types: write memory now uses const
[openocd.git] / src / target / arm_adi_v5.c
blobb3c491b8056d043020c5973622abda391fe2cbc2
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 * Relevant specifications from ARM include:
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t ap)
105 uint32_t new_ap = (ap << 24) & 0xFF000000;
107 if (new_ap != dap->ap_current)
109 dap->ap_current = new_ap;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
128 * @todo Rename to reflect it being specifically a MEM-AP function.
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
140 int retval;
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
151 if (tar != dap->ap_tar_value)
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
166 * Asynchronous (queued) read of a word from memory or a system register.
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
174 * @return ERROR_OK for success. Otherwise a fault code.
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
179 int retval;
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
207 int retval;
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
213 return dap_run(dap);
217 * Asynchronous (queued) write of a word to memory or a system register.
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
225 * @return ERROR_OK for success. Otherwise a fault code.
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
230 int retval;
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
258 int retval = mem_ap_write_u32(dap, address, value);
260 if (retval != ERROR_OK)
261 return retval;
263 return dap_run(dap);
266 /*****************************************************************************
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
270 * Write a buffer in target order (little endian) *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 const uint8_t* pBuffer = buffer;
279 count >>= 2;
280 wcount = count;
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
285 for (writecount = 0; writecount < count; writecount++)
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
291 for (i = 0; i < 4; i++)
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
297 pBuffer += sizeof(uint32_t);
301 while (wcount > 0)
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
314 return retval;
316 for (writecount = 0; writecount < blocksize; writecount++)
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320 if (retval != ERROR_OK)
321 break;
324 if ((retval = dap_run(dap)) == ERROR_OK)
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
330 else
332 errorcount++;
335 if (errorcount > 1)
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338 return retval;
342 return retval;
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346 const uint8_t *buffer, int count, uint32_t address)
348 int retval = ERROR_OK;
349 int wcount, blocksize, writecount, i;
351 wcount = count >> 1;
353 while (wcount > 0)
355 int nbytes;
357 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
360 if (wcount < blocksize)
361 blocksize = wcount;
363 /* handle unaligned data at 4k boundary */
364 if (blocksize == 0)
365 blocksize = 1;
367 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368 if (retval != ERROR_OK)
369 return retval;
370 writecount = blocksize;
374 nbytes = MIN((writecount << 1), 4);
376 if (nbytes < 4)
378 retval = mem_ap_write_buf_u16(dap, buffer,
379 nbytes, address);
380 if (retval != ERROR_OK)
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
384 address, count);
385 return retval;
388 address += nbytes >> 1;
390 else
392 uint32_t outvalue;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
395 for (i = 0; i < nbytes; i++)
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398 outvalue >>= 8;
399 address++;
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
406 break;
408 if ((retval = dap_run(dap)) != ERROR_OK)
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
412 address, count);
413 return retval;
417 buffer += nbytes >> 1;
418 writecount -= nbytes >> 1;
420 } while (writecount);
421 wcount -= blocksize;
424 return retval;
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
429 int retval = ERROR_OK;
431 if (count >= 4)
432 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
434 while (count > 0)
436 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437 if (retval != ERROR_OK)
438 return retval;
439 uint16_t svalue;
440 memcpy(&svalue, buffer, sizeof(uint16_t));
441 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443 if (retval != ERROR_OK)
444 break;
446 retval = dap_run(dap);
447 if (retval != ERROR_OK)
448 break;
450 count -= 2;
451 address += 2;
452 buffer += 2;
455 return retval;
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459 const uint8_t *buffer, int count, uint32_t address)
461 int retval = ERROR_OK;
462 int wcount, blocksize, writecount, i;
464 wcount = count;
466 while (wcount > 0)
468 int nbytes;
470 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
473 if (wcount < blocksize)
474 blocksize = wcount;
476 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477 if (retval != ERROR_OK)
478 return retval;
479 writecount = blocksize;
483 nbytes = MIN(writecount, 4);
485 if (nbytes < 4)
487 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488 if (retval != ERROR_OK)
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return retval;
496 address += nbytes;
498 else
500 uint32_t outvalue;
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
503 for (i = 0; i < nbytes; i++)
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506 outvalue >>= 8;
507 address++;
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
514 break;
516 if ((retval = dap_run(dap)) != ERROR_OK)
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
520 address, count);
521 return retval;
525 buffer += nbytes;
526 writecount -= nbytes;
528 } while (writecount);
529 wcount -= blocksize;
532 return retval;
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
537 int retval = ERROR_OK;
539 if (count >= 4)
540 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
542 while (count > 0)
544 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545 if (retval != ERROR_OK)
546 return retval;
547 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549 if (retval != ERROR_OK)
550 break;
552 retval = dap_run(dap);
553 if (retval != ERROR_OK)
554 break;
556 count--;
557 address++;
558 buffer++;
561 return retval;
564 /* FIXME don't import ... this is a temporary workaround for the
565 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
572 * Synchronously read a block of 32-bit words into a buffer
573 * @param dap The DAP connected to the MEM-AP.
574 * @param buffer where the words will be stored (in host byte order).
575 * @param count How many words to read.
576 * @param address Memory address from which to read words; all the
577 * words must be readable by the currently selected MEM-AP.
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580 int count, uint32_t address)
582 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583 uint32_t adr = address;
584 uint8_t* pBuffer = buffer;
586 count >>= 2;
587 wcount = count;
589 while (wcount > 0)
591 /* Adjust to read blocks within boundaries aligned to the
592 * TAR autoincrement size (at least 2^10). Autoincrement
593 * mode avoids an extra per-word roundtrip to update TAR.
595 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596 address);
597 if (wcount < blocksize)
598 blocksize = wcount;
600 /* handle unaligned data at 4k boundary */
601 if (blocksize == 0)
602 blocksize = 1;
604 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605 address);
606 if (retval != ERROR_OK)
607 return retval;
609 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610 * so this routine becomes transport-neutral. Be careful
611 * not to cause performance problems with JTAG; would it
612 * suffice to loop over dap_queue_ap_read(), or would that
613 * be slower when JTAG is the chosen transport?
616 /* Scan out first read */
617 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618 DPAP_READ, 0, NULL, NULL);
619 if (retval != ERROR_OK)
620 return retval;
621 for (readcount = 0; readcount < blocksize - 1; readcount++)
623 /* Scan out next read; scan in posted value for the
624 * previous one. Assumes read is acked "OK/FAULT",
625 * and CTRL_STAT says that meant "OK".
627 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628 DPAP_READ, 0, buffer + 4 * readcount,
629 &dap->ack);
630 if (retval != ERROR_OK)
631 return retval;
634 /* Scan in last posted value; RDBUFF has no other effect,
635 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
637 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638 DPAP_READ, 0, buffer + 4 * readcount,
639 &dap->ack);
640 if (retval != ERROR_OK)
641 return retval;
643 retval = dap_run(dap);
644 if (retval != ERROR_OK)
646 errorcount++;
647 if (errorcount <= 1)
649 /* try again */
650 continue;
652 LOG_WARNING("Block read error address 0x%" PRIx32, address);
653 return retval;
655 wcount = wcount - blocksize;
656 address += 4 * blocksize;
657 buffer += 4 * blocksize;
660 /* if we have an unaligned access - reorder data */
661 if (adr & 0x3u)
663 for (readcount = 0; readcount < count; readcount++)
665 int i;
666 uint32_t data;
667 memcpy(&data, pBuffer, sizeof(uint32_t));
669 for (i = 0; i < 4; i++)
671 *((uint8_t*)pBuffer) =
672 (data >> 8 * (adr & 0x3));
673 pBuffer++;
674 adr++;
679 return retval;
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683 uint8_t *buffer, int count, uint32_t address)
685 uint32_t invalue;
686 int retval = ERROR_OK;
687 int wcount, blocksize, readcount, i;
689 wcount = count >> 1;
691 while (wcount > 0)
693 int nbytes;
695 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697 if (wcount < blocksize)
698 blocksize = wcount;
700 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701 if (retval != ERROR_OK)
702 return retval;
704 /* handle unaligned data at 4k boundary */
705 if (blocksize == 0)
706 blocksize = 1;
707 readcount = blocksize;
711 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712 if (retval != ERROR_OK)
713 return retval;
714 if ((retval = dap_run(dap)) != ERROR_OK)
716 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717 return retval;
720 nbytes = MIN((readcount << 1), 4);
722 for (i = 0; i < nbytes; i++)
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725 buffer++;
726 address++;
729 readcount -= (nbytes >> 1);
730 } while (readcount);
731 wcount -= blocksize;
734 return retval;
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
748 uint32_t invalue, i;
749 int retval = ERROR_OK;
751 if (count >= 4)
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
754 while (count > 0)
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
758 return retval;
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
761 break;
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
765 break;
767 if (address & 0x1)
769 for (i = 0; i < 2; i++)
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772 buffer++;
773 address++;
776 else
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
780 address += 2;
781 buffer += 2;
783 count -= 2;
786 return retval;
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
798 uint32_t invalue;
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
802 wcount = count;
804 while (wcount > 0)
806 int nbytes;
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
811 if (wcount < blocksize)
812 blocksize = wcount;
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
816 return retval;
817 readcount = blocksize;
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
823 return retval;
824 if ((retval = dap_run(dap)) != ERROR_OK)
826 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827 return retval;
830 nbytes = MIN(readcount, 4);
832 for (i = 0; i < nbytes; i++)
834 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835 buffer++;
836 address++;
839 readcount -= nbytes;
840 } while (readcount);
841 wcount -= blocksize;
844 return retval;
848 * Synchronously read a block of bytes into a buffer
849 * @param dap The DAP connected to the MEM-AP.
850 * @param buffer where the bytes will be stored.
851 * @param count How many bytes to read.
852 * @param address Memory address from which to read data; all the
853 * data must be readable by the currently selected MEM-AP.
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856 int count, uint32_t address)
858 uint32_t invalue;
859 int retval = ERROR_OK;
861 if (count >= 4)
862 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
864 while (count > 0)
866 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867 if (retval != ERROR_OK)
868 return retval;
869 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870 if (retval != ERROR_OK)
871 return retval;
872 retval = dap_run(dap);
873 if (retval != ERROR_OK)
874 break;
876 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877 count--;
878 address++;
879 buffer++;
882 return retval;
885 /*--------------------------------------------------------------------*/
886 /* Wrapping function with selection of AP */
887 /*--------------------------------------------------------------------*/
888 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
889 uint32_t address, uint32_t *value)
891 dap_ap_select(swjdp, ap);
892 return mem_ap_read_u32(swjdp, address, value);
895 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
896 uint32_t address, uint32_t value)
898 dap_ap_select(swjdp, ap);
899 return mem_ap_write_u32(swjdp, address, value);
902 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
903 uint32_t address, uint32_t *value)
905 dap_ap_select(swjdp, ap);
906 return mem_ap_read_atomic_u32(swjdp, address, value);
909 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
910 uint32_t address, uint32_t value)
912 dap_ap_select(swjdp, ap);
913 return mem_ap_write_atomic_u32(swjdp, address, value);
916 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
917 uint8_t *buffer, int count, uint32_t address)
919 dap_ap_select(swjdp, ap);
920 return mem_ap_read_buf_u8(swjdp, buffer, count, address);
923 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
924 uint8_t *buffer, int count, uint32_t address)
926 dap_ap_select(swjdp, ap);
927 return mem_ap_read_buf_u16(swjdp, buffer, count, address);
930 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
931 uint8_t *buffer, int count, uint32_t address)
933 dap_ap_select(swjdp, ap);
934 return mem_ap_read_buf_u32(swjdp, buffer, count, address);
937 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
938 const uint8_t *buffer, int count, uint32_t address)
940 dap_ap_select(swjdp, ap);
941 return mem_ap_write_buf_u8(swjdp, buffer, count, address);
944 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
945 const uint8_t *buffer, int count, uint32_t address)
947 dap_ap_select(swjdp, ap);
948 return mem_ap_write_buf_u16(swjdp, buffer, count, address);
951 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
952 const uint8_t *buffer, int count, uint32_t address)
954 dap_ap_select(swjdp, ap);
955 return mem_ap_write_buf_u32(swjdp, buffer, count, address);
959 /*--------------------------------------------------------------------------*/
962 /* FIXME don't import ... just initialize as
963 * part of DAP transport setup
965 extern const struct dap_ops jtag_dp_ops;
967 /*--------------------------------------------------------------------------*/
970 * Initialize a DAP. This sets up the power domains, prepares the DP
971 * for further use, and arranges to use AP #0 for all AP operations
972 * until dap_ap-select() changes that policy.
974 * @param dap The DAP being initialized.
976 * @todo Rename this. We also need an initialization scheme which account
977 * for SWD transports not just JTAG; that will need to address differences
978 * in layering. (JTAG is useful without any debug target; but not SWD.)
979 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
981 int ahbap_debugport_init(struct adiv5_dap *dap)
983 uint32_t ctrlstat;
984 int cnt = 0;
985 int retval;
987 LOG_DEBUG(" ");
989 /* JTAG-DP or SWJ-DP, in JTAG mode
990 * ... for SWD mode this is patched as part
991 * of link switchover
993 if (!dap->ops)
994 dap->ops = &jtag_dp_ops;
996 /* Default MEM-AP setup.
998 * REVISIT AP #0 may be an inappropriate default for this.
999 * Should we probe, or take a hint from the caller?
1000 * Presumably we can ignore the possibility of multiple APs.
1002 dap->ap_current = !0;
1003 dap_ap_select(dap, 0);
1005 /* DP initialization */
1007 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1008 if (retval != ERROR_OK)
1009 return retval;
1011 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1012 if (retval != ERROR_OK)
1013 return retval;
1015 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1016 if (retval != ERROR_OK)
1017 return retval;
1019 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1020 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1021 if (retval != ERROR_OK)
1022 return retval;
1024 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1025 if (retval != ERROR_OK)
1026 return retval;
1027 if ((retval = dap_run(dap)) != ERROR_OK)
1028 return retval;
1030 /* Check that we have debug power domains activated */
1031 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1033 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1034 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1035 if (retval != ERROR_OK)
1036 return retval;
1037 if ((retval = dap_run(dap)) != ERROR_OK)
1038 return retval;
1039 alive_sleep(10);
1042 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1044 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1045 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1046 if (retval != ERROR_OK)
1047 return retval;
1048 if ((retval = dap_run(dap)) != ERROR_OK)
1049 return retval;
1050 alive_sleep(10);
1053 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1054 if (retval != ERROR_OK)
1055 return retval;
1056 /* With debug power on we can activate OVERRUN checking */
1057 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1058 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1059 if (retval != ERROR_OK)
1060 return retval;
1061 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1062 if (retval != ERROR_OK)
1063 return retval;
1065 return ERROR_OK;
1068 /* CID interpretation -- see ARM IHI 0029B section 3
1069 * and ARM IHI 0031A table 13-3.
1071 static const char *class_description[16] ={
1072 "Reserved", "ROM table", "Reserved", "Reserved",
1073 "Reserved", "Reserved", "Reserved", "Reserved",
1074 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1075 "Reserved", "OptimoDE DESS",
1076 "Generic IP component", "PrimeCell or System component"
1079 static bool
1080 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1082 return cid3 == 0xb1 && cid2 == 0x05
1083 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1086 struct broken_cpu {
1087 uint32_t dbgbase;
1088 uint32_t apid;
1089 uint32_t idcode;
1090 uint32_t correct_dbgbase;
1091 char *model;
1092 } broken_cpus[] = {
1093 { 0x80000000, 0x04770002, 0x1ba00477, 0x60000000, "imx51" },
1094 { 0x80040000, 0x04770002, 0x3b95c02f, 0x80000000, "omap4430" },
1097 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1098 uint32_t *out_dbgbase, uint32_t *out_apid)
1100 uint32_t ap_old;
1101 int retval;
1102 unsigned int i;
1103 uint32_t dbgbase, apid, idcode;
1105 /* AP address is in bits 31:24 of DP_SELECT */
1106 if (ap >= 256)
1107 return ERROR_INVALID_ARGUMENTS;
1109 ap_old = dap->ap_current;
1110 dap_ap_select(dap, ap);
1112 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1113 if (retval != ERROR_OK)
1114 return retval;
1115 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1116 if (retval != ERROR_OK)
1117 return retval;
1118 retval = dap_run(dap);
1119 if (retval != ERROR_OK)
1120 return retval;
1122 /* Excavate the device ID code */
1123 struct jtag_tap *tap = dap->jtag_info->tap;
1124 while (tap != NULL) {
1125 if (tap->hasidcode) {
1126 idcode = tap->idcode;
1127 break;
1129 tap = tap->next_tap;
1131 if (tap == NULL || !tap->hasidcode)
1132 return ERROR_OK;
1134 /* Some CPUs are messed up, so fixup if needed. */
1135 for (i = 0; i < sizeof(broken_cpus)/sizeof(struct broken_cpu); i++)
1136 if (broken_cpus[i].dbgbase == dbgbase &&
1137 broken_cpus[i].apid == apid &&
1138 broken_cpus[i].idcode == idcode) {
1139 LOG_WARNING("Found broken CPU (%s), trying to fixup "
1140 "ROM Table location from 0x%08x to 0x%08x",
1141 broken_cpus[i].model, dbgbase,
1142 broken_cpus[i].correct_dbgbase);
1143 dbgbase = broken_cpus[i].correct_dbgbase;
1144 break;
1147 dap_ap_select(dap, ap_old);
1149 /* The asignment happens only here to prevent modification of these
1150 * values before they are certain. */
1151 *out_dbgbase = dbgbase;
1152 *out_apid = apid;
1154 return ERROR_OK;
1157 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1158 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1160 uint32_t ap_old;
1161 uint32_t romentry, entry_offset = 0, component_base, devtype;
1162 int retval = ERROR_FAIL;
1164 if (ap >= 256)
1165 return ERROR_INVALID_ARGUMENTS;
1167 ap_old = dap->ap_current;
1168 dap_ap_select(dap, ap);
1172 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1173 entry_offset, &romentry);
1174 if (retval != ERROR_OK)
1175 return retval;
1177 component_base = (dbgbase & 0xFFFFF000)
1178 + (romentry & 0xFFFFF000);
1180 if (romentry & 0x1) {
1181 retval = mem_ap_read_atomic_u32(dap,
1182 (component_base & 0xfffff000) | 0xfcc,
1183 &devtype);
1184 if ((devtype & 0xff) == type) {
1185 *addr = component_base;
1186 retval = ERROR_OK;
1187 break;
1190 entry_offset += 4;
1191 } while (romentry > 0);
1193 dap_ap_select(dap, ap_old);
1195 return retval;
1198 static int dap_info_command(struct command_context *cmd_ctx,
1199 struct adiv5_dap *dap, int ap)
1201 int retval;
1202 uint32_t dbgbase, apid;
1203 int romtable_present = 0;
1204 uint8_t mem_ap;
1205 uint32_t ap_old;
1207 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1208 if (retval != ERROR_OK)
1209 return retval;
1211 ap_old = dap->ap_current;
1212 dap_ap_select(dap, ap);
1214 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1215 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1216 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1217 if (apid)
1219 switch (apid&0x0F)
1221 case 0:
1222 command_print(cmd_ctx, "\tType is JTAG-AP");
1223 break;
1224 case 1:
1225 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1226 break;
1227 case 2:
1228 command_print(cmd_ctx, "\tType is MEM-AP APB");
1229 break;
1230 default:
1231 command_print(cmd_ctx, "\tUnknown AP type");
1232 break;
1235 /* NOTE: a MEM-AP may have a single CoreSight component that's
1236 * not a ROM table ... or have no such components at all.
1238 if (mem_ap)
1239 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1240 dbgbase);
1242 else
1244 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1247 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1248 if (romtable_present)
1250 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1251 uint16_t entry_offset;
1253 /* bit 16 of apid indicates a memory access port */
1254 if (dbgbase & 0x02)
1255 command_print(cmd_ctx, "\tValid ROM table present");
1256 else
1257 command_print(cmd_ctx, "\tROM table in legacy format");
1259 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1260 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1261 if (retval != ERROR_OK)
1262 return retval;
1263 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1264 if (retval != ERROR_OK)
1265 return retval;
1266 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1267 if (retval != ERROR_OK)
1268 return retval;
1269 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1270 if (retval != ERROR_OK)
1271 return retval;
1272 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1273 if (retval != ERROR_OK)
1274 return retval;
1275 retval = dap_run(dap);
1276 if (retval != ERROR_OK)
1277 return retval;
1279 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1280 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1281 ", CID2 0x%2.2x"
1282 ", CID1 0x%2.2x"
1283 ", CID0 0x%2.2x",
1284 (unsigned) cid3, (unsigned)cid2,
1285 (unsigned) cid1, (unsigned) cid0);
1286 if (memtype & 0x01)
1287 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1288 else
1289 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1290 "Dedicated debug bus.");
1292 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1293 entry_offset = 0;
1296 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1297 if (retval != ERROR_OK)
1298 return retval;
1299 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1300 if (romentry&0x01)
1302 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1303 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1304 uint32_t component_base;
1305 unsigned part_num;
1306 char *type, *full;
1308 component_base = (dbgbase & 0xFFFFF000)
1309 + (romentry & 0xFFFFF000);
1311 /* IDs are in last 4K section */
1314 retval = mem_ap_read_atomic_u32(dap,
1315 component_base + 0xFE0, &c_pid0);
1316 if (retval != ERROR_OK)
1317 return retval;
1318 c_pid0 &= 0xff;
1319 retval = mem_ap_read_atomic_u32(dap,
1320 component_base + 0xFE4, &c_pid1);
1321 if (retval != ERROR_OK)
1322 return retval;
1323 c_pid1 &= 0xff;
1324 retval = mem_ap_read_atomic_u32(dap,
1325 component_base + 0xFE8, &c_pid2);
1326 if (retval != ERROR_OK)
1327 return retval;
1328 c_pid2 &= 0xff;
1329 retval = mem_ap_read_atomic_u32(dap,
1330 component_base + 0xFEC, &c_pid3);
1331 if (retval != ERROR_OK)
1332 return retval;
1333 c_pid3 &= 0xff;
1334 retval = mem_ap_read_atomic_u32(dap,
1335 component_base + 0xFD0, &c_pid4);
1336 if (retval != ERROR_OK)
1337 return retval;
1338 c_pid4 &= 0xff;
1340 retval = mem_ap_read_atomic_u32(dap,
1341 component_base + 0xFF0, &c_cid0);
1342 if (retval != ERROR_OK)
1343 return retval;
1344 c_cid0 &= 0xff;
1345 retval = mem_ap_read_atomic_u32(dap,
1346 component_base + 0xFF4, &c_cid1);
1347 if (retval != ERROR_OK)
1348 return retval;
1349 c_cid1 &= 0xff;
1350 retval = mem_ap_read_atomic_u32(dap,
1351 component_base + 0xFF8, &c_cid2);
1352 if (retval != ERROR_OK)
1353 return retval;
1354 c_cid2 &= 0xff;
1355 retval = mem_ap_read_atomic_u32(dap,
1356 component_base + 0xFFC, &c_cid3);
1357 if (retval != ERROR_OK)
1358 return retval;
1359 c_cid3 &= 0xff;
1362 command_print(cmd_ctx,
1363 "\t\tComponent base address 0x%" PRIx32
1364 ", start address 0x%" PRIx32,
1365 component_base,
1366 /* component may take multiple 4K pages */
1367 component_base - 0x1000*(c_pid4 >> 4));
1368 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1369 (int) (c_cid1 >> 4) & 0xf,
1370 /* See ARM IHI 0029B Table 3-3 */
1371 class_description[(c_cid1 >> 4) & 0xf]);
1373 /* CoreSight component? */
1374 if (((c_cid1 >> 4) & 0x0f) == 9) {
1375 uint32_t devtype;
1376 unsigned minor;
1377 char *major = "Reserved", *subtype = "Reserved";
1379 retval = mem_ap_read_atomic_u32(dap,
1380 (component_base & 0xfffff000) | 0xfcc,
1381 &devtype);
1382 if (retval != ERROR_OK)
1383 return retval;
1384 minor = (devtype >> 4) & 0x0f;
1385 switch (devtype & 0x0f) {
1386 case 0:
1387 major = "Miscellaneous";
1388 switch (minor) {
1389 case 0:
1390 subtype = "other";
1391 break;
1392 case 4:
1393 subtype = "Validation component";
1394 break;
1396 break;
1397 case 1:
1398 major = "Trace Sink";
1399 switch (minor) {
1400 case 0:
1401 subtype = "other";
1402 break;
1403 case 1:
1404 subtype = "Port";
1405 break;
1406 case 2:
1407 subtype = "Buffer";
1408 break;
1410 break;
1411 case 2:
1412 major = "Trace Link";
1413 switch (minor) {
1414 case 0:
1415 subtype = "other";
1416 break;
1417 case 1:
1418 subtype = "Funnel, router";
1419 break;
1420 case 2:
1421 subtype = "Filter";
1422 break;
1423 case 3:
1424 subtype = "FIFO, buffer";
1425 break;
1427 break;
1428 case 3:
1429 major = "Trace Source";
1430 switch (minor) {
1431 case 0:
1432 subtype = "other";
1433 break;
1434 case 1:
1435 subtype = "Processor";
1436 break;
1437 case 2:
1438 subtype = "DSP";
1439 break;
1440 case 3:
1441 subtype = "Engine/Coprocessor";
1442 break;
1443 case 4:
1444 subtype = "Bus";
1445 break;
1447 break;
1448 case 4:
1449 major = "Debug Control";
1450 switch (minor) {
1451 case 0:
1452 subtype = "other";
1453 break;
1454 case 1:
1455 subtype = "Trigger Matrix";
1456 break;
1457 case 2:
1458 subtype = "Debug Auth";
1459 break;
1461 break;
1462 case 5:
1463 major = "Debug Logic";
1464 switch (minor) {
1465 case 0:
1466 subtype = "other";
1467 break;
1468 case 1:
1469 subtype = "Processor";
1470 break;
1471 case 2:
1472 subtype = "DSP";
1473 break;
1474 case 3:
1475 subtype = "Engine/Coprocessor";
1476 break;
1478 break;
1480 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1481 (unsigned) (devtype & 0xff),
1482 major, subtype);
1483 /* REVISIT also show 0xfc8 DevId */
1486 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1487 command_print(cmd_ctx,
1488 "\t\tCID3 0%2.2x"
1489 ", CID2 0%2.2x"
1490 ", CID1 0%2.2x"
1491 ", CID0 0%2.2x",
1492 (int) c_cid3,
1493 (int) c_cid2,
1494 (int)c_cid1,
1495 (int)c_cid0);
1496 command_print(cmd_ctx,
1497 "\t\tPeripheral ID[4..0] = hex "
1498 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1499 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1500 (int) c_pid1, (int) c_pid0);
1502 /* Part number interpretations are from Cortex
1503 * core specs, the CoreSight components TRM
1504 * (ARM DDI 0314H), CoreSight System Design
1505 * Guide (ARM DGI 0012D) and ETM specs; also
1506 * from chip observation (e.g. TI SDTI).
1508 part_num = (c_pid0 & 0xff);
1509 part_num |= (c_pid1 & 0x0f) << 8;
1510 switch (part_num) {
1511 case 0x000:
1512 type = "Cortex-M3 NVIC";
1513 full = "(Interrupt Controller)";
1514 break;
1515 case 0x001:
1516 type = "Cortex-M3 ITM";
1517 full = "(Instrumentation Trace Module)";
1518 break;
1519 case 0x002:
1520 type = "Cortex-M3 DWT";
1521 full = "(Data Watchpoint and Trace)";
1522 break;
1523 case 0x003:
1524 type = "Cortex-M3 FBP";
1525 full = "(Flash Patch and Breakpoint)";
1526 break;
1527 case 0x00d:
1528 type = "CoreSight ETM11";
1529 full = "(Embedded Trace)";
1530 break;
1531 // case 0x113: what?
1532 case 0x120: /* from OMAP3 memmap */
1533 type = "TI SDTI";
1534 full = "(System Debug Trace Interface)";
1535 break;
1536 case 0x343: /* from OMAP3 memmap */
1537 type = "TI DAPCTL";
1538 full = "";
1539 break;
1540 case 0x906:
1541 type = "Coresight CTI";
1542 full = "(Cross Trigger)";
1543 break;
1544 case 0x907:
1545 type = "Coresight ETB";
1546 full = "(Trace Buffer)";
1547 break;
1548 case 0x908:
1549 type = "Coresight CSTF";
1550 full = "(Trace Funnel)";
1551 break;
1552 case 0x910:
1553 type = "CoreSight ETM9";
1554 full = "(Embedded Trace)";
1555 break;
1556 case 0x912:
1557 type = "Coresight TPIU";
1558 full = "(Trace Port Interface Unit)";
1559 break;
1560 case 0x921:
1561 type = "Cortex-A8 ETM";
1562 full = "(Embedded Trace)";
1563 break;
1564 case 0x922:
1565 type = "Cortex-A8 CTI";
1566 full = "(Cross Trigger)";
1567 break;
1568 case 0x923:
1569 type = "Cortex-M3 TPIU";
1570 full = "(Trace Port Interface Unit)";
1571 break;
1572 case 0x924:
1573 type = "Cortex-M3 ETM";
1574 full = "(Embedded Trace)";
1575 break;
1576 case 0x930:
1577 type = "Cortex-R4 ETM";
1578 full = "(Embedded Trace)";
1579 break;
1580 case 0xc08:
1581 type = "Cortex-A8 Debug";
1582 full = "(Debug Unit)";
1583 break;
1584 default:
1585 type = "-*- unrecognized -*-";
1586 full = "";
1587 break;
1589 command_print(cmd_ctx, "\t\tPart is %s %s",
1590 type, full);
1592 else
1594 if (romentry)
1595 command_print(cmd_ctx, "\t\tComponent not present");
1596 else
1597 command_print(cmd_ctx, "\t\tEnd of ROM table");
1599 entry_offset += 4;
1600 } while (romentry > 0);
1602 else
1604 command_print(cmd_ctx, "\tNo ROM table present");
1606 dap_ap_select(dap, ap_old);
1608 return ERROR_OK;
1611 COMMAND_HANDLER(handle_dap_info_command)
1613 struct target *target = get_current_target(CMD_CTX);
1614 struct arm *arm = target_to_arm(target);
1615 struct adiv5_dap *dap = arm->dap;
1616 uint32_t apsel;
1618 switch (CMD_ARGC) {
1619 case 0:
1620 apsel = dap->apsel;
1621 break;
1622 case 1:
1623 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1624 break;
1625 default:
1626 return ERROR_COMMAND_SYNTAX_ERROR;
1629 return dap_info_command(CMD_CTX, dap, apsel);
1632 COMMAND_HANDLER(dap_baseaddr_command)
1634 struct target *target = get_current_target(CMD_CTX);
1635 struct arm *arm = target_to_arm(target);
1636 struct adiv5_dap *dap = arm->dap;
1638 uint32_t apsel, baseaddr;
1639 int retval;
1641 switch (CMD_ARGC) {
1642 case 0:
1643 apsel = dap->apsel;
1644 break;
1645 case 1:
1646 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1647 /* AP address is in bits 31:24 of DP_SELECT */
1648 if (apsel >= 256)
1649 return ERROR_INVALID_ARGUMENTS;
1650 break;
1651 default:
1652 return ERROR_COMMAND_SYNTAX_ERROR;
1655 dap_ap_select(dap, apsel);
1657 /* NOTE: assumes we're talking to a MEM-AP, which
1658 * has a base address. There are other kinds of AP,
1659 * though they're not common for now. This should
1660 * use the ID register to verify it's a MEM-AP.
1662 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1663 if (retval != ERROR_OK)
1664 return retval;
1665 retval = dap_run(dap);
1666 if (retval != ERROR_OK)
1667 return retval;
1669 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1671 return retval;
1674 COMMAND_HANDLER(dap_memaccess_command)
1676 struct target *target = get_current_target(CMD_CTX);
1677 struct arm *arm = target_to_arm(target);
1678 struct adiv5_dap *dap = arm->dap;
1680 uint32_t memaccess_tck;
1682 switch (CMD_ARGC) {
1683 case 0:
1684 memaccess_tck = dap->memaccess_tck;
1685 break;
1686 case 1:
1687 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1688 break;
1689 default:
1690 return ERROR_COMMAND_SYNTAX_ERROR;
1692 dap->memaccess_tck = memaccess_tck;
1694 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1695 dap->memaccess_tck);
1697 return ERROR_OK;
1700 COMMAND_HANDLER(dap_apsel_command)
1702 struct target *target = get_current_target(CMD_CTX);
1703 struct arm *arm = target_to_arm(target);
1704 struct adiv5_dap *dap = arm->dap;
1706 uint32_t apsel, apid;
1707 int retval;
1709 switch (CMD_ARGC) {
1710 case 0:
1711 apsel = 0;
1712 break;
1713 case 1:
1714 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1715 /* AP address is in bits 31:24 of DP_SELECT */
1716 if (apsel >= 256)
1717 return ERROR_INVALID_ARGUMENTS;
1718 break;
1719 default:
1720 return ERROR_COMMAND_SYNTAX_ERROR;
1723 dap->apsel = apsel;
1724 dap_ap_select(dap, apsel);
1726 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1727 if (retval != ERROR_OK)
1728 return retval;
1729 retval = dap_run(dap);
1730 if (retval != ERROR_OK)
1731 return retval;
1733 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1734 apsel, apid);
1736 return retval;
1739 COMMAND_HANDLER(dap_apid_command)
1741 struct target *target = get_current_target(CMD_CTX);
1742 struct arm *arm = target_to_arm(target);
1743 struct adiv5_dap *dap = arm->dap;
1745 uint32_t apsel, apid;
1746 int retval;
1748 switch (CMD_ARGC) {
1749 case 0:
1750 apsel = dap->apsel;
1751 break;
1752 case 1:
1753 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1754 /* AP address is in bits 31:24 of DP_SELECT */
1755 if (apsel >= 256)
1756 return ERROR_INVALID_ARGUMENTS;
1757 break;
1758 default:
1759 return ERROR_COMMAND_SYNTAX_ERROR;
1762 dap_ap_select(dap, apsel);
1764 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1765 if (retval != ERROR_OK)
1766 return retval;
1767 retval = dap_run(dap);
1768 if (retval != ERROR_OK)
1769 return retval;
1771 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1773 return retval;
1776 static const struct command_registration dap_commands[] = {
1778 .name = "info",
1779 .handler = handle_dap_info_command,
1780 .mode = COMMAND_EXEC,
1781 .help = "display ROM table for MEM-AP "
1782 "(default currently selected AP)",
1783 .usage = "[ap_num]",
1786 .name = "apsel",
1787 .handler = dap_apsel_command,
1788 .mode = COMMAND_EXEC,
1789 .help = "Set the currently selected AP (default 0) "
1790 "and display the result",
1791 .usage = "[ap_num]",
1794 .name = "apid",
1795 .handler = dap_apid_command,
1796 .mode = COMMAND_EXEC,
1797 .help = "return ID register from AP "
1798 "(default currently selected AP)",
1799 .usage = "[ap_num]",
1802 .name = "baseaddr",
1803 .handler = dap_baseaddr_command,
1804 .mode = COMMAND_EXEC,
1805 .help = "return debug base address from MEM-AP "
1806 "(default currently selected AP)",
1807 .usage = "[ap_num]",
1810 .name = "memaccess",
1811 .handler = dap_memaccess_command,
1812 .mode = COMMAND_EXEC,
1813 .help = "set/get number of extra tck for MEM-AP memory "
1814 "bus access [0-255]",
1815 .usage = "[cycles]",
1817 COMMAND_REGISTRATION_DONE
1820 const struct command_registration dap_command_handlers[] = {
1822 .name = "dap",
1823 .mode = COMMAND_EXEC,
1824 .help = "DAP command group",
1825 .chain = dap_commands,
1827 COMMAND_REGISTRATION_DONE