target: fix messages and return values of failed op because not halted
[openocd.git] / src / target / aarch64.c
blob5d8a65273fa7daa5376fcf95e628fa7530b74d22
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /***************************************************************************
4 * Copyright (C) 2015 by David Ung *
5 * *
6 ***************************************************************************/
8 #ifdef HAVE_CONFIG_H
9 #include "config.h"
10 #endif
12 #include "breakpoints.h"
13 #include "aarch64.h"
14 #include "a64_disassembler.h"
15 #include "register.h"
16 #include "target_request.h"
17 #include "target_type.h"
18 #include "armv8_opcodes.h"
19 #include "armv8_cache.h"
20 #include "arm_coresight.h"
21 #include "arm_semihosting.h"
22 #include "jtag/interface.h"
23 #include "smp.h"
24 #include <helper/nvp.h>
25 #include <helper/time_support.h>
27 enum restart_mode {
28 RESTART_LAZY,
29 RESTART_SYNC,
32 enum halt_mode {
33 HALT_LAZY,
34 HALT_SYNC,
37 struct aarch64_private_config {
38 struct adiv5_private_config adiv5_config;
39 struct arm_cti *cti;
42 static int aarch64_poll(struct target *target);
43 static int aarch64_debug_entry(struct target *target);
44 static int aarch64_restore_context(struct target *target, bool bpwp);
45 static int aarch64_set_breakpoint(struct target *target,
46 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int aarch64_set_context_breakpoint(struct target *target,
48 struct breakpoint *breakpoint, uint8_t matchmode);
49 static int aarch64_set_hybrid_breakpoint(struct target *target,
50 struct breakpoint *breakpoint);
51 static int aarch64_unset_breakpoint(struct target *target,
52 struct breakpoint *breakpoint);
53 static int aarch64_mmu(struct target *target, int *enabled);
54 static int aarch64_virt2phys(struct target *target,
55 target_addr_t virt, target_addr_t *phys);
56 static int aarch64_read_cpu_memory(struct target *target,
57 uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
59 static int aarch64_restore_system_control_reg(struct target *target)
61 enum arm_mode target_mode = ARM_MODE_ANY;
62 int retval = ERROR_OK;
63 uint32_t instr;
65 struct aarch64_common *aarch64 = target_to_aarch64(target);
66 struct armv8_common *armv8 = target_to_armv8(target);
68 if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
69 aarch64->system_control_reg_curr = aarch64->system_control_reg;
70 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
72 switch (armv8->arm.core_mode) {
73 case ARMV8_64_EL0T:
74 target_mode = ARMV8_64_EL1H;
75 /* fall through */
76 case ARMV8_64_EL1T:
77 case ARMV8_64_EL1H:
78 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
79 break;
80 case ARMV8_64_EL2T:
81 case ARMV8_64_EL2H:
82 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
83 break;
84 case ARMV8_64_EL3H:
85 case ARMV8_64_EL3T:
86 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
87 break;
89 case ARM_MODE_SVC:
90 case ARM_MODE_ABT:
91 case ARM_MODE_FIQ:
92 case ARM_MODE_IRQ:
93 case ARM_MODE_HYP:
94 case ARM_MODE_UND:
95 case ARM_MODE_SYS:
96 instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
97 break;
99 default:
100 LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
101 armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
102 return ERROR_FAIL;
105 if (target_mode != ARM_MODE_ANY)
106 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
108 retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr, aarch64->system_control_reg);
109 if (retval != ERROR_OK)
110 return retval;
112 if (target_mode != ARM_MODE_ANY)
113 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
116 return retval;
119 /* modify system_control_reg in order to enable or disable mmu for :
120 * - virt2phys address conversion
121 * - read or write memory in phys or virt address */
122 static int aarch64_mmu_modify(struct target *target, int enable)
124 struct aarch64_common *aarch64 = target_to_aarch64(target);
125 struct armv8_common *armv8 = &aarch64->armv8_common;
126 int retval = ERROR_OK;
127 enum arm_mode target_mode = ARM_MODE_ANY;
128 uint32_t instr = 0;
130 if (enable) {
131 /* if mmu enabled at target stop and mmu not enable */
132 if (!(aarch64->system_control_reg & 0x1U)) {
133 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
134 return ERROR_FAIL;
136 if (!(aarch64->system_control_reg_curr & 0x1U))
137 aarch64->system_control_reg_curr |= 0x1U;
138 } else {
139 if (aarch64->system_control_reg_curr & 0x4U) {
140 /* data cache is active */
141 aarch64->system_control_reg_curr &= ~0x4U;
142 /* flush data cache armv8 function to be called */
143 if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
144 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
146 if ((aarch64->system_control_reg_curr & 0x1U)) {
147 aarch64->system_control_reg_curr &= ~0x1U;
151 switch (armv8->arm.core_mode) {
152 case ARMV8_64_EL0T:
153 target_mode = ARMV8_64_EL1H;
154 /* fall through */
155 case ARMV8_64_EL1T:
156 case ARMV8_64_EL1H:
157 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
158 break;
159 case ARMV8_64_EL2T:
160 case ARMV8_64_EL2H:
161 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
162 break;
163 case ARMV8_64_EL3H:
164 case ARMV8_64_EL3T:
165 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
166 break;
168 case ARM_MODE_SVC:
169 case ARM_MODE_ABT:
170 case ARM_MODE_FIQ:
171 case ARM_MODE_IRQ:
172 case ARM_MODE_HYP:
173 case ARM_MODE_UND:
174 case ARM_MODE_SYS:
175 instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
176 break;
178 default:
179 LOG_DEBUG("unknown cpu state 0x%x", armv8->arm.core_mode);
180 break;
182 if (target_mode != ARM_MODE_ANY)
183 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
185 retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr,
186 aarch64->system_control_reg_curr);
188 if (target_mode != ARM_MODE_ANY)
189 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
191 return retval;
195 * Basic debug access, very low level assumes state is saved
197 static int aarch64_init_debug_access(struct target *target)
199 struct armv8_common *armv8 = target_to_armv8(target);
200 int retval;
201 uint32_t dummy;
203 LOG_DEBUG("%s", target_name(target));
205 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
206 armv8->debug_base + CPUV8_DBG_OSLAR, 0);
207 if (retval != ERROR_OK) {
208 LOG_DEBUG("Examine %s failed", "oslock");
209 return retval;
212 /* Clear Sticky Power Down status Bit in PRSR to enable access to
213 the registers in the Core Power Domain */
214 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
215 armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
216 if (retval != ERROR_OK)
217 return retval;
220 * Static CTI configuration:
221 * Channel 0 -> trigger outputs HALT request to PE
222 * Channel 1 -> trigger outputs Resume request to PE
223 * Gate all channel trigger events from entering the CTM
226 /* Enable CTI */
227 retval = arm_cti_enable(armv8->cti, true);
228 /* By default, gate all channel events to and from the CTM */
229 if (retval == ERROR_OK)
230 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
231 /* output halt requests to PE on channel 0 event */
232 if (retval == ERROR_OK)
233 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN0, CTI_CHNL(0));
234 /* output restart requests to PE on channel 1 event */
235 if (retval == ERROR_OK)
236 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN1, CTI_CHNL(1));
237 if (retval != ERROR_OK)
238 return retval;
240 /* Resync breakpoint registers */
242 return ERROR_OK;
245 /* Write to memory mapped registers directly with no cache or mmu handling */
246 static int aarch64_dap_write_memap_register_u32(struct target *target,
247 target_addr_t address,
248 uint32_t value)
250 int retval;
251 struct armv8_common *armv8 = target_to_armv8(target);
253 retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
255 return retval;
258 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
260 struct arm_dpm *dpm = &a8->armv8_common.dpm;
261 int retval;
263 dpm->arm = &a8->armv8_common.arm;
264 dpm->didr = debug;
266 retval = armv8_dpm_setup(dpm);
267 if (retval == ERROR_OK)
268 retval = armv8_dpm_initialize(dpm);
270 return retval;
273 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
275 struct armv8_common *armv8 = target_to_armv8(target);
276 return armv8_set_dbgreg_bits(armv8, CPUV8_DBG_DSCR, bit_mask, value);
279 static int aarch64_check_state_one(struct target *target,
280 uint32_t mask, uint32_t val, int *p_result, uint32_t *p_prsr)
282 struct armv8_common *armv8 = target_to_armv8(target);
283 uint32_t prsr;
284 int retval;
286 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
287 armv8->debug_base + CPUV8_DBG_PRSR, &prsr);
288 if (retval != ERROR_OK)
289 return retval;
291 if (p_prsr)
292 *p_prsr = prsr;
294 if (p_result)
295 *p_result = (prsr & mask) == (val & mask);
297 return ERROR_OK;
300 static int aarch64_wait_halt_one(struct target *target)
302 int retval = ERROR_OK;
303 uint32_t prsr;
305 int64_t then = timeval_ms();
306 for (;;) {
307 int halted;
309 retval = aarch64_check_state_one(target, PRSR_HALT, PRSR_HALT, &halted, &prsr);
310 if (retval != ERROR_OK || halted)
311 break;
313 if (timeval_ms() > then + 1000) {
314 retval = ERROR_TARGET_TIMEOUT;
315 LOG_DEBUG("target %s timeout, prsr=0x%08"PRIx32, target_name(target), prsr);
316 break;
319 return retval;
322 static int aarch64_prepare_halt_smp(struct target *target, bool exc_target, struct target **p_first)
324 int retval = ERROR_OK;
325 struct target_list *head;
326 struct target *first = NULL;
328 LOG_DEBUG("target %s exc %i", target_name(target), exc_target);
330 foreach_smp_target(head, target->smp_targets) {
331 struct target *curr = head->target;
332 struct armv8_common *armv8 = target_to_armv8(curr);
334 if (exc_target && curr == target)
335 continue;
336 if (!target_was_examined(curr))
337 continue;
338 if (curr->state != TARGET_RUNNING)
339 continue;
341 /* HACK: mark this target as prepared for halting */
342 curr->debug_reason = DBG_REASON_DBGRQ;
344 /* open the gate for channel 0 to let HALT requests pass to the CTM */
345 retval = arm_cti_ungate_channel(armv8->cti, 0);
346 if (retval == ERROR_OK)
347 retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
348 if (retval != ERROR_OK)
349 break;
351 LOG_DEBUG("target %s prepared", target_name(curr));
353 if (!first)
354 first = curr;
357 if (p_first) {
358 if (exc_target && first)
359 *p_first = first;
360 else
361 *p_first = target;
364 return retval;
367 static int aarch64_halt_one(struct target *target, enum halt_mode mode)
369 int retval = ERROR_OK;
370 struct armv8_common *armv8 = target_to_armv8(target);
372 LOG_DEBUG("%s", target_name(target));
374 /* allow Halting Debug Mode */
375 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
376 if (retval != ERROR_OK)
377 return retval;
379 /* trigger an event on channel 0, this outputs a halt request to the PE */
380 retval = arm_cti_pulse_channel(armv8->cti, 0);
381 if (retval != ERROR_OK)
382 return retval;
384 if (mode == HALT_SYNC) {
385 retval = aarch64_wait_halt_one(target);
386 if (retval != ERROR_OK) {
387 if (retval == ERROR_TARGET_TIMEOUT)
388 LOG_ERROR("Timeout waiting for target %s halt", target_name(target));
389 return retval;
393 return ERROR_OK;
396 static int aarch64_halt_smp(struct target *target, bool exc_target)
398 struct target *next = target;
399 int retval;
401 /* prepare halt on all PEs of the group */
402 retval = aarch64_prepare_halt_smp(target, exc_target, &next);
404 if (exc_target && next == target)
405 return retval;
407 /* halt the target PE */
408 if (retval == ERROR_OK)
409 retval = aarch64_halt_one(next, HALT_LAZY);
411 if (retval != ERROR_OK)
412 return retval;
414 /* wait for all PEs to halt */
415 int64_t then = timeval_ms();
416 for (;;) {
417 bool all_halted = true;
418 struct target_list *head;
419 struct target *curr;
421 foreach_smp_target(head, target->smp_targets) {
422 int halted;
424 curr = head->target;
426 if (!target_was_examined(curr))
427 continue;
429 retval = aarch64_check_state_one(curr, PRSR_HALT, PRSR_HALT, &halted, NULL);
430 if (retval != ERROR_OK || !halted) {
431 all_halted = false;
432 break;
436 if (all_halted)
437 break;
439 if (timeval_ms() > then + 1000) {
440 retval = ERROR_TARGET_TIMEOUT;
441 break;
445 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
446 * and it looks like the CTI's are not connected by a common
447 * trigger matrix. It seems that we need to halt one core in each
448 * cluster explicitly. So if we find that a core has not halted
449 * yet, we trigger an explicit halt for the second cluster.
451 retval = aarch64_halt_one(curr, HALT_LAZY);
452 if (retval != ERROR_OK)
453 break;
456 return retval;
459 static int update_halt_gdb(struct target *target, enum target_debug_reason debug_reason)
461 struct target *gdb_target = NULL;
462 struct target_list *head;
463 struct target *curr;
465 if (debug_reason == DBG_REASON_NOTHALTED) {
466 LOG_DEBUG("Halting remaining targets in SMP group");
467 aarch64_halt_smp(target, true);
470 /* poll all targets in the group, but skip the target that serves GDB */
471 foreach_smp_target(head, target->smp_targets) {
472 curr = head->target;
473 /* skip calling context */
474 if (curr == target)
475 continue;
476 if (!target_was_examined(curr))
477 continue;
478 /* skip targets that were already halted */
479 if (curr->state == TARGET_HALTED)
480 continue;
481 /* remember the gdb_service->target */
482 if (curr->gdb_service)
483 gdb_target = curr->gdb_service->target;
484 /* skip it */
485 if (curr == gdb_target)
486 continue;
488 /* avoid recursion in aarch64_poll() */
489 curr->smp = 0;
490 aarch64_poll(curr);
491 curr->smp = 1;
494 /* after all targets were updated, poll the gdb serving target */
495 if (gdb_target && gdb_target != target)
496 aarch64_poll(gdb_target);
498 return ERROR_OK;
502 * Aarch64 Run control
505 static int aarch64_poll(struct target *target)
507 enum target_state prev_target_state;
508 int retval = ERROR_OK;
509 int halted;
511 retval = aarch64_check_state_one(target,
512 PRSR_HALT, PRSR_HALT, &halted, NULL);
513 if (retval != ERROR_OK)
514 return retval;
516 if (halted) {
517 prev_target_state = target->state;
518 if (prev_target_state != TARGET_HALTED) {
519 enum target_debug_reason debug_reason = target->debug_reason;
521 /* We have a halting debug event */
522 target->state = TARGET_HALTED;
523 LOG_DEBUG("Target %s halted", target_name(target));
524 retval = aarch64_debug_entry(target);
525 if (retval != ERROR_OK)
526 return retval;
528 if (target->smp)
529 update_halt_gdb(target, debug_reason);
531 if (arm_semihosting(target, &retval) != 0)
532 return retval;
534 switch (prev_target_state) {
535 case TARGET_RUNNING:
536 case TARGET_UNKNOWN:
537 case TARGET_RESET:
538 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
539 break;
540 case TARGET_DEBUG_RUNNING:
541 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
542 break;
543 default:
544 break;
547 } else
548 target->state = TARGET_RUNNING;
550 return retval;
553 static int aarch64_halt(struct target *target)
555 struct armv8_common *armv8 = target_to_armv8(target);
556 armv8->last_run_control_op = ARMV8_RUNCONTROL_HALT;
558 if (target->smp)
559 return aarch64_halt_smp(target, false);
561 return aarch64_halt_one(target, HALT_SYNC);
564 static int aarch64_restore_one(struct target *target, int current,
565 uint64_t *address, int handle_breakpoints, int debug_execution)
567 struct armv8_common *armv8 = target_to_armv8(target);
568 struct arm *arm = &armv8->arm;
569 int retval;
570 uint64_t resume_pc;
572 LOG_DEBUG("%s", target_name(target));
574 if (!debug_execution)
575 target_free_all_working_areas(target);
577 /* current = 1: continue on current pc, otherwise continue at <address> */
578 resume_pc = buf_get_u64(arm->pc->value, 0, 64);
579 if (!current)
580 resume_pc = *address;
581 else
582 *address = resume_pc;
584 /* Make sure that the Armv7 gdb thumb fixups does not
585 * kill the return address
587 switch (arm->core_state) {
588 case ARM_STATE_ARM:
589 resume_pc &= 0xFFFFFFFC;
590 break;
591 case ARM_STATE_AARCH64:
592 resume_pc &= 0xFFFFFFFFFFFFFFFCULL;
593 break;
594 case ARM_STATE_THUMB:
595 case ARM_STATE_THUMB_EE:
596 /* When the return address is loaded into PC
597 * bit 0 must be 1 to stay in Thumb state
599 resume_pc |= 0x1;
600 break;
601 case ARM_STATE_JAZELLE:
602 LOG_ERROR("How do I resume into Jazelle state??");
603 return ERROR_FAIL;
605 LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
606 buf_set_u64(arm->pc->value, 0, 64, resume_pc);
607 arm->pc->dirty = true;
608 arm->pc->valid = true;
610 /* called it now before restoring context because it uses cpu
611 * register r0 for restoring system control register */
612 retval = aarch64_restore_system_control_reg(target);
613 if (retval == ERROR_OK)
614 retval = aarch64_restore_context(target, handle_breakpoints);
616 return retval;
620 * prepare single target for restart
624 static int aarch64_prepare_restart_one(struct target *target)
626 struct armv8_common *armv8 = target_to_armv8(target);
627 int retval;
628 uint32_t dscr;
629 uint32_t tmp;
631 LOG_DEBUG("%s", target_name(target));
633 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
634 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
635 if (retval != ERROR_OK)
636 return retval;
638 if ((dscr & DSCR_ITE) == 0)
639 LOG_ERROR("DSCR.ITE must be set before leaving debug!");
640 if ((dscr & DSCR_ERR) != 0)
641 LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
643 /* acknowledge a pending CTI halt event */
644 retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
646 * open the CTI gate for channel 1 so that the restart events
647 * get passed along to all PEs. Also close gate for channel 0
648 * to isolate the PE from halt events.
650 if (retval == ERROR_OK)
651 retval = arm_cti_ungate_channel(armv8->cti, 1);
652 if (retval == ERROR_OK)
653 retval = arm_cti_gate_channel(armv8->cti, 0);
655 /* make sure that DSCR.HDE is set */
656 if (retval == ERROR_OK) {
657 dscr |= DSCR_HDE;
658 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
659 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
662 if (retval == ERROR_OK) {
663 /* clear sticky bits in PRSR, SDR is now 0 */
664 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
665 armv8->debug_base + CPUV8_DBG_PRSR, &tmp);
668 return retval;
671 static int aarch64_do_restart_one(struct target *target, enum restart_mode mode)
673 struct armv8_common *armv8 = target_to_armv8(target);
674 int retval;
676 LOG_DEBUG("%s", target_name(target));
678 /* trigger an event on channel 1, generates a restart request to the PE */
679 retval = arm_cti_pulse_channel(armv8->cti, 1);
680 if (retval != ERROR_OK)
681 return retval;
683 if (mode == RESTART_SYNC) {
684 int64_t then = timeval_ms();
685 for (;;) {
686 int resumed;
688 * if PRSR.SDR is set now, the target did restart, even
689 * if it's now already halted again (e.g. due to breakpoint)
691 retval = aarch64_check_state_one(target,
692 PRSR_SDR, PRSR_SDR, &resumed, NULL);
693 if (retval != ERROR_OK || resumed)
694 break;
696 if (timeval_ms() > then + 1000) {
697 LOG_ERROR("%s: Timeout waiting for resume"PRIx32, target_name(target));
698 retval = ERROR_TARGET_TIMEOUT;
699 break;
704 if (retval != ERROR_OK)
705 return retval;
707 target->debug_reason = DBG_REASON_NOTHALTED;
708 target->state = TARGET_RUNNING;
710 return ERROR_OK;
713 static int aarch64_restart_one(struct target *target, enum restart_mode mode)
715 int retval;
717 LOG_DEBUG("%s", target_name(target));
719 retval = aarch64_prepare_restart_one(target);
720 if (retval == ERROR_OK)
721 retval = aarch64_do_restart_one(target, mode);
723 return retval;
727 * prepare all but the current target for restart
729 static int aarch64_prep_restart_smp(struct target *target, int handle_breakpoints, struct target **p_first)
731 int retval = ERROR_OK;
732 struct target_list *head;
733 struct target *first = NULL;
734 uint64_t address;
736 foreach_smp_target(head, target->smp_targets) {
737 struct target *curr = head->target;
739 /* skip calling target */
740 if (curr == target)
741 continue;
742 if (!target_was_examined(curr))
743 continue;
744 if (curr->state != TARGET_HALTED)
745 continue;
747 /* resume at current address, not in step mode */
748 retval = aarch64_restore_one(curr, 1, &address, handle_breakpoints, 0);
749 if (retval == ERROR_OK)
750 retval = aarch64_prepare_restart_one(curr);
751 if (retval != ERROR_OK) {
752 LOG_ERROR("failed to restore target %s", target_name(curr));
753 break;
755 /* remember the first valid target in the group */
756 if (!first)
757 first = curr;
760 if (p_first)
761 *p_first = first;
763 return retval;
767 static int aarch64_step_restart_smp(struct target *target)
769 int retval = ERROR_OK;
770 struct target_list *head;
771 struct target *first = NULL;
773 LOG_DEBUG("%s", target_name(target));
775 retval = aarch64_prep_restart_smp(target, 0, &first);
776 if (retval != ERROR_OK)
777 return retval;
779 if (first)
780 retval = aarch64_do_restart_one(first, RESTART_LAZY);
781 if (retval != ERROR_OK) {
782 LOG_DEBUG("error restarting target %s", target_name(first));
783 return retval;
786 int64_t then = timeval_ms();
787 for (;;) {
788 struct target *curr = target;
789 bool all_resumed = true;
791 foreach_smp_target(head, target->smp_targets) {
792 uint32_t prsr;
793 int resumed;
795 curr = head->target;
797 if (curr == target)
798 continue;
800 if (!target_was_examined(curr))
801 continue;
803 retval = aarch64_check_state_one(curr,
804 PRSR_SDR, PRSR_SDR, &resumed, &prsr);
805 if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
806 all_resumed = false;
807 break;
810 if (curr->state != TARGET_RUNNING) {
811 curr->state = TARGET_RUNNING;
812 curr->debug_reason = DBG_REASON_NOTHALTED;
813 target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
817 if (all_resumed)
818 break;
820 if (timeval_ms() > then + 1000) {
821 LOG_ERROR("%s: timeout waiting for target resume", __func__);
822 retval = ERROR_TARGET_TIMEOUT;
823 break;
826 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
827 * and it looks like the CTI's are not connected by a common
828 * trigger matrix. It seems that we need to halt one core in each
829 * cluster explicitly. So if we find that a core has not halted
830 * yet, we trigger an explicit resume for the second cluster.
832 retval = aarch64_do_restart_one(curr, RESTART_LAZY);
833 if (retval != ERROR_OK)
834 break;
837 return retval;
840 static int aarch64_resume(struct target *target, int current,
841 target_addr_t address, int handle_breakpoints, int debug_execution)
843 int retval = 0;
844 uint64_t addr = address;
846 struct armv8_common *armv8 = target_to_armv8(target);
847 armv8->last_run_control_op = ARMV8_RUNCONTROL_RESUME;
849 if (target->state != TARGET_HALTED) {
850 LOG_TARGET_ERROR(target, "not halted");
851 return ERROR_TARGET_NOT_HALTED;
855 * If this target is part of a SMP group, prepare the others
856 * targets for resuming. This involves restoring the complete
857 * target register context and setting up CTI gates to accept
858 * resume events from the trigger matrix.
860 if (target->smp) {
861 retval = aarch64_prep_restart_smp(target, handle_breakpoints, NULL);
862 if (retval != ERROR_OK)
863 return retval;
866 /* all targets prepared, restore and restart the current target */
867 retval = aarch64_restore_one(target, current, &addr, handle_breakpoints,
868 debug_execution);
869 if (retval == ERROR_OK)
870 retval = aarch64_restart_one(target, RESTART_SYNC);
871 if (retval != ERROR_OK)
872 return retval;
874 if (target->smp) {
875 int64_t then = timeval_ms();
876 for (;;) {
877 struct target *curr = target;
878 struct target_list *head;
879 bool all_resumed = true;
881 foreach_smp_target(head, target->smp_targets) {
882 uint32_t prsr;
883 int resumed;
885 curr = head->target;
886 if (curr == target)
887 continue;
888 if (!target_was_examined(curr))
889 continue;
891 retval = aarch64_check_state_one(curr,
892 PRSR_SDR, PRSR_SDR, &resumed, &prsr);
893 if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
894 all_resumed = false;
895 break;
898 if (curr->state != TARGET_RUNNING) {
899 curr->state = TARGET_RUNNING;
900 curr->debug_reason = DBG_REASON_NOTHALTED;
901 target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
905 if (all_resumed)
906 break;
908 if (timeval_ms() > then + 1000) {
909 LOG_ERROR("%s: timeout waiting for target %s to resume", __func__, target_name(curr));
910 retval = ERROR_TARGET_TIMEOUT;
911 break;
915 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
916 * and it looks like the CTI's are not connected by a common
917 * trigger matrix. It seems that we need to halt one core in each
918 * cluster explicitly. So if we find that a core has not halted
919 * yet, we trigger an explicit resume for the second cluster.
921 retval = aarch64_do_restart_one(curr, RESTART_LAZY);
922 if (retval != ERROR_OK)
923 break;
927 if (retval != ERROR_OK)
928 return retval;
930 target->debug_reason = DBG_REASON_NOTHALTED;
932 if (!debug_execution) {
933 target->state = TARGET_RUNNING;
934 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
935 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
936 } else {
937 target->state = TARGET_DEBUG_RUNNING;
938 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
939 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
942 return ERROR_OK;
945 static int aarch64_debug_entry(struct target *target)
947 int retval = ERROR_OK;
948 struct armv8_common *armv8 = target_to_armv8(target);
949 struct arm_dpm *dpm = &armv8->dpm;
950 enum arm_state core_state;
951 uint32_t dscr;
953 /* make sure to clear all sticky errors */
954 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
955 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
956 if (retval == ERROR_OK)
957 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
958 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
959 if (retval == ERROR_OK)
960 retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
962 if (retval != ERROR_OK)
963 return retval;
965 LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), dscr);
967 dpm->dscr = dscr;
968 core_state = armv8_dpm_get_core_state(dpm);
969 armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
970 armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
972 /* close the CTI gate for all events */
973 if (retval == ERROR_OK)
974 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
975 /* discard async exceptions */
976 if (retval == ERROR_OK)
977 retval = dpm->instr_cpsr_sync(dpm);
978 if (retval != ERROR_OK)
979 return retval;
981 /* Examine debug reason */
982 armv8_dpm_report_dscr(dpm, dscr);
984 /* save the memory address that triggered the watchpoint */
985 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
986 uint32_t tmp;
988 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
989 armv8->debug_base + CPUV8_DBG_EDWAR0, &tmp);
990 if (retval != ERROR_OK)
991 return retval;
992 target_addr_t edwar = tmp;
994 /* EDWAR[63:32] has unknown content in aarch32 state */
995 if (core_state == ARM_STATE_AARCH64) {
996 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
997 armv8->debug_base + CPUV8_DBG_EDWAR1, &tmp);
998 if (retval != ERROR_OK)
999 return retval;
1000 edwar |= ((target_addr_t)tmp) << 32;
1003 armv8->dpm.wp_addr = edwar;
1006 retval = armv8_dpm_read_current_registers(&armv8->dpm);
1008 if (retval == ERROR_OK && armv8->post_debug_entry)
1009 retval = armv8->post_debug_entry(target);
1011 return retval;
1014 static int aarch64_post_debug_entry(struct target *target)
1016 struct aarch64_common *aarch64 = target_to_aarch64(target);
1017 struct armv8_common *armv8 = &aarch64->armv8_common;
1018 int retval;
1019 enum arm_mode target_mode = ARM_MODE_ANY;
1020 uint32_t instr;
1022 switch (armv8->arm.core_mode) {
1023 case ARMV8_64_EL0T:
1024 target_mode = ARMV8_64_EL1H;
1025 /* fall through */
1026 case ARMV8_64_EL1T:
1027 case ARMV8_64_EL1H:
1028 instr = ARMV8_MRS(SYSTEM_SCTLR_EL1, 0);
1029 break;
1030 case ARMV8_64_EL2T:
1031 case ARMV8_64_EL2H:
1032 instr = ARMV8_MRS(SYSTEM_SCTLR_EL2, 0);
1033 break;
1034 case ARMV8_64_EL3H:
1035 case ARMV8_64_EL3T:
1036 instr = ARMV8_MRS(SYSTEM_SCTLR_EL3, 0);
1037 break;
1039 case ARM_MODE_SVC:
1040 case ARM_MODE_ABT:
1041 case ARM_MODE_FIQ:
1042 case ARM_MODE_IRQ:
1043 case ARM_MODE_HYP:
1044 case ARM_MODE_UND:
1045 case ARM_MODE_SYS:
1046 instr = ARMV4_5_MRC(15, 0, 0, 1, 0, 0);
1047 break;
1049 default:
1050 LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
1051 armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
1052 return ERROR_FAIL;
1055 if (target_mode != ARM_MODE_ANY)
1056 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
1058 retval = armv8->dpm.instr_read_data_r0(&armv8->dpm, instr, &aarch64->system_control_reg);
1059 if (retval != ERROR_OK)
1060 return retval;
1062 if (target_mode != ARM_MODE_ANY)
1063 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
1065 LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
1066 aarch64->system_control_reg_curr = aarch64->system_control_reg;
1068 if (armv8->armv8_mmu.armv8_cache.info == -1) {
1069 armv8_identify_cache(armv8);
1070 armv8_read_mpidr(armv8);
1072 if (armv8->is_armv8r) {
1073 armv8->armv8_mmu.mmu_enabled = 0;
1074 } else {
1075 armv8->armv8_mmu.mmu_enabled =
1076 (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1078 armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1079 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1080 armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1081 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1082 return ERROR_OK;
1086 * single-step a target
1088 static int aarch64_step(struct target *target, int current, target_addr_t address,
1089 int handle_breakpoints)
1091 struct armv8_common *armv8 = target_to_armv8(target);
1092 struct aarch64_common *aarch64 = target_to_aarch64(target);
1093 int saved_retval = ERROR_OK;
1094 int retval;
1095 uint32_t edecr;
1097 armv8->last_run_control_op = ARMV8_RUNCONTROL_STEP;
1099 if (target->state != TARGET_HALTED) {
1100 LOG_TARGET_ERROR(target, "not halted");
1101 return ERROR_TARGET_NOT_HALTED;
1104 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1105 armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1106 /* make sure EDECR.SS is not set when restoring the register */
1108 if (retval == ERROR_OK) {
1109 edecr &= ~0x4;
1110 /* set EDECR.SS to enter hardware step mode */
1111 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1112 armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
1114 /* disable interrupts while stepping */
1115 if (retval == ERROR_OK && aarch64->isrmasking_mode == AARCH64_ISRMASK_ON)
1116 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
1117 /* bail out if stepping setup has failed */
1118 if (retval != ERROR_OK)
1119 return retval;
1121 if (target->smp && (current == 1)) {
1123 * isolate current target so that it doesn't get resumed
1124 * together with the others
1126 retval = arm_cti_gate_channel(armv8->cti, 1);
1127 /* resume all other targets in the group */
1128 if (retval == ERROR_OK)
1129 retval = aarch64_step_restart_smp(target);
1130 if (retval != ERROR_OK) {
1131 LOG_ERROR("Failed to restart non-stepping targets in SMP group");
1132 return retval;
1134 LOG_DEBUG("Restarted all non-stepping targets in SMP group");
1137 /* all other targets running, restore and restart the current target */
1138 retval = aarch64_restore_one(target, current, &address, 0, 0);
1139 if (retval == ERROR_OK)
1140 retval = aarch64_restart_one(target, RESTART_LAZY);
1142 if (retval != ERROR_OK)
1143 return retval;
1145 LOG_DEBUG("target step-resumed at 0x%" PRIx64, address);
1146 if (!handle_breakpoints)
1147 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1149 int64_t then = timeval_ms();
1150 for (;;) {
1151 int stepped;
1152 uint32_t prsr;
1154 retval = aarch64_check_state_one(target,
1155 PRSR_SDR|PRSR_HALT, PRSR_SDR|PRSR_HALT, &stepped, &prsr);
1156 if (retval != ERROR_OK || stepped)
1157 break;
1159 if (timeval_ms() > then + 100) {
1160 LOG_ERROR("timeout waiting for target %s halt after step",
1161 target_name(target));
1162 retval = ERROR_TARGET_TIMEOUT;
1163 break;
1168 * At least on one SoC (Renesas R8A7795) stepping over a WFI instruction
1169 * causes a timeout. The core takes the step but doesn't complete it and so
1170 * debug state is never entered. However, you can manually halt the core
1171 * as an external debug even is also a WFI wakeup event.
1173 if (retval == ERROR_TARGET_TIMEOUT)
1174 saved_retval = aarch64_halt_one(target, HALT_SYNC);
1176 /* restore EDECR */
1177 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1178 armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1179 if (retval != ERROR_OK)
1180 return retval;
1182 /* restore interrupts */
1183 if (aarch64->isrmasking_mode == AARCH64_ISRMASK_ON) {
1184 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
1185 if (retval != ERROR_OK)
1186 return ERROR_OK;
1189 if (saved_retval != ERROR_OK)
1190 return saved_retval;
1192 return ERROR_OK;
1195 static int aarch64_restore_context(struct target *target, bool bpwp)
1197 struct armv8_common *armv8 = target_to_armv8(target);
1198 struct arm *arm = &armv8->arm;
1200 int retval;
1202 LOG_DEBUG("%s", target_name(target));
1204 if (armv8->pre_restore_context)
1205 armv8->pre_restore_context(target);
1207 retval = armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1208 if (retval == ERROR_OK) {
1209 /* registers are now invalid */
1210 register_cache_invalidate(arm->core_cache);
1211 register_cache_invalidate(arm->core_cache->next);
1214 return retval;
1218 * Cortex-A8 Breakpoint and watchpoint functions
1221 /* Setup hardware Breakpoint Register Pair */
1222 static int aarch64_set_breakpoint(struct target *target,
1223 struct breakpoint *breakpoint, uint8_t matchmode)
1225 int retval;
1226 int brp_i = 0;
1227 uint32_t control;
1228 uint8_t byte_addr_select = 0x0F;
1229 struct aarch64_common *aarch64 = target_to_aarch64(target);
1230 struct armv8_common *armv8 = &aarch64->armv8_common;
1231 struct aarch64_brp *brp_list = aarch64->brp_list;
1233 if (breakpoint->is_set) {
1234 LOG_WARNING("breakpoint already set");
1235 return ERROR_OK;
1238 if (breakpoint->type == BKPT_HARD) {
1239 int64_t bpt_value;
1240 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1241 brp_i++;
1242 if (brp_i >= aarch64->brp_num) {
1243 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1244 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1246 breakpoint_hw_set(breakpoint, brp_i);
1247 if (breakpoint->length == 2)
1248 byte_addr_select = (3 << (breakpoint->address & 0x02));
1249 control = ((matchmode & 0x7) << 20)
1250 | (1 << 13)
1251 | (byte_addr_select << 5)
1252 | (3 << 1) | 1;
1253 brp_list[brp_i].used = 1;
1254 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFCULL;
1255 brp_list[brp_i].control = control;
1256 bpt_value = brp_list[brp_i].value;
1258 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1259 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1260 (uint32_t)(bpt_value & 0xFFFFFFFF));
1261 if (retval != ERROR_OK)
1262 return retval;
1263 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1264 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1265 (uint32_t)(bpt_value >> 32));
1266 if (retval != ERROR_OK)
1267 return retval;
1269 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1270 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1271 brp_list[brp_i].control);
1272 if (retval != ERROR_OK)
1273 return retval;
1274 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1275 brp_list[brp_i].control,
1276 brp_list[brp_i].value);
1278 } else if (breakpoint->type == BKPT_SOFT) {
1279 uint32_t opcode;
1280 uint8_t code[4];
1282 if (armv8_dpm_get_core_state(&armv8->dpm) == ARM_STATE_AARCH64) {
1283 opcode = ARMV8_HLT(11);
1285 if (breakpoint->length != 4)
1286 LOG_ERROR("bug: breakpoint length should be 4 in AArch64 mode");
1287 } else {
1289 * core_state is ARM_STATE_ARM
1290 * in that case the opcode depends on breakpoint length:
1291 * - if length == 4 => A32 opcode
1292 * - if length == 2 => T32 opcode
1293 * - if length == 3 => T32 opcode (refer to gdb doc : ARM-Breakpoint-Kinds)
1294 * in that case the length should be changed from 3 to 4 bytes
1296 opcode = (breakpoint->length == 4) ? ARMV8_HLT_A1(11) :
1297 (uint32_t) (ARMV8_HLT_T1(11) | ARMV8_HLT_T1(11) << 16);
1299 if (breakpoint->length == 3)
1300 breakpoint->length = 4;
1303 buf_set_u32(code, 0, 32, opcode);
1305 retval = target_read_memory(target,
1306 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1307 breakpoint->length, 1,
1308 breakpoint->orig_instr);
1309 if (retval != ERROR_OK)
1310 return retval;
1312 armv8_cache_d_inner_flush_virt(armv8,
1313 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1314 breakpoint->length);
1316 retval = target_write_memory(target,
1317 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1318 breakpoint->length, 1, code);
1319 if (retval != ERROR_OK)
1320 return retval;
1322 armv8_cache_d_inner_flush_virt(armv8,
1323 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1324 breakpoint->length);
1326 armv8_cache_i_inner_inval_virt(armv8,
1327 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1328 breakpoint->length);
1330 breakpoint->is_set = true;
1333 /* Ensure that halting debug mode is enable */
1334 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
1335 if (retval != ERROR_OK) {
1336 LOG_DEBUG("Failed to set DSCR.HDE");
1337 return retval;
1340 return ERROR_OK;
1343 static int aarch64_set_context_breakpoint(struct target *target,
1344 struct breakpoint *breakpoint, uint8_t matchmode)
1346 int retval = ERROR_FAIL;
1347 int brp_i = 0;
1348 uint32_t control;
1349 uint8_t byte_addr_select = 0x0F;
1350 struct aarch64_common *aarch64 = target_to_aarch64(target);
1351 struct armv8_common *armv8 = &aarch64->armv8_common;
1352 struct aarch64_brp *brp_list = aarch64->brp_list;
1354 if (breakpoint->is_set) {
1355 LOG_WARNING("breakpoint already set");
1356 return retval;
1358 /*check available context BRPs*/
1359 while ((brp_list[brp_i].used ||
1360 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1361 brp_i++;
1363 if (brp_i >= aarch64->brp_num) {
1364 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1365 return ERROR_FAIL;
1368 breakpoint_hw_set(breakpoint, brp_i);
1369 control = ((matchmode & 0x7) << 20)
1370 | (1 << 13)
1371 | (byte_addr_select << 5)
1372 | (3 << 1) | 1;
1373 brp_list[brp_i].used = 1;
1374 brp_list[brp_i].value = (breakpoint->asid);
1375 brp_list[brp_i].control = control;
1376 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1377 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1378 brp_list[brp_i].value);
1379 if (retval != ERROR_OK)
1380 return retval;
1381 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1382 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1383 brp_list[brp_i].control);
1384 if (retval != ERROR_OK)
1385 return retval;
1386 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1387 brp_list[brp_i].control,
1388 brp_list[brp_i].value);
1389 return ERROR_OK;
1393 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1395 int retval = ERROR_FAIL;
1396 int brp_1 = 0; /* holds the contextID pair */
1397 int brp_2 = 0; /* holds the IVA pair */
1398 uint32_t control_ctx, control_iva;
1399 uint8_t ctx_byte_addr_select = 0x0F;
1400 uint8_t iva_byte_addr_select = 0x0F;
1401 uint8_t ctx_machmode = 0x03;
1402 uint8_t iva_machmode = 0x01;
1403 struct aarch64_common *aarch64 = target_to_aarch64(target);
1404 struct armv8_common *armv8 = &aarch64->armv8_common;
1405 struct aarch64_brp *brp_list = aarch64->brp_list;
1407 if (breakpoint->is_set) {
1408 LOG_WARNING("breakpoint already set");
1409 return retval;
1411 /*check available context BRPs*/
1412 while ((brp_list[brp_1].used ||
1413 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1414 brp_1++;
1416 LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1417 if (brp_1 >= aarch64->brp_num) {
1418 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1419 return ERROR_FAIL;
1422 while ((brp_list[brp_2].used ||
1423 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1424 brp_2++;
1426 LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1427 if (brp_2 >= aarch64->brp_num) {
1428 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1429 return ERROR_FAIL;
1432 breakpoint_hw_set(breakpoint, brp_1);
1433 breakpoint->linked_brp = brp_2;
1434 control_ctx = ((ctx_machmode & 0x7) << 20)
1435 | (brp_2 << 16)
1436 | (0 << 14)
1437 | (ctx_byte_addr_select << 5)
1438 | (3 << 1) | 1;
1439 brp_list[brp_1].used = 1;
1440 brp_list[brp_1].value = (breakpoint->asid);
1441 brp_list[brp_1].control = control_ctx;
1442 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1443 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].brpn,
1444 brp_list[brp_1].value);
1445 if (retval != ERROR_OK)
1446 return retval;
1447 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1448 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].brpn,
1449 brp_list[brp_1].control);
1450 if (retval != ERROR_OK)
1451 return retval;
1453 control_iva = ((iva_machmode & 0x7) << 20)
1454 | (brp_1 << 16)
1455 | (1 << 13)
1456 | (iva_byte_addr_select << 5)
1457 | (3 << 1) | 1;
1458 brp_list[brp_2].used = 1;
1459 brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFCULL;
1460 brp_list[brp_2].control = control_iva;
1461 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1462 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].brpn,
1463 brp_list[brp_2].value & 0xFFFFFFFF);
1464 if (retval != ERROR_OK)
1465 return retval;
1466 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1467 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].brpn,
1468 brp_list[brp_2].value >> 32);
1469 if (retval != ERROR_OK)
1470 return retval;
1471 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1472 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].brpn,
1473 brp_list[brp_2].control);
1474 if (retval != ERROR_OK)
1475 return retval;
1477 return ERROR_OK;
1480 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1482 int retval;
1483 struct aarch64_common *aarch64 = target_to_aarch64(target);
1484 struct armv8_common *armv8 = &aarch64->armv8_common;
1485 struct aarch64_brp *brp_list = aarch64->brp_list;
1487 if (!breakpoint->is_set) {
1488 LOG_WARNING("breakpoint not set");
1489 return ERROR_OK;
1492 if (breakpoint->type == BKPT_HARD) {
1493 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1494 int brp_i = breakpoint->number;
1495 int brp_j = breakpoint->linked_brp;
1496 if (brp_i >= aarch64->brp_num) {
1497 LOG_DEBUG("Invalid BRP number in breakpoint");
1498 return ERROR_OK;
1500 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1501 brp_list[brp_i].control, brp_list[brp_i].value);
1502 brp_list[brp_i].used = 0;
1503 brp_list[brp_i].value = 0;
1504 brp_list[brp_i].control = 0;
1505 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1506 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1507 brp_list[brp_i].control);
1508 if (retval != ERROR_OK)
1509 return retval;
1510 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1511 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1512 (uint32_t)brp_list[brp_i].value);
1513 if (retval != ERROR_OK)
1514 return retval;
1515 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1516 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1517 (uint32_t)brp_list[brp_i].value);
1518 if (retval != ERROR_OK)
1519 return retval;
1520 if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1521 LOG_DEBUG("Invalid BRP number in breakpoint");
1522 return ERROR_OK;
1524 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1525 brp_list[brp_j].control, brp_list[brp_j].value);
1526 brp_list[brp_j].used = 0;
1527 brp_list[brp_j].value = 0;
1528 brp_list[brp_j].control = 0;
1529 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1530 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].brpn,
1531 brp_list[brp_j].control);
1532 if (retval != ERROR_OK)
1533 return retval;
1534 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1535 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].brpn,
1536 (uint32_t)brp_list[brp_j].value);
1537 if (retval != ERROR_OK)
1538 return retval;
1539 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1540 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].brpn,
1541 (uint32_t)brp_list[brp_j].value);
1542 if (retval != ERROR_OK)
1543 return retval;
1545 breakpoint->linked_brp = 0;
1546 breakpoint->is_set = false;
1547 return ERROR_OK;
1549 } else {
1550 int brp_i = breakpoint->number;
1551 if (brp_i >= aarch64->brp_num) {
1552 LOG_DEBUG("Invalid BRP number in breakpoint");
1553 return ERROR_OK;
1555 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1556 brp_list[brp_i].control, brp_list[brp_i].value);
1557 brp_list[brp_i].used = 0;
1558 brp_list[brp_i].value = 0;
1559 brp_list[brp_i].control = 0;
1560 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1561 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1562 brp_list[brp_i].control);
1563 if (retval != ERROR_OK)
1564 return retval;
1565 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1566 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1567 brp_list[brp_i].value);
1568 if (retval != ERROR_OK)
1569 return retval;
1571 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1572 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1573 (uint32_t)brp_list[brp_i].value);
1574 if (retval != ERROR_OK)
1575 return retval;
1576 breakpoint->is_set = false;
1577 return ERROR_OK;
1579 } else {
1580 /* restore original instruction (kept in target endianness) */
1582 armv8_cache_d_inner_flush_virt(armv8,
1583 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1584 breakpoint->length);
1586 if (breakpoint->length == 4) {
1587 retval = target_write_memory(target,
1588 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1589 4, 1, breakpoint->orig_instr);
1590 if (retval != ERROR_OK)
1591 return retval;
1592 } else {
1593 retval = target_write_memory(target,
1594 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1595 2, 1, breakpoint->orig_instr);
1596 if (retval != ERROR_OK)
1597 return retval;
1600 armv8_cache_d_inner_flush_virt(armv8,
1601 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1602 breakpoint->length);
1604 armv8_cache_i_inner_inval_virt(armv8,
1605 breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1606 breakpoint->length);
1608 breakpoint->is_set = false;
1610 return ERROR_OK;
1613 static int aarch64_add_breakpoint(struct target *target,
1614 struct breakpoint *breakpoint)
1616 struct aarch64_common *aarch64 = target_to_aarch64(target);
1618 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1619 LOG_INFO("no hardware breakpoint available");
1620 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1623 if (breakpoint->type == BKPT_HARD)
1624 aarch64->brp_num_available--;
1626 return aarch64_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1629 static int aarch64_add_context_breakpoint(struct target *target,
1630 struct breakpoint *breakpoint)
1632 struct aarch64_common *aarch64 = target_to_aarch64(target);
1634 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1635 LOG_INFO("no hardware breakpoint available");
1636 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1639 if (breakpoint->type == BKPT_HARD)
1640 aarch64->brp_num_available--;
1642 return aarch64_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1645 static int aarch64_add_hybrid_breakpoint(struct target *target,
1646 struct breakpoint *breakpoint)
1648 struct aarch64_common *aarch64 = target_to_aarch64(target);
1650 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1651 LOG_INFO("no hardware breakpoint available");
1652 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1655 if (breakpoint->type == BKPT_HARD)
1656 aarch64->brp_num_available--;
1658 return aarch64_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1661 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1663 struct aarch64_common *aarch64 = target_to_aarch64(target);
1665 #if 0
1666 /* It is perfectly possible to remove breakpoints while the target is running */
1667 if (target->state != TARGET_HALTED) {
1668 LOG_WARNING("target not halted");
1669 return ERROR_TARGET_NOT_HALTED;
1671 #endif
1673 if (breakpoint->is_set) {
1674 aarch64_unset_breakpoint(target, breakpoint);
1675 if (breakpoint->type == BKPT_HARD)
1676 aarch64->brp_num_available++;
1679 return ERROR_OK;
1682 /* Setup hardware Watchpoint Register Pair */
1683 static int aarch64_set_watchpoint(struct target *target,
1684 struct watchpoint *watchpoint)
1686 int retval;
1687 int wp_i = 0;
1688 uint32_t control, offset, length;
1689 struct aarch64_common *aarch64 = target_to_aarch64(target);
1690 struct armv8_common *armv8 = &aarch64->armv8_common;
1691 struct aarch64_brp *wp_list = aarch64->wp_list;
1693 if (watchpoint->is_set) {
1694 LOG_WARNING("watchpoint already set");
1695 return ERROR_OK;
1698 while (wp_list[wp_i].used && (wp_i < aarch64->wp_num))
1699 wp_i++;
1700 if (wp_i >= aarch64->wp_num) {
1701 LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1702 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1705 control = (1 << 0) /* enable */
1706 | (3 << 1) /* both user and privileged access */
1707 | (1 << 13); /* higher mode control */
1709 switch (watchpoint->rw) {
1710 case WPT_READ:
1711 control |= 1 << 3;
1712 break;
1713 case WPT_WRITE:
1714 control |= 2 << 3;
1715 break;
1716 case WPT_ACCESS:
1717 control |= 3 << 3;
1718 break;
1721 /* Match up to 8 bytes. */
1722 offset = watchpoint->address & 7;
1723 length = watchpoint->length;
1724 if (offset + length > sizeof(uint64_t)) {
1725 length = sizeof(uint64_t) - offset;
1726 LOG_WARNING("Adjust watchpoint match inside 8-byte boundary");
1728 for (; length > 0; offset++, length--)
1729 control |= (1 << offset) << 5;
1731 wp_list[wp_i].value = watchpoint->address & 0xFFFFFFFFFFFFFFF8ULL;
1732 wp_list[wp_i].control = control;
1734 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1735 + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1736 (uint32_t)(wp_list[wp_i].value & 0xFFFFFFFF));
1737 if (retval != ERROR_OK)
1738 return retval;
1739 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1740 + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1741 (uint32_t)(wp_list[wp_i].value >> 32));
1742 if (retval != ERROR_OK)
1743 return retval;
1745 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1746 + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1747 control);
1748 if (retval != ERROR_OK)
1749 return retval;
1750 LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, wp_i,
1751 wp_list[wp_i].control, wp_list[wp_i].value);
1753 /* Ensure that halting debug mode is enable */
1754 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
1755 if (retval != ERROR_OK) {
1756 LOG_DEBUG("Failed to set DSCR.HDE");
1757 return retval;
1760 wp_list[wp_i].used = 1;
1761 watchpoint_set(watchpoint, wp_i);
1763 return ERROR_OK;
1766 /* Clear hardware Watchpoint Register Pair */
1767 static int aarch64_unset_watchpoint(struct target *target,
1768 struct watchpoint *watchpoint)
1770 int retval;
1771 struct aarch64_common *aarch64 = target_to_aarch64(target);
1772 struct armv8_common *armv8 = &aarch64->armv8_common;
1773 struct aarch64_brp *wp_list = aarch64->wp_list;
1775 if (!watchpoint->is_set) {
1776 LOG_WARNING("watchpoint not set");
1777 return ERROR_OK;
1780 int wp_i = watchpoint->number;
1781 if (wp_i >= aarch64->wp_num) {
1782 LOG_DEBUG("Invalid WP number in watchpoint");
1783 return ERROR_OK;
1785 LOG_DEBUG("rwp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, wp_i,
1786 wp_list[wp_i].control, wp_list[wp_i].value);
1787 wp_list[wp_i].used = 0;
1788 wp_list[wp_i].value = 0;
1789 wp_list[wp_i].control = 0;
1790 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1791 + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1792 wp_list[wp_i].control);
1793 if (retval != ERROR_OK)
1794 return retval;
1795 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1796 + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1797 wp_list[wp_i].value);
1798 if (retval != ERROR_OK)
1799 return retval;
1801 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1802 + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1803 (uint32_t)wp_list[wp_i].value);
1804 if (retval != ERROR_OK)
1805 return retval;
1806 watchpoint->is_set = false;
1808 return ERROR_OK;
1811 static int aarch64_add_watchpoint(struct target *target,
1812 struct watchpoint *watchpoint)
1814 int retval;
1815 struct aarch64_common *aarch64 = target_to_aarch64(target);
1817 if (aarch64->wp_num_available < 1) {
1818 LOG_INFO("no hardware watchpoint available");
1819 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1822 retval = aarch64_set_watchpoint(target, watchpoint);
1823 if (retval == ERROR_OK)
1824 aarch64->wp_num_available--;
1826 return retval;
1829 static int aarch64_remove_watchpoint(struct target *target,
1830 struct watchpoint *watchpoint)
1832 struct aarch64_common *aarch64 = target_to_aarch64(target);
1834 if (watchpoint->is_set) {
1835 aarch64_unset_watchpoint(target, watchpoint);
1836 aarch64->wp_num_available++;
1839 return ERROR_OK;
1843 * find out which watchpoint hits
1844 * get exception address and compare the address to watchpoints
1846 static int aarch64_hit_watchpoint(struct target *target,
1847 struct watchpoint **hit_watchpoint)
1849 if (target->debug_reason != DBG_REASON_WATCHPOINT)
1850 return ERROR_FAIL;
1852 struct armv8_common *armv8 = target_to_armv8(target);
1854 target_addr_t exception_address;
1855 struct watchpoint *wp;
1857 exception_address = armv8->dpm.wp_addr;
1859 if (exception_address == 0xFFFFFFFF)
1860 return ERROR_FAIL;
1862 for (wp = target->watchpoints; wp; wp = wp->next)
1863 if (exception_address >= wp->address && exception_address < (wp->address + wp->length)) {
1864 *hit_watchpoint = wp;
1865 return ERROR_OK;
1868 return ERROR_FAIL;
1872 * Cortex-A8 Reset functions
1875 static int aarch64_enable_reset_catch(struct target *target, bool enable)
1877 struct armv8_common *armv8 = target_to_armv8(target);
1878 uint32_t edecr;
1879 int retval;
1881 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1882 armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1883 LOG_DEBUG("EDECR = 0x%08" PRIx32 ", enable=%d", edecr, enable);
1884 if (retval != ERROR_OK)
1885 return retval;
1887 if (enable)
1888 edecr |= ECR_RCE;
1889 else
1890 edecr &= ~ECR_RCE;
1892 return mem_ap_write_atomic_u32(armv8->debug_ap,
1893 armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1896 static int aarch64_clear_reset_catch(struct target *target)
1898 struct armv8_common *armv8 = target_to_armv8(target);
1899 uint32_t edesr;
1900 int retval;
1901 bool was_triggered;
1903 /* check if Reset Catch debug event triggered as expected */
1904 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1905 armv8->debug_base + CPUV8_DBG_EDESR, &edesr);
1906 if (retval != ERROR_OK)
1907 return retval;
1909 was_triggered = !!(edesr & ESR_RC);
1910 LOG_DEBUG("Reset Catch debug event %s",
1911 was_triggered ? "triggered" : "NOT triggered!");
1913 if (was_triggered) {
1914 /* clear pending Reset Catch debug event */
1915 edesr &= ~ESR_RC;
1916 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1917 armv8->debug_base + CPUV8_DBG_EDESR, edesr);
1918 if (retval != ERROR_OK)
1919 return retval;
1922 return ERROR_OK;
1925 static int aarch64_assert_reset(struct target *target)
1927 struct armv8_common *armv8 = target_to_armv8(target);
1928 enum reset_types reset_config = jtag_get_reset_config();
1929 int retval;
1931 LOG_DEBUG(" ");
1933 /* Issue some kind of warm reset. */
1934 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1935 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1936 else if (reset_config & RESET_HAS_SRST) {
1937 bool srst_asserted = false;
1939 if (target->reset_halt && !(reset_config & RESET_SRST_PULLS_TRST)) {
1940 if (target_was_examined(target)) {
1942 if (reset_config & RESET_SRST_NO_GATING) {
1944 * SRST needs to be asserted *before* Reset Catch
1945 * debug event can be set up.
1947 adapter_assert_reset();
1948 srst_asserted = true;
1951 /* make sure to clear all sticky errors */
1952 mem_ap_write_atomic_u32(armv8->debug_ap,
1953 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1955 /* set up Reset Catch debug event to halt the CPU after reset */
1956 retval = aarch64_enable_reset_catch(target, true);
1957 if (retval != ERROR_OK)
1958 LOG_WARNING("%s: Error enabling Reset Catch debug event; the CPU will not halt immediately after reset!",
1959 target_name(target));
1960 } else {
1961 LOG_WARNING("%s: Target not examined, will not halt immediately after reset!",
1962 target_name(target));
1966 /* REVISIT handle "pulls" cases, if there's
1967 * hardware that needs them to work.
1969 if (!srst_asserted)
1970 adapter_assert_reset();
1971 } else {
1972 LOG_ERROR("%s: how to reset?", target_name(target));
1973 return ERROR_FAIL;
1976 /* registers are now invalid */
1977 if (target_was_examined(target)) {
1978 register_cache_invalidate(armv8->arm.core_cache);
1979 register_cache_invalidate(armv8->arm.core_cache->next);
1982 target->state = TARGET_RESET;
1984 return ERROR_OK;
1987 static int aarch64_deassert_reset(struct target *target)
1989 int retval;
1991 LOG_DEBUG(" ");
1993 /* be certain SRST is off */
1994 adapter_deassert_reset();
1996 if (!target_was_examined(target))
1997 return ERROR_OK;
1999 retval = aarch64_init_debug_access(target);
2000 if (retval != ERROR_OK)
2001 return retval;
2003 retval = aarch64_poll(target);
2004 if (retval != ERROR_OK)
2005 return retval;
2007 if (target->reset_halt) {
2008 /* clear pending Reset Catch debug event */
2009 retval = aarch64_clear_reset_catch(target);
2010 if (retval != ERROR_OK)
2011 LOG_WARNING("%s: Clearing Reset Catch debug event failed",
2012 target_name(target));
2014 /* disable Reset Catch debug event */
2015 retval = aarch64_enable_reset_catch(target, false);
2016 if (retval != ERROR_OK)
2017 LOG_WARNING("%s: Disabling Reset Catch debug event failed",
2018 target_name(target));
2020 if (target->state != TARGET_HALTED) {
2021 LOG_WARNING("%s: ran after reset and before halt ...",
2022 target_name(target));
2023 if (target_was_examined(target)) {
2024 retval = aarch64_halt_one(target, HALT_LAZY);
2025 if (retval != ERROR_OK)
2026 return retval;
2027 } else {
2028 target->state = TARGET_UNKNOWN;
2033 return ERROR_OK;
2036 static int aarch64_write_cpu_memory_slow(struct target *target,
2037 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2039 struct armv8_common *armv8 = target_to_armv8(target);
2040 struct arm_dpm *dpm = &armv8->dpm;
2041 struct arm *arm = &armv8->arm;
2042 int retval;
2044 armv8_reg_current(arm, 1)->dirty = true;
2046 /* change DCC to normal mode if necessary */
2047 if (*dscr & DSCR_MA) {
2048 *dscr &= ~DSCR_MA;
2049 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2050 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2051 if (retval != ERROR_OK)
2052 return retval;
2055 while (count) {
2056 uint32_t data, opcode;
2058 /* write the data to store into DTRRX */
2059 if (size == 1)
2060 data = *buffer;
2061 else if (size == 2)
2062 data = target_buffer_get_u16(target, buffer);
2063 else
2064 data = target_buffer_get_u32(target, buffer);
2065 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2066 armv8->debug_base + CPUV8_DBG_DTRRX, data);
2067 if (retval != ERROR_OK)
2068 return retval;
2070 if (arm->core_state == ARM_STATE_AARCH64)
2071 retval = dpm->instr_execute(dpm, ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 1));
2072 else
2073 retval = dpm->instr_execute(dpm, ARMV4_5_MRC(14, 0, 1, 0, 5, 0));
2074 if (retval != ERROR_OK)
2075 return retval;
2077 if (size == 1)
2078 opcode = armv8_opcode(armv8, ARMV8_OPC_STRB_IP);
2079 else if (size == 2)
2080 opcode = armv8_opcode(armv8, ARMV8_OPC_STRH_IP);
2081 else
2082 opcode = armv8_opcode(armv8, ARMV8_OPC_STRW_IP);
2083 retval = dpm->instr_execute(dpm, opcode);
2084 if (retval != ERROR_OK)
2085 return retval;
2087 /* Advance */
2088 buffer += size;
2089 --count;
2092 return ERROR_OK;
2095 static int aarch64_write_cpu_memory_fast(struct target *target,
2096 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2098 struct armv8_common *armv8 = target_to_armv8(target);
2099 struct arm *arm = &armv8->arm;
2100 int retval;
2102 armv8_reg_current(arm, 1)->dirty = true;
2104 /* Step 1.d - Change DCC to memory mode */
2105 *dscr |= DSCR_MA;
2106 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2107 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2108 if (retval != ERROR_OK)
2109 return retval;
2112 /* Step 2.a - Do the write */
2113 retval = mem_ap_write_buf_noincr(armv8->debug_ap,
2114 buffer, 4, count, armv8->debug_base + CPUV8_DBG_DTRRX);
2115 if (retval != ERROR_OK)
2116 return retval;
2118 /* Step 3.a - Switch DTR mode back to Normal mode */
2119 *dscr &= ~DSCR_MA;
2120 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2121 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2122 if (retval != ERROR_OK)
2123 return retval;
2125 return ERROR_OK;
2128 static int aarch64_write_cpu_memory(struct target *target,
2129 uint64_t address, uint32_t size,
2130 uint32_t count, const uint8_t *buffer)
2132 /* write memory through APB-AP */
2133 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2134 struct armv8_common *armv8 = target_to_armv8(target);
2135 struct arm_dpm *dpm = &armv8->dpm;
2136 struct arm *arm = &armv8->arm;
2137 uint32_t dscr;
2139 if (target->state != TARGET_HALTED) {
2140 LOG_TARGET_ERROR(target, "not halted");
2141 return ERROR_TARGET_NOT_HALTED;
2144 /* Mark register X0 as dirty, as it will be used
2145 * for transferring the data.
2146 * It will be restored automatically when exiting
2147 * debug mode
2149 armv8_reg_current(arm, 0)->dirty = true;
2151 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2153 /* Read DSCR */
2154 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2155 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2156 if (retval != ERROR_OK)
2157 return retval;
2159 /* Set Normal access mode */
2160 dscr = (dscr & ~DSCR_MA);
2161 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2162 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2163 if (retval != ERROR_OK)
2164 return retval;
2166 if (arm->core_state == ARM_STATE_AARCH64) {
2167 /* Write X0 with value 'address' using write procedure */
2168 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2169 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2170 retval = dpm->instr_write_data_dcc_64(dpm,
2171 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
2172 } else {
2173 /* Write R0 with value 'address' using write procedure */
2174 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
2175 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2176 retval = dpm->instr_write_data_dcc(dpm,
2177 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2180 if (retval != ERROR_OK)
2181 return retval;
2183 if (size == 4 && (address % 4) == 0)
2184 retval = aarch64_write_cpu_memory_fast(target, count, buffer, &dscr);
2185 else
2186 retval = aarch64_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2188 if (retval != ERROR_OK) {
2189 /* Unset DTR mode */
2190 mem_ap_read_atomic_u32(armv8->debug_ap,
2191 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2192 dscr &= ~DSCR_MA;
2193 mem_ap_write_atomic_u32(armv8->debug_ap,
2194 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2197 /* Check for sticky abort flags in the DSCR */
2198 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2199 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2200 if (retval != ERROR_OK)
2201 return retval;
2203 dpm->dscr = dscr;
2204 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2205 /* Abort occurred - clear it and exit */
2206 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2207 armv8_dpm_handle_exception(dpm, true);
2208 return ERROR_FAIL;
2211 /* Done */
2212 return ERROR_OK;
2215 static int aarch64_read_cpu_memory_slow(struct target *target,
2216 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2218 struct armv8_common *armv8 = target_to_armv8(target);
2219 struct arm_dpm *dpm = &armv8->dpm;
2220 struct arm *arm = &armv8->arm;
2221 int retval;
2223 armv8_reg_current(arm, 1)->dirty = true;
2225 /* change DCC to normal mode (if necessary) */
2226 if (*dscr & DSCR_MA) {
2227 *dscr &= DSCR_MA;
2228 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2229 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2230 if (retval != ERROR_OK)
2231 return retval;
2234 while (count) {
2235 uint32_t opcode, data;
2237 if (size == 1)
2238 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRB_IP);
2239 else if (size == 2)
2240 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRH_IP);
2241 else
2242 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRW_IP);
2243 retval = dpm->instr_execute(dpm, opcode);
2244 if (retval != ERROR_OK)
2245 return retval;
2247 if (arm->core_state == ARM_STATE_AARCH64)
2248 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 1));
2249 else
2250 retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 1, 0, 5, 0));
2251 if (retval != ERROR_OK)
2252 return retval;
2254 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2255 armv8->debug_base + CPUV8_DBG_DTRTX, &data);
2256 if (retval != ERROR_OK)
2257 return retval;
2259 if (size == 1)
2260 *buffer = (uint8_t)data;
2261 else if (size == 2)
2262 target_buffer_set_u16(target, buffer, (uint16_t)data);
2263 else
2264 target_buffer_set_u32(target, buffer, data);
2266 /* Advance */
2267 buffer += size;
2268 --count;
2271 return ERROR_OK;
2274 static int aarch64_read_cpu_memory_fast(struct target *target,
2275 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2277 struct armv8_common *armv8 = target_to_armv8(target);
2278 struct arm_dpm *dpm = &armv8->dpm;
2279 struct arm *arm = &armv8->arm;
2280 int retval;
2281 uint32_t value;
2283 /* Mark X1 as dirty */
2284 armv8_reg_current(arm, 1)->dirty = true;
2286 if (arm->core_state == ARM_STATE_AARCH64) {
2287 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2288 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
2289 } else {
2290 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2291 retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
2294 if (retval != ERROR_OK)
2295 return retval;
2297 /* Step 1.e - Change DCC to memory mode */
2298 *dscr |= DSCR_MA;
2299 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2300 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2301 if (retval != ERROR_OK)
2302 return retval;
2304 /* Step 1.f - read DBGDTRTX and discard the value */
2305 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2306 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2307 if (retval != ERROR_OK)
2308 return retval;
2310 count--;
2311 /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2312 * Abort flags are sticky, so can be read at end of transactions
2314 * This data is read in aligned to 32 bit boundary.
2317 if (count) {
2318 /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2319 * increments X0 by 4. */
2320 retval = mem_ap_read_buf_noincr(armv8->debug_ap, buffer, 4, count,
2321 armv8->debug_base + CPUV8_DBG_DTRTX);
2322 if (retval != ERROR_OK)
2323 return retval;
2326 /* Step 3.a - set DTR access mode back to Normal mode */
2327 *dscr &= ~DSCR_MA;
2328 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2329 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2330 if (retval != ERROR_OK)
2331 return retval;
2333 /* Step 3.b - read DBGDTRTX for the final value */
2334 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2335 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2336 if (retval != ERROR_OK)
2337 return retval;
2339 target_buffer_set_u32(target, buffer + count * 4, value);
2340 return retval;
2343 static int aarch64_read_cpu_memory(struct target *target,
2344 target_addr_t address, uint32_t size,
2345 uint32_t count, uint8_t *buffer)
2347 /* read memory through APB-AP */
2348 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2349 struct armv8_common *armv8 = target_to_armv8(target);
2350 struct arm_dpm *dpm = &armv8->dpm;
2351 struct arm *arm = &armv8->arm;
2352 uint32_t dscr;
2354 LOG_DEBUG("Reading CPU memory address 0x%016" PRIx64 " size %" PRIu32 " count %" PRIu32,
2355 address, size, count);
2357 if (target->state != TARGET_HALTED) {
2358 LOG_TARGET_ERROR(target, "not halted");
2359 return ERROR_TARGET_NOT_HALTED;
2362 /* Mark register X0 as dirty, as it will be used
2363 * for transferring the data.
2364 * It will be restored automatically when exiting
2365 * debug mode
2367 armv8_reg_current(arm, 0)->dirty = true;
2369 /* Read DSCR */
2370 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2371 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2372 if (retval != ERROR_OK)
2373 return retval;
2375 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2377 /* Set Normal access mode */
2378 dscr &= ~DSCR_MA;
2379 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2380 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2381 if (retval != ERROR_OK)
2382 return retval;
2384 if (arm->core_state == ARM_STATE_AARCH64) {
2385 /* Write X0 with value 'address' using write procedure */
2386 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2387 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2388 retval = dpm->instr_write_data_dcc_64(dpm,
2389 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
2390 } else {
2391 /* Write R0 with value 'address' using write procedure */
2392 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2393 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2394 retval = dpm->instr_write_data_dcc(dpm,
2395 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2398 if (retval != ERROR_OK)
2399 return retval;
2401 if (size == 4 && (address % 4) == 0)
2402 retval = aarch64_read_cpu_memory_fast(target, count, buffer, &dscr);
2403 else
2404 retval = aarch64_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2406 if (dscr & DSCR_MA) {
2407 dscr &= ~DSCR_MA;
2408 mem_ap_write_atomic_u32(armv8->debug_ap,
2409 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2412 if (retval != ERROR_OK)
2413 return retval;
2415 /* Check for sticky abort flags in the DSCR */
2416 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2417 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2418 if (retval != ERROR_OK)
2419 return retval;
2421 dpm->dscr = dscr;
2423 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2424 /* Abort occurred - clear it and exit */
2425 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2426 armv8_dpm_handle_exception(dpm, true);
2427 return ERROR_FAIL;
2430 /* Done */
2431 return ERROR_OK;
2434 static int aarch64_read_phys_memory(struct target *target,
2435 target_addr_t address, uint32_t size,
2436 uint32_t count, uint8_t *buffer)
2438 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2440 if (count && buffer) {
2441 /* read memory through APB-AP */
2442 retval = aarch64_mmu_modify(target, 0);
2443 if (retval != ERROR_OK)
2444 return retval;
2445 retval = aarch64_read_cpu_memory(target, address, size, count, buffer);
2447 return retval;
2450 static int aarch64_read_memory(struct target *target, target_addr_t address,
2451 uint32_t size, uint32_t count, uint8_t *buffer)
2453 int mmu_enabled = 0;
2454 int retval;
2456 /* determine if MMU was enabled on target stop */
2457 retval = aarch64_mmu(target, &mmu_enabled);
2458 if (retval != ERROR_OK)
2459 return retval;
2461 if (mmu_enabled) {
2462 /* enable MMU as we could have disabled it for phys access */
2463 retval = aarch64_mmu_modify(target, 1);
2464 if (retval != ERROR_OK)
2465 return retval;
2467 return aarch64_read_cpu_memory(target, address, size, count, buffer);
2470 static int aarch64_write_phys_memory(struct target *target,
2471 target_addr_t address, uint32_t size,
2472 uint32_t count, const uint8_t *buffer)
2474 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2476 if (count && buffer) {
2477 /* write memory through APB-AP */
2478 retval = aarch64_mmu_modify(target, 0);
2479 if (retval != ERROR_OK)
2480 return retval;
2481 return aarch64_write_cpu_memory(target, address, size, count, buffer);
2484 return retval;
2487 static int aarch64_write_memory(struct target *target, target_addr_t address,
2488 uint32_t size, uint32_t count, const uint8_t *buffer)
2490 int mmu_enabled = 0;
2491 int retval;
2493 /* determine if MMU was enabled on target stop */
2494 retval = aarch64_mmu(target, &mmu_enabled);
2495 if (retval != ERROR_OK)
2496 return retval;
2498 if (mmu_enabled) {
2499 /* enable MMU as we could have disabled it for phys access */
2500 retval = aarch64_mmu_modify(target, 1);
2501 if (retval != ERROR_OK)
2502 return retval;
2504 return aarch64_write_cpu_memory(target, address, size, count, buffer);
2507 static int aarch64_handle_target_request(void *priv)
2509 struct target *target = priv;
2510 struct armv8_common *armv8 = target_to_armv8(target);
2511 int retval;
2513 if (!target_was_examined(target))
2514 return ERROR_OK;
2515 if (!target->dbg_msg_enabled)
2516 return ERROR_OK;
2518 if (target->state == TARGET_RUNNING) {
2519 uint32_t request;
2520 uint32_t dscr;
2521 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2522 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2524 /* check if we have data */
2525 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2526 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2527 armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2528 if (retval == ERROR_OK) {
2529 target_request(target, request);
2530 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2531 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2536 return ERROR_OK;
2539 static int aarch64_examine_first(struct target *target)
2541 struct aarch64_common *aarch64 = target_to_aarch64(target);
2542 struct armv8_common *armv8 = &aarch64->armv8_common;
2543 struct adiv5_dap *swjdp = armv8->arm.dap;
2544 struct aarch64_private_config *pc = target->private_config;
2545 int i;
2546 int retval = ERROR_OK;
2547 uint64_t debug, ttypr;
2548 uint32_t cpuid;
2549 uint32_t tmp0, tmp1, tmp2, tmp3;
2550 debug = ttypr = cpuid = 0;
2552 if (!pc)
2553 return ERROR_FAIL;
2555 if (!armv8->debug_ap) {
2556 if (pc->adiv5_config.ap_num == DP_APSEL_INVALID) {
2557 /* Search for the APB-AB */
2558 retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2559 if (retval != ERROR_OK) {
2560 LOG_ERROR("Could not find APB-AP for debug access");
2561 return retval;
2563 } else {
2564 armv8->debug_ap = dap_get_ap(swjdp, pc->adiv5_config.ap_num);
2565 if (!armv8->debug_ap) {
2566 LOG_ERROR("Cannot get AP");
2567 return ERROR_FAIL;
2572 retval = mem_ap_init(armv8->debug_ap);
2573 if (retval != ERROR_OK) {
2574 LOG_ERROR("Could not initialize the APB-AP");
2575 return retval;
2578 armv8->debug_ap->memaccess_tck = 10;
2580 if (!target->dbgbase_set) {
2581 /* Lookup Processor DAP */
2582 retval = dap_lookup_cs_component(armv8->debug_ap, ARM_CS_C9_DEVTYPE_CORE_DEBUG,
2583 &armv8->debug_base, target->coreid);
2584 if (retval != ERROR_OK)
2585 return retval;
2586 LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
2587 target->coreid, armv8->debug_base);
2588 } else
2589 armv8->debug_base = target->dbgbase;
2591 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2592 armv8->debug_base + CPUV8_DBG_OSLAR, 0);
2593 if (retval != ERROR_OK) {
2594 LOG_DEBUG("Examine %s failed", "oslock");
2595 return retval;
2598 retval = mem_ap_read_u32(armv8->debug_ap,
2599 armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
2600 if (retval != ERROR_OK) {
2601 LOG_DEBUG("Examine %s failed", "CPUID");
2602 return retval;
2605 retval = mem_ap_read_u32(armv8->debug_ap,
2606 armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
2607 retval += mem_ap_read_u32(armv8->debug_ap,
2608 armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
2609 if (retval != ERROR_OK) {
2610 LOG_DEBUG("Examine %s failed", "Memory Model Type");
2611 return retval;
2613 retval = mem_ap_read_u32(armv8->debug_ap,
2614 armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp2);
2615 retval += mem_ap_read_u32(armv8->debug_ap,
2616 armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp3);
2617 if (retval != ERROR_OK) {
2618 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2619 return retval;
2622 retval = dap_run(armv8->debug_ap->dap);
2623 if (retval != ERROR_OK) {
2624 LOG_ERROR("%s: examination failed\n", target_name(target));
2625 return retval;
2628 ttypr |= tmp1;
2629 ttypr = (ttypr << 32) | tmp0;
2630 debug |= tmp3;
2631 debug = (debug << 32) | tmp2;
2633 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2634 LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
2635 LOG_DEBUG("debug = 0x%08" PRIx64, debug);
2637 if (!pc->cti) {
2638 LOG_TARGET_ERROR(target, "CTI not specified");
2639 return ERROR_FAIL;
2642 armv8->cti = pc->cti;
2644 retval = aarch64_dpm_setup(aarch64, debug);
2645 if (retval != ERROR_OK)
2646 return retval;
2648 /* Setup Breakpoint Register Pairs */
2649 aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
2650 aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
2651 aarch64->brp_num_available = aarch64->brp_num;
2652 aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2653 for (i = 0; i < aarch64->brp_num; i++) {
2654 aarch64->brp_list[i].used = 0;
2655 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2656 aarch64->brp_list[i].type = BRP_NORMAL;
2657 else
2658 aarch64->brp_list[i].type = BRP_CONTEXT;
2659 aarch64->brp_list[i].value = 0;
2660 aarch64->brp_list[i].control = 0;
2661 aarch64->brp_list[i].brpn = i;
2664 /* Setup Watchpoint Register Pairs */
2665 aarch64->wp_num = (uint32_t)((debug >> 20) & 0x0F) + 1;
2666 aarch64->wp_num_available = aarch64->wp_num;
2667 aarch64->wp_list = calloc(aarch64->wp_num, sizeof(struct aarch64_brp));
2668 for (i = 0; i < aarch64->wp_num; i++) {
2669 aarch64->wp_list[i].used = 0;
2670 aarch64->wp_list[i].type = BRP_NORMAL;
2671 aarch64->wp_list[i].value = 0;
2672 aarch64->wp_list[i].control = 0;
2673 aarch64->wp_list[i].brpn = i;
2676 LOG_DEBUG("Configured %i hw breakpoints, %i watchpoints",
2677 aarch64->brp_num, aarch64->wp_num);
2679 target->state = TARGET_UNKNOWN;
2680 target->debug_reason = DBG_REASON_NOTHALTED;
2681 aarch64->isrmasking_mode = AARCH64_ISRMASK_ON;
2682 target_set_examined(target);
2683 return ERROR_OK;
2686 static int aarch64_examine(struct target *target)
2688 int retval = ERROR_OK;
2690 /* don't re-probe hardware after each reset */
2691 if (!target_was_examined(target))
2692 retval = aarch64_examine_first(target);
2694 /* Configure core debug access */
2695 if (retval == ERROR_OK)
2696 retval = aarch64_init_debug_access(target);
2698 return retval;
2702 * Cortex-A8 target creation and initialization
2705 static int aarch64_init_target(struct command_context *cmd_ctx,
2706 struct target *target)
2708 /* examine_first() does a bunch of this */
2709 arm_semihosting_init(target);
2710 return ERROR_OK;
2713 static int aarch64_init_arch_info(struct target *target,
2714 struct aarch64_common *aarch64, struct adiv5_dap *dap)
2716 struct armv8_common *armv8 = &aarch64->armv8_common;
2718 /* Setup struct aarch64_common */
2719 aarch64->common_magic = AARCH64_COMMON_MAGIC;
2720 armv8->arm.dap = dap;
2722 /* register arch-specific functions */
2723 armv8->examine_debug_reason = NULL;
2724 armv8->post_debug_entry = aarch64_post_debug_entry;
2725 armv8->pre_restore_context = NULL;
2726 armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2728 armv8_init_arch_info(target, armv8);
2729 target_register_timer_callback(aarch64_handle_target_request, 1,
2730 TARGET_TIMER_TYPE_PERIODIC, target);
2732 return ERROR_OK;
2735 static int armv8r_target_create(struct target *target, Jim_Interp *interp)
2737 struct aarch64_private_config *pc = target->private_config;
2738 struct aarch64_common *aarch64;
2740 if (adiv5_verify_config(&pc->adiv5_config) != ERROR_OK)
2741 return ERROR_FAIL;
2743 aarch64 = calloc(1, sizeof(struct aarch64_common));
2744 if (!aarch64) {
2745 LOG_ERROR("Out of memory");
2746 return ERROR_FAIL;
2749 aarch64->armv8_common.is_armv8r = true;
2751 return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
2754 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2756 struct aarch64_private_config *pc = target->private_config;
2757 struct aarch64_common *aarch64;
2759 if (adiv5_verify_config(&pc->adiv5_config) != ERROR_OK)
2760 return ERROR_FAIL;
2762 aarch64 = calloc(1, sizeof(struct aarch64_common));
2763 if (!aarch64) {
2764 LOG_ERROR("Out of memory");
2765 return ERROR_FAIL;
2768 aarch64->armv8_common.is_armv8r = false;
2770 return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
2773 static void aarch64_deinit_target(struct target *target)
2775 struct aarch64_common *aarch64 = target_to_aarch64(target);
2776 struct armv8_common *armv8 = &aarch64->armv8_common;
2777 struct arm_dpm *dpm = &armv8->dpm;
2779 if (armv8->debug_ap)
2780 dap_put_ap(armv8->debug_ap);
2782 armv8_free_reg_cache(target);
2783 free(aarch64->brp_list);
2784 free(dpm->dbp);
2785 free(dpm->dwp);
2786 free(target->private_config);
2787 free(aarch64);
2790 static int aarch64_mmu(struct target *target, int *enabled)
2792 struct aarch64_common *aarch64 = target_to_aarch64(target);
2793 struct armv8_common *armv8 = &aarch64->armv8_common;
2794 if (target->state != TARGET_HALTED) {
2795 LOG_TARGET_ERROR(target, "not halted");
2796 return ERROR_TARGET_NOT_HALTED;
2798 if (armv8->is_armv8r)
2799 *enabled = 0;
2800 else
2801 *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2802 return ERROR_OK;
2805 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2806 target_addr_t *phys)
2808 return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2812 * private target configuration items
2814 enum aarch64_cfg_param {
2815 CFG_CTI,
2818 static const struct jim_nvp nvp_config_opts[] = {
2819 { .name = "-cti", .value = CFG_CTI },
2820 { .name = NULL, .value = -1 }
2823 static int aarch64_jim_configure(struct target *target, struct jim_getopt_info *goi)
2825 struct aarch64_private_config *pc;
2826 struct jim_nvp *n;
2827 int e;
2829 pc = (struct aarch64_private_config *)target->private_config;
2830 if (!pc) {
2831 pc = calloc(1, sizeof(struct aarch64_private_config));
2832 pc->adiv5_config.ap_num = DP_APSEL_INVALID;
2833 target->private_config = pc;
2837 * Call adiv5_jim_configure() to parse the common DAP options
2838 * It will return JIM_CONTINUE if it didn't find any known
2839 * options, JIM_OK if it correctly parsed the topmost option
2840 * and JIM_ERR if an error occurred during parameter evaluation.
2841 * For JIM_CONTINUE, we check our own params.
2843 * adiv5_jim_configure() assumes 'private_config' to point to
2844 * 'struct adiv5_private_config'. Override 'private_config'!
2846 target->private_config = &pc->adiv5_config;
2847 e = adiv5_jim_configure(target, goi);
2848 target->private_config = pc;
2849 if (e != JIM_CONTINUE)
2850 return e;
2852 /* parse config or cget options ... */
2853 if (goi->argc > 0) {
2854 Jim_SetEmptyResult(goi->interp);
2856 /* check first if topmost item is for us */
2857 e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
2858 goi->argv[0], &n);
2859 if (e != JIM_OK)
2860 return JIM_CONTINUE;
2862 e = jim_getopt_obj(goi, NULL);
2863 if (e != JIM_OK)
2864 return e;
2866 switch (n->value) {
2867 case CFG_CTI: {
2868 if (goi->isconfigure) {
2869 Jim_Obj *o_cti;
2870 struct arm_cti *cti;
2871 e = jim_getopt_obj(goi, &o_cti);
2872 if (e != JIM_OK)
2873 return e;
2874 cti = cti_instance_by_jim_obj(goi->interp, o_cti);
2875 if (!cti) {
2876 Jim_SetResultString(goi->interp, "CTI name invalid!", -1);
2877 return JIM_ERR;
2879 pc->cti = cti;
2880 } else {
2881 if (goi->argc != 0) {
2882 Jim_WrongNumArgs(goi->interp,
2883 goi->argc, goi->argv,
2884 "NO PARAMS");
2885 return JIM_ERR;
2888 if (!pc || !pc->cti) {
2889 Jim_SetResultString(goi->interp, "CTI not configured", -1);
2890 return JIM_ERR;
2892 Jim_SetResultString(goi->interp, arm_cti_name(pc->cti), -1);
2894 break;
2897 default:
2898 return JIM_CONTINUE;
2902 return JIM_OK;
2905 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2907 struct target *target = get_current_target(CMD_CTX);
2908 struct armv8_common *armv8 = target_to_armv8(target);
2910 return armv8_handle_cache_info_command(CMD,
2911 &armv8->armv8_mmu.armv8_cache);
2914 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2916 struct target *target = get_current_target(CMD_CTX);
2917 if (!target_was_examined(target)) {
2918 LOG_ERROR("target not examined yet");
2919 return ERROR_FAIL;
2922 return aarch64_init_debug_access(target);
2925 COMMAND_HANDLER(aarch64_handle_disassemble_command)
2927 struct target *target = get_current_target(CMD_CTX);
2929 if (!target) {
2930 LOG_ERROR("No target selected");
2931 return ERROR_FAIL;
2934 struct aarch64_common *aarch64 = target_to_aarch64(target);
2936 if (aarch64->common_magic != AARCH64_COMMON_MAGIC) {
2937 command_print(CMD, "current target isn't an AArch64");
2938 return ERROR_FAIL;
2941 int count = 1;
2942 target_addr_t address;
2944 switch (CMD_ARGC) {
2945 case 2:
2946 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
2947 /* FALL THROUGH */
2948 case 1:
2949 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
2950 break;
2951 default:
2952 return ERROR_COMMAND_SYNTAX_ERROR;
2955 return a64_disassemble(CMD, target, address, count);
2958 COMMAND_HANDLER(aarch64_mask_interrupts_command)
2960 struct target *target = get_current_target(CMD_CTX);
2961 struct aarch64_common *aarch64 = target_to_aarch64(target);
2963 static const struct nvp nvp_maskisr_modes[] = {
2964 { .name = "off", .value = AARCH64_ISRMASK_OFF },
2965 { .name = "on", .value = AARCH64_ISRMASK_ON },
2966 { .name = NULL, .value = -1 },
2968 const struct nvp *n;
2970 if (CMD_ARGC > 0) {
2971 n = nvp_name2value(nvp_maskisr_modes, CMD_ARGV[0]);
2972 if (!n->name) {
2973 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
2974 return ERROR_COMMAND_SYNTAX_ERROR;
2977 aarch64->isrmasking_mode = n->value;
2980 n = nvp_value2name(nvp_maskisr_modes, aarch64->isrmasking_mode);
2981 command_print(CMD, "aarch64 interrupt mask %s", n->name);
2983 return ERROR_OK;
2986 COMMAND_HANDLER(aarch64_mcrmrc_command)
2988 bool is_mcr = false;
2989 unsigned int arg_cnt = 5;
2991 if (!strcmp(CMD_NAME, "mcr")) {
2992 is_mcr = true;
2993 arg_cnt = 6;
2996 if (arg_cnt != CMD_ARGC)
2997 return ERROR_COMMAND_SYNTAX_ERROR;
2999 struct target *target = get_current_target(CMD_CTX);
3000 if (!target) {
3001 command_print(CMD, "no current target");
3002 return ERROR_FAIL;
3004 if (!target_was_examined(target)) {
3005 command_print(CMD, "%s: not yet examined", target_name(target));
3006 return ERROR_TARGET_NOT_EXAMINED;
3009 struct arm *arm = target_to_arm(target);
3010 if (!is_arm(arm)) {
3011 command_print(CMD, "%s: not an ARM", target_name(target));
3012 return ERROR_FAIL;
3015 if (target->state != TARGET_HALTED) {
3016 command_print(CMD, "Error: [%s] not halted", target_name(target));
3017 return ERROR_TARGET_NOT_HALTED;
3020 if (arm->core_state == ARM_STATE_AARCH64) {
3021 command_print(CMD, "%s: not 32-bit arm target", target_name(target));
3022 return ERROR_FAIL;
3025 int cpnum;
3026 uint32_t op1;
3027 uint32_t op2;
3028 uint32_t crn;
3029 uint32_t crm;
3030 uint32_t value;
3032 /* NOTE: parameter sequence matches ARM instruction set usage:
3033 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
3034 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
3035 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
3037 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], cpnum);
3038 if (cpnum & ~0xf) {
3039 command_print(CMD, "coprocessor %d out of range", cpnum);
3040 return ERROR_COMMAND_ARGUMENT_INVALID;
3043 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], op1);
3044 if (op1 & ~0x7) {
3045 command_print(CMD, "op1 %d out of range", op1);
3046 return ERROR_COMMAND_ARGUMENT_INVALID;
3049 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], crn);
3050 if (crn & ~0xf) {
3051 command_print(CMD, "CRn %d out of range", crn);
3052 return ERROR_COMMAND_ARGUMENT_INVALID;
3055 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], crm);
3056 if (crm & ~0xf) {
3057 command_print(CMD, "CRm %d out of range", crm);
3058 return ERROR_COMMAND_ARGUMENT_INVALID;
3061 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], op2);
3062 if (op2 & ~0x7) {
3063 command_print(CMD, "op2 %d out of range", op2);
3064 return ERROR_COMMAND_ARGUMENT_INVALID;
3067 if (is_mcr) {
3068 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[5], value);
3070 /* NOTE: parameters reordered! */
3071 /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
3072 int retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
3073 if (retval != ERROR_OK)
3074 return retval;
3075 } else {
3076 value = 0;
3077 /* NOTE: parameters reordered! */
3078 /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
3079 int retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
3080 if (retval != ERROR_OK)
3081 return retval;
3083 command_print(CMD, "0x%" PRIx32, value);
3086 return ERROR_OK;
3089 static const struct command_registration aarch64_exec_command_handlers[] = {
3091 .name = "cache_info",
3092 .handler = aarch64_handle_cache_info_command,
3093 .mode = COMMAND_EXEC,
3094 .help = "display information about target caches",
3095 .usage = "",
3098 .name = "dbginit",
3099 .handler = aarch64_handle_dbginit_command,
3100 .mode = COMMAND_EXEC,
3101 .help = "Initialize core debug",
3102 .usage = "",
3105 .name = "disassemble",
3106 .handler = aarch64_handle_disassemble_command,
3107 .mode = COMMAND_EXEC,
3108 .help = "Disassemble instructions",
3109 .usage = "address [count]",
3112 .name = "maskisr",
3113 .handler = aarch64_mask_interrupts_command,
3114 .mode = COMMAND_ANY,
3115 .help = "mask aarch64 interrupts during single-step",
3116 .usage = "['on'|'off']",
3119 .name = "mcr",
3120 .mode = COMMAND_EXEC,
3121 .handler = aarch64_mcrmrc_command,
3122 .help = "write coprocessor register",
3123 .usage = "cpnum op1 CRn CRm op2 value",
3126 .name = "mrc",
3127 .mode = COMMAND_EXEC,
3128 .handler = aarch64_mcrmrc_command,
3129 .help = "read coprocessor register",
3130 .usage = "cpnum op1 CRn CRm op2",
3133 .chain = smp_command_handlers,
3137 COMMAND_REGISTRATION_DONE
3140 static const struct command_registration aarch64_command_handlers[] = {
3142 .name = "arm",
3143 .mode = COMMAND_ANY,
3144 .help = "ARM Command Group",
3145 .usage = "",
3146 .chain = semihosting_common_handlers
3149 .chain = armv8_command_handlers,
3152 .name = "aarch64",
3153 .mode = COMMAND_ANY,
3154 .help = "Aarch64 command group",
3155 .usage = "",
3156 .chain = aarch64_exec_command_handlers,
3158 COMMAND_REGISTRATION_DONE
3161 struct target_type aarch64_target = {
3162 .name = "aarch64",
3164 .poll = aarch64_poll,
3165 .arch_state = armv8_arch_state,
3167 .halt = aarch64_halt,
3168 .resume = aarch64_resume,
3169 .step = aarch64_step,
3171 .assert_reset = aarch64_assert_reset,
3172 .deassert_reset = aarch64_deassert_reset,
3174 /* REVISIT allow exporting VFP3 registers ... */
3175 .get_gdb_arch = armv8_get_gdb_arch,
3176 .get_gdb_reg_list = armv8_get_gdb_reg_list,
3178 .read_memory = aarch64_read_memory,
3179 .write_memory = aarch64_write_memory,
3181 .add_breakpoint = aarch64_add_breakpoint,
3182 .add_context_breakpoint = aarch64_add_context_breakpoint,
3183 .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
3184 .remove_breakpoint = aarch64_remove_breakpoint,
3185 .add_watchpoint = aarch64_add_watchpoint,
3186 .remove_watchpoint = aarch64_remove_watchpoint,
3187 .hit_watchpoint = aarch64_hit_watchpoint,
3189 .commands = aarch64_command_handlers,
3190 .target_create = aarch64_target_create,
3191 .target_jim_configure = aarch64_jim_configure,
3192 .init_target = aarch64_init_target,
3193 .deinit_target = aarch64_deinit_target,
3194 .examine = aarch64_examine,
3196 .read_phys_memory = aarch64_read_phys_memory,
3197 .write_phys_memory = aarch64_write_phys_memory,
3198 .mmu = aarch64_mmu,
3199 .virt2phys = aarch64_virt2phys,
3202 struct target_type armv8r_target = {
3203 .name = "armv8r",
3205 .poll = aarch64_poll,
3206 .arch_state = armv8_arch_state,
3208 .halt = aarch64_halt,
3209 .resume = aarch64_resume,
3210 .step = aarch64_step,
3212 .assert_reset = aarch64_assert_reset,
3213 .deassert_reset = aarch64_deassert_reset,
3215 /* REVISIT allow exporting VFP3 registers ... */
3216 .get_gdb_arch = armv8_get_gdb_arch,
3217 .get_gdb_reg_list = armv8_get_gdb_reg_list,
3219 .read_memory = aarch64_read_phys_memory,
3220 .write_memory = aarch64_write_phys_memory,
3222 .add_breakpoint = aarch64_add_breakpoint,
3223 .add_context_breakpoint = aarch64_add_context_breakpoint,
3224 .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
3225 .remove_breakpoint = aarch64_remove_breakpoint,
3226 .add_watchpoint = aarch64_add_watchpoint,
3227 .remove_watchpoint = aarch64_remove_watchpoint,
3228 .hit_watchpoint = aarch64_hit_watchpoint,
3230 .commands = aarch64_command_handlers,
3231 .target_create = armv8r_target_create,
3232 .target_jim_configure = aarch64_jim_configure,
3233 .init_target = aarch64_init_target,
3234 .deinit_target = aarch64_deinit_target,
3235 .examine = aarch64_examine,