aarch64: add basic Aarch32 support
[openocd.git] / src / target / aarch64.c
blob824a042de917416a3bbc2ad0006c31f9ca72b7cf
1 /***************************************************************************
2 * Copyright (C) 2015 by David Ung *
3 * *
4 * This program is free software; you can redistribute it and/or modify *
5 * it under the terms of the GNU General Public License as published by *
6 * the Free Software Foundation; either version 2 of the License, or *
7 * (at your option) any later version. *
8 * *
9 * This program is distributed in the hope that it will be useful, *
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12 * GNU General Public License for more details. *
13 * *
14 * You should have received a copy of the GNU General Public License *
15 * along with this program; if not, write to the *
16 * Free Software Foundation, Inc., *
17 * *
18 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include <helper/time_support.h>
33 static int aarch64_poll(struct target *target);
34 static int aarch64_debug_entry(struct target *target);
35 static int aarch64_restore_context(struct target *target, bool bpwp);
36 static int aarch64_set_breakpoint(struct target *target,
37 struct breakpoint *breakpoint, uint8_t matchmode);
38 static int aarch64_set_context_breakpoint(struct target *target,
39 struct breakpoint *breakpoint, uint8_t matchmode);
40 static int aarch64_set_hybrid_breakpoint(struct target *target,
41 struct breakpoint *breakpoint);
42 static int aarch64_unset_breakpoint(struct target *target,
43 struct breakpoint *breakpoint);
44 static int aarch64_mmu(struct target *target, int *enabled);
45 static int aarch64_virt2phys(struct target *target,
46 target_addr_t virt, target_addr_t *phys);
47 static int aarch64_read_apb_ap_memory(struct target *target,
48 uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
49 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
50 uint32_t opcode, uint32_t data);
52 static int aarch64_restore_system_control_reg(struct target *target)
54 int retval = ERROR_OK;
56 struct aarch64_common *aarch64 = target_to_aarch64(target);
57 struct armv8_common *armv8 = target_to_armv8(target);
59 if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
60 aarch64->system_control_reg_curr = aarch64->system_control_reg;
61 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
63 switch (armv8->arm.core_mode) {
64 case ARMV8_64_EL0T:
65 case ARMV8_64_EL1T:
66 case ARMV8_64_EL1H:
67 retval = armv8->arm.msr(target, 3, /*op 0*/
68 0, 1, /* op1, op2 */
69 0, 0, /* CRn, CRm */
70 aarch64->system_control_reg);
71 if (retval != ERROR_OK)
72 return retval;
73 break;
74 case ARMV8_64_EL2T:
75 case ARMV8_64_EL2H:
76 retval = armv8->arm.msr(target, 3, /*op 0*/
77 4, 1, /* op1, op2 */
78 0, 0, /* CRn, CRm */
79 aarch64->system_control_reg);
80 if (retval != ERROR_OK)
81 return retval;
82 break;
83 case ARMV8_64_EL3H:
84 case ARMV8_64_EL3T:
85 retval = armv8->arm.msr(target, 3, /*op 0*/
86 6, 1, /* op1, op2 */
87 0, 0, /* CRn, CRm */
88 aarch64->system_control_reg);
89 if (retval != ERROR_OK)
90 return retval;
91 break;
92 default:
93 retval = armv8->arm.mcr(target, 15, 0, 0, 1, 0, aarch64->system_control_reg);
94 if (retval != ERROR_OK)
95 return retval;
96 break;
99 return retval;
102 /* check address before aarch64_apb read write access with mmu on
103 * remove apb predictible data abort */
104 static int aarch64_check_address(struct target *target, uint32_t address)
106 /* TODO */
107 return ERROR_OK;
109 /* modify system_control_reg in order to enable or disable mmu for :
110 * - virt2phys address conversion
111 * - read or write memory in phys or virt address */
112 static int aarch64_mmu_modify(struct target *target, int enable)
114 struct aarch64_common *aarch64 = target_to_aarch64(target);
115 struct armv8_common *armv8 = &aarch64->armv8_common;
116 int retval = ERROR_OK;
118 if (enable) {
119 /* if mmu enabled at target stop and mmu not enable */
120 if (!(aarch64->system_control_reg & 0x1U)) {
121 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
122 return ERROR_FAIL;
124 if (!(aarch64->system_control_reg_curr & 0x1U)) {
125 aarch64->system_control_reg_curr |= 0x1U;
126 switch (armv8->arm.core_mode) {
127 case ARMV8_64_EL0T:
128 case ARMV8_64_EL1T:
129 case ARMV8_64_EL1H:
130 retval = armv8->arm.msr(target, 3, /*op 0*/
131 0, 0, /* op1, op2 */
132 1, 0, /* CRn, CRm */
133 aarch64->system_control_reg_curr);
134 if (retval != ERROR_OK)
135 return retval;
136 break;
137 case ARMV8_64_EL2T:
138 case ARMV8_64_EL2H:
139 retval = armv8->arm.msr(target, 3, /*op 0*/
140 4, 0, /* op1, op2 */
141 1, 0, /* CRn, CRm */
142 aarch64->system_control_reg_curr);
143 if (retval != ERROR_OK)
144 return retval;
145 break;
146 case ARMV8_64_EL3H:
147 case ARMV8_64_EL3T:
148 retval = armv8->arm.msr(target, 3, /*op 0*/
149 6, 0, /* op1, op2 */
150 1, 0, /* CRn, CRm */
151 aarch64->system_control_reg_curr);
152 if (retval != ERROR_OK)
153 return retval;
154 break;
155 default:
156 LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
159 } else {
160 if (aarch64->system_control_reg_curr & 0x4U) {
161 /* data cache is active */
162 aarch64->system_control_reg_curr &= ~0x4U;
163 /* flush data cache armv7 function to be called */
164 if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
165 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
167 if ((aarch64->system_control_reg_curr & 0x1U)) {
168 aarch64->system_control_reg_curr &= ~0x1U;
169 switch (armv8->arm.core_mode) {
170 case ARMV8_64_EL0T:
171 case ARMV8_64_EL1T:
172 case ARMV8_64_EL1H:
173 retval = armv8->arm.msr(target, 3, /*op 0*/
174 0, 0, /* op1, op2 */
175 1, 0, /* CRn, CRm */
176 aarch64->system_control_reg_curr);
177 if (retval != ERROR_OK)
178 return retval;
179 break;
180 case ARMV8_64_EL2T:
181 case ARMV8_64_EL2H:
182 retval = armv8->arm.msr(target, 3, /*op 0*/
183 4, 0, /* op1, op2 */
184 1, 0, /* CRn, CRm */
185 aarch64->system_control_reg_curr);
186 if (retval != ERROR_OK)
187 return retval;
188 break;
189 case ARMV8_64_EL3H:
190 case ARMV8_64_EL3T:
191 retval = armv8->arm.msr(target, 3, /*op 0*/
192 6, 0, /* op1, op2 */
193 1, 0, /* CRn, CRm */
194 aarch64->system_control_reg_curr);
195 if (retval != ERROR_OK)
196 return retval;
197 break;
198 default:
199 LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
200 break;
204 return retval;
208 * Basic debug access, very low level assumes state is saved
210 static int aarch64_init_debug_access(struct target *target)
212 struct armv8_common *armv8 = target_to_armv8(target);
213 int retval;
214 uint32_t dummy;
216 LOG_DEBUG(" ");
218 /* Clear Sticky Power Down status Bit in PRSR to enable access to
219 the registers in the Core Power Domain */
220 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
221 armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
222 if (retval != ERROR_OK)
223 return retval;
226 * Static CTI configuration:
227 * Channel 0 -> trigger outputs HALT request to PE
228 * Channel 1 -> trigger outputs Resume request to PE
229 * Gate all channel trigger events from entering the CTM
232 /* Enable CTI */
233 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
234 armv8->cti_base + CTI_CTR, 1);
235 /* By default, gate all channel triggers to and from the CTM */
236 if (retval == ERROR_OK)
237 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
238 armv8->cti_base + CTI_GATE, 0);
239 /* output halt requests to PE on channel 0 trigger */
240 if (retval == ERROR_OK)
241 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
242 armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
243 /* output restart requests to PE on channel 1 trigger */
244 if (retval == ERROR_OK)
245 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
246 armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
247 if (retval != ERROR_OK)
248 return retval;
250 /* Resync breakpoint registers */
252 /* Since this is likely called from init or reset, update target state information*/
253 return aarch64_poll(target);
256 /* To reduce needless round-trips, pass in a pointer to the current
257 * DSCR value. Initialize it to zero if you just need to know the
258 * value on return from this function; or DSCR_ITE if you
259 * happen to know that no instruction is pending.
261 static int aarch64_exec_opcode(struct target *target,
262 uint32_t opcode, uint32_t *dscr_p)
264 uint32_t dscr;
265 int retval;
266 struct armv8_common *armv8 = target_to_armv8(target);
267 dscr = dscr_p ? *dscr_p : 0;
269 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
271 /* Wait for InstrCompl bit to be set */
272 long long then = timeval_ms();
273 while ((dscr & DSCR_ITE) == 0) {
274 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
275 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
276 if (retval != ERROR_OK) {
277 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
278 return retval;
280 if (timeval_ms() > then + 1000) {
281 LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
282 return ERROR_FAIL;
286 retval = mem_ap_write_u32(armv8->debug_ap,
287 armv8->debug_base + CPUV8_DBG_ITR, opcode);
288 if (retval != ERROR_OK)
289 return retval;
291 then = timeval_ms();
292 do {
293 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
294 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
295 if (retval != ERROR_OK) {
296 LOG_ERROR("Could not read DSCR register");
297 return retval;
299 if (timeval_ms() > then + 1000) {
300 LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
301 return ERROR_FAIL;
303 } while ((dscr & DSCR_ITE) == 0); /* Wait for InstrCompl bit to be set */
305 if (dscr_p)
306 *dscr_p = dscr;
308 return retval;
311 /* Write to memory mapped registers directly with no cache or mmu handling */
312 static int aarch64_dap_write_memap_register_u32(struct target *target,
313 uint32_t address,
314 uint32_t value)
316 int retval;
317 struct armv8_common *armv8 = target_to_armv8(target);
319 retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
321 return retval;
325 * AARCH64 implementation of Debug Programmer's Model
327 * NOTE the invariant: these routines return with DSCR_ITE set,
328 * so there's no need to poll for it before executing an instruction.
330 * NOTE that in several of these cases the "stall" mode might be useful.
331 * It'd let us queue a few operations together... prepare/finish might
332 * be the places to enable/disable that mode.
335 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
337 return container_of(dpm, struct aarch64_common, armv8_common.dpm);
340 static int aarch64_write_dcc(struct armv8_common *armv8, uint32_t data)
342 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
343 return mem_ap_write_u32(armv8->debug_ap,
344 armv8->debug_base + CPUV8_DBG_DTRRX, data);
347 static int aarch64_write_dcc_64(struct armv8_common *armv8, uint64_t data)
349 int ret;
350 LOG_DEBUG("write DCC Low word0x%08" PRIx32, (unsigned)data);
351 LOG_DEBUG("write DCC High word 0x%08" PRIx32, (unsigned)(data >> 32));
352 ret = mem_ap_write_u32(armv8->debug_ap,
353 armv8->debug_base + CPUV8_DBG_DTRRX, data);
354 ret += mem_ap_write_u32(armv8->debug_ap,
355 armv8->debug_base + CPUV8_DBG_DTRTX, data >> 32);
356 return ret;
359 static int aarch64_read_dcc(struct armv8_common *armv8, uint32_t *data,
360 uint32_t *dscr_p)
362 uint32_t dscr = DSCR_ITE;
363 int retval;
365 if (dscr_p)
366 dscr = *dscr_p;
368 /* Wait for DTRRXfull */
369 long long then = timeval_ms();
370 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
371 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
372 armv8->debug_base + CPUV8_DBG_DSCR,
373 &dscr);
374 if (retval != ERROR_OK)
375 return retval;
376 if (timeval_ms() > then + 1000) {
377 LOG_ERROR("Timeout waiting for read dcc");
378 return ERROR_FAIL;
382 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
383 armv8->debug_base + CPUV8_DBG_DTRTX,
384 data);
385 if (retval != ERROR_OK)
386 return retval;
387 LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
389 if (dscr_p)
390 *dscr_p = dscr;
392 return retval;
395 static int aarch64_read_dcc_64(struct armv8_common *armv8, uint64_t *data,
396 uint32_t *dscr_p)
398 uint32_t dscr = DSCR_ITE;
399 uint32_t higher;
400 int retval;
402 if (dscr_p)
403 dscr = *dscr_p;
405 /* Wait for DTRRXfull */
406 long long then = timeval_ms();
407 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
408 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
409 armv8->debug_base + CPUV8_DBG_DSCR,
410 &dscr);
411 if (retval != ERROR_OK)
412 return retval;
413 if (timeval_ms() > then + 1000) {
414 LOG_ERROR("Timeout waiting for read dcc");
415 return ERROR_FAIL;
419 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
420 armv8->debug_base + CPUV8_DBG_DTRTX,
421 (uint32_t *)data);
422 if (retval != ERROR_OK)
423 return retval;
425 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
426 armv8->debug_base + CPUV8_DBG_DTRRX,
427 &higher);
428 if (retval != ERROR_OK)
429 return retval;
431 *data = *(uint32_t *)data | (uint64_t)higher << 32;
432 LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
434 if (dscr_p)
435 *dscr_p = dscr;
437 return retval;
440 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
442 struct aarch64_common *a8 = dpm_to_a8(dpm);
443 uint32_t dscr;
444 int retval;
446 /* set up invariant: INSTR_COMP is set after ever DPM operation */
447 long long then = timeval_ms();
448 for (;; ) {
449 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
450 a8->armv8_common.debug_base + CPUV8_DBG_DSCR,
451 &dscr);
452 if (retval != ERROR_OK)
453 return retval;
454 if ((dscr & DSCR_ITE) != 0)
455 break;
456 if (timeval_ms() > then + 1000) {
457 LOG_ERROR("Timeout waiting for dpm prepare");
458 return ERROR_FAIL;
462 /* this "should never happen" ... */
463 if (dscr & DSCR_DTR_RX_FULL) {
464 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
465 /* Clear DCCRX */
466 retval = mem_ap_read_u32(a8->armv8_common.debug_ap,
467 a8->armv8_common.debug_base + CPUV8_DBG_DTRRX, &dscr);
468 if (retval != ERROR_OK)
469 return retval;
471 /* Clear sticky error */
472 retval = mem_ap_write_u32(a8->armv8_common.debug_ap,
473 a8->armv8_common.debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
474 if (retval != ERROR_OK)
475 return retval;
478 return retval;
481 static int aarch64_dpm_finish(struct arm_dpm *dpm)
483 /* REVISIT what could be done here? */
484 return ERROR_OK;
487 static int aarch64_instr_execute(struct arm_dpm *dpm,
488 uint32_t opcode)
490 struct aarch64_common *a8 = dpm_to_a8(dpm);
491 uint32_t dscr = DSCR_ITE;
493 return aarch64_exec_opcode(
494 a8->armv8_common.arm.target,
495 opcode,
496 &dscr);
499 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
500 uint32_t opcode, uint32_t data)
502 struct aarch64_common *a8 = dpm_to_a8(dpm);
503 int retval;
504 uint32_t dscr = DSCR_ITE;
506 retval = aarch64_write_dcc(&a8->armv8_common, data);
507 if (retval != ERROR_OK)
508 return retval;
510 return aarch64_exec_opcode(
511 a8->armv8_common.arm.target,
512 opcode,
513 &dscr);
516 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
517 uint32_t opcode, uint64_t data)
519 struct aarch64_common *a8 = dpm_to_a8(dpm);
520 int retval;
521 uint32_t dscr = DSCR_ITE;
523 retval = aarch64_write_dcc_64(&a8->armv8_common, data);
524 if (retval != ERROR_OK)
525 return retval;
527 return aarch64_exec_opcode(
528 a8->armv8_common.arm.target,
529 opcode,
530 &dscr);
533 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
534 uint32_t opcode, uint32_t data)
536 struct aarch64_common *a8 = dpm_to_a8(dpm);
538 uint32_t dscr = DSCR_ITE;
539 int retval;
541 retval = aarch64_write_dcc(&a8->armv8_common, data);
542 if (retval != ERROR_OK)
543 return retval;
545 retval = aarch64_exec_opcode(
546 a8->armv8_common.arm.target, armv8_opcode(&a8->armv8_common, READ_REG_DTRRX), &dscr);
547 if (retval != ERROR_OK)
548 return retval;
550 /* then the opcode, taking data from R0 */
551 retval = aarch64_exec_opcode(
552 a8->armv8_common.arm.target,
553 opcode,
554 &dscr);
556 return retval;
559 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
560 uint32_t opcode, uint64_t data)
562 struct aarch64_common *a8 = dpm_to_a8(dpm);
563 uint32_t dscr = DSCR_ITE;
564 int retval;
566 retval = aarch64_write_dcc_64(&a8->armv8_common, data);
567 if (retval != ERROR_OK)
568 return retval;
570 retval = aarch64_exec_opcode(
571 a8->armv8_common.arm.target,
572 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0),
573 &dscr);
574 if (retval != ERROR_OK)
575 return retval;
577 /* then the opcode, taking data from R0 */
578 retval = aarch64_exec_opcode(
579 a8->armv8_common.arm.target,
580 opcode,
581 &dscr);
583 return retval;
586 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
588 struct target *target = dpm->arm->target;
589 struct armv8_common *armv8 = target_to_armv8(target);
590 uint32_t dscr = DSCR_ITE;
592 /* "Prefetch flush" after modifying execution status in CPSR */
593 return aarch64_exec_opcode(target, armv8_opcode(armv8, ARMV8_OPC_DSB_SY), &dscr);
596 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
597 uint32_t opcode, uint32_t *data)
599 struct aarch64_common *a8 = dpm_to_a8(dpm);
600 int retval;
601 uint32_t dscr = DSCR_ITE;
603 /* the opcode, writing data to DCC */
604 retval = aarch64_exec_opcode(
605 a8->armv8_common.arm.target,
606 opcode,
607 &dscr);
608 if (retval != ERROR_OK)
609 return retval;
611 return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
614 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
615 uint32_t opcode, uint64_t *data)
617 struct aarch64_common *a8 = dpm_to_a8(dpm);
618 int retval;
619 uint32_t dscr = DSCR_ITE;
621 /* the opcode, writing data to DCC */
622 retval = aarch64_exec_opcode(
623 a8->armv8_common.arm.target,
624 opcode,
625 &dscr);
626 if (retval != ERROR_OK)
627 return retval;
629 return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
632 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
633 uint32_t opcode, uint32_t *data)
635 struct aarch64_common *a8 = dpm_to_a8(dpm);
636 uint32_t dscr = DSCR_ITE;
637 int retval;
639 /* the opcode, writing data to R0 */
640 retval = aarch64_exec_opcode(
641 a8->armv8_common.arm.target,
642 opcode,
643 &dscr);
644 if (retval != ERROR_OK)
645 return retval;
647 /* write R0 to DCC */
648 retval = aarch64_exec_opcode(
649 a8->armv8_common.arm.target, armv8_opcode(&a8->armv8_common, WRITE_REG_DTRTX), &dscr);
650 if (retval != ERROR_OK)
651 return retval;
653 return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
656 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
657 uint32_t opcode, uint64_t *data)
659 struct aarch64_common *a8 = dpm_to_a8(dpm);
660 uint32_t dscr = DSCR_ITE;
661 int retval;
663 /* the opcode, writing data to R0 */
664 retval = aarch64_exec_opcode(
665 a8->armv8_common.arm.target,
666 opcode,
667 &dscr);
668 if (retval != ERROR_OK)
669 return retval;
671 /* write R0 to DCC */
672 retval = aarch64_exec_opcode(
673 a8->armv8_common.arm.target,
674 ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), /* msr dbgdtr_el0, x0 */
675 &dscr);
676 if (retval != ERROR_OK)
677 return retval;
679 return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
682 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
683 uint32_t addr, uint32_t control)
685 struct aarch64_common *a8 = dpm_to_a8(dpm);
686 uint32_t vr = a8->armv8_common.debug_base;
687 uint32_t cr = a8->armv8_common.debug_base;
688 int retval;
690 switch (index_t) {
691 case 0 ... 15: /* breakpoints */
692 vr += CPUV8_DBG_BVR_BASE;
693 cr += CPUV8_DBG_BCR_BASE;
694 break;
695 case 16 ... 31: /* watchpoints */
696 vr += CPUV8_DBG_WVR_BASE;
697 cr += CPUV8_DBG_WCR_BASE;
698 index_t -= 16;
699 break;
700 default:
701 return ERROR_FAIL;
703 vr += 16 * index_t;
704 cr += 16 * index_t;
706 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
707 (unsigned) vr, (unsigned) cr);
709 retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
710 vr, addr);
711 if (retval != ERROR_OK)
712 return retval;
713 retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
714 cr, control);
715 return retval;
718 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
720 struct aarch64_common *a = dpm_to_a8(dpm);
721 uint32_t cr;
723 switch (index_t) {
724 case 0 ... 15:
725 cr = a->armv8_common.debug_base + CPUV8_DBG_BCR_BASE;
726 break;
727 case 16 ... 31:
728 cr = a->armv8_common.debug_base + CPUV8_DBG_WCR_BASE;
729 index_t -= 16;
730 break;
731 default:
732 return ERROR_FAIL;
734 cr += 16 * index_t;
736 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
738 /* clear control register */
739 return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
743 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
745 struct arm_dpm *dpm = &a8->armv8_common.dpm;
746 int retval;
748 dpm->arm = &a8->armv8_common.arm;
749 dpm->didr = debug;
751 dpm->prepare = aarch64_dpm_prepare;
752 dpm->finish = aarch64_dpm_finish;
754 dpm->instr_execute = aarch64_instr_execute;
755 dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
756 dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
757 dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
758 dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
759 dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
761 dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
762 dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
763 dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
764 dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
766 dpm->arm_reg_current = armv8_reg_current;
768 dpm->bpwp_enable = aarch64_bpwp_enable;
769 dpm->bpwp_disable = aarch64_bpwp_disable;
771 retval = armv8_dpm_setup(dpm);
772 if (retval == ERROR_OK)
773 retval = armv8_dpm_initialize(dpm);
775 return retval;
777 static struct target *get_aarch64(struct target *target, int32_t coreid)
779 struct target_list *head;
780 struct target *curr;
782 head = target->head;
783 while (head != (struct target_list *)NULL) {
784 curr = head->target;
785 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
786 return curr;
787 head = head->next;
789 return target;
791 static int aarch64_halt(struct target *target);
793 static int aarch64_halt_smp(struct target *target)
795 int retval = ERROR_OK;
796 struct target_list *head = target->head;
798 while (head != (struct target_list *)NULL) {
799 struct target *curr = head->target;
800 struct armv8_common *armv8 = target_to_armv8(curr);
802 /* open the gate for channel 0 to let HALT requests pass to the CTM */
803 if (curr->smp)
804 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
805 armv8->cti_base + CTI_GATE, CTI_CHNL(0));
806 if (retval != ERROR_OK)
807 break;
809 head = head->next;
812 /* halt the target PE */
813 if (retval == ERROR_OK)
814 retval = aarch64_halt(target);
816 return retval;
819 static int update_halt_gdb(struct target *target)
821 int retval = 0;
822 if (target->gdb_service && target->gdb_service->core[0] == -1) {
823 target->gdb_service->target = target;
824 target->gdb_service->core[0] = target->coreid;
825 retval += aarch64_halt_smp(target);
827 return retval;
831 * Cortex-A8 Run control
834 static int aarch64_poll(struct target *target)
836 int retval = ERROR_OK;
837 uint32_t dscr;
838 struct aarch64_common *aarch64 = target_to_aarch64(target);
839 struct armv8_common *armv8 = &aarch64->armv8_common;
840 enum target_state prev_target_state = target->state;
841 /* toggle to another core is done by gdb as follow */
842 /* maint packet J core_id */
843 /* continue */
844 /* the next polling trigger an halt event sent to gdb */
845 if ((target->state == TARGET_HALTED) && (target->smp) &&
846 (target->gdb_service) &&
847 (target->gdb_service->target == NULL)) {
848 target->gdb_service->target =
849 get_aarch64(target, target->gdb_service->core[1]);
850 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
851 return retval;
853 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
854 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
855 if (retval != ERROR_OK)
856 return retval;
857 aarch64->cpudbg_dscr = dscr;
859 if (DSCR_RUN_MODE(dscr) == 0x3) {
860 if (prev_target_state != TARGET_HALTED) {
861 /* We have a halting debug event */
862 LOG_DEBUG("Target halted");
863 target->state = TARGET_HALTED;
864 if ((prev_target_state == TARGET_RUNNING)
865 || (prev_target_state == TARGET_UNKNOWN)
866 || (prev_target_state == TARGET_RESET)) {
867 retval = aarch64_debug_entry(target);
868 if (retval != ERROR_OK)
869 return retval;
870 if (target->smp) {
871 retval = update_halt_gdb(target);
872 if (retval != ERROR_OK)
873 return retval;
875 target_call_event_callbacks(target,
876 TARGET_EVENT_HALTED);
878 if (prev_target_state == TARGET_DEBUG_RUNNING) {
879 LOG_DEBUG(" ");
881 retval = aarch64_debug_entry(target);
882 if (retval != ERROR_OK)
883 return retval;
884 if (target->smp) {
885 retval = update_halt_gdb(target);
886 if (retval != ERROR_OK)
887 return retval;
890 target_call_event_callbacks(target,
891 TARGET_EVENT_DEBUG_HALTED);
894 } else
895 target->state = TARGET_RUNNING;
897 return retval;
900 static int aarch64_halt(struct target *target)
902 int retval = ERROR_OK;
903 uint32_t dscr;
904 struct armv8_common *armv8 = target_to_armv8(target);
907 * add HDE in halting debug mode
909 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
910 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
911 if (retval == ERROR_OK)
912 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
913 armv8->debug_base + CPUV8_DBG_DSCR, dscr | DSCR_HDE);
914 if (retval != ERROR_OK)
915 return retval;
917 /* trigger an event on channel 0, this outputs a halt request to the PE */
918 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
919 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
920 if (retval != ERROR_OK)
921 return retval;
923 long long then = timeval_ms();
924 for (;; ) {
925 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
926 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
927 if (retval != ERROR_OK)
928 return retval;
929 if ((dscr & DSCRV8_HALT_MASK) != 0)
930 break;
931 if (timeval_ms() > then + 1000) {
932 LOG_ERROR("Timeout waiting for halt");
933 return ERROR_FAIL;
937 target->debug_reason = DBG_REASON_DBGRQ;
939 return ERROR_OK;
942 static int aarch64_internal_restore(struct target *target, int current,
943 uint64_t *address, int handle_breakpoints, int debug_execution)
945 struct armv8_common *armv8 = target_to_armv8(target);
946 struct arm *arm = &armv8->arm;
947 int retval;
948 uint64_t resume_pc;
950 if (!debug_execution)
951 target_free_all_working_areas(target);
953 /* current = 1: continue on current pc, otherwise continue at <address> */
954 resume_pc = buf_get_u64(arm->pc->value, 0, 64);
955 if (!current)
956 resume_pc = *address;
957 else
958 *address = resume_pc;
960 /* Make sure that the Armv7 gdb thumb fixups does not
961 * kill the return address
963 switch (arm->core_state) {
964 case ARM_STATE_ARM:
965 resume_pc &= 0xFFFFFFFC;
966 break;
967 case ARM_STATE_AARCH64:
968 resume_pc &= 0xFFFFFFFFFFFFFFFC;
969 break;
970 case ARM_STATE_THUMB:
971 case ARM_STATE_THUMB_EE:
972 /* When the return address is loaded into PC
973 * bit 0 must be 1 to stay in Thumb state
975 resume_pc |= 0x1;
976 break;
977 case ARM_STATE_JAZELLE:
978 LOG_ERROR("How do I resume into Jazelle state??");
979 return ERROR_FAIL;
981 LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
982 buf_set_u64(arm->pc->value, 0, 64, resume_pc);
983 arm->pc->dirty = 1;
984 arm->pc->valid = 1;
985 dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
987 /* called it now before restoring context because it uses cpu
988 * register r0 for restoring system control register */
989 retval = aarch64_restore_system_control_reg(target);
990 if (retval != ERROR_OK)
991 return retval;
992 retval = aarch64_restore_context(target, handle_breakpoints);
993 if (retval != ERROR_OK)
994 return retval;
995 target->debug_reason = DBG_REASON_NOTHALTED;
996 target->state = TARGET_RUNNING;
998 /* registers are now invalid */
999 register_cache_invalidate(arm->core_cache);
1001 return retval;
1004 static int aarch64_internal_restart(struct target *target, bool slave_pe)
1006 struct armv8_common *armv8 = target_to_armv8(target);
1007 struct arm *arm = &armv8->arm;
1008 int retval;
1009 uint32_t dscr;
1011 * * Restart core and wait for it to be started. Clear ITRen and sticky
1012 * * exception flags: see ARMv7 ARM, C5.9.
1014 * REVISIT: for single stepping, we probably want to
1015 * disable IRQs by default, with optional override...
1018 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1019 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1020 if (retval != ERROR_OK)
1021 return retval;
1023 if ((dscr & DSCR_ITE) == 0)
1024 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1026 /* make sure to acknowledge the halt event before resuming */
1027 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1028 armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
1031 * open the CTI gate for channel 1 so that the restart events
1032 * get passed along to all PEs
1034 if (retval == ERROR_OK)
1035 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1036 armv8->cti_base + CTI_GATE, CTI_CHNL(1));
1037 if (retval != ERROR_OK)
1038 return retval;
1040 if (!slave_pe) {
1041 /* trigger an event on channel 1, generates a restart request to the PE */
1042 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1043 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
1044 if (retval != ERROR_OK)
1045 return retval;
1047 long long then = timeval_ms();
1048 for (;; ) {
1049 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1050 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1051 if (retval != ERROR_OK)
1052 return retval;
1053 if ((dscr & DSCR_HDE) != 0)
1054 break;
1055 if (timeval_ms() > then + 1000) {
1056 LOG_ERROR("Timeout waiting for resume");
1057 return ERROR_FAIL;
1062 target->debug_reason = DBG_REASON_NOTHALTED;
1063 target->state = TARGET_RUNNING;
1065 /* registers are now invalid */
1066 register_cache_invalidate(arm->core_cache);
1068 return ERROR_OK;
1071 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
1073 int retval = 0;
1074 struct target_list *head;
1075 struct target *curr;
1076 uint64_t address;
1077 head = target->head;
1078 while (head != (struct target_list *)NULL) {
1079 curr = head->target;
1080 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1081 /* resume current address , not in step mode */
1082 retval += aarch64_internal_restore(curr, 1, &address,
1083 handle_breakpoints, 0);
1084 retval += aarch64_internal_restart(curr, true);
1086 head = head->next;
1089 return retval;
1092 static int aarch64_resume(struct target *target, int current,
1093 target_addr_t address, int handle_breakpoints, int debug_execution)
1095 int retval = 0;
1096 uint64_t addr = address;
1098 /* dummy resume for smp toggle in order to reduce gdb impact */
1099 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1100 /* simulate a start and halt of target */
1101 target->gdb_service->target = NULL;
1102 target->gdb_service->core[0] = target->gdb_service->core[1];
1103 /* fake resume at next poll we play the target core[1], see poll*/
1104 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1105 return 0;
1107 aarch64_internal_restore(target, current, &addr, handle_breakpoints,
1108 debug_execution);
1109 if (target->smp) {
1110 target->gdb_service->core[0] = -1;
1111 retval = aarch64_restore_smp(target, handle_breakpoints);
1112 if (retval != ERROR_OK)
1113 return retval;
1115 aarch64_internal_restart(target, false);
1117 if (!debug_execution) {
1118 target->state = TARGET_RUNNING;
1119 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1120 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
1121 } else {
1122 target->state = TARGET_DEBUG_RUNNING;
1123 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1124 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
1127 return ERROR_OK;
1130 static int aarch64_debug_entry(struct target *target)
1132 int retval = ERROR_OK;
1133 struct aarch64_common *aarch64 = target_to_aarch64(target);
1134 struct armv8_common *armv8 = target_to_armv8(target);
1136 LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1138 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1139 * imprecise data aborts get discarded by issuing a Data
1140 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1143 /* make sure to clear all sticky errors */
1144 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1145 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1146 if (retval != ERROR_OK)
1147 return retval;
1149 /* Examine debug reason */
1150 armv8_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1152 /* save address of instruction that triggered the watchpoint? */
1153 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1154 uint32_t tmp;
1155 uint64_t wfar = 0;
1157 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1158 armv8->debug_base + CPUV8_DBG_WFAR1,
1159 &tmp);
1160 if (retval != ERROR_OK)
1161 return retval;
1162 wfar = tmp;
1163 wfar = (wfar << 32);
1164 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1165 armv8->debug_base + CPUV8_DBG_WFAR0,
1166 &tmp);
1167 if (retval != ERROR_OK)
1168 return retval;
1169 wfar |= tmp;
1170 armv8_dpm_report_wfar(&armv8->dpm, wfar);
1173 retval = armv8_dpm_read_current_registers(&armv8->dpm);
1175 if (armv8->post_debug_entry) {
1176 retval = armv8->post_debug_entry(target);
1177 if (retval != ERROR_OK)
1178 return retval;
1181 return retval;
1184 static int aarch64_post_debug_entry(struct target *target)
1186 struct aarch64_common *aarch64 = target_to_aarch64(target);
1187 struct armv8_common *armv8 = &aarch64->armv8_common;
1188 int retval;
1190 /* clear sticky errors */
1191 mem_ap_write_atomic_u32(armv8->debug_ap,
1192 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1194 switch (armv8->arm.core_mode) {
1195 case ARMV8_64_EL0T:
1196 case ARMV8_64_EL1T:
1197 case ARMV8_64_EL1H:
1198 retval = armv8->arm.mrs(target, 3, /*op 0*/
1199 0, 0, /* op1, op2 */
1200 1, 0, /* CRn, CRm */
1201 &aarch64->system_control_reg);
1202 if (retval != ERROR_OK)
1203 return retval;
1204 break;
1205 case ARMV8_64_EL2T:
1206 case ARMV8_64_EL2H:
1207 retval = armv8->arm.mrs(target, 3, /*op 0*/
1208 4, 0, /* op1, op2 */
1209 1, 0, /* CRn, CRm */
1210 &aarch64->system_control_reg);
1211 if (retval != ERROR_OK)
1212 return retval;
1213 break;
1214 case ARMV8_64_EL3H:
1215 case ARMV8_64_EL3T:
1216 retval = armv8->arm.mrs(target, 3, /*op 0*/
1217 6, 0, /* op1, op2 */
1218 1, 0, /* CRn, CRm */
1219 &aarch64->system_control_reg);
1220 if (retval != ERROR_OK)
1221 return retval;
1222 break;
1223 default:
1224 retval = armv8->arm.mrc(target, 15, 0, 0, 1, 0, &aarch64->system_control_reg);
1225 if (retval != ERROR_OK)
1226 return retval;
1227 break;
1230 LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
1231 aarch64->system_control_reg_curr = aarch64->system_control_reg;
1233 if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1234 armv8_identify_cache(target);
1236 armv8->armv8_mmu.mmu_enabled =
1237 (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1238 armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1239 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1240 armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1241 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1242 aarch64->curr_mode = armv8->arm.core_mode;
1243 return ERROR_OK;
1246 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1248 struct armv8_common *armv8 = target_to_armv8(target);
1249 uint32_t dscr;
1251 /* Read DSCR */
1252 int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1253 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1254 if (ERROR_OK != retval)
1255 return retval;
1257 /* clear bitfield */
1258 dscr &= ~bit_mask;
1259 /* put new value */
1260 dscr |= value & bit_mask;
1262 /* write new DSCR */
1263 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1264 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1265 return retval;
1268 static int aarch64_step(struct target *target, int current, target_addr_t address,
1269 int handle_breakpoints)
1271 struct armv8_common *armv8 = target_to_armv8(target);
1272 int retval;
1273 uint32_t edecr;
1275 if (target->state != TARGET_HALTED) {
1276 LOG_WARNING("target not halted");
1277 return ERROR_TARGET_NOT_HALTED;
1280 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1281 armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1282 if (retval != ERROR_OK)
1283 return retval;
1285 /* make sure EDECR.SS is not set when restoring the register */
1286 edecr &= ~0x4;
1288 /* set EDECR.SS to enter hardware step mode */
1289 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1290 armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
1291 if (retval != ERROR_OK)
1292 return retval;
1294 /* disable interrupts while stepping */
1295 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
1296 if (retval != ERROR_OK)
1297 return ERROR_OK;
1299 /* resume the target */
1300 retval = aarch64_resume(target, current, address, 0, 0);
1301 if (retval != ERROR_OK)
1302 return retval;
1304 long long then = timeval_ms();
1305 while (target->state != TARGET_HALTED) {
1306 retval = aarch64_poll(target);
1307 if (retval != ERROR_OK)
1308 return retval;
1309 if (timeval_ms() > then + 1000) {
1310 LOG_ERROR("timeout waiting for target halt");
1311 return ERROR_FAIL;
1315 /* restore EDECR */
1316 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1317 armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1318 if (retval != ERROR_OK)
1319 return retval;
1321 /* restore interrupts */
1322 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
1323 if (retval != ERROR_OK)
1324 return ERROR_OK;
1326 return ERROR_OK;
1329 static int aarch64_restore_context(struct target *target, bool bpwp)
1331 struct armv8_common *armv8 = target_to_armv8(target);
1333 LOG_DEBUG(" ");
1335 if (armv8->pre_restore_context)
1336 armv8->pre_restore_context(target);
1338 return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1343 * Cortex-A8 Breakpoint and watchpoint functions
1346 /* Setup hardware Breakpoint Register Pair */
1347 static int aarch64_set_breakpoint(struct target *target,
1348 struct breakpoint *breakpoint, uint8_t matchmode)
1350 int retval;
1351 int brp_i = 0;
1352 uint32_t control;
1353 uint8_t byte_addr_select = 0x0F;
1354 struct aarch64_common *aarch64 = target_to_aarch64(target);
1355 struct armv8_common *armv8 = &aarch64->armv8_common;
1356 struct aarch64_brp *brp_list = aarch64->brp_list;
1357 uint32_t dscr;
1359 if (breakpoint->set) {
1360 LOG_WARNING("breakpoint already set");
1361 return ERROR_OK;
1364 if (breakpoint->type == BKPT_HARD) {
1365 int64_t bpt_value;
1366 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1367 brp_i++;
1368 if (brp_i >= aarch64->brp_num) {
1369 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1370 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1372 breakpoint->set = brp_i + 1;
1373 if (breakpoint->length == 2)
1374 byte_addr_select = (3 << (breakpoint->address & 0x02));
1375 control = ((matchmode & 0x7) << 20)
1376 | (1 << 13)
1377 | (byte_addr_select << 5)
1378 | (3 << 1) | 1;
1379 brp_list[brp_i].used = 1;
1380 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1381 brp_list[brp_i].control = control;
1382 bpt_value = brp_list[brp_i].value;
1384 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1385 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1386 (uint32_t)(bpt_value & 0xFFFFFFFF));
1387 if (retval != ERROR_OK)
1388 return retval;
1389 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1390 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1391 (uint32_t)(bpt_value >> 32));
1392 if (retval != ERROR_OK)
1393 return retval;
1395 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1396 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1397 brp_list[brp_i].control);
1398 if (retval != ERROR_OK)
1399 return retval;
1400 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1401 brp_list[brp_i].control,
1402 brp_list[brp_i].value);
1404 } else if (breakpoint->type == BKPT_SOFT) {
1405 uint8_t code[4];
1407 buf_set_u32(code, 0, 32, ARMV8_HLT(0x11));
1408 retval = target_read_memory(target,
1409 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1410 breakpoint->length, 1,
1411 breakpoint->orig_instr);
1412 if (retval != ERROR_OK)
1413 return retval;
1415 armv8_cache_d_inner_flush_virt(armv8,
1416 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1417 breakpoint->length);
1419 retval = target_write_memory(target,
1420 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1421 breakpoint->length, 1, code);
1422 if (retval != ERROR_OK)
1423 return retval;
1425 armv8_cache_d_inner_flush_virt(armv8,
1426 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1427 breakpoint->length);
1429 armv8_cache_i_inner_inval_virt(armv8,
1430 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1431 breakpoint->length);
1433 breakpoint->set = 0x11; /* Any nice value but 0 */
1436 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1437 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1438 /* Ensure that halting debug mode is enable */
1439 dscr = dscr | DSCR_HDE;
1440 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1441 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1442 if (retval != ERROR_OK) {
1443 LOG_DEBUG("Failed to set DSCR.HDE");
1444 return retval;
1447 return ERROR_OK;
1450 static int aarch64_set_context_breakpoint(struct target *target,
1451 struct breakpoint *breakpoint, uint8_t matchmode)
1453 int retval = ERROR_FAIL;
1454 int brp_i = 0;
1455 uint32_t control;
1456 uint8_t byte_addr_select = 0x0F;
1457 struct aarch64_common *aarch64 = target_to_aarch64(target);
1458 struct armv8_common *armv8 = &aarch64->armv8_common;
1459 struct aarch64_brp *brp_list = aarch64->brp_list;
1461 if (breakpoint->set) {
1462 LOG_WARNING("breakpoint already set");
1463 return retval;
1465 /*check available context BRPs*/
1466 while ((brp_list[brp_i].used ||
1467 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1468 brp_i++;
1470 if (brp_i >= aarch64->brp_num) {
1471 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1472 return ERROR_FAIL;
1475 breakpoint->set = brp_i + 1;
1476 control = ((matchmode & 0x7) << 20)
1477 | (1 << 13)
1478 | (byte_addr_select << 5)
1479 | (3 << 1) | 1;
1480 brp_list[brp_i].used = 1;
1481 brp_list[brp_i].value = (breakpoint->asid);
1482 brp_list[brp_i].control = control;
1483 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1484 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1485 brp_list[brp_i].value);
1486 if (retval != ERROR_OK)
1487 return retval;
1488 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1489 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1490 brp_list[brp_i].control);
1491 if (retval != ERROR_OK)
1492 return retval;
1493 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1494 brp_list[brp_i].control,
1495 brp_list[brp_i].value);
1496 return ERROR_OK;
1500 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1502 int retval = ERROR_FAIL;
1503 int brp_1 = 0; /* holds the contextID pair */
1504 int brp_2 = 0; /* holds the IVA pair */
1505 uint32_t control_CTX, control_IVA;
1506 uint8_t CTX_byte_addr_select = 0x0F;
1507 uint8_t IVA_byte_addr_select = 0x0F;
1508 uint8_t CTX_machmode = 0x03;
1509 uint8_t IVA_machmode = 0x01;
1510 struct aarch64_common *aarch64 = target_to_aarch64(target);
1511 struct armv8_common *armv8 = &aarch64->armv8_common;
1512 struct aarch64_brp *brp_list = aarch64->brp_list;
1514 if (breakpoint->set) {
1515 LOG_WARNING("breakpoint already set");
1516 return retval;
1518 /*check available context BRPs*/
1519 while ((brp_list[brp_1].used ||
1520 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1521 brp_1++;
1523 printf("brp(CTX) found num: %d\n", brp_1);
1524 if (brp_1 >= aarch64->brp_num) {
1525 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1526 return ERROR_FAIL;
1529 while ((brp_list[brp_2].used ||
1530 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1531 brp_2++;
1533 printf("brp(IVA) found num: %d\n", brp_2);
1534 if (brp_2 >= aarch64->brp_num) {
1535 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1536 return ERROR_FAIL;
1539 breakpoint->set = brp_1 + 1;
1540 breakpoint->linked_BRP = brp_2;
1541 control_CTX = ((CTX_machmode & 0x7) << 20)
1542 | (brp_2 << 16)
1543 | (0 << 14)
1544 | (CTX_byte_addr_select << 5)
1545 | (3 << 1) | 1;
1546 brp_list[brp_1].used = 1;
1547 brp_list[brp_1].value = (breakpoint->asid);
1548 brp_list[brp_1].control = control_CTX;
1549 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1550 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1551 brp_list[brp_1].value);
1552 if (retval != ERROR_OK)
1553 return retval;
1554 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1555 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1556 brp_list[brp_1].control);
1557 if (retval != ERROR_OK)
1558 return retval;
1560 control_IVA = ((IVA_machmode & 0x7) << 20)
1561 | (brp_1 << 16)
1562 | (1 << 13)
1563 | (IVA_byte_addr_select << 5)
1564 | (3 << 1) | 1;
1565 brp_list[brp_2].used = 1;
1566 brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1567 brp_list[brp_2].control = control_IVA;
1568 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1569 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1570 brp_list[brp_2].value & 0xFFFFFFFF);
1571 if (retval != ERROR_OK)
1572 return retval;
1573 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1574 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1575 brp_list[brp_2].value >> 32);
1576 if (retval != ERROR_OK)
1577 return retval;
1578 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1579 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1580 brp_list[brp_2].control);
1581 if (retval != ERROR_OK)
1582 return retval;
1584 return ERROR_OK;
1587 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1589 int retval;
1590 struct aarch64_common *aarch64 = target_to_aarch64(target);
1591 struct armv8_common *armv8 = &aarch64->armv8_common;
1592 struct aarch64_brp *brp_list = aarch64->brp_list;
1594 if (!breakpoint->set) {
1595 LOG_WARNING("breakpoint not set");
1596 return ERROR_OK;
1599 if (breakpoint->type == BKPT_HARD) {
1600 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1601 int brp_i = breakpoint->set - 1;
1602 int brp_j = breakpoint->linked_BRP;
1603 if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1604 LOG_DEBUG("Invalid BRP number in breakpoint");
1605 return ERROR_OK;
1607 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1608 brp_list[brp_i].control, brp_list[brp_i].value);
1609 brp_list[brp_i].used = 0;
1610 brp_list[brp_i].value = 0;
1611 brp_list[brp_i].control = 0;
1612 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1613 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1614 brp_list[brp_i].control);
1615 if (retval != ERROR_OK)
1616 return retval;
1617 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1618 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1619 (uint32_t)brp_list[brp_i].value);
1620 if (retval != ERROR_OK)
1621 return retval;
1622 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1623 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1624 (uint32_t)brp_list[brp_i].value);
1625 if (retval != ERROR_OK)
1626 return retval;
1627 if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1628 LOG_DEBUG("Invalid BRP number in breakpoint");
1629 return ERROR_OK;
1631 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1632 brp_list[brp_j].control, brp_list[brp_j].value);
1633 brp_list[brp_j].used = 0;
1634 brp_list[brp_j].value = 0;
1635 brp_list[brp_j].control = 0;
1636 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1637 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1638 brp_list[brp_j].control);
1639 if (retval != ERROR_OK)
1640 return retval;
1641 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1642 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1643 (uint32_t)brp_list[brp_j].value);
1644 if (retval != ERROR_OK)
1645 return retval;
1646 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1647 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1648 (uint32_t)brp_list[brp_j].value);
1649 if (retval != ERROR_OK)
1650 return retval;
1652 breakpoint->linked_BRP = 0;
1653 breakpoint->set = 0;
1654 return ERROR_OK;
1656 } else {
1657 int brp_i = breakpoint->set - 1;
1658 if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1659 LOG_DEBUG("Invalid BRP number in breakpoint");
1660 return ERROR_OK;
1662 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1663 brp_list[brp_i].control, brp_list[brp_i].value);
1664 brp_list[brp_i].used = 0;
1665 brp_list[brp_i].value = 0;
1666 brp_list[brp_i].control = 0;
1667 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1668 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1669 brp_list[brp_i].control);
1670 if (retval != ERROR_OK)
1671 return retval;
1672 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1673 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1674 brp_list[brp_i].value);
1675 if (retval != ERROR_OK)
1676 return retval;
1678 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1679 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1680 (uint32_t)brp_list[brp_i].value);
1681 if (retval != ERROR_OK)
1682 return retval;
1683 breakpoint->set = 0;
1684 return ERROR_OK;
1686 } else {
1687 /* restore original instruction (kept in target endianness) */
1689 armv8_cache_d_inner_flush_virt(armv8,
1690 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1691 breakpoint->length);
1693 if (breakpoint->length == 4) {
1694 retval = target_write_memory(target,
1695 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1696 4, 1, breakpoint->orig_instr);
1697 if (retval != ERROR_OK)
1698 return retval;
1699 } else {
1700 retval = target_write_memory(target,
1701 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1702 2, 1, breakpoint->orig_instr);
1703 if (retval != ERROR_OK)
1704 return retval;
1707 armv8_cache_d_inner_flush_virt(armv8,
1708 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1709 breakpoint->length);
1711 armv8_cache_i_inner_inval_virt(armv8,
1712 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1713 breakpoint->length);
1715 breakpoint->set = 0;
1717 return ERROR_OK;
1720 static int aarch64_add_breakpoint(struct target *target,
1721 struct breakpoint *breakpoint)
1723 struct aarch64_common *aarch64 = target_to_aarch64(target);
1725 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1726 LOG_INFO("no hardware breakpoint available");
1727 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1730 if (breakpoint->type == BKPT_HARD)
1731 aarch64->brp_num_available--;
1733 return aarch64_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1736 static int aarch64_add_context_breakpoint(struct target *target,
1737 struct breakpoint *breakpoint)
1739 struct aarch64_common *aarch64 = target_to_aarch64(target);
1741 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1742 LOG_INFO("no hardware breakpoint available");
1743 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1746 if (breakpoint->type == BKPT_HARD)
1747 aarch64->brp_num_available--;
1749 return aarch64_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1752 static int aarch64_add_hybrid_breakpoint(struct target *target,
1753 struct breakpoint *breakpoint)
1755 struct aarch64_common *aarch64 = target_to_aarch64(target);
1757 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1758 LOG_INFO("no hardware breakpoint available");
1759 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1762 if (breakpoint->type == BKPT_HARD)
1763 aarch64->brp_num_available--;
1765 return aarch64_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1769 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1771 struct aarch64_common *aarch64 = target_to_aarch64(target);
1773 #if 0
1774 /* It is perfectly possible to remove breakpoints while the target is running */
1775 if (target->state != TARGET_HALTED) {
1776 LOG_WARNING("target not halted");
1777 return ERROR_TARGET_NOT_HALTED;
1779 #endif
1781 if (breakpoint->set) {
1782 aarch64_unset_breakpoint(target, breakpoint);
1783 if (breakpoint->type == BKPT_HARD)
1784 aarch64->brp_num_available++;
1787 return ERROR_OK;
1791 * Cortex-A8 Reset functions
1794 static int aarch64_assert_reset(struct target *target)
1796 struct armv8_common *armv8 = target_to_armv8(target);
1798 LOG_DEBUG(" ");
1800 /* FIXME when halt is requested, make it work somehow... */
1802 /* Issue some kind of warm reset. */
1803 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1804 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1805 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1806 /* REVISIT handle "pulls" cases, if there's
1807 * hardware that needs them to work.
1809 jtag_add_reset(0, 1);
1810 } else {
1811 LOG_ERROR("%s: how to reset?", target_name(target));
1812 return ERROR_FAIL;
1815 /* registers are now invalid */
1816 register_cache_invalidate(armv8->arm.core_cache);
1818 target->state = TARGET_RESET;
1820 return ERROR_OK;
1823 static int aarch64_deassert_reset(struct target *target)
1825 int retval;
1827 LOG_DEBUG(" ");
1829 /* be certain SRST is off */
1830 jtag_add_reset(0, 0);
1832 retval = aarch64_poll(target);
1833 if (retval != ERROR_OK)
1834 return retval;
1836 if (target->reset_halt) {
1837 if (target->state != TARGET_HALTED) {
1838 LOG_WARNING("%s: ran after reset and before halt ...",
1839 target_name(target));
1840 retval = target_halt(target);
1841 if (retval != ERROR_OK)
1842 return retval;
1846 return ERROR_OK;
1849 static int aarch64_write_apb_ap_memory(struct target *target,
1850 uint64_t address, uint32_t size,
1851 uint32_t count, const uint8_t *buffer)
1853 /* write memory through APB-AP */
1854 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1855 struct armv8_common *armv8 = target_to_armv8(target);
1856 struct arm *arm = &armv8->arm;
1857 int total_bytes = count * size;
1858 int total_u32;
1859 int start_byte = address & 0x3;
1860 int end_byte = (address + total_bytes) & 0x3;
1861 struct reg *reg;
1862 uint32_t dscr;
1863 uint8_t *tmp_buff = NULL;
1865 LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %" PRIu32 " count%" PRIu32,
1866 address, size, count);
1867 if (target->state != TARGET_HALTED) {
1868 LOG_WARNING("target not halted");
1869 return ERROR_TARGET_NOT_HALTED;
1872 total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1874 /* Mark register R0 as dirty, as it will be used
1875 * for transferring the data.
1876 * It will be restored automatically when exiting
1877 * debug mode
1879 reg = armv8_reg_current(arm, 1);
1880 reg->dirty = true;
1882 reg = armv8_reg_current(arm, 0);
1883 reg->dirty = true;
1885 /* clear any abort */
1886 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1887 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1888 if (retval != ERROR_OK)
1889 return retval;
1892 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1894 /* The algorithm only copies 32 bit words, so the buffer
1895 * should be expanded to include the words at either end.
1896 * The first and last words will be read first to avoid
1897 * corruption if needed.
1899 tmp_buff = malloc(total_u32 * 4);
1901 if ((start_byte != 0) && (total_u32 > 1)) {
1902 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1903 * the other bytes in the word.
1905 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1906 if (retval != ERROR_OK)
1907 goto error_free_buff_w;
1910 /* If end of write is not aligned, or the write is less than 4 bytes */
1911 if ((end_byte != 0) ||
1912 ((total_u32 == 1) && (total_bytes != 4))) {
1914 /* Read the last word to avoid corruption during 32 bit write */
1915 int mem_offset = (total_u32-1) * 4;
1916 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1917 if (retval != ERROR_OK)
1918 goto error_free_buff_w;
1921 /* Copy the write buffer over the top of the temporary buffer */
1922 memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1924 /* We now have a 32 bit aligned buffer that can be written */
1926 /* Read DSCR */
1927 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1928 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1929 if (retval != ERROR_OK)
1930 goto error_free_buff_w;
1932 /* Set Normal access mode */
1933 dscr = (dscr & ~DSCR_MA);
1934 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1935 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1937 if (arm->core_state == ARM_STATE_AARCH64) {
1938 /* Write X0 with value 'address' using write procedure */
1939 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1940 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1941 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1942 retval += aarch64_exec_opcode(target,
1943 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1944 } else {
1945 /* Write R0 with value 'address' using write procedure */
1946 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1947 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1948 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1949 retval += aarch64_exec_opcode(target,
1950 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1953 /* Step 1.d - Change DCC to memory mode */
1954 dscr = dscr | DSCR_MA;
1955 retval += mem_ap_write_atomic_u32(armv8->debug_ap,
1956 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1957 if (retval != ERROR_OK)
1958 goto error_unset_dtr_w;
1961 /* Step 2.a - Do the write */
1962 retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1963 tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1964 if (retval != ERROR_OK)
1965 goto error_unset_dtr_w;
1967 /* Step 3.a - Switch DTR mode back to Normal mode */
1968 dscr = (dscr & ~DSCR_MA);
1969 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1970 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1971 if (retval != ERROR_OK)
1972 goto error_unset_dtr_w;
1974 /* Check for sticky abort flags in the DSCR */
1975 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1976 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1977 if (retval != ERROR_OK)
1978 goto error_free_buff_w;
1979 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1980 /* Abort occurred - clear it and exit */
1981 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1982 mem_ap_write_atomic_u32(armv8->debug_ap,
1983 armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1984 goto error_free_buff_w;
1987 /* Done */
1988 free(tmp_buff);
1989 return ERROR_OK;
1991 error_unset_dtr_w:
1992 /* Unset DTR mode */
1993 mem_ap_read_atomic_u32(armv8->debug_ap,
1994 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1995 dscr = (dscr & ~DSCR_MA);
1996 mem_ap_write_atomic_u32(armv8->debug_ap,
1997 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1998 error_free_buff_w:
1999 LOG_ERROR("error");
2000 free(tmp_buff);
2001 return ERROR_FAIL;
2004 static int aarch64_read_apb_ap_memory(struct target *target,
2005 target_addr_t address, uint32_t size,
2006 uint32_t count, uint8_t *buffer)
2008 /* read memory through APB-AP */
2009 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2010 struct armv8_common *armv8 = target_to_armv8(target);
2011 struct arm *arm = &armv8->arm;
2012 int total_bytes = count * size;
2013 int total_u32;
2014 int start_byte = address & 0x3;
2015 int end_byte = (address + total_bytes) & 0x3;
2016 struct reg *reg;
2017 uint32_t dscr;
2018 uint8_t *tmp_buff = NULL;
2019 uint8_t *u8buf_ptr;
2020 uint32_t value;
2022 LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%" PRIu32,
2023 address, size, count);
2024 if (target->state != TARGET_HALTED) {
2025 LOG_WARNING("target not halted");
2026 return ERROR_TARGET_NOT_HALTED;
2029 total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
2030 /* Mark register X0, X1 as dirty, as it will be used
2031 * for transferring the data.
2032 * It will be restored automatically when exiting
2033 * debug mode
2035 reg = armv8_reg_current(arm, 1);
2036 reg->dirty = true;
2038 reg = armv8_reg_current(arm, 0);
2039 reg->dirty = true;
2041 /* clear any abort */
2042 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2043 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
2044 if (retval != ERROR_OK)
2045 goto error_free_buff_r;
2047 /* Read DSCR */
2048 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2049 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2051 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2053 /* Set Normal access mode */
2054 dscr = (dscr & ~DSCR_MA);
2055 retval += mem_ap_write_atomic_u32(armv8->debug_ap,
2056 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2058 if (arm->core_state == ARM_STATE_AARCH64) {
2059 /* Write X0 with value 'address' using write procedure */
2060 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2061 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
2062 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2063 retval += aarch64_exec_opcode(target, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
2064 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2065 retval += aarch64_exec_opcode(target, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
2066 /* Step 1.e - Change DCC to memory mode */
2067 dscr = dscr | DSCR_MA;
2068 retval += mem_ap_write_atomic_u32(armv8->debug_ap,
2069 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2070 /* Step 1.f - read DBGDTRTX and discard the value */
2071 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2072 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2073 } else {
2074 /* Write R0 with value 'address' using write procedure */
2075 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2076 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
2077 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2078 retval += aarch64_exec_opcode(target,
2079 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
2080 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2081 retval += aarch64_exec_opcode(target,
2082 T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)), &dscr);
2083 /* Step 1.e - Change DCC to memory mode */
2084 dscr = dscr | DSCR_MA;
2085 retval += mem_ap_write_atomic_u32(armv8->debug_ap,
2086 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2087 /* Step 1.f - read DBGDTRTX and discard the value */
2088 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2089 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2092 if (retval != ERROR_OK)
2093 goto error_unset_dtr_r;
2095 /* Optimize the read as much as we can, either way we read in a single pass */
2096 if ((start_byte) || (end_byte)) {
2097 /* The algorithm only copies 32 bit words, so the buffer
2098 * should be expanded to include the words at either end.
2099 * The first and last words will be read into a temp buffer
2100 * to avoid corruption
2102 tmp_buff = malloc(total_u32 * 4);
2103 if (!tmp_buff)
2104 goto error_unset_dtr_r;
2106 /* use the tmp buffer to read the entire data */
2107 u8buf_ptr = tmp_buff;
2108 } else
2109 /* address and read length are aligned so read directly into the passed buffer */
2110 u8buf_ptr = buffer;
2112 /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2113 * Abort flags are sticky, so can be read at end of transactions
2115 * This data is read in aligned to 32 bit boundary.
2118 /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2119 * increments X0 by 4. */
2120 retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
2121 armv8->debug_base + CPUV8_DBG_DTRTX);
2122 if (retval != ERROR_OK)
2123 goto error_unset_dtr_r;
2125 /* Step 3.a - set DTR access mode back to Normal mode */
2126 dscr = (dscr & ~DSCR_MA);
2127 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2128 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2129 if (retval != ERROR_OK)
2130 goto error_free_buff_r;
2132 /* Step 3.b - read DBGDTRTX for the final value */
2133 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2134 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2135 memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
2137 /* Check for sticky abort flags in the DSCR */
2138 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2139 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2140 if (retval != ERROR_OK)
2141 goto error_free_buff_r;
2142 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2143 /* Abort occurred - clear it and exit */
2144 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2145 mem_ap_write_atomic_u32(armv8->debug_ap,
2146 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
2147 goto error_free_buff_r;
2150 /* check if we need to copy aligned data by applying any shift necessary */
2151 if (tmp_buff) {
2152 memcpy(buffer, tmp_buff + start_byte, total_bytes);
2153 free(tmp_buff);
2156 /* Done */
2157 return ERROR_OK;
2159 error_unset_dtr_r:
2160 /* Unset DTR mode */
2161 mem_ap_read_atomic_u32(armv8->debug_ap,
2162 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2163 dscr = (dscr & ~DSCR_MA);
2164 mem_ap_write_atomic_u32(armv8->debug_ap,
2165 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2166 error_free_buff_r:
2167 LOG_ERROR("error");
2168 free(tmp_buff);
2169 return ERROR_FAIL;
2172 static int aarch64_read_phys_memory(struct target *target,
2173 target_addr_t address, uint32_t size,
2174 uint32_t count, uint8_t *buffer)
2176 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2177 LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
2178 address, size, count);
2180 if (count && buffer) {
2181 /* read memory through APB-AP */
2182 retval = aarch64_mmu_modify(target, 0);
2183 if (retval != ERROR_OK)
2184 return retval;
2185 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2187 return retval;
2190 static int aarch64_read_memory(struct target *target, target_addr_t address,
2191 uint32_t size, uint32_t count, uint8_t *buffer)
2193 int mmu_enabled = 0;
2194 int retval;
2196 /* aarch64 handles unaligned memory access */
2197 LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2198 size, count);
2200 /* determine if MMU was enabled on target stop */
2201 retval = aarch64_mmu(target, &mmu_enabled);
2202 if (retval != ERROR_OK)
2203 return retval;
2205 if (mmu_enabled) {
2206 retval = aarch64_check_address(target, address);
2207 if (retval != ERROR_OK)
2208 return retval;
2209 /* enable MMU as we could have disabled it for phys access */
2210 retval = aarch64_mmu_modify(target, 1);
2211 if (retval != ERROR_OK)
2212 return retval;
2214 return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2217 static int aarch64_write_phys_memory(struct target *target,
2218 target_addr_t address, uint32_t size,
2219 uint32_t count, const uint8_t *buffer)
2221 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2223 LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2224 size, count);
2226 if (count && buffer) {
2227 /* write memory through APB-AP */
2228 retval = aarch64_mmu_modify(target, 0);
2229 if (retval != ERROR_OK)
2230 return retval;
2231 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2234 return retval;
2237 static int aarch64_write_memory(struct target *target, target_addr_t address,
2238 uint32_t size, uint32_t count, const uint8_t *buffer)
2240 int mmu_enabled = 0;
2241 int retval;
2243 /* aarch64 handles unaligned memory access */
2244 LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2245 "; count %" PRId32, address, size, count);
2247 /* determine if MMU was enabled on target stop */
2248 retval = aarch64_mmu(target, &mmu_enabled);
2249 if (retval != ERROR_OK)
2250 return retval;
2252 if (mmu_enabled) {
2253 retval = aarch64_check_address(target, address);
2254 if (retval != ERROR_OK)
2255 return retval;
2256 /* enable MMU as we could have disabled it for phys access */
2257 retval = aarch64_mmu_modify(target, 1);
2258 if (retval != ERROR_OK)
2259 return retval;
2261 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2264 static int aarch64_handle_target_request(void *priv)
2266 struct target *target = priv;
2267 struct armv8_common *armv8 = target_to_armv8(target);
2268 int retval;
2270 if (!target_was_examined(target))
2271 return ERROR_OK;
2272 if (!target->dbg_msg_enabled)
2273 return ERROR_OK;
2275 if (target->state == TARGET_RUNNING) {
2276 uint32_t request;
2277 uint32_t dscr;
2278 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2279 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2281 /* check if we have data */
2282 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2283 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2284 armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2285 if (retval == ERROR_OK) {
2286 target_request(target, request);
2287 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2288 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2293 return ERROR_OK;
2296 static int aarch64_examine_first(struct target *target)
2298 struct aarch64_common *aarch64 = target_to_aarch64(target);
2299 struct armv8_common *armv8 = &aarch64->armv8_common;
2300 struct adiv5_dap *swjdp = armv8->arm.dap;
2301 int i;
2302 int retval = ERROR_OK;
2303 uint64_t debug, ttypr;
2304 uint32_t cpuid;
2305 uint32_t tmp0, tmp1;
2306 debug = ttypr = cpuid = 0;
2308 /* We do one extra read to ensure DAP is configured,
2309 * we call ahbap_debugport_init(swjdp) instead
2311 retval = dap_dp_init(swjdp);
2312 if (retval != ERROR_OK)
2313 return retval;
2315 /* Search for the APB-AB - it is needed for access to debug registers */
2316 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2317 if (retval != ERROR_OK) {
2318 LOG_ERROR("Could not find APB-AP for debug access");
2319 return retval;
2322 retval = mem_ap_init(armv8->debug_ap);
2323 if (retval != ERROR_OK) {
2324 LOG_ERROR("Could not initialize the APB-AP");
2325 return retval;
2328 armv8->debug_ap->memaccess_tck = 80;
2330 if (!target->dbgbase_set) {
2331 uint32_t dbgbase;
2332 /* Get ROM Table base */
2333 uint32_t apid;
2334 int32_t coreidx = target->coreid;
2335 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2336 if (retval != ERROR_OK)
2337 return retval;
2338 /* Lookup 0x15 -- Processor DAP */
2339 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2340 &armv8->debug_base, &coreidx);
2341 if (retval != ERROR_OK)
2342 return retval;
2343 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
2344 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
2345 } else
2346 armv8->debug_base = target->dbgbase;
2348 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2349 armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
2350 if (retval != ERROR_OK) {
2351 LOG_DEBUG("LOCK debug access fail");
2352 return retval;
2355 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2356 armv8->debug_base + CPUV8_DBG_OSLAR, 0);
2357 if (retval != ERROR_OK) {
2358 LOG_DEBUG("Examine %s failed", "oslock");
2359 return retval;
2362 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2363 armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
2364 if (retval != ERROR_OK) {
2365 LOG_DEBUG("Examine %s failed", "CPUID");
2366 return retval;
2369 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2370 armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
2371 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2372 armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
2373 if (retval != ERROR_OK) {
2374 LOG_DEBUG("Examine %s failed", "Memory Model Type");
2375 return retval;
2377 ttypr |= tmp1;
2378 ttypr = (ttypr << 32) | tmp0;
2380 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2381 armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
2382 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2383 armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
2384 if (retval != ERROR_OK) {
2385 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2386 return retval;
2388 debug |= tmp1;
2389 debug = (debug << 32) | tmp0;
2391 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2392 LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
2393 LOG_DEBUG("debug = 0x%08" PRIx64, debug);
2395 if (target->ctibase == 0) {
2396 /* assume a v8 rom table layout */
2397 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
2398 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
2399 } else
2400 armv8->cti_base = target->ctibase;
2402 armv8->arm.core_type = ARM_MODE_MON;
2403 retval = aarch64_dpm_setup(aarch64, debug);
2404 if (retval != ERROR_OK)
2405 return retval;
2407 /* Setup Breakpoint Register Pairs */
2408 aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
2409 aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
2410 aarch64->brp_num_available = aarch64->brp_num;
2411 aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2412 for (i = 0; i < aarch64->brp_num; i++) {
2413 aarch64->brp_list[i].used = 0;
2414 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2415 aarch64->brp_list[i].type = BRP_NORMAL;
2416 else
2417 aarch64->brp_list[i].type = BRP_CONTEXT;
2418 aarch64->brp_list[i].value = 0;
2419 aarch64->brp_list[i].control = 0;
2420 aarch64->brp_list[i].BRPn = i;
2423 LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2425 target_set_examined(target);
2426 return ERROR_OK;
2429 static int aarch64_examine(struct target *target)
2431 int retval = ERROR_OK;
2433 /* don't re-probe hardware after each reset */
2434 if (!target_was_examined(target))
2435 retval = aarch64_examine_first(target);
2437 /* Configure core debug access */
2438 if (retval == ERROR_OK)
2439 retval = aarch64_init_debug_access(target);
2441 return retval;
2445 * Cortex-A8 target creation and initialization
2448 static int aarch64_init_target(struct command_context *cmd_ctx,
2449 struct target *target)
2451 /* examine_first() does a bunch of this */
2452 return ERROR_OK;
2455 static int aarch64_init_arch_info(struct target *target,
2456 struct aarch64_common *aarch64, struct jtag_tap *tap)
2458 struct armv8_common *armv8 = &aarch64->armv8_common;
2459 struct adiv5_dap *dap = armv8->arm.dap;
2461 armv8->arm.dap = dap;
2463 /* Setup struct aarch64_common */
2464 aarch64->common_magic = AARCH64_COMMON_MAGIC;
2465 /* tap has no dap initialized */
2466 if (!tap->dap) {
2467 tap->dap = dap_init();
2469 /* Leave (only) generic DAP stuff for debugport_init() */
2470 tap->dap->tap = tap;
2473 armv8->arm.dap = tap->dap;
2475 aarch64->fast_reg_read = 0;
2477 /* register arch-specific functions */
2478 armv8->examine_debug_reason = NULL;
2480 armv8->post_debug_entry = aarch64_post_debug_entry;
2482 armv8->pre_restore_context = NULL;
2484 armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2486 /* REVISIT v7a setup should be in a v7a-specific routine */
2487 armv8_init_arch_info(target, armv8);
2488 target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2490 return ERROR_OK;
2493 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2495 struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2497 return aarch64_init_arch_info(target, aarch64, target->tap);
2500 static int aarch64_mmu(struct target *target, int *enabled)
2502 if (target->state != TARGET_HALTED) {
2503 LOG_ERROR("%s: target not halted", __func__);
2504 return ERROR_TARGET_INVALID;
2507 *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2508 return ERROR_OK;
2511 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2512 target_addr_t *phys)
2514 return armv8_mmu_translate_va(target, virt, phys);
2517 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2519 struct target *target = get_current_target(CMD_CTX);
2520 struct armv8_common *armv8 = target_to_armv8(target);
2522 return armv8_handle_cache_info_command(CMD_CTX,
2523 &armv8->armv8_mmu.armv8_cache);
2527 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2529 struct target *target = get_current_target(CMD_CTX);
2530 if (!target_was_examined(target)) {
2531 LOG_ERROR("target not examined yet");
2532 return ERROR_FAIL;
2535 return aarch64_init_debug_access(target);
2537 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2539 struct target *target = get_current_target(CMD_CTX);
2540 /* check target is an smp target */
2541 struct target_list *head;
2542 struct target *curr;
2543 head = target->head;
2544 target->smp = 0;
2545 if (head != (struct target_list *)NULL) {
2546 while (head != (struct target_list *)NULL) {
2547 curr = head->target;
2548 curr->smp = 0;
2549 head = head->next;
2551 /* fixes the target display to the debugger */
2552 target->gdb_service->target = target;
2554 return ERROR_OK;
2557 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2559 struct target *target = get_current_target(CMD_CTX);
2560 struct target_list *head;
2561 struct target *curr;
2562 head = target->head;
2563 if (head != (struct target_list *)NULL) {
2564 target->smp = 1;
2565 while (head != (struct target_list *)NULL) {
2566 curr = head->target;
2567 curr->smp = 1;
2568 head = head->next;
2571 return ERROR_OK;
2574 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2576 struct target *target = get_current_target(CMD_CTX);
2577 int retval = ERROR_OK;
2578 struct target_list *head;
2579 head = target->head;
2580 if (head != (struct target_list *)NULL) {
2581 if (CMD_ARGC == 1) {
2582 int coreid = 0;
2583 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2584 if (ERROR_OK != retval)
2585 return retval;
2586 target->gdb_service->core[1] = coreid;
2589 command_print(CMD_CTX, "gdb coreid %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2590 , target->gdb_service->core[1]);
2592 return ERROR_OK;
2595 static const struct command_registration aarch64_exec_command_handlers[] = {
2597 .name = "cache_info",
2598 .handler = aarch64_handle_cache_info_command,
2599 .mode = COMMAND_EXEC,
2600 .help = "display information about target caches",
2601 .usage = "",
2604 .name = "dbginit",
2605 .handler = aarch64_handle_dbginit_command,
2606 .mode = COMMAND_EXEC,
2607 .help = "Initialize core debug",
2608 .usage = "",
2610 { .name = "smp_off",
2611 .handler = aarch64_handle_smp_off_command,
2612 .mode = COMMAND_EXEC,
2613 .help = "Stop smp handling",
2614 .usage = "",
2617 .name = "smp_on",
2618 .handler = aarch64_handle_smp_on_command,
2619 .mode = COMMAND_EXEC,
2620 .help = "Restart smp handling",
2621 .usage = "",
2624 .name = "smp_gdb",
2625 .handler = aarch64_handle_smp_gdb_command,
2626 .mode = COMMAND_EXEC,
2627 .help = "display/fix current core played to gdb",
2628 .usage = "",
2632 COMMAND_REGISTRATION_DONE
2634 static const struct command_registration aarch64_command_handlers[] = {
2636 .chain = arm_command_handlers,
2639 .chain = armv8_command_handlers,
2642 .name = "cortex_a",
2643 .mode = COMMAND_ANY,
2644 .help = "Cortex-A command group",
2645 .usage = "",
2646 .chain = aarch64_exec_command_handlers,
2648 COMMAND_REGISTRATION_DONE
2651 struct target_type aarch64_target = {
2652 .name = "aarch64",
2654 .poll = aarch64_poll,
2655 .arch_state = armv8_arch_state,
2657 .halt = aarch64_halt,
2658 .resume = aarch64_resume,
2659 .step = aarch64_step,
2661 .assert_reset = aarch64_assert_reset,
2662 .deassert_reset = aarch64_deassert_reset,
2664 /* REVISIT allow exporting VFP3 registers ... */
2665 .get_gdb_reg_list = armv8_get_gdb_reg_list,
2667 .read_memory = aarch64_read_memory,
2668 .write_memory = aarch64_write_memory,
2670 .checksum_memory = arm_checksum_memory,
2671 .blank_check_memory = arm_blank_check_memory,
2673 .run_algorithm = armv4_5_run_algorithm,
2675 .add_breakpoint = aarch64_add_breakpoint,
2676 .add_context_breakpoint = aarch64_add_context_breakpoint,
2677 .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2678 .remove_breakpoint = aarch64_remove_breakpoint,
2679 .add_watchpoint = NULL,
2680 .remove_watchpoint = NULL,
2682 .commands = aarch64_command_handlers,
2683 .target_create = aarch64_target_create,
2684 .init_target = aarch64_init_target,
2685 .examine = aarch64_examine,
2687 .read_phys_memory = aarch64_read_phys_memory,
2688 .write_phys_memory = aarch64_write_phys_memory,
2689 .mmu = aarch64_mmu,
2690 .virt2phys = aarch64_virt2phys,