1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
11 * Copyright (C) 2009-2010 by David Brownell *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
30 ***************************************************************************/
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focusses on memory mapped resources as defined by the
38 * CoreSight architecture.
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction piplining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
62 * Relevant specifications from ARM include:
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
75 #include "jtag/interface.h"
77 #include "arm_adi_v5.h"
78 #include <helper/time_support.h>
80 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
83 uint32_t tar_block_size(uint32_t address)
84 Return the largest block starting at address that does not cross a tar block size alignment boundary
86 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block
, uint32_t address
)
88 return tar_autoincr_block
- ((tar_autoincr_block
- 1) & address
);
91 /***************************************************************************
93 * DP and MEM-AP register access through APACC and DPACC *
95 ***************************************************************************/
98 * Select one of the APs connected to the specified DAP. The
99 * selection is implicitly used with future AP transactions.
100 * This is a NOP if the specified AP is already selected.
103 * @param apsel Number of the AP to (implicitly) use with further
104 * transactions. This normally identifies a MEM-AP.
106 void dap_ap_select(struct adiv5_dap
*dap
, uint8_t ap
)
108 uint32_t new_ap
= (ap
<< 24) & 0xFF000000;
110 if (new_ap
!= dap
->ap_current
) {
111 dap
->ap_current
= new_ap
;
112 /* Switching AP invalidates cached values.
113 * Values MUST BE UPDATED BEFORE AP ACCESS.
115 dap
->ap_bank_value
= -1;
116 dap
->ap_csw_value
= -1;
117 dap
->ap_tar_value
= -1;
121 static int dap_setup_accessport_csw(struct adiv5_dap
*dap
, uint32_t csw
)
123 csw
= csw
| CSW_DBGSWENABLE
| CSW_MASTER_DEBUG
| CSW_HPROT
|
124 dap
->apcsw
[dap
->ap_current
>> 24];
126 if (csw
!= dap
->ap_csw_value
) {
127 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
128 int retval
= dap_queue_ap_write(dap
, AP_REG_CSW
, csw
);
129 if (retval
!= ERROR_OK
)
131 dap
->ap_csw_value
= csw
;
136 static int dap_setup_accessport_tar(struct adiv5_dap
*dap
, uint32_t tar
)
138 if (tar
!= dap
->ap_tar_value
|| dap
->ap_csw_value
& CSW_ADDRINC_MASK
) {
139 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
140 int retval
= dap_queue_ap_write(dap
, AP_REG_TAR
, tar
);
141 if (retval
!= ERROR_OK
)
143 dap
->ap_tar_value
= tar
;
149 * Queue transactions setting up transfer parameters for the
150 * currently selected MEM-AP.
152 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
153 * initiate data reads or writes using memory or peripheral addresses.
154 * If the CSW is configured for it, the TAR may be automatically
155 * incremented after each transfer.
157 * @todo Rename to reflect it being specifically a MEM-AP function.
159 * @param dap The DAP connected to the MEM-AP.
160 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
161 * matches the cached value, the register is not changed.
162 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
163 * matches the cached address, the register is not changed.
165 * @return ERROR_OK if the transaction was properly queued, else a fault code.
167 int dap_setup_accessport(struct adiv5_dap
*dap
, uint32_t csw
, uint32_t tar
)
170 retval
= dap_setup_accessport_csw(dap
, csw
);
171 if (retval
!= ERROR_OK
)
173 retval
= dap_setup_accessport_tar(dap
, tar
);
174 if (retval
!= ERROR_OK
)
180 * Asynchronous (queued) read of a word from memory or a system register.
182 * @param dap The DAP connected to the MEM-AP performing the read.
183 * @param address Address of the 32-bit word to read; it must be
184 * readable by the currently selected MEM-AP.
185 * @param value points to where the word will be stored when the
186 * transaction queue is flushed (assuming no errors).
188 * @return ERROR_OK for success. Otherwise a fault code.
190 int mem_ap_read_u32(struct adiv5_dap
*dap
, uint32_t address
,
195 /* Use banked addressing (REG_BDx) to avoid some link traffic
196 * (updating TAR) when reading several consecutive addresses.
198 retval
= dap_setup_accessport(dap
, CSW_32BIT
| CSW_ADDRINC_OFF
,
199 address
& 0xFFFFFFF0);
200 if (retval
!= ERROR_OK
)
203 return dap_queue_ap_read(dap
, AP_REG_BD0
| (address
& 0xC), value
);
207 * Synchronous read of a word from memory or a system register.
208 * As a side effect, this flushes any queued transactions.
210 * @param dap The DAP connected to the MEM-AP performing the read.
211 * @param address Address of the 32-bit word to read; it must be
212 * readable by the currently selected MEM-AP.
213 * @param value points to where the result will be stored.
215 * @return ERROR_OK for success; *value holds the result.
216 * Otherwise a fault code.
218 int mem_ap_read_atomic_u32(struct adiv5_dap
*dap
, uint32_t address
,
223 retval
= mem_ap_read_u32(dap
, address
, value
);
224 if (retval
!= ERROR_OK
)
231 * Asynchronous (queued) write of a word to memory or a system register.
233 * @param dap The DAP connected to the MEM-AP.
234 * @param address Address to be written; it must be writable by
235 * the currently selected MEM-AP.
236 * @param value Word that will be written to the address when transaction
237 * queue is flushed (assuming no errors).
239 * @return ERROR_OK for success. Otherwise a fault code.
241 int mem_ap_write_u32(struct adiv5_dap
*dap
, uint32_t address
,
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when writing several consecutive addresses.
249 retval
= dap_setup_accessport(dap
, CSW_32BIT
| CSW_ADDRINC_OFF
,
250 address
& 0xFFFFFFF0);
251 if (retval
!= ERROR_OK
)
254 return dap_queue_ap_write(dap
, AP_REG_BD0
| (address
& 0xC),
259 * Synchronous write of a word to memory or a system register.
260 * As a side effect, this flushes any queued transactions.
262 * @param dap The DAP connected to the MEM-AP.
263 * @param address Address to be written; it must be writable by
264 * the currently selected MEM-AP.
265 * @param value Word that will be written.
267 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
269 int mem_ap_write_atomic_u32(struct adiv5_dap
*dap
, uint32_t address
,
272 int retval
= mem_ap_write_u32(dap
, address
, value
);
274 if (retval
!= ERROR_OK
)
281 * Synchronous write of a block of memory, using a specific access size.
283 * @param dap The DAP connected to the MEM-AP.
284 * @param buffer The data buffer to write. No particular alignment is assumed.
285 * @param size Which access size to use, in bytes. 1, 2 or 4.
286 * @param count The number of writes to do (in size units, not bytes).
287 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
288 * @param addrinc Whether the target address should be increased for each write or not. This
289 * should normally be true, except when writing to e.g. a FIFO.
290 * @return ERROR_OK on success, otherwise an error code.
292 int mem_ap_write(struct adiv5_dap
*dap
, const uint8_t *buffer
, uint32_t size
, uint32_t count
,
293 uint32_t address
, bool addrinc
)
295 size_t nbytes
= size
* count
;
296 const uint32_t csw_addrincr
= addrinc
? CSW_ADDRINC_SINGLE
: CSW_ADDRINC_OFF
;
301 csw_size
= CSW_32BIT
;
303 csw_size
= CSW_16BIT
;
307 return ERROR_TARGET_UNALIGNED_ACCESS
;
309 retval
= dap_setup_accessport_tar(dap
, address
);
310 if (retval
!= ERROR_OK
)
314 uint32_t this_size
= size
;
316 /* Select packed transfer if possible */
317 if (addrinc
&& dap
->packed_transfers
&& nbytes
>= 4
318 && max_tar_block_size(dap
->tar_autoincr_block
, address
) >= 4) {
320 retval
= dap_setup_accessport_csw(dap
, csw_size
| CSW_ADDRINC_PACKED
);
322 retval
= dap_setup_accessport_csw(dap
, csw_size
| csw_addrincr
);
325 if (retval
!= ERROR_OK
)
328 /* How many source bytes each transfer will consume, and their location in the DRW,
329 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
330 uint32_t outvalue
= 0;
333 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
334 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
336 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
338 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
343 retval
= dap_queue_ap_write(dap
, AP_REG_DRW
, outvalue
);
344 if (retval
!= ERROR_OK
)
347 /* Rewrite TAR if it wrapped */
348 if (addrinc
&& address
% dap
->tar_autoincr_block
< size
&& nbytes
> 0) {
349 retval
= dap_setup_accessport_tar(dap
, address
);
350 if (retval
!= ERROR_OK
)
355 /* REVISIT: Might want to have a queued version of this function that does not run. */
356 if (retval
== ERROR_OK
)
357 retval
= dap_run(dap
);
359 if (retval
!= ERROR_OK
) {
361 if (dap_queue_ap_read(dap
, AP_REG_TAR
, &tar
) == ERROR_OK
362 && dap_run(dap
) == ERROR_OK
)
363 LOG_ERROR("Failed to write memory at 0x%08"PRIx32
, tar
);
365 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
372 * Synchronous read of a block of memory, using a specific access size.
374 * @param dap The DAP connected to the MEM-AP.
375 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
376 * @param size Which access size to use, in bytes. 1, 2 or 4.
377 * @param count The number of reads to do (in size units, not bytes).
378 * @param address Address to be read; it must be readable by the currently selected MEM-AP.
379 * @param addrinc Whether the target address should be increased after each read or not. This
380 * should normally be true, except when reading from e.g. a FIFO.
381 * @return ERROR_OK on success, otherwise an error code.
383 int mem_ap_read(struct adiv5_dap
*dap
, uint8_t *buffer
, uint32_t size
, uint32_t count
,
384 uint32_t adr
, bool addrinc
)
386 size_t nbytes
= size
* count
;
387 const uint32_t csw_addrincr
= addrinc
? CSW_ADDRINC_SINGLE
: CSW_ADDRINC_OFF
;
389 uint32_t address
= adr
;
393 csw_size
= CSW_32BIT
;
395 csw_size
= CSW_16BIT
;
399 return ERROR_TARGET_UNALIGNED_ACCESS
;
401 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
402 * over-allocation if packed transfers are going to be used, but determining the real need at
403 * this point would be messy. */
404 uint32_t *read_buf
= malloc(count
* sizeof(uint32_t));
405 uint32_t *read_ptr
= read_buf
;
406 if (read_buf
== NULL
) {
407 LOG_ERROR("Failed to allocate read buffer");
411 retval
= dap_setup_accessport_tar(dap
, address
);
412 if (retval
!= ERROR_OK
)
415 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
416 * useful bytes it contains, and their location in the word, depends on the type of transfer
419 uint32_t this_size
= size
;
421 /* Select packed transfer if possible */
422 if (addrinc
&& dap
->packed_transfers
&& nbytes
>= 4
423 && max_tar_block_size(dap
->tar_autoincr_block
, address
) >= 4) {
425 retval
= dap_setup_accessport_csw(dap
, csw_size
| CSW_ADDRINC_PACKED
);
427 retval
= dap_setup_accessport_csw(dap
, csw_size
| csw_addrincr
);
429 if (retval
!= ERROR_OK
)
432 retval
= dap_queue_ap_read(dap
, AP_REG_DRW
, read_ptr
++);
433 if (retval
!= ERROR_OK
)
437 address
+= this_size
;
439 /* Rewrite TAR if it wrapped */
440 if (addrinc
&& address
% dap
->tar_autoincr_block
< size
&& nbytes
> 0) {
441 retval
= dap_setup_accessport_tar(dap
, address
);
442 if (retval
!= ERROR_OK
)
447 if (retval
== ERROR_OK
)
448 retval
= dap_run(dap
);
452 nbytes
= size
* count
;
455 /* If something failed, read TAR to find out how much data was successfully read, so we can
456 * at least give the caller what we have. */
457 if (retval
!= ERROR_OK
) {
459 if (dap_queue_ap_read(dap
, AP_REG_TAR
, &tar
) == ERROR_OK
460 && dap_run(dap
) == ERROR_OK
) {
461 LOG_ERROR("Failed to read memory at 0x%08"PRIx32
, tar
);
462 if (nbytes
> tar
- address
)
463 nbytes
= tar
- address
;
465 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
470 /* Replay loop to populate caller's buffer from the correct word and byte lane */
472 uint32_t this_size
= size
;
474 if (addrinc
&& dap
->packed_transfers
&& nbytes
>= 4
475 && max_tar_block_size(dap
->tar_autoincr_block
, address
) >= 4) {
481 *buffer
++ = *read_ptr
>> 8 * (address
++ & 3);
482 *buffer
++ = *read_ptr
>> 8 * (address
++ & 3);
484 *buffer
++ = *read_ptr
>> 8 * (address
++ & 3);
486 *buffer
++ = *read_ptr
>> 8 * (address
++ & 3);
497 /*--------------------------------------------------------------------*/
498 /* Wrapping function with selection of AP */
499 /*--------------------------------------------------------------------*/
500 int mem_ap_sel_read_u32(struct adiv5_dap
*swjdp
, uint8_t ap
,
501 uint32_t address
, uint32_t *value
)
503 dap_ap_select(swjdp
, ap
);
504 return mem_ap_read_u32(swjdp
, address
, value
);
507 int mem_ap_sel_write_u32(struct adiv5_dap
*swjdp
, uint8_t ap
,
508 uint32_t address
, uint32_t value
)
510 dap_ap_select(swjdp
, ap
);
511 return mem_ap_write_u32(swjdp
, address
, value
);
514 int mem_ap_sel_read_atomic_u32(struct adiv5_dap
*swjdp
, uint8_t ap
,
515 uint32_t address
, uint32_t *value
)
517 dap_ap_select(swjdp
, ap
);
518 return mem_ap_read_atomic_u32(swjdp
, address
, value
);
521 int mem_ap_sel_write_atomic_u32(struct adiv5_dap
*swjdp
, uint8_t ap
,
522 uint32_t address
, uint32_t value
)
524 dap_ap_select(swjdp
, ap
);
525 return mem_ap_write_atomic_u32(swjdp
, address
, value
);
528 int mem_ap_sel_read_buf(struct adiv5_dap
*swjdp
, uint8_t ap
,
529 uint8_t *buffer
, uint32_t size
, uint32_t count
, uint32_t address
)
531 dap_ap_select(swjdp
, ap
);
532 return mem_ap_read(swjdp
, buffer
, size
, count
, address
, true);
535 int mem_ap_sel_write_buf(struct adiv5_dap
*swjdp
, uint8_t ap
,
536 const uint8_t *buffer
, uint32_t size
, uint32_t count
, uint32_t address
)
538 dap_ap_select(swjdp
, ap
);
539 return mem_ap_write(swjdp
, buffer
, size
, count
, address
, true);
542 int mem_ap_sel_read_buf_noincr(struct adiv5_dap
*swjdp
, uint8_t ap
,
543 uint8_t *buffer
, uint32_t size
, uint32_t count
, uint32_t address
)
545 dap_ap_select(swjdp
, ap
);
546 return mem_ap_read(swjdp
, buffer
, size
, count
, address
, false);
549 int mem_ap_sel_write_buf_noincr(struct adiv5_dap
*swjdp
, uint8_t ap
,
550 const uint8_t *buffer
, uint32_t size
, uint32_t count
, uint32_t address
)
552 dap_ap_select(swjdp
, ap
);
553 return mem_ap_write(swjdp
, buffer
, size
, count
, address
, false);
556 #define MDM_REG_STAT 0x00
557 #define MDM_REG_CTRL 0x04
558 #define MDM_REG_ID 0xfc
560 #define MDM_STAT_FMEACK (1<<0)
561 #define MDM_STAT_FREADY (1<<1)
562 #define MDM_STAT_SYSSEC (1<<2)
563 #define MDM_STAT_SYSRES (1<<3)
564 #define MDM_STAT_FMEEN (1<<5)
565 #define MDM_STAT_BACKDOOREN (1<<6)
566 #define MDM_STAT_LPEN (1<<7)
567 #define MDM_STAT_VLPEN (1<<8)
568 #define MDM_STAT_LLSMODEXIT (1<<9)
569 #define MDM_STAT_VLLSXMODEXIT (1<<10)
570 #define MDM_STAT_CORE_HALTED (1<<16)
571 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
572 #define MDM_STAT_CORESLEEPING (1<<18)
574 #define MEM_CTRL_FMEIP (1<<0)
575 #define MEM_CTRL_DBG_DIS (1<<1)
576 #define MEM_CTRL_DBG_REQ (1<<2)
577 #define MEM_CTRL_SYS_RES_REQ (1<<3)
578 #define MEM_CTRL_CORE_HOLD_RES (1<<4)
579 #define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
580 #define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
581 #define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
583 #define MDM_ACCESS_TIMEOUT 3000 /* ms */
588 int dap_syssec_kinetis_mdmap(struct adiv5_dap
*dap
)
593 enum reset_types jtag_reset_config
= jtag_get_reset_config();
595 dap_ap_select(dap
, 1);
597 /* first check mdm-ap id register */
598 retval
= dap_queue_ap_read(dap
, MDM_REG_ID
, &val
);
599 if (retval
!= ERROR_OK
)
603 if (val
!= 0x001C0000) {
604 LOG_DEBUG("id doesn't match %08" PRIX32
" != 0x001C0000", val
);
605 dap_ap_select(dap
, 0);
609 /* read and parse status register
610 * it's important that the device is out of
614 if (timeout
++ > MDM_ACCESS_TIMEOUT
) {
615 LOG_DEBUG("MDMAP : flash ready timeout");
618 retval
= dap_queue_ap_read(dap
, MDM_REG_STAT
, &val
);
619 if (retval
!= ERROR_OK
)
623 LOG_DEBUG("MDM_REG_STAT %08" PRIX32
, val
);
624 if (val
& MDM_STAT_FREADY
)
629 if ((val
& MDM_STAT_SYSSEC
)) {
630 LOG_DEBUG("MDMAP: system is secured, masserase needed");
632 if (!(val
& MDM_STAT_FMEEN
))
633 LOG_DEBUG("MDMAP: masserase is disabled");
635 /* we need to assert reset */
636 if (jtag_reset_config
& RESET_HAS_SRST
) {
637 /* default to asserting srst */
638 adapter_assert_reset();
640 LOG_DEBUG("SRST not configured");
641 dap_ap_select(dap
, 0);
646 if (timeout
++ > MDM_ACCESS_TIMEOUT
) {
647 LOG_DEBUG("MDMAP : flash ready timeout");
650 retval
= dap_queue_ap_write(dap
, MDM_REG_CTRL
, MEM_CTRL_FMEIP
);
651 if (retval
!= ERROR_OK
)
654 /* read status register and wait for ready */
655 retval
= dap_queue_ap_read(dap
, MDM_REG_STAT
, &val
);
656 if (retval
!= ERROR_OK
)
659 LOG_DEBUG("MDM_REG_STAT %08" PRIX32
, val
);
667 if (timeout
++ > MDM_ACCESS_TIMEOUT
) {
668 LOG_DEBUG("MDMAP : flash ready timeout");
671 retval
= dap_queue_ap_write(dap
, MDM_REG_CTRL
, 0);
672 if (retval
!= ERROR_OK
)
675 /* read status register */
676 retval
= dap_queue_ap_read(dap
, MDM_REG_STAT
, &val
);
677 if (retval
!= ERROR_OK
)
680 LOG_DEBUG("MDM_REG_STAT %08" PRIX32
, val
);
681 /* read control register and wait for ready */
682 retval
= dap_queue_ap_read(dap
, MDM_REG_CTRL
, &val
);
683 if (retval
!= ERROR_OK
)
686 LOG_DEBUG("MDM_REG_CTRL %08" PRIX32
, val
);
695 dap_ap_select(dap
, 0);
701 struct dap_syssec_filter
{
705 int (*dap_init
)(struct adiv5_dap
*dap
);
709 static struct dap_syssec_filter dap_syssec_filter_data
[] = {
710 { 0x4BA00477, dap_syssec_kinetis_mdmap
}
716 int dap_syssec(struct adiv5_dap
*dap
)
719 struct jtag_tap
*tap
;
721 for (i
= 0; i
< sizeof(dap_syssec_filter_data
); i
++) {
722 tap
= dap
->jtag_info
->tap
;
724 while (tap
!= NULL
) {
725 if (tap
->hasidcode
&& (dap_syssec_filter_data
[i
].idcode
== tap
->idcode
)) {
726 LOG_DEBUG("DAP: mdmap_init for idcode: %08" PRIx32
, tap
->idcode
);
727 dap_syssec_filter_data
[i
].dap_init(dap
);
736 /*--------------------------------------------------------------------------*/
739 /* FIXME don't import ... just initialize as
740 * part of DAP transport setup
742 extern const struct dap_ops jtag_dp_ops
;
744 /*--------------------------------------------------------------------------*/
747 * Initialize a DAP. This sets up the power domains, prepares the DP
748 * for further use, and arranges to use AP #0 for all AP operations
749 * until dap_ap-select() changes that policy.
751 * @param dap The DAP being initialized.
753 * @todo Rename this. We also need an initialization scheme which account
754 * for SWD transports not just JTAG; that will need to address differences
755 * in layering. (JTAG is useful without any debug target; but not SWD.)
756 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
758 int ahbap_debugport_init(struct adiv5_dap
*dap
)
766 /* JTAG-DP or SWJ-DP, in JTAG mode
767 * ... for SWD mode this is patched as part
771 dap
->ops
= &jtag_dp_ops
;
773 /* Default MEM-AP setup.
775 * REVISIT AP #0 may be an inappropriate default for this.
776 * Should we probe, or take a hint from the caller?
777 * Presumably we can ignore the possibility of multiple APs.
779 dap
->ap_current
= !0;
780 dap_ap_select(dap
, 0);
782 /* DP initialization */
784 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, NULL
);
785 if (retval
!= ERROR_OK
)
788 retval
= dap_queue_dp_write(dap
, DP_CTRL_STAT
, SSTICKYERR
);
789 if (retval
!= ERROR_OK
)
792 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, NULL
);
793 if (retval
!= ERROR_OK
)
796 dap
->dp_ctrl_stat
= CDBGPWRUPREQ
| CSYSPWRUPREQ
;
797 retval
= dap_queue_dp_write(dap
, DP_CTRL_STAT
, dap
->dp_ctrl_stat
);
798 if (retval
!= ERROR_OK
)
801 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &ctrlstat
);
802 if (retval
!= ERROR_OK
)
804 retval
= dap_run(dap
);
805 if (retval
!= ERROR_OK
)
808 /* Check that we have debug power domains activated */
809 while (!(ctrlstat
& CDBGPWRUPACK
) && (cnt
++ < 10)) {
810 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
811 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &ctrlstat
);
812 if (retval
!= ERROR_OK
)
814 retval
= dap_run(dap
);
815 if (retval
!= ERROR_OK
)
820 while (!(ctrlstat
& CSYSPWRUPACK
) && (cnt
++ < 10)) {
821 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
822 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &ctrlstat
);
823 if (retval
!= ERROR_OK
)
825 retval
= dap_run(dap
);
826 if (retval
!= ERROR_OK
)
831 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, NULL
);
832 if (retval
!= ERROR_OK
)
834 /* With debug power on we can activate OVERRUN checking */
835 dap
->dp_ctrl_stat
= CDBGPWRUPREQ
| CSYSPWRUPREQ
| CORUNDETECT
;
836 retval
= dap_queue_dp_write(dap
, DP_CTRL_STAT
, dap
->dp_ctrl_stat
);
837 if (retval
!= ERROR_OK
)
839 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, NULL
);
840 if (retval
!= ERROR_OK
)
845 /* check that we support packed transfers */
848 retval
= dap_setup_accessport(dap
, CSW_8BIT
| CSW_ADDRINC_PACKED
, 0);
849 if (retval
!= ERROR_OK
)
852 retval
= dap_queue_ap_read(dap
, AP_REG_CSW
, &csw
);
853 if (retval
!= ERROR_OK
)
856 retval
= dap_run(dap
);
857 if (retval
!= ERROR_OK
)
860 if (csw
& CSW_ADDRINC_PACKED
)
861 dap
->packed_transfers
= true;
863 dap
->packed_transfers
= false;
865 LOG_DEBUG("MEM_AP Packed Transfers: %s",
866 dap
->packed_transfers
? "enabled" : "disabled");
871 /* CID interpretation -- see ARM IHI 0029B section 3
872 * and ARM IHI 0031A table 13-3.
874 static const char *class_description
[16] = {
875 "Reserved", "ROM table", "Reserved", "Reserved",
876 "Reserved", "Reserved", "Reserved", "Reserved",
877 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
878 "Reserved", "OptimoDE DESS",
879 "Generic IP component", "PrimeCell or System component"
882 static bool is_dap_cid_ok(uint32_t cid3
, uint32_t cid2
, uint32_t cid1
, uint32_t cid0
)
884 return cid3
== 0xb1 && cid2
== 0x05
885 && ((cid1
& 0x0f) == 0) && cid0
== 0x0d;
889 * This function checks the ID for each access port to find the requested Access Port type
891 int dap_find_ap(struct adiv5_dap
*dap
, enum ap_type type_to_find
, uint8_t *ap_num_out
)
895 /* Maximum AP number is 255 since the SELECT register is 8 bits */
896 for (ap
= 0; ap
<= 255; ap
++) {
898 /* read the IDR register of the Access Port */
900 dap_ap_select(dap
, ap
);
902 int retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &id_val
);
903 if (retval
!= ERROR_OK
)
906 retval
= dap_run(dap
);
910 * 27-24 : JEDEC bank (0x4 for ARM)
911 * 23-17 : JEDEC code (0x3B for ARM)
914 * 7-0 : AP Identity (1=AHB-AP 2=APB-AP 0x10=JTAG-AP)
917 /* Reading register for a non-existant AP should not cause an error,
918 * but just to be sure, try to continue searching if an error does happen.
920 if ((retval
== ERROR_OK
) && /* Register read success */
921 ((id_val
& 0x0FFF0000) == 0x04770000) && /* Jedec codes match */
922 ((id_val
& 0xFF) == type_to_find
)) { /* type matches*/
924 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32
")",
925 (type_to_find
== AP_TYPE_AHB_AP
) ? "AHB-AP" :
926 (type_to_find
== AP_TYPE_APB_AP
) ? "APB-AP" :
927 (type_to_find
== AP_TYPE_JTAG_AP
) ? "JTAG-AP" : "Unknown",
935 LOG_DEBUG("No %s found",
936 (type_to_find
== AP_TYPE_AHB_AP
) ? "AHB-AP" :
937 (type_to_find
== AP_TYPE_APB_AP
) ? "APB-AP" :
938 (type_to_find
== AP_TYPE_JTAG_AP
) ? "JTAG-AP" : "Unknown");
942 int dap_get_debugbase(struct adiv5_dap
*dap
, int ap
,
943 uint32_t *out_dbgbase
, uint32_t *out_apid
)
947 uint32_t dbgbase
, apid
;
949 /* AP address is in bits 31:24 of DP_SELECT */
951 return ERROR_COMMAND_SYNTAX_ERROR
;
953 ap_old
= dap
->ap_current
;
954 dap_ap_select(dap
, ap
);
956 retval
= dap_queue_ap_read(dap
, AP_REG_BASE
, &dbgbase
);
957 if (retval
!= ERROR_OK
)
959 retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &apid
);
960 if (retval
!= ERROR_OK
)
962 retval
= dap_run(dap
);
963 if (retval
!= ERROR_OK
)
966 /* Excavate the device ID code */
967 struct jtag_tap
*tap
= dap
->jtag_info
->tap
;
968 while (tap
!= NULL
) {
973 if (tap
== NULL
|| !tap
->hasidcode
)
976 dap_ap_select(dap
, ap_old
);
978 /* The asignment happens only here to prevent modification of these
979 * values before they are certain. */
980 *out_dbgbase
= dbgbase
;
986 int dap_lookup_cs_component(struct adiv5_dap
*dap
, int ap
,
987 uint32_t dbgbase
, uint8_t type
, uint32_t *addr
)
990 uint32_t romentry
, entry_offset
= 0, component_base
, devtype
;
991 int retval
= ERROR_FAIL
;
994 return ERROR_COMMAND_SYNTAX_ERROR
;
996 ap_old
= dap
->ap_current
;
997 dap_ap_select(dap
, ap
);
1000 retval
= mem_ap_read_atomic_u32(dap
, (dbgbase
&0xFFFFF000) |
1001 entry_offset
, &romentry
);
1002 if (retval
!= ERROR_OK
)
1005 component_base
= (dbgbase
& 0xFFFFF000)
1006 + (romentry
& 0xFFFFF000);
1008 if (romentry
& 0x1) {
1009 retval
= mem_ap_read_atomic_u32(dap
,
1010 (component_base
& 0xfffff000) | 0xfcc,
1012 if (retval
!= ERROR_OK
)
1014 if ((devtype
& 0xff) == type
) {
1015 *addr
= component_base
;
1021 } while (romentry
> 0);
1023 dap_ap_select(dap
, ap_old
);
1028 static int dap_info_command(struct command_context
*cmd_ctx
,
1029 struct adiv5_dap
*dap
, int ap
)
1032 uint32_t dbgbase
= 0, apid
= 0; /* Silence gcc by initializing */
1033 int romtable_present
= 0;
1037 retval
= dap_get_debugbase(dap
, ap
, &dbgbase
, &apid
);
1038 if (retval
!= ERROR_OK
)
1041 ap_old
= dap
->ap_current
;
1042 dap_ap_select(dap
, ap
);
1044 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1045 mem_ap
= ((apid
&0x10000) && ((apid
&0x0F) != 0));
1046 command_print(cmd_ctx
, "AP ID register 0x%8.8" PRIx32
, apid
);
1048 switch (apid
&0x0F) {
1050 command_print(cmd_ctx
, "\tType is JTAG-AP");
1053 command_print(cmd_ctx
, "\tType is MEM-AP AHB");
1056 command_print(cmd_ctx
, "\tType is MEM-AP APB");
1059 command_print(cmd_ctx
, "\tUnknown AP type");
1063 /* NOTE: a MEM-AP may have a single CoreSight component that's
1064 * not a ROM table ... or have no such components at all.
1067 command_print(cmd_ctx
, "AP BASE 0x%8.8" PRIx32
, dbgbase
);
1069 command_print(cmd_ctx
, "No AP found at this ap 0x%x", ap
);
1071 romtable_present
= ((mem_ap
) && (dbgbase
!= 0xFFFFFFFF));
1072 if (romtable_present
) {
1073 uint32_t cid0
, cid1
, cid2
, cid3
, memtype
, romentry
;
1074 uint16_t entry_offset
;
1076 /* bit 16 of apid indicates a memory access port */
1078 command_print(cmd_ctx
, "\tValid ROM table present");
1080 command_print(cmd_ctx
, "\tROM table in legacy format");
1082 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1083 retval
= mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFF0, &cid0
);
1084 if (retval
!= ERROR_OK
)
1086 retval
= mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFF4, &cid1
);
1087 if (retval
!= ERROR_OK
)
1089 retval
= mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFF8, &cid2
);
1090 if (retval
!= ERROR_OK
)
1092 retval
= mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFFC, &cid3
);
1093 if (retval
!= ERROR_OK
)
1095 retval
= mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFCC, &memtype
);
1096 if (retval
!= ERROR_OK
)
1098 retval
= dap_run(dap
);
1099 if (retval
!= ERROR_OK
)
1102 if (!is_dap_cid_ok(cid3
, cid2
, cid1
, cid0
))
1103 command_print(cmd_ctx
, "\tCID3 0x%2.2x"
1107 (unsigned) cid3
, (unsigned)cid2
,
1108 (unsigned) cid1
, (unsigned) cid0
);
1110 command_print(cmd_ctx
, "\tMEMTYPE system memory present on bus");
1112 command_print(cmd_ctx
, "\tMEMTYPE System memory not present. "
1113 "Dedicated debug bus.");
1115 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1118 retval
= mem_ap_read_atomic_u32(dap
, (dbgbase
&0xFFFFF000) | entry_offset
, &romentry
);
1119 if (retval
!= ERROR_OK
)
1121 command_print(cmd_ctx
, "\tROMTABLE[0x%x] = 0x%" PRIx32
"", entry_offset
, romentry
);
1122 if (romentry
& 0x01) {
1123 uint32_t c_cid0
, c_cid1
, c_cid2
, c_cid3
;
1124 uint32_t c_pid0
, c_pid1
, c_pid2
, c_pid3
, c_pid4
;
1125 uint32_t component_base
;
1129 component_base
= (dbgbase
& 0xFFFFF000) + (romentry
& 0xFFFFF000);
1131 /* IDs are in last 4K section */
1132 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFE0, &c_pid0
);
1133 if (retval
!= ERROR_OK
)
1136 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFE4, &c_pid1
);
1137 if (retval
!= ERROR_OK
)
1140 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFE8, &c_pid2
);
1141 if (retval
!= ERROR_OK
)
1144 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFEC, &c_pid3
);
1145 if (retval
!= ERROR_OK
)
1148 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFD0, &c_pid4
);
1149 if (retval
!= ERROR_OK
)
1153 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFF0, &c_cid0
);
1154 if (retval
!= ERROR_OK
)
1157 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFF4, &c_cid1
);
1158 if (retval
!= ERROR_OK
)
1161 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFF8, &c_cid2
);
1162 if (retval
!= ERROR_OK
)
1165 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFFC, &c_cid3
);
1166 if (retval
!= ERROR_OK
)
1170 command_print(cmd_ctx
, "\t\tComponent base address 0x%" PRIx32
","
1171 "start address 0x%" PRIx32
, component_base
,
1172 /* component may take multiple 4K pages */
1173 component_base
- 0x1000*(c_pid4
>> 4));
1174 command_print(cmd_ctx
, "\t\tComponent class is 0x%x, %s",
1175 (int) (c_cid1
>> 4) & 0xf,
1176 /* See ARM IHI 0029B Table 3-3 */
1177 class_description
[(c_cid1
>> 4) & 0xf]);
1179 /* CoreSight component? */
1180 if (((c_cid1
>> 4) & 0x0f) == 9) {
1183 char *major
= "Reserved", *subtype
= "Reserved";
1185 retval
= mem_ap_read_atomic_u32(dap
,
1186 (component_base
& 0xfffff000) | 0xfcc,
1188 if (retval
!= ERROR_OK
)
1190 minor
= (devtype
>> 4) & 0x0f;
1191 switch (devtype
& 0x0f) {
1193 major
= "Miscellaneous";
1199 subtype
= "Validation component";
1204 major
= "Trace Sink";
1218 major
= "Trace Link";
1224 subtype
= "Funnel, router";
1230 subtype
= "FIFO, buffer";
1235 major
= "Trace Source";
1241 subtype
= "Processor";
1247 subtype
= "Engine/Coprocessor";
1255 major
= "Debug Control";
1261 subtype
= "Trigger Matrix";
1264 subtype
= "Debug Auth";
1269 major
= "Debug Logic";
1275 subtype
= "Processor";
1281 subtype
= "Engine/Coprocessor";
1286 command_print(cmd_ctx
, "\t\tType is 0x%2.2x, %s, %s",
1287 (unsigned) (devtype
& 0xff),
1289 /* REVISIT also show 0xfc8 DevId */
1292 if (!is_dap_cid_ok(cid3
, cid2
, cid1
, cid0
))
1293 command_print(cmd_ctx
,
1302 command_print(cmd_ctx
,
1303 "\t\tPeripheral ID[4..0] = hex "
1304 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1305 (int) c_pid4
, (int) c_pid3
, (int) c_pid2
,
1306 (int) c_pid1
, (int) c_pid0
);
1308 /* Part number interpretations are from Cortex
1309 * core specs, the CoreSight components TRM
1310 * (ARM DDI 0314H), CoreSight System Design
1311 * Guide (ARM DGI 0012D) and ETM specs; also
1312 * from chip observation (e.g. TI SDTI).
1314 part_num
= (c_pid0
& 0xff);
1315 part_num
|= (c_pid1
& 0x0f) << 8;
1318 type
= "Cortex-M3 NVIC";
1319 full
= "(Interrupt Controller)";
1322 type
= "Cortex-M3 ITM";
1323 full
= "(Instrumentation Trace Module)";
1326 type
= "Cortex-M3 DWT";
1327 full
= "(Data Watchpoint and Trace)";
1330 type
= "Cortex-M3 FBP";
1331 full
= "(Flash Patch and Breakpoint)";
1334 type
= "Cortex-M4 SCS";
1335 full
= "(System Control Space)";
1338 type
= "CoreSight ETM11";
1339 full
= "(Embedded Trace)";
1341 /* case 0x113: what? */
1342 case 0x120: /* from OMAP3 memmap */
1344 full
= "(System Debug Trace Interface)";
1346 case 0x343: /* from OMAP3 memmap */
1351 type
= "Coresight CTI";
1352 full
= "(Cross Trigger)";
1355 type
= "Coresight ETB";
1356 full
= "(Trace Buffer)";
1359 type
= "Coresight CSTF";
1360 full
= "(Trace Funnel)";
1363 type
= "CoreSight ETM9";
1364 full
= "(Embedded Trace)";
1367 type
= "Coresight TPIU";
1368 full
= "(Trace Port Interface Unit)";
1371 type
= "Cortex-A8 ETM";
1372 full
= "(Embedded Trace)";
1375 type
= "Cortex-A8 CTI";
1376 full
= "(Cross Trigger)";
1379 type
= "Cortex-M3 TPIU";
1380 full
= "(Trace Port Interface Unit)";
1383 type
= "Cortex-M3 ETM";
1384 full
= "(Embedded Trace)";
1387 type
= "Cortex-M4 ETM";
1388 full
= "(Embedded Trace)";
1391 type
= "Cortex-R4 ETM";
1392 full
= "(Embedded Trace)";
1395 type
= "Cortex-M4 TPUI";
1396 full
= "(Trace Port Interface Unit)";
1399 type
= "Cortex-A8 Debug";
1400 full
= "(Debug Unit)";
1403 type
= "-*- unrecognized -*-";
1407 command_print(cmd_ctx
, "\t\tPart is %s %s",
1411 command_print(cmd_ctx
, "\t\tComponent not present");
1413 command_print(cmd_ctx
, "\t\tEnd of ROM table");
1416 } while (romentry
> 0);
1418 command_print(cmd_ctx
, "\tNo ROM table present");
1419 dap_ap_select(dap
, ap_old
);
1424 COMMAND_HANDLER(handle_dap_info_command
)
1426 struct target
*target
= get_current_target(CMD_CTX
);
1427 struct arm
*arm
= target_to_arm(target
);
1428 struct adiv5_dap
*dap
= arm
->dap
;
1436 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1439 return ERROR_COMMAND_SYNTAX_ERROR
;
1442 return dap_info_command(CMD_CTX
, dap
, apsel
);
1445 COMMAND_HANDLER(dap_baseaddr_command
)
1447 struct target
*target
= get_current_target(CMD_CTX
);
1448 struct arm
*arm
= target_to_arm(target
);
1449 struct adiv5_dap
*dap
= arm
->dap
;
1451 uint32_t apsel
, baseaddr
;
1459 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1460 /* AP address is in bits 31:24 of DP_SELECT */
1462 return ERROR_COMMAND_SYNTAX_ERROR
;
1465 return ERROR_COMMAND_SYNTAX_ERROR
;
1468 dap_ap_select(dap
, apsel
);
1470 /* NOTE: assumes we're talking to a MEM-AP, which
1471 * has a base address. There are other kinds of AP,
1472 * though they're not common for now. This should
1473 * use the ID register to verify it's a MEM-AP.
1475 retval
= dap_queue_ap_read(dap
, AP_REG_BASE
, &baseaddr
);
1476 if (retval
!= ERROR_OK
)
1478 retval
= dap_run(dap
);
1479 if (retval
!= ERROR_OK
)
1482 command_print(CMD_CTX
, "0x%8.8" PRIx32
, baseaddr
);
1487 COMMAND_HANDLER(dap_memaccess_command
)
1489 struct target
*target
= get_current_target(CMD_CTX
);
1490 struct arm
*arm
= target_to_arm(target
);
1491 struct adiv5_dap
*dap
= arm
->dap
;
1493 uint32_t memaccess_tck
;
1497 memaccess_tck
= dap
->memaccess_tck
;
1500 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], memaccess_tck
);
1503 return ERROR_COMMAND_SYNTAX_ERROR
;
1505 dap
->memaccess_tck
= memaccess_tck
;
1507 command_print(CMD_CTX
, "memory bus access delay set to %" PRIi32
" tck",
1508 dap
->memaccess_tck
);
1513 COMMAND_HANDLER(dap_apsel_command
)
1515 struct target
*target
= get_current_target(CMD_CTX
);
1516 struct arm
*arm
= target_to_arm(target
);
1517 struct adiv5_dap
*dap
= arm
->dap
;
1519 uint32_t apsel
, apid
;
1527 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1528 /* AP address is in bits 31:24 of DP_SELECT */
1530 return ERROR_COMMAND_SYNTAX_ERROR
;
1533 return ERROR_COMMAND_SYNTAX_ERROR
;
1537 dap_ap_select(dap
, apsel
);
1539 retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &apid
);
1540 if (retval
!= ERROR_OK
)
1542 retval
= dap_run(dap
);
1543 if (retval
!= ERROR_OK
)
1546 command_print(CMD_CTX
, "ap %" PRIi32
" selected, identification register 0x%8.8" PRIx32
,
1552 COMMAND_HANDLER(dap_apcsw_command
)
1554 struct target
*target
= get_current_target(CMD_CTX
);
1555 struct arm
*arm
= target_to_arm(target
);
1556 struct adiv5_dap
*dap
= arm
->dap
;
1558 uint32_t apcsw
= dap
->apcsw
[dap
->apsel
], sprot
= 0;
1562 command_print(CMD_CTX
, "apsel %" PRIi32
" selected, csw 0x%8.8" PRIx32
,
1563 (dap
->apsel
), apcsw
);
1566 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], sprot
);
1567 /* AP address is in bits 31:24 of DP_SELECT */
1569 return ERROR_COMMAND_SYNTAX_ERROR
;
1573 apcsw
&= ~CSW_SPROT
;
1576 return ERROR_COMMAND_SYNTAX_ERROR
;
1578 dap
->apcsw
[dap
->apsel
] = apcsw
;
1585 COMMAND_HANDLER(dap_apid_command
)
1587 struct target
*target
= get_current_target(CMD_CTX
);
1588 struct arm
*arm
= target_to_arm(target
);
1589 struct adiv5_dap
*dap
= arm
->dap
;
1591 uint32_t apsel
, apid
;
1599 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1600 /* AP address is in bits 31:24 of DP_SELECT */
1602 return ERROR_COMMAND_SYNTAX_ERROR
;
1605 return ERROR_COMMAND_SYNTAX_ERROR
;
1608 dap_ap_select(dap
, apsel
);
1610 retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &apid
);
1611 if (retval
!= ERROR_OK
)
1613 retval
= dap_run(dap
);
1614 if (retval
!= ERROR_OK
)
1617 command_print(CMD_CTX
, "0x%8.8" PRIx32
, apid
);
1622 static const struct command_registration dap_commands
[] = {
1625 .handler
= handle_dap_info_command
,
1626 .mode
= COMMAND_EXEC
,
1627 .help
= "display ROM table for MEM-AP "
1628 "(default currently selected AP)",
1629 .usage
= "[ap_num]",
1633 .handler
= dap_apsel_command
,
1634 .mode
= COMMAND_EXEC
,
1635 .help
= "Set the currently selected AP (default 0) "
1636 "and display the result",
1637 .usage
= "[ap_num]",
1641 .handler
= dap_apcsw_command
,
1642 .mode
= COMMAND_EXEC
,
1643 .help
= "Set csw access bit ",
1649 .handler
= dap_apid_command
,
1650 .mode
= COMMAND_EXEC
,
1651 .help
= "return ID register from AP "
1652 "(default currently selected AP)",
1653 .usage
= "[ap_num]",
1657 .handler
= dap_baseaddr_command
,
1658 .mode
= COMMAND_EXEC
,
1659 .help
= "return debug base address from MEM-AP "
1660 "(default currently selected AP)",
1661 .usage
= "[ap_num]",
1664 .name
= "memaccess",
1665 .handler
= dap_memaccess_command
,
1666 .mode
= COMMAND_EXEC
,
1667 .help
= "set/get number of extra tck for MEM-AP memory "
1668 "bus access [0-255]",
1669 .usage
= "[cycles]",
1671 COMMAND_REGISTRATION_DONE
1674 const struct command_registration dap_command_handlers
[] = {
1677 .mode
= COMMAND_EXEC
,
1678 .help
= "DAP command group",
1680 .chain
= dap_commands
,
1682 COMMAND_REGISTRATION_DONE