arm_adi_v5: fix scan-build warning [1/3]
[openocd.git] / src / target / arm_adi_v5.c
blobf7b335d95c5d08e3ff3df516e8f02c50e72d8897
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
62 * Relevant specifications from ARM include:
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "arm_coresight.h"
79 #include "jtag/swd.h"
80 #include "transport/transport.h"
81 #include <helper/align.h>
82 #include <helper/jep106.h>
83 #include <helper/time_support.h>
84 #include <helper/list.h>
85 #include <helper/jim-nvp.h>
87 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
90 uint32_t tar_block_size(uint32_t address)
91 Return the largest block starting at address that does not cross a tar block size alignment boundary
93 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
95 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
98 /***************************************************************************
99 * *
100 * DP and MEM-AP register access through APACC and DPACC *
102 ***************************************************************************/
104 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
106 csw |= ap->csw_default;
108 if (csw != ap->csw_value) {
109 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
110 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
111 if (retval != ERROR_OK) {
112 ap->csw_value = 0;
113 return retval;
115 ap->csw_value = csw;
117 return ERROR_OK;
120 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
122 if (!ap->tar_valid || tar != ap->tar_value) {
123 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
124 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, (uint32_t)(tar & 0xffffffffUL));
125 if (retval == ERROR_OK && is_64bit_ap(ap)) {
126 /* See if bits 63:32 of tar is different from last setting */
127 if ((ap->tar_value >> 32) != (tar >> 32))
128 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64, (uint32_t)(tar >> 32));
130 if (retval != ERROR_OK) {
131 ap->tar_valid = false;
132 return retval;
134 ap->tar_value = tar;
135 ap->tar_valid = true;
137 return ERROR_OK;
140 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
142 uint32_t lower;
143 uint32_t upper = 0;
145 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, &lower);
146 if (retval == ERROR_OK && is_64bit_ap(ap))
147 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64, &upper);
149 if (retval != ERROR_OK) {
150 ap->tar_valid = false;
151 return retval;
154 retval = dap_run(ap->dap);
155 if (retval != ERROR_OK) {
156 ap->tar_valid = false;
157 return retval;
160 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
162 ap->tar_value = *tar;
163 ap->tar_valid = true;
164 return ERROR_OK;
167 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
169 switch (ap->csw_value & CSW_ADDRINC_MASK) {
170 case CSW_ADDRINC_SINGLE:
171 switch (ap->csw_value & CSW_SIZE_MASK) {
172 case CSW_8BIT:
173 return 1;
174 case CSW_16BIT:
175 return 2;
176 case CSW_32BIT:
177 return 4;
178 default:
179 return 0;
181 case CSW_ADDRINC_PACKED:
182 return 4;
184 return 0;
187 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
189 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
191 if (!ap->tar_valid)
192 return;
194 uint32_t inc = mem_ap_get_tar_increment(ap);
195 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
196 ap->tar_valid = false;
197 else
198 ap->tar_value += inc;
202 * Queue transactions setting up transfer parameters for the
203 * currently selected MEM-AP.
205 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
206 * initiate data reads or writes using memory or peripheral addresses.
207 * If the CSW is configured for it, the TAR may be automatically
208 * incremented after each transfer.
210 * @param ap The MEM-AP.
211 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
212 * matches the cached value, the register is not changed.
213 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
214 * matches the cached address, the register is not changed.
216 * @return ERROR_OK if the transaction was properly queued, else a fault code.
218 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
220 int retval;
221 retval = mem_ap_setup_csw(ap, csw);
222 if (retval != ERROR_OK)
223 return retval;
224 retval = mem_ap_setup_tar(ap, tar);
225 if (retval != ERROR_OK)
226 return retval;
227 return ERROR_OK;
231 * Asynchronous (queued) read of a word from memory or a system register.
233 * @param ap The MEM-AP to access.
234 * @param address Address of the 32-bit word to read; it must be
235 * readable by the currently selected MEM-AP.
236 * @param value points to where the word will be stored when the
237 * transaction queue is flushed (assuming no errors).
239 * @return ERROR_OK for success. Otherwise a fault code.
241 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
242 uint32_t *value)
244 int retval;
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when reading several consecutive addresses.
249 retval = mem_ap_setup_transfer(ap,
250 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
251 address & 0xFFFFFFFFFFFFFFF0ull);
252 if (retval != ERROR_OK)
253 return retval;
255 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
259 * Synchronous read of a word from memory or a system register.
260 * As a side effect, this flushes any queued transactions.
262 * @param ap The MEM-AP to access.
263 * @param address Address of the 32-bit word to read; it must be
264 * readable by the currently selected MEM-AP.
265 * @param value points to where the result will be stored.
267 * @return ERROR_OK for success; *value holds the result.
268 * Otherwise a fault code.
270 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
271 uint32_t *value)
273 int retval;
275 retval = mem_ap_read_u32(ap, address, value);
276 if (retval != ERROR_OK)
277 return retval;
279 return dap_run(ap->dap);
283 * Asynchronous (queued) write of a word to memory or a system register.
285 * @param ap The MEM-AP to access.
286 * @param address Address to be written; it must be writable by
287 * the currently selected MEM-AP.
288 * @param value Word that will be written to the address when transaction
289 * queue is flushed (assuming no errors).
291 * @return ERROR_OK for success. Otherwise a fault code.
293 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
294 uint32_t value)
296 int retval;
298 /* Use banked addressing (REG_BDx) to avoid some link traffic
299 * (updating TAR) when writing several consecutive addresses.
301 retval = mem_ap_setup_transfer(ap,
302 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
303 address & 0xFFFFFFFFFFFFFFF0ull);
304 if (retval != ERROR_OK)
305 return retval;
307 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
308 value);
312 * Synchronous write of a word to memory or a system register.
313 * As a side effect, this flushes any queued transactions.
315 * @param ap The MEM-AP to access.
316 * @param address Address to be written; it must be writable by
317 * the currently selected MEM-AP.
318 * @param value Word that will be written.
320 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
322 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
323 uint32_t value)
325 int retval = mem_ap_write_u32(ap, address, value);
327 if (retval != ERROR_OK)
328 return retval;
330 return dap_run(ap->dap);
334 * Synchronous write of a block of memory, using a specific access size.
336 * @param ap The MEM-AP to access.
337 * @param buffer The data buffer to write. No particular alignment is assumed.
338 * @param size Which access size to use, in bytes. 1, 2 or 4.
339 * @param count The number of writes to do (in size units, not bytes).
340 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
341 * @param addrinc Whether the target address should be increased for each write or not. This
342 * should normally be true, except when writing to e.g. a FIFO.
343 * @return ERROR_OK on success, otherwise an error code.
345 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
346 target_addr_t address, bool addrinc)
348 struct adiv5_dap *dap = ap->dap;
349 size_t nbytes = size * count;
350 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
351 uint32_t csw_size;
352 target_addr_t addr_xor;
353 int retval = ERROR_OK;
355 /* TI BE-32 Quirks mode:
356 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
357 * size write address bytes written in order
358 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
359 * 2 TAR ^ 2 (val >> 8), (val)
360 * 1 TAR ^ 3 (val)
361 * For example, if you attempt to write a single byte to address 0, the processor
362 * will actually write a byte to address 3.
364 * To make writes of size < 4 work as expected, we xor a value with the address before
365 * setting the TAP, and we set the TAP after every transfer rather then relying on
366 * address increment. */
368 if (size == 4) {
369 csw_size = CSW_32BIT;
370 addr_xor = 0;
371 } else if (size == 2) {
372 csw_size = CSW_16BIT;
373 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
374 } else if (size == 1) {
375 csw_size = CSW_8BIT;
376 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
377 } else {
378 return ERROR_TARGET_UNALIGNED_ACCESS;
381 if (ap->unaligned_access_bad && (address % size != 0))
382 return ERROR_TARGET_UNALIGNED_ACCESS;
384 while (nbytes > 0) {
385 uint32_t this_size = size;
387 /* Select packed transfer if possible */
388 if (addrinc && ap->packed_transfers && nbytes >= 4
389 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
390 this_size = 4;
391 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
392 } else {
393 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
396 if (retval != ERROR_OK)
397 break;
399 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
400 if (retval != ERROR_OK)
401 return retval;
403 /* How many source bytes each transfer will consume, and their location in the DRW,
404 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
405 uint32_t outvalue = 0;
406 uint32_t drw_byte_idx = address;
407 if (dap->ti_be_32_quirks) {
408 switch (this_size) {
409 case 4:
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
412 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
413 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
414 break;
415 case 2:
416 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
417 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
418 break;
419 case 1:
420 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
421 break;
423 } else {
424 switch (this_size) {
425 case 4:
426 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
427 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
428 /* fallthrough */
429 case 2:
430 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
431 /* fallthrough */
432 case 1:
433 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
437 nbytes -= this_size;
439 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
440 if (retval != ERROR_OK)
441 break;
443 mem_ap_update_tar_cache(ap);
444 if (addrinc)
445 address += this_size;
448 /* REVISIT: Might want to have a queued version of this function that does not run. */
449 if (retval == ERROR_OK)
450 retval = dap_run(dap);
452 if (retval != ERROR_OK) {
453 target_addr_t tar;
454 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
455 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
456 else
457 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
460 return retval;
464 * Synchronous read of a block of memory, using a specific access size.
466 * @param ap The MEM-AP to access.
467 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
468 * @param size Which access size to use, in bytes. 1, 2 or 4.
469 * @param count The number of reads to do (in size units, not bytes).
470 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
471 * @param addrinc Whether the target address should be increased after each read or not. This
472 * should normally be true, except when reading from e.g. a FIFO.
473 * @return ERROR_OK on success, otherwise an error code.
475 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
476 target_addr_t adr, bool addrinc)
478 struct adiv5_dap *dap = ap->dap;
479 size_t nbytes = size * count;
480 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
481 uint32_t csw_size;
482 target_addr_t address = adr;
483 int retval = ERROR_OK;
485 /* TI BE-32 Quirks mode:
486 * Reads on big-endian TMS570 behave strangely differently than writes.
487 * They read from the physical address requested, but with DRW byte-reversed.
488 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
489 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
490 * so avoid them. */
492 if (size == 4)
493 csw_size = CSW_32BIT;
494 else if (size == 2)
495 csw_size = CSW_16BIT;
496 else if (size == 1)
497 csw_size = CSW_8BIT;
498 else
499 return ERROR_TARGET_UNALIGNED_ACCESS;
501 if (ap->unaligned_access_bad && (adr % size != 0))
502 return ERROR_TARGET_UNALIGNED_ACCESS;
504 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
505 * over-allocation if packed transfers are going to be used, but determining the real need at
506 * this point would be messy. */
507 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
508 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
509 uint32_t *read_ptr = read_buf;
510 if (!read_buf) {
511 LOG_ERROR("Failed to allocate read buffer");
512 return ERROR_FAIL;
515 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
516 * useful bytes it contains, and their location in the word, depends on the type of transfer
517 * and alignment. */
518 while (nbytes > 0) {
519 uint32_t this_size = size;
521 /* Select packed transfer if possible */
522 if (addrinc && ap->packed_transfers && nbytes >= 4
523 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
524 this_size = 4;
525 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
526 } else {
527 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
529 if (retval != ERROR_OK)
530 break;
532 retval = mem_ap_setup_tar(ap, address);
533 if (retval != ERROR_OK)
534 break;
536 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
537 if (retval != ERROR_OK)
538 break;
540 nbytes -= this_size;
541 if (addrinc)
542 address += this_size;
544 mem_ap_update_tar_cache(ap);
547 if (retval == ERROR_OK)
548 retval = dap_run(dap);
550 /* Restore state */
551 address = adr;
552 nbytes = size * count;
553 read_ptr = read_buf;
555 /* If something failed, read TAR to find out how much data was successfully read, so we can
556 * at least give the caller what we have. */
557 if (retval != ERROR_OK) {
558 target_addr_t tar;
559 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
560 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
561 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
562 if (nbytes > tar - address)
563 nbytes = tar - address;
564 } else {
565 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
566 nbytes = 0;
570 /* Replay loop to populate caller's buffer from the correct word and byte lane */
571 while (nbytes > 0) {
572 uint32_t this_size = size;
574 if (addrinc && ap->packed_transfers && nbytes >= 4
575 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
576 this_size = 4;
579 if (dap->ti_be_32_quirks) {
580 switch (this_size) {
581 case 4:
582 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
583 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
584 /* fallthrough */
585 case 2:
586 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
587 /* fallthrough */
588 case 1:
589 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
591 } else {
592 switch (this_size) {
593 case 4:
594 *buffer++ = *read_ptr >> 8 * (address++ & 3);
595 *buffer++ = *read_ptr >> 8 * (address++ & 3);
596 /* fallthrough */
597 case 2:
598 *buffer++ = *read_ptr >> 8 * (address++ & 3);
599 /* fallthrough */
600 case 1:
601 *buffer++ = *read_ptr >> 8 * (address++ & 3);
605 read_ptr++;
606 nbytes -= this_size;
609 free(read_buf);
610 return retval;
613 int mem_ap_read_buf(struct adiv5_ap *ap,
614 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
616 return mem_ap_read(ap, buffer, size, count, address, true);
619 int mem_ap_write_buf(struct adiv5_ap *ap,
620 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
622 return mem_ap_write(ap, buffer, size, count, address, true);
625 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
626 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
628 return mem_ap_read(ap, buffer, size, count, address, false);
631 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
632 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
634 return mem_ap_write(ap, buffer, size, count, address, false);
637 /*--------------------------------------------------------------------------*/
640 #define DAP_POWER_DOMAIN_TIMEOUT (10)
642 /*--------------------------------------------------------------------------*/
645 * Invalidate cached DP select and cached TAR and CSW of all APs
647 void dap_invalidate_cache(struct adiv5_dap *dap)
649 dap->select = DP_SELECT_INVALID;
650 dap->last_read = NULL;
652 int i;
653 for (i = 0; i <= DP_APSEL_MAX; i++) {
654 /* force csw and tar write on the next mem-ap access */
655 dap->ap[i].tar_valid = false;
656 dap->ap[i].csw_value = 0;
661 * Initialize a DAP. This sets up the power domains, prepares the DP
662 * for further use and activates overrun checking.
664 * @param dap The DAP being initialized.
666 int dap_dp_init(struct adiv5_dap *dap)
668 int retval;
670 LOG_DEBUG("%s", adiv5_dap_name(dap));
672 dap->do_reconnect = false;
673 dap_invalidate_cache(dap);
676 * Early initialize dap->dp_ctrl_stat.
677 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
678 * fails and sets the sticky error, it will trigger the clearing
679 * of the sticky. Without this initialization system and debug power
680 * would be disabled while clearing the sticky error bit.
682 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
685 * This write operation clears the sticky error bit in jtag mode only and
686 * is ignored in swd mode. It also powers-up system and debug domains in
687 * both jtag and swd modes, if not done before.
689 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
690 if (retval != ERROR_OK)
691 return retval;
693 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
694 if (retval != ERROR_OK)
695 return retval;
697 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
698 if (retval != ERROR_OK)
699 return retval;
701 /* Check that we have debug power domains activated */
702 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
703 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
704 CDBGPWRUPACK, CDBGPWRUPACK,
705 DAP_POWER_DOMAIN_TIMEOUT);
706 if (retval != ERROR_OK)
707 return retval;
709 if (!dap->ignore_syspwrupack) {
710 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
711 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
712 CSYSPWRUPACK, CSYSPWRUPACK,
713 DAP_POWER_DOMAIN_TIMEOUT);
714 if (retval != ERROR_OK)
715 return retval;
718 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
719 if (retval != ERROR_OK)
720 return retval;
722 /* With debug power on we can activate OVERRUN checking */
723 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
724 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
725 if (retval != ERROR_OK)
726 return retval;
727 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
728 if (retval != ERROR_OK)
729 return retval;
731 retval = dap_run(dap);
732 if (retval != ERROR_OK)
733 return retval;
735 return retval;
739 * Initialize a DAP or do reconnect if DAP is not accessible.
741 * @param dap The DAP being initialized.
743 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
745 LOG_DEBUG("%s", adiv5_dap_name(dap));
748 * Early initialize dap->dp_ctrl_stat.
749 * In jtag mode only, if the following atomic reads fail and set the
750 * sticky error, it will trigger the clearing of the sticky. Without this
751 * initialization system and debug power would be disabled while clearing
752 * the sticky error bit.
754 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
756 dap->do_reconnect = false;
758 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
759 if (dap->do_reconnect) {
760 /* dap connect calls dap_dp_init() after transport dependent initialization */
761 return dap->ops->connect(dap);
762 } else {
763 return dap_dp_init(dap);
768 * Initialize a DAP. This sets up the power domains, prepares the DP
769 * for further use, and arranges to use AP #0 for all AP operations
770 * until dap_ap-select() changes that policy.
772 * @param ap The MEM-AP being initialized.
774 int mem_ap_init(struct adiv5_ap *ap)
776 /* check that we support packed transfers */
777 uint32_t csw, cfg;
778 int retval;
779 struct adiv5_dap *dap = ap->dap;
781 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
782 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
783 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
784 if (retval != ERROR_OK)
785 return retval;
787 retval = dap_run(dap);
788 if (retval != ERROR_OK)
789 return retval;
791 ap->cfg_reg = cfg;
792 ap->tar_valid = false;
793 ap->csw_value = 0; /* force csw and tar write */
794 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
795 if (retval != ERROR_OK)
796 return retval;
798 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
799 if (retval != ERROR_OK)
800 return retval;
802 retval = dap_run(dap);
803 if (retval != ERROR_OK)
804 return retval;
806 if (csw & CSW_ADDRINC_PACKED)
807 ap->packed_transfers = true;
808 else
809 ap->packed_transfers = false;
811 /* Packed transfers on TI BE-32 processors do not work correctly in
812 * many cases. */
813 if (dap->ti_be_32_quirks)
814 ap->packed_transfers = false;
816 LOG_DEBUG("MEM_AP Packed Transfers: %s",
817 ap->packed_transfers ? "enabled" : "disabled");
819 /* The ARM ADI spec leaves implementation-defined whether unaligned
820 * memory accesses work, only work partially, or cause a sticky error.
821 * On TI BE-32 processors, reads seem to return garbage in some bytes
822 * and unaligned writes seem to cause a sticky error.
823 * TODO: it would be nice to have a way to detect whether unaligned
824 * operations are supported on other processors. */
825 ap->unaligned_access_bad = dap->ti_be_32_quirks;
827 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
828 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
830 return ERROR_OK;
834 * Put the debug link into SWD mode, if the target supports it.
835 * The link's initial mode may be either JTAG (for example,
836 * with SWJ-DP after reset) or SWD.
838 * Note that targets using the JTAG-DP do not support SWD, and that
839 * some targets which could otherwise support it may have been
840 * configured to disable SWD signaling
842 * @param dap The DAP used
843 * @return ERROR_OK or else a fault code.
845 int dap_to_swd(struct adiv5_dap *dap)
847 LOG_DEBUG("Enter SWD mode");
849 return dap_send_sequence(dap, JTAG_TO_SWD);
853 * Put the debug link into JTAG mode, if the target supports it.
854 * The link's initial mode may be either SWD or JTAG.
856 * Note that targets implemented with SW-DP do not support JTAG, and
857 * that some targets which could otherwise support it may have been
858 * configured to disable JTAG signaling
860 * @param dap The DAP used
861 * @return ERROR_OK or else a fault code.
863 int dap_to_jtag(struct adiv5_dap *dap)
865 LOG_DEBUG("Enter JTAG mode");
867 return dap_send_sequence(dap, SWD_TO_JTAG);
870 /* CID interpretation -- see ARM IHI 0029E table B2-7
871 * and ARM IHI 0031E table D1-2.
873 * From 2009/11/25 commit 21378f58b604:
874 * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
875 * Let's keep it as is, for the time being
877 static const char *class_description[16] = {
878 [0x0] = "Generic verification component",
879 [0x1] = "ROM table",
880 [0x2] = "Reserved",
881 [0x3] = "Reserved",
882 [0x4] = "Reserved",
883 [0x5] = "Reserved",
884 [0x6] = "Reserved",
885 [0x7] = "Reserved",
886 [0x8] = "Reserved",
887 [0x9] = "CoreSight component",
888 [0xA] = "Reserved",
889 [0xB] = "Peripheral Test Block",
890 [0xC] = "Reserved",
891 [0xD] = "OptimoDE DESS", /* see above */
892 [0xE] = "Generic IP component",
893 [0xF] = "CoreLink, PrimeCell or System component",
896 #define ARCH_ID(architect, archid) ( \
897 (((architect) << ARM_CS_C9_DEVARCH_ARCHITECT_SHIFT) & ARM_CS_C9_DEVARCH_ARCHITECT_MASK) | \
898 (((archid) << ARM_CS_C9_DEVARCH_ARCHID_SHIFT) & ARM_CS_C9_DEVARCH_ARCHID_MASK) \
901 static const struct {
902 uint32_t arch_id;
903 const char *description;
904 } class0x9_devarch[] = {
905 /* keep same unsorted order as in ARM IHI0029E */
906 { ARCH_ID(ARM_ID, 0x0A00), "RAS architecture" },
907 { ARCH_ID(ARM_ID, 0x1A01), "Instrumentation Trace Macrocell (ITM) architecture" },
908 { ARCH_ID(ARM_ID, 0x1A02), "DWT architecture" },
909 { ARCH_ID(ARM_ID, 0x1A03), "Flash Patch and Breakpoint unit (FPB) architecture" },
910 { ARCH_ID(ARM_ID, 0x2A04), "Processor debug architecture (ARMv8-M)" },
911 { ARCH_ID(ARM_ID, 0x6A05), "Processor debug architecture (ARMv8-R)" },
912 { ARCH_ID(ARM_ID, 0x0A10), "PC sample-based profiling" },
913 { ARCH_ID(ARM_ID, 0x4A13), "Embedded Trace Macrocell (ETM) architecture" },
914 { ARCH_ID(ARM_ID, 0x1A14), "Cross Trigger Interface (CTI) architecture" },
915 { ARCH_ID(ARM_ID, 0x6A15), "Processor debug architecture (v8.0-A)" },
916 { ARCH_ID(ARM_ID, 0x7A15), "Processor debug architecture (v8.1-A)" },
917 { ARCH_ID(ARM_ID, 0x8A15), "Processor debug architecture (v8.2-A)" },
918 { ARCH_ID(ARM_ID, 0x2A16), "Processor Performance Monitor (PMU) architecture" },
919 { ARCH_ID(ARM_ID, 0x0A17), "Memory Access Port v2 architecture" },
920 { ARCH_ID(ARM_ID, 0x0A27), "JTAG Access Port v2 architecture" },
921 { ARCH_ID(ARM_ID, 0x0A31), "Basic trace router" },
922 { ARCH_ID(ARM_ID, 0x0A37), "Power requestor" },
923 { ARCH_ID(ARM_ID, 0x0A47), "Unknown Access Port v2 architecture" },
924 { ARCH_ID(ARM_ID, 0x0A50), "HSSTP architecture" },
925 { ARCH_ID(ARM_ID, 0x0A63), "System Trace Macrocell (STM) architecture" },
926 { ARCH_ID(ARM_ID, 0x0A75), "CoreSight ELA architecture" },
927 { ARCH_ID(ARM_ID, 0x0AF7), "CoreSight ROM architecture" },
930 #define DEVARCH_ID_MASK (ARM_CS_C9_DEVARCH_ARCHITECT_MASK | ARM_CS_C9_DEVARCH_ARCHID_MASK)
931 #define DEVARCH_ROM_C_0X9 ARCH_ID(ARM_ID, 0x0AF7)
933 static const char *class0x9_devarch_description(uint32_t devarch)
935 if (!(devarch & ARM_CS_C9_DEVARCH_PRESENT))
936 return "not present";
938 for (unsigned int i = 0; i < ARRAY_SIZE(class0x9_devarch); i++)
939 if ((devarch & DEVARCH_ID_MASK) == class0x9_devarch[i].arch_id)
940 return class0x9_devarch[i].description;
942 return "unknown";
945 static const struct {
946 enum ap_type type;
947 const char *description;
948 } ap_types[] = {
949 { AP_TYPE_JTAG_AP, "JTAG-AP" },
950 { AP_TYPE_COM_AP, "COM-AP" },
951 { AP_TYPE_AHB3_AP, "MEM-AP AHB3" },
952 { AP_TYPE_APB_AP, "MEM-AP APB2 or APB3" },
953 { AP_TYPE_AXI_AP, "MEM-AP AXI3 or AXI4" },
954 { AP_TYPE_AHB5_AP, "MEM-AP AHB5" },
955 { AP_TYPE_APB4_AP, "MEM-AP APB4" },
956 { AP_TYPE_AXI5_AP, "MEM-AP AXI5" },
957 { AP_TYPE_AHB5H_AP, "MEM-AP AHB5 with enhanced HPROT" },
960 static const char *ap_type_to_description(enum ap_type type)
962 for (unsigned int i = 0; i < ARRAY_SIZE(ap_types); i++)
963 if (type == ap_types[i].type)
964 return ap_types[i].description;
966 return "Unknown";
970 * This function checks the ID for each access port to find the requested Access Port type
972 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
974 int ap_num;
976 /* Maximum AP number is 255 since the SELECT register is 8 bits */
977 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
979 /* read the IDR register of the Access Port */
980 uint32_t id_val = 0;
982 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
983 if (retval != ERROR_OK)
984 return retval;
986 retval = dap_run(dap);
988 /* Reading register for a non-existent AP should not cause an error,
989 * but just to be sure, try to continue searching if an error does happen.
991 if (retval == ERROR_OK && (id_val & AP_TYPE_MASK) == type_to_find) {
992 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
993 ap_type_to_description(type_to_find),
994 ap_num, id_val);
996 *ap_out = &dap->ap[ap_num];
997 return ERROR_OK;
1001 LOG_DEBUG("No %s found", ap_type_to_description(type_to_find));
1002 return ERROR_FAIL;
1005 static int dap_get_debugbase(struct adiv5_ap *ap,
1006 target_addr_t *dbgbase, uint32_t *apid)
1008 struct adiv5_dap *dap = ap->dap;
1009 int retval;
1010 uint32_t baseptr_upper, baseptr_lower;
1012 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
1013 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1014 if (retval != ERROR_OK)
1015 return retval;
1017 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseptr_lower);
1018 if (retval != ERROR_OK)
1019 return retval;
1020 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
1021 if (retval != ERROR_OK)
1022 return retval;
1023 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1024 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap)) {
1025 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseptr_upper);
1026 if (retval != ERROR_OK)
1027 return retval;
1030 retval = dap_run(dap);
1031 if (retval != ERROR_OK)
1032 return retval;
1034 if (!is_64bit_ap(ap))
1035 baseptr_upper = 0;
1036 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
1038 return ERROR_OK;
1041 /** Holds registers and coordinates of a CoreSight component */
1042 struct cs_component_vals {
1043 struct adiv5_ap *ap;
1044 target_addr_t component_base;
1045 uint64_t pid;
1046 uint32_t cid;
1047 uint32_t devarch;
1048 uint32_t devid;
1049 uint32_t devtype_memtype;
1053 * Read the CoreSight registers needed during ROM Table Parsing (RTP).
1055 * @param ap Pointer to AP containing the component.
1056 * @param component_base On MEM-AP access method, base address of the component.
1057 * @param v Pointer to the struct holding the value of registers.
1059 * @return ERROR_OK on success, else a fault code.
1061 static int rtp_read_cs_regs(struct adiv5_ap *ap, target_addr_t component_base,
1062 struct cs_component_vals *v)
1064 assert(IS_ALIGNED(component_base, ARM_CS_ALIGN));
1065 assert(ap && v);
1067 uint32_t cid0, cid1, cid2, cid3;
1068 uint32_t pid0, pid1, pid2, pid3, pid4;
1069 int retval = ERROR_OK;
1071 v->ap = ap;
1072 v->component_base = component_base;
1074 /* sort by offset to gain speed */
1077 * Registers DEVARCH, DEVID and DEVTYPE are valid on Class 0x9 devices
1078 * only, but are at offset above 0xf00, so can be read on any device
1079 * without triggering error. Read them for eventual use on Class 0x9.
1081 if (retval == ERROR_OK)
1082 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVARCH, &v->devarch);
1084 if (retval == ERROR_OK)
1085 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVID, &v->devid);
1087 /* Same address as ARM_CS_C1_MEMTYPE */
1088 if (retval == ERROR_OK)
1089 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &v->devtype_memtype);
1091 if (retval == ERROR_OK)
1092 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR4, &pid4);
1094 if (retval == ERROR_OK)
1095 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR0, &pid0);
1096 if (retval == ERROR_OK)
1097 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR1, &pid1);
1098 if (retval == ERROR_OK)
1099 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR2, &pid2);
1100 if (retval == ERROR_OK)
1101 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR3, &pid3);
1103 if (retval == ERROR_OK)
1104 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR0, &cid0);
1105 if (retval == ERROR_OK)
1106 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR1, &cid1);
1107 if (retval == ERROR_OK)
1108 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR2, &cid2);
1109 if (retval == ERROR_OK)
1110 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR3, &cid3);
1112 if (retval == ERROR_OK)
1113 retval = dap_run(ap->dap);
1114 if (retval != ERROR_OK) {
1115 LOG_DEBUG("Failed read CoreSight registers");
1116 return retval;
1119 v->cid = (cid3 & 0xff) << 24
1120 | (cid2 & 0xff) << 16
1121 | (cid1 & 0xff) << 8
1122 | (cid0 & 0xff);
1123 v->pid = (uint64_t)(pid4 & 0xff) << 32
1124 | (pid3 & 0xff) << 24
1125 | (pid2 & 0xff) << 16
1126 | (pid1 & 0xff) << 8
1127 | (pid0 & 0xff);
1129 return ERROR_OK;
1132 /* Part number interpretations are from Cortex
1133 * core specs, the CoreSight components TRM
1134 * (ARM DDI 0314H), CoreSight System Design
1135 * Guide (ARM DGI 0012D) and ETM specs; also
1136 * from chip observation (e.g. TI SDTI).
1139 static const struct dap_part_nums {
1140 uint16_t designer_id;
1141 uint16_t part_num;
1142 const char *type;
1143 const char *full;
1144 } dap_part_nums[] = {
1145 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1146 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1147 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1148 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1149 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1150 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1151 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1152 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1153 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1154 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1155 { ARM_ID, 0x193, "SoC-600 TSGEN", "(Timestamp Generator)", },
1156 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1157 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1158 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1159 { ARM_ID, 0x492, "Cortex-R52 GICD", "(Distributor)", },
1160 { ARM_ID, 0x493, "Cortex-R52 GICR", "(Redistributor)", },
1161 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1162 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1163 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1164 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1165 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1166 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1167 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1168 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1169 { ARM_ID, 0x4b8, "Cortex-R52 ROM", "(ROM Table)", },
1170 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1171 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1172 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1173 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1174 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1175 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1176 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1177 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1178 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1179 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1180 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1181 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1182 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1183 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1184 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1185 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1186 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1187 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1188 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1189 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1190 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1191 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1192 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1193 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1194 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1195 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1196 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1197 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1198 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1199 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1200 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1201 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1202 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1203 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1204 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1205 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1206 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1207 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1208 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1209 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1210 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1211 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1212 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1213 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1214 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1215 { ARM_ID, 0x9b6, "Cortex-R52 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1216 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1217 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1218 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1219 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1220 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1221 { ARM_ID, 0x9e2, "SoC-600 APB-AP", "(APB4 Memory Access Port)", },
1222 { ARM_ID, 0x9e3, "SoC-600 AHB-AP", "(AHB5 Memory Access Port)", },
1223 { ARM_ID, 0x9e4, "SoC-600 AXI-AP", "(AXI Memory Access Port)", },
1224 { ARM_ID, 0x9e5, "SoC-600 APv1 Adapter", "(Access Port v1 Adapter)", },
1225 { ARM_ID, 0x9e6, "SoC-600 JTAG-AP", "(JTAG Access Port)", },
1226 { ARM_ID, 0x9e7, "SoC-600 TPIU", "(Trace Port Interface Unit)", },
1227 { ARM_ID, 0x9e8, "SoC-600 TMC ETR/ETS", "(Embedded Trace Router/Streamer)", },
1228 { ARM_ID, 0x9e9, "SoC-600 TMC ETB", "(Embedded Trace Buffer)", },
1229 { ARM_ID, 0x9ea, "SoC-600 TMC ETF", "(Embedded Trace FIFO)", },
1230 { ARM_ID, 0x9eb, "SoC-600 ATB Funnel", "(Trace Funnel)", },
1231 { ARM_ID, 0x9ec, "SoC-600 ATB Replicator", "(Trace Replicator)", },
1232 { ARM_ID, 0x9ed, "SoC-600 CTI", "(Cross Trigger)", },
1233 { ARM_ID, 0x9ee, "SoC-600 CATU", "(Address Translation Unit)", },
1234 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1235 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1236 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1237 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1238 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1239 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1240 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1241 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1242 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1243 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1244 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1245 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1246 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1247 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1248 { ARM_ID, 0xd0c, "Neoverse N1", "(Debug Unit)", },
1249 { ARM_ID, 0xd13, "Cortex-R52 Debug", "(Debug Unit)", },
1250 { ARM_ID, 0xd49, "Neoverse N2", "(Debug Unit)", },
1251 { 0x017, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1252 { 0x017, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1253 { 0x017, 0x9af, "MSP432 ROM", "(ROM Table)" },
1254 { 0x01f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1255 { 0x041, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1256 { 0x041, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1257 { 0x041, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1258 { 0x065, 0x000, "SHARC+/Blackfin+", "", },
1259 { 0x070, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1260 { 0x0bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1261 { 0x0bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1262 { 0x0bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1263 { 0x0bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1264 { 0x1eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1265 { 0x1eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1266 { 0x1eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1267 { 0x1eb, 0x302, "Denver Debug", "(Debug Unit)", },
1268 { 0x1eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1271 static const struct dap_part_nums *pidr_to_part_num(unsigned int designer_id, unsigned int part_num)
1273 static const struct dap_part_nums unknown = {
1274 .type = "Unrecognized",
1275 .full = "",
1278 for (unsigned int i = 0; i < ARRAY_SIZE(dap_part_nums); i++)
1279 if (dap_part_nums[i].designer_id == designer_id && dap_part_nums[i].part_num == part_num)
1280 return &dap_part_nums[i];
1282 return &unknown;
1285 static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
1287 const char *major = "Reserved", *subtype = "Reserved";
1288 const unsigned int minor = (devtype & ARM_CS_C9_DEVTYPE_SUB_MASK) >> ARM_CS_C9_DEVTYPE_SUB_SHIFT;
1289 const unsigned int devtype_major = (devtype & ARM_CS_C9_DEVTYPE_MAJOR_MASK) >> ARM_CS_C9_DEVTYPE_MAJOR_SHIFT;
1290 switch (devtype_major) {
1291 case 0:
1292 major = "Miscellaneous";
1293 switch (minor) {
1294 case 0:
1295 subtype = "other";
1296 break;
1297 case 4:
1298 subtype = "Validation component";
1299 break;
1301 break;
1302 case 1:
1303 major = "Trace Sink";
1304 switch (minor) {
1305 case 0:
1306 subtype = "other";
1307 break;
1308 case 1:
1309 subtype = "Port";
1310 break;
1311 case 2:
1312 subtype = "Buffer";
1313 break;
1314 case 3:
1315 subtype = "Router";
1316 break;
1318 break;
1319 case 2:
1320 major = "Trace Link";
1321 switch (minor) {
1322 case 0:
1323 subtype = "other";
1324 break;
1325 case 1:
1326 subtype = "Funnel, router";
1327 break;
1328 case 2:
1329 subtype = "Filter";
1330 break;
1331 case 3:
1332 subtype = "FIFO, buffer";
1333 break;
1335 break;
1336 case 3:
1337 major = "Trace Source";
1338 switch (minor) {
1339 case 0:
1340 subtype = "other";
1341 break;
1342 case 1:
1343 subtype = "Processor";
1344 break;
1345 case 2:
1346 subtype = "DSP";
1347 break;
1348 case 3:
1349 subtype = "Engine/Coprocessor";
1350 break;
1351 case 4:
1352 subtype = "Bus";
1353 break;
1354 case 6:
1355 subtype = "Software";
1356 break;
1358 break;
1359 case 4:
1360 major = "Debug Control";
1361 switch (minor) {
1362 case 0:
1363 subtype = "other";
1364 break;
1365 case 1:
1366 subtype = "Trigger Matrix";
1367 break;
1368 case 2:
1369 subtype = "Debug Auth";
1370 break;
1371 case 3:
1372 subtype = "Power Requestor";
1373 break;
1375 break;
1376 case 5:
1377 major = "Debug Logic";
1378 switch (minor) {
1379 case 0:
1380 subtype = "other";
1381 break;
1382 case 1:
1383 subtype = "Processor";
1384 break;
1385 case 2:
1386 subtype = "DSP";
1387 break;
1388 case 3:
1389 subtype = "Engine/Coprocessor";
1390 break;
1391 case 4:
1392 subtype = "Bus";
1393 break;
1394 case 5:
1395 subtype = "Memory";
1396 break;
1398 break;
1399 case 6:
1400 major = "Performance Monitor";
1401 switch (minor) {
1402 case 0:
1403 subtype = "other";
1404 break;
1405 case 1:
1406 subtype = "Processor";
1407 break;
1408 case 2:
1409 subtype = "DSP";
1410 break;
1411 case 3:
1412 subtype = "Engine/Coprocessor";
1413 break;
1414 case 4:
1415 subtype = "Bus";
1416 break;
1417 case 5:
1418 subtype = "Memory";
1419 break;
1421 break;
1423 command_print(cmd, "\t\tType is 0x%02x, %s, %s",
1424 devtype & ARM_CS_C9_DEVTYPE_MASK,
1425 major, subtype);
1426 return ERROR_OK;
1430 * Actions/operations to be executed while parsing ROM tables.
1432 struct rtp_ops {
1434 * Executed at the start of a new MEM-AP, typically to print the MEM-AP header.
1435 * @param retval Error encountered while reading AP.
1436 * @param ap Pointer to AP.
1437 * @param dbgbase Value of MEM-AP Debug Base Address register.
1438 * @param apid Value of MEM-AP IDR Identification Register.
1439 * @param priv Pointer to private data.
1440 * @return ERROR_OK on success, else a fault code.
1442 int (*mem_ap_header)(int retval, struct adiv5_ap *ap, uint64_t dbgbase,
1443 uint32_t apid, void *priv);
1445 * Executed when a CoreSight component is parsed, typically to print
1446 * information on the component.
1447 * @param retval Error encountered while reading component's registers.
1448 * @param v Pointer to a container of the component's registers.
1449 * @param depth The current depth level of ROM table.
1450 * @param priv Pointer to private data.
1451 * @return ERROR_OK on success, else a fault code.
1453 int (*cs_component)(int retval, struct cs_component_vals *v, int depth, void *priv);
1455 * Executed for each entry of a ROM table, typically to print the entry
1456 * and information about validity or end-of-table mark.
1457 * @param retval Error encountered while reading the ROM table entry.
1458 * @param depth The current depth level of ROM table.
1459 * @param offset The offset of the entry in the ROM table.
1460 * @param romentry The value of the ROM table entry.
1461 * @param priv Pointer to private data.
1462 * @return ERROR_OK on success, else a fault code.
1464 int (*rom_table_entry)(int retval, int depth, unsigned int offset, uint64_t romentry,
1465 void *priv);
1467 * Private data
1469 void *priv;
1473 * Wrapper around struct rtp_ops::mem_ap_header.
1474 * Input parameter @a retval is propagated.
1476 static int rtp_ops_mem_ap_header(const struct rtp_ops *ops,
1477 int retval, struct adiv5_ap *ap, uint64_t dbgbase, uint32_t apid)
1479 if (!ops->mem_ap_header)
1480 return retval;
1482 int retval1 = ops->mem_ap_header(retval, ap, dbgbase, apid, ops->priv);
1483 if (retval != ERROR_OK)
1484 return retval;
1485 return retval1;
1489 * Wrapper around struct rtp_ops::cs_component.
1490 * Input parameter @a retval is propagated.
1492 static int rtp_ops_cs_component(const struct rtp_ops *ops,
1493 int retval, struct cs_component_vals *v, int depth)
1495 if (!ops->cs_component)
1496 return retval;
1498 int retval1 = ops->cs_component(retval, v, depth, ops->priv);
1499 if (retval != ERROR_OK)
1500 return retval;
1501 return retval1;
1505 * Wrapper around struct rtp_ops::rom_table_entry.
1506 * Input parameter @a retval is propagated.
1508 static int rtp_ops_rom_table_entry(const struct rtp_ops *ops,
1509 int retval, int depth, unsigned int offset, uint64_t romentry)
1511 if (!ops->rom_table_entry)
1512 return retval;
1514 int retval1 = ops->rom_table_entry(retval, depth, offset, romentry, ops->priv);
1515 if (retval != ERROR_OK)
1516 return retval;
1517 return retval1;
1520 /* Broken ROM tables can have circular references. Stop after a while */
1521 #define ROM_TABLE_MAX_DEPTH (16)
1524 * Value used only during lookup of a CoreSight component in ROM table.
1525 * Return CORESIGHT_COMPONENT_FOUND when component is found.
1526 * Return ERROR_OK when component is not found yet.
1527 * Return any other ERROR_* in case of error.
1529 #define CORESIGHT_COMPONENT_FOUND (1)
1531 static int rtp_cs_component(const struct rtp_ops *ops,
1532 struct adiv5_ap *ap, target_addr_t dbgbase, int depth);
1534 static int rtp_rom_loop(const struct rtp_ops *ops,
1535 struct adiv5_ap *ap, target_addr_t base_address, int depth,
1536 unsigned int width, unsigned int max_entries)
1538 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1540 unsigned int offset = 0;
1541 while (max_entries--) {
1542 uint64_t romentry;
1543 uint32_t romentry_low, romentry_high;
1544 target_addr_t component_base;
1545 unsigned int saved_offset = offset;
1547 int retval = mem_ap_read_u32(ap, base_address + offset, &romentry_low);
1548 offset += 4;
1549 if (retval == ERROR_OK && width == 64) {
1550 retval = mem_ap_read_u32(ap, base_address + offset, &romentry_high);
1551 offset += 4;
1553 if (retval == ERROR_OK)
1554 retval = dap_run(ap->dap);
1555 if (retval != ERROR_OK)
1556 LOG_DEBUG("Failed read ROM table entry");
1558 if (width == 64) {
1559 romentry = (((uint64_t)romentry_high) << 32) | romentry_low;
1560 component_base = base_address +
1561 ((((uint64_t)romentry_high) << 32) | (romentry_low & ARM_CS_ROMENTRY_OFFSET_MASK));
1562 } else {
1563 romentry = romentry_low;
1564 /* "romentry" is signed */
1565 component_base = base_address + (int32_t)(romentry_low & ARM_CS_ROMENTRY_OFFSET_MASK);
1566 if (!is_64bit_ap(ap))
1567 component_base = (uint32_t)component_base;
1569 retval = rtp_ops_rom_table_entry(ops, retval, depth, saved_offset, romentry);
1570 if (retval != ERROR_OK)
1571 return retval;
1573 if (romentry == 0) {
1574 /* End of ROM table */
1575 break;
1578 if (!(romentry & ARM_CS_ROMENTRY_PRESENT))
1579 continue;
1581 /* Recurse */
1582 retval = rtp_cs_component(ops, ap, component_base, depth + 1);
1583 if (retval == CORESIGHT_COMPONENT_FOUND)
1584 return CORESIGHT_COMPONENT_FOUND;
1585 if (retval != ERROR_OK) {
1586 /* TODO: do we need to send an ABORT before continuing? */
1587 LOG_DEBUG("Ignore error parsing CoreSight component");
1588 continue;
1592 return ERROR_OK;
1595 static int rtp_cs_component(const struct rtp_ops *ops,
1596 struct adiv5_ap *ap, target_addr_t base_address, int depth)
1598 struct cs_component_vals v;
1599 int retval;
1601 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1603 if (depth > ROM_TABLE_MAX_DEPTH)
1604 retval = ERROR_FAIL;
1605 else
1606 retval = rtp_read_cs_regs(ap, base_address, &v);
1608 retval = rtp_ops_cs_component(ops, retval, &v, depth);
1609 if (retval == CORESIGHT_COMPONENT_FOUND)
1610 return CORESIGHT_COMPONENT_FOUND;
1611 if (retval != ERROR_OK)
1612 return ERROR_OK; /* Don't abort recursion */
1614 if (!is_valid_arm_cs_cidr(v.cid))
1615 return ERROR_OK; /* Don't abort recursion */
1617 const unsigned int class = ARM_CS_CIDR_CLASS(v.cid);
1619 if (class == ARM_CS_CLASS_0X1_ROM_TABLE)
1620 return rtp_rom_loop(ops, ap, base_address, depth, 32, 960);
1622 if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1623 if ((v.devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
1624 return ERROR_OK;
1626 /* quit if not ROM table */
1627 if ((v.devarch & DEVARCH_ID_MASK) != DEVARCH_ROM_C_0X9)
1628 return ERROR_OK;
1630 if ((v.devid & ARM_CS_C9_DEVID_FORMAT_MASK) == ARM_CS_C9_DEVID_FORMAT_64BIT)
1631 return rtp_rom_loop(ops, ap, base_address, depth, 64, 256);
1632 else
1633 return rtp_rom_loop(ops, ap, base_address, depth, 32, 512);
1636 /* Class other than 0x1 and 0x9 */
1637 return ERROR_OK;
1640 static int rtp_ap(const struct rtp_ops *ops, struct adiv5_ap *ap)
1642 int retval;
1643 uint32_t apid;
1644 target_addr_t dbgbase, invalid_entry;
1646 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1647 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1648 if (retval != ERROR_OK)
1649 return retval;
1650 retval = rtp_ops_mem_ap_header(ops, retval, ap, dbgbase, apid);
1651 if (retval != ERROR_OK)
1652 return retval;
1654 if (apid == 0)
1655 return ERROR_FAIL;
1657 /* NOTE: a MEM-AP may have a single CoreSight component that's
1658 * not a ROM table ... or have no such components at all.
1660 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1662 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1663 if (is_64bit_ap(ap))
1664 invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1665 else
1666 invalid_entry = 0xFFFFFFFFul;
1668 if (dbgbase != invalid_entry && (dbgbase & 0x3) != 0x2) {
1669 retval = rtp_cs_component(ops, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1670 if (retval == CORESIGHT_COMPONENT_FOUND)
1671 return CORESIGHT_COMPONENT_FOUND;
1675 return ERROR_OK;
1678 /* Actions for command "dap info" */
1680 static int dap_info_mem_ap_header(int retval, struct adiv5_ap *ap,
1681 target_addr_t dbgbase, uint32_t apid, void *priv)
1683 struct command_invocation *cmd = priv;
1684 target_addr_t invalid_entry;
1686 if (retval != ERROR_OK) {
1687 command_print(cmd, "\t\tCan't read MEM-AP, the corresponding core might be turned off");
1688 return retval;
1691 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1692 if (apid == 0) {
1693 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1694 return ERROR_FAIL;
1697 command_print(cmd, "\tType is %s", ap_type_to_description(apid & AP_TYPE_MASK));
1699 /* NOTE: a MEM-AP may have a single CoreSight component that's
1700 * not a ROM table ... or have no such components at all.
1702 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1704 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1705 if (is_64bit_ap(ap))
1706 invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1707 else
1708 invalid_entry = 0xFFFFFFFFul;
1710 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1712 if (dbgbase == invalid_entry || (dbgbase & 0x3) == 0x2) {
1713 command_print(cmd, "\tNo ROM table present");
1714 } else {
1715 if (dbgbase & 0x01)
1716 command_print(cmd, "\tValid ROM table present");
1717 else
1718 command_print(cmd, "\tROM table in legacy format");
1722 return ERROR_OK;
1725 static int dap_info_cs_component(int retval, struct cs_component_vals *v, int depth, void *priv)
1727 struct command_invocation *cmd = priv;
1729 if (depth > ROM_TABLE_MAX_DEPTH) {
1730 command_print(cmd, "\tTables too deep");
1731 return ERROR_FAIL;
1734 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, v->component_base);
1736 if (retval != ERROR_OK) {
1737 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1738 return retval;
1741 if (!is_valid_arm_cs_cidr(v->cid)) {
1742 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, v->cid);
1743 return ERROR_OK; /* Don't abort recursion */
1746 /* component may take multiple 4K pages */
1747 uint32_t size = ARM_CS_PIDR_SIZE(v->pid);
1748 if (size > 0)
1749 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, v->component_base - 0x1000 * size);
1751 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, v->pid);
1753 const unsigned int part_num = ARM_CS_PIDR_PART(v->pid);
1754 unsigned int designer_id = ARM_CS_PIDR_DESIGNER(v->pid);
1756 if (v->pid & ARM_CS_PIDR_JEDEC) {
1757 /* JEP106 code */
1758 command_print(cmd, "\t\tDesigner is 0x%03x, %s",
1759 designer_id, jep106_manufacturer(designer_id));
1760 } else {
1761 /* Legacy ASCII ID, clear invalid bits */
1762 designer_id &= 0x7f;
1763 command_print(cmd, "\t\tDesigner ASCII code 0x%02x, %s",
1764 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1767 const struct dap_part_nums *partnum = pidr_to_part_num(designer_id, part_num);
1768 command_print(cmd, "\t\tPart is 0x%03x, %s %s", part_num, partnum->type, partnum->full);
1770 const unsigned int class = ARM_CS_CIDR_CLASS(v->cid);
1771 command_print(cmd, "\t\tComponent class is 0x%x, %s", class, class_description[class]);
1773 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1774 if (v->devtype_memtype & ARM_CS_C1_MEMTYPE_SYSMEM_MASK)
1775 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1776 else
1777 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1778 return ERROR_OK;
1781 if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1782 dap_devtype_display(cmd, v->devtype_memtype);
1784 /* REVISIT also show ARM_CS_C9_DEVID */
1786 if ((v->devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
1787 return ERROR_OK;
1789 unsigned int architect_id = ARM_CS_C9_DEVARCH_ARCHITECT(v->devarch);
1790 unsigned int revision = ARM_CS_C9_DEVARCH_REVISION(v->devarch);
1791 command_print(cmd, "\t\tDev Arch is 0x%08" PRIx32 ", %s \"%s\" rev.%u", v->devarch,
1792 jep106_manufacturer(architect_id), class0x9_devarch_description(v->devarch),
1793 revision);
1795 if ((v->devarch & DEVARCH_ID_MASK) == DEVARCH_ROM_C_0X9) {
1796 command_print(cmd, "\t\tType is ROM table");
1798 if (v->devid & ARM_CS_C9_DEVID_SYSMEM_MASK)
1799 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1800 else
1801 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1803 return ERROR_OK;
1806 /* Class other than 0x1 and 0x9 */
1807 return ERROR_OK;
1810 static int dap_info_rom_table_entry(int retval, int depth,
1811 unsigned int offset, uint64_t romentry, void *priv)
1813 struct command_invocation *cmd = priv;
1814 char tabs[16] = "";
1816 if (depth)
1817 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1819 if (retval != ERROR_OK) {
1820 command_print(cmd, "\t%sROMTABLE[0x%x] Read error", tabs, offset);
1821 command_print(cmd, "\t\tUnable to continue");
1822 command_print(cmd, "\t%s\tStop parsing of ROM table", tabs);
1823 return retval;
1826 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%08" PRIx64,
1827 tabs, offset, romentry);
1829 if (romentry == 0) {
1830 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1831 return ERROR_OK;
1834 if (!(romentry & ARM_CS_ROMENTRY_PRESENT)) {
1835 command_print(cmd, "\t\tComponent not present");
1836 return ERROR_OK;
1839 return ERROR_OK;
1842 int dap_info_command(struct command_invocation *cmd, struct adiv5_ap *ap)
1844 struct rtp_ops dap_info_ops = {
1845 .mem_ap_header = dap_info_mem_ap_header,
1846 .cs_component = dap_info_cs_component,
1847 .rom_table_entry = dap_info_rom_table_entry,
1848 .priv = cmd,
1851 return rtp_ap(&dap_info_ops, ap);
1854 /* Actions for dap_lookup_cs_component() */
1856 struct dap_lookup_data {
1857 /* input */
1858 unsigned int idx;
1859 unsigned int type;
1860 /* output */
1861 uint64_t component_base;
1864 static int dap_lookup_cs_component_cs_component(int retval,
1865 struct cs_component_vals *v, int depth, void *priv)
1867 struct dap_lookup_data *lookup = priv;
1869 if (retval != ERROR_OK)
1870 return retval;
1872 if (!is_valid_arm_cs_cidr(v->cid))
1873 return ERROR_OK;
1875 const unsigned int class = ARM_CS_CIDR_CLASS(v->cid);
1876 if (class != ARM_CS_CLASS_0X9_CS_COMPONENT)
1877 return ERROR_OK;
1879 if ((v->devtype_memtype & ARM_CS_C9_DEVTYPE_MASK) != lookup->type)
1880 return ERROR_OK;
1882 if (lookup->idx) {
1883 /* search for next one */
1884 --lookup->idx;
1885 return ERROR_OK;
1888 /* Found! */
1889 lookup->component_base = v->component_base;
1890 return CORESIGHT_COMPONENT_FOUND;
1893 int dap_lookup_cs_component(struct adiv5_ap *ap, uint8_t type,
1894 target_addr_t *addr, int32_t core_id)
1896 struct dap_lookup_data lookup = {
1897 .type = type,
1898 .idx = core_id,
1900 struct rtp_ops dap_lookup_cs_component_ops = {
1901 .mem_ap_header = NULL,
1902 .cs_component = dap_lookup_cs_component_cs_component,
1903 .rom_table_entry = NULL,
1904 .priv = &lookup,
1907 int retval = rtp_ap(&dap_lookup_cs_component_ops, ap);
1908 if (retval == CORESIGHT_COMPONENT_FOUND) {
1909 LOG_DEBUG("CS lookup found at 0x%" PRIx64, lookup.component_base);
1910 *addr = lookup.component_base;
1911 return ERROR_OK;
1913 if (retval != ERROR_OK) {
1914 LOG_DEBUG("CS lookup error %d", retval);
1915 return retval;
1917 LOG_DEBUG("CS lookup not found");
1918 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1921 enum adiv5_cfg_param {
1922 CFG_DAP,
1923 CFG_AP_NUM,
1924 CFG_BASEADDR,
1925 CFG_CTIBASE, /* DEPRECATED */
1928 static const struct jim_nvp nvp_config_opts[] = {
1929 { .name = "-dap", .value = CFG_DAP },
1930 { .name = "-ap-num", .value = CFG_AP_NUM },
1931 { .name = "-baseaddr", .value = CFG_BASEADDR },
1932 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1933 { .name = NULL, .value = -1 }
1936 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
1937 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1939 if (!goi->argc)
1940 return JIM_OK;
1942 Jim_SetEmptyResult(goi->interp);
1944 struct jim_nvp *n;
1945 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
1946 goi->argv[0], &n);
1947 if (e != JIM_OK)
1948 return JIM_CONTINUE;
1950 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1951 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1952 return JIM_CONTINUE;
1954 e = jim_getopt_obj(goi, NULL);
1955 if (e != JIM_OK)
1956 return e;
1958 switch (n->value) {
1959 case CFG_DAP:
1960 if (goi->isconfigure) {
1961 Jim_Obj *o_t;
1962 struct adiv5_dap *dap;
1963 e = jim_getopt_obj(goi, &o_t);
1964 if (e != JIM_OK)
1965 return e;
1966 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1967 if (!dap) {
1968 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1969 return JIM_ERR;
1971 if (*dap_p && *dap_p != dap) {
1972 Jim_SetResultString(goi->interp,
1973 "DAP assignment cannot be changed!", -1);
1974 return JIM_ERR;
1976 *dap_p = dap;
1977 } else {
1978 if (goi->argc)
1979 goto err_no_param;
1980 if (!*dap_p) {
1981 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1982 return JIM_ERR;
1984 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1986 break;
1988 case CFG_AP_NUM:
1989 if (goi->isconfigure) {
1990 jim_wide ap_num;
1991 e = jim_getopt_wide(goi, &ap_num);
1992 if (e != JIM_OK)
1993 return e;
1994 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1995 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1996 return JIM_ERR;
1998 *ap_num_p = ap_num;
1999 } else {
2000 if (goi->argc)
2001 goto err_no_param;
2002 if (*ap_num_p == DP_APSEL_INVALID) {
2003 Jim_SetResultString(goi->interp, "AP number not configured", -1);
2004 return JIM_ERR;
2006 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
2008 break;
2010 case CFG_CTIBASE:
2011 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
2012 /* fall through */
2013 case CFG_BASEADDR:
2014 if (goi->isconfigure) {
2015 jim_wide base;
2016 e = jim_getopt_wide(goi, &base);
2017 if (e != JIM_OK)
2018 return e;
2019 *base_p = (uint32_t)base;
2020 } else {
2021 if (goi->argc)
2022 goto err_no_param;
2023 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
2025 break;
2028 return JIM_OK;
2030 err_no_param:
2031 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
2032 return JIM_ERR;
2035 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
2037 struct adiv5_private_config *pc;
2038 int e;
2040 pc = (struct adiv5_private_config *)target->private_config;
2041 if (!pc) {
2042 pc = calloc(1, sizeof(struct adiv5_private_config));
2043 pc->ap_num = DP_APSEL_INVALID;
2044 target->private_config = pc;
2047 target->has_dap = true;
2049 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
2050 if (e != JIM_OK)
2051 return e;
2053 if (pc->dap && !target->dap_configured) {
2054 if (target->tap_configured) {
2055 pc->dap = NULL;
2056 Jim_SetResultString(goi->interp,
2057 "-chain-position and -dap configparams are mutually exclusive!", -1);
2058 return JIM_ERR;
2060 target->tap = pc->dap->tap;
2061 target->dap_configured = true;
2064 return JIM_OK;
2067 int adiv5_verify_config(struct adiv5_private_config *pc)
2069 if (!pc)
2070 return ERROR_FAIL;
2072 if (!pc->dap)
2073 return ERROR_FAIL;
2075 return ERROR_OK;
2078 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
2079 struct jim_getopt_info *goi)
2081 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
2084 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
2086 p->dap = NULL;
2087 p->ap_num = DP_APSEL_INVALID;
2088 p->base = 0;
2089 return ERROR_OK;
2092 COMMAND_HANDLER(handle_dap_info_command)
2094 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2095 uint32_t apsel;
2097 switch (CMD_ARGC) {
2098 case 0:
2099 apsel = dap->apsel;
2100 break;
2101 case 1:
2102 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2103 if (apsel > DP_APSEL_MAX) {
2104 command_print(CMD, "Invalid AP number");
2105 return ERROR_COMMAND_ARGUMENT_INVALID;
2107 break;
2108 default:
2109 return ERROR_COMMAND_SYNTAX_ERROR;
2112 return dap_info_command(CMD, &dap->ap[apsel]);
2115 COMMAND_HANDLER(dap_baseaddr_command)
2117 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2118 uint32_t apsel, baseaddr_lower, baseaddr_upper;
2119 struct adiv5_ap *ap;
2120 target_addr_t baseaddr;
2121 int retval;
2123 baseaddr_upper = 0;
2125 switch (CMD_ARGC) {
2126 case 0:
2127 apsel = dap->apsel;
2128 break;
2129 case 1:
2130 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2131 /* AP address is in bits 31:24 of DP_SELECT */
2132 if (apsel > DP_APSEL_MAX) {
2133 command_print(CMD, "Invalid AP number");
2134 return ERROR_COMMAND_ARGUMENT_INVALID;
2136 break;
2137 default:
2138 return ERROR_COMMAND_SYNTAX_ERROR;
2141 /* NOTE: assumes we're talking to a MEM-AP, which
2142 * has a base address. There are other kinds of AP,
2143 * though they're not common for now. This should
2144 * use the ID register to verify it's a MEM-AP.
2147 ap = dap_ap(dap, apsel);
2148 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseaddr_lower);
2150 if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
2151 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
2153 if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
2154 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
2155 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseaddr_upper);
2158 if (retval == ERROR_OK)
2159 retval = dap_run(dap);
2160 if (retval != ERROR_OK)
2161 return retval;
2163 if (is_64bit_ap(ap)) {
2164 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
2165 command_print(CMD, "0x%016" PRIx64, baseaddr);
2166 } else
2167 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
2169 return ERROR_OK;
2172 COMMAND_HANDLER(dap_memaccess_command)
2174 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2175 uint32_t memaccess_tck;
2177 switch (CMD_ARGC) {
2178 case 0:
2179 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
2180 break;
2181 case 1:
2182 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
2183 break;
2184 default:
2185 return ERROR_COMMAND_SYNTAX_ERROR;
2187 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
2189 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
2190 dap->ap[dap->apsel].memaccess_tck);
2192 return ERROR_OK;
2195 COMMAND_HANDLER(dap_apsel_command)
2197 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2198 uint32_t apsel;
2200 switch (CMD_ARGC) {
2201 case 0:
2202 command_print(CMD, "%" PRIu32, dap->apsel);
2203 return ERROR_OK;
2204 case 1:
2205 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2206 /* AP address is in bits 31:24 of DP_SELECT */
2207 if (apsel > DP_APSEL_MAX) {
2208 command_print(CMD, "Invalid AP number");
2209 return ERROR_COMMAND_ARGUMENT_INVALID;
2211 break;
2212 default:
2213 return ERROR_COMMAND_SYNTAX_ERROR;
2216 dap->apsel = apsel;
2217 return ERROR_OK;
2220 COMMAND_HANDLER(dap_apcsw_command)
2222 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2223 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
2224 uint32_t csw_val, csw_mask;
2226 switch (CMD_ARGC) {
2227 case 0:
2228 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
2229 dap->apsel, apcsw);
2230 return ERROR_OK;
2231 case 1:
2232 if (strcmp(CMD_ARGV[0], "default") == 0)
2233 csw_val = CSW_AHB_DEFAULT;
2234 else
2235 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2237 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2238 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
2239 return ERROR_COMMAND_ARGUMENT_INVALID;
2241 apcsw = csw_val;
2242 break;
2243 case 2:
2244 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2245 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
2246 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2247 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
2248 return ERROR_COMMAND_ARGUMENT_INVALID;
2250 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
2251 break;
2252 default:
2253 return ERROR_COMMAND_SYNTAX_ERROR;
2255 dap->ap[dap->apsel].csw_default = apcsw;
2257 return 0;
2262 COMMAND_HANDLER(dap_apid_command)
2264 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2265 uint32_t apsel, apid;
2266 int retval;
2268 switch (CMD_ARGC) {
2269 case 0:
2270 apsel = dap->apsel;
2271 break;
2272 case 1:
2273 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2274 /* AP address is in bits 31:24 of DP_SELECT */
2275 if (apsel > DP_APSEL_MAX) {
2276 command_print(CMD, "Invalid AP number");
2277 return ERROR_COMMAND_ARGUMENT_INVALID;
2279 break;
2280 default:
2281 return ERROR_COMMAND_SYNTAX_ERROR;
2284 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
2285 if (retval != ERROR_OK)
2286 return retval;
2287 retval = dap_run(dap);
2288 if (retval != ERROR_OK)
2289 return retval;
2291 command_print(CMD, "0x%8.8" PRIx32, apid);
2293 return retval;
2296 COMMAND_HANDLER(dap_apreg_command)
2298 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2299 uint32_t apsel, reg, value;
2300 struct adiv5_ap *ap;
2301 int retval;
2303 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2304 return ERROR_COMMAND_SYNTAX_ERROR;
2306 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2307 /* AP address is in bits 31:24 of DP_SELECT */
2308 if (apsel > DP_APSEL_MAX) {
2309 command_print(CMD, "Invalid AP number");
2310 return ERROR_COMMAND_ARGUMENT_INVALID;
2313 ap = dap_ap(dap, apsel);
2315 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
2316 if (reg >= 256 || (reg & 3)) {
2317 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2318 return ERROR_COMMAND_ARGUMENT_INVALID;
2321 if (CMD_ARGC == 3) {
2322 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2323 switch (reg) {
2324 case MEM_AP_REG_CSW:
2325 ap->csw_value = 0; /* invalid, in case write fails */
2326 retval = dap_queue_ap_write(ap, reg, value);
2327 if (retval == ERROR_OK)
2328 ap->csw_value = value;
2329 break;
2330 case MEM_AP_REG_TAR:
2331 retval = dap_queue_ap_write(ap, reg, value);
2332 if (retval == ERROR_OK)
2333 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
2334 else {
2335 /* To track independent writes to TAR and TAR64, two tar_valid flags */
2336 /* should be used. To keep it simple, tar_valid is only invalidated on a */
2337 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
2338 /* if tar_valid is false. */
2339 ap->tar_valid = false;
2341 break;
2342 case MEM_AP_REG_TAR64:
2343 retval = dap_queue_ap_write(ap, reg, value);
2344 if (retval == ERROR_OK)
2345 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
2346 else {
2347 /* See above comment for the MEM_AP_REG_TAR failed write case */
2348 ap->tar_valid = false;
2350 break;
2351 default:
2352 retval = dap_queue_ap_write(ap, reg, value);
2353 break;
2355 } else {
2356 retval = dap_queue_ap_read(ap, reg, &value);
2358 if (retval == ERROR_OK)
2359 retval = dap_run(dap);
2361 if (retval != ERROR_OK)
2362 return retval;
2364 if (CMD_ARGC == 2)
2365 command_print(CMD, "0x%08" PRIx32, value);
2367 return retval;
2370 COMMAND_HANDLER(dap_dpreg_command)
2372 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2373 uint32_t reg, value;
2374 int retval;
2376 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2377 return ERROR_COMMAND_SYNTAX_ERROR;
2379 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2380 if (reg >= 256 || (reg & 3)) {
2381 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2382 return ERROR_COMMAND_ARGUMENT_INVALID;
2385 if (CMD_ARGC == 2) {
2386 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2387 retval = dap_queue_dp_write(dap, reg, value);
2388 } else {
2389 retval = dap_queue_dp_read(dap, reg, &value);
2391 if (retval == ERROR_OK)
2392 retval = dap_run(dap);
2394 if (retval != ERROR_OK)
2395 return retval;
2397 if (CMD_ARGC == 1)
2398 command_print(CMD, "0x%08" PRIx32, value);
2400 return retval;
2403 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2405 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2406 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2407 "TI BE-32 quirks mode");
2410 const struct command_registration dap_instance_commands[] = {
2412 .name = "info",
2413 .handler = handle_dap_info_command,
2414 .mode = COMMAND_EXEC,
2415 .help = "display ROM table for MEM-AP "
2416 "(default currently selected AP)",
2417 .usage = "[ap_num]",
2420 .name = "apsel",
2421 .handler = dap_apsel_command,
2422 .mode = COMMAND_ANY,
2423 .help = "Set the currently selected AP (default 0) "
2424 "and display the result",
2425 .usage = "[ap_num]",
2428 .name = "apcsw",
2429 .handler = dap_apcsw_command,
2430 .mode = COMMAND_ANY,
2431 .help = "Set CSW default bits",
2432 .usage = "[value [mask]]",
2436 .name = "apid",
2437 .handler = dap_apid_command,
2438 .mode = COMMAND_EXEC,
2439 .help = "return ID register from AP "
2440 "(default currently selected AP)",
2441 .usage = "[ap_num]",
2444 .name = "apreg",
2445 .handler = dap_apreg_command,
2446 .mode = COMMAND_EXEC,
2447 .help = "read/write a register from AP "
2448 "(reg is byte address of a word register, like 0 4 8...)",
2449 .usage = "ap_num reg [value]",
2452 .name = "dpreg",
2453 .handler = dap_dpreg_command,
2454 .mode = COMMAND_EXEC,
2455 .help = "read/write a register from DP "
2456 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2457 .usage = "reg [value]",
2460 .name = "baseaddr",
2461 .handler = dap_baseaddr_command,
2462 .mode = COMMAND_EXEC,
2463 .help = "return debug base address from MEM-AP "
2464 "(default currently selected AP)",
2465 .usage = "[ap_num]",
2468 .name = "memaccess",
2469 .handler = dap_memaccess_command,
2470 .mode = COMMAND_EXEC,
2471 .help = "set/get number of extra tck for MEM-AP memory "
2472 "bus access [0-255]",
2473 .usage = "[cycles]",
2476 .name = "ti_be_32_quirks",
2477 .handler = dap_ti_be_32_quirks_command,
2478 .mode = COMMAND_CONFIG,
2479 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2480 .usage = "[enable]",
2482 COMMAND_REGISTRATION_DONE