jtag: basic support for P&E Micro OSBDM (aka OSJTAG) adapter
[openocd.git] / src / target / arm_adi_v5.c
blob2203eb55d44e73f21d0f3e7f8d6cef8174080dc4
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 * Relevant specifications from ARM include:
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
76 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
79 uint32_t tar_block_size(uint32_t address)
80 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
87 /***************************************************************************
88 * *
89 * DP and MEM-AP register access through APACC and DPACC *
90 * *
91 ***************************************************************************/
93 /**
94 * Select one of the APs connected to the specified DAP. The
95 * selection is implicitly used with future AP transactions.
96 * This is a NOP if the specified AP is already selected.
98 * @param dap The DAP
99 * @param apsel Number of the AP to (implicitly) use with further
100 * transactions. This normally identifies a MEM-AP.
102 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
104 uint32_t new_ap = (ap << 24) & 0xFF000000;
106 if (new_ap != dap->ap_current) {
107 dap->ap_current = new_ap;
108 /* Switching AP invalidates cached values.
109 * Values MUST BE UPDATED BEFORE AP ACCESS.
111 dap->ap_bank_value = -1;
112 dap->ap_csw_value = -1;
113 dap->ap_tar_value = -1;
118 * Queue transactions setting up transfer parameters for the
119 * currently selected MEM-AP.
121 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
122 * initiate data reads or writes using memory or peripheral addresses.
123 * If the CSW is configured for it, the TAR may be automatically
124 * incremented after each transfer.
126 * @todo Rename to reflect it being specifically a MEM-AP function.
128 * @param dap The DAP connected to the MEM-AP.
129 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
130 * matches the cached value, the register is not changed.
131 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
132 * matches the cached address, the register is not changed.
134 * @return ERROR_OK if the transaction was properly queued, else a fault code.
136 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
138 int retval;
140 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
141 if (csw != dap->ap_csw_value) {
142 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
143 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
144 if (retval != ERROR_OK)
145 return retval;
146 dap->ap_csw_value = csw;
148 if (tar != dap->ap_tar_value) {
149 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
150 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
151 if (retval != ERROR_OK)
152 return retval;
153 dap->ap_tar_value = tar;
155 /* Disable TAR cache when autoincrementing */
156 if (csw & CSW_ADDRINC_MASK)
157 dap->ap_tar_value = -1;
158 return ERROR_OK;
162 * Asynchronous (queued) read of a word from memory or a system register.
164 * @param dap The DAP connected to the MEM-AP performing the read.
165 * @param address Address of the 32-bit word to read; it must be
166 * readable by the currently selected MEM-AP.
167 * @param value points to where the word will be stored when the
168 * transaction queue is flushed (assuming no errors).
170 * @return ERROR_OK for success. Otherwise a fault code.
172 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
173 uint32_t *value)
175 int retval;
177 /* Use banked addressing (REG_BDx) to avoid some link traffic
178 * (updating TAR) when reading several consecutive addresses.
180 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
181 address & 0xFFFFFFF0);
182 if (retval != ERROR_OK)
183 return retval;
185 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
189 * Synchronous read of a word from memory or a system register.
190 * As a side effect, this flushes any queued transactions.
192 * @param dap The DAP connected to the MEM-AP performing the read.
193 * @param address Address of the 32-bit word to read; it must be
194 * readable by the currently selected MEM-AP.
195 * @param value points to where the result will be stored.
197 * @return ERROR_OK for success; *value holds the result.
198 * Otherwise a fault code.
200 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
201 uint32_t *value)
203 int retval;
205 retval = mem_ap_read_u32(dap, address, value);
206 if (retval != ERROR_OK)
207 return retval;
209 return dap_run(dap);
213 * Asynchronous (queued) write of a word to memory or a system register.
215 * @param dap The DAP connected to the MEM-AP.
216 * @param address Address to be written; it must be writable by
217 * the currently selected MEM-AP.
218 * @param value Word that will be written to the address when transaction
219 * queue is flushed (assuming no errors).
221 * @return ERROR_OK for success. Otherwise a fault code.
223 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
224 uint32_t value)
226 int retval;
228 /* Use banked addressing (REG_BDx) to avoid some link traffic
229 * (updating TAR) when writing several consecutive addresses.
231 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
232 address & 0xFFFFFFF0);
233 if (retval != ERROR_OK)
234 return retval;
236 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
237 value);
241 * Synchronous write of a word to memory or a system register.
242 * As a side effect, this flushes any queued transactions.
244 * @param dap The DAP connected to the MEM-AP.
245 * @param address Address to be written; it must be writable by
246 * the currently selected MEM-AP.
247 * @param value Word that will be written.
249 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
251 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
252 uint32_t value)
254 int retval = mem_ap_write_u32(dap, address, value);
256 if (retval != ERROR_OK)
257 return retval;
259 return dap_run(dap);
262 /*****************************************************************************
264 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
266 * Write a buffer in target order (little endian) *
268 *****************************************************************************/
269 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
271 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
272 uint32_t adr = address;
273 const uint8_t *pBuffer = buffer;
275 count >>= 2;
276 wcount = count;
278 /* if we have an unaligned access - reorder data */
279 if (adr & 0x3u) {
280 for (writecount = 0; writecount < count; writecount++) {
281 int i;
282 uint32_t outvalue;
283 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
285 for (i = 0; i < 4; i++) {
286 *((uint8_t *)pBuffer + (adr & 0x3)) = outvalue;
287 outvalue >>= 8;
288 adr++;
290 pBuffer += sizeof(uint32_t);
294 while (wcount > 0) {
295 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
296 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
297 if (wcount < blocksize)
298 blocksize = wcount;
300 /* handle unaligned data at 4k boundary */
301 if (blocksize == 0)
302 blocksize = 1;
304 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
305 if (retval != ERROR_OK)
306 return retval;
308 for (writecount = 0; writecount < blocksize; writecount++) {
309 retval = dap_queue_ap_write(dap, AP_REG_DRW,
310 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
311 if (retval != ERROR_OK)
312 break;
315 retval = dap_run(dap);
316 if (retval == ERROR_OK) {
317 wcount = wcount - blocksize;
318 address = address + 4 * blocksize;
319 buffer = buffer + 4 * blocksize;
320 } else
321 errorcount++;
323 if (errorcount > 1) {
324 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
325 return retval;
329 return retval;
332 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
333 const uint8_t *buffer, int count, uint32_t address)
335 int retval = ERROR_OK;
336 int wcount, blocksize, writecount, i;
338 wcount = count >> 1;
340 while (wcount > 0) {
341 int nbytes;
343 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
344 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
346 if (wcount < blocksize)
347 blocksize = wcount;
349 /* handle unaligned data at 4k boundary */
350 if (blocksize == 0)
351 blocksize = 1;
353 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
354 if (retval != ERROR_OK)
355 return retval;
356 writecount = blocksize;
358 do {
359 nbytes = MIN((writecount << 1), 4);
361 if (nbytes < 4) {
362 retval = mem_ap_write_buf_u16(dap, buffer,
363 nbytes, address);
364 if (retval != ERROR_OK) {
365 LOG_WARNING("Block write error address "
366 "0x%" PRIx32 ", count 0x%x",
367 address, count);
368 return retval;
371 address += nbytes >> 1;
372 } else {
373 uint32_t outvalue;
374 memcpy(&outvalue, buffer, sizeof(uint32_t));
376 for (i = 0; i < nbytes; i++) {
377 *((uint8_t *)buffer + (address & 0x3)) = outvalue;
378 outvalue >>= 8;
379 address++;
382 memcpy(&outvalue, buffer, sizeof(uint32_t));
383 retval = dap_queue_ap_write(dap,
384 AP_REG_DRW, outvalue);
385 if (retval != ERROR_OK)
386 break;
388 retval = dap_run(dap);
389 if (retval != ERROR_OK) {
390 LOG_WARNING("Block write error address "
391 "0x%" PRIx32 ", count 0x%x",
392 address, count);
393 return retval;
397 buffer += nbytes >> 1;
398 writecount -= nbytes >> 1;
400 } while (writecount);
401 wcount -= blocksize;
404 return retval;
407 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
409 int retval = ERROR_OK;
411 if (count >= 4)
412 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
414 while (count > 0) {
415 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
416 if (retval != ERROR_OK)
417 return retval;
418 uint16_t svalue;
419 memcpy(&svalue, buffer, sizeof(uint16_t));
420 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
421 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
422 if (retval != ERROR_OK)
423 break;
425 retval = dap_run(dap);
426 if (retval != ERROR_OK)
427 break;
429 count -= 2;
430 address += 2;
431 buffer += 2;
434 return retval;
437 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
438 const uint8_t *buffer, int count, uint32_t address)
440 int retval = ERROR_OK;
441 int wcount, blocksize, writecount, i;
443 wcount = count;
445 while (wcount > 0) {
446 int nbytes;
448 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
449 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
451 if (wcount < blocksize)
452 blocksize = wcount;
454 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
455 if (retval != ERROR_OK)
456 return retval;
457 writecount = blocksize;
459 do {
460 nbytes = MIN(writecount, 4);
462 if (nbytes < 4) {
463 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
464 if (retval != ERROR_OK) {
465 LOG_WARNING("Block write error address "
466 "0x%" PRIx32 ", count 0x%x",
467 address, count);
468 return retval;
471 address += nbytes;
472 } else {
473 uint32_t outvalue;
474 memcpy(&outvalue, buffer, sizeof(uint32_t));
476 for (i = 0; i < nbytes; i++) {
477 *((uint8_t *)buffer + (address & 0x3)) = outvalue;
478 outvalue >>= 8;
479 address++;
482 memcpy(&outvalue, buffer, sizeof(uint32_t));
483 retval = dap_queue_ap_write(dap,
484 AP_REG_DRW, outvalue);
485 if (retval != ERROR_OK)
486 break;
488 retval = dap_run(dap);
489 if (retval != ERROR_OK) {
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return retval;
497 buffer += nbytes;
498 writecount -= nbytes;
500 } while (writecount);
501 wcount -= blocksize;
504 return retval;
507 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
509 int retval = ERROR_OK;
511 if (count >= 4)
512 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
514 while (count > 0) {
515 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
516 if (retval != ERROR_OK)
517 return retval;
518 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
519 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
520 if (retval != ERROR_OK)
521 break;
523 retval = dap_run(dap);
524 if (retval != ERROR_OK)
525 break;
527 count--;
528 address++;
529 buffer++;
532 return retval;
535 /* FIXME don't import ... this is a temporary workaround for the
536 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
538 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
539 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
540 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
543 * Synchronously read a block of 32-bit words into a buffer
544 * @param dap The DAP connected to the MEM-AP.
545 * @param buffer where the words will be stored (in host byte order).
546 * @param count How many words to read.
547 * @param address Memory address from which to read words; all the
548 * words must be readable by the currently selected MEM-AP.
550 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
551 int count, uint32_t address)
553 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
554 uint32_t adr = address;
555 uint8_t *pBuffer = buffer;
557 count >>= 2;
558 wcount = count;
560 while (wcount > 0) {
561 /* Adjust to read blocks within boundaries aligned to the
562 * TAR autoincrement size (at least 2^10). Autoincrement
563 * mode avoids an extra per-word roundtrip to update TAR.
565 blocksize = max_tar_block_size(dap->tar_autoincr_block,
566 address);
567 if (wcount < blocksize)
568 blocksize = wcount;
570 /* handle unaligned data at 4k boundary */
571 if (blocksize == 0)
572 blocksize = 1;
574 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
575 address);
576 if (retval != ERROR_OK)
577 return retval;
579 /* FIXME remove these three calls to adi_jtag_dp_scan(),
580 * so this routine becomes transport-neutral. Be careful
581 * not to cause performance problems with JTAG; would it
582 * suffice to loop over dap_queue_ap_read(), or would that
583 * be slower when JTAG is the chosen transport?
586 /* Scan out first read */
587 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
588 DPAP_READ, 0, NULL, NULL);
589 if (retval != ERROR_OK)
590 return retval;
591 for (readcount = 0; readcount < blocksize - 1; readcount++) {
592 /* Scan out next read; scan in posted value for the
593 * previous one. Assumes read is acked "OK/FAULT",
594 * and CTRL_STAT says that meant "OK".
596 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
597 DPAP_READ, 0, buffer + 4 * readcount,
598 &dap->ack);
599 if (retval != ERROR_OK)
600 return retval;
603 /* Scan in last posted value; RDBUFF has no other effect,
604 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
606 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
607 DPAP_READ, 0, buffer + 4 * readcount,
608 &dap->ack);
609 if (retval != ERROR_OK)
610 return retval;
612 retval = dap_run(dap);
613 if (retval != ERROR_OK) {
614 errorcount++;
615 if (errorcount <= 1) {
616 /* try again */
617 continue;
619 LOG_WARNING("Block read error address 0x%" PRIx32, address);
620 return retval;
622 wcount = wcount - blocksize;
623 address += 4 * blocksize;
624 buffer += 4 * blocksize;
627 /* if we have an unaligned access - reorder data */
628 if (adr & 0x3u) {
629 for (readcount = 0; readcount < count; readcount++) {
630 int i;
631 uint32_t data;
632 memcpy(&data, pBuffer, sizeof(uint32_t));
634 for (i = 0; i < 4; i++) {
635 *((uint8_t *)pBuffer) =
636 (data >> 8 * (adr & 0x3));
637 pBuffer++;
638 adr++;
643 return retval;
646 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
647 uint8_t *buffer, int count, uint32_t address)
649 uint32_t invalue;
650 int retval = ERROR_OK;
651 int wcount, blocksize, readcount, i;
653 wcount = count >> 1;
655 while (wcount > 0) {
656 int nbytes;
658 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
659 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
660 if (wcount < blocksize)
661 blocksize = wcount;
663 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
664 if (retval != ERROR_OK)
665 return retval;
667 /* handle unaligned data at 4k boundary */
668 if (blocksize == 0)
669 blocksize = 1;
670 readcount = blocksize;
672 do {
673 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
674 if (retval != ERROR_OK)
675 return retval;
676 retval = dap_run(dap);
677 if (retval != ERROR_OK) {
678 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
679 return retval;
682 nbytes = MIN((readcount << 1), 4);
684 for (i = 0; i < nbytes; i++) {
685 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
686 buffer++;
687 address++;
690 readcount -= (nbytes >> 1);
691 } while (readcount);
692 wcount -= blocksize;
695 return retval;
699 * Synchronously read a block of 16-bit halfwords into a buffer
700 * @param dap The DAP connected to the MEM-AP.
701 * @param buffer where the halfwords will be stored (in host byte order).
702 * @param count How many halfwords to read.
703 * @param address Memory address from which to read words; all the
704 * words must be readable by the currently selected MEM-AP.
706 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
707 int count, uint32_t address)
709 uint32_t invalue, i;
710 int retval = ERROR_OK;
712 if (count >= 4)
713 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
715 while (count > 0) {
716 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
717 if (retval != ERROR_OK)
718 return retval;
719 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
720 if (retval != ERROR_OK)
721 break;
723 retval = dap_run(dap);
724 if (retval != ERROR_OK)
725 break;
727 if (address & 0x1) {
728 for (i = 0; i < 2; i++) {
729 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
730 buffer++;
731 address++;
733 } else {
734 uint16_t svalue = (invalue >> 8 * (address & 0x3));
735 memcpy(buffer, &svalue, sizeof(uint16_t));
736 address += 2;
737 buffer += 2;
739 count -= 2;
742 return retval;
745 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
746 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
748 * The solution is to arrange for a large out/in scan in this loop and
749 * and convert data afterwards.
751 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
752 uint8_t *buffer, int count, uint32_t address)
754 uint32_t invalue;
755 int retval = ERROR_OK;
756 int wcount, blocksize, readcount, i;
758 wcount = count;
760 while (wcount > 0) {
761 int nbytes;
763 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
764 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
766 if (wcount < blocksize)
767 blocksize = wcount;
769 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
770 if (retval != ERROR_OK)
771 return retval;
772 readcount = blocksize;
774 do {
775 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
776 if (retval != ERROR_OK)
777 return retval;
778 retval = dap_run(dap);
779 if (retval != ERROR_OK) {
780 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
781 return retval;
784 nbytes = MIN(readcount, 4);
786 for (i = 0; i < nbytes; i++) {
787 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
788 buffer++;
789 address++;
792 readcount -= nbytes;
793 } while (readcount);
794 wcount -= blocksize;
797 return retval;
801 * Synchronously read a block of bytes into a buffer
802 * @param dap The DAP connected to the MEM-AP.
803 * @param buffer where the bytes will be stored.
804 * @param count How many bytes to read.
805 * @param address Memory address from which to read data; all the
806 * data must be readable by the currently selected MEM-AP.
808 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
809 int count, uint32_t address)
811 uint32_t invalue;
812 int retval = ERROR_OK;
814 if (count >= 4)
815 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
817 while (count > 0) {
818 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
819 if (retval != ERROR_OK)
820 return retval;
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
823 return retval;
824 retval = dap_run(dap);
825 if (retval != ERROR_OK)
826 break;
828 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
829 count--;
830 address++;
831 buffer++;
834 return retval;
837 /*--------------------------------------------------------------------*/
838 /* Wrapping function with selection of AP */
839 /*--------------------------------------------------------------------*/
840 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
841 uint32_t address, uint32_t *value)
843 dap_ap_select(swjdp, ap);
844 return mem_ap_read_u32(swjdp, address, value);
847 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
848 uint32_t address, uint32_t value)
850 dap_ap_select(swjdp, ap);
851 return mem_ap_write_u32(swjdp, address, value);
854 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
855 uint32_t address, uint32_t *value)
857 dap_ap_select(swjdp, ap);
858 return mem_ap_read_atomic_u32(swjdp, address, value);
861 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
862 uint32_t address, uint32_t value)
864 dap_ap_select(swjdp, ap);
865 return mem_ap_write_atomic_u32(swjdp, address, value);
868 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
869 uint8_t *buffer, int count, uint32_t address)
871 dap_ap_select(swjdp, ap);
872 return mem_ap_read_buf_u8(swjdp, buffer, count, address);
875 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
876 uint8_t *buffer, int count, uint32_t address)
878 dap_ap_select(swjdp, ap);
879 return mem_ap_read_buf_u16(swjdp, buffer, count, address);
882 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
883 uint8_t *buffer, int count, uint32_t address)
885 dap_ap_select(swjdp, ap);
886 return mem_ap_read_buf_u32(swjdp, buffer, count, address);
889 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
890 const uint8_t *buffer, int count, uint32_t address)
892 dap_ap_select(swjdp, ap);
893 return mem_ap_write_buf_u8(swjdp, buffer, count, address);
896 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
897 const uint8_t *buffer, int count, uint32_t address)
899 dap_ap_select(swjdp, ap);
900 return mem_ap_write_buf_u16(swjdp, buffer, count, address);
903 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
904 const uint8_t *buffer, int count, uint32_t address)
906 dap_ap_select(swjdp, ap);
907 return mem_ap_write_buf_u32(swjdp, buffer, count, address);
910 #define MDM_REG_STAT 0x00
911 #define MDM_REG_CTRL 0x04
912 #define MDM_REG_ID 0xfc
914 #define MDM_STAT_FMEACK (1<<0)
915 #define MDM_STAT_FREADY (1<<1)
916 #define MDM_STAT_SYSSEC (1<<2)
917 #define MDM_STAT_SYSRES (1<<3)
918 #define MDM_STAT_FMEEN (1<<5)
919 #define MDM_STAT_BACKDOOREN (1<<6)
920 #define MDM_STAT_LPEN (1<<7)
921 #define MDM_STAT_VLPEN (1<<8)
922 #define MDM_STAT_LLSMODEXIT (1<<9)
923 #define MDM_STAT_VLLSXMODEXIT (1<<10)
924 #define MDM_STAT_CORE_HALTED (1<<16)
925 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
926 #define MDM_STAT_CORESLEEPING (1<<18)
928 #define MEM_CTRL_FMEIP (1<<0)
929 #define MEM_CTRL_DBG_DIS (1<<1)
930 #define MEM_CTRL_DBG_REQ (1<<2)
931 #define MEM_CTRL_SYS_RES_REQ (1<<3)
932 #define MEM_CTRL_CORE_HOLD_RES (1<<4)
933 #define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
934 #define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
935 #define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
940 int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap)
942 uint32_t val;
943 int retval;
944 enum reset_types jtag_reset_config = jtag_get_reset_config();
946 dap_ap_select(dap, 1);
948 /* first check mdm-ap id register */
949 retval = dap_queue_ap_read(dap, MDM_REG_ID, &val);
950 if (retval != ERROR_OK)
951 return retval;
952 dap_run(dap);
954 if (val != 0x001C0000) {
955 LOG_DEBUG("id doesn't match %08X != 0x001C0000", val);
956 dap_ap_select(dap, 0);
957 return ERROR_FAIL;
960 /* read and parse status register
961 * it's important that the device is out of
962 * reset here
964 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
965 if (retval != ERROR_OK)
966 return retval;
967 dap_run(dap);
969 LOG_DEBUG("MDM_REG_STAT %08X", val);
971 if ((val & (MDM_STAT_SYSSEC|MDM_STAT_FREADY)) != (MDM_STAT_FREADY)) {
972 LOG_DEBUG("MDMAP: system is secured, masserase needed");
974 if (!(val & MDM_STAT_FMEEN))
975 LOG_DEBUG("MDMAP: masserase is disabled");
976 else {
977 /* we need to assert reset */
978 if (jtag_reset_config & RESET_HAS_SRST) {
979 /* default to asserting srst */
980 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
981 jtag_add_reset(1, 1);
982 else
983 jtag_add_reset(0, 1);
984 } else {
985 LOG_DEBUG("SRST not configured");
986 dap_ap_select(dap, 0);
987 return ERROR_FAIL;
990 while (1) {
991 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP);
992 if (retval != ERROR_OK)
993 return retval;
994 dap_run(dap);
995 /* read status register and wait for ready */
996 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
997 if (retval != ERROR_OK)
998 return retval;
999 dap_run(dap);
1000 LOG_DEBUG("MDM_REG_STAT %08X", val);
1002 if ((val & 1))
1003 break;
1006 while (1) {
1007 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0);
1008 if (retval != ERROR_OK)
1009 return retval;
1010 dap_run(dap);
1011 /* read status register */
1012 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
1013 if (retval != ERROR_OK)
1014 return retval;
1015 dap_run(dap);
1016 LOG_DEBUG("MDM_REG_STAT %08X", val);
1017 /* read control register and wait for ready */
1018 retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val);
1019 if (retval != ERROR_OK)
1020 return retval;
1021 dap_run(dap);
1022 LOG_DEBUG("MDM_REG_CTRL %08X", val);
1024 if (val == 0x00)
1025 break;
1030 dap_ap_select(dap, 0);
1032 return ERROR_OK;
1035 /** */
1036 struct dap_syssec_filter {
1037 /** */
1038 uint32_t idcode;
1039 /** */
1040 int (*dap_init)(struct adiv5_dap *dap);
1043 /** */
1044 static struct dap_syssec_filter dap_syssec_filter_data[] = {
1045 { 0x4BA00477, dap_syssec_kinetis_mdmap }
1051 int dap_syssec(struct adiv5_dap *dap)
1053 unsigned int i;
1054 struct jtag_tap *tap;
1056 for (i = 0; i < sizeof(dap_syssec_filter_data); i++) {
1057 tap = dap->jtag_info->tap;
1059 while (tap != NULL) {
1060 if (tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode)) {
1061 LOG_DEBUG("DAP: mdmap_init for idcode: %08x", tap->idcode);
1062 dap_syssec_filter_data[i].dap_init(dap);
1064 tap = tap->next_tap;
1068 return ERROR_OK;
1071 /*--------------------------------------------------------------------------*/
1074 /* FIXME don't import ... just initialize as
1075 * part of DAP transport setup
1077 extern const struct dap_ops jtag_dp_ops;
1079 /*--------------------------------------------------------------------------*/
1082 * Initialize a DAP. This sets up the power domains, prepares the DP
1083 * for further use, and arranges to use AP #0 for all AP operations
1084 * until dap_ap-select() changes that policy.
1086 * @param dap The DAP being initialized.
1088 * @todo Rename this. We also need an initialization scheme which account
1089 * for SWD transports not just JTAG; that will need to address differences
1090 * in layering. (JTAG is useful without any debug target; but not SWD.)
1091 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
1093 int ahbap_debugport_init(struct adiv5_dap *dap)
1095 uint32_t ctrlstat;
1096 int cnt = 0;
1097 int retval;
1099 LOG_DEBUG(" ");
1101 /* JTAG-DP or SWJ-DP, in JTAG mode
1102 * ... for SWD mode this is patched as part
1103 * of link switchover
1105 if (!dap->ops)
1106 dap->ops = &jtag_dp_ops;
1108 /* Default MEM-AP setup.
1110 * REVISIT AP #0 may be an inappropriate default for this.
1111 * Should we probe, or take a hint from the caller?
1112 * Presumably we can ignore the possibility of multiple APs.
1114 dap->ap_current = !0;
1115 dap_ap_select(dap, 0);
1117 /* DP initialization */
1119 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1120 if (retval != ERROR_OK)
1121 return retval;
1123 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1124 if (retval != ERROR_OK)
1125 return retval;
1127 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1128 if (retval != ERROR_OK)
1129 return retval;
1131 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1132 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1133 if (retval != ERROR_OK)
1134 return retval;
1136 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1137 if (retval != ERROR_OK)
1138 return retval;
1139 retval = dap_run(dap);
1140 if (retval != ERROR_OK)
1141 return retval;
1143 /* Check that we have debug power domains activated */
1144 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) {
1145 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1146 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1147 if (retval != ERROR_OK)
1148 return retval;
1149 retval = dap_run(dap);
1150 if (retval != ERROR_OK)
1151 return retval;
1152 alive_sleep(10);
1155 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) {
1156 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1157 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1158 if (retval != ERROR_OK)
1159 return retval;
1160 retval = dap_run(dap);
1161 if (retval != ERROR_OK)
1162 return retval;
1163 alive_sleep(10);
1166 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1167 if (retval != ERROR_OK)
1168 return retval;
1169 /* With debug power on we can activate OVERRUN checking */
1170 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1171 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1172 if (retval != ERROR_OK)
1173 return retval;
1174 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1175 if (retval != ERROR_OK)
1176 return retval;
1178 dap_syssec(dap);
1180 return ERROR_OK;
1183 /* CID interpretation -- see ARM IHI 0029B section 3
1184 * and ARM IHI 0031A table 13-3.
1186 static const char *class_description[16] = {
1187 "Reserved", "ROM table", "Reserved", "Reserved",
1188 "Reserved", "Reserved", "Reserved", "Reserved",
1189 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1190 "Reserved", "OptimoDE DESS",
1191 "Generic IP component", "PrimeCell or System component"
1194 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1196 return cid3 == 0xb1 && cid2 == 0x05
1197 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1200 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1201 uint32_t *out_dbgbase, uint32_t *out_apid)
1203 uint32_t ap_old;
1204 int retval;
1205 uint32_t dbgbase, apid;
1207 /* AP address is in bits 31:24 of DP_SELECT */
1208 if (ap >= 256)
1209 return ERROR_COMMAND_SYNTAX_ERROR;
1211 ap_old = dap->ap_current;
1212 dap_ap_select(dap, ap);
1214 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1215 if (retval != ERROR_OK)
1216 return retval;
1217 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1218 if (retval != ERROR_OK)
1219 return retval;
1220 retval = dap_run(dap);
1221 if (retval != ERROR_OK)
1222 return retval;
1224 /* Excavate the device ID code */
1225 struct jtag_tap *tap = dap->jtag_info->tap;
1226 while (tap != NULL) {
1227 if (tap->hasidcode)
1228 break;
1229 tap = tap->next_tap;
1231 if (tap == NULL || !tap->hasidcode)
1232 return ERROR_OK;
1234 dap_ap_select(dap, ap_old);
1236 /* The asignment happens only here to prevent modification of these
1237 * values before they are certain. */
1238 *out_dbgbase = dbgbase;
1239 *out_apid = apid;
1241 return ERROR_OK;
1244 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1245 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1247 uint32_t ap_old;
1248 uint32_t romentry, entry_offset = 0, component_base, devtype;
1249 int retval = ERROR_FAIL;
1251 if (ap >= 256)
1252 return ERROR_COMMAND_SYNTAX_ERROR;
1254 ap_old = dap->ap_current;
1255 dap_ap_select(dap, ap);
1257 do {
1258 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1259 entry_offset, &romentry);
1260 if (retval != ERROR_OK)
1261 return retval;
1263 component_base = (dbgbase & 0xFFFFF000)
1264 + (romentry & 0xFFFFF000);
1266 if (romentry & 0x1) {
1267 retval = mem_ap_read_atomic_u32(dap,
1268 (component_base & 0xfffff000) | 0xfcc,
1269 &devtype);
1270 if ((devtype & 0xff) == type) {
1271 *addr = component_base;
1272 retval = ERROR_OK;
1273 break;
1276 entry_offset += 4;
1277 } while (romentry > 0);
1279 dap_ap_select(dap, ap_old);
1281 return retval;
1284 static int dap_info_command(struct command_context *cmd_ctx,
1285 struct adiv5_dap *dap, int ap)
1287 int retval;
1288 uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */
1289 int romtable_present = 0;
1290 uint8_t mem_ap;
1291 uint32_t ap_old;
1293 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1294 if (retval != ERROR_OK)
1295 return retval;
1297 ap_old = dap->ap_current;
1298 dap_ap_select(dap, ap);
1300 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1301 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1302 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1303 if (apid) {
1304 switch (apid&0x0F) {
1305 case 0:
1306 command_print(cmd_ctx, "\tType is JTAG-AP");
1307 break;
1308 case 1:
1309 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1310 break;
1311 case 2:
1312 command_print(cmd_ctx, "\tType is MEM-AP APB");
1313 break;
1314 default:
1315 command_print(cmd_ctx, "\tUnknown AP type");
1316 break;
1319 /* NOTE: a MEM-AP may have a single CoreSight component that's
1320 * not a ROM table ... or have no such components at all.
1322 if (mem_ap)
1323 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1324 } else
1325 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1327 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1328 if (romtable_present) {
1329 uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
1330 uint16_t entry_offset;
1332 /* bit 16 of apid indicates a memory access port */
1333 if (dbgbase & 0x02)
1334 command_print(cmd_ctx, "\tValid ROM table present");
1335 else
1336 command_print(cmd_ctx, "\tROM table in legacy format");
1338 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1339 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1340 if (retval != ERROR_OK)
1341 return retval;
1342 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1343 if (retval != ERROR_OK)
1344 return retval;
1345 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1346 if (retval != ERROR_OK)
1347 return retval;
1348 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1349 if (retval != ERROR_OK)
1350 return retval;
1351 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1352 if (retval != ERROR_OK)
1353 return retval;
1354 retval = dap_run(dap);
1355 if (retval != ERROR_OK)
1356 return retval;
1358 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1359 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1360 ", CID2 0x%2.2x"
1361 ", CID1 0x%2.2x"
1362 ", CID0 0x%2.2x",
1363 (unsigned) cid3, (unsigned)cid2,
1364 (unsigned) cid1, (unsigned) cid0);
1365 if (memtype & 0x01)
1366 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1367 else
1368 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1369 "Dedicated debug bus.");
1371 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1372 entry_offset = 0;
1373 do {
1374 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1375 if (retval != ERROR_OK)
1376 return retval;
1377 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "", entry_offset, romentry);
1378 if (romentry & 0x01) {
1379 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1380 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1381 uint32_t component_base;
1382 unsigned part_num;
1383 char *type, *full;
1385 component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
1387 /* IDs are in last 4K section */
1388 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
1389 if (retval != ERROR_OK)
1390 return retval;
1391 c_pid0 &= 0xff;
1392 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
1393 if (retval != ERROR_OK)
1394 return retval;
1395 c_pid1 &= 0xff;
1396 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
1397 if (retval != ERROR_OK)
1398 return retval;
1399 c_pid2 &= 0xff;
1400 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
1401 if (retval != ERROR_OK)
1402 return retval;
1403 c_pid3 &= 0xff;
1404 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
1405 if (retval != ERROR_OK)
1406 return retval;
1407 c_pid4 &= 0xff;
1409 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
1410 if (retval != ERROR_OK)
1411 return retval;
1412 c_cid0 &= 0xff;
1413 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1414 if (retval != ERROR_OK)
1415 return retval;
1416 c_cid1 &= 0xff;
1417 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1418 if (retval != ERROR_OK)
1419 return retval;
1420 c_cid2 &= 0xff;
1421 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1422 if (retval != ERROR_OK)
1423 return retval;
1424 c_cid3 &= 0xff;
1426 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ","
1427 "start address 0x%" PRIx32, component_base,
1428 /* component may take multiple 4K pages */
1429 component_base - 0x1000*(c_pid4 >> 4));
1430 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1431 (int) (c_cid1 >> 4) & 0xf,
1432 /* See ARM IHI 0029B Table 3-3 */
1433 class_description[(c_cid1 >> 4) & 0xf]);
1435 /* CoreSight component? */
1436 if (((c_cid1 >> 4) & 0x0f) == 9) {
1437 uint32_t devtype;
1438 unsigned minor;
1439 char *major = "Reserved", *subtype = "Reserved";
1441 retval = mem_ap_read_atomic_u32(dap,
1442 (component_base & 0xfffff000) | 0xfcc,
1443 &devtype);
1444 if (retval != ERROR_OK)
1445 return retval;
1446 minor = (devtype >> 4) & 0x0f;
1447 switch (devtype & 0x0f) {
1448 case 0:
1449 major = "Miscellaneous";
1450 switch (minor) {
1451 case 0:
1452 subtype = "other";
1453 break;
1454 case 4:
1455 subtype = "Validation component";
1456 break;
1458 break;
1459 case 1:
1460 major = "Trace Sink";
1461 switch (minor) {
1462 case 0:
1463 subtype = "other";
1464 break;
1465 case 1:
1466 subtype = "Port";
1467 break;
1468 case 2:
1469 subtype = "Buffer";
1470 break;
1472 break;
1473 case 2:
1474 major = "Trace Link";
1475 switch (minor) {
1476 case 0:
1477 subtype = "other";
1478 break;
1479 case 1:
1480 subtype = "Funnel, router";
1481 break;
1482 case 2:
1483 subtype = "Filter";
1484 break;
1485 case 3:
1486 subtype = "FIFO, buffer";
1487 break;
1489 break;
1490 case 3:
1491 major = "Trace Source";
1492 switch (minor) {
1493 case 0:
1494 subtype = "other";
1495 break;
1496 case 1:
1497 subtype = "Processor";
1498 break;
1499 case 2:
1500 subtype = "DSP";
1501 break;
1502 case 3:
1503 subtype = "Engine/Coprocessor";
1504 break;
1505 case 4:
1506 subtype = "Bus";
1507 break;
1509 break;
1510 case 4:
1511 major = "Debug Control";
1512 switch (minor) {
1513 case 0:
1514 subtype = "other";
1515 break;
1516 case 1:
1517 subtype = "Trigger Matrix";
1518 break;
1519 case 2:
1520 subtype = "Debug Auth";
1521 break;
1523 break;
1524 case 5:
1525 major = "Debug Logic";
1526 switch (minor) {
1527 case 0:
1528 subtype = "other";
1529 break;
1530 case 1:
1531 subtype = "Processor";
1532 break;
1533 case 2:
1534 subtype = "DSP";
1535 break;
1536 case 3:
1537 subtype = "Engine/Coprocessor";
1538 break;
1540 break;
1542 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1543 (unsigned) (devtype & 0xff),
1544 major, subtype);
1545 /* REVISIT also show 0xfc8 DevId */
1548 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1549 command_print(cmd_ctx,
1550 "\t\tCID3 0%2.2x"
1551 ", CID2 0%2.2x"
1552 ", CID1 0%2.2x"
1553 ", CID0 0%2.2x",
1554 (int) c_cid3,
1555 (int) c_cid2,
1556 (int)c_cid1,
1557 (int)c_cid0);
1558 command_print(cmd_ctx,
1559 "\t\tPeripheral ID[4..0] = hex "
1560 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1561 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1562 (int) c_pid1, (int) c_pid0);
1564 /* Part number interpretations are from Cortex
1565 * core specs, the CoreSight components TRM
1566 * (ARM DDI 0314H), CoreSight System Design
1567 * Guide (ARM DGI 0012D) and ETM specs; also
1568 * from chip observation (e.g. TI SDTI).
1570 part_num = (c_pid0 & 0xff);
1571 part_num |= (c_pid1 & 0x0f) << 8;
1572 switch (part_num) {
1573 case 0x000:
1574 type = "Cortex-M3 NVIC";
1575 full = "(Interrupt Controller)";
1576 break;
1577 case 0x001:
1578 type = "Cortex-M3 ITM";
1579 full = "(Instrumentation Trace Module)";
1580 break;
1581 case 0x002:
1582 type = "Cortex-M3 DWT";
1583 full = "(Data Watchpoint and Trace)";
1584 break;
1585 case 0x003:
1586 type = "Cortex-M3 FBP";
1587 full = "(Flash Patch and Breakpoint)";
1588 break;
1589 case 0x00d:
1590 type = "CoreSight ETM11";
1591 full = "(Embedded Trace)";
1592 break;
1593 /* case 0x113: what? */
1594 case 0x120: /* from OMAP3 memmap */
1595 type = "TI SDTI";
1596 full = "(System Debug Trace Interface)";
1597 break;
1598 case 0x343: /* from OMAP3 memmap */
1599 type = "TI DAPCTL";
1600 full = "";
1601 break;
1602 case 0x906:
1603 type = "Coresight CTI";
1604 full = "(Cross Trigger)";
1605 break;
1606 case 0x907:
1607 type = "Coresight ETB";
1608 full = "(Trace Buffer)";
1609 break;
1610 case 0x908:
1611 type = "Coresight CSTF";
1612 full = "(Trace Funnel)";
1613 break;
1614 case 0x910:
1615 type = "CoreSight ETM9";
1616 full = "(Embedded Trace)";
1617 break;
1618 case 0x912:
1619 type = "Coresight TPIU";
1620 full = "(Trace Port Interface Unit)";
1621 break;
1622 case 0x921:
1623 type = "Cortex-A8 ETM";
1624 full = "(Embedded Trace)";
1625 break;
1626 case 0x922:
1627 type = "Cortex-A8 CTI";
1628 full = "(Cross Trigger)";
1629 break;
1630 case 0x923:
1631 type = "Cortex-M3 TPIU";
1632 full = "(Trace Port Interface Unit)";
1633 break;
1634 case 0x924:
1635 type = "Cortex-M3 ETM";
1636 full = "(Embedded Trace)";
1637 break;
1638 case 0x930:
1639 type = "Cortex-R4 ETM";
1640 full = "(Embedded Trace)";
1641 break;
1642 case 0xc08:
1643 type = "Cortex-A8 Debug";
1644 full = "(Debug Unit)";
1645 break;
1646 default:
1647 type = "-*- unrecognized -*-";
1648 full = "";
1649 break;
1651 command_print(cmd_ctx, "\t\tPart is %s %s",
1652 type, full);
1653 } else {
1654 if (romentry)
1655 command_print(cmd_ctx, "\t\tComponent not present");
1656 else
1657 command_print(cmd_ctx, "\t\tEnd of ROM table");
1659 entry_offset += 4;
1660 } while (romentry > 0);
1661 } else
1662 command_print(cmd_ctx, "\tNo ROM table present");
1663 dap_ap_select(dap, ap_old);
1665 return ERROR_OK;
1668 COMMAND_HANDLER(handle_dap_info_command)
1670 struct target *target = get_current_target(CMD_CTX);
1671 struct arm *arm = target_to_arm(target);
1672 struct adiv5_dap *dap = arm->dap;
1673 uint32_t apsel;
1675 switch (CMD_ARGC) {
1676 case 0:
1677 apsel = dap->apsel;
1678 break;
1679 case 1:
1680 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1681 break;
1682 default:
1683 return ERROR_COMMAND_SYNTAX_ERROR;
1686 return dap_info_command(CMD_CTX, dap, apsel);
1689 COMMAND_HANDLER(dap_baseaddr_command)
1691 struct target *target = get_current_target(CMD_CTX);
1692 struct arm *arm = target_to_arm(target);
1693 struct adiv5_dap *dap = arm->dap;
1695 uint32_t apsel, baseaddr;
1696 int retval;
1698 switch (CMD_ARGC) {
1699 case 0:
1700 apsel = dap->apsel;
1701 break;
1702 case 1:
1703 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1704 /* AP address is in bits 31:24 of DP_SELECT */
1705 if (apsel >= 256)
1706 return ERROR_COMMAND_SYNTAX_ERROR;
1707 break;
1708 default:
1709 return ERROR_COMMAND_SYNTAX_ERROR;
1712 dap_ap_select(dap, apsel);
1714 /* NOTE: assumes we're talking to a MEM-AP, which
1715 * has a base address. There are other kinds of AP,
1716 * though they're not common for now. This should
1717 * use the ID register to verify it's a MEM-AP.
1719 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1720 if (retval != ERROR_OK)
1721 return retval;
1722 retval = dap_run(dap);
1723 if (retval != ERROR_OK)
1724 return retval;
1726 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1728 return retval;
1731 COMMAND_HANDLER(dap_memaccess_command)
1733 struct target *target = get_current_target(CMD_CTX);
1734 struct arm *arm = target_to_arm(target);
1735 struct adiv5_dap *dap = arm->dap;
1737 uint32_t memaccess_tck;
1739 switch (CMD_ARGC) {
1740 case 0:
1741 memaccess_tck = dap->memaccess_tck;
1742 break;
1743 case 1:
1744 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1745 break;
1746 default:
1747 return ERROR_COMMAND_SYNTAX_ERROR;
1749 dap->memaccess_tck = memaccess_tck;
1751 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1752 dap->memaccess_tck);
1754 return ERROR_OK;
1757 COMMAND_HANDLER(dap_apsel_command)
1759 struct target *target = get_current_target(CMD_CTX);
1760 struct arm *arm = target_to_arm(target);
1761 struct adiv5_dap *dap = arm->dap;
1763 uint32_t apsel, apid;
1764 int retval;
1766 switch (CMD_ARGC) {
1767 case 0:
1768 apsel = 0;
1769 break;
1770 case 1:
1771 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1772 /* AP address is in bits 31:24 of DP_SELECT */
1773 if (apsel >= 256)
1774 return ERROR_COMMAND_SYNTAX_ERROR;
1775 break;
1776 default:
1777 return ERROR_COMMAND_SYNTAX_ERROR;
1780 dap->apsel = apsel;
1781 dap_ap_select(dap, apsel);
1783 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1784 if (retval != ERROR_OK)
1785 return retval;
1786 retval = dap_run(dap);
1787 if (retval != ERROR_OK)
1788 return retval;
1790 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1791 apsel, apid);
1793 return retval;
1796 COMMAND_HANDLER(dap_apid_command)
1798 struct target *target = get_current_target(CMD_CTX);
1799 struct arm *arm = target_to_arm(target);
1800 struct adiv5_dap *dap = arm->dap;
1802 uint32_t apsel, apid;
1803 int retval;
1805 switch (CMD_ARGC) {
1806 case 0:
1807 apsel = dap->apsel;
1808 break;
1809 case 1:
1810 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1811 /* AP address is in bits 31:24 of DP_SELECT */
1812 if (apsel >= 256)
1813 return ERROR_COMMAND_SYNTAX_ERROR;
1814 break;
1815 default:
1816 return ERROR_COMMAND_SYNTAX_ERROR;
1819 dap_ap_select(dap, apsel);
1821 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1822 if (retval != ERROR_OK)
1823 return retval;
1824 retval = dap_run(dap);
1825 if (retval != ERROR_OK)
1826 return retval;
1828 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1830 return retval;
1833 static const struct command_registration dap_commands[] = {
1835 .name = "info",
1836 .handler = handle_dap_info_command,
1837 .mode = COMMAND_EXEC,
1838 .help = "display ROM table for MEM-AP "
1839 "(default currently selected AP)",
1840 .usage = "[ap_num]",
1843 .name = "apsel",
1844 .handler = dap_apsel_command,
1845 .mode = COMMAND_EXEC,
1846 .help = "Set the currently selected AP (default 0) "
1847 "and display the result",
1848 .usage = "[ap_num]",
1851 .name = "apid",
1852 .handler = dap_apid_command,
1853 .mode = COMMAND_EXEC,
1854 .help = "return ID register from AP "
1855 "(default currently selected AP)",
1856 .usage = "[ap_num]",
1859 .name = "baseaddr",
1860 .handler = dap_baseaddr_command,
1861 .mode = COMMAND_EXEC,
1862 .help = "return debug base address from MEM-AP "
1863 "(default currently selected AP)",
1864 .usage = "[ap_num]",
1867 .name = "memaccess",
1868 .handler = dap_memaccess_command,
1869 .mode = COMMAND_EXEC,
1870 .help = "set/get number of extra tck for MEM-AP memory "
1871 "bus access [0-255]",
1872 .usage = "[cycles]",
1874 COMMAND_REGISTRATION_DONE
1877 const struct command_registration dap_command_handlers[] = {
1879 .name = "dap",
1880 .mode = COMMAND_EXEC,
1881 .help = "DAP command group",
1882 .usage = "",
1883 .chain = dap_commands,
1885 COMMAND_REGISTRATION_DONE