target/armv7m: prevent storing invalid register
[openocd.git] / src / target / armv7m.c
blob6f6a170b701be8c02c822fe2fe8c5a2bb9566b8b
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /***************************************************************************
4 * Copyright (C) 2005 by Dominic Rath *
5 * Dominic.Rath@gmx.de *
6 * *
7 * Copyright (C) 2006 by Magnus Lundin *
8 * lundin@mlu.mine.nu *
9 * *
10 * Copyright (C) 2008 by Spencer Oliver *
11 * spen@spen-soft.co.uk *
12 * *
13 * Copyright (C) 2007,2008 Øyvind Harboe *
14 * oyvind.harboe@zylin.com *
15 * *
16 * Copyright (C) 2018 by Liviu Ionescu *
17 * <ilg@livius.net> *
18 * *
19 * Copyright (C) 2019 by Tomas Vanek *
20 * vanekt@fbl.cz *
21 * *
22 * ARMv7-M Architecture, Application Level Reference Manual *
23 * ARM DDI 0405C (September 2008) *
24 * *
25 ***************************************************************************/
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
31 #include "breakpoints.h"
32 #include "armv7m.h"
33 #include "algorithm.h"
34 #include "register.h"
35 #include "semihosting_common.h"
36 #include <helper/log.h>
37 #include <helper/binarybuffer.h>
39 #if 0
40 #define _DEBUG_INSTRUCTION_EXECUTION_
41 #endif
43 static const char * const armv7m_exception_strings[] = {
44 "", "Reset", "NMI", "HardFault",
45 "MemManage", "BusFault", "UsageFault", "SecureFault",
46 "RESERVED", "RESERVED", "RESERVED", "SVCall",
47 "DebugMonitor", "RESERVED", "PendSV", "SysTick"
50 /* PSP is used in some thread modes */
51 const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
52 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
53 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
54 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
55 ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
56 ARMV7M_XPSR,
59 /* MSP is used in handler and some thread modes */
60 const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
61 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
62 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
63 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
64 ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
65 ARMV7M_XPSR,
69 * These registers are not memory-mapped. The ARMv7-M profile includes
70 * memory mapped registers too, such as for the NVIC (interrupt controller)
71 * and SysTick (timer) modules; those can mostly be treated as peripherals.
73 * The ARMv6-M profile is almost identical in this respect, except that it
74 * doesn't include basepri or faultmask registers.
76 static const struct {
77 unsigned id;
78 const char *name;
79 unsigned bits;
80 enum reg_type type;
81 const char *group;
82 const char *feature;
83 } armv7m_regs[] = {
84 { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
85 { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
86 { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
87 { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
88 { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
89 { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
90 { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
91 { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
92 { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
93 { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
94 { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
95 { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
96 { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
97 { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
98 { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
99 { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
100 { ARMV7M_XPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
102 { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
103 { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
105 /* A working register for packing/unpacking special regs, hidden from gdb */
106 { ARMV7M_PMSK_BPRI_FLTMSK_CTRL, "pmsk_bpri_fltmsk_ctrl", 32, REG_TYPE_INT, NULL, NULL },
108 /* WARNING: If you use armv7m_write_core_reg() on one of 4 following
109 * special registers, the new data go to ARMV7M_PMSK_BPRI_FLTMSK_CTRL
110 * cache only and are not flushed to CPU HW register.
111 * To trigger write to CPU HW register, add
112 * armv7m_write_core_reg(,,ARMV7M_PMSK_BPRI_FLTMSK_CTRL,);
114 { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
115 { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
116 { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
117 { ARMV7M_CONTROL, "control", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
119 /* ARMv8-M specific registers */
120 { ARMV8M_MSP_NS, "msp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
121 { ARMV8M_PSP_NS, "psp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
122 { ARMV8M_MSP_S, "msp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
123 { ARMV8M_PSP_S, "psp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
124 { ARMV8M_MSPLIM_S, "msplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
125 { ARMV8M_PSPLIM_S, "psplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
126 { ARMV8M_MSPLIM_NS, "msplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
127 { ARMV8M_PSPLIM_NS, "psplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
129 { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S, "pmsk_bpri_fltmsk_ctrl_s", 32, REG_TYPE_INT, NULL, NULL },
130 { ARMV8M_PRIMASK_S, "primask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
131 { ARMV8M_BASEPRI_S, "basepri_s", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
132 { ARMV8M_FAULTMASK_S, "faultmask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
133 { ARMV8M_CONTROL_S, "control_s", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
135 { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS, "pmsk_bpri_fltmsk_ctrl_ns", 32, REG_TYPE_INT, NULL, NULL },
136 { ARMV8M_PRIMASK_NS, "primask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
137 { ARMV8M_BASEPRI_NS, "basepri_ns", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
138 { ARMV8M_FAULTMASK_NS, "faultmask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
139 { ARMV8M_CONTROL_NS, "control_ns", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
141 /* FPU registers */
142 { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
143 { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
144 { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
145 { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
146 { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
147 { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
148 { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
149 { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
150 { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
151 { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
152 { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
153 { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
154 { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
155 { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
156 { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
157 { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
159 { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
162 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
165 * Restores target context using the cache of core registers set up
166 * by armv7m_build_reg_cache(), calling optional core-specific hooks.
168 int armv7m_restore_context(struct target *target)
170 int i;
171 struct armv7m_common *armv7m = target_to_armv7m(target);
172 struct reg_cache *cache = armv7m->arm.core_cache;
174 LOG_DEBUG(" ");
176 if (armv7m->pre_restore_context)
177 armv7m->pre_restore_context(target);
179 /* The descending order of register writes is crucial for correct
180 * packing of ARMV7M_PMSK_BPRI_FLTMSK_CTRL!
181 * See also comments in the register table above */
182 for (i = cache->num_regs - 1; i >= 0; i--) {
183 struct reg *r = &cache->reg_list[i];
185 if (r->exist && r->dirty)
186 armv7m->arm.write_core_reg(target, r, i, ARM_MODE_ANY, r->value);
189 return ERROR_OK;
192 /* Core state functions */
195 * Maps ISR number (from xPSR) to name.
196 * Note that while names and meanings for the first sixteen are standardized
197 * (with zero not a true exception), external interrupts are only numbered.
198 * They are assigned by vendors, which generally assign different numbers to
199 * peripherals (such as UART0 or a USB peripheral controller).
201 const char *armv7m_exception_string(int number)
203 static char enamebuf[32];
205 if ((number < 0) | (number > 511))
206 return "Invalid exception";
207 if (number < 16)
208 return armv7m_exception_strings[number];
209 sprintf(enamebuf, "External Interrupt(%i)", number - 16);
210 return enamebuf;
213 static int armv7m_get_core_reg(struct reg *reg)
215 int retval;
216 struct arm_reg *armv7m_reg = reg->arch_info;
217 struct target *target = armv7m_reg->target;
218 struct arm *arm = target_to_arm(target);
220 if (target->state != TARGET_HALTED)
221 return ERROR_TARGET_NOT_HALTED;
223 retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
225 return retval;
228 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
230 struct arm_reg *armv7m_reg = reg->arch_info;
231 struct target *target = armv7m_reg->target;
233 if (target->state != TARGET_HALTED)
234 return ERROR_TARGET_NOT_HALTED;
236 buf_cpy(buf, reg->value, reg->size);
237 reg->dirty = true;
238 reg->valid = true;
240 return ERROR_OK;
243 uint32_t armv7m_map_id_to_regsel(unsigned int arm_reg_id)
245 switch (arm_reg_id) {
246 case ARMV7M_R0 ... ARMV7M_R14:
247 case ARMV7M_PC:
248 case ARMV7M_XPSR:
249 case ARMV7M_MSP:
250 case ARMV7M_PSP:
251 /* NOTE: we "know" here that the register identifiers
252 * match the Cortex-M DCRSR.REGSEL selectors values
253 * for R0..R14, PC, xPSR, MSP, and PSP.
255 return arm_reg_id;
257 case ARMV7M_PMSK_BPRI_FLTMSK_CTRL:
258 return ARMV7M_REGSEL_PMSK_BPRI_FLTMSK_CTRL;
260 case ARMV8M_MSP_NS...ARMV8M_PSPLIM_NS:
261 return arm_reg_id - ARMV8M_MSP_NS + ARMV8M_REGSEL_MSP_NS;
263 case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S:
264 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_S;
266 case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS:
267 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_NS;
269 case ARMV7M_FPSCR:
270 return ARMV7M_REGSEL_FPSCR;
272 case ARMV7M_D0 ... ARMV7M_D15:
273 return ARMV7M_REGSEL_S0 + 2 * (arm_reg_id - ARMV7M_D0);
275 default:
276 LOG_ERROR("Bad register ID %u", arm_reg_id);
277 return arm_reg_id;
281 bool armv7m_map_reg_packing(unsigned int arm_reg_id,
282 unsigned int *reg32_id, uint32_t *offset)
285 switch (arm_reg_id) {
287 case ARMV7M_PRIMASK...ARMV7M_CONTROL:
288 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
289 *offset = arm_reg_id - ARMV7M_PRIMASK;
290 return true;
291 case ARMV8M_PRIMASK_S...ARMV8M_CONTROL_S:
292 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S;
293 *offset = arm_reg_id - ARMV8M_PRIMASK_S;
294 return true;
295 case ARMV8M_PRIMASK_NS...ARMV8M_CONTROL_NS:
296 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS;
297 *offset = arm_reg_id - ARMV8M_PRIMASK_NS;
298 return true;
300 default:
301 return false;
306 static int armv7m_read_core_reg(struct target *target, struct reg *r,
307 int num, enum arm_mode mode)
309 uint32_t reg_value;
310 int retval;
311 struct armv7m_common *armv7m = target_to_armv7m(target);
313 assert(num < (int)armv7m->arm.core_cache->num_regs);
314 assert(num == (int)r->number);
316 /* If a code calls read_reg, it expects the cache is no more dirty.
317 * Clear the dirty flag regardless of the later read succeeds or not
318 * to prevent unwanted cache flush after a read error */
319 r->dirty = false;
321 if (r->size <= 8) {
322 /* any 8-bit or shorter register is packed */
323 uint32_t offset;
324 unsigned int reg32_id;
326 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
327 if (!is_packed) {
328 /* We should not get here as all 8-bit or shorter registers
329 * are packed */
330 assert(false);
331 /* assert() does nothing if NDEBUG is defined */
332 return ERROR_FAIL;
334 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
336 /* Read 32-bit container register if not cached */
337 if (!r32->valid) {
338 retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
339 if (retval != ERROR_OK)
340 return retval;
343 /* Copy required bits of 32-bit container register */
344 buf_cpy(r32->value + offset, r->value, r->size);
346 } else {
347 assert(r->size == 32 || r->size == 64);
349 struct arm_reg *armv7m_core_reg = r->arch_info;
350 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
352 retval = armv7m->load_core_reg_u32(target, regsel, &reg_value);
353 if (retval != ERROR_OK)
354 return retval;
355 buf_set_u32(r->value, 0, 32, reg_value);
357 if (r->size == 64) {
358 retval = armv7m->load_core_reg_u32(target, regsel + 1, &reg_value);
359 if (retval != ERROR_OK) {
360 r->valid = false;
361 return retval;
363 buf_set_u32(r->value + 4, 0, 32, reg_value);
365 uint64_t q = buf_get_u64(r->value, 0, 64);
366 LOG_DEBUG("read %s value 0x%016" PRIx64, r->name, q);
367 } else {
368 LOG_DEBUG("read %s value 0x%08" PRIx32, r->name, reg_value);
372 r->valid = true;
374 return ERROR_OK;
377 static int armv7m_write_core_reg(struct target *target, struct reg *r,
378 int num, enum arm_mode mode, uint8_t *value)
380 int retval;
381 uint32_t t;
382 struct armv7m_common *armv7m = target_to_armv7m(target);
384 assert(num < (int)armv7m->arm.core_cache->num_regs);
385 assert(num == (int)r->number);
387 if (value != r->value) {
388 /* If we are not flushing the cache, store the new value to the cache */
389 buf_cpy(value, r->value, r->size);
392 if (r->size <= 8) {
393 /* any 8-bit or shorter register is packed */
394 uint32_t offset;
395 unsigned int reg32_id;
397 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
398 if (!is_packed) {
399 /* We should not get here as all 8-bit or shorter registers
400 * are packed */
401 assert(false);
402 /* assert() does nothing if NDEBUG is defined */
403 return ERROR_FAIL;
405 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
407 if (!r32->valid) {
408 /* Before merging with other parts ensure the 32-bit register is valid */
409 retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
410 if (retval != ERROR_OK)
411 return retval;
414 /* Write a part to the 32-bit container register */
415 buf_cpy(value, r32->value + offset, r->size);
416 r32->dirty = true;
418 } else {
419 assert(r->size == 32 || r->size == 64);
421 struct arm_reg *armv7m_core_reg = r->arch_info;
422 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
424 t = buf_get_u32(value, 0, 32);
425 retval = armv7m->store_core_reg_u32(target, regsel, t);
426 if (retval != ERROR_OK)
427 goto out_error;
429 if (r->size == 64) {
430 t = buf_get_u32(value + 4, 0, 32);
431 retval = armv7m->store_core_reg_u32(target, regsel + 1, t);
432 if (retval != ERROR_OK)
433 goto out_error;
435 uint64_t q = buf_get_u64(value, 0, 64);
436 LOG_DEBUG("write %s value 0x%016" PRIx64, r->name, q);
437 } else {
438 LOG_DEBUG("write %s value 0x%08" PRIx32, r->name, t);
442 r->valid = true;
443 r->dirty = false;
445 return ERROR_OK;
447 out_error:
448 r->dirty = true;
449 LOG_ERROR("Error setting register %s", r->name);
450 return retval;
454 * Returns generic ARM userspace registers to GDB.
456 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
457 int *reg_list_size, enum target_register_class reg_class)
459 struct armv7m_common *armv7m = target_to_armv7m(target);
460 int i, size;
462 if (reg_class == REG_CLASS_ALL)
463 size = armv7m->arm.core_cache->num_regs;
464 else
465 size = ARMV7M_NUM_CORE_REGS;
467 *reg_list = malloc(sizeof(struct reg *) * size);
468 if (!*reg_list)
469 return ERROR_FAIL;
471 for (i = 0; i < size; i++)
472 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
474 *reg_list_size = size;
476 return ERROR_OK;
479 /** Runs a Thumb algorithm in the target. */
480 int armv7m_run_algorithm(struct target *target,
481 int num_mem_params, struct mem_param *mem_params,
482 int num_reg_params, struct reg_param *reg_params,
483 target_addr_t entry_point, target_addr_t exit_point,
484 int timeout_ms, void *arch_info)
486 int retval;
488 retval = armv7m_start_algorithm(target,
489 num_mem_params, mem_params,
490 num_reg_params, reg_params,
491 entry_point, exit_point,
492 arch_info);
494 if (retval == ERROR_OK)
495 retval = armv7m_wait_algorithm(target,
496 num_mem_params, mem_params,
497 num_reg_params, reg_params,
498 exit_point, timeout_ms,
499 arch_info);
501 return retval;
504 /** Starts a Thumb algorithm in the target. */
505 int armv7m_start_algorithm(struct target *target,
506 int num_mem_params, struct mem_param *mem_params,
507 int num_reg_params, struct reg_param *reg_params,
508 target_addr_t entry_point, target_addr_t exit_point,
509 void *arch_info)
511 struct armv7m_common *armv7m = target_to_armv7m(target);
512 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
513 enum arm_mode core_mode = armv7m->arm.core_mode;
514 int retval = ERROR_OK;
516 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
517 * at the exit point */
519 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
520 LOG_ERROR("current target isn't an ARMV7M target");
521 return ERROR_TARGET_INVALID;
524 if (target->state != TARGET_HALTED) {
525 LOG_WARNING("target not halted");
526 return ERROR_TARGET_NOT_HALTED;
529 /* Store all non-debug execution registers to armv7m_algorithm_info context */
530 for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
531 struct reg *reg = &armv7m->arm.core_cache->reg_list[i];
532 if (!reg->valid)
533 armv7m_get_core_reg(reg);
535 if (!reg->valid)
536 LOG_TARGET_WARNING(target, "Storing invalid register %s", reg->name);
538 armv7m_algorithm_info->context[i] = buf_get_u32(reg->value, 0, 32);
541 for (int i = 0; i < num_mem_params; i++) {
542 if (mem_params[i].direction == PARAM_IN)
543 continue;
544 retval = target_write_buffer(target, mem_params[i].address,
545 mem_params[i].size,
546 mem_params[i].value);
547 if (retval != ERROR_OK)
548 return retval;
551 for (int i = 0; i < num_reg_params; i++) {
552 if (reg_params[i].direction == PARAM_IN)
553 continue;
555 struct reg *reg =
556 register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, false);
557 /* uint32_t regvalue; */
559 if (!reg) {
560 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
561 return ERROR_COMMAND_SYNTAX_ERROR;
564 if (reg->size != reg_params[i].size) {
565 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
566 reg_params[i].reg_name);
567 return ERROR_COMMAND_SYNTAX_ERROR;
570 /* regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
571 armv7m_set_core_reg(reg, reg_params[i].value);
576 * Ensure xPSR.T is set to avoid trying to run things in arm
577 * (non-thumb) mode, which armv7m does not support.
579 * We do this by setting the entirety of xPSR, which should
580 * remove all the unknowns about xPSR state.
582 * Because xPSR.T is populated on reset from the vector table,
583 * it might be 0 if the vector table has "bad" data in it.
585 struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_XPSR];
586 buf_set_u32(reg->value, 0, 32, 0x01000000);
587 reg->valid = true;
588 reg->dirty = true;
591 if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
592 armv7m_algorithm_info->core_mode != core_mode) {
594 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
595 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
596 armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
597 LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
600 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
601 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
602 0, 1, armv7m_algorithm_info->core_mode);
603 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
604 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
607 /* save previous core mode */
608 armv7m_algorithm_info->core_mode = core_mode;
610 retval = target_resume(target, 0, entry_point, 1, 1);
612 return retval;
615 /** Waits for an algorithm in the target. */
616 int armv7m_wait_algorithm(struct target *target,
617 int num_mem_params, struct mem_param *mem_params,
618 int num_reg_params, struct reg_param *reg_params,
619 target_addr_t exit_point, int timeout_ms,
620 void *arch_info)
622 struct armv7m_common *armv7m = target_to_armv7m(target);
623 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
624 int retval = ERROR_OK;
626 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
627 * at the exit point */
629 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
630 LOG_ERROR("current target isn't an ARMV7M target");
631 return ERROR_TARGET_INVALID;
634 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
635 /* If the target fails to halt due to the breakpoint, force a halt */
636 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
637 retval = target_halt(target);
638 if (retval != ERROR_OK)
639 return retval;
640 retval = target_wait_state(target, TARGET_HALTED, 500);
641 if (retval != ERROR_OK)
642 return retval;
643 return ERROR_TARGET_TIMEOUT;
646 if (exit_point) {
647 /* PC value has been cached in cortex_m_debug_entry() */
648 uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
649 if (pc != exit_point) {
650 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
651 pc, exit_point);
652 return ERROR_TARGET_ALGO_EXIT;
656 /* Read memory values to mem_params[] */
657 for (int i = 0; i < num_mem_params; i++) {
658 if (mem_params[i].direction != PARAM_OUT) {
659 retval = target_read_buffer(target, mem_params[i].address,
660 mem_params[i].size,
661 mem_params[i].value);
662 if (retval != ERROR_OK)
663 return retval;
667 /* Copy core register values to reg_params[] */
668 for (int i = 0; i < num_reg_params; i++) {
669 if (reg_params[i].direction != PARAM_OUT) {
670 struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
671 reg_params[i].reg_name,
672 false);
674 if (!reg) {
675 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
676 return ERROR_COMMAND_SYNTAX_ERROR;
679 if (reg->size != reg_params[i].size) {
680 LOG_ERROR(
681 "BUG: register '%s' size doesn't match reg_params[i].size",
682 reg_params[i].reg_name);
683 return ERROR_COMMAND_SYNTAX_ERROR;
686 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
690 for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
691 uint32_t regvalue;
692 regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
693 if (regvalue != armv7m_algorithm_info->context[i]) {
694 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
695 armv7m->arm.core_cache->reg_list[i].name,
696 armv7m_algorithm_info->context[i]);
697 buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
698 0, 32, armv7m_algorithm_info->context[i]);
699 armv7m->arm.core_cache->reg_list[i].valid = true;
700 armv7m->arm.core_cache->reg_list[i].dirty = true;
704 /* restore previous core mode */
705 if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
706 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
707 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
708 0, 1, armv7m_algorithm_info->core_mode);
709 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
710 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
713 armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
715 return retval;
718 /** Logs summary of ARMv7-M state for a halted target. */
719 int armv7m_arch_state(struct target *target)
721 struct armv7m_common *armv7m = target_to_armv7m(target);
722 struct arm *arm = &armv7m->arm;
723 uint32_t ctrl, sp;
725 /* avoid filling log waiting for fileio reply */
726 if (target->semihosting && target->semihosting->hit_fileio)
727 return ERROR_OK;
729 ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
730 sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
732 LOG_USER("target halted due to %s, current mode: %s %s\n"
733 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
734 debug_reason_name(target),
735 arm_mode_name(arm->core_mode),
736 armv7m_exception_string(armv7m->exception_number),
737 buf_get_u32(arm->cpsr->value, 0, 32),
738 buf_get_u32(arm->pc->value, 0, 32),
739 (ctrl & 0x02) ? 'p' : 'm',
741 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
742 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
744 return ERROR_OK;
747 static const struct reg_arch_type armv7m_reg_type = {
748 .get = armv7m_get_core_reg,
749 .set = armv7m_set_core_reg,
752 /** Builds cache of architecturally defined registers. */
753 struct reg_cache *armv7m_build_reg_cache(struct target *target)
755 struct armv7m_common *armv7m = target_to_armv7m(target);
756 struct arm *arm = &armv7m->arm;
757 int num_regs = ARMV7M_NUM_REGS;
758 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
759 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
760 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
761 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
762 struct reg_feature *feature;
763 int i;
765 /* Build the process context cache */
766 cache->name = "arm v7m registers";
767 cache->next = NULL;
768 cache->reg_list = reg_list;
769 cache->num_regs = num_regs;
770 (*cache_p) = cache;
772 for (i = 0; i < num_regs; i++) {
773 arch_info[i].num = armv7m_regs[i].id;
774 arch_info[i].target = target;
775 arch_info[i].arm = arm;
777 reg_list[i].name = armv7m_regs[i].name;
778 reg_list[i].size = armv7m_regs[i].bits;
779 reg_list[i].value = arch_info[i].value;
780 reg_list[i].dirty = false;
781 reg_list[i].valid = false;
782 reg_list[i].hidden = (i == ARMV7M_PMSK_BPRI_FLTMSK_CTRL ||
783 i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS || i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S);
784 reg_list[i].type = &armv7m_reg_type;
785 reg_list[i].arch_info = &arch_info[i];
787 reg_list[i].group = armv7m_regs[i].group;
788 reg_list[i].number = i;
789 reg_list[i].exist = true;
790 reg_list[i].caller_save = true; /* gdb defaults to true */
792 if (reg_list[i].hidden)
793 continue;
795 feature = calloc(1, sizeof(struct reg_feature));
796 if (feature) {
797 feature->name = armv7m_regs[i].feature;
798 reg_list[i].feature = feature;
799 } else
800 LOG_ERROR("unable to allocate feature list");
802 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
803 if (reg_list[i].reg_data_type)
804 reg_list[i].reg_data_type->type = armv7m_regs[i].type;
805 else
806 LOG_ERROR("unable to allocate reg type list");
809 arm->cpsr = reg_list + ARMV7M_XPSR;
810 arm->pc = reg_list + ARMV7M_PC;
811 arm->core_cache = cache;
813 return cache;
816 void armv7m_free_reg_cache(struct target *target)
818 struct armv7m_common *armv7m = target_to_armv7m(target);
819 struct arm *arm = &armv7m->arm;
820 struct reg_cache *cache;
821 struct reg *reg;
822 unsigned int i;
824 cache = arm->core_cache;
826 if (!cache)
827 return;
829 for (i = 0; i < cache->num_regs; i++) {
830 reg = &cache->reg_list[i];
832 free(reg->feature);
833 free(reg->reg_data_type);
836 free(cache->reg_list[0].arch_info);
837 free(cache->reg_list);
838 free(cache);
840 arm->core_cache = NULL;
843 static int armv7m_setup_semihosting(struct target *target, int enable)
845 /* nothing todo for armv7m */
846 return ERROR_OK;
849 /** Sets up target as a generic ARMv7-M core */
850 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
852 struct arm *arm = &armv7m->arm;
854 armv7m->common_magic = ARMV7M_COMMON_MAGIC;
855 armv7m->fp_feature = FP_NONE;
856 armv7m->trace_config.trace_bus_id = 1;
857 /* Enable stimulus port #0 by default */
858 armv7m->trace_config.itm_ter[0] = 1;
860 arm->core_state = ARM_STATE_THUMB;
861 arm->core_type = ARM_CORE_TYPE_M_PROFILE;
862 arm->arch_info = armv7m;
863 arm->setup_semihosting = armv7m_setup_semihosting;
865 arm->read_core_reg = armv7m_read_core_reg;
866 arm->write_core_reg = armv7m_write_core_reg;
868 return arm_init_arch_info(target, arm);
871 /** Generates a CRC32 checksum of a memory region. */
872 int armv7m_checksum_memory(struct target *target,
873 target_addr_t address, uint32_t count, uint32_t *checksum)
875 struct working_area *crc_algorithm;
876 struct armv7m_algorithm armv7m_info;
877 struct reg_param reg_params[2];
878 int retval;
880 static const uint8_t cortex_m_crc_code[] = {
881 #include "../../contrib/loaders/checksum/armv7m_crc.inc"
884 retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
885 if (retval != ERROR_OK)
886 return retval;
888 retval = target_write_buffer(target, crc_algorithm->address,
889 sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
890 if (retval != ERROR_OK)
891 goto cleanup;
893 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
894 armv7m_info.core_mode = ARM_MODE_THREAD;
896 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
897 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
899 buf_set_u32(reg_params[0].value, 0, 32, address);
900 buf_set_u32(reg_params[1].value, 0, 32, count);
902 int timeout = 20000 * (1 + (count / (1024 * 1024)));
904 retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
905 crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
906 timeout, &armv7m_info);
908 if (retval == ERROR_OK)
909 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
910 else
911 LOG_ERROR("error executing cortex_m crc algorithm");
913 destroy_reg_param(&reg_params[0]);
914 destroy_reg_param(&reg_params[1]);
916 cleanup:
917 target_free_working_area(target, crc_algorithm);
919 return retval;
922 /** Checks an array of memory regions whether they are erased. */
923 int armv7m_blank_check_memory(struct target *target,
924 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
926 struct working_area *erase_check_algorithm;
927 struct working_area *erase_check_params;
928 struct reg_param reg_params[2];
929 struct armv7m_algorithm armv7m_info;
930 int retval;
932 static bool timed_out;
934 static const uint8_t erase_check_code[] = {
935 #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
938 const uint32_t code_size = sizeof(erase_check_code);
940 /* make sure we have a working area */
941 if (target_alloc_working_area(target, code_size,
942 &erase_check_algorithm) != ERROR_OK)
943 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
945 retval = target_write_buffer(target, erase_check_algorithm->address,
946 code_size, erase_check_code);
947 if (retval != ERROR_OK)
948 goto cleanup1;
950 /* prepare blocks array for algo */
951 struct algo_block {
952 union {
953 uint32_t size;
954 uint32_t result;
956 uint32_t address;
959 uint32_t avail = target_get_working_area_avail(target);
960 int blocks_to_check = avail / sizeof(struct algo_block) - 1;
961 if (num_blocks < blocks_to_check)
962 blocks_to_check = num_blocks;
964 struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
965 if (!params) {
966 retval = ERROR_FAIL;
967 goto cleanup1;
970 int i;
971 uint32_t total_size = 0;
972 for (i = 0; i < blocks_to_check; i++) {
973 total_size += blocks[i].size;
974 target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
975 blocks[i].size / sizeof(uint32_t));
976 target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
977 blocks[i].address);
979 target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
981 uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
982 if (target_alloc_working_area(target, param_size,
983 &erase_check_params) != ERROR_OK) {
984 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
985 goto cleanup2;
988 retval = target_write_buffer(target, erase_check_params->address,
989 param_size, (uint8_t *)params);
990 if (retval != ERROR_OK)
991 goto cleanup3;
993 uint32_t erased_word = erased_value | (erased_value << 8)
994 | (erased_value << 16) | (erased_value << 24);
996 LOG_DEBUG("Starting erase check of %d blocks, parameters@"
997 TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
999 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1000 armv7m_info.core_mode = ARM_MODE_THREAD;
1002 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1003 buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
1005 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1006 buf_set_u32(reg_params[1].value, 0, 32, erased_word);
1008 /* assume CPU clk at least 1 MHz */
1009 int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
1011 retval = target_run_algorithm(target,
1012 0, NULL,
1013 ARRAY_SIZE(reg_params), reg_params,
1014 erase_check_algorithm->address,
1015 erase_check_algorithm->address + (code_size - 2),
1016 timeout,
1017 &armv7m_info);
1019 timed_out = retval == ERROR_TARGET_TIMEOUT;
1020 if (retval != ERROR_OK && !timed_out)
1021 goto cleanup4;
1023 retval = target_read_buffer(target, erase_check_params->address,
1024 param_size, (uint8_t *)params);
1025 if (retval != ERROR_OK)
1026 goto cleanup4;
1028 for (i = 0; i < blocks_to_check; i++) {
1029 uint32_t result = target_buffer_get_u32(target,
1030 (uint8_t *)&(params[i].result));
1031 if (result != 0 && result != 1)
1032 break;
1034 blocks[i].result = result;
1036 if (i && timed_out)
1037 LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
1039 retval = i; /* return number of blocks really checked */
1041 cleanup4:
1042 destroy_reg_param(&reg_params[0]);
1043 destroy_reg_param(&reg_params[1]);
1045 cleanup3:
1046 target_free_working_area(target, erase_check_params);
1047 cleanup2:
1048 free(params);
1049 cleanup1:
1050 target_free_working_area(target, erase_check_algorithm);
1052 return retval;
1055 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
1057 struct armv7m_common *armv7m = target_to_armv7m(target);
1058 struct reg *r = armv7m->arm.pc;
1059 bool result = false;
1062 /* if we halted last time due to a bkpt instruction
1063 * then we have to manually step over it, otherwise
1064 * the core will break again */
1066 if (target->debug_reason == DBG_REASON_BREAKPOINT) {
1067 uint16_t op;
1068 uint32_t pc = buf_get_u32(r->value, 0, 32);
1070 pc &= ~1;
1071 if (target_read_u16(target, pc, &op) == ERROR_OK) {
1072 if ((op & 0xFF00) == 0xBE00) {
1073 pc = buf_get_u32(r->value, 0, 32) + 2;
1074 buf_set_u32(r->value, 0, 32, pc);
1075 r->dirty = true;
1076 r->valid = true;
1077 result = true;
1078 LOG_DEBUG("Skipping over BKPT instruction");
1083 if (inst_found)
1084 *inst_found = result;
1086 return ERROR_OK;
1089 const struct command_registration armv7m_command_handlers[] = {
1091 .name = "arm",
1092 .mode = COMMAND_ANY,
1093 .help = "ARM command group",
1094 .usage = "",
1095 .chain = arm_all_profiles_command_handlers,
1097 COMMAND_REGISTRATION_DONE