aarch64: Implement MA mode for bulk memory reads and writes
[openocd.git] / src / target / aarch64.c
blob33c7daa57d1db5a21f5712c65a5084e2d7236f89
1 /***************************************************************************
2 * Copyright (C) 2015 by David Ung *
3 * *
4 * This program is free software; you can redistribute it and/or modify *
5 * it under the terms of the GNU General Public License as published by *
6 * the Free Software Foundation; either version 2 of the License, or *
7 * (at your option) any later version. *
8 * *
9 * This program is distributed in the hope that it will be useful, *
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12 * GNU General Public License for more details. *
13 * *
14 * You should have received a copy of the GNU General Public License *
15 * along with this program; if not, write to the *
16 * Free Software Foundation, Inc., *
17 * *
18 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include <helper/time_support.h>
32 static int aarch64_poll(struct target *target);
33 static int aarch64_debug_entry(struct target *target);
34 static int aarch64_restore_context(struct target *target, bool bpwp);
35 static int aarch64_set_breakpoint(struct target *target,
36 struct breakpoint *breakpoint, uint8_t matchmode);
37 static int aarch64_set_context_breakpoint(struct target *target,
38 struct breakpoint *breakpoint, uint8_t matchmode);
39 static int aarch64_set_hybrid_breakpoint(struct target *target,
40 struct breakpoint *breakpoint);
41 static int aarch64_unset_breakpoint(struct target *target,
42 struct breakpoint *breakpoint);
43 static int aarch64_mmu(struct target *target, int *enabled);
44 static int aarch64_virt2phys(struct target *target,
45 target_addr_t virt, target_addr_t *phys);
46 static int aarch64_read_apb_ap_memory(struct target *target,
47 uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
48 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
49 uint32_t opcode, uint32_t data);
51 static int aarch64_restore_system_control_reg(struct target *target)
53 int retval = ERROR_OK;
55 struct aarch64_common *aarch64 = target_to_aarch64(target);
56 struct armv8_common *armv8 = target_to_armv8(target);
58 if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
59 aarch64->system_control_reg_curr = aarch64->system_control_reg;
60 retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
61 0xd5181000,
62 aarch64->system_control_reg);
65 return retval;
68 /* check address before aarch64_apb read write access with mmu on
69 * remove apb predictible data abort */
70 static int aarch64_check_address(struct target *target, uint32_t address)
72 /* TODO */
73 return ERROR_OK;
75 /* modify system_control_reg in order to enable or disable mmu for :
76 * - virt2phys address conversion
77 * - read or write memory in phys or virt address */
78 static int aarch64_mmu_modify(struct target *target, int enable)
80 struct aarch64_common *aarch64 = target_to_aarch64(target);
81 struct armv8_common *armv8 = &aarch64->armv8_common;
82 int retval = ERROR_OK;
84 if (enable) {
85 /* if mmu enabled at target stop and mmu not enable */
86 if (!(aarch64->system_control_reg & 0x1U)) {
87 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
88 return ERROR_FAIL;
90 if (!(aarch64->system_control_reg_curr & 0x1U)) {
91 aarch64->system_control_reg_curr |= 0x1U;
92 retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
93 0xd5181000,
94 aarch64->system_control_reg_curr);
96 } else {
97 if (aarch64->system_control_reg_curr & 0x4U) {
98 /* data cache is active */
99 aarch64->system_control_reg_curr &= ~0x4U;
100 /* flush data cache armv7 function to be called */
101 if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
102 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
104 if ((aarch64->system_control_reg_curr & 0x1U)) {
105 aarch64->system_control_reg_curr &= ~0x1U;
106 retval = aarch64_instr_write_data_r0(armv8->arm.dpm,
107 0xd5181000,
108 aarch64->system_control_reg_curr);
111 return retval;
115 * Basic debug access, very low level assumes state is saved
117 static int aarch64_init_debug_access(struct target *target)
119 struct armv8_common *armv8 = target_to_armv8(target);
120 int retval;
121 uint32_t dummy;
123 LOG_DEBUG(" ");
125 /* Unlocking the debug registers for modification
126 * The debugport might be uninitialised so try twice */
127 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
128 armv8->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
129 if (retval != ERROR_OK) {
130 /* try again */
131 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
132 armv8->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
133 if (retval == ERROR_OK)
134 LOG_USER("Locking debug access failed on first, but succeeded on second try.");
136 if (retval != ERROR_OK)
137 return retval;
138 /* Clear Sticky Power Down status Bit in PRSR to enable access to
139 the registers in the Core Power Domain */
140 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
141 armv8->debug_base + CPUDBG_PRSR, &dummy);
142 if (retval != ERROR_OK)
143 return retval;
145 /* Enabling of instruction execution in debug mode is done in debug_entry code */
147 /* Resync breakpoint registers */
149 /* Since this is likely called from init or reset, update target state information*/
150 return aarch64_poll(target);
153 /* To reduce needless round-trips, pass in a pointer to the current
154 * DSCR value. Initialize it to zero if you just need to know the
155 * value on return from this function; or DSCR_INSTR_COMP if you
156 * happen to know that no instruction is pending.
158 static int aarch64_exec_opcode(struct target *target,
159 uint32_t opcode, uint32_t *dscr_p)
161 uint32_t dscr;
162 int retval;
163 struct armv8_common *armv8 = target_to_armv8(target);
164 dscr = dscr_p ? *dscr_p : 0;
166 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
168 /* Wait for InstrCompl bit to be set */
169 long long then = timeval_ms();
170 while ((dscr & DSCR_INSTR_COMP) == 0) {
171 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
172 armv8->debug_base + CPUDBG_DSCR, &dscr);
173 if (retval != ERROR_OK) {
174 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
175 return retval;
177 if (timeval_ms() > then + 1000) {
178 LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
179 return ERROR_FAIL;
183 retval = mem_ap_write_u32(armv8->debug_ap,
184 armv8->debug_base + CPUDBG_ITR, opcode);
185 if (retval != ERROR_OK)
186 return retval;
188 then = timeval_ms();
189 do {
190 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
191 armv8->debug_base + CPUDBG_DSCR, &dscr);
192 if (retval != ERROR_OK) {
193 LOG_ERROR("Could not read DSCR register");
194 return retval;
196 if (timeval_ms() > then + 1000) {
197 LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
198 return ERROR_FAIL;
200 } while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
202 if (dscr_p)
203 *dscr_p = dscr;
205 return retval;
208 /* Write to memory mapped registers directly with no cache or mmu handling */
209 static int aarch64_dap_write_memap_register_u32(struct target *target,
210 uint32_t address,
211 uint32_t value)
213 int retval;
214 struct armv8_common *armv8 = target_to_armv8(target);
216 retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
218 return retval;
222 * AARCH64 implementation of Debug Programmer's Model
224 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
225 * so there's no need to poll for it before executing an instruction.
227 * NOTE that in several of these cases the "stall" mode might be useful.
228 * It'd let us queue a few operations together... prepare/finish might
229 * be the places to enable/disable that mode.
232 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
234 return container_of(dpm, struct aarch64_common, armv8_common.dpm);
237 static int aarch64_write_dcc(struct armv8_common *armv8, uint32_t data)
239 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
240 return mem_ap_write_u32(armv8->debug_ap,
241 armv8->debug_base + CPUDBG_DTRRX, data);
244 static int aarch64_write_dcc_64(struct armv8_common *armv8, uint64_t data)
246 int ret;
247 LOG_DEBUG("write DCC Low word0x%08" PRIx32, (unsigned)data);
248 LOG_DEBUG("write DCC High word 0x%08" PRIx32, (unsigned)(data >> 32));
249 ret = mem_ap_write_u32(armv8->debug_ap,
250 armv8->debug_base + CPUDBG_DTRRX, data);
251 ret += mem_ap_write_u32(armv8->debug_ap,
252 armv8->debug_base + CPUDBG_DTRTX, data >> 32);
253 return ret;
256 static int aarch64_read_dcc(struct armv8_common *armv8, uint32_t *data,
257 uint32_t *dscr_p)
259 uint32_t dscr = DSCR_INSTR_COMP;
260 int retval;
262 if (dscr_p)
263 dscr = *dscr_p;
265 /* Wait for DTRRXfull */
266 long long then = timeval_ms();
267 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
268 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
269 armv8->debug_base + CPUDBG_DSCR,
270 &dscr);
271 if (retval != ERROR_OK)
272 return retval;
273 if (timeval_ms() > then + 1000) {
274 LOG_ERROR("Timeout waiting for read dcc");
275 return ERROR_FAIL;
279 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
280 armv8->debug_base + CPUDBG_DTRTX,
281 data);
282 if (retval != ERROR_OK)
283 return retval;
284 LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
286 if (dscr_p)
287 *dscr_p = dscr;
289 return retval;
292 static int aarch64_read_dcc_64(struct armv8_common *armv8, uint64_t *data,
293 uint32_t *dscr_p)
295 uint32_t dscr = DSCR_INSTR_COMP;
296 uint32_t higher;
297 int retval;
299 if (dscr_p)
300 dscr = *dscr_p;
302 /* Wait for DTRRXfull */
303 long long then = timeval_ms();
304 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
305 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
306 armv8->debug_base + CPUDBG_DSCR,
307 &dscr);
308 if (retval != ERROR_OK)
309 return retval;
310 if (timeval_ms() > then + 1000) {
311 LOG_ERROR("Timeout waiting for read dcc");
312 return ERROR_FAIL;
316 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
317 armv8->debug_base + CPUDBG_DTRTX,
318 (uint32_t *)data);
319 if (retval != ERROR_OK)
320 return retval;
322 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
323 armv8->debug_base + CPUDBG_DTRRX,
324 &higher);
325 if (retval != ERROR_OK)
326 return retval;
328 *data = *(uint32_t *)data | (uint64_t)higher << 32;
329 LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
331 if (dscr_p)
332 *dscr_p = dscr;
334 return retval;
337 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
339 struct aarch64_common *a8 = dpm_to_a8(dpm);
340 uint32_t dscr;
341 int retval;
343 /* set up invariant: INSTR_COMP is set after ever DPM operation */
344 long long then = timeval_ms();
345 for (;; ) {
346 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
347 a8->armv8_common.debug_base + CPUDBG_DSCR,
348 &dscr);
349 if (retval != ERROR_OK)
350 return retval;
351 if ((dscr & DSCR_INSTR_COMP) != 0)
352 break;
353 if (timeval_ms() > then + 1000) {
354 LOG_ERROR("Timeout waiting for dpm prepare");
355 return ERROR_FAIL;
359 /* this "should never happen" ... */
360 if (dscr & DSCR_DTR_RX_FULL) {
361 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
362 /* Clear DCCRX */
363 retval = aarch64_exec_opcode(
364 a8->armv8_common.arm.target,
365 0xd5130400,
366 &dscr);
367 if (retval != ERROR_OK)
368 return retval;
371 return retval;
374 static int aarch64_dpm_finish(struct arm_dpm *dpm)
376 /* REVISIT what could be done here? */
377 return ERROR_OK;
380 static int aarch64_instr_execute(struct arm_dpm *dpm,
381 uint32_t opcode)
383 struct aarch64_common *a8 = dpm_to_a8(dpm);
384 uint32_t dscr = DSCR_ITE;
386 return aarch64_exec_opcode(
387 a8->armv8_common.arm.target,
388 opcode,
389 &dscr);
392 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
393 uint32_t opcode, uint32_t data)
395 struct aarch64_common *a8 = dpm_to_a8(dpm);
396 int retval;
397 uint32_t dscr = DSCR_INSTR_COMP;
399 retval = aarch64_write_dcc(&a8->armv8_common, data);
400 if (retval != ERROR_OK)
401 return retval;
403 return aarch64_exec_opcode(
404 a8->armv8_common.arm.target,
405 opcode,
406 &dscr);
409 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
410 uint32_t opcode, uint64_t data)
412 struct aarch64_common *a8 = dpm_to_a8(dpm);
413 int retval;
414 uint32_t dscr = DSCR_INSTR_COMP;
416 retval = aarch64_write_dcc_64(&a8->armv8_common, data);
417 if (retval != ERROR_OK)
418 return retval;
420 return aarch64_exec_opcode(
421 a8->armv8_common.arm.target,
422 opcode,
423 &dscr);
426 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
427 uint32_t opcode, uint32_t data)
429 struct aarch64_common *a8 = dpm_to_a8(dpm);
430 uint32_t dscr = DSCR_INSTR_COMP;
431 int retval;
433 retval = aarch64_write_dcc(&a8->armv8_common, data);
434 if (retval != ERROR_OK)
435 return retval;
437 retval = aarch64_exec_opcode(
438 a8->armv8_common.arm.target,
439 0xd5330500,
440 &dscr);
441 if (retval != ERROR_OK)
442 return retval;
444 /* then the opcode, taking data from R0 */
445 retval = aarch64_exec_opcode(
446 a8->armv8_common.arm.target,
447 opcode,
448 &dscr);
450 return retval;
453 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
454 uint32_t opcode, uint64_t data)
456 struct aarch64_common *a8 = dpm_to_a8(dpm);
457 uint32_t dscr = DSCR_INSTR_COMP;
458 int retval;
460 retval = aarch64_write_dcc_64(&a8->armv8_common, data);
461 if (retval != ERROR_OK)
462 return retval;
464 retval = aarch64_exec_opcode(
465 a8->armv8_common.arm.target,
466 0xd5330400,
467 &dscr);
468 if (retval != ERROR_OK)
469 return retval;
471 /* then the opcode, taking data from R0 */
472 retval = aarch64_exec_opcode(
473 a8->armv8_common.arm.target,
474 opcode,
475 &dscr);
477 return retval;
480 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
482 struct target *target = dpm->arm->target;
483 uint32_t dscr = DSCR_INSTR_COMP;
485 /* "Prefetch flush" after modifying execution status in CPSR */
486 return aarch64_exec_opcode(target,
487 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
488 &dscr);
491 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
492 uint32_t opcode, uint32_t *data)
494 struct aarch64_common *a8 = dpm_to_a8(dpm);
495 int retval;
496 uint32_t dscr = DSCR_INSTR_COMP;
498 /* the opcode, writing data to DCC */
499 retval = aarch64_exec_opcode(
500 a8->armv8_common.arm.target,
501 opcode,
502 &dscr);
503 if (retval != ERROR_OK)
504 return retval;
506 return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
509 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
510 uint32_t opcode, uint64_t *data)
512 struct aarch64_common *a8 = dpm_to_a8(dpm);
513 int retval;
514 uint32_t dscr = DSCR_INSTR_COMP;
516 /* the opcode, writing data to DCC */
517 retval = aarch64_exec_opcode(
518 a8->armv8_common.arm.target,
519 opcode,
520 &dscr);
521 if (retval != ERROR_OK)
522 return retval;
524 return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
527 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
528 uint32_t opcode, uint32_t *data)
530 struct aarch64_common *a8 = dpm_to_a8(dpm);
531 uint32_t dscr = DSCR_INSTR_COMP;
532 int retval;
534 /* the opcode, writing data to R0 */
535 retval = aarch64_exec_opcode(
536 a8->armv8_common.arm.target,
537 opcode,
538 &dscr);
539 if (retval != ERROR_OK)
540 return retval;
542 /* write R0 to DCC */
543 retval = aarch64_exec_opcode(
544 a8->armv8_common.arm.target,
545 0xd5130400, /* msr dbgdtr_el0, x0 */
546 &dscr);
547 if (retval != ERROR_OK)
548 return retval;
550 return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
553 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
554 uint32_t opcode, uint64_t *data)
556 struct aarch64_common *a8 = dpm_to_a8(dpm);
557 uint32_t dscr = DSCR_INSTR_COMP;
558 int retval;
560 /* the opcode, writing data to R0 */
561 retval = aarch64_exec_opcode(
562 a8->armv8_common.arm.target,
563 opcode,
564 &dscr);
565 if (retval != ERROR_OK)
566 return retval;
568 /* write R0 to DCC */
569 retval = aarch64_exec_opcode(
570 a8->armv8_common.arm.target,
571 0xd5130400, /* msr dbgdtr_el0, x0 */
572 &dscr);
573 if (retval != ERROR_OK)
574 return retval;
576 return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
579 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
580 uint32_t addr, uint32_t control)
582 struct aarch64_common *a8 = dpm_to_a8(dpm);
583 uint32_t vr = a8->armv8_common.debug_base;
584 uint32_t cr = a8->armv8_common.debug_base;
585 int retval;
587 switch (index_t) {
588 case 0 ... 15: /* breakpoints */
589 vr += CPUDBG_BVR_BASE;
590 cr += CPUDBG_BCR_BASE;
591 break;
592 case 16 ... 31: /* watchpoints */
593 vr += CPUDBG_WVR_BASE;
594 cr += CPUDBG_WCR_BASE;
595 index_t -= 16;
596 break;
597 default:
598 return ERROR_FAIL;
600 vr += 4 * index_t;
601 cr += 4 * index_t;
603 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
604 (unsigned) vr, (unsigned) cr);
606 retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
607 vr, addr);
608 if (retval != ERROR_OK)
609 return retval;
610 retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
611 cr, control);
612 return retval;
615 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
617 return ERROR_OK;
619 #if 0
620 struct aarch64_common *a8 = dpm_to_a8(dpm);
621 uint32_t cr;
623 switch (index_t) {
624 case 0 ... 15:
625 cr = a8->armv8_common.debug_base + CPUDBG_BCR_BASE;
626 break;
627 case 16 ... 31:
628 cr = a8->armv8_common.debug_base + CPUDBG_WCR_BASE;
629 index_t -= 16;
630 break;
631 default:
632 return ERROR_FAIL;
634 cr += 4 * index_t;
636 LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
638 /* clear control register */
639 return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
640 #endif
643 static int aarch64_dpm_setup(struct aarch64_common *a8, uint32_t debug)
645 struct arm_dpm *dpm = &a8->armv8_common.dpm;
646 int retval;
648 dpm->arm = &a8->armv8_common.arm;
649 dpm->didr = debug;
651 dpm->prepare = aarch64_dpm_prepare;
652 dpm->finish = aarch64_dpm_finish;
654 dpm->instr_execute = aarch64_instr_execute;
655 dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
656 dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
657 dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
658 dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
659 dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
661 dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
662 dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
663 dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
664 dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
666 dpm->arm_reg_current = armv8_reg_current;
668 dpm->bpwp_enable = aarch64_bpwp_enable;
669 dpm->bpwp_disable = aarch64_bpwp_disable;
671 retval = armv8_dpm_setup(dpm);
672 if (retval == ERROR_OK)
673 retval = armv8_dpm_initialize(dpm);
675 return retval;
677 static struct target *get_aarch64(struct target *target, int32_t coreid)
679 struct target_list *head;
680 struct target *curr;
682 head = target->head;
683 while (head != (struct target_list *)NULL) {
684 curr = head->target;
685 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
686 return curr;
687 head = head->next;
689 return target;
691 static int aarch64_halt(struct target *target);
693 static int aarch64_halt_smp(struct target *target)
695 int retval = 0;
696 struct target_list *head;
697 struct target *curr;
698 head = target->head;
699 while (head != (struct target_list *)NULL) {
700 curr = head->target;
701 if ((curr != target) && (curr->state != TARGET_HALTED))
702 retval += aarch64_halt(curr);
703 head = head->next;
705 return retval;
708 static int update_halt_gdb(struct target *target)
710 int retval = 0;
711 if (target->gdb_service && target->gdb_service->core[0] == -1) {
712 target->gdb_service->target = target;
713 target->gdb_service->core[0] = target->coreid;
714 retval += aarch64_halt_smp(target);
716 return retval;
720 * Cortex-A8 Run control
723 static int aarch64_poll(struct target *target)
725 int retval = ERROR_OK;
726 uint32_t dscr;
727 struct aarch64_common *aarch64 = target_to_aarch64(target);
728 struct armv8_common *armv8 = &aarch64->armv8_common;
729 enum target_state prev_target_state = target->state;
730 /* toggle to another core is done by gdb as follow */
731 /* maint packet J core_id */
732 /* continue */
733 /* the next polling trigger an halt event sent to gdb */
734 if ((target->state == TARGET_HALTED) && (target->smp) &&
735 (target->gdb_service) &&
736 (target->gdb_service->target == NULL)) {
737 target->gdb_service->target =
738 get_aarch64(target, target->gdb_service->core[1]);
739 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
740 return retval;
742 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
743 armv8->debug_base + CPUDBG_DSCR, &dscr);
744 if (retval != ERROR_OK)
745 return retval;
746 aarch64->cpudbg_dscr = dscr;
748 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
749 if (prev_target_state != TARGET_HALTED) {
750 /* We have a halting debug event */
751 LOG_DEBUG("Target halted");
752 target->state = TARGET_HALTED;
753 if ((prev_target_state == TARGET_RUNNING)
754 || (prev_target_state == TARGET_UNKNOWN)
755 || (prev_target_state == TARGET_RESET)) {
756 retval = aarch64_debug_entry(target);
757 if (retval != ERROR_OK)
758 return retval;
759 if (target->smp) {
760 retval = update_halt_gdb(target);
761 if (retval != ERROR_OK)
762 return retval;
764 target_call_event_callbacks(target,
765 TARGET_EVENT_HALTED);
767 if (prev_target_state == TARGET_DEBUG_RUNNING) {
768 LOG_DEBUG(" ");
770 retval = aarch64_debug_entry(target);
771 if (retval != ERROR_OK)
772 return retval;
773 if (target->smp) {
774 retval = update_halt_gdb(target);
775 if (retval != ERROR_OK)
776 return retval;
779 target_call_event_callbacks(target,
780 TARGET_EVENT_DEBUG_HALTED);
783 } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
784 target->state = TARGET_RUNNING;
785 else {
786 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
787 target->state = TARGET_UNKNOWN;
790 return retval;
793 static int aarch64_halt(struct target *target)
795 int retval = ERROR_OK;
796 uint32_t dscr;
797 struct armv8_common *armv8 = target_to_armv8(target);
799 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
800 armv8->debug_base + 0x10000 + 0, &dscr);
801 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
802 armv8->debug_base + 0x10000 + 0, 1);
803 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
804 armv8->debug_base + 0x10000 + 0, &dscr);
806 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
807 armv8->debug_base + 0x10000 + 0x140, &dscr);
808 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
809 armv8->debug_base + 0x10000 + 0x140, 6);
810 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
811 armv8->debug_base + 0x10000 + 0x140, &dscr);
813 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
814 armv8->debug_base + 0x10000 + 0xa0, &dscr);
815 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
816 armv8->debug_base + 0x10000 + 0xa0, 5);
817 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
818 armv8->debug_base + 0x10000 + 0xa0, &dscr);
820 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
821 armv8->debug_base + 0x10000 + 0xa4, &dscr);
822 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
823 armv8->debug_base + 0x10000 + 0xa4, 2);
824 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
825 armv8->debug_base + 0x10000 + 0xa4, &dscr);
827 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
828 armv8->debug_base + 0x10000 + 0x20, &dscr);
829 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
830 armv8->debug_base + 0x10000 + 0x20, 4);
831 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
832 armv8->debug_base + 0x10000 + 0x20, &dscr);
835 * enter halting debug mode
837 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
838 armv8->debug_base + CPUDBG_DSCR, &dscr);
839 if (retval != ERROR_OK)
840 return retval;
842 # /* STATUS */
843 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
844 armv8->debug_base + 0x10000 + 0x134, &dscr);
846 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
847 armv8->debug_base + 0x10000 + 0x1c, &dscr);
848 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
849 armv8->debug_base + 0x10000 + 0x1c, 1);
850 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
851 armv8->debug_base + 0x10000 + 0x1c, &dscr);
854 long long then = timeval_ms();
855 for (;; ) {
856 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
857 armv8->debug_base + CPUDBG_DSCR, &dscr);
858 if (retval != ERROR_OK)
859 return retval;
860 if ((dscr & DSCR_CORE_HALTED) != 0)
861 break;
862 if (timeval_ms() > then + 1000) {
863 LOG_ERROR("Timeout waiting for halt");
864 return ERROR_FAIL;
868 target->debug_reason = DBG_REASON_DBGRQ;
870 return ERROR_OK;
873 static int aarch64_internal_restore(struct target *target, int current,
874 uint64_t *address, int handle_breakpoints, int debug_execution)
876 struct armv8_common *armv8 = target_to_armv8(target);
877 struct arm *arm = &armv8->arm;
878 int retval;
879 uint64_t resume_pc;
881 if (!debug_execution)
882 target_free_all_working_areas(target);
884 /* current = 1: continue on current pc, otherwise continue at <address> */
885 resume_pc = buf_get_u64(arm->pc->value, 0, 64);
886 if (!current)
887 resume_pc = *address;
888 else
889 *address = resume_pc;
891 /* Make sure that the Armv7 gdb thumb fixups does not
892 * kill the return address
894 switch (arm->core_state) {
895 case ARM_STATE_ARM:
896 resume_pc &= 0xFFFFFFFC;
897 break;
898 case ARM_STATE_AARCH64:
899 resume_pc &= 0xFFFFFFFFFFFFFFFC;
900 break;
901 case ARM_STATE_THUMB:
902 case ARM_STATE_THUMB_EE:
903 /* When the return address is loaded into PC
904 * bit 0 must be 1 to stay in Thumb state
906 resume_pc |= 0x1;
907 break;
908 case ARM_STATE_JAZELLE:
909 LOG_ERROR("How do I resume into Jazelle state??");
910 return ERROR_FAIL;
912 LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
913 buf_set_u64(arm->pc->value, 0, 64, resume_pc);
914 arm->pc->dirty = 1;
915 arm->pc->valid = 1;
916 dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
918 /* called it now before restoring context because it uses cpu
919 * register r0 for restoring system control register */
920 retval = aarch64_restore_system_control_reg(target);
921 if (retval != ERROR_OK)
922 return retval;
923 retval = aarch64_restore_context(target, handle_breakpoints);
924 if (retval != ERROR_OK)
925 return retval;
926 target->debug_reason = DBG_REASON_NOTHALTED;
927 target->state = TARGET_RUNNING;
929 /* registers are now invalid */
930 register_cache_invalidate(arm->core_cache);
932 #if 0
933 /* the front-end may request us not to handle breakpoints */
934 if (handle_breakpoints) {
935 /* Single step past breakpoint at current address */
936 breakpoint = breakpoint_find(target, resume_pc);
937 if (breakpoint) {
938 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
939 cortex_m3_unset_breakpoint(target, breakpoint);
940 cortex_m3_single_step_core(target);
941 cortex_m3_set_breakpoint(target, breakpoint);
944 #endif
946 return retval;
949 static int aarch64_internal_restart(struct target *target)
951 struct armv8_common *armv8 = target_to_armv8(target);
952 struct arm *arm = &armv8->arm;
953 int retval;
954 uint32_t dscr;
956 * * Restart core and wait for it to be started. Clear ITRen and sticky
957 * * exception flags: see ARMv7 ARM, C5.9.
959 * REVISIT: for single stepping, we probably want to
960 * disable IRQs by default, with optional override...
963 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
964 armv8->debug_base + CPUDBG_DSCR, &dscr);
965 if (retval != ERROR_OK)
966 return retval;
968 if ((dscr & DSCR_INSTR_COMP) == 0)
969 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
971 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
972 armv8->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
973 if (retval != ERROR_OK)
974 return retval;
976 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
977 armv8->debug_base + CPUDBG_DRCR, DRCR_RESTART |
978 DRCR_CLEAR_EXCEPTIONS);
979 if (retval != ERROR_OK)
980 return retval;
982 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
983 armv8->debug_base + 0x10000 + 0x10, 1);
984 if (retval != ERROR_OK)
985 return retval;
987 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
988 armv8->debug_base + 0x10000 + 0x1c, 2);
989 if (retval != ERROR_OK)
990 return retval;
992 long long then = timeval_ms();
993 for (;; ) {
994 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
995 armv8->debug_base + CPUDBG_DSCR, &dscr);
996 if (retval != ERROR_OK)
997 return retval;
998 if ((dscr & DSCR_CORE_RESTARTED) != 0)
999 break;
1000 if (timeval_ms() > then + 1000) {
1001 LOG_ERROR("Timeout waiting for resume");
1002 return ERROR_FAIL;
1006 target->debug_reason = DBG_REASON_NOTHALTED;
1007 target->state = TARGET_RUNNING;
1009 /* registers are now invalid */
1010 register_cache_invalidate(arm->core_cache);
1012 return ERROR_OK;
1015 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
1017 int retval = 0;
1018 struct target_list *head;
1019 struct target *curr;
1020 uint64_t address;
1021 head = target->head;
1022 while (head != (struct target_list *)NULL) {
1023 curr = head->target;
1024 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1025 /* resume current address , not in step mode */
1026 retval += aarch64_internal_restore(curr, 1, &address,
1027 handle_breakpoints, 0);
1028 retval += aarch64_internal_restart(curr);
1030 head = head->next;
1033 return retval;
1036 static int aarch64_resume(struct target *target, int current,
1037 target_addr_t address, int handle_breakpoints, int debug_execution)
1039 int retval = 0;
1040 uint64_t addr = address;
1042 /* dummy resume for smp toggle in order to reduce gdb impact */
1043 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1044 /* simulate a start and halt of target */
1045 target->gdb_service->target = NULL;
1046 target->gdb_service->core[0] = target->gdb_service->core[1];
1047 /* fake resume at next poll we play the target core[1], see poll*/
1048 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1049 return 0;
1051 aarch64_internal_restore(target, current, &addr, handle_breakpoints,
1052 debug_execution);
1053 if (target->smp) {
1054 target->gdb_service->core[0] = -1;
1055 retval = aarch64_restore_smp(target, handle_breakpoints);
1056 if (retval != ERROR_OK)
1057 return retval;
1059 aarch64_internal_restart(target);
1061 if (!debug_execution) {
1062 target->state = TARGET_RUNNING;
1063 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1064 LOG_DEBUG("target resumed at 0x%" PRIu64, addr);
1065 } else {
1066 target->state = TARGET_DEBUG_RUNNING;
1067 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1068 LOG_DEBUG("target debug resumed at 0x%" PRIu64, addr);
1071 return ERROR_OK;
1074 static int aarch64_debug_entry(struct target *target)
1076 uint32_t dscr;
1077 int retval = ERROR_OK;
1078 struct aarch64_common *aarch64 = target_to_aarch64(target);
1079 struct armv8_common *armv8 = target_to_armv8(target);
1080 uint32_t tmp;
1082 LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1084 /* REVISIT surely we should not re-read DSCR !! */
1085 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1086 armv8->debug_base + CPUDBG_DSCR, &dscr);
1087 if (retval != ERROR_OK)
1088 return retval;
1090 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1091 * imprecise data aborts get discarded by issuing a Data
1092 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1095 /* Enable the ITR execution once we are in debug mode */
1096 dscr |= DSCR_ITR_EN;
1097 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1098 armv8->debug_base + CPUDBG_DSCR, dscr);
1099 if (retval != ERROR_OK)
1100 return retval;
1102 /* Examine debug reason */
1103 arm_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1104 mem_ap_read_atomic_u32(armv8->debug_ap,
1105 armv8->debug_base + CPUDBG_DESR, &tmp);
1106 if ((tmp & 0x7) == 0x4)
1107 target->debug_reason = DBG_REASON_SINGLESTEP;
1109 /* save address of instruction that triggered the watchpoint? */
1110 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1111 uint32_t wfar;
1113 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1114 armv8->debug_base + CPUDBG_WFAR,
1115 &wfar);
1116 if (retval != ERROR_OK)
1117 return retval;
1118 arm_dpm_report_wfar(&armv8->dpm, wfar);
1121 retval = armv8_dpm_read_current_registers(&armv8->dpm);
1123 if (armv8->post_debug_entry) {
1124 retval = armv8->post_debug_entry(target);
1125 if (retval != ERROR_OK)
1126 return retval;
1129 return retval;
1132 static int aarch64_post_debug_entry(struct target *target)
1134 struct aarch64_common *aarch64 = target_to_aarch64(target);
1135 struct armv8_common *armv8 = &aarch64->armv8_common;
1136 struct armv8_mmu_common *armv8_mmu = &armv8->armv8_mmu;
1137 uint32_t sctlr_el1 = 0;
1138 int retval;
1140 mem_ap_write_atomic_u32(armv8->debug_ap,
1141 armv8->debug_base + CPUDBG_DRCR, 1<<2);
1142 retval = aarch64_instr_read_data_r0(armv8->arm.dpm,
1143 0xd5381000, &sctlr_el1);
1144 if (retval != ERROR_OK)
1145 return retval;
1147 LOG_DEBUG("sctlr_el1 = %#8.8x", sctlr_el1);
1148 aarch64->system_control_reg = sctlr_el1;
1149 aarch64->system_control_reg_curr = sctlr_el1;
1150 aarch64->curr_mode = armv8->arm.core_mode;
1152 armv8_mmu->mmu_enabled = sctlr_el1 & 0x1U ? 1 : 0;
1153 armv8_mmu->armv8_cache.d_u_cache_enabled = sctlr_el1 & 0x4U ? 1 : 0;
1154 armv8_mmu->armv8_cache.i_cache_enabled = sctlr_el1 & 0x1000U ? 1 : 0;
1156 #if 0
1157 if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1158 armv8_identify_cache(target);
1159 #endif
1161 return ERROR_OK;
1164 static int aarch64_step(struct target *target, int current, target_addr_t address,
1165 int handle_breakpoints)
1167 struct armv8_common *armv8 = target_to_armv8(target);
1168 int retval;
1169 uint32_t tmp;
1171 if (target->state != TARGET_HALTED) {
1172 LOG_WARNING("target not halted");
1173 return ERROR_TARGET_NOT_HALTED;
1176 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1177 armv8->debug_base + CPUDBG_DECR, &tmp);
1178 if (retval != ERROR_OK)
1179 return retval;
1181 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1182 armv8->debug_base + CPUDBG_DECR, (tmp|0x4));
1183 if (retval != ERROR_OK)
1184 return retval;
1186 target->debug_reason = DBG_REASON_SINGLESTEP;
1187 retval = aarch64_resume(target, 1, address, 0, 0);
1188 if (retval != ERROR_OK)
1189 return retval;
1191 long long then = timeval_ms();
1192 while (target->state != TARGET_HALTED) {
1193 mem_ap_read_atomic_u32(armv8->debug_ap,
1194 armv8->debug_base + CPUDBG_DESR, &tmp);
1195 LOG_DEBUG("DESR = %#x", tmp);
1196 retval = aarch64_poll(target);
1197 if (retval != ERROR_OK)
1198 return retval;
1199 if (timeval_ms() > then + 1000) {
1200 LOG_ERROR("timeout waiting for target halt");
1201 return ERROR_FAIL;
1205 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1206 armv8->debug_base + CPUDBG_DECR, (tmp&(~0x4)));
1207 if (retval != ERROR_OK)
1208 return retval;
1210 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1211 if (target->state == TARGET_HALTED)
1212 LOG_DEBUG("target stepped");
1214 return ERROR_OK;
1217 static int aarch64_restore_context(struct target *target, bool bpwp)
1219 struct armv8_common *armv8 = target_to_armv8(target);
1221 LOG_DEBUG(" ");
1223 if (armv8->pre_restore_context)
1224 armv8->pre_restore_context(target);
1226 return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1231 * Cortex-A8 Breakpoint and watchpoint functions
1234 /* Setup hardware Breakpoint Register Pair */
1235 static int aarch64_set_breakpoint(struct target *target,
1236 struct breakpoint *breakpoint, uint8_t matchmode)
1238 int retval;
1239 int brp_i = 0;
1240 uint32_t control;
1241 uint8_t byte_addr_select = 0x0F;
1242 struct aarch64_common *aarch64 = target_to_aarch64(target);
1243 struct armv8_common *armv8 = &aarch64->armv8_common;
1244 struct aarch64_brp *brp_list = aarch64->brp_list;
1245 uint32_t dscr;
1247 if (breakpoint->set) {
1248 LOG_WARNING("breakpoint already set");
1249 return ERROR_OK;
1252 if (breakpoint->type == BKPT_HARD) {
1253 int64_t bpt_value;
1254 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1255 brp_i++;
1256 if (brp_i >= aarch64->brp_num) {
1257 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1258 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1260 breakpoint->set = brp_i + 1;
1261 if (breakpoint->length == 2)
1262 byte_addr_select = (3 << (breakpoint->address & 0x02));
1263 control = ((matchmode & 0x7) << 20)
1264 | (1 << 13)
1265 | (byte_addr_select << 5)
1266 | (3 << 1) | 1;
1267 brp_list[brp_i].used = 1;
1268 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1269 brp_list[brp_i].control = control;
1270 bpt_value = brp_list[brp_i].value;
1272 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1273 + CPUDBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1274 (uint32_t)(bpt_value & 0xFFFFFFFF));
1275 if (retval != ERROR_OK)
1276 return retval;
1277 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1278 + CPUDBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1279 (uint32_t)(bpt_value >> 32));
1280 if (retval != ERROR_OK)
1281 return retval;
1283 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1284 + CPUDBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1285 brp_list[brp_i].control);
1286 if (retval != ERROR_OK)
1287 return retval;
1288 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1289 brp_list[brp_i].control,
1290 brp_list[brp_i].value);
1292 } else if (breakpoint->type == BKPT_SOFT) {
1293 uint8_t code[4];
1294 buf_set_u32(code, 0, 32, 0xD4400000);
1296 retval = target_read_memory(target,
1297 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1298 breakpoint->length, 1,
1299 breakpoint->orig_instr);
1300 if (retval != ERROR_OK)
1301 return retval;
1302 retval = target_write_memory(target,
1303 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1304 breakpoint->length, 1, code);
1305 if (retval != ERROR_OK)
1306 return retval;
1307 breakpoint->set = 0x11; /* Any nice value but 0 */
1310 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1311 armv8->debug_base + CPUDBG_DSCR, &dscr);
1312 /* Ensure that halting debug mode is enable */
1313 dscr = dscr | DSCR_HALT_DBG_MODE;
1314 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1315 armv8->debug_base + CPUDBG_DSCR, dscr);
1316 if (retval != ERROR_OK) {
1317 LOG_DEBUG("Failed to set DSCR.HDE");
1318 return retval;
1321 return ERROR_OK;
1324 static int aarch64_set_context_breakpoint(struct target *target,
1325 struct breakpoint *breakpoint, uint8_t matchmode)
1327 int retval = ERROR_FAIL;
1328 int brp_i = 0;
1329 uint32_t control;
1330 uint8_t byte_addr_select = 0x0F;
1331 struct aarch64_common *aarch64 = target_to_aarch64(target);
1332 struct armv8_common *armv8 = &aarch64->armv8_common;
1333 struct aarch64_brp *brp_list = aarch64->brp_list;
1335 if (breakpoint->set) {
1336 LOG_WARNING("breakpoint already set");
1337 return retval;
1339 /*check available context BRPs*/
1340 while ((brp_list[brp_i].used ||
1341 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1342 brp_i++;
1344 if (brp_i >= aarch64->brp_num) {
1345 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1346 return ERROR_FAIL;
1349 breakpoint->set = brp_i + 1;
1350 control = ((matchmode & 0x7) << 20)
1351 | (byte_addr_select << 5)
1352 | (3 << 1) | 1;
1353 brp_list[brp_i].used = 1;
1354 brp_list[brp_i].value = (breakpoint->asid);
1355 brp_list[brp_i].control = control;
1356 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1357 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1358 brp_list[brp_i].value);
1359 if (retval != ERROR_OK)
1360 return retval;
1361 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1362 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1363 brp_list[brp_i].control);
1364 if (retval != ERROR_OK)
1365 return retval;
1366 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1367 brp_list[brp_i].control,
1368 brp_list[brp_i].value);
1369 return ERROR_OK;
1373 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1375 int retval = ERROR_FAIL;
1376 int brp_1 = 0; /* holds the contextID pair */
1377 int brp_2 = 0; /* holds the IVA pair */
1378 uint32_t control_CTX, control_IVA;
1379 uint8_t CTX_byte_addr_select = 0x0F;
1380 uint8_t IVA_byte_addr_select = 0x0F;
1381 uint8_t CTX_machmode = 0x03;
1382 uint8_t IVA_machmode = 0x01;
1383 struct aarch64_common *aarch64 = target_to_aarch64(target);
1384 struct armv8_common *armv8 = &aarch64->armv8_common;
1385 struct aarch64_brp *brp_list = aarch64->brp_list;
1387 if (breakpoint->set) {
1388 LOG_WARNING("breakpoint already set");
1389 return retval;
1391 /*check available context BRPs*/
1392 while ((brp_list[brp_1].used ||
1393 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1394 brp_1++;
1396 printf("brp(CTX) found num: %d\n", brp_1);
1397 if (brp_1 >= aarch64->brp_num) {
1398 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1399 return ERROR_FAIL;
1402 while ((brp_list[brp_2].used ||
1403 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1404 brp_2++;
1406 printf("brp(IVA) found num: %d\n", brp_2);
1407 if (brp_2 >= aarch64->brp_num) {
1408 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1409 return ERROR_FAIL;
1412 breakpoint->set = brp_1 + 1;
1413 breakpoint->linked_BRP = brp_2;
1414 control_CTX = ((CTX_machmode & 0x7) << 20)
1415 | (brp_2 << 16)
1416 | (0 << 14)
1417 | (CTX_byte_addr_select << 5)
1418 | (3 << 1) | 1;
1419 brp_list[brp_1].used = 1;
1420 brp_list[brp_1].value = (breakpoint->asid);
1421 brp_list[brp_1].control = control_CTX;
1422 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1423 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1424 brp_list[brp_1].value);
1425 if (retval != ERROR_OK)
1426 return retval;
1427 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1428 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1429 brp_list[brp_1].control);
1430 if (retval != ERROR_OK)
1431 return retval;
1433 control_IVA = ((IVA_machmode & 0x7) << 20)
1434 | (brp_1 << 16)
1435 | (IVA_byte_addr_select << 5)
1436 | (3 << 1) | 1;
1437 brp_list[brp_2].used = 1;
1438 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1439 brp_list[brp_2].control = control_IVA;
1440 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1441 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1442 brp_list[brp_2].value);
1443 if (retval != ERROR_OK)
1444 return retval;
1445 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1446 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1447 brp_list[brp_2].control);
1448 if (retval != ERROR_OK)
1449 return retval;
1451 return ERROR_OK;
1454 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1456 int retval;
1457 struct aarch64_common *aarch64 = target_to_aarch64(target);
1458 struct armv8_common *armv8 = &aarch64->armv8_common;
1459 struct aarch64_brp *brp_list = aarch64->brp_list;
1461 if (!breakpoint->set) {
1462 LOG_WARNING("breakpoint not set");
1463 return ERROR_OK;
1466 if (breakpoint->type == BKPT_HARD) {
1467 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1468 int brp_i = breakpoint->set - 1;
1469 int brp_j = breakpoint->linked_BRP;
1470 if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1471 LOG_DEBUG("Invalid BRP number in breakpoint");
1472 return ERROR_OK;
1474 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1475 brp_list[brp_i].control, brp_list[brp_i].value);
1476 brp_list[brp_i].used = 0;
1477 brp_list[brp_i].value = 0;
1478 brp_list[brp_i].control = 0;
1479 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1480 + CPUDBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1481 brp_list[brp_i].control);
1482 if (retval != ERROR_OK)
1483 return retval;
1484 if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1485 LOG_DEBUG("Invalid BRP number in breakpoint");
1486 return ERROR_OK;
1488 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1489 brp_list[brp_j].control, brp_list[brp_j].value);
1490 brp_list[brp_j].used = 0;
1491 brp_list[brp_j].value = 0;
1492 brp_list[brp_j].control = 0;
1493 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1494 + CPUDBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1495 brp_list[brp_j].control);
1496 if (retval != ERROR_OK)
1497 return retval;
1498 breakpoint->linked_BRP = 0;
1499 breakpoint->set = 0;
1500 return ERROR_OK;
1502 } else {
1503 int brp_i = breakpoint->set - 1;
1504 if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1505 LOG_DEBUG("Invalid BRP number in breakpoint");
1506 return ERROR_OK;
1508 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1509 brp_list[brp_i].control, brp_list[brp_i].value);
1510 brp_list[brp_i].used = 0;
1511 brp_list[brp_i].value = 0;
1512 brp_list[brp_i].control = 0;
1513 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1514 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1515 brp_list[brp_i].control);
1516 if (retval != ERROR_OK)
1517 return retval;
1518 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1519 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1520 brp_list[brp_i].value);
1521 if (retval != ERROR_OK)
1522 return retval;
1523 breakpoint->set = 0;
1524 return ERROR_OK;
1526 } else {
1527 /* restore original instruction (kept in target endianness) */
1528 if (breakpoint->length == 4) {
1529 retval = target_write_memory(target,
1530 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1531 4, 1, breakpoint->orig_instr);
1532 if (retval != ERROR_OK)
1533 return retval;
1534 } else {
1535 retval = target_write_memory(target,
1536 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1537 2, 1, breakpoint->orig_instr);
1538 if (retval != ERROR_OK)
1539 return retval;
1542 breakpoint->set = 0;
1544 return ERROR_OK;
1547 static int aarch64_add_breakpoint(struct target *target,
1548 struct breakpoint *breakpoint)
1550 struct aarch64_common *aarch64 = target_to_aarch64(target);
1552 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1553 LOG_INFO("no hardware breakpoint available");
1554 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1557 if (breakpoint->type == BKPT_HARD)
1558 aarch64->brp_num_available--;
1560 return aarch64_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1563 static int aarch64_add_context_breakpoint(struct target *target,
1564 struct breakpoint *breakpoint)
1566 struct aarch64_common *aarch64 = target_to_aarch64(target);
1568 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1569 LOG_INFO("no hardware breakpoint available");
1570 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1573 if (breakpoint->type == BKPT_HARD)
1574 aarch64->brp_num_available--;
1576 return aarch64_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1579 static int aarch64_add_hybrid_breakpoint(struct target *target,
1580 struct breakpoint *breakpoint)
1582 struct aarch64_common *aarch64 = target_to_aarch64(target);
1584 if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1585 LOG_INFO("no hardware breakpoint available");
1586 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1589 if (breakpoint->type == BKPT_HARD)
1590 aarch64->brp_num_available--;
1592 return aarch64_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1596 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1598 struct aarch64_common *aarch64 = target_to_aarch64(target);
1600 #if 0
1601 /* It is perfectly possible to remove breakpoints while the target is running */
1602 if (target->state != TARGET_HALTED) {
1603 LOG_WARNING("target not halted");
1604 return ERROR_TARGET_NOT_HALTED;
1606 #endif
1608 if (breakpoint->set) {
1609 aarch64_unset_breakpoint(target, breakpoint);
1610 if (breakpoint->type == BKPT_HARD)
1611 aarch64->brp_num_available++;
1614 return ERROR_OK;
1618 * Cortex-A8 Reset functions
1621 static int aarch64_assert_reset(struct target *target)
1623 struct armv8_common *armv8 = target_to_armv8(target);
1625 LOG_DEBUG(" ");
1627 /* FIXME when halt is requested, make it work somehow... */
1629 /* Issue some kind of warm reset. */
1630 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1631 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1632 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1633 /* REVISIT handle "pulls" cases, if there's
1634 * hardware that needs them to work.
1636 jtag_add_reset(0, 1);
1637 } else {
1638 LOG_ERROR("%s: how to reset?", target_name(target));
1639 return ERROR_FAIL;
1642 /* registers are now invalid */
1643 register_cache_invalidate(armv8->arm.core_cache);
1645 target->state = TARGET_RESET;
1647 return ERROR_OK;
1650 static int aarch64_deassert_reset(struct target *target)
1652 int retval;
1654 LOG_DEBUG(" ");
1656 /* be certain SRST is off */
1657 jtag_add_reset(0, 0);
1659 retval = aarch64_poll(target);
1660 if (retval != ERROR_OK)
1661 return retval;
1663 if (target->reset_halt) {
1664 if (target->state != TARGET_HALTED) {
1665 LOG_WARNING("%s: ran after reset and before halt ...",
1666 target_name(target));
1667 retval = target_halt(target);
1668 if (retval != ERROR_OK)
1669 return retval;
1673 return ERROR_OK;
1676 static int aarch64_write_apb_ap_memory(struct target *target,
1677 uint64_t address, uint32_t size,
1678 uint32_t count, const uint8_t *buffer)
1680 /* write memory through APB-AP */
1681 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1682 struct armv8_common *armv8 = target_to_armv8(target);
1683 struct arm *arm = &armv8->arm;
1684 int total_bytes = count * size;
1685 int total_u32;
1686 int start_byte = address & 0x3;
1687 int end_byte = (address + total_bytes) & 0x3;
1688 struct reg *reg;
1689 uint32_t dscr;
1690 uint8_t *tmp_buff = NULL;
1692 LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %" PRIu32 " count%" PRIu32,
1693 address, size, count);
1694 if (target->state != TARGET_HALTED) {
1695 LOG_WARNING("target not halted");
1696 return ERROR_TARGET_NOT_HALTED;
1699 total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1701 /* Mark register R0 as dirty, as it will be used
1702 * for transferring the data.
1703 * It will be restored automatically when exiting
1704 * debug mode
1706 reg = armv8_reg_current(arm, 1);
1707 reg->dirty = true;
1709 reg = armv8_reg_current(arm, 0);
1710 reg->dirty = true;
1712 /* clear any abort */
1713 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1714 armv8->debug_base + CPUDBG_DRCR, DRCR_CSE);
1715 if (retval != ERROR_OK)
1716 return retval;
1719 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1721 /* The algorithm only copies 32 bit words, so the buffer
1722 * should be expanded to include the words at either end.
1723 * The first and last words will be read first to avoid
1724 * corruption if needed.
1726 tmp_buff = malloc(total_u32 * 4);
1728 if ((start_byte != 0) && (total_u32 > 1)) {
1729 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1730 * the other bytes in the word.
1732 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1733 if (retval != ERROR_OK)
1734 goto error_free_buff_w;
1737 /* If end of write is not aligned, or the write is less than 4 bytes */
1738 if ((end_byte != 0) ||
1739 ((total_u32 == 1) && (total_bytes != 4))) {
1741 /* Read the last word to avoid corruption during 32 bit write */
1742 int mem_offset = (total_u32-1) * 4;
1743 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1744 if (retval != ERROR_OK)
1745 goto error_free_buff_w;
1748 /* Copy the write buffer over the top of the temporary buffer */
1749 memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1751 /* We now have a 32 bit aligned buffer that can be written */
1753 /* Read DSCR */
1754 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1755 armv8->debug_base + CPUDBG_DSCR, &dscr);
1756 if (retval != ERROR_OK)
1757 goto error_free_buff_w;
1759 /* Set Normal access mode */
1760 dscr = (dscr & ~DSCR_MA);
1761 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1762 armv8->debug_base + CPUDBG_DSCR, dscr);
1764 if (arm->core_state == ARM_STATE_AARCH64) {
1765 /* Write X0 with value 'address' using write procedure */
1766 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1767 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1768 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1769 retval += aarch64_exec_opcode(target,
1770 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1771 } else {
1772 /* Write R0 with value 'address' using write procedure */
1773 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1774 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1775 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1776 retval += aarch64_exec_opcode(target,
1777 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1780 /* Step 1.d - Change DCC to memory mode */
1781 dscr = dscr | DSCR_MA;
1782 retval += mem_ap_write_atomic_u32(armv8->debug_ap,
1783 armv8->debug_base + CPUDBG_DSCR, dscr);
1784 if (retval != ERROR_OK)
1785 goto error_unset_dtr_w;
1788 /* Step 2.a - Do the write */
1789 retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1790 tmp_buff, 4, total_u32, armv8->debug_base + CPUDBG_DTRRX);
1791 if (retval != ERROR_OK)
1792 goto error_unset_dtr_w;
1794 /* Step 3.a - Switch DTR mode back to Normal mode */
1795 dscr = (dscr & ~DSCR_MA);
1796 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1797 armv8->debug_base + CPUDBG_DSCR, dscr);
1798 if (retval != ERROR_OK)
1799 goto error_unset_dtr_w;
1801 /* Check for sticky abort flags in the DSCR */
1802 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1803 armv8->debug_base + CPUDBG_DSCR, &dscr);
1804 if (retval != ERROR_OK)
1805 goto error_free_buff_w;
1806 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1807 /* Abort occurred - clear it and exit */
1808 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1809 mem_ap_write_atomic_u32(armv8->debug_ap,
1810 armv8->debug_base + CPUDBG_DRCR, 1<<2);
1811 goto error_free_buff_w;
1814 /* Done */
1815 free(tmp_buff);
1816 return ERROR_OK;
1818 error_unset_dtr_w:
1819 /* Unset DTR mode */
1820 mem_ap_read_atomic_u32(armv8->debug_ap,
1821 armv8->debug_base + CPUDBG_DSCR, &dscr);
1822 dscr = (dscr & ~DSCR_MA);
1823 mem_ap_write_atomic_u32(armv8->debug_ap,
1824 armv8->debug_base + CPUDBG_DSCR, dscr);
1825 error_free_buff_w:
1826 LOG_ERROR("error");
1827 free(tmp_buff);
1828 return ERROR_FAIL;
1831 static int aarch64_read_apb_ap_memory(struct target *target,
1832 target_addr_t address, uint32_t size,
1833 uint32_t count, uint8_t *buffer)
1835 /* read memory through APB-AP */
1836 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1837 struct armv8_common *armv8 = target_to_armv8(target);
1838 struct arm *arm = &armv8->arm;
1839 int total_bytes = count * size;
1840 int total_u32;
1841 int start_byte = address & 0x3;
1842 int end_byte = (address + total_bytes) & 0x3;
1843 struct reg *reg;
1844 uint32_t dscr;
1845 uint8_t *tmp_buff = NULL;
1846 uint8_t *u8buf_ptr;
1847 uint32_t value;
1849 LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%" PRIu32,
1850 address, size, count);
1851 if (target->state != TARGET_HALTED) {
1852 LOG_WARNING("target not halted");
1853 return ERROR_TARGET_NOT_HALTED;
1856 total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1857 /* Mark register X0, X1 as dirty, as it will be used
1858 * for transferring the data.
1859 * It will be restored automatically when exiting
1860 * debug mode
1862 reg = armv8_reg_current(arm, 1);
1863 reg->dirty = true;
1865 reg = armv8_reg_current(arm, 0);
1866 reg->dirty = true;
1868 /* clear any abort */
1869 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1870 armv8->debug_base + CPUDBG_DRCR, DRCR_CSE);
1871 if (retval != ERROR_OK)
1872 goto error_free_buff_r;
1874 /* Read DSCR */
1875 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1876 armv8->debug_base + CPUDBG_DSCR, &dscr);
1878 /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1880 /* Set Normal access mode */
1881 dscr = (dscr & ~DSCR_MA);
1882 retval += mem_ap_write_atomic_u32(armv8->debug_ap,
1883 armv8->debug_base + CPUDBG_DSCR, dscr);
1885 if (arm->core_state == ARM_STATE_AARCH64) {
1886 /* Write X0 with value 'address' using write procedure */
1887 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1888 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1889 /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1890 retval += aarch64_exec_opcode(target, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1891 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1892 retval += aarch64_exec_opcode(target, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1893 /* Step 1.e - Change DCC to memory mode */
1894 dscr = dscr | DSCR_MA;
1895 retval += mem_ap_write_atomic_u32(armv8->debug_ap,
1896 armv8->debug_base + CPUDBG_DSCR, dscr);
1897 /* Step 1.f - read DBGDTRTX and discard the value */
1898 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1899 armv8->debug_base + CPUDBG_DTRTX, &value);
1900 } else {
1901 /* Write R0 with value 'address' using write procedure */
1902 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1903 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1904 /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1905 retval += aarch64_exec_opcode(target,
1906 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1907 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1908 retval += aarch64_exec_opcode(target,
1909 T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)), &dscr);
1910 /* Step 1.e - Change DCC to memory mode */
1911 dscr = dscr | DSCR_MA;
1912 retval += mem_ap_write_atomic_u32(armv8->debug_ap,
1913 armv8->debug_base + CPUDBG_DSCR, dscr);
1914 /* Step 1.f - read DBGDTRTX and discard the value */
1915 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1916 armv8->debug_base + CPUDBG_DTRTX, &value);
1919 if (retval != ERROR_OK)
1920 goto error_unset_dtr_r;
1922 /* Optimize the read as much as we can, either way we read in a single pass */
1923 if ((start_byte) || (end_byte)) {
1924 /* The algorithm only copies 32 bit words, so the buffer
1925 * should be expanded to include the words at either end.
1926 * The first and last words will be read into a temp buffer
1927 * to avoid corruption
1929 tmp_buff = malloc(total_u32 * 4);
1930 if (!tmp_buff)
1931 goto error_unset_dtr_r;
1933 /* use the tmp buffer to read the entire data */
1934 u8buf_ptr = tmp_buff;
1935 } else
1936 /* address and read length are aligned so read directly into the passed buffer */
1937 u8buf_ptr = buffer;
1939 /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1940 * Abort flags are sticky, so can be read at end of transactions
1942 * This data is read in aligned to 32 bit boundary.
1945 /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1946 * increments X0 by 4. */
1947 retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1948 armv8->debug_base + CPUDBG_DTRTX);
1949 if (retval != ERROR_OK)
1950 goto error_unset_dtr_r;
1952 /* Step 3.a - set DTR access mode back to Normal mode */
1953 dscr = (dscr & ~DSCR_MA);
1954 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1955 armv8->debug_base + CPUDBG_DSCR, dscr);
1956 if (retval != ERROR_OK)
1957 goto error_free_buff_r;
1959 /* Step 3.b - read DBGDTRTX for the final value */
1960 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1961 armv8->debug_base + CPUDBG_DTRTX, &value);
1962 memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1964 /* Check for sticky abort flags in the DSCR */
1965 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1966 armv8->debug_base + CPUDBG_DSCR, &dscr);
1967 if (retval != ERROR_OK)
1968 goto error_free_buff_r;
1969 if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1970 /* Abort occurred - clear it and exit */
1971 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1972 mem_ap_write_atomic_u32(armv8->debug_ap,
1973 armv8->debug_base + CPUDBG_DRCR, DRCR_CSE);
1974 goto error_free_buff_r;
1977 /* check if we need to copy aligned data by applying any shift necessary */
1978 if (tmp_buff) {
1979 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1980 free(tmp_buff);
1983 /* Done */
1984 return ERROR_OK;
1986 error_unset_dtr_r:
1987 /* Unset DTR mode */
1988 mem_ap_read_atomic_u32(armv8->debug_ap,
1989 armv8->debug_base + CPUDBG_DSCR, &dscr);
1990 dscr = (dscr & ~DSCR_MA);
1991 mem_ap_write_atomic_u32(armv8->debug_ap,
1992 armv8->debug_base + CPUDBG_DSCR, dscr);
1993 error_free_buff_r:
1994 LOG_ERROR("error");
1995 free(tmp_buff);
1996 return ERROR_FAIL;
1999 static int aarch64_read_phys_memory(struct target *target,
2000 target_addr_t address, uint32_t size,
2001 uint32_t count, uint8_t *buffer)
2003 struct armv8_common *armv8 = target_to_armv8(target);
2004 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2005 struct adiv5_dap *swjdp = armv8->arm.dap;
2006 uint8_t apsel = swjdp->apsel;
2007 LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
2008 address, size, count);
2010 if (count && buffer) {
2012 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2014 /* read memory through AHB-AP */
2015 retval = mem_ap_read_buf(armv8->memory_ap, buffer, size, count, address);
2016 } else {
2017 /* read memory through APB-AP */
2018 retval = aarch64_mmu_modify(target, 0);
2019 if (retval != ERROR_OK)
2020 return retval;
2021 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2024 return retval;
2027 static int aarch64_read_memory(struct target *target, target_addr_t address,
2028 uint32_t size, uint32_t count, uint8_t *buffer)
2030 int mmu_enabled = 0;
2031 target_addr_t virt, phys;
2032 int retval;
2033 struct armv8_common *armv8 = target_to_armv8(target);
2034 struct adiv5_dap *swjdp = armv8->arm.dap;
2035 uint8_t apsel = swjdp->apsel;
2037 /* aarch64 handles unaligned memory access */
2038 LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2039 size, count);
2041 /* determine if MMU was enabled on target stop */
2042 if (!armv8->is_armv7r) {
2043 retval = aarch64_mmu(target, &mmu_enabled);
2044 if (retval != ERROR_OK)
2045 return retval;
2048 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2049 if (mmu_enabled) {
2050 virt = address;
2051 retval = aarch64_virt2phys(target, virt, &phys);
2052 if (retval != ERROR_OK)
2053 return retval;
2055 LOG_DEBUG("Reading at virtual address. Translating v:0x%" TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR,
2056 virt, phys);
2057 address = phys;
2059 retval = aarch64_read_phys_memory(target, address, size, count,
2060 buffer);
2061 } else {
2062 if (mmu_enabled) {
2063 retval = aarch64_check_address(target, address);
2064 if (retval != ERROR_OK)
2065 return retval;
2066 /* enable MMU as we could have disabled it for phys
2067 access */
2068 retval = aarch64_mmu_modify(target, 1);
2069 if (retval != ERROR_OK)
2070 return retval;
2072 retval = aarch64_read_apb_ap_memory(target, address, size,
2073 count, buffer);
2075 return retval;
2078 static int aarch64_write_phys_memory(struct target *target,
2079 target_addr_t address, uint32_t size,
2080 uint32_t count, const uint8_t *buffer)
2082 struct armv8_common *armv8 = target_to_armv8(target);
2083 struct adiv5_dap *swjdp = armv8->arm.dap;
2084 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2085 uint8_t apsel = swjdp->apsel;
2087 LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2088 size, count);
2090 if (count && buffer) {
2092 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2094 /* write memory through AHB-AP */
2095 retval = mem_ap_write_buf(armv8->memory_ap, buffer, size, count, address);
2096 } else {
2098 /* write memory through APB-AP */
2099 if (!armv8->is_armv7r) {
2100 retval = aarch64_mmu_modify(target, 0);
2101 if (retval != ERROR_OK)
2102 return retval;
2104 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2109 /* REVISIT this op is generic ARMv7-A/R stuff */
2110 if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2111 struct arm_dpm *dpm = armv8->arm.dpm;
2113 retval = dpm->prepare(dpm);
2114 if (retval != ERROR_OK)
2115 return retval;
2117 /* The Cache handling will NOT work with MMU active, the
2118 * wrong addresses will be invalidated!
2120 * For both ICache and DCache, walk all cache lines in the
2121 * address range. Cortex-A8 has fixed 64 byte line length.
2123 * REVISIT per ARMv7, these may trigger watchpoints ...
2126 /* invalidate I-Cache */
2127 if (armv8->armv8_mmu.armv8_cache.i_cache_enabled) {
2128 /* ICIMVAU - Invalidate Cache single entry
2129 * with MVA to PoU
2130 * MCR p15, 0, r0, c7, c5, 1
2132 for (uint32_t cacheline = address;
2133 cacheline < address + size * count;
2134 cacheline += 64) {
2135 retval = dpm->instr_write_data_r0(dpm,
2136 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2137 cacheline);
2138 if (retval != ERROR_OK)
2139 return retval;
2143 /* invalidate D-Cache */
2144 if (armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) {
2145 /* DCIMVAC - Invalidate data Cache line
2146 * with MVA to PoC
2147 * MCR p15, 0, r0, c7, c6, 1
2149 for (uint32_t cacheline = address;
2150 cacheline < address + size * count;
2151 cacheline += 64) {
2152 retval = dpm->instr_write_data_r0(dpm,
2153 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2154 cacheline);
2155 if (retval != ERROR_OK)
2156 return retval;
2160 /* (void) */ dpm->finish(dpm);
2163 return retval;
2166 static int aarch64_write_memory(struct target *target, target_addr_t address,
2167 uint32_t size, uint32_t count, const uint8_t *buffer)
2169 int mmu_enabled = 0;
2170 target_addr_t virt, phys;
2171 int retval;
2172 struct armv8_common *armv8 = target_to_armv8(target);
2173 struct adiv5_dap *swjdp = armv8->arm.dap;
2174 uint8_t apsel = swjdp->apsel;
2176 /* aarch64 handles unaligned memory access */
2177 LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2178 "; count %" PRId32, address, size, count);
2180 /* determine if MMU was enabled on target stop */
2181 if (!armv8->is_armv7r) {
2182 retval = aarch64_mmu(target, &mmu_enabled);
2183 if (retval != ERROR_OK)
2184 return retval;
2187 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2188 LOG_DEBUG("Writing memory to address 0x%" TARGET_PRIxADDR "; size %"
2189 PRId32 "; count %" PRId32, address, size, count);
2190 if (mmu_enabled) {
2191 virt = address;
2192 retval = aarch64_virt2phys(target, virt, &phys);
2193 if (retval != ERROR_OK)
2194 return retval;
2196 LOG_DEBUG("Writing to virtual address. Translating v:0x%"
2197 TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR, virt, phys);
2198 address = phys;
2200 retval = aarch64_write_phys_memory(target, address, size,
2201 count, buffer);
2202 } else {
2203 if (mmu_enabled) {
2204 retval = aarch64_check_address(target, address);
2205 if (retval != ERROR_OK)
2206 return retval;
2207 /* enable MMU as we could have disabled it for phys access */
2208 retval = aarch64_mmu_modify(target, 1);
2209 if (retval != ERROR_OK)
2210 return retval;
2212 retval = aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2214 return retval;
2217 static int aarch64_handle_target_request(void *priv)
2219 struct target *target = priv;
2220 struct armv8_common *armv8 = target_to_armv8(target);
2221 int retval;
2223 if (!target_was_examined(target))
2224 return ERROR_OK;
2225 if (!target->dbg_msg_enabled)
2226 return ERROR_OK;
2228 if (target->state == TARGET_RUNNING) {
2229 uint32_t request;
2230 uint32_t dscr;
2231 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2232 armv8->debug_base + CPUDBG_DSCR, &dscr);
2234 /* check if we have data */
2235 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2236 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2237 armv8->debug_base + CPUDBG_DTRTX, &request);
2238 if (retval == ERROR_OK) {
2239 target_request(target, request);
2240 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2241 armv8->debug_base + CPUDBG_DSCR, &dscr);
2246 return ERROR_OK;
2249 static int aarch64_examine_first(struct target *target)
2251 struct aarch64_common *aarch64 = target_to_aarch64(target);
2252 struct armv8_common *armv8 = &aarch64->armv8_common;
2253 struct adiv5_dap *swjdp = armv8->arm.dap;
2254 int retval = ERROR_OK;
2255 uint32_t pfr, debug, ctypr, ttypr, cpuid;
2256 int i;
2258 /* We do one extra read to ensure DAP is configured,
2259 * we call ahbap_debugport_init(swjdp) instead
2261 retval = dap_dp_init(swjdp);
2262 if (retval != ERROR_OK)
2263 return retval;
2265 /* Search for the APB-AB - it is needed for access to debug registers */
2266 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2267 if (retval != ERROR_OK) {
2268 LOG_ERROR("Could not find APB-AP for debug access");
2269 return retval;
2272 retval = mem_ap_init(armv8->debug_ap);
2273 if (retval != ERROR_OK) {
2274 LOG_ERROR("Could not initialize the APB-AP");
2275 return retval;
2278 armv8->debug_ap->memaccess_tck = 80;
2280 /* Search for the AHB-AB */
2281 armv8->memory_ap_available = false;
2282 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv8->memory_ap);
2283 if (retval == ERROR_OK) {
2284 retval = mem_ap_init(armv8->memory_ap);
2285 if (retval == ERROR_OK)
2286 armv8->memory_ap_available = true;
2288 if (retval != ERROR_OK) {
2289 /* AHB-AP not found or unavailable - use the CPU */
2290 LOG_DEBUG("No AHB-AP available for memory access");
2294 if (!target->dbgbase_set) {
2295 uint32_t dbgbase;
2296 /* Get ROM Table base */
2297 uint32_t apid;
2298 int32_t coreidx = target->coreid;
2299 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2300 if (retval != ERROR_OK)
2301 return retval;
2302 /* Lookup 0x15 -- Processor DAP */
2303 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2304 &armv8->debug_base, &coreidx);
2305 if (retval != ERROR_OK)
2306 return retval;
2307 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2308 coreidx, armv8->debug_base);
2309 } else
2310 armv8->debug_base = target->dbgbase;
2312 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2313 armv8->debug_base + 0x300, 0);
2314 if (retval != ERROR_OK) {
2315 LOG_DEBUG("Examine %s failed", "oslock");
2316 return retval;
2319 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2320 armv8->debug_base + 0x88, &cpuid);
2321 LOG_DEBUG("0x88 = %x", cpuid);
2323 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2324 armv8->debug_base + 0x314, &cpuid);
2325 LOG_DEBUG("0x314 = %x", cpuid);
2327 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2328 armv8->debug_base + 0x310, &cpuid);
2329 LOG_DEBUG("0x310 = %x", cpuid);
2330 if (retval != ERROR_OK)
2331 return retval;
2333 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2334 armv8->debug_base + CPUDBG_CPUID, &cpuid);
2335 if (retval != ERROR_OK) {
2336 LOG_DEBUG("Examine %s failed", "CPUID");
2337 return retval;
2340 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2341 armv8->debug_base + CPUDBG_CTYPR, &ctypr);
2342 if (retval != ERROR_OK) {
2343 LOG_DEBUG("Examine %s failed", "CTYPR");
2344 return retval;
2347 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2348 armv8->debug_base + CPUDBG_TTYPR, &ttypr);
2349 if (retval != ERROR_OK) {
2350 LOG_DEBUG("Examine %s failed", "TTYPR");
2351 return retval;
2354 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2355 armv8->debug_base + ID_AA64PFR0_EL1, &pfr);
2356 if (retval != ERROR_OK) {
2357 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2358 return retval;
2360 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2361 armv8->debug_base + ID_AA64DFR0_EL1, &debug);
2362 if (retval != ERROR_OK) {
2363 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2364 return retval;
2367 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2368 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2369 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2370 LOG_DEBUG("ID_AA64PFR0_EL1 = 0x%08" PRIx32, pfr);
2371 LOG_DEBUG("ID_AA64DFR0_EL1 = 0x%08" PRIx32, debug);
2373 armv8->arm.core_type = ARM_MODE_MON;
2374 armv8->arm.core_state = ARM_STATE_AARCH64;
2375 retval = aarch64_dpm_setup(aarch64, debug);
2376 if (retval != ERROR_OK)
2377 return retval;
2379 /* Setup Breakpoint Register Pairs */
2380 aarch64->brp_num = ((debug >> 12) & 0x0F) + 1;
2381 aarch64->brp_num_context = ((debug >> 28) & 0x0F) + 1;
2383 /* hack - no context bpt support yet */
2384 aarch64->brp_num_context = 0;
2386 aarch64->brp_num_available = aarch64->brp_num;
2387 aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2388 for (i = 0; i < aarch64->brp_num; i++) {
2389 aarch64->brp_list[i].used = 0;
2390 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2391 aarch64->brp_list[i].type = BRP_NORMAL;
2392 else
2393 aarch64->brp_list[i].type = BRP_CONTEXT;
2394 aarch64->brp_list[i].value = 0;
2395 aarch64->brp_list[i].control = 0;
2396 aarch64->brp_list[i].BRPn = i;
2399 LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2401 target_set_examined(target);
2402 return ERROR_OK;
2405 static int aarch64_examine(struct target *target)
2407 int retval = ERROR_OK;
2409 /* don't re-probe hardware after each reset */
2410 if (!target_was_examined(target))
2411 retval = aarch64_examine_first(target);
2413 /* Configure core debug access */
2414 if (retval == ERROR_OK)
2415 retval = aarch64_init_debug_access(target);
2417 return retval;
2421 * Cortex-A8 target creation and initialization
2424 static int aarch64_init_target(struct command_context *cmd_ctx,
2425 struct target *target)
2427 /* examine_first() does a bunch of this */
2428 return ERROR_OK;
2431 static int aarch64_init_arch_info(struct target *target,
2432 struct aarch64_common *aarch64, struct jtag_tap *tap)
2434 struct armv8_common *armv8 = &aarch64->armv8_common;
2435 struct adiv5_dap *dap = armv8->arm.dap;
2437 armv8->arm.dap = dap;
2439 /* Setup struct aarch64_common */
2440 aarch64->common_magic = AARCH64_COMMON_MAGIC;
2441 /* tap has no dap initialized */
2442 if (!tap->dap) {
2443 tap->dap = dap_init();
2445 /* Leave (only) generic DAP stuff for debugport_init() */
2446 tap->dap->tap = tap;
2449 armv8->arm.dap = tap->dap;
2451 aarch64->fast_reg_read = 0;
2453 /* register arch-specific functions */
2454 armv8->examine_debug_reason = NULL;
2456 armv8->post_debug_entry = aarch64_post_debug_entry;
2458 armv8->pre_restore_context = NULL;
2460 armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2462 /* REVISIT v7a setup should be in a v7a-specific routine */
2463 armv8_init_arch_info(target, armv8);
2464 target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2466 return ERROR_OK;
2469 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2471 struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2473 aarch64->armv8_common.is_armv7r = false;
2475 return aarch64_init_arch_info(target, aarch64, target->tap);
2478 static int aarch64_mmu(struct target *target, int *enabled)
2480 if (target->state != TARGET_HALTED) {
2481 LOG_ERROR("%s: target not halted", __func__);
2482 return ERROR_TARGET_INVALID;
2485 *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2486 return ERROR_OK;
2489 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2490 target_addr_t *phys)
2492 int retval = ERROR_FAIL;
2493 struct armv8_common *armv8 = target_to_armv8(target);
2494 struct adiv5_dap *swjdp = armv8->arm.dap;
2495 uint8_t apsel = swjdp->apsel;
2496 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2497 uint32_t ret;
2498 retval = armv8_mmu_translate_va(target,
2499 virt, &ret);
2500 if (retval != ERROR_OK)
2501 goto done;
2502 *phys = ret;
2503 } else {/* use this method if armv8->memory_ap not selected
2504 * mmu must be enable in order to get a correct translation */
2505 retval = aarch64_mmu_modify(target, 1);
2506 if (retval != ERROR_OK)
2507 goto done;
2508 retval = armv8_mmu_translate_va_pa(target, virt, phys, 1);
2510 done:
2511 return retval;
2514 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2516 struct target *target = get_current_target(CMD_CTX);
2517 struct armv8_common *armv8 = target_to_armv8(target);
2519 return armv8_handle_cache_info_command(CMD_CTX,
2520 &armv8->armv8_mmu.armv8_cache);
2524 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2526 struct target *target = get_current_target(CMD_CTX);
2527 if (!target_was_examined(target)) {
2528 LOG_ERROR("target not examined yet");
2529 return ERROR_FAIL;
2532 return aarch64_init_debug_access(target);
2534 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2536 struct target *target = get_current_target(CMD_CTX);
2537 /* check target is an smp target */
2538 struct target_list *head;
2539 struct target *curr;
2540 head = target->head;
2541 target->smp = 0;
2542 if (head != (struct target_list *)NULL) {
2543 while (head != (struct target_list *)NULL) {
2544 curr = head->target;
2545 curr->smp = 0;
2546 head = head->next;
2548 /* fixes the target display to the debugger */
2549 target->gdb_service->target = target;
2551 return ERROR_OK;
2554 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2556 struct target *target = get_current_target(CMD_CTX);
2557 struct target_list *head;
2558 struct target *curr;
2559 head = target->head;
2560 if (head != (struct target_list *)NULL) {
2561 target->smp = 1;
2562 while (head != (struct target_list *)NULL) {
2563 curr = head->target;
2564 curr->smp = 1;
2565 head = head->next;
2568 return ERROR_OK;
2571 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2573 struct target *target = get_current_target(CMD_CTX);
2574 int retval = ERROR_OK;
2575 struct target_list *head;
2576 head = target->head;
2577 if (head != (struct target_list *)NULL) {
2578 if (CMD_ARGC == 1) {
2579 int coreid = 0;
2580 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2581 if (ERROR_OK != retval)
2582 return retval;
2583 target->gdb_service->core[1] = coreid;
2586 command_print(CMD_CTX, "gdb coreid %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2587 , target->gdb_service->core[1]);
2589 return ERROR_OK;
2592 static const struct command_registration aarch64_exec_command_handlers[] = {
2594 .name = "cache_info",
2595 .handler = aarch64_handle_cache_info_command,
2596 .mode = COMMAND_EXEC,
2597 .help = "display information about target caches",
2598 .usage = "",
2601 .name = "dbginit",
2602 .handler = aarch64_handle_dbginit_command,
2603 .mode = COMMAND_EXEC,
2604 .help = "Initialize core debug",
2605 .usage = "",
2607 { .name = "smp_off",
2608 .handler = aarch64_handle_smp_off_command,
2609 .mode = COMMAND_EXEC,
2610 .help = "Stop smp handling",
2611 .usage = "",
2614 .name = "smp_on",
2615 .handler = aarch64_handle_smp_on_command,
2616 .mode = COMMAND_EXEC,
2617 .help = "Restart smp handling",
2618 .usage = "",
2621 .name = "smp_gdb",
2622 .handler = aarch64_handle_smp_gdb_command,
2623 .mode = COMMAND_EXEC,
2624 .help = "display/fix current core played to gdb",
2625 .usage = "",
2629 COMMAND_REGISTRATION_DONE
2631 static const struct command_registration aarch64_command_handlers[] = {
2633 .chain = arm_command_handlers,
2636 .chain = armv8_command_handlers,
2639 .name = "cortex_a",
2640 .mode = COMMAND_ANY,
2641 .help = "Cortex-A command group",
2642 .usage = "",
2643 .chain = aarch64_exec_command_handlers,
2645 COMMAND_REGISTRATION_DONE
2648 struct target_type aarch64_target = {
2649 .name = "aarch64",
2651 .poll = aarch64_poll,
2652 .arch_state = armv8_arch_state,
2654 .halt = aarch64_halt,
2655 .resume = aarch64_resume,
2656 .step = aarch64_step,
2658 .assert_reset = aarch64_assert_reset,
2659 .deassert_reset = aarch64_deassert_reset,
2661 /* REVISIT allow exporting VFP3 registers ... */
2662 .get_gdb_reg_list = armv8_get_gdb_reg_list,
2664 .read_memory = aarch64_read_memory,
2665 .write_memory = aarch64_write_memory,
2667 .checksum_memory = arm_checksum_memory,
2668 .blank_check_memory = arm_blank_check_memory,
2670 .run_algorithm = armv4_5_run_algorithm,
2672 .add_breakpoint = aarch64_add_breakpoint,
2673 .add_context_breakpoint = aarch64_add_context_breakpoint,
2674 .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2675 .remove_breakpoint = aarch64_remove_breakpoint,
2676 .add_watchpoint = NULL,
2677 .remove_watchpoint = NULL,
2679 .commands = aarch64_command_handlers,
2680 .target_create = aarch64_target_create,
2681 .init_target = aarch64_init_target,
2682 .examine = aarch64_examine,
2684 .read_phys_memory = aarch64_read_phys_memory,
2685 .write_phys_memory = aarch64_write_phys_memory,
2686 .mmu = aarch64_mmu,
2687 .virt2phys = aarch64_virt2phys,