &= 0xFFFFFFFFFFFFFFFCULL;
595 break;
596 case ARM_STATE_THUMB:
597 case ARM_STATE_THUMB_EE:
598 /* When the return address is loaded into PC
599 * bit 0 must be 1 to stay in Thumb state
601 resume_pc |= 0x1;
602 break;
603 case ARM_STATE_JAZELLE:
604 LOG_ERROR("How do I resume into Jazelle state??");
605 return ERROR_FAIL;
607 LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
608 buf_set_u64(arm->pc->value, 0, 64, resume_pc);
609 arm->pc->dirty = true;
610 arm->pc->valid = true;
612 /* called it now before restoring context because it uses cpu
613 * register r0 for restoring system control register */
614 retval = aarch64_restore_system_control_reg(target);
615 if (retval == ERROR_OK)
616 retval = aarch64_restore_context(target, handle_breakpoints);
618 return retval;
622 * prepare single target for restart
626 static int aarch64_prepare_restart_one(struct target *target)
628 struct armv8_common *armv8 = target_to_armv8(target);
629 int retval;
630 uint32_t dscr;
631 uint32_t tmp;
633 LOG_DEBUG("%s", target_name(target));
635 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
636 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
637 if (retval != ERROR_OK)
638 return retval;
640 if ((dscr & DSCR_ITE) == 0)
641 LOG_ERROR("DSCR.ITE must be set before leaving debug!");
642 if ((dscr & DSCR_ERR) != 0)
643 LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
645 /* acknowledge a pending CTI halt event */
646 retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
648 * open the CTI gate for channel 1 so that the restart events
649 * get passed along to all PEs. Also close gate for channel 0
650 * to isolate the PE from halt events.
652 if (retval == ERROR_OK)
653 retval = arm_cti_ungate_channel(armv8->cti, 1);
654 if (retval == ERROR_OK)
655 retval = arm_cti_gate_channel(armv8->cti, 0);
657 /* make sure that DSCR.HDE is set */
658 if (retval == ERROR_OK) {
659 dscr |= DSCR_HDE;
660 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
661 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
664 if (retval == ERROR_OK) {
665 /* clear sticky bits in PRSR, SDR is now 0 */
666 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
667 armv8->debug_base + CPUV8_DBG_PRSR, &tmp);
670 return retval;
673 static int aarch64_do_restart_one(struct target *target, enum restart_mode mode)
675 struct armv8_common *armv8 = target_to_armv8(target);
676 int retval;
678 LOG_DEBUG("%s", target_name(target));
680 /* trigger an event on channel 1, generates a restart request to the PE */
681 retval = arm_cti_pulse_channel(armv8->cti, 1);
682 if (retval != ERROR_OK)
683 return retval;
685 if (mode == RESTART_SYNC) {
686 int64_t then = timeval_ms();
687 for (;;) {
688 int resumed;
690 * if PRSR.SDR is set now, the target did restart, even
691 * if it's now already halted again (e.g. due to breakpoint)
693 retval = aarch64_check_state_one(target,
694 PRSR_SDR, PRSR_SDR, &resumed, NULL);
695 if (retval != ERROR_OK || resumed)
696 break;
698 if (timeval_ms() > then + 1000) {
699 LOG_ERROR("%s: Timeout waiting for resume"PRIx32, target_name(target));
700 retval = ERROR_TARGET_TIMEOUT;
701 break;
706 if (retval != ERROR_OK)
707 return retval;
709 target->debug_reason = DBG_REASON_NOTHALTED;
710 target->state = TARGET_RUNNING;
712 return ERROR_OK;
715 static int aarch64_restart_one(struct target *target, enum restart_mode mode)
717 int retval;
719 LOG_DEBUG("%s", target_name(target));
721 retval = aarch64_prepare_restart_one(target);
722 if (retval == ERROR_OK)
723 retval = aarch64_do_restart_one(target, mode);
725 return retval;
729 * prepare all but the current target for restart
731 static int aarch64_prep_restart_smp(struct target *target, int handle_breakpoints, struct target **p_first)
733 int retval = ERROR_OK;
734 struct target_list *head;
735 struct target *first = NULL;
736 uint64_t address;
738 foreach_smp_target(head, target->smp_targets) {
739 struct target *curr = head->target;
741 /* skip calling target */
742 if (curr == target)
743 continue;
744 if (!target_was_examined(curr))
745 continue;
746 if (curr->state != TARGET_HALTED)
747 continue;
749 /* resume at current address, not in step mode */
750 retval = aarch64_restore_one(curr, 1, &address, handle_breakpoints, 0);
751 if (retval == ERROR_OK)
752 retval = aarch64_prepare_restart_one(curr);
753 if (retval != ERROR_OK) {
754 LOG_ERROR("failed to restore target %s", target_name(curr));
755 break;
757 /* remember the first valid target in the group */
758 if (!first)
759 first = curr;
762 if (p_first)
763 *p_first = first;
765 return retval;
769 static int aarch64_step_restart_smp(struct target *target)
771 int retval = ERROR_OK;
772 struct target_list *head;
773 struct target *first = NULL;
775 LOG_DEBUG("%s", target_name(target));
777 retval = aarch64_prep_restart_smp(target, 0, &first);
778 if (retval != ERROR_OK)
779 return retval;
781 if (first)
782 retval = aarch64_do_restart_one(first, RESTART_LAZY);
783 if (retval != ERROR_OK) {
784 LOG_DEBUG("error restarting target %s", target_name(first));
785 return retval;
788 int64_t then = timeval_ms();
789 for (;;) {
790 struct target *curr = target;
791 bool all_resumed = true;
793 foreach_smp_target(head, target->smp_targets) {
794 uint32_t prsr;
795 int resumed;
797 curr = head->target;
799 if (curr == target)
800 continue;
802 if (!target_was_examined(curr))
803 continue;
805 retval = aarch64_check_state_one(curr,
806 PRSR_SDR, PRSR_SDR, &resumed, &prsr);
807 if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
808 all_resumed = false;
809 break;
812 if (curr->state != TARGET_RUNNING) {
813 curr->state = TARGET_RUNNING;
814 curr->debug_reason = DBG_REASON_NOTHALTED;
815 target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
819 if (all_resumed)
820 break;
822 if (timeval_ms() > then + 1000) {
823 LOG_ERROR("%s: timeout waiting for target resume", __func__);
824 retval = ERROR_TARGET_TIMEOUT;
825 break;
828 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
829 * and it looks like the CTI's are not connected by a common
830 * trigger matrix. It seems that we need to halt one core in each
831 * cluster explicitly. So if we find that a core has not halted
832 * yet, we trigger an explicit resume for the second cluster.
834 retval = aarch64_do_restart_one(curr, RESTART_LAZY);
835 if (retval != ERROR_OK)
836 break;
839 return retval;
842 static int aarch64_resume(struct target *target, int current,
843 target_addr_t address, int handle_breakpoints, int debug_execution)
845 int retval = 0;
846 uint64_t addr = address;
848 struct armv8_common *armv8 = target_to_armv8(target);
849 armv8->last_run_control_op = ARMV8_RUNCONTROL_RESUME;
851 if (target->state != TARGET_HALTED) {
852 LOG_TARGET_ERROR(target, "not halted");
853 return ERROR_TARGET_NOT_HALTED;
857 * If this target is part of a SMP group, prepare the others
858 * targets for resuming. This involves restoring the complete
859 * target register context and setting up CTI gates to accept
860 * resume events from the trigger matrix.
862 if (target->smp) {
863 retval = aarch64_prep_restart_smp(target, handle_breakpoints, NULL);
864 if (retval != ERROR_OK)
865 return retval;
868 /* all targets prepared, restore and restart the current target */
869 retval = aarch64_restore_one(target, current, &addr, handle_breakpoints,
870 debug_execution);
871 if (retval == ERROR_OK)
872 retval = aarch64_restart_one(target, RESTART_SYNC);
873 if (retval != ERROR_OK)
874 return retval;
876 if (target->smp) {
877 int64_t then = timeval_ms();
878 for (;;) {
879 struct target *curr = target;
880 struct target_list *head;
881 bool all_resumed = true;
883 foreach_smp_target(head, target->smp_targets) {
884 uint32_t prsr;
885 int resumed;
887 curr = head->target;
888 if (curr == target)
889 continue;
890 if (!target_was_examined(curr))
891 continue;
893 retval = aarch64_check_state_one(curr,
894 PRSR_SDR, PRSR_SDR, &resumed, &prsr);
895 if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
896 all_resumed = false;
897 break;
900 if (curr->state != TARGET_RUNNING) {
901 curr->state = TARGET_RUNNING;
902 curr->debug_reason = DBG_REASON_NOTHALTED;
903 target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
907 if (all_resumed)
908 break;
910 if (timeval_ms() > then + 1000) {
911 LOG_ERROR("%s: timeout waiting for target %s to resume", __func__, target_name(curr));
912 retval = ERROR_TARGET_TIMEOUT;
913 break;
917 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
918 * and it looks like the CTI's are not connected by a common
919 * trigger matrix. It seems that we need to halt one core in each
920 * cluster explicitly. So if we find that a core has not halted
921 * yet, we trigger an explicit resume for the second cluster.
923 retval = aarch64_do_restart_one(curr, RESTART_LAZY);
924 if (retval != ERROR_OK)
925 break;
929 if (retval != ERROR_OK)
930 return retval;
932 target->debug_reason = DBG_REASON_NOTHALTED;
934 if (!debug_execution) {
935 target->state = TARGET_RUNNING;
936 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
937 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
938 } else {
939 target->state = TARGET_DEBUG_RUNNING;
940 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
941 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
944 return ERROR_OK;
947 static int aarch64_debug_entry(struct target *target)
949 int retval = ERROR_OK;
950 struct armv8_common *armv8 = target_to_armv8(target);
951 struct arm_dpm *dpm = &armv8->dpm;
952 enum arm_state core_state;
953 uint32_t dscr;
955 /* make sure to clear all sticky errors */
956 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
957 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
958 if (retval == ERROR_OK)
959 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
960 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
961 if (retval == ERROR_OK)
962 retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
964 if (retval != ERROR_OK)
965 return retval;
967 LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), dscr);
969 dpm->dscr = dscr;
970 core_state = armv8_dpm_get_core_state(dpm);
971 armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
972 armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
974 /* close the CTI gate for all events */
975 if (retval == ERROR_OK)
976 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
977 /* discard async exceptions */
978 if (retval == ERROR_OK)
979 retval = dpm->instr_cpsr_sync(dpm);
980 if (retval != ERROR_OK)
981 return retval;
983 /* Examine debug reason */
984 armv8_dpm_report_dscr(dpm, dscr);
986 /* save the memory address that triggered the watchpoint */
987 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
988 uint32_t tmp;
990 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
991 armv8->debug_base + CPUV8_DBG_EDWAR0, &tmp);
992 if (retval != ERROR_OK)
993 return retval;
994 target_addr_t edwar = tmp;
996 /* EDWAR[63:32] has unknown content in aarch32 state */
997 if (core_state == ARM_STATE_AARCH64) {
998 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
999 armv8->debug_base + CPUV8_DBG_EDWAR1, &tmp);
1000 if (retval != ERROR_OK)
1001 return retval;
1002 edwar |= ((target_addr_t)tmp) << 32;
1005 armv8->dpm.wp_addr = edwar;
1008 retval = armv8_dpm_read_current_registers(&armv8->dpm);
1010 if (retval == ERROR_OK && armv8->post_debug_entry)
1011 retval = armv8->post_debug_entry(target);
1013 return retval;
1016 static int aarch64_post_debug_entry(struct target *target)
1018 struct aarch64_common *aarch64 = target_to_aarch64(target);
1019 struct armv8_common *armv8 = &aarch64->armv8_common;
1020 int retval;
1021 enum arm_mode target_mode = ARM_MODE_ANY;
1022 uint32_t instr;
1024 switch (armv8->arm.core_mode) {
1025 case ARMV8_64_EL0T:
1026 target_mode = ARMV8_64_EL1H;
1027 /* fall through */
1028 case ARMV8_64_EL1T:
1029 case ARMV8_64_EL1H:
1030 instr = ARMV8_MRS(SYSTEM_SCTLR_EL1, 0);
1031 break;
1032 case ARMV8_64_EL2T:
1033 case ARMV8_64_EL2H:
1034 instr = ARMV8_MRS(SYSTEM_SCTLR_EL2, 0);
1035 break;
1036 case ARMV8_64_EL3H:
1037 case ARMV8_64_EL3T:
1038 instr = ARMV8_MRS(SYSTEM_SCTLR_EL3, 0);
1039 break;
1041 case ARM_MODE_SVC:
1042 case ARM_MODE_ABT:
1043 case ARM_MODE_FIQ:
1044 case ARM_MODE_IRQ:
1045 case ARM_MODE_HYP:
1046 case ARM_MODE_UND:
1047 case ARM_MODE_SYS:
1048 case ARM_MODE_MON:
1049 instr = ARMV4_5_MRC(15, 0, 0, 1, 0, 0);
1050 break;
1052 default:
1053 LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
1054 armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
1055 return ERROR_FAIL;
1058 if (target_mode != ARM_MODE_ANY)
1059 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
1061 retval = armv8->dpm.instr_read_data_r0_64(&armv8->dpm, instr, &aarch64->system_control_reg);
1062 if (retval != ERROR_OK)
1063 return retval;
1065 if (target_mode != ARM_MODE_ANY)
1066 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
1068 LOG_DEBUG("System_register: %8.8" PRIx64, aarch64->system_control_reg);
1069 aarch64->system_control_reg_curr = aarch64->system_control_reg;
1071 if (armv8->armv8_mmu.armv8_cache.info == -1) {
1072 armv8_identify_cache(armv8);
1073 armv8_read_mpidr(armv8);
1075 if (armv8->is_armv8r) {
1076 armv8->armv8_mmu.mmu_enabled = 0;
1077 } else {
1078 armv8->armv8_mmu.mmu_enabled =
1079 (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1081 armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1082 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1083 armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1084 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1085 return ERROR_OK;
1089 * single-step a target
1091 static int aarch64_step(struct target *target, int current, target_addr_t address,
1092 int handle_breakpoints)
1094 struct armv8_common *armv8 = target_to_armv8(target);
1095 struct aarch64_common *aarch64 = target_to_aarch64(target);
1096 int saved_retval = ERROR_OK;
1097 int poll_retval;
1098 int retval;
1099 uint32_t edecr;
1101 armv8->last_run_control_op = ARMV8_RUNCONTROL_STEP;
1103 if (target->state != TARGET_HALTED) {
1104 LOG_TARGET_ERROR(target, "not halted");
1105 return ERROR_TARGET_NOT_HALTED;
1108 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1109 armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1110 /* make sure EDECR.SS is not set when restoring the register */
1112 if (retval == ERROR_OK) {
1113 edecr &= ~0x4;
1114 /* set EDECR.SS to enter hardware step mode */
1115 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1116 armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
1118 /* disable interrupts while stepping */
1119 if (retval == ERROR_OK && aarch64->isrmasking_mode == AARCH64_ISRMASK_ON)
1120 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
1121 /* bail out if stepping setup has failed */
1122 if (retval != ERROR_OK)
1123 return retval;
1125 if (target->smp && (current == 1)) {
1127 * isolate current target so that it doesn't get resumed
1128 * together with the others
1130 retval = arm_cti_gate_channel(armv8->cti, 1);
1131 /* resume all other targets in the group */
1132 if (retval == ERROR_OK)
1133 retval = aarch64_step_restart_smp(target);
1134 if (retval != ERROR_OK) {
1135 LOG_ERROR("Failed to restart non-stepping targets in SMP group");
1136 return retval;
1138 LOG_DEBUG("Restarted all non-stepping targets in SMP group");
1141 /* all other targets running, restore and restart the current target */
1142 retval = aarch64_restore_one(target, current, &address, 0, 0);
1143 if (retval == ERROR_OK)
1144 retval = aarch64_restart_one(target, RESTART_LAZY);
1146 if (retval != ERROR_OK)
1147 return retval;
1149 LOG_DEBUG("target step-resumed at 0x%" PRIx64, address);
1150 if (!handle_breakpoints)
1151 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1153 int64_t then = timeval_ms();
1154 for (;;) {
1155 int stepped;
1156 uint32_t prsr;
1158 retval = aarch64_check_state_one(target,
1159 PRSR_SDR|PRSR_HALT, PRSR_SDR|PRSR_HALT, &stepped, &prsr);
1160 if (retval != ERROR_OK || stepped)
1161 break;
1163 if (timeval_ms() > then + 100) {
1164 LOG_ERROR("timeout waiting for target %s halt after step",
1165 target_name(target));
1166 retval = ERROR_TARGET_TIMEOUT;
1167 break;
1172 * At least on one SoC (Renesas R8A7795) stepping over a WFI instruction
1173 * causes a timeout. The core takes the step but doesn't complete it and so
1174 * debug state is never entered. However, you can manually halt the core
1175 * as an external debug even is also a WFI wakeup event.
1177 if (retval == ERROR_TARGET_TIMEOUT)
1178 saved_retval = aarch64_halt_one(target, HALT_SYNC);
1180 poll_retval = aarch64_poll(target);
1182 /* restore EDECR */
1183 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1184 armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1185 if (retval != ERROR_OK)
1186 return retval;
1188 /* restore interrupts */
1189 if (aarch64->isrmasking_mode == AARCH64_ISRMASK_ON) {
1190 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
1191 if (retval != ERROR_OK)
1192 return ERROR_OK;
1195 if (saved_retval != ERROR_OK)
1196 return saved_retval;
1198 if (poll_retval != ERROR_OK)
1199 return poll_retval;
1201 return ERROR_OK;
1204 static int aarch64_restore_context(struct target *target, bool bpwp)
1206 struct armv8_common *armv8 = target_to_armv8(target);
1207 struct arm *arm = &armv8->arm;
1209 int retval;
1211 LOG_DEBUG("%s", target_name(target));
1213 if (armv8->pre_restore_context)
1214 armv8->pre_restore_context(target);
1216 retval = armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1217 if (retval == ERROR_OK) {
1218 /* registers are now invalid */
1219 register_cache_invalidate(arm->core_cache);
1220 register_cache_invalidate(arm->core_cache->next);
1223 return retval;
1227 * Cortex-A8 Breakpoint and watchpoint functions
1230 /* Setup hardware Breakpoint Register Pair */
1231 static int aarch64_set_breakpoint(struct target *target,
1232 struct breakpoint *breakpoint, uint8_t matchmode)
1234 int retval;
1235 int brp_i = 0;
1236 uint32_t control;
1237 uint8_t byte_addr_select = 0x0F;
1238 struct aarch64_common *aarch64 = target_to_aarch64(target);
1239 struct armv8_common *armv8 = &aarch64->armv8_common;
1240 struct aarch64_brp *brp_list = aarch64->brp_list;
1242 if (breakpoint->is_set) {
1243 LOG_WARNING("breakpoint already set");
1244 return ERROR_OK;
1247 if (breakpoint->type == BKPT_HARD) {
1248 int64_t bpt_value;
1249 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1250 brp_i++;
1251 if (brp_i >= aarch64->brp_num) {
1252 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1253 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1255 breakpoint_hw_set(breakpoint, brp_i);
1256 if (breakpoint->length == 2)
1257 byte_addr_select = (3 << (breakpoint->address & 0x02));
1258 control = ((matchmode & 0x7) << 20)
1259 | (1 << 13)
1260 | (byte_addr_select << 5)
1261 | (3 << 1) | 1;
1262 brp_list[brp_i].used = 1;
1263 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFCULL;
1264 brp_list[brp_i].control = control;
1265 bpt_value = brp_list[brp_i].value;
1267 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1268 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1269 (uint32_t)(bpt_value & 0xFFFFFFFF));
1270 if (retval != ERROR_OK)
1271 return retval;
1272 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1273 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1274 (uint32_t)(bpt_value >> 32));
1275 if (retval != ERROR_OK)
1276 return retval;
1278 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1279 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1280 brp_list[brp_i].control);
1281 if (retval != ERROR_OK)
1282 return retval;
1283 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1284 brp_list[brp_i].control,
1285 brp_list[brp_i].value);
1287 } else if (breakpoint->type == BKPT_SOFT) {
1288 uint32_t opcode;
1289 uint8_t code[4];
1291 if (armv8_dpm_get_core_state(&armv8->dpm) == ARM_STATE_AARCH64) {
1292 opcode = ARMV8_HLT(11);
1294 if (breakpoint->length != 4)
1295 LOG_ERROR("bug: breakpoint length should be 4 in AArch64 mode");
1296 } else {
1298 * core_state is ARM_STATE_ARM
1299 * in that case the opcode depends on breakpoint length:
1300 * - if length == 4 => A32 opcode
1301 * - if length == 2 => T32 opcode
1302 * - if length == 3 => T32 opcode (refer to gdb doc : ARM-Breakpoint-Kinds)
1303 * in that case the length should be changed from 3 to 4 bytes
1305 opcode = (breakpoint->length == 4) ? ARMV8_HLT_A1(11) :
1306 (uint32_t) (ARMV8_HLT_T1(11) | ARMV8_HLT_T1(11) << 16);
1308 if (breakpoint->length == 3)
1309 breakpoint->length = 4;
1312 buf_set_u32(code, 0, 32, opcode);
1314 retval = target_read_memory(target,
1315 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1316 breakpoint->length, 1,
1317 breakpoint->orig_instr);
1318 if (retval != ERROR_OK)
1319 return retval;
1321 armv8_cache_d_inner_flush_virt(armv8,
1322 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1323 breakpoint->length);
1325 retval = target_write_memory(target,
1326 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1327 breakpoint->length, 1, code);
1328 if (retval != ERROR_OK)
1329 return retval;
1331 armv8_cache_d_inner_flush_virt(armv8,
1332 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1333 breakpoint->length);
1335 armv8_cache_i_inner_inval_virt(armv8,
1336 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1337 breakpoint->length);
1339 breakpoint->is_set = true;
1342 /* Ensure that halting debug mode is enable */
1343 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
1344 if (retval != ERROR_OK) {
1345 LOG_DEBUG("Failed to set DSCR.HDE");
1346 return retval;
1349 return ERROR_OK;
1352 static int aarch64_set_context_breakpoint(struct target *target,
1353 struct breakpoint *breakpoint, uint8_t matchmode)
1355 int retval = ERROR_FAIL;
1356 int brp_i = 0;
1357 uint32_t control;
1358 uint8_t byte_addr_select = 0x0F;
1359 struct aarch64_common *aarch64 = target_to_aarch64(target);
1360 struct armv8_common *armv8 = &aarch64->armv8_common;
1361 struct aarch64_brp *brp_list = aarch64->brp_list;
1363 if (breakpoint->is_set) {
1364 LOG_WARNING("breakpoint already set");
1365 return retval;
1367 /*check available context BRPs*/
1368 while ((brp_list[brp_i].used ||
1369 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1370 brp_i++;
1372 if (brp_i >= aarch64->brp_num) {
1373 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1374 return ERROR_FAIL;
1377 breakpoint_hw_set(breakpoint, brp_i);
1378 control = ((matchmode & 0x7) << 20)
1379 | (1 << 13)
1380 | (byte_addr_select << 5)
1381 | (3 << 1) | 1;
1382 brp_list[brp_i].used = 1;
1383 brp_list[brp_i].value = (breakpoint->asid);
1384 brp_list[brp_i].control = control;
1385 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1386 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1387 brp_list[brp_i].value);
1388 if (retval != ERROR_OK)
1389 return retval;
1390 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1391 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1392 brp_list[brp_i].control);
1393 if (retval != ERROR_OK)
1394 return retval;
1395 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1396 brp_list[brp_i].control,
1397 brp_list[brp_i].value);
1398 return ERROR_OK;
1402 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1404 int retval = ERROR_FAIL;
1405 int brp_1 = 0; /* holds the contextID pair */
1406 int brp_2 = 0; /* holds the IVA pair */
1407 uint32_t control_ctx, control_iva;
1408 uint8_t ctx_byte_addr_select = 0x0F;
1409 uint8_t iva_byte_addr_select = 0x0F;
1410 uint8_t ctx_machmode = 0x03;
1411 uint8_t iva_machmode = 0x01;
1412 struct aarch64_common *aarch64 = target_to_aarch64(target);
1413 struct armv8_common *armv8 = &aarch64->armv8_common;
1414 struct aarch64_brp *brp_list = aarch64->brp_list;
1416 if (breakpoint->is_set) {
1417 LOG_WARNING("breakpoint already set");
1418 return retval;
1420 /*check available context BRPs*/
1421 while ((brp_list[brp_1].used ||
1422 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1423 brp_1++;
1425 LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1426 if (brp_1 >= aarch64->brp_num) {
1427 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1428 return ERROR_FAIL;
1431 while ((brp_list[brp_2].used ||
1432 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1433 brp_2++;
1435 LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1436 if (brp_2 >= aarch64->brp_num) {
1437 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1438 return ERROR_FAIL;
1441 breakpoint_hw_set(breakpoint, brp_1);
1442 breakpoint->linked_brp = brp_2;
1443 control_ctx = ((ctx_machmode & 0x7) << 20)
1444 | (brp_2 << 16)
1445 | (0 << 14)
1446 | (ctx_byte_addr_select << 5)
1447 | (3 << 1) | 1;
1448 brp_list[brp_1].used = 1;
1449 brp_list[brp_1].value = (breakpoint->asid);
1450 brp_list[brp_1].control = control_ctx;
1451 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1452 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].brpn,
1453 brp_list[brp_1].value);
1454 if (retval != ERROR_OK)
1455 return retval;
1456 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1457 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].brpn,
1458 brp_list[brp_1].control);
1459 if (retval != ERROR_OK)
1460 return retval;
1462 control_iva = ((iva_machmode & 0x7) << 20)
1463 | (brp_1 << 16)
1464 | (1 << 13)
1465 | (iva_byte_addr_select << 5)
1466 | (3 << 1) | 1;
1467 brp_list[brp_2].used = 1;
1468 brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFCULL;
1469 brp_list[brp_2].control = control_iva;
1470 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1471 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].brpn,
1472 brp_list[brp_2].value & 0xFFFFFFFF);
1473 if (retval != ERROR_OK)
1474 return retval;
1475 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1476 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].brpn,
1477 brp_list[brp_2].value >> 32);
1478 if (retval != ERROR_OK)
1479 return retval;
1480 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1481 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].brpn,
1482 brp_list[brp_2].control);
1483 if (retval != ERROR_OK)
1484 return retval;
1486 return ERROR_OK;
1489 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1491 int retval;
1492 struct aarch64_common *aarch64 = target_to_aarch64(target);
1493 struct armv8_common *armv8 = &aarch64->armv8_common;
1494 struct aarch64_brp *brp_list = aarch64->brp_list;
1496 if (!breakpoint->is_set) {
1497 LOG_WARNING("breakpoint not set");
1498 return ERROR_OK;
1501 if (breakpoint->type == BKPT_HARD) {
1502 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1503 int brp_i = breakpoint->number;
1504 int brp_j = breakpoint->linked_brp;
1505 if (brp_i >= aarch64->brp_num) {
1506 LOG_DEBUG("Invalid BRP number in breakpoint");
1507 return ERROR_OK;
1509 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1510 brp_list[brp_i].control, brp_list[brp_i].value);
1511 brp_list[brp_i].used = 0;
1512 brp_list[brp_i].value = 0;
1513 brp_list[brp_i].control = 0;
1514 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1515 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1516 brp_list[brp_i].control);
1517 if (retval != ERROR_OK)
1518 return retval;
1519 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1520 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1521 (uint32_t)brp_list[brp_i].value);
1522 if (retval != ERROR_OK)
1523 return retval;
1524 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1525 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1526 (uint32_t)brp_list[brp_i].value);
1527 if (retval != ERROR_OK)
1528 return retval;
1529 if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1530 LOG_DEBUG("Invalid BRP number in breakpoint");
1531 return ERROR_OK;
1533 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1534 brp_list[brp_j].control, brp_list[brp_j].value);
1535 brp_list[brp_j].used = 0;
1536 brp_list[brp_j].value = 0;
1537 brp_list[brp_j].control = 0;
1538 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1539 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].brpn,
1540 brp_list[brp_j].control);
1541 if (retval != ERROR_OK)
1542 return retval;
1543 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1544 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].brpn,
1545 (uint32_t)brp_list[brp_j].value);
1546 if (retval != ERROR_OK)
1547 return retval;
1548 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1549 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].brpn,
1550 (uint32_t)brp_list[brp_j].value);
1551 if (retval != ERROR_OK)
1552 return retval;
1554 breakpoint->linked_brp = 0;
1555 breakpoint->is_set = false;
1556 return ERROR_OK;
1558 } else {
1559 int brp_i = breakpoint->number;
1560 if (brp_i >= aarch64->brp_num) {
1561 LOG_DEBUG("Invalid BRP number in breakpoint");
1562 return ERROR_OK;
1564 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1565 brp_list[brp_i].control, brp_list[brp_i].value);
1566 brp_list[brp_i].used = 0;
1567 brp_list[brp_i].value = 0;
1568 brp_list[brp_i].control = 0;
1569 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1570 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1571 brp_list[brp_i].control);
1572 if (retval != ERROR_OK)
1573 return retval;
1574 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1575 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1576 brp_list[brp_i].value);
1577 if (retval != ERROR_OK)
1578 return retval;
1580 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1581 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1582 (uint32_t)brp_list[brp_i].value);
1583 if (retval != ERROR_OK)
1584 return retval;
1585 breakpoint->is_set = false;
1586 return ERROR_OK;
1588 } else {
1589 /* restore original instruction (kept in target endianness) */
1591 armv8_cache_d_inner_flush_virt(armv8,
1592 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1593 breakpoint->length);
1595 if (breakpoint->length == 4) {
1596 retval = target_write_memory(target,
1597 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1598 4, 1, breakpoint->orig_instr);
1599 if (retval != ERROR_OK)
1600 return retval;
1601 } else {
1602 retval = target_write_memory(target,
1603 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1604 2, 1, breakpoint->orig_instr);
1605 if (retval != ERROR_OK)
1606 return retval;
1609 armv8_cache_d_inner_flush_virt(armv8,
1610 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1611 breakpoint->length);
1613 armv8_cache_i_inner_inval_virt(armv8,
1614 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1615 breakpoint->length);
1617 breakpoint->is_set = false;
1619 return ERROR_OK;
1622 static int aarch64_add_breakpoint(struct target *target,
1623 struct breakpoint *breakpoint)
1625 struct aarch64_common *aarch64 = target_to_aarch64(target);
1627 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1628 LOG_INFO("no hardware breakpoint available");
1629 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1632 if (breakpoint->type == BKPT_HARD)
1633 aarch64->brp_num_available--;
1635 return aarch64_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1638 static int aarch64_add_context_breakpoint(struct target *target,
1639 struct breakpoint *breakpoint)
1641 struct aarch64_common *aarch64 = target_to_aarch64(target);
1643 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1644 LOG_INFO("no hardware breakpoint available");
1645 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1648 if (breakpoint->type == BKPT_HARD)
1649 aarch64->brp_num_available--;
1651 return aarch64_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1654 static int aarch64_add_hybrid_breakpoint(struct target *target,
1655 struct breakpoint *breakpoint)
1657 struct aarch64_common *aarch64 = target_to_aarch64(target);
1659 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1660 LOG_INFO("no hardware breakpoint available");
1661 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1664 if (breakpoint->type == BKPT_HARD)
1665 aarch64->brp_num_available--;
1667 return aarch64_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1670 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1672 struct aarch64_common *aarch64 = target_to_aarch64(target);
1674 #if 0
1675 /* It is perfectly possible to remove breakpoints while the target is running */
1676 if (target->state != TARGET_HALTED) {
1677 LOG_WARNING("target not halted");
1678 return ERROR_TARGET_NOT_HALTED;
1680 #endif
1682 if (breakpoint->is_set) {
1683 aarch64_unset_breakpoint(target, breakpoint);
1684 if (breakpoint->type == BKPT_HARD)
1685 aarch64->brp_num_available++;
1688 return ERROR_OK;
1691 /* Setup hardware Watchpoint Register Pair */
1692 static int aarch64_set_watchpoint(struct target *target,
1693 struct watchpoint *watchpoint)
1695 int retval;
1696 int wp_i = 0;
1697 uint32_t control, offset, length;
1698 struct aarch64_common *aarch64 = target_to_aarch64(target);
1699 struct armv8_common *armv8 = &aarch64->armv8_common;
1700 struct aarch64_brp *wp_list = aarch64->wp_list;
1702 if (watchpoint->is_set) {
1703 LOG_WARNING("watchpoint already set");
1704 return ERROR_OK;
1707 while (wp_list[wp_i].used && (wp_i < aarch64->wp_num))
1708 wp_i++;
1709 if (wp_i >= aarch64->wp_num) {
1710 LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1711 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1714 control = (1 << 0) /* enable */
1715 | (3 << 1) /* both user and privileged access */
1716 | (1 << 13); /* higher mode control */
1718 switch (watchpoint->rw) {
1719 case WPT_READ:
1720 control |= 1 << 3;
1721 break;
1722 case WPT_WRITE:
1723 control |= 2 << 3;
1724 break;
1725 case WPT_ACCESS:
1726 control |= 3 << 3;
1727 break;
1730 /* Match up to 8 bytes. */
1731 offset = watchpoint->address & 7;
1732 length = watchpoint->length;
1733 if (offset + length > sizeof(uint64_t)) {
1734 length = sizeof(uint64_t) - offset;
1735 LOG_WARNING("Adjust watchpoint match inside 8-byte boundary");
1737 for (; length > 0; offset++, length--)
1738 control |= (1 << offset) << 5;
1740 wp_list[wp_i].value = watchpoint->address & 0xFFFFFFFFFFFFFFF8ULL;
1741 wp_list[wp_i].control = control;
1743 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1744 + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1745 (uint32_t)(wp_list[wp_i].value & 0xFFFFFFFF));
1746 if (retval != ERROR_OK)
1747 return retval;
1748 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1749 + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1750 (uint32_t)(wp_list[wp_i].value >> 32));
1751 if (retval != ERROR_OK)
1752 return retval;
1754 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1755 + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1756 control);
1757 if (retval != ERROR_OK)
1758 return retval;
1759 LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, wp_i,
1760 wp_list[wp_i].control, wp_list[wp_i].value);
1762 /* Ensure that halting debug mode is enable */
1763 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
1764 if (retval != ERROR_OK) {
1765 LOG_DEBUG("Failed to set DSCR.HDE");
1766 return retval;
1769 wp_list[wp_i].used = 1;
1770 watchpoint_set(watchpoint, wp_i);
1772 return ERROR_OK;
1775 /* Clear hardware Watchpoint Register Pair */
1776 static int aarch64_unset_watchpoint(struct target *target,
1777 struct watchpoint *watchpoint)
1779 int retval;
1780 struct aarch64_common *aarch64 = target_to_aarch64(target);
1781 struct armv8_common *armv8 = &aarch64->armv8_common;
1782 struct aarch64_brp *wp_list = aarch64->wp_list;
1784 if (!watchpoint->is_set) {
1785 LOG_WARNING("watchpoint not set");
1786 return ERROR_OK;
1789 int wp_i = watchpoint->number;
1790 if (wp_i >= aarch64->wp_num) {
1791 LOG_DEBUG("Invalid WP number in watchpoint");
1792 return ERROR_OK;
1794 LOG_DEBUG("rwp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, wp_i,
1795 wp_list[wp_i].control, wp_list[wp_i].value);
1796 wp_list[wp_i].used = 0;
1797 wp_list[wp_i].value = 0;
1798 wp_list[wp_i].control = 0;
1799 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1800 + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1801 wp_list[wp_i].control);
1802 if (retval != ERROR_OK)
1803 return retval;
1804 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1805 + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1806 wp_list[wp_i].value);
1807 if (retval != ERROR_OK)
1808 return retval;
1810 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1811 + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1812 (uint32_t)wp_list[wp_i].value);
1813 if (retval != ERROR_OK)
1814 return retval;
1815 watchpoint->is_set = false;
1817 return ERROR_OK;
1820 static int aarch64_add_watchpoint(struct target *target,
1821 struct watchpoint *watchpoint)
1823 int retval;
1824 struct aarch64_common *aarch64 = target_to_aarch64(target);
1826 if (aarch64->wp_num_available < 1) {
1827 LOG_INFO("no hardware watchpoint available");
1828 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1831 retval = aarch64_set_watchpoint(target, watchpoint);
1832 if (retval == ERROR_OK)
1833 aarch64->wp_num_available--;
1835 return retval;
1838 static int aarch64_remove_watchpoint(struct target *target,
1839 struct watchpoint *watchpoint)
1841 struct aarch64_common *aarch64 = target_to_aarch64(target);
1843 if (watchpoint->is_set) {
1844 aarch64_unset_watchpoint(target, watchpoint);
1845 aarch64->wp_num_available++;
1848 return ERROR_OK;
1852 * find out which watchpoint hits
1853 * get exception address and compare the address to watchpoints
1855 static int aarch64_hit_watchpoint(struct target *target,
1856 struct watchpoint **hit_watchpoint)
1858 if (target->debug_reason != DBG_REASON_WATCHPOINT)
1859 return ERROR_FAIL;
1861 struct armv8_common *armv8 = target_to_armv8(target);
1863 target_addr_t exception_address;
1864 struct watchpoint *wp;
1866 exception_address = armv8->dpm.wp_addr;
1868 if (exception_address == 0xFFFFFFFF)
1869 return ERROR_FAIL;
1871 for (wp = target->watchpoints; wp; wp = wp->next)
1872 if (exception_address >= wp->address && exception_address < (wp->address + wp->length)) {
1873 *hit_watchpoint = wp;
1874 return ERROR_OK;
1877 return ERROR_FAIL;
1881 * Cortex-A8 Reset functions
1884 static int aarch64_enable_reset_catch(struct target *target, bool enable)
1886 struct armv8_common *armv8 = target_to_armv8(target);
1887 uint32_t edecr;
1888 int retval;
1890 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1891 armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1892 LOG_DEBUG("EDECR = 0x%08" PRIx32 ", enable=%d", edecr, enable);
1893 if (retval != ERROR_OK)
1894 return retval;
1896 if (enable)
1897 edecr |= ECR_RCE;
1898 else
1899 edecr &= ~ECR_RCE;
1901 return mem_ap_write_atomic_u32(armv8->debug_ap,
1902 armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1905 static int aarch64_clear_reset_catch(struct target *target)
1907 struct armv8_common *armv8 = target_to_armv8(target);
1908 uint32_t edesr;
1909 int retval;
1910 bool was_triggered;
1912 /* check if Reset Catch debug event triggered as expected */
1913 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1914 armv8->debug_base + CPUV8_DBG_EDESR, &edesr);
1915 if (retval != ERROR_OK)
1916 return retval;
1918 was_triggered = !!(edesr & ESR_RC);
1919 LOG_DEBUG("Reset Catch debug event %s",
1920 was_triggered ? "triggered" : "NOT triggered!");
1922 if (was_triggered) {
1923 /* clear pending Reset Catch debug event */
1924 edesr &= ~ESR_RC;
1925 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1926 armv8->debug_base + CPUV8_DBG_EDESR, edesr);
1927 if (retval != ERROR_OK)
1928 return retval;
1931 return ERROR_OK;
1934 static int aarch64_assert_reset(struct target *target)
1936 struct armv8_common *armv8 = target_to_armv8(target);
1937 enum reset_types reset_config = jtag_get_reset_config();
1938 int retval;
1940 LOG_DEBUG(" ");
1942 /* Issue some kind of warm reset. */
1943 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1944 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1945 else if (reset_config & RESET_HAS_SRST) {
1946 bool srst_asserted = false;
1948 if (target->reset_halt && !(reset_config & RESET_SRST_PULLS_TRST)) {
1949 if (target_was_examined(target)) {
1951 if (reset_config & RESET_SRST_NO_GATING) {
1953 * SRST needs to be asserted *before* Reset Catch
1954 * debug event can be set up.
1956 adapter_assert_reset();
1957 srst_asserted = true;
1960 /* make sure to clear all sticky errors */
1961 mem_ap_write_atomic_u32(armv8->debug_ap,
1962 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1964 /* set up Reset Catch debug event to halt the CPU after reset */
1965 retval = aarch64_enable_reset_catch(target, true);
1966 if (retval != ERROR_OK)
1967 LOG_WARNING("%s: Error enabling Reset Catch debug event; the CPU will not halt immediately after reset!",
1968 target_name(target));
1969 } else {
1970 LOG_WARNING("%s: Target not examined, will not halt immediately after reset!",
1971 target_name(target));
1975 /* REVISIT handle "pulls" cases, if there's
1976 * hardware that needs them to work.
1978 if (!srst_asserted)
1979 adapter_assert_reset();
1980 } else {
1981 LOG_ERROR("%s: how to reset?", target_name(target));
1982 return ERROR_FAIL;
1985 /* registers are now invalid */
1986 if (armv8->arm.core_cache) {
1987 register_cache_invalidate(armv8->arm.core_cache);
1988 register_cache_invalidate(armv8->arm.core_cache->next);
1991 target->state = TARGET_RESET;
1993 return ERROR_OK;
1996 static int aarch64_deassert_reset(struct target *target)
1998 int retval;
2000 LOG_DEBUG(" ");
2002 /* be certain SRST is off */
2003 adapter_deassert_reset();
2005 if (!target_was_examined(target))
2006 return ERROR_OK;
2008 retval = aarch64_init_debug_access(target);
2009 if (retval != ERROR_OK)
2010 return retval;
2012 retval = aarch64_poll(target);
2013 if (retval != ERROR_OK)
2014 return retval;
2016 if (target->reset_halt) {
2017 /* clear pending Reset Catch debug event */
2018 retval = aarch64_clear_reset_catch(target);
2019 if (retval != ERROR_OK)
2020 LOG_WARNING("%s: Clearing Reset Catch debug event failed",
2021 target_name(target));
2023 /* disable Reset Catch debug event */
2024 retval = aarch64_enable_reset_catch(target, false);
2025 if (retval != ERROR_OK)
2026 LOG_WARNING("%s: Disabling Reset Catch debug event failed",
2027 target_name(target));
2029 if (target->state != TARGET_HALTED) {
2030 LOG_WARNING("%s: ran after reset and before halt ...",
2031 target_name(target));
2032 if (target_was_examined(target)) {
2033 retval = aarch64_halt_one(target, HALT_LAZY);
2034 if (retval != ERROR_OK)
2035 return retval;
2036 } else {
2037 target->state = TARGET_UNKNOWN;
2042 return ERROR_OK;
2045 static int aarch64_write_cpu_memory_slow(struct target *target,
2046 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2048 struct armv8_common *armv8 = target_to_armv8(target);
2049 struct arm_dpm *dpm = &armv8->dpm;
2050 struct arm *arm = &armv8->arm;
2051 int retval;
2053 if (size > 4 && arm->core_state != ARM_STATE_AARCH64) {
2054 LOG_ERROR("memory write sizes greater than 4 bytes is only supported for AArch64 state");
2055 return ERROR_FAIL;
2058 armv8_reg_current(arm, 1)->dirty = true;
2060 /* change DCC to normal mode if necessary */
2061 if (*dscr & DSCR_MA) {
2062 *dscr &= ~DSCR_MA;
2063 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2064 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2065 if (retval != ERROR_OK)
2066 return retval;
2069 while (count) {
2070 uint32_t opcode;
2071 uint64_t data;
2073 /* write the data to store into DTRRX (and DTRTX for 64-bit) */
2074 if (size == 1)
2075 data = *buffer;
2076 else if (size == 2)
2077 data = target_buffer_get_u16(target, buffer);
2078 else if (size == 4)
2079 data = target_buffer_get_u32(target, buffer);
2080 else
2081 data = target_buffer_get_u64(target, buffer);
2083 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2084 armv8->debug_base + CPUV8_DBG_DTRRX, (uint32_t)data);
2085 if (retval == ERROR_OK && size > 4)
2086 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2087 armv8->debug_base + CPUV8_DBG_DTRTX, (uint32_t)(data >> 32));
2088 if (retval != ERROR_OK)
2089 return retval;
2091 if (arm->core_state == ARM_STATE_AARCH64)
2092 if (size <= 4)
2093 retval = dpm->instr_execute(dpm, ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 1));
2094 else
2095 retval = dpm->instr_execute(dpm, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 1));
2096 else
2097 retval = dpm->instr_execute(dpm, ARMV4_5_MRC(14, 0, 1, 0, 5, 0));
2098 if (retval != ERROR_OK)
2099 return retval;
2101 if (size == 1)
2102 opcode = armv8_opcode(armv8, ARMV8_OPC_STRB_IP);
2103 else if (size == 2)
2104 opcode = armv8_opcode(armv8, ARMV8_OPC_STRH_IP);
2105 else if (size == 4)
2106 opcode = armv8_opcode(armv8, ARMV8_OPC_STRW_IP);
2107 else
2108 opcode = armv8_opcode(armv8, ARMV8_OPC_STRD_IP);
2110 retval = dpm->instr_execute(dpm, opcode);
2111 if (retval != ERROR_OK)
2112 return retval;
2114 /* Advance */
2115 buffer += size;
2116 --count;
2119 return ERROR_OK;
2122 static int aarch64_write_cpu_memory_fast(struct target *target,
2123 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2125 struct armv8_common *armv8 = target_to_armv8(target);
2126 struct arm *arm = &armv8->arm;
2127 int retval;
2129 armv8_reg_current(arm, 1)->dirty = true;
2131 /* Step 1.d - Change DCC to memory mode */
2132 *dscr |= DSCR_MA;
2133 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2134 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2135 if (retval != ERROR_OK)
2136 return retval;
2139 /* Step 2.a - Do the write */
2140 retval = mem_ap_write_buf_noincr(armv8->debug_ap,
2141 buffer, 4, count, armv8->debug_base + CPUV8_DBG_DTRRX);
2142 if (retval != ERROR_OK)
2143 return retval;
2145 /* Step 3.a - Switch DTR mode back to Normal mode */
2146 *dscr &= ~DSCR_MA;
2147 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2148 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2149 if (retval != ERROR_OK)
2150 return retval;
2152 return ERROR_OK;
2155 static int aarch64_write_cpu_memory(struct target *target,
2156 uint64_t address, uint32_t size,
2157 uint32_t count, const uint8_t *buffer)
2159 /* write memory through APB-AP */
2160 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2161 struct armv8_common *armv8 = target_to_armv8(target);
2162 struct arm_dpm *dpm = &armv8->dpm;
2163 struct arm *arm = &armv8->arm;
2164 uint32_t dscr;
2166 if (target->state != TARGET_HALTED) {
2167 LOG_TARGET_ERROR(target, "not halted");
2168 return ERROR_TARGET_NOT_HALTED;
2171 /* Mark register X0 as dirty, as it will be used
2172 * for transferring the data.
2173 * It will be restored automatically when exiting
2174 * debug mode
2176 armv8_reg_current(arm, 0)->dirty = true;
2178 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2180 /* Read DSCR */
2181 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2182 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2183 if (retval != ERROR_OK)
2184 return retval;
2186 /* Set Normal access mode */
2187 dscr = (dscr & ~DSCR_MA);
2188 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2189 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2190 if (retval != ERROR_OK)
2191 return retval;
2193 if (arm->core_state == ARM_STATE_AARCH64) {
2194 /* Write X0 with value 'address' using write procedure */
2195 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2196 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2197 retval = dpm->instr_write_data_dcc_64(dpm,
2198 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
2199 } else {
2200 /* Write R0 with value 'address' using write procedure */
2201 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
2202 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2203 retval = dpm->instr_write_data_dcc(dpm,
2204 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2207 if (retval != ERROR_OK)
2208 return retval;
2210 if (size == 4 && (address % 4) == 0)
2211 retval = aarch64_write_cpu_memory_fast(target, count, buffer, &dscr);
2212 else
2213 retval = aarch64_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2215 if (retval != ERROR_OK) {
2216 /* Unset DTR mode */
2217 mem_ap_read_atomic_u32(armv8->debug_ap,
2218 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2219 dscr &= ~DSCR_MA;
2220 mem_ap_write_atomic_u32(armv8->debug_ap,
2221 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2224 /* Check for sticky abort flags in the DSCR */
2225 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2226 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2227 if (retval != ERROR_OK)
2228 return retval;
2230 dpm->dscr = dscr;
2231 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2232 /* Abort occurred - clear it and exit */
2233 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2234 armv8_dpm_handle_exception(dpm, true);
2235 return ERROR_FAIL;
2238 /* Done */
2239 return ERROR_OK;
2242 static int aarch64_read_cpu_memory_slow(struct target *target,
2243 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2245 struct armv8_common *armv8 = target_to_armv8(target);
2246 struct arm_dpm *dpm = &armv8->dpm;
2247 struct arm *arm = &armv8->arm;
2248 int retval;
2250 if (size > 4 && arm->core_state != ARM_STATE_AARCH64) {
2251 LOG_ERROR("memory read sizes greater than 4 bytes is only supported for AArch64 state");
2252 return ERROR_FAIL;
2255 armv8_reg_current(arm, 1)->dirty = true;
2257 /* change DCC to normal mode (if necessary) */
2258 if (*dscr & DSCR_MA) {
2259 *dscr &= DSCR_MA;
2260 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2261 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2262 if (retval != ERROR_OK)
2263 return retval;
2266 while (count) {
2267 uint32_t opcode;
2268 uint32_t lower;
2269 uint32_t higher;
2270 uint64_t data;
2272 if (size == 1)
2273 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRB_IP);
2274 else if (size == 2)
2275 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRH_IP);
2276 else if (size == 4)
2277 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRW_IP);
2278 else
2279 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRD_IP);
2281 retval = dpm->instr_execute(dpm, opcode);
2282 if (retval != ERROR_OK)
2283 return retval;
2285 if (arm->core_state == ARM_STATE_AARCH64)
2286 if (size <= 4)
2287 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 1));
2288 else
2289 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 1));
2290 else
2291 retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 1, 0, 5, 0));
2292 if (retval != ERROR_OK)
2293 return retval;
2295 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2296 armv8->debug_base + CPUV8_DBG_DTRTX, &lower);
2297 if (retval == ERROR_OK) {
2298 if (size > 4)
2299 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2300 armv8->debug_base + CPUV8_DBG_DTRRX, &higher);
2301 else
2302 higher = 0;
2304 if (retval != ERROR_OK)
2305 return retval;
2307 data = (uint64_t)lower | (uint64_t)higher << 32;
2309 if (size == 1)
2310 *buffer = (uint8_t)data;
2311 else if (size == 2)
2312 target_buffer_set_u16(target, buffer, (uint16_t)data);
2313 else if (size == 4)
2314 target_buffer_set_u32(target, buffer, (uint32_t)data);
2315 else
2316 target_buffer_set_u64(target, buffer, data);
2318 /* Advance */
2319 buffer += size;
2320 --count;
2323 return ERROR_OK;
2326 static int aarch64_read_cpu_memory_fast(struct target *target,
2327 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2329 struct armv8_common *armv8 = target_to_armv8(target);
2330 struct arm_dpm *dpm = &armv8->dpm;
2331 struct arm *arm = &armv8->arm;
2332 int retval;
2333 uint32_t value;
2335 /* Mark X1 as dirty */
2336 armv8_reg_current(arm, 1)->dirty = true;
2338 if (arm->core_state == ARM_STATE_AARCH64) {
2339 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2340 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
2341 } else {
2342 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2343 retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
2346 if (retval != ERROR_OK)
2347 return retval;
2349 /* Step 1.e - Change DCC to memory mode */
2350 *dscr |= DSCR_MA;
2351 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2352 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2353 if (retval != ERROR_OK)
2354 return retval;
2356 /* Step 1.f - read DBGDTRTX and discard the value */
2357 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2358 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2359 if (retval != ERROR_OK)
2360 return retval;
2362 count--;
2363 /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2364 * Abort flags are sticky, so can be read at end of transactions
2366 * This data is read in aligned to 32 bit boundary.
2369 if (count) {
2370 /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2371 * increments X0 by 4. */
2372 retval = mem_ap_read_buf_noincr(armv8->debug_ap, buffer, 4, count,
2373 armv8->debug_base + CPUV8_DBG_DTRTX);
2374 if (retval != ERROR_OK)
2375 return retval;
2378 /* Step 3.a - set DTR access mode back to Normal mode */
2379 *dscr &= ~DSCR_MA;
2380 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2381 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2382 if (retval != ERROR_OK)
2383 return retval;
2385 /* Step 3.b - read DBGDTRTX for the final value */
2386 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2387 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2388 if (retval != ERROR_OK)
2389 return retval;
2391 target_buffer_set_u32(target, buffer + count * 4, value);
2392 return retval;
2395 static int aarch64_read_cpu_memory(struct target *target,
2396 target_addr_t address, uint32_t size,
2397 uint32_t count, uint8_t *buffer)
2399 /* read memory through APB-AP */
2400 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2401 struct armv8_common *armv8 = target_to_armv8(target);
2402 struct arm_dpm *dpm = &armv8->dpm;
2403 struct arm *arm = &armv8->arm;
2404 uint32_t dscr;
2406 LOG_DEBUG("Reading CPU memory address 0x%016" PRIx64 " size %" PRIu32 " count %" PRIu32,
2407 address, size, count);
2409 if (target->state != TARGET_HALTED) {
2410 LOG_TARGET_ERROR(target, "not halted");
2411 return ERROR_TARGET_NOT_HALTED;
2414 /* Mark register X0 as dirty, as it will be used
2415 * for transferring the data.
2416 * It will be restored automatically when exiting
2417 * debug mode
2419 armv8_reg_current(arm, 0)->dirty = true;
2421 /* Read DSCR */
2422 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2423 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2424 if (retval != ERROR_OK)
2425 return retval;
2427 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2429 /* Set Normal access mode */
2430 dscr &= ~DSCR_MA;
2431 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2432 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2433 if (retval != ERROR_OK)
2434 return retval;
2436 if (arm->core_state == ARM_STATE_AARCH64) {
2437 /* Write X0 with value 'address' using write procedure */
2438 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2439 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2440 retval = dpm->instr_write_data_dcc_64(dpm,
2441 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
2442 } else {
2443 /* Write R0 with value 'address' using write procedure */
2444 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2445 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2446 retval = dpm->instr_write_data_dcc(dpm,
2447 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2450 if (retval != ERROR_OK)
2451 return retval;
2453 if (size == 4 && (address % 4) == 0)
2454 retval = aarch64_read_cpu_memory_fast(target, count, buffer, &dscr);
2455 else
2456 retval = aarch64_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2458 if (dscr & DSCR_MA) {
2459 dscr &= ~DSCR_MA;
2460 mem_ap_write_atomic_u32(armv8->debug_ap,
2461 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2464 if (retval != ERROR_OK)
2465 return retval;
2467 /* Check for sticky abort flags in the DSCR */
2468 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2469 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2470 if (retval != ERROR_OK)
2471 return retval;
2473 dpm->dscr = dscr;
2475 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2476 /* Abort occurred - clear it and exit */
2477 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2478 armv8_dpm_handle_exception(dpm, true);
2479 return ERROR_FAIL;
2482 /* Done */
2483 return ERROR_OK;
2486 static int aarch64_read_phys_memory(struct target *target,
2487 target_addr_t address, uint32_t size,
2488 uint32_t count, uint8_t *buffer)
2490 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2492 if (count && buffer) {
2493 /* read memory through APB-AP */
2494 retval = aarch64_mmu_modify(target, 0);
2495 if (retval != ERROR_OK)
2496 return retval;
2497 retval = aarch64_read_cpu_memory(target, address, size, count, buffer);
2499 return retval;
2502 static int aarch64_read_memory(struct target *target, target_addr_t address,
2503 uint32_t size, uint32_t count, uint8_t *buffer)
2505 int mmu_enabled = 0;
2506 int retval;
2508 /* determine if MMU was enabled on target stop */
2509 retval = aarch64_mmu(target, &mmu_enabled);
2510 if (retval != ERROR_OK)
2511 return retval;
2513 if (mmu_enabled) {
2514 /* enable MMU as we could have disabled it for phys access */
2515 retval = aarch64_mmu_modify(target, 1);
2516 if (retval != ERROR_OK)
2517 return retval;
2519 return aarch64_read_cpu_memory(target, address, size, count, buffer);
2522 static int aarch64_write_phys_memory(struct target *target,
2523 target_addr_t address, uint32_t size,
2524 uint32_t count, const uint8_t *buffer)
2526 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2528 if (count && buffer) {
2529 /* write memory through APB-AP */
2530 retval = aarch64_mmu_modify(target, 0);
2531 if (retval != ERROR_OK)
2532 return retval;
2533 return aarch64_write_cpu_memory(target, address, size, count, buffer);
2536 return retval;
2539 static int aarch64_write_memory(struct target *target, target_addr_t address,
2540 uint32_t size, uint32_t count, const uint8_t *buffer)
2542 int mmu_enabled = 0;
2543 int retval;
2545 /* determine if MMU was enabled on target stop */
2546 retval = aarch64_mmu(target, &mmu_enabled);
2547 if (retval != ERROR_OK)
2548 return retval;
2550 if (mmu_enabled) {
2551 /* enable MMU as we could have disabled it for phys access */
2552 retval = aarch64_mmu_modify(target, 1);
2553 if (retval != ERROR_OK)
2554 return retval;
2556 return aarch64_write_cpu_memory(target, address, size, count, buffer);
2559 static int aarch64_handle_target_request(void *priv)
2561 struct target *target = priv;
2562 struct armv8_common *armv8 = target_to_armv8(target);
2563 int retval;
2565 if (!target_was_examined(target))
2566 return ERROR_OK;
2567 if (!target->dbg_msg_enabled)
2568 return ERROR_OK;
2570 if (target->state == TARGET_RUNNING) {
2571 uint32_t request;
2572 uint32_t dscr;
2573 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2574 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2576 /* check if we have data */
2577 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2578 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2579 armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2580 if (retval == ERROR_OK) {
2581 target_request(target, request);
2582 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2583 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2588 return ERROR_OK;
2591 static int aarch64_examine_first(struct target *target)
2593 struct aarch64_common *aarch64 = target_to_aarch64(target);
2594 struct armv8_common *armv8 = &aarch64->armv8_common;
2595 struct adiv5_dap *swjdp = armv8->arm.dap;
2596 struct aarch64_private_config *pc = target->private_config;
2597 int i;
2598 int retval = ERROR_OK;
2599 uint64_t debug, ttypr;
2600 uint32_t cpuid;
2601 uint32_t tmp0, tmp1, tmp2, tmp3;
2602 debug = ttypr = cpuid = 0;
2604 if (!pc)
2605 return ERROR_FAIL;
2607 if (!armv8->debug_ap) {
2608 if (pc->adiv5_config.ap_num == DP_APSEL_INVALID) {
2609 /* Search for the APB-AB */
2610 retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2611 if (retval != ERROR_OK) {
2612 LOG_ERROR("Could not find APB-AP for debug access");
2613 return retval;
2615 } else {
2616 armv8->debug_ap = dap_get_ap(swjdp, pc->adiv5_config.ap_num);
2617 if (!armv8->debug_ap) {
2618 LOG_ERROR("Cannot get AP");
2619 return ERROR_FAIL;
2624 retval = mem_ap_init(armv8->debug_ap);
2625 if (retval != ERROR_OK) {
2626 LOG_ERROR("Could not initialize the APB-AP");
2627 return retval;
2630 armv8->debug_ap->memaccess_tck = 10;
2632 if (!target->dbgbase_set) {
2633 /* Lookup Processor DAP */
2634 retval = dap_lookup_cs_component(armv8->debug_ap, ARM_CS_C9_DEVTYPE_CORE_DEBUG,
2635 &armv8->debug_base, target->coreid);
2636 if (retval != ERROR_OK)
2637 return retval;
2638 LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
2639 target->coreid, armv8->debug_base);
2640 } else
2641 armv8->debug_base = target->dbgbase;
2643 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2644 armv8->debug_base + CPUV8_DBG_OSLAR, 0);
2645 if (retval != ERROR_OK) {
2646 LOG_DEBUG("Examine %s failed", "oslock");
2647 return retval;
2650 retval = mem_ap_read_u32(armv8->debug_ap,
2651 armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
2652 if (retval != ERROR_OK) {
2653 LOG_DEBUG("Examine %s failed", "CPUID");
2654 return retval;
2657 retval = mem_ap_read_u32(armv8->debug_ap,
2658 armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
2659 retval += mem_ap_read_u32(armv8->debug_ap,
2660 armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
2661 if (retval != ERROR_OK) {
2662 LOG_DEBUG("Examine %s failed", "Memory Model Type");
2663 return retval;
2665 retval = mem_ap_read_u32(armv8->debug_ap,
2666 armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp2);
2667 retval += mem_ap_read_u32(armv8->debug_ap,
2668 armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp3);
2669 if (retval != ERROR_OK) {
2670 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2671 return retval;
2674 retval = dap_run(armv8->debug_ap->dap);
2675 if (retval != ERROR_OK) {
2676 LOG_ERROR("%s: examination failed\n", target_name(target));
2677 return retval;
2680 ttypr |= tmp1;
2681 ttypr = (ttypr << 32) | tmp0;
2682 debug |= tmp3;
2683 debug = (debug << 32) | tmp2;
2685 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2686 LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
2687 LOG_DEBUG("debug = 0x%08" PRIx64, debug);
2689 if (!pc->cti) {
2690 LOG_TARGET_ERROR(target, "CTI not specified");
2691 return ERROR_FAIL;
2694 armv8->cti = pc->cti;
2696 retval = aarch64_dpm_setup(aarch64, debug);
2697 if (retval != ERROR_OK)
2698 return retval;
2700 /* Setup Breakpoint Register Pairs */
2701 aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
2702 aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
2703 aarch64->brp_num_available = aarch64->brp_num;
2704 aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2705 for (i = 0; i < aarch64->brp_num; i++) {
2706 aarch64->brp_list[i].used = 0;
2707 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2708 aarch64->brp_list[i].type = BRP_NORMAL;
2709 else
2710 aarch64->brp_list[i].type = BRP_CONTEXT;
2711 aarch64->brp_list[i].value = 0;
2712 aarch64->brp_list[i].control = 0;
2713 aarch64->brp_list[i].brpn = i;
2716 /* Setup Watchpoint Register Pairs */
2717 aarch64->wp_num = (uint32_t)((debug >> 20) & 0x0F) + 1;
2718 aarch64->wp_num_available = aarch64->wp_num;
2719 aarch64->wp_list = calloc(aarch64->wp_num, sizeof(struct aarch64_brp));
2720 for (i = 0; i < aarch64->wp_num; i++) {
2721 aarch64->wp_list[i].used = 0;
2722 aarch64->wp_list[i].type = BRP_NORMAL;
2723 aarch64->wp_list[i].value = 0;
2724 aarch64->wp_list[i].control = 0;
2725 aarch64->wp_list[i].brpn = i;
2728 LOG_DEBUG("Configured %i hw breakpoints, %i watchpoints",
2729 aarch64->brp_num, aarch64->wp_num);
2731 target->state = TARGET_UNKNOWN;
2732 target->debug_reason = DBG_REASON_NOTHALTED;
2733 aarch64->isrmasking_mode = AARCH64_ISRMASK_ON;
2734 target_set_examined(target);
2735 return ERROR_OK;
2738 static int aarch64_examine(struct target *target)
2740 int retval = ERROR_OK;
2742 /* don't re-probe hardware after each reset */
2743 if (!target_was_examined(target))
2744 retval = aarch64_examine_first(target);
2746 /* Configure core debug access */
2747 if (retval == ERROR_OK)
2748 retval = aarch64_init_debug_access(target);
2750 if (retval == ERROR_OK)
2751 retval = aarch64_poll(target);
2753 return retval;
2757 * Cortex-A8 target creation and initialization
2760 static int aarch64_init_target(struct command_context *cmd_ctx,
2761 struct target *target)
2763 /* examine_first() does a bunch of this */
2764 arm_semihosting_init(target);
2765 return ERROR_OK;
2768 static int aarch64_init_arch_info(struct target *target,
2769 struct aarch64_common *aarch64, struct adiv5_dap *dap)
2771 struct armv8_common *armv8 = &aarch64->armv8_common;
2773 /* Setup struct aarch64_common */
2774 aarch64->common_magic = AARCH64_COMMON_MAGIC;
2775 armv8->arm.dap = dap;
2777 /* register arch-specific functions */
2778 armv8->examine_debug_reason = NULL;
2779 armv8->post_debug_entry = aarch64_post_debug_entry;
2780 armv8->pre_restore_context = NULL;
2781 armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2783 armv8_init_arch_info(target, armv8);
2784 target_register_timer_callback(aarch64_handle_target_request, 1,
2785 TARGET_TIMER_TYPE_PERIODIC, target);
2787 return ERROR_OK;
2790 static int armv8r_target_create(struct target *target, Jim_Interp *interp)
2792 struct aarch64_private_config *pc = target->private_config;
2793 struct aarch64_common *aarch64;
2795 if (adiv5_verify_config(&pc->adiv5_config) != ERROR_OK)
2796 return ERROR_FAIL;
2798 aarch64 = calloc(1, sizeof(struct aarch64_common));
2799 if (!aarch64) {
2800 LOG_ERROR("Out of memory");
2801 return ERROR_FAIL;
2804 aarch64->armv8_common.is_armv8r = true;
2806 return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
2809 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2811 struct aarch64_private_config *pc = target->private_config;
2812 struct aarch64_common *aarch64;
2814 if (adiv5_verify_config(&pc->adiv5_config) != ERROR_OK)
2815 return ERROR_FAIL;
2817 aarch64 = calloc(1, sizeof(struct aarch64_common));
2818 if (!aarch64) {
2819 LOG_ERROR("Out of memory");
2820 return ERROR_FAIL;
2823 aarch64->armv8_common.is_armv8r = false;
2825 return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
2828 static void aarch64_deinit_target(struct target *target)
2830 struct aarch64_common *aarch64 = target_to_aarch64(target);
2831 struct armv8_common *armv8 = &aarch64->armv8_common;
2832 struct arm_dpm *dpm = &armv8->dpm;
2834 if (armv8->debug_ap)
2835 dap_put_ap(armv8->debug_ap);
2837 armv8_free_reg_cache(target);
2838 free(aarch64->brp_list);
2839 free(dpm->dbp);
2840 free(dpm->dwp);
2841 free(target->private_config);
2842 free(aarch64);
2845 static int aarch64_mmu(struct target *target, int *enabled)
2847 struct aarch64_common *aarch64 = target_to_aarch64(target);
2848 struct armv8_common *armv8 = &aarch64->armv8_common;
2849 if (target->state != TARGET_HALTED) {
2850 LOG_TARGET_ERROR(target, "not halted");
2851 return ERROR_TARGET_NOT_HALTED;
2853 if (armv8->is_armv8r)
2854 *enabled = 0;
2855 else
2856 *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2857 return ERROR_OK;
2860 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2861 target_addr_t *phys)
2863 return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2867 * private target configuration items
2869 enum aarch64_cfg_param {
2870 CFG_CTI,
2873 static const struct jim_nvp nvp_config_opts[] = {
2874 { .name = "-cti", .value = CFG_CTI },
2875 { .name = NULL, .value = -1 }
2878 static int aarch64_jim_configure(struct target *target, struct jim_getopt_info *goi)
2880 struct aarch64_private_config *pc;
2881 struct jim_nvp *n;
2882 int e;
2884 pc = (struct aarch64_private_config *)target->private_config;
2885 if (!pc) {
2886 pc = calloc(1, sizeof(struct aarch64_private_config));
2887 pc->adiv5_config.ap_num = DP_APSEL_INVALID;
2888 target->private_config = pc;
2892 * Call adiv5_jim_configure() to parse the common DAP options
2893 * It will return JIM_CONTINUE if it didn't find any known
2894 * options, JIM_OK if it correctly parsed the topmost option
2895 * and JIM_ERR if an error occurred during parameter evaluation.
2896 * For JIM_CONTINUE, we check our own params.
2898 e = adiv5_jim_configure_ext(target, goi, &pc->adiv5_config, ADI_CONFIGURE_DAP_COMPULSORY);
2899 if (e != JIM_CONTINUE)
2900 return e;
2902 /* parse config or cget options ... */
2903 if (goi->argc > 0) {
2904 Jim_SetEmptyResult(goi->interp);
2906 /* check first if topmost item is for us */
2907 e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
2908 goi->argv[0], &n);
2909 if (e != JIM_OK)
2910 return JIM_CONTINUE;
2912 e = jim_getopt_obj(goi, NULL);
2913 if (e != JIM_OK)
2914 return e;
2916 switch (n->value) {
2917 case CFG_CTI: {
2918 if (goi->isconfigure) {
2919 Jim_Obj *o_cti;
2920 struct arm_cti *cti;
2921 e = jim_getopt_obj(goi, &o_cti);
2922 if (e != JIM_OK)
2923 return e;
2924 cti = cti_instance_by_jim_obj(goi->interp, o_cti);
2925 if (!cti) {
2926 Jim_SetResultString(goi->interp, "CTI name invalid!", -1);
2927 return JIM_ERR;
2929 pc->cti = cti;
2930 } else {
2931 if (goi->argc != 0) {
2932 Jim_WrongNumArgs(goi->interp,
2933 goi->argc, goi->argv,
2934 "NO PARAMS");
2935 return JIM_ERR;
2938 if (!pc || !pc->cti) {
2939 Jim_SetResultString(goi->interp, "CTI not configured", -1);
2940 return JIM_ERR;
2942 Jim_SetResultString(goi->interp, arm_cti_name(pc->cti), -1);
2944 break;
2947 default:
2948 return JIM_CONTINUE;
2952 return JIM_OK;
2955 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2957 struct target *target = get_current_target(CMD_CTX);
2958 struct armv8_common *armv8 = target_to_armv8(target);
2960 return armv8_handle_cache_info_command(CMD,
2961 &armv8->armv8_mmu.armv8_cache);
2964 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2966 struct target *target = get_current_target(CMD_CTX);
2967 if (!target_was_examined(target)) {
2968 LOG_ERROR("target not examined yet");
2969 return ERROR_FAIL;
2972 return aarch64_init_debug_access(target);
2975 COMMAND_HANDLER(aarch64_handle_disassemble_command)
2977 struct target *target = get_current_target(CMD_CTX);
2979 if (!target) {
2980 LOG_ERROR("No target selected");
2981 return ERROR_FAIL;
2984 struct aarch64_common *aarch64 = target_to_aarch64(target);
2986 if (aarch64->common_magic != AARCH64_COMMON_MAGIC) {
2987 command_print(CMD, "current target isn't an AArch64");
2988 return ERROR_FAIL;
2991 int count = 1;
2992 target_addr_t address;
2994 switch (CMD_ARGC) {
2995 case 2:
2996 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
2997 /* FALL THROUGH */
2998 case 1:
2999 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3000 break;
3001 default:
3002 return ERROR_COMMAND_SYNTAX_ERROR;
3005 return a64_disassemble(CMD, target, address, count);
3008 COMMAND_HANDLER(aarch64_mask_interrupts_command)
3010 struct target *target = get_current_target(CMD_CTX);
3011 struct aarch64_common *aarch64 = target_to_aarch64(target);
3013 static const struct nvp nvp_maskisr_modes[] = {
3014 { .name = "off", .value = AARCH64_ISRMASK_OFF },
3015 { .name = "on", .value = AARCH64_ISRMASK_ON },
3016 { .name = NULL, .value = -1 },
3018 const struct nvp *n;
3020 if (CMD_ARGC > 0) {
3021 n = nvp_name2value(nvp_maskisr_modes, CMD_ARGV[0]);
3022 if (!n->name) {
3023 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3024 return ERROR_COMMAND_SYNTAX_ERROR;
3027 aarch64->isrmasking_mode = n->value;
3030 n = nvp_value2name(nvp_maskisr_modes, aarch64->isrmasking_mode);
3031 command_print(CMD, "aarch64 interrupt mask %s", n->name);
3033 return ERROR_OK;
3036 COMMAND_HANDLER(aarch64_mcrmrc_command)
3038 bool is_mcr = false;
3039 unsigned int arg_cnt = 5;
3041 if (!strcmp(CMD_NAME, "mcr")) {
3042 is_mcr = true;
3043 arg_cnt = 6;
3046 if (arg_cnt != CMD_ARGC)
3047 return ERROR_COMMAND_SYNTAX_ERROR;
3049 struct target *target = get_current_target(CMD_CTX);
3050 if (!target) {
3051 command_print(CMD, "no current target");
3052 return ERROR_FAIL;
3054 if (!target_was_examined(target)) {
3055 command_print(CMD, "%s: not yet examined", target_name(target));
3056 return ERROR_TARGET_NOT_EXAMINED;
3059 struct arm *arm = target_to_arm(target);
3060 if (!is_arm(arm)) {
3061 command_print(CMD, "%s: not an ARM", target_name(target));
3062 return ERROR_FAIL;
3065 if (target->state != TARGET_HALTED) {
3066 command_print(CMD, "Error: [%s] not halted", target_name(target));
3067 return ERROR_TARGET_NOT_HALTED;
3070 if (arm->core_state == ARM_STATE_AARCH64) {
3071 command_print(CMD, "%s: not 32-bit arm target", target_name(target));
3072 return ERROR_FAIL;
3075 int cpnum;
3076 uint32_t op1;
3077 uint32_t op2;
3078 uint32_t crn;
3079 uint32_t crm;
3080 uint32_t value;
3082 /* NOTE: parameter sequence matches ARM instruction set usage:
3083 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
3084 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
3085 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
3087 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], cpnum);
3088 if (cpnum & ~0xf) {
3089 command_print(CMD, "coprocessor %d out of range", cpnum);
3090 return ERROR_COMMAND_ARGUMENT_INVALID;
3093 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], op1);
3094 if (op1 & ~0x7) {
3095 command_print(CMD, "op1 %d out of range", op1);
3096 return ERROR_COMMAND_ARGUMENT_INVALID;
3099 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], crn);
3100 if (crn & ~0xf) {
3101 command_print(CMD, "CRn %d out of range", crn);
3102 return ERROR_COMMAND_ARGUMENT_INVALID;
3105 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], crm);
3106 if (crm & ~0xf) {
3107 command_print(CMD, "CRm %d out of range", crm);
3108 return ERROR_COMMAND_ARGUMENT_INVALID;
3111 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], op2);
3112 if (op2 & ~0x7) {
3113 command_print(CMD, "op2 %d out of range", op2);
3114 return ERROR_COMMAND_ARGUMENT_INVALID;
3117 if (is_mcr) {
3118 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[5], value);
3120 /* NOTE: parameters reordered! */
3121 /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
3122 int retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
3123 if (retval != ERROR_OK)
3124 return retval;
3125 } else {
3126 value = 0;
3127 /* NOTE: parameters reordered! */
3128 /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
3129 int retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
3130 if (retval != ERROR_OK)
3131 return retval;
3133 command_print(CMD, "0x%" PRIx32, value);
3136 return ERROR_OK;
3139 static const struct command_registration aarch64_exec_command_handlers[] = {
3141 .name = "cache_info",
3142 .handler = aarch64_handle_cache_info_command,
3143 .mode = COMMAND_EXEC,
3144 .help = "display information about target caches",
3145 .usage = "",
3148 .name = "dbginit",
3149 .handler = aarch64_handle_dbginit_command,
3150 .mode = COMMAND_EXEC,
3151 .help = "Initialize core debug",
3152 .usage = "",
3155 .name = "disassemble",
3156 .handler = aarch64_handle_disassemble_command,
3157 .mode = COMMAND_EXEC,
3158 .help = "Disassemble instructions",
3159 .usage = "address [count]",
3162 .name = "maskisr",
3163 .handler = aarch64_mask_interrupts_command,
3164 .mode = COMMAND_ANY,
3165 .help = "mask aarch64 interrupts during single-step",
3166 .usage = "['on'|'off']",
3169 .name = "mcr",
3170 .mode = COMMAND_EXEC,
3171 .handler = aarch64_mcrmrc_command,
3172 .help = "write coprocessor register",
3173 .usage = "cpnum op1 CRn CRm op2 value",
3176 .name = "mrc",
3177 .mode = COMMAND_EXEC,
3178 .handler = aarch64_mcrmrc_command,
3179 .help = "read coprocessor register",
3180 .usage = "cpnum op1 CRn CRm op2",
3183 .chain = smp_command_handlers,
3187 COMMAND_REGISTRATION_DONE
3190 static const struct command_registration aarch64_command_handlers[] = {
3192 .name = "arm",
3193 .mode = COMMAND_ANY,
3194 .help = "ARM Command Group",
3195 .usage = "",
3196 .chain = semihosting_common_handlers
3199 .chain = armv8_command_handlers,
3202 .name = "aarch64",
3203 .mode = COMMAND_ANY,
3204 .help = "Aarch64 command group",
3205 .usage = "",
3206 .chain = aarch64_exec_command_handlers,
3208 COMMAND_REGISTRATION_DONE
3211 struct target_type aarch64_target = {
3212 .name = "aarch64",
3214 .poll = aarch64_poll,
3215 .arch_state = armv8_arch_state,
3217 .halt = aarch64_halt,
3218 .resume = aarch64_resume,
3219 .step = aarch64_step,
3221 .assert_reset = aarch64_assert_reset,
3222 .deassert_reset = aarch64_deassert_reset,
3224 /* REVISIT allow exporting VFP3 registers ... */
3225 .get_gdb_arch = armv8_get_gdb_arch,
3226 .get_gdb_reg_list = armv8_get_gdb_reg_list,
3228 .read_memory = aarch64_read_memory,
3229 .write_memory = aarch64_write_memory,
3231 .add_breakpoint = aarch64_add_breakpoint,
3232 .add_context_breakpoint = aarch64_add_context_breakpoint,
3233 .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
3234 .remove_breakpoint = aarch64_remove_breakpoint,
3235 .add_watchpoint = aarch64_add_watchpoint,
3236 .remove_watchpoint = aarch64_remove_watchpoint,
3237 .hit_watchpoint = aarch64_hit_watchpoint,
3239 .commands = aarch64_command_handlers,
3240 .target_create = aarch64_target_create,
3241 .target_jim_configure = aarch64_jim_configure,
3242 .init_target = aarch64_init_target,
3243 .deinit_target = aarch64_deinit_target,
3244 .examine = aarch64_examine,
3246 .read_phys_memory = aarch64_read_phys_memory,
3247 .write_phys_memory = aarch64_write_phys_memory,
3248 .mmu = aarch64_mmu,
3249 .virt2phys = aarch64_virt2phys,
3252 struct target_type armv8r_target = {
3253 .name = "armv8r",
3255 .poll = aarch64_poll,
3256 .arch_state = armv8_arch_state,
3258 .halt = aarch64_halt,
3259 .resume = aarch64_resume,
3260 .step = aarch64_step,
3262 .assert_reset = aarch64_assert_reset,
3263 .deassert_reset = aarch64_deassert_reset,
3265 /* REVISIT allow exporting VFP3 registers ... */
3266 .get_gdb_arch = armv8_get_gdb_arch,
3267 .get_gdb_reg_list = armv8_get_gdb_reg_list,
3269 .read_memory = aarch64_read_phys_memory,
3270 .write_memory = aarch64_write_phys_memory,
3272 .add_breakpoint = aarch64_add_breakpoint,
3273 .add_context_breakpoint = aarch64_add_context_breakpoint,
3274 .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
3275 .remove_breakpoint = aarch64_remove_breakpoint,
3276 .add_watchpoint = aarch64_add_watchpoint,
3277 .remove_watchpoint = aarch64_remove_watchpoint,
3278 .hit_watchpoint = aarch64_hit_watchpoint,
3280 .commands = aarch64_command_handlers,
3281 .target_create = armv8r_target_create,
3282 .target_jim_configure = aarch64_jim_configure,
3283 .init_target = aarch64_init_target,
3284 .deinit_target = aarch64_deinit_target,
3285 .examine = aarch64_examine,