ADIv5: remove ATOMIC/COMPOSITE interface mode
[openocd.git] / src / target / arm_adi_v5.c
blob819dd290fd83990c231adb769c4fb396dfbc659a
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 * Relevant specifications from ARM include:
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
72 #include "arm_adi_v5.h"
73 #include <helper/time_support.h>
76 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
79 uint32_t tar_block_size(uint32_t address)
80 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
87 /***************************************************************************
88 * *
89 * DPACC and APACC scanchain access through JTAG-DP *
90 * *
91 ***************************************************************************/
93 /**
94 * Scan DPACC or APACC using target ordered uint8_t buffers. No endianness
95 * conversions are performed. See section 4.4.3 of the ADIv5 spec, which
96 * discusses operations which access these registers.
98 * Note that only one scan is performed. If RnW is set, a separate scan
99 * will be needed to collect the data which was read; the "invalue" collects
100 * the posted result of a preceding operation, not the current one.
102 * @param swjdp the DAP
103 * @param instr JTAG_DP_APACC (AP access) or JTAG_DP_DPACC (DP access)
104 * @param reg_addr two significant bits; A[3:2]; for APACC access, the
105 * SELECT register has more addressing bits.
106 * @param RnW false iff outvalue will be written to the DP or AP
107 * @param outvalue points to a 32-bit (little-endian) integer
108 * @param invalue NULL, or points to a 32-bit (little-endian) integer
109 * @param ack points to where the three bit JTAG_ACK_* code will be stored
111 static int adi_jtag_dp_scan(struct swjdp_common *swjdp,
112 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
113 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack)
115 struct arm_jtag *jtag_info = swjdp->jtag_info;
116 struct scan_field fields[2];
117 uint8_t out_addr_buf;
119 jtag_set_end_state(TAP_IDLE);
120 arm_jtag_set_instr(jtag_info, instr, NULL);
122 /* Add specified number of tck clocks before accessing memory bus */
124 /* REVISIT these TCK cycles should be *AFTER* updating APACC, since
125 * they provide more time for the (MEM) AP to complete the read ...
126 * See "Minimum Response Time" for JTAG-DP, in the ADIv5 spec.
128 if ((instr == JTAG_DP_APACC)
129 && ((reg_addr == AP_REG_DRW)
130 || ((reg_addr & 0xF0) == AP_REG_BD0))
131 && (swjdp->memaccess_tck != 0))
132 jtag_add_runtest(swjdp->memaccess_tck, jtag_set_end_state(TAP_IDLE));
134 /* Scan out a read or write operation using some DP or AP register.
135 * For APACC access with any sticky error flag set, this is discarded.
137 fields[0].tap = jtag_info->tap;
138 fields[0].num_bits = 3;
139 buf_set_u32(&out_addr_buf, 0, 3, ((reg_addr >> 1) & 0x6) | (RnW & 0x1));
140 fields[0].out_value = &out_addr_buf;
141 fields[0].in_value = ack;
143 /* NOTE: if we receive JTAG_ACK_WAIT, the previous operation did not
144 * complete; data we write is discarded, data we read is unpredictable.
145 * When overrun detect is active, STICKYORUN is set.
148 fields[1].tap = jtag_info->tap;
149 fields[1].num_bits = 32;
150 fields[1].out_value = outvalue;
151 fields[1].in_value = invalue;
153 jtag_add_dr_scan(2, fields, jtag_get_end_state());
155 return jtag_get_error();
159 * Scan DPACC or APACC out and in from host ordered uint32_t buffers.
160 * This is exactly like adi_jtag_dp_scan(), except that endianness
161 * conversions are performed (so the types of invalue and outvalue
162 * must be different).
164 static int adi_jtag_dp_scan_u32(struct swjdp_common *swjdp,
165 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
166 uint32_t outvalue, uint32_t *invalue, uint8_t *ack)
168 uint8_t out_value_buf[4];
169 int retval;
171 buf_set_u32(out_value_buf, 0, 32, outvalue);
173 retval = adi_jtag_dp_scan(swjdp, instr, reg_addr, RnW,
174 out_value_buf, (uint8_t *)invalue, ack);
175 if (retval != ERROR_OK)
176 return retval;
178 if (invalue)
179 jtag_add_callback(arm_le_to_h_u32,
180 (jtag_callback_data_t) invalue);
182 return retval;
186 * Utility to write AP registers.
188 static inline int ap_write_check(struct swjdp_common *dap,
189 uint8_t reg_addr, uint8_t *outvalue)
191 return adi_jtag_dp_scan(dap, JTAG_DP_APACC, reg_addr, DPAP_WRITE,
192 outvalue, NULL, NULL);
195 static int scan_inout_check_u32(struct swjdp_common *swjdp,
196 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
197 uint32_t outvalue, uint32_t *invalue)
199 int retval;
201 /* Issue the read or write */
202 retval = adi_jtag_dp_scan_u32(swjdp, instr, reg_addr,
203 RnW, outvalue, NULL, NULL);
204 if (retval != ERROR_OK)
205 return retval;
207 /* For reads, collect posted value; RDBUFF has no other effect.
208 * Assumes read gets acked with OK/FAULT, and CTRL_STAT says "OK".
210 if ((RnW == DPAP_READ) && (invalue != NULL))
211 retval = adi_jtag_dp_scan_u32(swjdp, JTAG_DP_DPACC,
212 DP_RDBUFF, DPAP_READ, 0, invalue, &swjdp->ack);
213 return retval;
216 int jtagdp_transaction_endcheck(struct swjdp_common *swjdp)
218 int retval;
219 uint32_t ctrlstat;
221 /* too expensive to call keep_alive() here */
223 #if 0
224 /* Danger!!!! BROKEN!!!! */
225 scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
226 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
227 /* Danger!!!! BROKEN!!!! Why will jtag_execute_queue() fail here????
228 R956 introduced the check on return value here and now Michael Schwingen reports
229 that this code no longer works....
231 https://lists.berlios.de/pipermail/openocd-development/2008-September/003107.html
233 if ((retval = jtag_execute_queue()) != ERROR_OK)
235 LOG_ERROR("BUG: Why does this fail the first time????");
237 /* Why??? second time it works??? */
238 #endif
240 /* Post CTRL/STAT read; discard any previous posted read value
241 * but collect its ACK status.
243 scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
244 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
245 if ((retval = jtag_execute_queue()) != ERROR_OK)
246 return retval;
248 swjdp->ack = swjdp->ack & 0x7;
250 /* common code path avoids calling timeval_ms() */
251 if (swjdp->ack != JTAG_ACK_OK_FAULT)
253 long long then = timeval_ms();
255 while (swjdp->ack != JTAG_ACK_OK_FAULT)
257 if (swjdp->ack == JTAG_ACK_WAIT)
259 if ((timeval_ms()-then) > 1000)
261 /* NOTE: this would be a good spot
262 * to use JTAG_DP_ABORT.
264 LOG_WARNING("Timeout (1000ms) waiting "
265 "for ACK=OK/FAULT "
266 "in JTAG-DP transaction");
267 return ERROR_JTAG_DEVICE_ERROR;
270 else
272 LOG_WARNING("Invalid ACK %#x "
273 "in JTAG-DP transaction",
274 swjdp->ack);
275 return ERROR_JTAG_DEVICE_ERROR;
278 scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
279 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
280 if ((retval = jtag_execute_queue()) != ERROR_OK)
281 return retval;
282 swjdp->ack = swjdp->ack & 0x7;
286 /* REVISIT also STICKYCMP, for pushed comparisons (nyet used) */
288 /* Check for STICKYERR and STICKYORUN */
289 if (ctrlstat & (SSTICKYORUN | SSTICKYERR))
291 LOG_DEBUG("jtag-dp: CTRL/STAT error, 0x%" PRIx32, ctrlstat);
292 /* Check power to debug regions */
293 if ((ctrlstat & 0xf0000000) != 0xf0000000)
294 ahbap_debugport_init(swjdp);
295 else
297 uint32_t mem_ap_csw, mem_ap_tar;
299 /* Maybe print information about last intended
300 * MEM-AP access; but not if autoincrementing.
301 * *Real* CSW and TAR values are always shown.
303 if (swjdp->ap_tar_value != (uint32_t) -1)
304 LOG_DEBUG("MEM-AP Cached values: "
305 "ap_bank 0x%" PRIx32
306 ", ap_csw 0x%" PRIx32
307 ", ap_tar 0x%" PRIx32,
308 swjdp->ap_bank_value,
309 swjdp->ap_csw_value,
310 swjdp->ap_tar_value);
312 if (ctrlstat & SSTICKYORUN)
313 LOG_ERROR("JTAG-DP OVERRUN - check clock, "
314 "memaccess, or reduce jtag speed");
316 if (ctrlstat & SSTICKYERR)
317 LOG_ERROR("JTAG-DP STICKY ERROR");
319 /* Clear Sticky Error Bits */
320 scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
321 DP_CTRL_STAT, DPAP_WRITE,
322 swjdp->dp_ctrl_stat | SSTICKYORUN
323 | SSTICKYERR, NULL);
324 scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
325 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
326 if ((retval = jtag_execute_queue()) != ERROR_OK)
327 return retval;
329 LOG_DEBUG("jtag-dp: CTRL/STAT 0x%" PRIx32, ctrlstat);
331 dap_ap_read_reg_u32(swjdp, AP_REG_CSW, &mem_ap_csw);
332 dap_ap_read_reg_u32(swjdp, AP_REG_TAR, &mem_ap_tar);
333 if ((retval = jtag_execute_queue()) != ERROR_OK)
334 return retval;
335 LOG_ERROR("MEM_AP_CSW 0x%" PRIx32 ", MEM_AP_TAR 0x%"
336 PRIx32, mem_ap_csw, mem_ap_tar);
339 if ((retval = jtag_execute_queue()) != ERROR_OK)
340 return retval;
341 return ERROR_JTAG_DEVICE_ERROR;
344 return ERROR_OK;
347 /***************************************************************************
349 * DP and MEM-AP register access through APACC and DPACC *
351 ***************************************************************************/
353 static int dap_dp_write_reg(struct swjdp_common *swjdp,
354 uint32_t value, uint8_t reg_addr)
356 return scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
357 reg_addr, DPAP_WRITE, value, NULL);
360 static int dap_dp_read_reg(struct swjdp_common *swjdp,
361 uint32_t *value, uint8_t reg_addr)
363 return scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
364 reg_addr, DPAP_READ, 0, value);
368 * Select one of the APs connected to the specified DAP. The
369 * selection is implicitly used with future AP transactions.
370 * This is a NOP if the specified AP is already selected.
372 * @param swjdp The DAP
373 * @param apsel Number of the AP to (implicitly) use with further
374 * transactions. This normally identifies a MEM-AP.
376 void dap_ap_select(struct swjdp_common *swjdp,uint8_t apsel)
378 uint32_t select = (apsel << 24) & 0xFF000000;
380 if (select != swjdp->apsel)
382 swjdp->apsel = select;
383 /* Switching AP invalidates cached values.
384 * Values MUST BE UPDATED BEFORE AP ACCESS.
386 swjdp->ap_bank_value = -1;
387 swjdp->ap_csw_value = -1;
388 swjdp->ap_tar_value = -1;
392 /** Select the AP register bank matching bits 7:4 of ap_reg. */
393 static int dap_ap_bankselect(struct swjdp_common *swjdp, uint32_t ap_reg)
395 uint32_t select = (ap_reg & 0x000000F0);
397 if (select != swjdp->ap_bank_value)
399 swjdp->ap_bank_value = select;
400 select |= swjdp->apsel;
401 return dap_dp_write_reg(swjdp, select, DP_SELECT);
402 } else
403 return ERROR_OK;
406 static int dap_ap_write_reg(struct swjdp_common *swjdp,
407 uint32_t reg_addr, uint8_t *out_value_buf)
409 int retval;
411 retval = dap_ap_bankselect(swjdp, reg_addr);
412 if (retval != ERROR_OK)
413 return retval;
415 return ap_write_check(swjdp, reg_addr, out_value_buf);
419 * Asynchronous (queued) AP register write.
421 * @param swjdp The DAP whose currently selected AP will be written.
422 * @param reg_addr Eight bit AP register address.
423 * @param value Word to be written at reg_addr
425 * @return ERROR_OK if the transaction was properly queued, else a fault code.
427 int dap_ap_write_reg_u32(struct swjdp_common *swjdp,
428 uint32_t reg_addr, uint32_t value)
430 uint8_t out_value_buf[4];
432 buf_set_u32(out_value_buf, 0, 32, value);
433 return dap_ap_write_reg(swjdp,
434 reg_addr, out_value_buf);
438 * Asynchronous (queued) AP register eread.
440 * @param swjdp The DAP whose currently selected AP will be read.
441 * @param reg_addr Eight bit AP register address.
442 * @param value Points to where the 32-bit (little-endian) word will be stored.
444 * @return ERROR_OK if the transaction was properly queued, else a fault code.
446 int dap_ap_read_reg_u32(struct swjdp_common *swjdp,
447 uint32_t reg_addr, uint32_t *value)
449 int retval;
451 retval = dap_ap_bankselect(swjdp, reg_addr);
452 if (retval != ERROR_OK)
453 return retval;
455 return scan_inout_check_u32(swjdp, JTAG_DP_APACC, reg_addr,
456 DPAP_READ, 0, value);
460 * Queue transactions setting up transfer parameters for the
461 * currently selected MEM-AP.
463 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
464 * initiate data reads or writes using memory or peripheral addresses.
465 * If the CSW is configured for it, the TAR may be automatically
466 * incremented after each transfer.
468 * @todo Rename to reflect it being specifically a MEM-AP function.
470 * @param swjdp The DAP connected to the MEM-AP.
471 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
472 * matches the cached value, the register is not changed.
473 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
474 * matches the cached address, the register is not changed.
476 * @return ERROR_OK if the transaction was properly queued, else a fault code.
478 int dap_setup_accessport(struct swjdp_common *swjdp, uint32_t csw, uint32_t tar)
480 int retval;
482 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
483 if (csw != swjdp->ap_csw_value)
485 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
486 retval = dap_ap_write_reg_u32(swjdp, AP_REG_CSW, csw);
487 if (retval != ERROR_OK)
488 return retval;
489 swjdp->ap_csw_value = csw;
491 if (tar != swjdp->ap_tar_value)
493 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
494 retval = dap_ap_write_reg_u32(swjdp, AP_REG_TAR, tar);
495 if (retval != ERROR_OK)
496 return retval;
497 swjdp->ap_tar_value = tar;
499 /* Disable TAR cache when autoincrementing */
500 if (csw & CSW_ADDRINC_MASK)
501 swjdp->ap_tar_value = -1;
502 return ERROR_OK;
506 * Asynchronous (queued) read of a word from memory or a system register.
508 * @param swjdp The DAP connected to the MEM-AP performing the read.
509 * @param address Address of the 32-bit word to read; it must be
510 * readable by the currently selected MEM-AP.
511 * @param value points to where the word will be stored when the
512 * transaction queue is flushed (assuming no errors).
514 * @return ERROR_OK for success. Otherwise a fault code.
516 int mem_ap_read_u32(struct swjdp_common *swjdp, uint32_t address,
517 uint32_t *value)
519 int retval;
521 /* Use banked addressing (REG_BDx) to avoid some link traffic
522 * (updating TAR) when reading several consecutive addresses.
524 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF,
525 address & 0xFFFFFFF0);
526 if (retval != ERROR_OK)
527 return retval;
529 return dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (address & 0xC), value);
533 * Synchronous read of a word from memory or a system register.
534 * As a side effect, this flushes any queued transactions.
536 * @param swjdp The DAP connected to the MEM-AP performing the read.
537 * @param address Address of the 32-bit word to read; it must be
538 * readable by the currently selected MEM-AP.
539 * @param value points to where the result will be stored.
541 * @return ERROR_OK for success; *value holds the result.
542 * Otherwise a fault code.
544 int mem_ap_read_atomic_u32(struct swjdp_common *swjdp, uint32_t address,
545 uint32_t *value)
547 int retval;
549 retval = mem_ap_read_u32(swjdp, address, value);
550 if (retval != ERROR_OK)
551 return retval;
553 return jtagdp_transaction_endcheck(swjdp);
557 * Asynchronous (queued) write of a word to memory or a system register.
559 * @param swjdp The DAP connected to the MEM-AP.
560 * @param address Address to be written; it must be writable by
561 * the currently selected MEM-AP.
562 * @param value Word that will be written to the address when transaction
563 * queue is flushed (assuming no errors).
565 * @return ERROR_OK for success. Otherwise a fault code.
567 int mem_ap_write_u32(struct swjdp_common *swjdp, uint32_t address,
568 uint32_t value)
570 int retval;
572 /* Use banked addressing (REG_BDx) to avoid some link traffic
573 * (updating TAR) when writing several consecutive addresses.
575 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF,
576 address & 0xFFFFFFF0);
577 if (retval != ERROR_OK)
578 return retval;
580 return dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (address & 0xC),
581 value);
585 * Synchronous write of a word to memory or a system register.
586 * As a side effect, this flushes any queued transactions.
588 * @param swjdp The DAP connected to the MEM-AP.
589 * @param address Address to be written; it must be writable by
590 * the currently selected MEM-AP.
591 * @param value Word that will be written.
593 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
595 int mem_ap_write_atomic_u32(struct swjdp_common *swjdp, uint32_t address,
596 uint32_t value)
598 int retval = mem_ap_write_u32(swjdp, address, value);
600 if (retval != ERROR_OK)
601 return retval;
603 return jtagdp_transaction_endcheck(swjdp);
606 /*****************************************************************************
608 * mem_ap_write_buf(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address) *
610 * Write a buffer in target order (little endian) *
612 *****************************************************************************/
613 int mem_ap_write_buf_u32(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address)
615 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
616 uint32_t adr = address;
617 uint8_t* pBuffer = buffer;
619 count >>= 2;
620 wcount = count;
622 /* if we have an unaligned access - reorder data */
623 if (adr & 0x3u)
625 for (writecount = 0; writecount < count; writecount++)
627 int i;
628 uint32_t outvalue;
629 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
631 for (i = 0; i < 4; i++)
633 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
634 outvalue >>= 8;
635 adr++;
637 pBuffer += sizeof(uint32_t);
641 while (wcount > 0)
643 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
644 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
645 if (wcount < blocksize)
646 blocksize = wcount;
648 /* handle unaligned data at 4k boundary */
649 if (blocksize == 0)
650 blocksize = 1;
652 dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
654 for (writecount = 0; writecount < blocksize; writecount++)
656 dap_ap_write_reg(swjdp, AP_REG_DRW, buffer + 4 * writecount);
659 if (jtagdp_transaction_endcheck(swjdp) == ERROR_OK)
661 wcount = wcount - blocksize;
662 address = address + 4 * blocksize;
663 buffer = buffer + 4 * blocksize;
665 else
667 errorcount++;
670 if (errorcount > 1)
672 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
673 return ERROR_JTAG_DEVICE_ERROR;
677 return retval;
680 static int mem_ap_write_buf_packed_u16(struct swjdp_common *swjdp,
681 uint8_t *buffer, int count, uint32_t address)
683 int retval = ERROR_OK;
684 int wcount, blocksize, writecount, i;
686 wcount = count >> 1;
688 while (wcount > 0)
690 int nbytes;
692 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
693 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
695 if (wcount < blocksize)
696 blocksize = wcount;
698 /* handle unaligned data at 4k boundary */
699 if (blocksize == 0)
700 blocksize = 1;
702 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_PACKED, address);
703 writecount = blocksize;
707 nbytes = MIN((writecount << 1), 4);
709 if (nbytes < 4)
711 if (mem_ap_write_buf_u16(swjdp, buffer,
712 nbytes, address) != ERROR_OK)
714 LOG_WARNING("Block write error address "
715 "0x%" PRIx32 ", count 0x%x",
716 address, count);
717 return ERROR_JTAG_DEVICE_ERROR;
720 address += nbytes >> 1;
722 else
724 uint32_t outvalue;
725 memcpy(&outvalue, buffer, sizeof(uint32_t));
727 for (i = 0; i < nbytes; i++)
729 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
730 outvalue >>= 8;
731 address++;
734 memcpy(&outvalue, buffer, sizeof(uint32_t));
735 dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
736 if (jtagdp_transaction_endcheck(swjdp) != ERROR_OK)
738 LOG_WARNING("Block write error address "
739 "0x%" PRIx32 ", count 0x%x",
740 address, count);
741 return ERROR_JTAG_DEVICE_ERROR;
745 buffer += nbytes >> 1;
746 writecount -= nbytes >> 1;
748 } while (writecount);
749 wcount -= blocksize;
752 return retval;
755 int mem_ap_write_buf_u16(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address)
757 int retval = ERROR_OK;
759 if (count >= 4)
760 return mem_ap_write_buf_packed_u16(swjdp, buffer, count, address);
762 while (count > 0)
764 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
765 uint16_t svalue;
766 memcpy(&svalue, buffer, sizeof(uint16_t));
767 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
768 dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
769 retval = jtagdp_transaction_endcheck(swjdp);
770 count -= 2;
771 address += 2;
772 buffer += 2;
775 return retval;
778 static int mem_ap_write_buf_packed_u8(struct swjdp_common *swjdp,
779 uint8_t *buffer, int count, uint32_t address)
781 int retval = ERROR_OK;
782 int wcount, blocksize, writecount, i;
784 wcount = count;
786 while (wcount > 0)
788 int nbytes;
790 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
791 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
793 if (wcount < blocksize)
794 blocksize = wcount;
796 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_PACKED, address);
797 writecount = blocksize;
801 nbytes = MIN(writecount, 4);
803 if (nbytes < 4)
805 if (mem_ap_write_buf_u8(swjdp, buffer, nbytes, address) != ERROR_OK)
807 LOG_WARNING("Block write error address "
808 "0x%" PRIx32 ", count 0x%x",
809 address, count);
810 return ERROR_JTAG_DEVICE_ERROR;
813 address += nbytes;
815 else
817 uint32_t outvalue;
818 memcpy(&outvalue, buffer, sizeof(uint32_t));
820 for (i = 0; i < nbytes; i++)
822 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
823 outvalue >>= 8;
824 address++;
827 memcpy(&outvalue, buffer, sizeof(uint32_t));
828 dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
829 if (jtagdp_transaction_endcheck(swjdp) != ERROR_OK)
831 LOG_WARNING("Block write error address "
832 "0x%" PRIx32 ", count 0x%x",
833 address, count);
834 return ERROR_JTAG_DEVICE_ERROR;
838 buffer += nbytes;
839 writecount -= nbytes;
841 } while (writecount);
842 wcount -= blocksize;
845 return retval;
848 int mem_ap_write_buf_u8(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address)
850 int retval = ERROR_OK;
852 if (count >= 4)
853 return mem_ap_write_buf_packed_u8(swjdp, buffer, count, address);
855 while (count > 0)
857 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
858 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
859 dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
860 retval = jtagdp_transaction_endcheck(swjdp);
861 count--;
862 address++;
863 buffer++;
866 return retval;
869 /*********************************************************************************
871 * mem_ap_read_buf_u32(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address) *
873 * Read block fast in target order (little endian) into a buffer *
875 **********************************************************************************/
876 int mem_ap_read_buf_u32(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address)
878 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
879 uint32_t adr = address;
880 uint8_t* pBuffer = buffer;
882 count >>= 2;
883 wcount = count;
885 while (wcount > 0)
887 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
888 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
889 if (wcount < blocksize)
890 blocksize = wcount;
892 /* handle unaligned data at 4k boundary */
893 if (blocksize == 0)
894 blocksize = 1;
896 dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
898 /* Scan out first read */
899 adi_jtag_dp_scan(swjdp, JTAG_DP_APACC, AP_REG_DRW,
900 DPAP_READ, 0, NULL, NULL);
901 for (readcount = 0; readcount < blocksize - 1; readcount++)
903 /* Scan out next read; scan in posted value for the
904 * previous one. Assumes read is acked "OK/FAULT",
905 * and CTRL_STAT says that meant "OK".
907 adi_jtag_dp_scan(swjdp, JTAG_DP_APACC, AP_REG_DRW,
908 DPAP_READ, 0, buffer + 4 * readcount,
909 &swjdp->ack);
912 /* Scan in last posted value; RDBUFF has no other effect,
913 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
915 adi_jtag_dp_scan(swjdp, JTAG_DP_DPACC, DP_RDBUFF,
916 DPAP_READ, 0, buffer + 4 * readcount,
917 &swjdp->ack);
918 if (jtagdp_transaction_endcheck(swjdp) == ERROR_OK)
920 wcount = wcount - blocksize;
921 address += 4 * blocksize;
922 buffer += 4 * blocksize;
924 else
926 errorcount++;
929 if (errorcount > 1)
931 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
932 return ERROR_JTAG_DEVICE_ERROR;
936 /* if we have an unaligned access - reorder data */
937 if (adr & 0x3u)
939 for (readcount = 0; readcount < count; readcount++)
941 int i;
942 uint32_t data;
943 memcpy(&data, pBuffer, sizeof(uint32_t));
945 for (i = 0; i < 4; i++)
947 *((uint8_t*)pBuffer) = (data >> 8 * (adr & 0x3));
948 pBuffer++;
949 adr++;
954 return retval;
957 static int mem_ap_read_buf_packed_u16(struct swjdp_common *swjdp,
958 uint8_t *buffer, int count, uint32_t address)
960 uint32_t invalue;
961 int retval = ERROR_OK;
962 int wcount, blocksize, readcount, i;
964 wcount = count >> 1;
966 while (wcount > 0)
968 int nbytes;
970 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
971 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
972 if (wcount < blocksize)
973 blocksize = wcount;
975 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_PACKED, address);
977 /* handle unaligned data at 4k boundary */
978 if (blocksize == 0)
979 blocksize = 1;
980 readcount = blocksize;
984 dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
985 if (jtagdp_transaction_endcheck(swjdp) != ERROR_OK)
987 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
988 return ERROR_JTAG_DEVICE_ERROR;
991 nbytes = MIN((readcount << 1), 4);
993 for (i = 0; i < nbytes; i++)
995 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
996 buffer++;
997 address++;
1000 readcount -= (nbytes >> 1);
1001 } while (readcount);
1002 wcount -= blocksize;
1005 return retval;
1008 int mem_ap_read_buf_u16(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address)
1010 uint32_t invalue, i;
1011 int retval = ERROR_OK;
1013 if (count >= 4)
1014 return mem_ap_read_buf_packed_u16(swjdp, buffer, count, address);
1016 while (count > 0)
1018 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
1019 dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
1020 retval = jtagdp_transaction_endcheck(swjdp);
1021 if (address & 0x1)
1023 for (i = 0; i < 2; i++)
1025 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
1026 buffer++;
1027 address++;
1030 else
1032 uint16_t svalue = (invalue >> 8 * (address & 0x3));
1033 memcpy(buffer, &svalue, sizeof(uint16_t));
1034 address += 2;
1035 buffer += 2;
1037 count -= 2;
1040 return retval;
1043 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
1044 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
1046 * The solution is to arrange for a large out/in scan in this loop and
1047 * and convert data afterwards.
1049 static int mem_ap_read_buf_packed_u8(struct swjdp_common *swjdp,
1050 uint8_t *buffer, int count, uint32_t address)
1052 uint32_t invalue;
1053 int retval = ERROR_OK;
1054 int wcount, blocksize, readcount, i;
1056 wcount = count;
1058 while (wcount > 0)
1060 int nbytes;
1062 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
1063 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
1065 if (wcount < blocksize)
1066 blocksize = wcount;
1068 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_PACKED, address);
1069 readcount = blocksize;
1073 dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
1074 if (jtagdp_transaction_endcheck(swjdp) != ERROR_OK)
1076 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
1077 return ERROR_JTAG_DEVICE_ERROR;
1080 nbytes = MIN(readcount, 4);
1082 for (i = 0; i < nbytes; i++)
1084 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
1085 buffer++;
1086 address++;
1089 readcount -= nbytes;
1090 } while (readcount);
1091 wcount -= blocksize;
1094 return retval;
1097 int mem_ap_read_buf_u8(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address)
1099 uint32_t invalue;
1100 int retval = ERROR_OK;
1102 if (count >= 4)
1103 return mem_ap_read_buf_packed_u8(swjdp, buffer, count, address);
1105 while (count > 0)
1107 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
1108 dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
1109 retval = jtagdp_transaction_endcheck(swjdp);
1110 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
1111 count--;
1112 address++;
1113 buffer++;
1116 return retval;
1120 * Initialize a DAP. This sets up the power domains, prepares the DP
1121 * for further use, and arranges to use AP #0 for all AP operations
1122 * until dap_ap-select() changes that policy.
1124 * @param swjdp The DAP being initialized.
1126 * @todo Rename this. We also need an initialization scheme which account
1127 * for SWD transports not just JTAG; that will need to address differences
1128 * in layering. (JTAG is useful without any debug target; but not SWD.)
1129 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
1131 int ahbap_debugport_init(struct swjdp_common *swjdp)
1133 uint32_t idreg, romaddr, dummy;
1134 uint32_t ctrlstat;
1135 int cnt = 0;
1136 int retval;
1138 LOG_DEBUG(" ");
1140 /* Default MEM-AP setup.
1142 * REVISIT AP #0 may be an inappropriate default for this.
1143 * Should we probe, or take a hint from the caller?
1144 * Presumably we can ignore the possibility of multiple APs.
1146 swjdp->apsel = !0;
1147 dap_ap_select(swjdp, 0);
1149 /* DP initialization */
1150 dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
1151 dap_dp_write_reg(swjdp, SSTICKYERR, DP_CTRL_STAT);
1152 dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
1154 swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1156 dap_dp_write_reg(swjdp, swjdp->dp_ctrl_stat, DP_CTRL_STAT);
1157 dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT);
1158 if ((retval = jtag_execute_queue()) != ERROR_OK)
1159 return retval;
1161 /* Check that we have debug power domains activated */
1162 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1164 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1165 dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT);
1166 if ((retval = jtag_execute_queue()) != ERROR_OK)
1167 return retval;
1168 alive_sleep(10);
1171 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1173 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1174 dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT);
1175 if ((retval = jtag_execute_queue()) != ERROR_OK)
1176 return retval;
1177 alive_sleep(10);
1180 dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
1181 /* With debug power on we can activate OVERRUN checking */
1182 swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1183 dap_dp_write_reg(swjdp, swjdp->dp_ctrl_stat, DP_CTRL_STAT);
1184 dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
1187 * REVISIT this isn't actually *initializing* anything in an AP,
1188 * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
1189 * Should it? If the ROM address is valid, is this the right
1190 * place to scan the table and do any topology detection?
1192 dap_ap_read_reg_u32(swjdp, AP_REG_IDR, &idreg);
1193 dap_ap_read_reg_u32(swjdp, AP_REG_BASE, &romaddr);
1195 LOG_DEBUG("MEM-AP #%d ID Register 0x%" PRIx32
1196 ", Debug ROM Address 0x%" PRIx32,
1197 swjdp->apsel, idreg, romaddr);
1199 return ERROR_OK;
1202 /* CID interpretation -- see ARM IHI 0029B section 3
1203 * and ARM IHI 0031A table 13-3.
1205 static const char *class_description[16] ={
1206 "Reserved", "ROM table", "Reserved", "Reserved",
1207 "Reserved", "Reserved", "Reserved", "Reserved",
1208 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1209 "Reserved", "OptimoDE DESS",
1210 "Generic IP component", "PrimeCell or System component"
1213 static bool
1214 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1216 return cid3 == 0xb1 && cid2 == 0x05
1217 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1220 int dap_info_command(struct command_context *cmd_ctx,
1221 struct swjdp_common *swjdp, int apsel)
1224 uint32_t dbgbase, apid;
1225 int romtable_present = 0;
1226 uint8_t mem_ap;
1227 uint32_t apselold;
1229 /* AP address is in bits 31:24 of DP_SELECT */
1230 if (apsel >= 256)
1231 return ERROR_INVALID_ARGUMENTS;
1233 apselold = swjdp->apsel;
1234 dap_ap_select(swjdp, apsel);
1235 dap_ap_read_reg_u32(swjdp, AP_REG_BASE, &dbgbase);
1236 dap_ap_read_reg_u32(swjdp, AP_REG_IDR, &apid);
1237 jtagdp_transaction_endcheck(swjdp);
1238 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1239 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1240 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1241 if (apid)
1243 switch (apid&0x0F)
1245 case 0:
1246 command_print(cmd_ctx, "\tType is JTAG-AP");
1247 break;
1248 case 1:
1249 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1250 break;
1251 case 2:
1252 command_print(cmd_ctx, "\tType is MEM-AP APB");
1253 break;
1254 default:
1255 command_print(cmd_ctx, "\tUnknown AP type");
1256 break;
1259 /* NOTE: a MEM-AP may have a single CoreSight component that's
1260 * not a ROM table ... or have no such components at all.
1262 if (mem_ap)
1263 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1264 dbgbase);
1266 else
1268 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1271 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1272 if (romtable_present)
1274 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1275 uint16_t entry_offset;
1277 /* bit 16 of apid indicates a memory access port */
1278 if (dbgbase & 0x02)
1279 command_print(cmd_ctx, "\tValid ROM table present");
1280 else
1281 command_print(cmd_ctx, "\tROM table in legacy format");
1283 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1284 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1285 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1286 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1287 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1288 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1289 jtagdp_transaction_endcheck(swjdp);
1290 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1291 command_print(cmd_ctx, "\tCID3 0x%2.2" PRIx32
1292 ", CID2 0x%2.2" PRIx32
1293 ", CID1 0x%2.2" PRIx32
1294 ", CID0 0x%2.2" PRIx32,
1295 cid3, cid2, cid1, cid0);
1296 if (memtype & 0x01)
1297 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1298 else
1299 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1300 "Dedicated debug bus.");
1302 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1303 entry_offset = 0;
1306 mem_ap_read_atomic_u32(swjdp, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1307 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1308 if (romentry&0x01)
1310 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1311 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1312 uint32_t component_start, component_base;
1313 unsigned part_num;
1314 char *type, *full;
1316 component_base = (uint32_t)((dbgbase & 0xFFFFF000)
1317 + (int)(romentry & 0xFFFFF000));
1318 mem_ap_read_atomic_u32(swjdp,
1319 (component_base & 0xFFFFF000) | 0xFE0, &c_pid0);
1320 mem_ap_read_atomic_u32(swjdp,
1321 (component_base & 0xFFFFF000) | 0xFE4, &c_pid1);
1322 mem_ap_read_atomic_u32(swjdp,
1323 (component_base & 0xFFFFF000) | 0xFE8, &c_pid2);
1324 mem_ap_read_atomic_u32(swjdp,
1325 (component_base & 0xFFFFF000) | 0xFEC, &c_pid3);
1326 mem_ap_read_atomic_u32(swjdp,
1327 (component_base & 0xFFFFF000) | 0xFD0, &c_pid4);
1328 mem_ap_read_atomic_u32(swjdp,
1329 (component_base & 0xFFFFF000) | 0xFF0, &c_cid0);
1330 mem_ap_read_atomic_u32(swjdp,
1331 (component_base & 0xFFFFF000) | 0xFF4, &c_cid1);
1332 mem_ap_read_atomic_u32(swjdp,
1333 (component_base & 0xFFFFF000) | 0xFF8, &c_cid2);
1334 mem_ap_read_atomic_u32(swjdp,
1335 (component_base & 0xFFFFF000) | 0xFFC, &c_cid3);
1336 component_start = component_base - 0x1000*(c_pid4 >> 4);
1338 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32
1339 ", start address 0x%" PRIx32,
1340 component_base, component_start);
1341 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1342 (int) (c_cid1 >> 4) & 0xf,
1343 /* See ARM IHI 0029B Table 3-3 */
1344 class_description[(c_cid1 >> 4) & 0xf]);
1346 /* CoreSight component? */
1347 if (((c_cid1 >> 4) & 0x0f) == 9) {
1348 uint32_t devtype;
1349 unsigned minor;
1350 char *major = "Reserved", *subtype = "Reserved";
1352 mem_ap_read_atomic_u32(swjdp,
1353 (component_base & 0xfffff000) | 0xfcc,
1354 &devtype);
1355 minor = (devtype >> 4) & 0x0f;
1356 switch (devtype & 0x0f) {
1357 case 0:
1358 major = "Miscellaneous";
1359 switch (minor) {
1360 case 0:
1361 subtype = "other";
1362 break;
1363 case 4:
1364 subtype = "Validation component";
1365 break;
1367 break;
1368 case 1:
1369 major = "Trace Sink";
1370 switch (minor) {
1371 case 0:
1372 subtype = "other";
1373 break;
1374 case 1:
1375 subtype = "Port";
1376 break;
1377 case 2:
1378 subtype = "Buffer";
1379 break;
1381 break;
1382 case 2:
1383 major = "Trace Link";
1384 switch (minor) {
1385 case 0:
1386 subtype = "other";
1387 break;
1388 case 1:
1389 subtype = "Funnel, router";
1390 break;
1391 case 2:
1392 subtype = "Filter";
1393 break;
1394 case 3:
1395 subtype = "FIFO, buffer";
1396 break;
1398 break;
1399 case 3:
1400 major = "Trace Source";
1401 switch (minor) {
1402 case 0:
1403 subtype = "other";
1404 break;
1405 case 1:
1406 subtype = "Processor";
1407 break;
1408 case 2:
1409 subtype = "DSP";
1410 break;
1411 case 3:
1412 subtype = "Engine/Coprocessor";
1413 break;
1414 case 4:
1415 subtype = "Bus";
1416 break;
1418 break;
1419 case 4:
1420 major = "Debug Control";
1421 switch (minor) {
1422 case 0:
1423 subtype = "other";
1424 break;
1425 case 1:
1426 subtype = "Trigger Matrix";
1427 break;
1428 case 2:
1429 subtype = "Debug Auth";
1430 break;
1432 break;
1433 case 5:
1434 major = "Debug Logic";
1435 switch (minor) {
1436 case 0:
1437 subtype = "other";
1438 break;
1439 case 1:
1440 subtype = "Processor";
1441 break;
1442 case 2:
1443 subtype = "DSP";
1444 break;
1445 case 3:
1446 subtype = "Engine/Coprocessor";
1447 break;
1449 break;
1451 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1452 (unsigned) (devtype & 0xff),
1453 major, subtype);
1454 /* REVISIT also show 0xfc8 DevId */
1457 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1458 command_print(cmd_ctx, "\t\tCID3 0x%2.2" PRIx32
1459 ", CID2 0x%2.2" PRIx32
1460 ", CID1 0x%2.2" PRIx32
1461 ", CID0 0x%2.2" PRIx32,
1462 c_cid3, c_cid2, c_cid1, c_cid0);
1463 command_print(cmd_ctx, "\t\tPeripheral ID[4..0] = hex "
1464 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1465 (int) c_pid4,
1466 (int) c_pid3, (int) c_pid2,
1467 (int) c_pid1, (int) c_pid0);
1469 /* Part number interpretations are from Cortex
1470 * core specs, the CoreSight components TRM
1471 * (ARM DDI 0314H), and ETM specs; also from
1472 * chip observation (e.g. TI SDTI).
1474 part_num = c_pid0 & 0xff;
1475 part_num |= (c_pid1 & 0x0f) << 8;
1476 switch (part_num) {
1477 case 0x000:
1478 type = "Cortex-M3 NVIC";
1479 full = "(Interrupt Controller)";
1480 break;
1481 case 0x001:
1482 type = "Cortex-M3 ITM";
1483 full = "(Instrumentation Trace Module)";
1484 break;
1485 case 0x002:
1486 type = "Cortex-M3 DWT";
1487 full = "(Data Watchpoint and Trace)";
1488 break;
1489 case 0x003:
1490 type = "Cortex-M3 FBP";
1491 full = "(Flash Patch and Breakpoint)";
1492 break;
1493 case 0x00d:
1494 type = "CoreSight ETM11";
1495 full = "(Embedded Trace)";
1496 break;
1497 // case 0x113: what?
1498 case 0x120: /* from OMAP3 memmap */
1499 type = "TI SDTI";
1500 full = "(System Debug Trace Interface)";
1501 break;
1502 case 0x343: /* from OMAP3 memmap */
1503 type = "TI DAPCTL";
1504 full = "";
1505 break;
1506 case 0x4e0:
1507 type = "Cortex-M3 ETM";
1508 full = "(Embedded Trace)";
1509 break;
1510 case 0x906:
1511 type = "Coresight CTI";
1512 full = "(Cross Trigger)";
1513 break;
1514 case 0x907:
1515 type = "Coresight ETB";
1516 full = "(Trace Buffer)";
1517 break;
1518 case 0x908:
1519 type = "Coresight CSTF";
1520 full = "(Trace Funnel)";
1521 break;
1522 case 0x910:
1523 type = "CoreSight ETM9";
1524 full = "(Embedded Trace)";
1525 break;
1526 case 0x912:
1527 type = "Coresight TPIU";
1528 full = "(Trace Port Interface Unit)";
1529 break;
1530 case 0x921:
1531 type = "Cortex-A8 ETM";
1532 full = "(Embedded Trace)";
1533 break;
1534 case 0x922:
1535 type = "Cortex-A8 CTI";
1536 full = "(Cross Trigger)";
1537 break;
1538 case 0x923:
1539 type = "Cortex-M3 TPIU";
1540 full = "(Trace Port Interface Unit)";
1541 break;
1542 case 0xc08:
1543 type = "Cortex-A8 Debug";
1544 full = "(Debug Unit)";
1545 break;
1546 default:
1547 type = "-*- unrecognized -*-";
1548 full = "";
1549 break;
1551 command_print(cmd_ctx, "\t\tPart is %s %s",
1552 type, full);
1554 else
1556 if (romentry)
1557 command_print(cmd_ctx, "\t\tComponent not present");
1558 else
1559 command_print(cmd_ctx, "\t\tEnd of ROM table");
1561 entry_offset += 4;
1562 } while (romentry > 0);
1564 else
1566 command_print(cmd_ctx, "\tNo ROM table present");
1568 dap_ap_select(swjdp, apselold);
1570 return ERROR_OK;
1573 DAP_COMMAND_HANDLER(dap_baseaddr_command)
1575 uint32_t apsel, apselsave, baseaddr;
1576 int retval;
1578 apselsave = swjdp->apsel;
1579 switch (CMD_ARGC) {
1580 case 0:
1581 apsel = swjdp->apsel;
1582 break;
1583 case 1:
1584 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1585 /* AP address is in bits 31:24 of DP_SELECT */
1586 if (apsel >= 256)
1587 return ERROR_INVALID_ARGUMENTS;
1588 break;
1589 default:
1590 return ERROR_COMMAND_SYNTAX_ERROR;
1593 if (apselsave != apsel)
1594 dap_ap_select(swjdp, apsel);
1596 /* NOTE: assumes we're talking to a MEM-AP, which
1597 * has a base address. There are other kinds of AP,
1598 * though they're not common for now. This should
1599 * use the ID register to verify it's a MEM-AP.
1601 dap_ap_read_reg_u32(swjdp, AP_REG_BASE, &baseaddr);
1602 retval = jtagdp_transaction_endcheck(swjdp);
1603 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1605 if (apselsave != apsel)
1606 dap_ap_select(swjdp, apselsave);
1608 return retval;
1611 DAP_COMMAND_HANDLER(dap_memaccess_command)
1613 uint32_t memaccess_tck;
1615 switch (CMD_ARGC) {
1616 case 0:
1617 memaccess_tck = swjdp->memaccess_tck;
1618 break;
1619 case 1:
1620 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1621 break;
1622 default:
1623 return ERROR_COMMAND_SYNTAX_ERROR;
1625 swjdp->memaccess_tck = memaccess_tck;
1627 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1628 swjdp->memaccess_tck);
1630 return ERROR_OK;
1633 DAP_COMMAND_HANDLER(dap_apsel_command)
1635 uint32_t apsel, apid;
1636 int retval;
1638 switch (CMD_ARGC) {
1639 case 0:
1640 apsel = 0;
1641 break;
1642 case 1:
1643 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1644 /* AP address is in bits 31:24 of DP_SELECT */
1645 if (apsel >= 256)
1646 return ERROR_INVALID_ARGUMENTS;
1647 break;
1648 default:
1649 return ERROR_COMMAND_SYNTAX_ERROR;
1652 dap_ap_select(swjdp, apsel);
1653 dap_ap_read_reg_u32(swjdp, AP_REG_IDR, &apid);
1654 retval = jtagdp_transaction_endcheck(swjdp);
1655 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1656 apsel, apid);
1658 return retval;
1661 DAP_COMMAND_HANDLER(dap_apid_command)
1663 uint32_t apsel, apselsave, apid;
1664 int retval;
1666 apselsave = swjdp->apsel;
1667 switch (CMD_ARGC) {
1668 case 0:
1669 apsel = swjdp->apsel;
1670 break;
1671 case 1:
1672 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1673 /* AP address is in bits 31:24 of DP_SELECT */
1674 if (apsel >= 256)
1675 return ERROR_INVALID_ARGUMENTS;
1676 break;
1677 default:
1678 return ERROR_COMMAND_SYNTAX_ERROR;
1681 if (apselsave != apsel)
1682 dap_ap_select(swjdp, apsel);
1684 dap_ap_read_reg_u32(swjdp, AP_REG_IDR, &apid);
1685 retval = jtagdp_transaction_endcheck(swjdp);
1686 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1687 if (apselsave != apsel)
1688 dap_ap_select(swjdp, apselsave);
1690 return retval;