drivers/ulink: Group adapter commands
[openocd.git] / src / target / aarch64.c
blob70e727cf9d42334a2d304ceeba4607446ca800f5
1 /***************************************************************************
2 * Copyright (C) 2015 by David Ung *
3 * *
4 * This program is free software; you can redistribute it and/or modify *
5 * it under the terms of the GNU General Public License as published by *
6 * the Free Software Foundation; either version 2 of the License, or *
7 * (at your option) any later version. *
8 * *
9 * This program is distributed in the hope that it will be useful, *
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12 * GNU General Public License for more details. *
13 * *
14 * You should have received a copy of the GNU General Public License *
15 * along with this program; if not, write to the *
16 * Free Software Foundation, Inc., *
17 * *
18 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "a64_disassembler.h"
27 #include "register.h"
28 #include "target_request.h"
29 #include "target_type.h"
30 #include "armv8_opcodes.h"
31 #include "armv8_cache.h"
32 #include "arm_semihosting.h"
33 #include "jtag/interface.h"
34 #include "smp.h"
35 #include <helper/time_support.h>
37 enum restart_mode {
38 RESTART_LAZY,
39 RESTART_SYNC,
42 enum halt_mode {
43 HALT_LAZY,
44 HALT_SYNC,
47 struct aarch64_private_config {
48 struct adiv5_private_config adiv5_config;
49 struct arm_cti *cti;
52 static int aarch64_poll(struct target *target);
53 static int aarch64_debug_entry(struct target *target);
54 static int aarch64_restore_context(struct target *target, bool bpwp);
55 static int aarch64_set_breakpoint(struct target *target,
56 struct breakpoint *breakpoint, uint8_t matchmode);
57 static int aarch64_set_context_breakpoint(struct target *target,
58 struct breakpoint *breakpoint, uint8_t matchmode);
59 static int aarch64_set_hybrid_breakpoint(struct target *target,
60 struct breakpoint *breakpoint);
61 static int aarch64_unset_breakpoint(struct target *target,
62 struct breakpoint *breakpoint);
63 static int aarch64_mmu(struct target *target, int *enabled);
64 static int aarch64_virt2phys(struct target *target,
65 target_addr_t virt, target_addr_t *phys);
66 static int aarch64_read_cpu_memory(struct target *target,
67 uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
69 static int aarch64_restore_system_control_reg(struct target *target)
71 enum arm_mode target_mode = ARM_MODE_ANY;
72 int retval = ERROR_OK;
73 uint32_t instr;
75 struct aarch64_common *aarch64 = target_to_aarch64(target);
76 struct armv8_common *armv8 = target_to_armv8(target);
78 if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
79 aarch64->system_control_reg_curr = aarch64->system_control_reg;
80 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
82 switch (armv8->arm.core_mode) {
83 case ARMV8_64_EL0T:
84 target_mode = ARMV8_64_EL1H;
85 /* fall through */
86 case ARMV8_64_EL1T:
87 case ARMV8_64_EL1H:
88 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
89 break;
90 case ARMV8_64_EL2T:
91 case ARMV8_64_EL2H:
92 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
93 break;
94 case ARMV8_64_EL3H:
95 case ARMV8_64_EL3T:
96 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
97 break;
99 case ARM_MODE_SVC:
100 case ARM_MODE_ABT:
101 case ARM_MODE_FIQ:
102 case ARM_MODE_IRQ:
103 case ARM_MODE_HYP:
104 case ARM_MODE_SYS:
105 instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
106 break;
108 default:
109 LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
110 armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
111 return ERROR_FAIL;
114 if (target_mode != ARM_MODE_ANY)
115 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
117 retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr, aarch64->system_control_reg);
118 if (retval != ERROR_OK)
119 return retval;
121 if (target_mode != ARM_MODE_ANY)
122 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
125 return retval;
128 /* modify system_control_reg in order to enable or disable mmu for :
129 * - virt2phys address conversion
130 * - read or write memory in phys or virt address */
131 static int aarch64_mmu_modify(struct target *target, int enable)
133 struct aarch64_common *aarch64 = target_to_aarch64(target);
134 struct armv8_common *armv8 = &aarch64->armv8_common;
135 int retval = ERROR_OK;
136 enum arm_mode target_mode = ARM_MODE_ANY;
137 uint32_t instr = 0;
139 if (enable) {
140 /* if mmu enabled at target stop and mmu not enable */
141 if (!(aarch64->system_control_reg & 0x1U)) {
142 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
143 return ERROR_FAIL;
145 if (!(aarch64->system_control_reg_curr & 0x1U))
146 aarch64->system_control_reg_curr |= 0x1U;
147 } else {
148 if (aarch64->system_control_reg_curr & 0x4U) {
149 /* data cache is active */
150 aarch64->system_control_reg_curr &= ~0x4U;
151 /* flush data cache armv8 function to be called */
152 if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
153 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
155 if ((aarch64->system_control_reg_curr & 0x1U)) {
156 aarch64->system_control_reg_curr &= ~0x1U;
160 switch (armv8->arm.core_mode) {
161 case ARMV8_64_EL0T:
162 target_mode = ARMV8_64_EL1H;
163 /* fall through */
164 case ARMV8_64_EL1T:
165 case ARMV8_64_EL1H:
166 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
167 break;
168 case ARMV8_64_EL2T:
169 case ARMV8_64_EL2H:
170 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
171 break;
172 case ARMV8_64_EL3H:
173 case ARMV8_64_EL3T:
174 instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
175 break;
177 case ARM_MODE_SVC:
178 case ARM_MODE_ABT:
179 case ARM_MODE_FIQ:
180 case ARM_MODE_IRQ:
181 case ARM_MODE_HYP:
182 case ARM_MODE_SYS:
183 instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
184 break;
186 default:
187 LOG_DEBUG("unknown cpu state 0x%x", armv8->arm.core_mode);
188 break;
190 if (target_mode != ARM_MODE_ANY)
191 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
193 retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr,
194 aarch64->system_control_reg_curr);
196 if (target_mode != ARM_MODE_ANY)
197 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
199 return retval;
203 * Basic debug access, very low level assumes state is saved
205 static int aarch64_init_debug_access(struct target *target)
207 struct armv8_common *armv8 = target_to_armv8(target);
208 int retval;
209 uint32_t dummy;
211 LOG_DEBUG("%s", target_name(target));
213 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
214 armv8->debug_base + CPUV8_DBG_OSLAR, 0);
215 if (retval != ERROR_OK) {
216 LOG_DEBUG("Examine %s failed", "oslock");
217 return retval;
220 /* Clear Sticky Power Down status Bit in PRSR to enable access to
221 the registers in the Core Power Domain */
222 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
223 armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
224 if (retval != ERROR_OK)
225 return retval;
228 * Static CTI configuration:
229 * Channel 0 -> trigger outputs HALT request to PE
230 * Channel 1 -> trigger outputs Resume request to PE
231 * Gate all channel trigger events from entering the CTM
234 /* Enable CTI */
235 retval = arm_cti_enable(armv8->cti, true);
236 /* By default, gate all channel events to and from the CTM */
237 if (retval == ERROR_OK)
238 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
239 /* output halt requests to PE on channel 0 event */
240 if (retval == ERROR_OK)
241 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN0, CTI_CHNL(0));
242 /* output restart requests to PE on channel 1 event */
243 if (retval == ERROR_OK)
244 retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN1, CTI_CHNL(1));
245 if (retval != ERROR_OK)
246 return retval;
248 /* Resync breakpoint registers */
250 return ERROR_OK;
253 /* Write to memory mapped registers directly with no cache or mmu handling */
254 static int aarch64_dap_write_memap_register_u32(struct target *target,
255 target_addr_t address,
256 uint32_t value)
258 int retval;
259 struct armv8_common *armv8 = target_to_armv8(target);
261 retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
263 return retval;
266 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
268 struct arm_dpm *dpm = &a8->armv8_common.dpm;
269 int retval;
271 dpm->arm = &a8->armv8_common.arm;
272 dpm->didr = debug;
274 retval = armv8_dpm_setup(dpm);
275 if (retval == ERROR_OK)
276 retval = armv8_dpm_initialize(dpm);
278 return retval;
281 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
283 struct armv8_common *armv8 = target_to_armv8(target);
284 return armv8_set_dbgreg_bits(armv8, CPUV8_DBG_DSCR, bit_mask, value);
287 static int aarch64_check_state_one(struct target *target,
288 uint32_t mask, uint32_t val, int *p_result, uint32_t *p_prsr)
290 struct armv8_common *armv8 = target_to_armv8(target);
291 uint32_t prsr;
292 int retval;
294 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
295 armv8->debug_base + CPUV8_DBG_PRSR, &prsr);
296 if (retval != ERROR_OK)
297 return retval;
299 if (p_prsr)
300 *p_prsr = prsr;
302 if (p_result)
303 *p_result = (prsr & mask) == (val & mask);
305 return ERROR_OK;
308 static int aarch64_wait_halt_one(struct target *target)
310 int retval = ERROR_OK;
311 uint32_t prsr;
313 int64_t then = timeval_ms();
314 for (;;) {
315 int halted;
317 retval = aarch64_check_state_one(target, PRSR_HALT, PRSR_HALT, &halted, &prsr);
318 if (retval != ERROR_OK || halted)
319 break;
321 if (timeval_ms() > then + 1000) {
322 retval = ERROR_TARGET_TIMEOUT;
323 LOG_DEBUG("target %s timeout, prsr=0x%08"PRIx32, target_name(target), prsr);
324 break;
327 return retval;
330 static int aarch64_prepare_halt_smp(struct target *target, bool exc_target, struct target **p_first)
332 int retval = ERROR_OK;
333 struct target_list *head = target->head;
334 struct target *first = NULL;
336 LOG_DEBUG("target %s exc %i", target_name(target), exc_target);
338 while (head) {
339 struct target *curr = head->target;
340 struct armv8_common *armv8 = target_to_armv8(curr);
341 head = head->next;
343 if (exc_target && curr == target)
344 continue;
345 if (!target_was_examined(curr))
346 continue;
347 if (curr->state != TARGET_RUNNING)
348 continue;
350 /* HACK: mark this target as prepared for halting */
351 curr->debug_reason = DBG_REASON_DBGRQ;
353 /* open the gate for channel 0 to let HALT requests pass to the CTM */
354 retval = arm_cti_ungate_channel(armv8->cti, 0);
355 if (retval == ERROR_OK)
356 retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
357 if (retval != ERROR_OK)
358 break;
360 LOG_DEBUG("target %s prepared", target_name(curr));
362 if (!first)
363 first = curr;
366 if (p_first) {
367 if (exc_target && first)
368 *p_first = first;
369 else
370 *p_first = target;
373 return retval;
376 static int aarch64_halt_one(struct target *target, enum halt_mode mode)
378 int retval = ERROR_OK;
379 struct armv8_common *armv8 = target_to_armv8(target);
381 LOG_DEBUG("%s", target_name(target));
383 /* allow Halting Debug Mode */
384 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
385 if (retval != ERROR_OK)
386 return retval;
388 /* trigger an event on channel 0, this outputs a halt request to the PE */
389 retval = arm_cti_pulse_channel(armv8->cti, 0);
390 if (retval != ERROR_OK)
391 return retval;
393 if (mode == HALT_SYNC) {
394 retval = aarch64_wait_halt_one(target);
395 if (retval != ERROR_OK) {
396 if (retval == ERROR_TARGET_TIMEOUT)
397 LOG_ERROR("Timeout waiting for target %s halt", target_name(target));
398 return retval;
402 return ERROR_OK;
405 static int aarch64_halt_smp(struct target *target, bool exc_target)
407 struct target *next = target;
408 int retval;
410 /* prepare halt on all PEs of the group */
411 retval = aarch64_prepare_halt_smp(target, exc_target, &next);
413 if (exc_target && next == target)
414 return retval;
416 /* halt the target PE */
417 if (retval == ERROR_OK)
418 retval = aarch64_halt_one(next, HALT_LAZY);
420 if (retval != ERROR_OK)
421 return retval;
423 /* wait for all PEs to halt */
424 int64_t then = timeval_ms();
425 for (;;) {
426 bool all_halted = true;
427 struct target_list *head;
428 struct target *curr;
430 foreach_smp_target(head, target->head) {
431 int halted;
433 curr = head->target;
435 if (!target_was_examined(curr))
436 continue;
438 retval = aarch64_check_state_one(curr, PRSR_HALT, PRSR_HALT, &halted, NULL);
439 if (retval != ERROR_OK || !halted) {
440 all_halted = false;
441 break;
445 if (all_halted)
446 break;
448 if (timeval_ms() > then + 1000) {
449 retval = ERROR_TARGET_TIMEOUT;
450 break;
454 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
455 * and it looks like the CTI's are not connected by a common
456 * trigger matrix. It seems that we need to halt one core in each
457 * cluster explicitly. So if we find that a core has not halted
458 * yet, we trigger an explicit halt for the second cluster.
460 retval = aarch64_halt_one(curr, HALT_LAZY);
461 if (retval != ERROR_OK)
462 break;
465 return retval;
468 static int update_halt_gdb(struct target *target, enum target_debug_reason debug_reason)
470 struct target *gdb_target = NULL;
471 struct target_list *head;
472 struct target *curr;
474 if (debug_reason == DBG_REASON_NOTHALTED) {
475 LOG_DEBUG("Halting remaining targets in SMP group");
476 aarch64_halt_smp(target, true);
479 /* poll all targets in the group, but skip the target that serves GDB */
480 foreach_smp_target(head, target->head) {
481 curr = head->target;
482 /* skip calling context */
483 if (curr == target)
484 continue;
485 if (!target_was_examined(curr))
486 continue;
487 /* skip targets that were already halted */
488 if (curr->state == TARGET_HALTED)
489 continue;
490 /* remember the gdb_service->target */
491 if (curr->gdb_service)
492 gdb_target = curr->gdb_service->target;
493 /* skip it */
494 if (curr == gdb_target)
495 continue;
497 /* avoid recursion in aarch64_poll() */
498 curr->smp = 0;
499 aarch64_poll(curr);
500 curr->smp = 1;
503 /* after all targets were updated, poll the gdb serving target */
504 if (gdb_target && gdb_target != target)
505 aarch64_poll(gdb_target);
507 return ERROR_OK;
511 * Aarch64 Run control
514 static int aarch64_poll(struct target *target)
516 enum target_state prev_target_state;
517 int retval = ERROR_OK;
518 int halted;
520 retval = aarch64_check_state_one(target,
521 PRSR_HALT, PRSR_HALT, &halted, NULL);
522 if (retval != ERROR_OK)
523 return retval;
525 if (halted) {
526 prev_target_state = target->state;
527 if (prev_target_state != TARGET_HALTED) {
528 enum target_debug_reason debug_reason = target->debug_reason;
530 /* We have a halting debug event */
531 target->state = TARGET_HALTED;
532 LOG_DEBUG("Target %s halted", target_name(target));
533 retval = aarch64_debug_entry(target);
534 if (retval != ERROR_OK)
535 return retval;
537 if (target->smp)
538 update_halt_gdb(target, debug_reason);
540 if (arm_semihosting(target, &retval) != 0)
541 return retval;
543 switch (prev_target_state) {
544 case TARGET_RUNNING:
545 case TARGET_UNKNOWN:
546 case TARGET_RESET:
547 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
548 break;
549 case TARGET_DEBUG_RUNNING:
550 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
551 break;
552 default:
553 break;
556 } else
557 target->state = TARGET_RUNNING;
559 return retval;
562 static int aarch64_halt(struct target *target)
564 struct armv8_common *armv8 = target_to_armv8(target);
565 armv8->last_run_control_op = ARMV8_RUNCONTROL_HALT;
567 if (target->smp)
568 return aarch64_halt_smp(target, false);
570 return aarch64_halt_one(target, HALT_SYNC);
573 static int aarch64_restore_one(struct target *target, int current,
574 uint64_t *address, int handle_breakpoints, int debug_execution)
576 struct armv8_common *armv8 = target_to_armv8(target);
577 struct arm *arm = &armv8->arm;
578 int retval;
579 uint64_t resume_pc;
581 LOG_DEBUG("%s", target_name(target));
583 if (!debug_execution)
584 target_free_all_working_areas(target);
586 /* current = 1: continue on current pc, otherwise continue at <address> */
587 resume_pc = buf_get_u64(arm->pc->value, 0, 64);
588 if (!current)
589 resume_pc = *address;
590 else
591 *address = resume_pc;
593 /* Make sure that the Armv7 gdb thumb fixups does not
594 * kill the return address
596 switch (arm->core_state) {
597 case ARM_STATE_ARM:
598 resume_pc &= 0xFFFFFFFC;
599 break;
600 case ARM_STATE_AARCH64:
601 resume_pc &= 0xFFFFFFFFFFFFFFFC;
602 break;
603 case ARM_STATE_THUMB:
604 case ARM_STATE_THUMB_EE:
605 /* When the return address is loaded into PC
606 * bit 0 must be 1 to stay in Thumb state
608 resume_pc |= 0x1;
609 break;
610 case ARM_STATE_JAZELLE:
611 LOG_ERROR("How do I resume into Jazelle state??");
612 return ERROR_FAIL;
614 LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
615 buf_set_u64(arm->pc->value, 0, 64, resume_pc);
616 arm->pc->dirty = true;
617 arm->pc->valid = true;
619 /* called it now before restoring context because it uses cpu
620 * register r0 for restoring system control register */
621 retval = aarch64_restore_system_control_reg(target);
622 if (retval == ERROR_OK)
623 retval = aarch64_restore_context(target, handle_breakpoints);
625 return retval;
629 * prepare single target for restart
633 static int aarch64_prepare_restart_one(struct target *target)
635 struct armv8_common *armv8 = target_to_armv8(target);
636 int retval;
637 uint32_t dscr;
638 uint32_t tmp;
640 LOG_DEBUG("%s", target_name(target));
642 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
643 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
644 if (retval != ERROR_OK)
645 return retval;
647 if ((dscr & DSCR_ITE) == 0)
648 LOG_ERROR("DSCR.ITE must be set before leaving debug!");
649 if ((dscr & DSCR_ERR) != 0)
650 LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
652 /* acknowledge a pending CTI halt event */
653 retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
655 * open the CTI gate for channel 1 so that the restart events
656 * get passed along to all PEs. Also close gate for channel 0
657 * to isolate the PE from halt events.
659 if (retval == ERROR_OK)
660 retval = arm_cti_ungate_channel(armv8->cti, 1);
661 if (retval == ERROR_OK)
662 retval = arm_cti_gate_channel(armv8->cti, 0);
664 /* make sure that DSCR.HDE is set */
665 if (retval == ERROR_OK) {
666 dscr |= DSCR_HDE;
667 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
668 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
671 if (retval == ERROR_OK) {
672 /* clear sticky bits in PRSR, SDR is now 0 */
673 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
674 armv8->debug_base + CPUV8_DBG_PRSR, &tmp);
677 return retval;
680 static int aarch64_do_restart_one(struct target *target, enum restart_mode mode)
682 struct armv8_common *armv8 = target_to_armv8(target);
683 int retval;
685 LOG_DEBUG("%s", target_name(target));
687 /* trigger an event on channel 1, generates a restart request to the PE */
688 retval = arm_cti_pulse_channel(armv8->cti, 1);
689 if (retval != ERROR_OK)
690 return retval;
692 if (mode == RESTART_SYNC) {
693 int64_t then = timeval_ms();
694 for (;;) {
695 int resumed;
697 * if PRSR.SDR is set now, the target did restart, even
698 * if it's now already halted again (e.g. due to breakpoint)
700 retval = aarch64_check_state_one(target,
701 PRSR_SDR, PRSR_SDR, &resumed, NULL);
702 if (retval != ERROR_OK || resumed)
703 break;
705 if (timeval_ms() > then + 1000) {
706 LOG_ERROR("%s: Timeout waiting for resume"PRIx32, target_name(target));
707 retval = ERROR_TARGET_TIMEOUT;
708 break;
713 if (retval != ERROR_OK)
714 return retval;
716 target->debug_reason = DBG_REASON_NOTHALTED;
717 target->state = TARGET_RUNNING;
719 return ERROR_OK;
722 static int aarch64_restart_one(struct target *target, enum restart_mode mode)
724 int retval;
726 LOG_DEBUG("%s", target_name(target));
728 retval = aarch64_prepare_restart_one(target);
729 if (retval == ERROR_OK)
730 retval = aarch64_do_restart_one(target, mode);
732 return retval;
736 * prepare all but the current target for restart
738 static int aarch64_prep_restart_smp(struct target *target, int handle_breakpoints, struct target **p_first)
740 int retval = ERROR_OK;
741 struct target_list *head;
742 struct target *first = NULL;
743 uint64_t address;
745 foreach_smp_target(head, target->head) {
746 struct target *curr = head->target;
748 /* skip calling target */
749 if (curr == target)
750 continue;
751 if (!target_was_examined(curr))
752 continue;
753 if (curr->state != TARGET_HALTED)
754 continue;
756 /* resume at current address, not in step mode */
757 retval = aarch64_restore_one(curr, 1, &address, handle_breakpoints, 0);
758 if (retval == ERROR_OK)
759 retval = aarch64_prepare_restart_one(curr);
760 if (retval != ERROR_OK) {
761 LOG_ERROR("failed to restore target %s", target_name(curr));
762 break;
764 /* remember the first valid target in the group */
765 if (!first)
766 first = curr;
769 if (p_first)
770 *p_first = first;
772 return retval;
776 static int aarch64_step_restart_smp(struct target *target)
778 int retval = ERROR_OK;
779 struct target_list *head;
780 struct target *first = NULL;
782 LOG_DEBUG("%s", target_name(target));
784 retval = aarch64_prep_restart_smp(target, 0, &first);
785 if (retval != ERROR_OK)
786 return retval;
788 if (first)
789 retval = aarch64_do_restart_one(first, RESTART_LAZY);
790 if (retval != ERROR_OK) {
791 LOG_DEBUG("error restarting target %s", target_name(first));
792 return retval;
795 int64_t then = timeval_ms();
796 for (;;) {
797 struct target *curr = target;
798 bool all_resumed = true;
800 foreach_smp_target(head, target->head) {
801 uint32_t prsr;
802 int resumed;
804 curr = head->target;
806 if (curr == target)
807 continue;
809 if (!target_was_examined(curr))
810 continue;
812 retval = aarch64_check_state_one(curr,
813 PRSR_SDR, PRSR_SDR, &resumed, &prsr);
814 if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
815 all_resumed = false;
816 break;
819 if (curr->state != TARGET_RUNNING) {
820 curr->state = TARGET_RUNNING;
821 curr->debug_reason = DBG_REASON_NOTHALTED;
822 target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
826 if (all_resumed)
827 break;
829 if (timeval_ms() > then + 1000) {
830 LOG_ERROR("%s: timeout waiting for target resume", __func__);
831 retval = ERROR_TARGET_TIMEOUT;
832 break;
835 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
836 * and it looks like the CTI's are not connected by a common
837 * trigger matrix. It seems that we need to halt one core in each
838 * cluster explicitly. So if we find that a core has not halted
839 * yet, we trigger an explicit resume for the second cluster.
841 retval = aarch64_do_restart_one(curr, RESTART_LAZY);
842 if (retval != ERROR_OK)
843 break;
846 return retval;
849 static int aarch64_resume(struct target *target, int current,
850 target_addr_t address, int handle_breakpoints, int debug_execution)
852 int retval = 0;
853 uint64_t addr = address;
855 struct armv8_common *armv8 = target_to_armv8(target);
856 armv8->last_run_control_op = ARMV8_RUNCONTROL_RESUME;
858 if (target->state != TARGET_HALTED)
859 return ERROR_TARGET_NOT_HALTED;
862 * If this target is part of a SMP group, prepare the others
863 * targets for resuming. This involves restoring the complete
864 * target register context and setting up CTI gates to accept
865 * resume events from the trigger matrix.
867 if (target->smp) {
868 retval = aarch64_prep_restart_smp(target, handle_breakpoints, NULL);
869 if (retval != ERROR_OK)
870 return retval;
873 /* all targets prepared, restore and restart the current target */
874 retval = aarch64_restore_one(target, current, &addr, handle_breakpoints,
875 debug_execution);
876 if (retval == ERROR_OK)
877 retval = aarch64_restart_one(target, RESTART_SYNC);
878 if (retval != ERROR_OK)
879 return retval;
881 if (target->smp) {
882 int64_t then = timeval_ms();
883 for (;;) {
884 struct target *curr = target;
885 struct target_list *head;
886 bool all_resumed = true;
888 foreach_smp_target(head, target->head) {
889 uint32_t prsr;
890 int resumed;
892 curr = head->target;
893 if (curr == target)
894 continue;
895 if (!target_was_examined(curr))
896 continue;
898 retval = aarch64_check_state_one(curr,
899 PRSR_SDR, PRSR_SDR, &resumed, &prsr);
900 if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
901 all_resumed = false;
902 break;
905 if (curr->state != TARGET_RUNNING) {
906 curr->state = TARGET_RUNNING;
907 curr->debug_reason = DBG_REASON_NOTHALTED;
908 target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
912 if (all_resumed)
913 break;
915 if (timeval_ms() > then + 1000) {
916 LOG_ERROR("%s: timeout waiting for target %s to resume", __func__, target_name(curr));
917 retval = ERROR_TARGET_TIMEOUT;
918 break;
922 * HACK: on Hi6220 there are 8 cores organized in 2 clusters
923 * and it looks like the CTI's are not connected by a common
924 * trigger matrix. It seems that we need to halt one core in each
925 * cluster explicitly. So if we find that a core has not halted
926 * yet, we trigger an explicit resume for the second cluster.
928 retval = aarch64_do_restart_one(curr, RESTART_LAZY);
929 if (retval != ERROR_OK)
930 break;
934 if (retval != ERROR_OK)
935 return retval;
937 target->debug_reason = DBG_REASON_NOTHALTED;
939 if (!debug_execution) {
940 target->state = TARGET_RUNNING;
941 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
942 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
943 } else {
944 target->state = TARGET_DEBUG_RUNNING;
945 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
946 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
949 return ERROR_OK;
952 static int aarch64_debug_entry(struct target *target)
954 int retval = ERROR_OK;
955 struct armv8_common *armv8 = target_to_armv8(target);
956 struct arm_dpm *dpm = &armv8->dpm;
957 enum arm_state core_state;
958 uint32_t dscr;
960 /* make sure to clear all sticky errors */
961 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
962 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
963 if (retval == ERROR_OK)
964 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
965 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
966 if (retval == ERROR_OK)
967 retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
969 if (retval != ERROR_OK)
970 return retval;
972 LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), dscr);
974 dpm->dscr = dscr;
975 core_state = armv8_dpm_get_core_state(dpm);
976 armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
977 armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
979 /* close the CTI gate for all events */
980 if (retval == ERROR_OK)
981 retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
982 /* discard async exceptions */
983 if (retval == ERROR_OK)
984 retval = dpm->instr_cpsr_sync(dpm);
985 if (retval != ERROR_OK)
986 return retval;
988 /* Examine debug reason */
989 armv8_dpm_report_dscr(dpm, dscr);
991 /* save the memory address that triggered the watchpoint */
992 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
993 uint32_t tmp;
995 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
996 armv8->debug_base + CPUV8_DBG_EDWAR0, &tmp);
997 if (retval != ERROR_OK)
998 return retval;
999 target_addr_t edwar = tmp;
1001 /* EDWAR[63:32] has unknown content in aarch32 state */
1002 if (core_state == ARM_STATE_AARCH64) {
1003 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1004 armv8->debug_base + CPUV8_DBG_EDWAR1, &tmp);
1005 if (retval != ERROR_OK)
1006 return retval;
1007 edwar |= ((target_addr_t)tmp) << 32;
1010 armv8->dpm.wp_addr = edwar;
1013 retval = armv8_dpm_read_current_registers(&armv8->dpm);
1015 if (retval == ERROR_OK && armv8->post_debug_entry)
1016 retval = armv8->post_debug_entry(target);
1018 return retval;
1021 static int aarch64_post_debug_entry(struct target *target)
1023 struct aarch64_common *aarch64 = target_to_aarch64(target);
1024 struct armv8_common *armv8 = &aarch64->armv8_common;
1025 int retval;
1026 enum arm_mode target_mode = ARM_MODE_ANY;
1027 uint32_t instr;
1029 switch (armv8->arm.core_mode) {
1030 case ARMV8_64_EL0T:
1031 target_mode = ARMV8_64_EL1H;
1032 /* fall through */
1033 case ARMV8_64_EL1T:
1034 case ARMV8_64_EL1H:
1035 instr = ARMV8_MRS(SYSTEM_SCTLR_EL1, 0);
1036 break;
1037 case ARMV8_64_EL2T:
1038 case ARMV8_64_EL2H:
1039 instr = ARMV8_MRS(SYSTEM_SCTLR_EL2, 0);
1040 break;
1041 case ARMV8_64_EL3H:
1042 case ARMV8_64_EL3T:
1043 instr = ARMV8_MRS(SYSTEM_SCTLR_EL3, 0);
1044 break;
1046 case ARM_MODE_SVC:
1047 case ARM_MODE_ABT:
1048 case ARM_MODE_FIQ:
1049 case ARM_MODE_IRQ:
1050 case ARM_MODE_HYP:
1051 case ARM_MODE_SYS:
1052 instr = ARMV4_5_MRC(15, 0, 0, 1, 0, 0);
1053 break;
1055 default:
1056 LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
1057 armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
1058 return ERROR_FAIL;
1061 if (target_mode != ARM_MODE_ANY)
1062 armv8_dpm_modeswitch(&armv8->dpm, target_mode);
1064 retval = armv8->dpm.instr_read_data_r0(&armv8->dpm, instr, &aarch64->system_control_reg);
1065 if (retval != ERROR_OK)
1066 return retval;
1068 if (target_mode != ARM_MODE_ANY)
1069 armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
1071 LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
1072 aarch64->system_control_reg_curr = aarch64->system_control_reg;
1074 if (armv8->armv8_mmu.armv8_cache.info == -1) {
1075 armv8_identify_cache(armv8);
1076 armv8_read_mpidr(armv8);
1079 armv8->armv8_mmu.mmu_enabled =
1080 (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1081 armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1082 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1083 armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1084 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1085 return ERROR_OK;
1089 * single-step a target
1091 static int aarch64_step(struct target *target, int current, target_addr_t address,
1092 int handle_breakpoints)
1094 struct armv8_common *armv8 = target_to_armv8(target);
1095 struct aarch64_common *aarch64 = target_to_aarch64(target);
1096 int saved_retval = ERROR_OK;
1097 int retval;
1098 uint32_t edecr;
1100 armv8->last_run_control_op = ARMV8_RUNCONTROL_STEP;
1102 if (target->state != TARGET_HALTED) {
1103 LOG_WARNING("target not halted");
1104 return ERROR_TARGET_NOT_HALTED;
1107 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1108 armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1109 /* make sure EDECR.SS is not set when restoring the register */
1111 if (retval == ERROR_OK) {
1112 edecr &= ~0x4;
1113 /* set EDECR.SS to enter hardware step mode */
1114 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1115 armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
1117 /* disable interrupts while stepping */
1118 if (retval == ERROR_OK && aarch64->isrmasking_mode == AARCH64_ISRMASK_ON)
1119 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
1120 /* bail out if stepping setup has failed */
1121 if (retval != ERROR_OK)
1122 return retval;
1124 if (target->smp && (current == 1)) {
1126 * isolate current target so that it doesn't get resumed
1127 * together with the others
1129 retval = arm_cti_gate_channel(armv8->cti, 1);
1130 /* resume all other targets in the group */
1131 if (retval == ERROR_OK)
1132 retval = aarch64_step_restart_smp(target);
1133 if (retval != ERROR_OK) {
1134 LOG_ERROR("Failed to restart non-stepping targets in SMP group");
1135 return retval;
1137 LOG_DEBUG("Restarted all non-stepping targets in SMP group");
1140 /* all other targets running, restore and restart the current target */
1141 retval = aarch64_restore_one(target, current, &address, 0, 0);
1142 if (retval == ERROR_OK)
1143 retval = aarch64_restart_one(target, RESTART_LAZY);
1145 if (retval != ERROR_OK)
1146 return retval;
1148 LOG_DEBUG("target step-resumed at 0x%" PRIx64, address);
1149 if (!handle_breakpoints)
1150 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1152 int64_t then = timeval_ms();
1153 for (;;) {
1154 int stepped;
1155 uint32_t prsr;
1157 retval = aarch64_check_state_one(target,
1158 PRSR_SDR|PRSR_HALT, PRSR_SDR|PRSR_HALT, &stepped, &prsr);
1159 if (retval != ERROR_OK || stepped)
1160 break;
1162 if (timeval_ms() > then + 100) {
1163 LOG_ERROR("timeout waiting for target %s halt after step",
1164 target_name(target));
1165 retval = ERROR_TARGET_TIMEOUT;
1166 break;
1171 * At least on one SoC (Renesas R8A7795) stepping over a WFI instruction
1172 * causes a timeout. The core takes the step but doesn't complete it and so
1173 * debug state is never entered. However, you can manually halt the core
1174 * as an external debug even is also a WFI wakeup event.
1176 if (retval == ERROR_TARGET_TIMEOUT)
1177 saved_retval = aarch64_halt_one(target, HALT_SYNC);
1179 /* restore EDECR */
1180 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1181 armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1182 if (retval != ERROR_OK)
1183 return retval;
1185 /* restore interrupts */
1186 if (aarch64->isrmasking_mode == AARCH64_ISRMASK_ON) {
1187 retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
1188 if (retval != ERROR_OK)
1189 return ERROR_OK;
1192 if (saved_retval != ERROR_OK)
1193 return saved_retval;
1195 return ERROR_OK;
1198 static int aarch64_restore_context(struct target *target, bool bpwp)
1200 struct armv8_common *armv8 = target_to_armv8(target);
1201 struct arm *arm = &armv8->arm;
1203 int retval;
1205 LOG_DEBUG("%s", target_name(target));
1207 if (armv8->pre_restore_context)
1208 armv8->pre_restore_context(target);
1210 retval = armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1211 if (retval == ERROR_OK) {
1212 /* registers are now invalid */
1213 register_cache_invalidate(arm->core_cache);
1214 register_cache_invalidate(arm->core_cache->next);
1217 return retval;
1221 * Cortex-A8 Breakpoint and watchpoint functions
1224 /* Setup hardware Breakpoint Register Pair */
1225 static int aarch64_set_breakpoint(struct target *target,
1226 struct breakpoint *breakpoint, uint8_t matchmode)
1228 int retval;
1229 int brp_i = 0;
1230 uint32_t control;
1231 uint8_t byte_addr_select = 0x0F;
1232 struct aarch64_common *aarch64 = target_to_aarch64(target);
1233 struct armv8_common *armv8 = &aarch64->armv8_common;
1234 struct aarch64_brp *brp_list = aarch64->brp_list;
1236 if (breakpoint->set) {
1237 LOG_WARNING("breakpoint already set");
1238 return ERROR_OK;
1241 if (breakpoint->type == BKPT_HARD) {
1242 int64_t bpt_value;
1243 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1244 brp_i++;
1245 if (brp_i >= aarch64->brp_num) {
1246 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1247 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1249 breakpoint->set = brp_i + 1;
1250 if (breakpoint->length == 2)
1251 byte_addr_select = (3 << (breakpoint->address & 0x02));
1252 control = ((matchmode & 0x7) << 20)
1253 | (1 << 13)
1254 | (byte_addr_select << 5)
1255 | (3 << 1) | 1;
1256 brp_list[brp_i].used = 1;
1257 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1258 brp_list[brp_i].control = control;
1259 bpt_value = brp_list[brp_i].value;
1261 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1262 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1263 (uint32_t)(bpt_value & 0xFFFFFFFF));
1264 if (retval != ERROR_OK)
1265 return retval;
1266 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1267 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1268 (uint32_t)(bpt_value >> 32));
1269 if (retval != ERROR_OK)
1270 return retval;
1272 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1273 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1274 brp_list[brp_i].control);
1275 if (retval != ERROR_OK)
1276 return retval;
1277 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1278 brp_list[brp_i].control,
1279 brp_list[brp_i].value);
1281 } else if (breakpoint->type == BKPT_SOFT) {
1282 uint32_t opcode;
1283 uint8_t code[4];
1285 if (armv8_dpm_get_core_state(&armv8->dpm) == ARM_STATE_AARCH64) {
1286 opcode = ARMV8_HLT(11);
1288 if (breakpoint->length != 4)
1289 LOG_ERROR("bug: breakpoint length should be 4 in AArch64 mode");
1290 } else {
1292 * core_state is ARM_STATE_ARM
1293 * in that case the opcode depends on breakpoint length:
1294 * - if length == 4 => A32 opcode
1295 * - if length == 2 => T32 opcode
1296 * - if length == 3 => T32 opcode (refer to gdb doc : ARM-Breakpoint-Kinds)
1297 * in that case the length should be changed from 3 to 4 bytes
1299 opcode = (breakpoint->length == 4) ? ARMV8_HLT_A1(11) :
1300 (uint32_t) (ARMV8_HLT_T1(11) | ARMV8_HLT_T1(11) << 16);
1302 if (breakpoint->length == 3)
1303 breakpoint->length = 4;
1306 buf_set_u32(code, 0, 32, opcode);
1308 retval = target_read_memory(target,
1309 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1310 breakpoint->length, 1,
1311 breakpoint->orig_instr);
1312 if (retval != ERROR_OK)
1313 return retval;
1315 armv8_cache_d_inner_flush_virt(armv8,
1316 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1317 breakpoint->length);
1319 retval = target_write_memory(target,
1320 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1321 breakpoint->length, 1, code);
1322 if (retval != ERROR_OK)
1323 return retval;
1325 armv8_cache_d_inner_flush_virt(armv8,
1326 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1327 breakpoint->length);
1329 armv8_cache_i_inner_inval_virt(armv8,
1330 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1331 breakpoint->length);
1333 breakpoint->set = 0x11; /* Any nice value but 0 */
1336 /* Ensure that halting debug mode is enable */
1337 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
1338 if (retval != ERROR_OK) {
1339 LOG_DEBUG("Failed to set DSCR.HDE");
1340 return retval;
1343 return ERROR_OK;
1346 static int aarch64_set_context_breakpoint(struct target *target,
1347 struct breakpoint *breakpoint, uint8_t matchmode)
1349 int retval = ERROR_FAIL;
1350 int brp_i = 0;
1351 uint32_t control;
1352 uint8_t byte_addr_select = 0x0F;
1353 struct aarch64_common *aarch64 = target_to_aarch64(target);
1354 struct armv8_common *armv8 = &aarch64->armv8_common;
1355 struct aarch64_brp *brp_list = aarch64->brp_list;
1357 if (breakpoint->set) {
1358 LOG_WARNING("breakpoint already set");
1359 return retval;
1361 /*check available context BRPs*/
1362 while ((brp_list[brp_i].used ||
1363 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1364 brp_i++;
1366 if (brp_i >= aarch64->brp_num) {
1367 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1368 return ERROR_FAIL;
1371 breakpoint->set = brp_i + 1;
1372 control = ((matchmode & 0x7) << 20)
1373 | (1 << 13)
1374 | (byte_addr_select << 5)
1375 | (3 << 1) | 1;
1376 brp_list[brp_i].used = 1;
1377 brp_list[brp_i].value = (breakpoint->asid);
1378 brp_list[brp_i].control = control;
1379 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1380 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1381 brp_list[brp_i].value);
1382 if (retval != ERROR_OK)
1383 return retval;
1384 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1385 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1386 brp_list[brp_i].control);
1387 if (retval != ERROR_OK)
1388 return retval;
1389 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1390 brp_list[brp_i].control,
1391 brp_list[brp_i].value);
1392 return ERROR_OK;
1396 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1398 int retval = ERROR_FAIL;
1399 int brp_1 = 0; /* holds the contextID pair */
1400 int brp_2 = 0; /* holds the IVA pair */
1401 uint32_t control_ctx, control_iva;
1402 uint8_t ctx_byte_addr_select = 0x0F;
1403 uint8_t iva_byte_addr_select = 0x0F;
1404 uint8_t ctx_machmode = 0x03;
1405 uint8_t iva_machmode = 0x01;
1406 struct aarch64_common *aarch64 = target_to_aarch64(target);
1407 struct armv8_common *armv8 = &aarch64->armv8_common;
1408 struct aarch64_brp *brp_list = aarch64->brp_list;
1410 if (breakpoint->set) {
1411 LOG_WARNING("breakpoint already set");
1412 return retval;
1414 /*check available context BRPs*/
1415 while ((brp_list[brp_1].used ||
1416 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1417 brp_1++;
1419 LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1420 if (brp_1 >= aarch64->brp_num) {
1421 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1422 return ERROR_FAIL;
1425 while ((brp_list[brp_2].used ||
1426 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1427 brp_2++;
1429 LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1430 if (brp_2 >= aarch64->brp_num) {
1431 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1432 return ERROR_FAIL;
1435 breakpoint->set = brp_1 + 1;
1436 breakpoint->linked_brp = brp_2;
1437 control_ctx = ((ctx_machmode & 0x7) << 20)
1438 | (brp_2 << 16)
1439 | (0 << 14)
1440 | (ctx_byte_addr_select << 5)
1441 | (3 << 1) | 1;
1442 brp_list[brp_1].used = 1;
1443 brp_list[brp_1].value = (breakpoint->asid);
1444 brp_list[brp_1].control = control_ctx;
1445 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1446 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].brpn,
1447 brp_list[brp_1].value);
1448 if (retval != ERROR_OK)
1449 return retval;
1450 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1451 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].brpn,
1452 brp_list[brp_1].control);
1453 if (retval != ERROR_OK)
1454 return retval;
1456 control_iva = ((iva_machmode & 0x7) << 20)
1457 | (brp_1 << 16)
1458 | (1 << 13)
1459 | (iva_byte_addr_select << 5)
1460 | (3 << 1) | 1;
1461 brp_list[brp_2].used = 1;
1462 brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1463 brp_list[brp_2].control = control_iva;
1464 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1465 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].brpn,
1466 brp_list[brp_2].value & 0xFFFFFFFF);
1467 if (retval != ERROR_OK)
1468 return retval;
1469 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1470 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].brpn,
1471 brp_list[brp_2].value >> 32);
1472 if (retval != ERROR_OK)
1473 return retval;
1474 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1475 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].brpn,
1476 brp_list[brp_2].control);
1477 if (retval != ERROR_OK)
1478 return retval;
1480 return ERROR_OK;
1483 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1485 int retval;
1486 struct aarch64_common *aarch64 = target_to_aarch64(target);
1487 struct armv8_common *armv8 = &aarch64->armv8_common;
1488 struct aarch64_brp *brp_list = aarch64->brp_list;
1490 if (!breakpoint->set) {
1491 LOG_WARNING("breakpoint not set");
1492 return ERROR_OK;
1495 if (breakpoint->type == BKPT_HARD) {
1496 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1497 int brp_i = breakpoint->set - 1;
1498 int brp_j = breakpoint->linked_brp;
1499 if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1500 LOG_DEBUG("Invalid BRP number in breakpoint");
1501 return ERROR_OK;
1503 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1504 brp_list[brp_i].control, brp_list[brp_i].value);
1505 brp_list[brp_i].used = 0;
1506 brp_list[brp_i].value = 0;
1507 brp_list[brp_i].control = 0;
1508 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1509 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1510 brp_list[brp_i].control);
1511 if (retval != ERROR_OK)
1512 return retval;
1513 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1514 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1515 (uint32_t)brp_list[brp_i].value);
1516 if (retval != ERROR_OK)
1517 return retval;
1518 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1519 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1520 (uint32_t)brp_list[brp_i].value);
1521 if (retval != ERROR_OK)
1522 return retval;
1523 if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1524 LOG_DEBUG("Invalid BRP number in breakpoint");
1525 return ERROR_OK;
1527 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1528 brp_list[brp_j].control, brp_list[brp_j].value);
1529 brp_list[brp_j].used = 0;
1530 brp_list[brp_j].value = 0;
1531 brp_list[brp_j].control = 0;
1532 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1533 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].brpn,
1534 brp_list[brp_j].control);
1535 if (retval != ERROR_OK)
1536 return retval;
1537 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1538 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].brpn,
1539 (uint32_t)brp_list[brp_j].value);
1540 if (retval != ERROR_OK)
1541 return retval;
1542 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1543 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].brpn,
1544 (uint32_t)brp_list[brp_j].value);
1545 if (retval != ERROR_OK)
1546 return retval;
1548 breakpoint->linked_brp = 0;
1549 breakpoint->set = 0;
1550 return ERROR_OK;
1552 } else {
1553 int brp_i = breakpoint->set - 1;
1554 if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1555 LOG_DEBUG("Invalid BRP number in breakpoint");
1556 return ERROR_OK;
1558 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1559 brp_list[brp_i].control, brp_list[brp_i].value);
1560 brp_list[brp_i].used = 0;
1561 brp_list[brp_i].value = 0;
1562 brp_list[brp_i].control = 0;
1563 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1564 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1565 brp_list[brp_i].control);
1566 if (retval != ERROR_OK)
1567 return retval;
1568 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1569 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1570 brp_list[brp_i].value);
1571 if (retval != ERROR_OK)
1572 return retval;
1574 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1575 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1576 (uint32_t)brp_list[brp_i].value);
1577 if (retval != ERROR_OK)
1578 return retval;
1579 breakpoint->set = 0;
1580 return ERROR_OK;
1582 } else {
1583 /* restore original instruction (kept in target endianness) */
1585 armv8_cache_d_inner_flush_virt(armv8,
1586 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1587 breakpoint->length);
1589 if (breakpoint->length == 4) {
1590 retval = target_write_memory(target,
1591 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1592 4, 1, breakpoint->orig_instr);
1593 if (retval != ERROR_OK)
1594 return retval;
1595 } else {
1596 retval = target_write_memory(target,
1597 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1598 2, 1, breakpoint->orig_instr);
1599 if (retval != ERROR_OK)
1600 return retval;
1603 armv8_cache_d_inner_flush_virt(armv8,
1604 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1605 breakpoint->length);
1607 armv8_cache_i_inner_inval_virt(armv8,
1608 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1609 breakpoint->length);
1611 breakpoint->set = 0;
1613 return ERROR_OK;
1616 static int aarch64_add_breakpoint(struct target *target,
1617 struct breakpoint *breakpoint)
1619 struct aarch64_common *aarch64 = target_to_aarch64(target);
1621 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1622 LOG_INFO("no hardware breakpoint available");
1623 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1626 if (breakpoint->type == BKPT_HARD)
1627 aarch64->brp_num_available--;
1629 return aarch64_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1632 static int aarch64_add_context_breakpoint(struct target *target,
1633 struct breakpoint *breakpoint)
1635 struct aarch64_common *aarch64 = target_to_aarch64(target);
1637 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1638 LOG_INFO("no hardware breakpoint available");
1639 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1642 if (breakpoint->type == BKPT_HARD)
1643 aarch64->brp_num_available--;
1645 return aarch64_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1648 static int aarch64_add_hybrid_breakpoint(struct target *target,
1649 struct breakpoint *breakpoint)
1651 struct aarch64_common *aarch64 = target_to_aarch64(target);
1653 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1654 LOG_INFO("no hardware breakpoint available");
1655 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1658 if (breakpoint->type == BKPT_HARD)
1659 aarch64->brp_num_available--;
1661 return aarch64_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1664 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1666 struct aarch64_common *aarch64 = target_to_aarch64(target);
1668 #if 0
1669 /* It is perfectly possible to remove breakpoints while the target is running */
1670 if (target->state != TARGET_HALTED) {
1671 LOG_WARNING("target not halted");
1672 return ERROR_TARGET_NOT_HALTED;
1674 #endif
1676 if (breakpoint->set) {
1677 aarch64_unset_breakpoint(target, breakpoint);
1678 if (breakpoint->type == BKPT_HARD)
1679 aarch64->brp_num_available++;
1682 return ERROR_OK;
1685 /* Setup hardware Watchpoint Register Pair */
1686 static int aarch64_set_watchpoint(struct target *target,
1687 struct watchpoint *watchpoint)
1689 int retval;
1690 int wp_i = 0;
1691 uint32_t control, offset, length;
1692 struct aarch64_common *aarch64 = target_to_aarch64(target);
1693 struct armv8_common *armv8 = &aarch64->armv8_common;
1694 struct aarch64_brp *wp_list = aarch64->wp_list;
1696 if (watchpoint->set) {
1697 LOG_WARNING("watchpoint already set");
1698 return ERROR_OK;
1701 while (wp_list[wp_i].used && (wp_i < aarch64->wp_num))
1702 wp_i++;
1703 if (wp_i >= aarch64->wp_num) {
1704 LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1705 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1708 control = (1 << 0) /* enable */
1709 | (3 << 1) /* both user and privileged access */
1710 | (1 << 13); /* higher mode control */
1712 switch (watchpoint->rw) {
1713 case WPT_READ:
1714 control |= 1 << 3;
1715 break;
1716 case WPT_WRITE:
1717 control |= 2 << 3;
1718 break;
1719 case WPT_ACCESS:
1720 control |= 3 << 3;
1721 break;
1724 /* Match up to 8 bytes. */
1725 offset = watchpoint->address & 7;
1726 length = watchpoint->length;
1727 if (offset + length > sizeof(uint64_t)) {
1728 length = sizeof(uint64_t) - offset;
1729 LOG_WARNING("Adjust watchpoint match inside 8-byte boundary");
1731 for (; length > 0; offset++, length--)
1732 control |= (1 << offset) << 5;
1734 wp_list[wp_i].value = watchpoint->address & 0xFFFFFFFFFFFFFFF8ULL;
1735 wp_list[wp_i].control = control;
1737 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1738 + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1739 (uint32_t)(wp_list[wp_i].value & 0xFFFFFFFF));
1740 if (retval != ERROR_OK)
1741 return retval;
1742 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1743 + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1744 (uint32_t)(wp_list[wp_i].value >> 32));
1745 if (retval != ERROR_OK)
1746 return retval;
1748 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1749 + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1750 control);
1751 if (retval != ERROR_OK)
1752 return retval;
1753 LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, wp_i,
1754 wp_list[wp_i].control, wp_list[wp_i].value);
1756 /* Ensure that halting debug mode is enable */
1757 retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
1758 if (retval != ERROR_OK) {
1759 LOG_DEBUG("Failed to set DSCR.HDE");
1760 return retval;
1763 wp_list[wp_i].used = 1;
1764 watchpoint->set = wp_i + 1;
1766 return ERROR_OK;
1769 /* Clear hardware Watchpoint Register Pair */
1770 static int aarch64_unset_watchpoint(struct target *target,
1771 struct watchpoint *watchpoint)
1773 int retval, wp_i;
1774 struct aarch64_common *aarch64 = target_to_aarch64(target);
1775 struct armv8_common *armv8 = &aarch64->armv8_common;
1776 struct aarch64_brp *wp_list = aarch64->wp_list;
1778 if (!watchpoint->set) {
1779 LOG_WARNING("watchpoint not set");
1780 return ERROR_OK;
1783 wp_i = watchpoint->set - 1;
1784 if ((wp_i < 0) || (wp_i >= aarch64->wp_num)) {
1785 LOG_DEBUG("Invalid WP number in watchpoint");
1786 return ERROR_OK;
1788 LOG_DEBUG("rwp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, wp_i,
1789 wp_list[wp_i].control, wp_list[wp_i].value);
1790 wp_list[wp_i].used = 0;
1791 wp_list[wp_i].value = 0;
1792 wp_list[wp_i].control = 0;
1793 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1794 + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1795 wp_list[wp_i].control);
1796 if (retval != ERROR_OK)
1797 return retval;
1798 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1799 + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1800 wp_list[wp_i].value);
1801 if (retval != ERROR_OK)
1802 return retval;
1804 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1805 + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1806 (uint32_t)wp_list[wp_i].value);
1807 if (retval != ERROR_OK)
1808 return retval;
1809 watchpoint->set = 0;
1811 return ERROR_OK;
1814 static int aarch64_add_watchpoint(struct target *target,
1815 struct watchpoint *watchpoint)
1817 int retval;
1818 struct aarch64_common *aarch64 = target_to_aarch64(target);
1820 if (aarch64->wp_num_available < 1) {
1821 LOG_INFO("no hardware watchpoint available");
1822 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1825 retval = aarch64_set_watchpoint(target, watchpoint);
1826 if (retval == ERROR_OK)
1827 aarch64->wp_num_available--;
1829 return retval;
1832 static int aarch64_remove_watchpoint(struct target *target,
1833 struct watchpoint *watchpoint)
1835 struct aarch64_common *aarch64 = target_to_aarch64(target);
1837 if (watchpoint->set) {
1838 aarch64_unset_watchpoint(target, watchpoint);
1839 aarch64->wp_num_available++;
1842 return ERROR_OK;
1846 * find out which watchpoint hits
1847 * get exception address and compare the address to watchpoints
1849 int aarch64_hit_watchpoint(struct target *target,
1850 struct watchpoint **hit_watchpoint)
1852 if (target->debug_reason != DBG_REASON_WATCHPOINT)
1853 return ERROR_FAIL;
1855 struct armv8_common *armv8 = target_to_armv8(target);
1857 target_addr_t exception_address;
1858 struct watchpoint *wp;
1860 exception_address = armv8->dpm.wp_addr;
1862 if (exception_address == 0xFFFFFFFF)
1863 return ERROR_FAIL;
1865 for (wp = target->watchpoints; wp; wp = wp->next)
1866 if (exception_address >= wp->address && exception_address < (wp->address + wp->length)) {
1867 *hit_watchpoint = wp;
1868 return ERROR_OK;
1871 return ERROR_FAIL;
1875 * Cortex-A8 Reset functions
1878 static int aarch64_enable_reset_catch(struct target *target, bool enable)
1880 struct armv8_common *armv8 = target_to_armv8(target);
1881 uint32_t edecr;
1882 int retval;
1884 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1885 armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1886 LOG_DEBUG("EDECR = 0x%08" PRIx32 ", enable=%d", edecr, enable);
1887 if (retval != ERROR_OK)
1888 return retval;
1890 if (enable)
1891 edecr |= ECR_RCE;
1892 else
1893 edecr &= ~ECR_RCE;
1895 return mem_ap_write_atomic_u32(armv8->debug_ap,
1896 armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1899 static int aarch64_clear_reset_catch(struct target *target)
1901 struct armv8_common *armv8 = target_to_armv8(target);
1902 uint32_t edesr;
1903 int retval;
1904 bool was_triggered;
1906 /* check if Reset Catch debug event triggered as expected */
1907 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1908 armv8->debug_base + CPUV8_DBG_EDESR, &edesr);
1909 if (retval != ERROR_OK)
1910 return retval;
1912 was_triggered = !!(edesr & ESR_RC);
1913 LOG_DEBUG("Reset Catch debug event %s",
1914 was_triggered ? "triggered" : "NOT triggered!");
1916 if (was_triggered) {
1917 /* clear pending Reset Catch debug event */
1918 edesr &= ~ESR_RC;
1919 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1920 armv8->debug_base + CPUV8_DBG_EDESR, edesr);
1921 if (retval != ERROR_OK)
1922 return retval;
1925 return ERROR_OK;
1928 static int aarch64_assert_reset(struct target *target)
1930 struct armv8_common *armv8 = target_to_armv8(target);
1931 enum reset_types reset_config = jtag_get_reset_config();
1932 int retval;
1934 LOG_DEBUG(" ");
1936 /* Issue some kind of warm reset. */
1937 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1938 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1939 else if (reset_config & RESET_HAS_SRST) {
1940 bool srst_asserted = false;
1942 if (target->reset_halt) {
1943 if (target_was_examined(target)) {
1945 if (reset_config & RESET_SRST_NO_GATING) {
1947 * SRST needs to be asserted *before* Reset Catch
1948 * debug event can be set up.
1950 adapter_assert_reset();
1951 srst_asserted = true;
1953 /* make sure to clear all sticky errors */
1954 mem_ap_write_atomic_u32(armv8->debug_ap,
1955 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1958 /* set up Reset Catch debug event to halt the CPU after reset */
1959 retval = aarch64_enable_reset_catch(target, true);
1960 if (retval != ERROR_OK)
1961 LOG_WARNING("%s: Error enabling Reset Catch debug event; the CPU will not halt immediately after reset!",
1962 target_name(target));
1963 } else {
1964 LOG_WARNING("%s: Target not examined, will not halt immediately after reset!",
1965 target_name(target));
1969 /* REVISIT handle "pulls" cases, if there's
1970 * hardware that needs them to work.
1972 if (!srst_asserted)
1973 adapter_assert_reset();
1974 } else {
1975 LOG_ERROR("%s: how to reset?", target_name(target));
1976 return ERROR_FAIL;
1979 /* registers are now invalid */
1980 if (target_was_examined(target)) {
1981 register_cache_invalidate(armv8->arm.core_cache);
1982 register_cache_invalidate(armv8->arm.core_cache->next);
1985 target->state = TARGET_RESET;
1987 return ERROR_OK;
1990 static int aarch64_deassert_reset(struct target *target)
1992 int retval;
1994 LOG_DEBUG(" ");
1996 /* be certain SRST is off */
1997 adapter_deassert_reset();
1999 if (!target_was_examined(target))
2000 return ERROR_OK;
2002 retval = aarch64_init_debug_access(target);
2003 if (retval != ERROR_OK)
2004 return retval;
2006 retval = aarch64_poll(target);
2007 if (retval != ERROR_OK)
2008 return retval;
2010 if (target->reset_halt) {
2011 /* clear pending Reset Catch debug event */
2012 retval = aarch64_clear_reset_catch(target);
2013 if (retval != ERROR_OK)
2014 LOG_WARNING("%s: Clearing Reset Catch debug event failed",
2015 target_name(target));
2017 /* disable Reset Catch debug event */
2018 retval = aarch64_enable_reset_catch(target, false);
2019 if (retval != ERROR_OK)
2020 LOG_WARNING("%s: Disabling Reset Catch debug event failed",
2021 target_name(target));
2023 if (target->state != TARGET_HALTED) {
2024 LOG_WARNING("%s: ran after reset and before halt ...",
2025 target_name(target));
2026 retval = target_halt(target);
2027 if (retval != ERROR_OK)
2028 return retval;
2032 return ERROR_OK;
2035 static int aarch64_write_cpu_memory_slow(struct target *target,
2036 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2038 struct armv8_common *armv8 = target_to_armv8(target);
2039 struct arm_dpm *dpm = &armv8->dpm;
2040 struct arm *arm = &armv8->arm;
2041 int retval;
2043 armv8_reg_current(arm, 1)->dirty = true;
2045 /* change DCC to normal mode if necessary */
2046 if (*dscr & DSCR_MA) {
2047 *dscr &= ~DSCR_MA;
2048 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2049 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2050 if (retval != ERROR_OK)
2051 return retval;
2054 while (count) {
2055 uint32_t data, opcode;
2057 /* write the data to store into DTRRX */
2058 if (size == 1)
2059 data = *buffer;
2060 else if (size == 2)
2061 data = target_buffer_get_u16(target, buffer);
2062 else
2063 data = target_buffer_get_u32(target, buffer);
2064 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2065 armv8->debug_base + CPUV8_DBG_DTRRX, data);
2066 if (retval != ERROR_OK)
2067 return retval;
2069 if (arm->core_state == ARM_STATE_AARCH64)
2070 retval = dpm->instr_execute(dpm, ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 1));
2071 else
2072 retval = dpm->instr_execute(dpm, ARMV4_5_MRC(14, 0, 1, 0, 5, 0));
2073 if (retval != ERROR_OK)
2074 return retval;
2076 if (size == 1)
2077 opcode = armv8_opcode(armv8, ARMV8_OPC_STRB_IP);
2078 else if (size == 2)
2079 opcode = armv8_opcode(armv8, ARMV8_OPC_STRH_IP);
2080 else
2081 opcode = armv8_opcode(armv8, ARMV8_OPC_STRW_IP);
2082 retval = dpm->instr_execute(dpm, opcode);
2083 if (retval != ERROR_OK)
2084 return retval;
2086 /* Advance */
2087 buffer += size;
2088 --count;
2091 return ERROR_OK;
2094 static int aarch64_write_cpu_memory_fast(struct target *target,
2095 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2097 struct armv8_common *armv8 = target_to_armv8(target);
2098 struct arm *arm = &armv8->arm;
2099 int retval;
2101 armv8_reg_current(arm, 1)->dirty = true;
2103 /* Step 1.d - Change DCC to memory mode */
2104 *dscr |= DSCR_MA;
2105 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2106 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2107 if (retval != ERROR_OK)
2108 return retval;
2111 /* Step 2.a - Do the write */
2112 retval = mem_ap_write_buf_noincr(armv8->debug_ap,
2113 buffer, 4, count, armv8->debug_base + CPUV8_DBG_DTRRX);
2114 if (retval != ERROR_OK)
2115 return retval;
2117 /* Step 3.a - Switch DTR mode back to Normal mode */
2118 *dscr &= ~DSCR_MA;
2119 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2120 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2121 if (retval != ERROR_OK)
2122 return retval;
2124 return ERROR_OK;
2127 static int aarch64_write_cpu_memory(struct target *target,
2128 uint64_t address, uint32_t size,
2129 uint32_t count, const uint8_t *buffer)
2131 /* write memory through APB-AP */
2132 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2133 struct armv8_common *armv8 = target_to_armv8(target);
2134 struct arm_dpm *dpm = &armv8->dpm;
2135 struct arm *arm = &armv8->arm;
2136 uint32_t dscr;
2138 if (target->state != TARGET_HALTED) {
2139 LOG_WARNING("target not halted");
2140 return ERROR_TARGET_NOT_HALTED;
2143 /* Mark register X0 as dirty, as it will be used
2144 * for transferring the data.
2145 * It will be restored automatically when exiting
2146 * debug mode
2148 armv8_reg_current(arm, 0)->dirty = true;
2150 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2152 /* Read DSCR */
2153 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2154 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2155 if (retval != ERROR_OK)
2156 return retval;
2158 /* Set Normal access mode */
2159 dscr = (dscr & ~DSCR_MA);
2160 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2161 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2162 if (retval != ERROR_OK)
2163 return retval;
2165 if (arm->core_state == ARM_STATE_AARCH64) {
2166 /* Write X0 with value 'address' using write procedure */
2167 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2168 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2169 retval = dpm->instr_write_data_dcc_64(dpm,
2170 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
2171 } else {
2172 /* Write R0 with value 'address' using write procedure */
2173 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
2174 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2175 retval = dpm->instr_write_data_dcc(dpm,
2176 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2179 if (retval != ERROR_OK)
2180 return retval;
2182 if (size == 4 && (address % 4) == 0)
2183 retval = aarch64_write_cpu_memory_fast(target, count, buffer, &dscr);
2184 else
2185 retval = aarch64_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2187 if (retval != ERROR_OK) {
2188 /* Unset DTR mode */
2189 mem_ap_read_atomic_u32(armv8->debug_ap,
2190 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2191 dscr &= ~DSCR_MA;
2192 mem_ap_write_atomic_u32(armv8->debug_ap,
2193 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2196 /* Check for sticky abort flags in the DSCR */
2197 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2198 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2199 if (retval != ERROR_OK)
2200 return retval;
2202 dpm->dscr = dscr;
2203 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2204 /* Abort occurred - clear it and exit */
2205 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2206 armv8_dpm_handle_exception(dpm, true);
2207 return ERROR_FAIL;
2210 /* Done */
2211 return ERROR_OK;
2214 static int aarch64_read_cpu_memory_slow(struct target *target,
2215 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2217 struct armv8_common *armv8 = target_to_armv8(target);
2218 struct arm_dpm *dpm = &armv8->dpm;
2219 struct arm *arm = &armv8->arm;
2220 int retval;
2222 armv8_reg_current(arm, 1)->dirty = true;
2224 /* change DCC to normal mode (if necessary) */
2225 if (*dscr & DSCR_MA) {
2226 *dscr &= DSCR_MA;
2227 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2228 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2229 if (retval != ERROR_OK)
2230 return retval;
2233 while (count) {
2234 uint32_t opcode, data;
2236 if (size == 1)
2237 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRB_IP);
2238 else if (size == 2)
2239 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRH_IP);
2240 else
2241 opcode = armv8_opcode(armv8, ARMV8_OPC_LDRW_IP);
2242 retval = dpm->instr_execute(dpm, opcode);
2243 if (retval != ERROR_OK)
2244 return retval;
2246 if (arm->core_state == ARM_STATE_AARCH64)
2247 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 1));
2248 else
2249 retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 1, 0, 5, 0));
2250 if (retval != ERROR_OK)
2251 return retval;
2253 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2254 armv8->debug_base + CPUV8_DBG_DTRTX, &data);
2255 if (retval != ERROR_OK)
2256 return retval;
2258 if (size == 1)
2259 *buffer = (uint8_t)data;
2260 else if (size == 2)
2261 target_buffer_set_u16(target, buffer, (uint16_t)data);
2262 else
2263 target_buffer_set_u32(target, buffer, data);
2265 /* Advance */
2266 buffer += size;
2267 --count;
2270 return ERROR_OK;
2273 static int aarch64_read_cpu_memory_fast(struct target *target,
2274 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2276 struct armv8_common *armv8 = target_to_armv8(target);
2277 struct arm_dpm *dpm = &armv8->dpm;
2278 struct arm *arm = &armv8->arm;
2279 int retval;
2280 uint32_t value;
2282 /* Mark X1 as dirty */
2283 armv8_reg_current(arm, 1)->dirty = true;
2285 if (arm->core_state == ARM_STATE_AARCH64) {
2286 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2287 retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
2288 } else {
2289 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2290 retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
2293 if (retval != ERROR_OK)
2294 return retval;
2296 /* Step 1.e - Change DCC to memory mode */
2297 *dscr |= DSCR_MA;
2298 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2299 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2300 if (retval != ERROR_OK)
2301 return retval;
2303 /* Step 1.f - read DBGDTRTX and discard the value */
2304 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2305 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2306 if (retval != ERROR_OK)
2307 return retval;
2309 count--;
2310 /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2311 * Abort flags are sticky, so can be read at end of transactions
2313 * This data is read in aligned to 32 bit boundary.
2316 if (count) {
2317 /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2318 * increments X0 by 4. */
2319 retval = mem_ap_read_buf_noincr(armv8->debug_ap, buffer, 4, count,
2320 armv8->debug_base + CPUV8_DBG_DTRTX);
2321 if (retval != ERROR_OK)
2322 return retval;
2325 /* Step 3.a - set DTR access mode back to Normal mode */
2326 *dscr &= ~DSCR_MA;
2327 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2328 armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2329 if (retval != ERROR_OK)
2330 return retval;
2332 /* Step 3.b - read DBGDTRTX for the final value */
2333 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2334 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2335 if (retval != ERROR_OK)
2336 return retval;
2338 target_buffer_set_u32(target, buffer + count * 4, value);
2339 return retval;
2342 static int aarch64_read_cpu_memory(struct target *target,
2343 target_addr_t address, uint32_t size,
2344 uint32_t count, uint8_t *buffer)
2346 /* read memory through APB-AP */
2347 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2348 struct armv8_common *armv8 = target_to_armv8(target);
2349 struct arm_dpm *dpm = &armv8->dpm;
2350 struct arm *arm = &armv8->arm;
2351 uint32_t dscr;
2353 LOG_DEBUG("Reading CPU memory address 0x%016" PRIx64 " size %" PRIu32 " count %" PRIu32,
2354 address, size, count);
2356 if (target->state != TARGET_HALTED) {
2357 LOG_WARNING("target not halted");
2358 return ERROR_TARGET_NOT_HALTED;
2361 /* Mark register X0 as dirty, as it will be used
2362 * for transferring the data.
2363 * It will be restored automatically when exiting
2364 * debug mode
2366 armv8_reg_current(arm, 0)->dirty = true;
2368 /* Read DSCR */
2369 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2370 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2371 if (retval != ERROR_OK)
2372 return retval;
2374 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2376 /* Set Normal access mode */
2377 dscr &= ~DSCR_MA;
2378 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2379 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2380 if (retval != ERROR_OK)
2381 return retval;
2383 if (arm->core_state == ARM_STATE_AARCH64) {
2384 /* Write X0 with value 'address' using write procedure */
2385 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2386 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2387 retval = dpm->instr_write_data_dcc_64(dpm,
2388 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
2389 } else {
2390 /* Write R0 with value 'address' using write procedure */
2391 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2392 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2393 retval = dpm->instr_write_data_dcc(dpm,
2394 ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2397 if (retval != ERROR_OK)
2398 return retval;
2400 if (size == 4 && (address % 4) == 0)
2401 retval = aarch64_read_cpu_memory_fast(target, count, buffer, &dscr);
2402 else
2403 retval = aarch64_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2405 if (dscr & DSCR_MA) {
2406 dscr &= ~DSCR_MA;
2407 mem_ap_write_atomic_u32(armv8->debug_ap,
2408 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2411 if (retval != ERROR_OK)
2412 return retval;
2414 /* Check for sticky abort flags in the DSCR */
2415 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2416 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2417 if (retval != ERROR_OK)
2418 return retval;
2420 dpm->dscr = dscr;
2422 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2423 /* Abort occurred - clear it and exit */
2424 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2425 armv8_dpm_handle_exception(dpm, true);
2426 return ERROR_FAIL;
2429 /* Done */
2430 return ERROR_OK;
2433 static int aarch64_read_phys_memory(struct target *target,
2434 target_addr_t address, uint32_t size,
2435 uint32_t count, uint8_t *buffer)
2437 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2439 if (count && buffer) {
2440 /* read memory through APB-AP */
2441 retval = aarch64_mmu_modify(target, 0);
2442 if (retval != ERROR_OK)
2443 return retval;
2444 retval = aarch64_read_cpu_memory(target, address, size, count, buffer);
2446 return retval;
2449 static int aarch64_read_memory(struct target *target, target_addr_t address,
2450 uint32_t size, uint32_t count, uint8_t *buffer)
2452 int mmu_enabled = 0;
2453 int retval;
2455 /* determine if MMU was enabled on target stop */
2456 retval = aarch64_mmu(target, &mmu_enabled);
2457 if (retval != ERROR_OK)
2458 return retval;
2460 if (mmu_enabled) {
2461 /* enable MMU as we could have disabled it for phys access */
2462 retval = aarch64_mmu_modify(target, 1);
2463 if (retval != ERROR_OK)
2464 return retval;
2466 return aarch64_read_cpu_memory(target, address, size, count, buffer);
2469 static int aarch64_write_phys_memory(struct target *target,
2470 target_addr_t address, uint32_t size,
2471 uint32_t count, const uint8_t *buffer)
2473 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2475 if (count && buffer) {
2476 /* write memory through APB-AP */
2477 retval = aarch64_mmu_modify(target, 0);
2478 if (retval != ERROR_OK)
2479 return retval;
2480 return aarch64_write_cpu_memory(target, address, size, count, buffer);
2483 return retval;
2486 static int aarch64_write_memory(struct target *target, target_addr_t address,
2487 uint32_t size, uint32_t count, const uint8_t *buffer)
2489 int mmu_enabled = 0;
2490 int retval;
2492 /* determine if MMU was enabled on target stop */
2493 retval = aarch64_mmu(target, &mmu_enabled);
2494 if (retval != ERROR_OK)
2495 return retval;
2497 if (mmu_enabled) {
2498 /* enable MMU as we could have disabled it for phys access */
2499 retval = aarch64_mmu_modify(target, 1);
2500 if (retval != ERROR_OK)
2501 return retval;
2503 return aarch64_write_cpu_memory(target, address, size, count, buffer);
2506 static int aarch64_handle_target_request(void *priv)
2508 struct target *target = priv;
2509 struct armv8_common *armv8 = target_to_armv8(target);
2510 int retval;
2512 if (!target_was_examined(target))
2513 return ERROR_OK;
2514 if (!target->dbg_msg_enabled)
2515 return ERROR_OK;
2517 if (target->state == TARGET_RUNNING) {
2518 uint32_t request;
2519 uint32_t dscr;
2520 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2521 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2523 /* check if we have data */
2524 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2525 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2526 armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2527 if (retval == ERROR_OK) {
2528 target_request(target, request);
2529 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2530 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2535 return ERROR_OK;
2538 static int aarch64_examine_first(struct target *target)
2540 struct aarch64_common *aarch64 = target_to_aarch64(target);
2541 struct armv8_common *armv8 = &aarch64->armv8_common;
2542 struct adiv5_dap *swjdp = armv8->arm.dap;
2543 struct aarch64_private_config *pc = target->private_config;
2544 int i;
2545 int retval = ERROR_OK;
2546 uint64_t debug, ttypr;
2547 uint32_t cpuid;
2548 uint32_t tmp0, tmp1, tmp2, tmp3;
2549 debug = ttypr = cpuid = 0;
2551 if (!pc)
2552 return ERROR_FAIL;
2554 if (pc->adiv5_config.ap_num == DP_APSEL_INVALID) {
2555 /* Search for the APB-AB */
2556 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2557 if (retval != ERROR_OK) {
2558 LOG_ERROR("Could not find APB-AP for debug access");
2559 return retval;
2561 } else {
2562 armv8->debug_ap = dap_ap(swjdp, pc->adiv5_config.ap_num);
2565 retval = mem_ap_init(armv8->debug_ap);
2566 if (retval != ERROR_OK) {
2567 LOG_ERROR("Could not initialize the APB-AP");
2568 return retval;
2571 armv8->debug_ap->memaccess_tck = 10;
2573 if (!target->dbgbase_set) {
2574 target_addr_t dbgbase;
2575 /* Get ROM Table base */
2576 uint32_t apid;
2577 int32_t coreidx = target->coreid;
2578 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2579 if (retval != ERROR_OK)
2580 return retval;
2581 /* Lookup 0x15 -- Processor DAP */
2582 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2583 &armv8->debug_base, &coreidx);
2584 if (retval != ERROR_OK)
2585 return retval;
2586 LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT
2587 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
2588 } else
2589 armv8->debug_base = target->dbgbase;
2591 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2592 armv8->debug_base + CPUV8_DBG_OSLAR, 0);
2593 if (retval != ERROR_OK) {
2594 LOG_DEBUG("Examine %s failed", "oslock");
2595 return retval;
2598 retval = mem_ap_read_u32(armv8->debug_ap,
2599 armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
2600 if (retval != ERROR_OK) {
2601 LOG_DEBUG("Examine %s failed", "CPUID");
2602 return retval;
2605 retval = mem_ap_read_u32(armv8->debug_ap,
2606 armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
2607 retval += mem_ap_read_u32(armv8->debug_ap,
2608 armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
2609 if (retval != ERROR_OK) {
2610 LOG_DEBUG("Examine %s failed", "Memory Model Type");
2611 return retval;
2613 retval = mem_ap_read_u32(armv8->debug_ap,
2614 armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp2);
2615 retval += mem_ap_read_u32(armv8->debug_ap,
2616 armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp3);
2617 if (retval != ERROR_OK) {
2618 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2619 return retval;
2622 retval = dap_run(armv8->debug_ap->dap);
2623 if (retval != ERROR_OK) {
2624 LOG_ERROR("%s: examination failed\n", target_name(target));
2625 return retval;
2628 ttypr |= tmp1;
2629 ttypr = (ttypr << 32) | tmp0;
2630 debug |= tmp3;
2631 debug = (debug << 32) | tmp2;
2633 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2634 LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
2635 LOG_DEBUG("debug = 0x%08" PRIx64, debug);
2637 if (!pc->cti)
2638 return ERROR_FAIL;
2640 armv8->cti = pc->cti;
2642 retval = aarch64_dpm_setup(aarch64, debug);
2643 if (retval != ERROR_OK)
2644 return retval;
2646 /* Setup Breakpoint Register Pairs */
2647 aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
2648 aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
2649 aarch64->brp_num_available = aarch64->brp_num;
2650 aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2651 for (i = 0; i < aarch64->brp_num; i++) {
2652 aarch64->brp_list[i].used = 0;
2653 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2654 aarch64->brp_list[i].type = BRP_NORMAL;
2655 else
2656 aarch64->brp_list[i].type = BRP_CONTEXT;
2657 aarch64->brp_list[i].value = 0;
2658 aarch64->brp_list[i].control = 0;
2659 aarch64->brp_list[i].brpn = i;
2662 /* Setup Watchpoint Register Pairs */
2663 aarch64->wp_num = (uint32_t)((debug >> 20) & 0x0F) + 1;
2664 aarch64->wp_num_available = aarch64->wp_num;
2665 aarch64->wp_list = calloc(aarch64->wp_num, sizeof(struct aarch64_brp));
2666 for (i = 0; i < aarch64->wp_num; i++) {
2667 aarch64->wp_list[i].used = 0;
2668 aarch64->wp_list[i].type = BRP_NORMAL;
2669 aarch64->wp_list[i].value = 0;
2670 aarch64->wp_list[i].control = 0;
2671 aarch64->wp_list[i].brpn = i;
2674 LOG_DEBUG("Configured %i hw breakpoints, %i watchpoints",
2675 aarch64->brp_num, aarch64->wp_num);
2677 target->state = TARGET_UNKNOWN;
2678 target->debug_reason = DBG_REASON_NOTHALTED;
2679 aarch64->isrmasking_mode = AARCH64_ISRMASK_ON;
2680 target_set_examined(target);
2681 return ERROR_OK;
2684 static int aarch64_examine(struct target *target)
2686 int retval = ERROR_OK;
2688 /* don't re-probe hardware after each reset */
2689 if (!target_was_examined(target))
2690 retval = aarch64_examine_first(target);
2692 /* Configure core debug access */
2693 if (retval == ERROR_OK)
2694 retval = aarch64_init_debug_access(target);
2696 return retval;
2700 * Cortex-A8 target creation and initialization
2703 static int aarch64_init_target(struct command_context *cmd_ctx,
2704 struct target *target)
2706 /* examine_first() does a bunch of this */
2707 arm_semihosting_init(target);
2708 return ERROR_OK;
2711 static int aarch64_init_arch_info(struct target *target,
2712 struct aarch64_common *aarch64, struct adiv5_dap *dap)
2714 struct armv8_common *armv8 = &aarch64->armv8_common;
2716 /* Setup struct aarch64_common */
2717 aarch64->common_magic = AARCH64_COMMON_MAGIC;
2718 armv8->arm.dap = dap;
2720 /* register arch-specific functions */
2721 armv8->examine_debug_reason = NULL;
2722 armv8->post_debug_entry = aarch64_post_debug_entry;
2723 armv8->pre_restore_context = NULL;
2724 armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2726 armv8_init_arch_info(target, armv8);
2727 target_register_timer_callback(aarch64_handle_target_request, 1,
2728 TARGET_TIMER_TYPE_PERIODIC, target);
2730 return ERROR_OK;
2733 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2735 struct aarch64_private_config *pc = target->private_config;
2736 struct aarch64_common *aarch64;
2738 if (adiv5_verify_config(&pc->adiv5_config) != ERROR_OK)
2739 return ERROR_FAIL;
2741 aarch64 = calloc(1, sizeof(struct aarch64_common));
2742 if (!aarch64) {
2743 LOG_ERROR("Out of memory");
2744 return ERROR_FAIL;
2747 return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
2750 static void aarch64_deinit_target(struct target *target)
2752 struct aarch64_common *aarch64 = target_to_aarch64(target);
2753 struct armv8_common *armv8 = &aarch64->armv8_common;
2754 struct arm_dpm *dpm = &armv8->dpm;
2756 armv8_free_reg_cache(target);
2757 free(aarch64->brp_list);
2758 free(dpm->dbp);
2759 free(dpm->dwp);
2760 free(target->private_config);
2761 free(aarch64);
2764 static int aarch64_mmu(struct target *target, int *enabled)
2766 if (target->state != TARGET_HALTED) {
2767 LOG_ERROR("%s: target %s not halted", __func__, target_name(target));
2768 return ERROR_TARGET_INVALID;
2771 *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2772 return ERROR_OK;
2775 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2776 target_addr_t *phys)
2778 return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2782 * private target configuration items
2784 enum aarch64_cfg_param {
2785 CFG_CTI,
2788 static const struct jim_nvp nvp_config_opts[] = {
2789 { .name = "-cti", .value = CFG_CTI },
2790 { .name = NULL, .value = -1 }
2793 static int aarch64_jim_configure(struct target *target, struct jim_getopt_info *goi)
2795 struct aarch64_private_config *pc;
2796 struct jim_nvp *n;
2797 int e;
2799 pc = (struct aarch64_private_config *)target->private_config;
2800 if (!pc) {
2801 pc = calloc(1, sizeof(struct aarch64_private_config));
2802 pc->adiv5_config.ap_num = DP_APSEL_INVALID;
2803 target->private_config = pc;
2807 * Call adiv5_jim_configure() to parse the common DAP options
2808 * It will return JIM_CONTINUE if it didn't find any known
2809 * options, JIM_OK if it correctly parsed the topmost option
2810 * and JIM_ERR if an error occurred during parameter evaluation.
2811 * For JIM_CONTINUE, we check our own params.
2813 * adiv5_jim_configure() assumes 'private_config' to point to
2814 * 'struct adiv5_private_config'. Override 'private_config'!
2816 target->private_config = &pc->adiv5_config;
2817 e = adiv5_jim_configure(target, goi);
2818 target->private_config = pc;
2819 if (e != JIM_CONTINUE)
2820 return e;
2822 /* parse config or cget options ... */
2823 if (goi->argc > 0) {
2824 Jim_SetEmptyResult(goi->interp);
2826 /* check first if topmost item is for us */
2827 e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
2828 goi->argv[0], &n);
2829 if (e != JIM_OK)
2830 return JIM_CONTINUE;
2832 e = jim_getopt_obj(goi, NULL);
2833 if (e != JIM_OK)
2834 return e;
2836 switch (n->value) {
2837 case CFG_CTI: {
2838 if (goi->isconfigure) {
2839 Jim_Obj *o_cti;
2840 struct arm_cti *cti;
2841 e = jim_getopt_obj(goi, &o_cti);
2842 if (e != JIM_OK)
2843 return e;
2844 cti = cti_instance_by_jim_obj(goi->interp, o_cti);
2845 if (!cti) {
2846 Jim_SetResultString(goi->interp, "CTI name invalid!", -1);
2847 return JIM_ERR;
2849 pc->cti = cti;
2850 } else {
2851 if (goi->argc != 0) {
2852 Jim_WrongNumArgs(goi->interp,
2853 goi->argc, goi->argv,
2854 "NO PARAMS");
2855 return JIM_ERR;
2858 if (!pc || !pc->cti) {
2859 Jim_SetResultString(goi->interp, "CTI not configured", -1);
2860 return JIM_ERR;
2862 Jim_SetResultString(goi->interp, arm_cti_name(pc->cti), -1);
2864 break;
2867 default:
2868 return JIM_CONTINUE;
2872 return JIM_OK;
2875 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2877 struct target *target = get_current_target(CMD_CTX);
2878 struct armv8_common *armv8 = target_to_armv8(target);
2880 return armv8_handle_cache_info_command(CMD,
2881 &armv8->armv8_mmu.armv8_cache);
2884 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2886 struct target *target = get_current_target(CMD_CTX);
2887 if (!target_was_examined(target)) {
2888 LOG_ERROR("target not examined yet");
2889 return ERROR_FAIL;
2892 return aarch64_init_debug_access(target);
2895 COMMAND_HANDLER(aarch64_handle_disassemble_command)
2897 struct target *target = get_current_target(CMD_CTX);
2899 if (!target) {
2900 LOG_ERROR("No target selected");
2901 return ERROR_FAIL;
2904 struct aarch64_common *aarch64 = target_to_aarch64(target);
2906 if (aarch64->common_magic != AARCH64_COMMON_MAGIC) {
2907 command_print(CMD, "current target isn't an AArch64");
2908 return ERROR_FAIL;
2911 int count = 1;
2912 target_addr_t address;
2914 switch (CMD_ARGC) {
2915 case 2:
2916 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
2917 /* FALL THROUGH */
2918 case 1:
2919 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
2920 break;
2921 default:
2922 return ERROR_COMMAND_SYNTAX_ERROR;
2925 return a64_disassemble(CMD, target, address, count);
2928 COMMAND_HANDLER(aarch64_mask_interrupts_command)
2930 struct target *target = get_current_target(CMD_CTX);
2931 struct aarch64_common *aarch64 = target_to_aarch64(target);
2933 static const struct jim_nvp nvp_maskisr_modes[] = {
2934 { .name = "off", .value = AARCH64_ISRMASK_OFF },
2935 { .name = "on", .value = AARCH64_ISRMASK_ON },
2936 { .name = NULL, .value = -1 },
2938 const struct jim_nvp *n;
2940 if (CMD_ARGC > 0) {
2941 n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2942 if (!n->name) {
2943 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
2944 return ERROR_COMMAND_SYNTAX_ERROR;
2947 aarch64->isrmasking_mode = n->value;
2950 n = jim_nvp_value2name_simple(nvp_maskisr_modes, aarch64->isrmasking_mode);
2951 command_print(CMD, "aarch64 interrupt mask %s", n->name);
2953 return ERROR_OK;
2956 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
2958 struct command *c = jim_to_command(interp);
2959 struct command_context *context;
2960 struct target *target;
2961 struct arm *arm;
2962 int retval;
2963 bool is_mcr = false;
2964 int arg_cnt = 0;
2966 if (!strcmp(c->name, "mcr")) {
2967 is_mcr = true;
2968 arg_cnt = 7;
2969 } else {
2970 arg_cnt = 6;
2973 context = current_command_context(interp);
2974 assert(context);
2976 target = get_current_target(context);
2977 if (!target) {
2978 LOG_ERROR("%s: no current target", __func__);
2979 return JIM_ERR;
2981 if (!target_was_examined(target)) {
2982 LOG_ERROR("%s: not yet examined", target_name(target));
2983 return JIM_ERR;
2986 arm = target_to_arm(target);
2987 if (!is_arm(arm)) {
2988 LOG_ERROR("%s: not an ARM", target_name(target));
2989 return JIM_ERR;
2992 if (target->state != TARGET_HALTED)
2993 return ERROR_TARGET_NOT_HALTED;
2995 if (arm->core_state == ARM_STATE_AARCH64) {
2996 LOG_ERROR("%s: not 32-bit arm target", target_name(target));
2997 return JIM_ERR;
3000 if (argc != arg_cnt) {
3001 LOG_ERROR("%s: wrong number of arguments", __func__);
3002 return JIM_ERR;
3005 int cpnum;
3006 uint32_t op1;
3007 uint32_t op2;
3008 uint32_t crn;
3009 uint32_t crm;
3010 uint32_t value;
3011 long l;
3013 /* NOTE: parameter sequence matches ARM instruction set usage:
3014 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
3015 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
3016 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
3018 retval = Jim_GetLong(interp, argv[1], &l);
3019 if (retval != JIM_OK)
3020 return retval;
3021 if (l & ~0xf) {
3022 LOG_ERROR("%s: %s %d out of range", __func__,
3023 "coprocessor", (int) l);
3024 return JIM_ERR;
3026 cpnum = l;
3028 retval = Jim_GetLong(interp, argv[2], &l);
3029 if (retval != JIM_OK)
3030 return retval;
3031 if (l & ~0x7) {
3032 LOG_ERROR("%s: %s %d out of range", __func__,
3033 "op1", (int) l);
3034 return JIM_ERR;
3036 op1 = l;
3038 retval = Jim_GetLong(interp, argv[3], &l);
3039 if (retval != JIM_OK)
3040 return retval;
3041 if (l & ~0xf) {
3042 LOG_ERROR("%s: %s %d out of range", __func__,
3043 "CRn", (int) l);
3044 return JIM_ERR;
3046 crn = l;
3048 retval = Jim_GetLong(interp, argv[4], &l);
3049 if (retval != JIM_OK)
3050 return retval;
3051 if (l & ~0xf) {
3052 LOG_ERROR("%s: %s %d out of range", __func__,
3053 "CRm", (int) l);
3054 return JIM_ERR;
3056 crm = l;
3058 retval = Jim_GetLong(interp, argv[5], &l);
3059 if (retval != JIM_OK)
3060 return retval;
3061 if (l & ~0x7) {
3062 LOG_ERROR("%s: %s %d out of range", __func__,
3063 "op2", (int) l);
3064 return JIM_ERR;
3066 op2 = l;
3068 value = 0;
3070 if (is_mcr == true) {
3071 retval = Jim_GetLong(interp, argv[6], &l);
3072 if (retval != JIM_OK)
3073 return retval;
3074 value = l;
3076 /* NOTE: parameters reordered! */
3077 /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
3078 retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
3079 if (retval != ERROR_OK)
3080 return JIM_ERR;
3081 } else {
3082 /* NOTE: parameters reordered! */
3083 /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
3084 retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
3085 if (retval != ERROR_OK)
3086 return JIM_ERR;
3088 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
3091 return JIM_OK;
3094 static const struct command_registration aarch64_exec_command_handlers[] = {
3096 .name = "cache_info",
3097 .handler = aarch64_handle_cache_info_command,
3098 .mode = COMMAND_EXEC,
3099 .help = "display information about target caches",
3100 .usage = "",
3103 .name = "dbginit",
3104 .handler = aarch64_handle_dbginit_command,
3105 .mode = COMMAND_EXEC,
3106 .help = "Initialize core debug",
3107 .usage = "",
3110 .name = "disassemble",
3111 .handler = aarch64_handle_disassemble_command,
3112 .mode = COMMAND_EXEC,
3113 .help = "Disassemble instructions",
3114 .usage = "address [count]",
3117 .name = "maskisr",
3118 .handler = aarch64_mask_interrupts_command,
3119 .mode = COMMAND_ANY,
3120 .help = "mask aarch64 interrupts during single-step",
3121 .usage = "['on'|'off']",
3124 .name = "mcr",
3125 .mode = COMMAND_EXEC,
3126 .jim_handler = jim_mcrmrc,
3127 .help = "write coprocessor register",
3128 .usage = "cpnum op1 CRn CRm op2 value",
3131 .name = "mrc",
3132 .mode = COMMAND_EXEC,
3133 .jim_handler = jim_mcrmrc,
3134 .help = "read coprocessor register",
3135 .usage = "cpnum op1 CRn CRm op2",
3138 .chain = smp_command_handlers,
3142 COMMAND_REGISTRATION_DONE
3145 extern const struct command_registration semihosting_common_handlers[];
3147 static const struct command_registration aarch64_command_handlers[] = {
3149 .name = "arm",
3150 .mode = COMMAND_ANY,
3151 .help = "ARM Command Group",
3152 .usage = "",
3153 .chain = semihosting_common_handlers
3156 .chain = armv8_command_handlers,
3159 .name = "aarch64",
3160 .mode = COMMAND_ANY,
3161 .help = "Aarch64 command group",
3162 .usage = "",
3163 .chain = aarch64_exec_command_handlers,
3165 COMMAND_REGISTRATION_DONE
3168 struct target_type aarch64_target = {
3169 .name = "aarch64",
3171 .poll = aarch64_poll,
3172 .arch_state = armv8_arch_state,
3174 .halt = aarch64_halt,
3175 .resume = aarch64_resume,
3176 .step = aarch64_step,
3178 .assert_reset = aarch64_assert_reset,
3179 .deassert_reset = aarch64_deassert_reset,
3181 /* REVISIT allow exporting VFP3 registers ... */
3182 .get_gdb_arch = armv8_get_gdb_arch,
3183 .get_gdb_reg_list = armv8_get_gdb_reg_list,
3185 .read_memory = aarch64_read_memory,
3186 .write_memory = aarch64_write_memory,
3188 .add_breakpoint = aarch64_add_breakpoint,
3189 .add_context_breakpoint = aarch64_add_context_breakpoint,
3190 .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
3191 .remove_breakpoint = aarch64_remove_breakpoint,
3192 .add_watchpoint = aarch64_add_watchpoint,
3193 .remove_watchpoint = aarch64_remove_watchpoint,
3194 .hit_watchpoint = aarch64_hit_watchpoint,
3196 .commands = aarch64_command_handlers,
3197 .target_create = aarch64_target_create,
3198 .target_jim_configure = aarch64_jim_configure,
3199 .init_target = aarch64_init_target,
3200 .deinit_target = aarch64_deinit_target,
3201 .examine = aarch64_examine,
3203 .read_phys_memory = aarch64_read_phys_memory,
3204 .write_phys_memory = aarch64_write_phys_memory,
3205 .mmu = aarch64_mmu,
3206 .virt2phys = aarch64_virt2phys,