1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
11 * Copyright (C) 2009-2010 by David Brownell *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
27 ***************************************************************************/
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 * Relevant specifications from ARM include:
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
72 #include "jtag/interface.h"
74 #include "arm_adi_v5.h"
75 #include <helper/time_support.h>
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block
, uint32_t address
)
85 return tar_autoincr_block
- ((tar_autoincr_block
- 1) & address
);
88 /***************************************************************************
90 * DP and MEM-AP register access through APACC and DPACC *
92 ***************************************************************************/
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
103 void dap_ap_select(struct adiv5_dap
*dap
, uint8_t ap
)
105 uint32_t new_ap
= (ap
<< 24) & 0xFF000000;
107 if (new_ap
!= dap
->ap_current
) {
108 dap
->ap_current
= new_ap
;
109 /* Switching AP invalidates cached values.
110 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 dap
->ap_bank_value
= -1;
113 dap
->ap_csw_value
= -1;
114 dap
->ap_tar_value
= -1;
119 * Queue transactions setting up transfer parameters for the
120 * currently selected MEM-AP.
122 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
123 * initiate data reads or writes using memory or peripheral addresses.
124 * If the CSW is configured for it, the TAR may be automatically
125 * incremented after each transfer.
127 * @todo Rename to reflect it being specifically a MEM-AP function.
129 * @param dap The DAP connected to the MEM-AP.
130 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
131 * matches the cached value, the register is not changed.
132 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
133 * matches the cached address, the register is not changed.
135 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 int dap_setup_accessport(struct adiv5_dap
*dap
, uint32_t csw
, uint32_t tar
)
140 csw
= csw
| CSW_DBGSWENABLE
| CSW_MASTER_DEBUG
| CSW_HPROT
|
141 dap
->apcsw
[dap
->ap_current
>> 24];
143 if (csw
!= dap
->ap_csw_value
) {
144 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
145 retval
= dap_queue_ap_write(dap
, AP_REG_CSW
, csw
);
146 if (retval
!= ERROR_OK
)
148 dap
->ap_csw_value
= csw
;
150 if (tar
!= dap
->ap_tar_value
) {
151 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
152 retval
= dap_queue_ap_write(dap
, AP_REG_TAR
, tar
);
153 if (retval
!= ERROR_OK
)
155 dap
->ap_tar_value
= tar
;
157 /* Disable TAR cache when autoincrementing */
158 if (csw
& CSW_ADDRINC_MASK
)
159 dap
->ap_tar_value
= -1;
164 * Asynchronous (queued) read of a word from memory or a system register.
166 * @param dap The DAP connected to the MEM-AP performing the read.
167 * @param address Address of the 32-bit word to read; it must be
168 * readable by the currently selected MEM-AP.
169 * @param value points to where the word will be stored when the
170 * transaction queue is flushed (assuming no errors).
172 * @return ERROR_OK for success. Otherwise a fault code.
174 int mem_ap_read_u32(struct adiv5_dap
*dap
, uint32_t address
,
179 /* Use banked addressing (REG_BDx) to avoid some link traffic
180 * (updating TAR) when reading several consecutive addresses.
182 retval
= dap_setup_accessport(dap
, CSW_32BIT
| CSW_ADDRINC_OFF
,
183 address
& 0xFFFFFFF0);
184 if (retval
!= ERROR_OK
)
187 return dap_queue_ap_read(dap
, AP_REG_BD0
| (address
& 0xC), value
);
191 * Synchronous read of a word from memory or a system register.
192 * As a side effect, this flushes any queued transactions.
194 * @param dap The DAP connected to the MEM-AP performing the read.
195 * @param address Address of the 32-bit word to read; it must be
196 * readable by the currently selected MEM-AP.
197 * @param value points to where the result will be stored.
199 * @return ERROR_OK for success; *value holds the result.
200 * Otherwise a fault code.
202 int mem_ap_read_atomic_u32(struct adiv5_dap
*dap
, uint32_t address
,
207 retval
= mem_ap_read_u32(dap
, address
, value
);
208 if (retval
!= ERROR_OK
)
215 * Asynchronous (queued) write of a word to memory or a system register.
217 * @param dap The DAP connected to the MEM-AP.
218 * @param address Address to be written; it must be writable by
219 * the currently selected MEM-AP.
220 * @param value Word that will be written to the address when transaction
221 * queue is flushed (assuming no errors).
223 * @return ERROR_OK for success. Otherwise a fault code.
225 int mem_ap_write_u32(struct adiv5_dap
*dap
, uint32_t address
,
230 /* Use banked addressing (REG_BDx) to avoid some link traffic
231 * (updating TAR) when writing several consecutive addresses.
233 retval
= dap_setup_accessport(dap
, CSW_32BIT
| CSW_ADDRINC_OFF
,
234 address
& 0xFFFFFFF0);
235 if (retval
!= ERROR_OK
)
238 return dap_queue_ap_write(dap
, AP_REG_BD0
| (address
& 0xC),
243 * Synchronous write of a word to memory or a system register.
244 * As a side effect, this flushes any queued transactions.
246 * @param dap The DAP connected to the MEM-AP.
247 * @param address Address to be written; it must be writable by
248 * the currently selected MEM-AP.
249 * @param value Word that will be written.
251 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
253 int mem_ap_write_atomic_u32(struct adiv5_dap
*dap
, uint32_t address
,
256 int retval
= mem_ap_write_u32(dap
, address
, value
);
258 if (retval
!= ERROR_OK
)
264 int mem_ap_write_buf_u32(struct adiv5_dap
*dap
, const uint8_t *buffer
, int count
, uint32_t address
, bool addr_incr
)
266 int wcount
, blocksize
, writecount
, errorcount
= 0, retval
= ERROR_OK
;
267 uint32_t adr
= address
;
268 uint32_t incr_flag
= addr_incr
? CSW_ADDRINC_SINGLE
: CSW_ADDRINC_OFF
;
273 /* Adjust to write blocks within boundaries aligned to the TAR auto-increment size */
274 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
, address
) / 4;
275 if (wcount
< blocksize
)
278 /* handle unaligned data at 4k boundary */
282 retval
= dap_setup_accessport(dap
, CSW_32BIT
| incr_flag
, address
);
283 if (retval
!= ERROR_OK
)
286 for (writecount
= 0; writecount
< blocksize
; writecount
++) {
287 uint32_t outvalue
= 0;
288 outvalue
|= (uint32_t)*buffer
++ << 8 * (adr
++ & 3);
289 outvalue
|= (uint32_t)*buffer
++ << 8 * (adr
++ & 3);
290 outvalue
|= (uint32_t)*buffer
++ << 8 * (adr
++ & 3);
291 outvalue
|= (uint32_t)*buffer
++ << 8 * (adr
++ & 3);
293 retval
= dap_queue_ap_write(dap
, AP_REG_DRW
, outvalue
);
294 if (retval
!= ERROR_OK
)
298 retval
= dap_run(dap
);
299 if (retval
== ERROR_OK
) {
302 address
+= 4 * blocksize
;
306 if (errorcount
> 1) {
307 LOG_WARNING("Block write error address 0x%" PRIx32
", wcount 0x%x", address
, wcount
);
315 static int mem_ap_write_buf_packed_u16(struct adiv5_dap
*dap
,
316 const uint8_t *buffer
, int count
, uint32_t address
)
318 int retval
= ERROR_OK
;
319 int wcount
, blocksize
, writecount
;
326 /* Adjust to write blocks within boundaries aligned to the TAR auto-increment size */
327 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
, address
) / 2;
329 if (wcount
< blocksize
)
332 /* handle unaligned data at 4k boundary */
336 retval
= dap_setup_accessport(dap
, CSW_16BIT
| CSW_ADDRINC_PACKED
, address
);
337 if (retval
!= ERROR_OK
)
339 writecount
= blocksize
;
342 nbytes
= MIN((writecount
<< 1), 4);
345 retval
= mem_ap_write_buf_u16(dap
, buffer
,
347 if (retval
!= ERROR_OK
) {
348 LOG_WARNING("Block write error address "
349 "0x%" PRIx32
", count 0x%x",
359 uint32_t outvalue
= 0;
360 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
361 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
362 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
363 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
365 retval
= dap_queue_ap_write(dap
,
366 AP_REG_DRW
, outvalue
);
367 if (retval
!= ERROR_OK
)
370 retval
= dap_run(dap
);
371 if (retval
!= ERROR_OK
) {
372 LOG_WARNING("Block write error address "
373 "0x%" PRIx32
", count 0x%x",
379 writecount
-= nbytes
>> 1;
381 } while (writecount
);
388 int mem_ap_write_buf_u16(struct adiv5_dap
*dap
, const uint8_t *buffer
, int count
, uint32_t address
)
390 int retval
= ERROR_OK
;
392 if (dap
->packed_transfers
&& count
>= 4)
393 return mem_ap_write_buf_packed_u16(dap
, buffer
, count
, address
);
396 retval
= dap_setup_accessport(dap
, CSW_16BIT
| CSW_ADDRINC_SINGLE
, address
);
397 if (retval
!= ERROR_OK
)
400 uint32_t outvalue
= 0;
401 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
402 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
404 retval
= dap_queue_ap_write(dap
, AP_REG_DRW
, outvalue
);
405 if (retval
!= ERROR_OK
)
408 retval
= dap_run(dap
);
409 if (retval
!= ERROR_OK
)
418 static int mem_ap_write_buf_packed_u8(struct adiv5_dap
*dap
,
419 const uint8_t *buffer
, int count
, uint32_t address
)
421 int retval
= ERROR_OK
;
422 int wcount
, blocksize
, writecount
;
429 /* Adjust to write blocks within boundaries aligned to the TAR auto-increment size */
430 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
, address
);
432 if (wcount
< blocksize
)
435 retval
= dap_setup_accessport(dap
, CSW_8BIT
| CSW_ADDRINC_PACKED
, address
);
436 if (retval
!= ERROR_OK
)
438 writecount
= blocksize
;
441 nbytes
= MIN(writecount
, 4);
444 retval
= mem_ap_write_buf_u8(dap
, buffer
, nbytes
, address
);
445 if (retval
!= ERROR_OK
) {
446 LOG_WARNING("Block write error address "
447 "0x%" PRIx32
", count 0x%x",
457 uint32_t outvalue
= 0;
458 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
459 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
460 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
461 outvalue
|= (uint32_t)*buffer
++ << 8 * (address
++ & 3);
463 retval
= dap_queue_ap_write(dap
,
464 AP_REG_DRW
, outvalue
);
465 if (retval
!= ERROR_OK
)
468 retval
= dap_run(dap
);
469 if (retval
!= ERROR_OK
) {
470 LOG_WARNING("Block write error address "
471 "0x%" PRIx32
", count 0x%x",
477 writecount
-= nbytes
;
479 } while (writecount
);
486 int mem_ap_write_buf_u8(struct adiv5_dap
*dap
, const uint8_t *buffer
, int count
, uint32_t address
)
488 int retval
= ERROR_OK
;
490 if (dap
->packed_transfers
&& count
>= 4)
491 return mem_ap_write_buf_packed_u8(dap
, buffer
, count
, address
);
494 retval
= dap_setup_accessport(dap
, CSW_8BIT
| CSW_ADDRINC_SINGLE
, address
);
495 if (retval
!= ERROR_OK
)
497 uint32_t outvalue
= (uint32_t)*buffer
++ << 8 * (address
++ & 0x3);
498 retval
= dap_queue_ap_write(dap
, AP_REG_DRW
, outvalue
);
499 if (retval
!= ERROR_OK
)
502 retval
= dap_run(dap
);
503 if (retval
!= ERROR_OK
)
513 * Synchronously read a block of 32-bit words into a buffer
514 * @param dap The DAP connected to the MEM-AP.
515 * @param buffer where the words will be stored (in host byte order).
516 * @param count How many words to read.
517 * @param address Memory address from which to read words; all the
518 * @param addr_incr if true, increment the source address for each u32
519 * words must be readable by the currently selected MEM-AP.
521 int mem_ap_read_buf_u32(struct adiv5_dap
*dap
, uint8_t *buffer
,
522 int count
, uint32_t address
, bool addr_incr
)
524 int wcount
, blocksize
, readcount
, errorcount
= 0, retval
= ERROR_OK
;
525 uint32_t adr
= address
;
526 uint8_t *pBuffer
= buffer
;
527 uint32_t incr_flag
= CSW_ADDRINC_OFF
;
533 /* Adjust to read blocks within boundaries aligned to the
534 * TAR autoincrement size (at least 2^10). Autoincrement
535 * mode avoids an extra per-word roundtrip to update TAR.
537 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
, address
) / 4;
538 if (wcount
< blocksize
)
541 /* handle unaligned data at 4k boundary */
546 incr_flag
= CSW_ADDRINC_SINGLE
;
548 retval
= dap_setup_accessport(dap
, CSW_32BIT
| incr_flag
,
550 if (retval
!= ERROR_OK
)
553 retval
= dap_queue_ap_read_block(dap
, AP_REG_DRW
, blocksize
, buffer
);
555 retval
= dap_run(dap
);
556 if (retval
!= ERROR_OK
) {
558 if (errorcount
<= 1) {
562 LOG_WARNING("Block read error address 0x%" PRIx32
, address
);
565 wcount
= wcount
- blocksize
;
567 address
+= 4 * blocksize
;
568 buffer
+= 4 * blocksize
;
571 /* if we have an unaligned access - reorder data */
573 for (readcount
= 0; readcount
< count
; readcount
++) {
576 memcpy(&data
, pBuffer
, sizeof(uint32_t));
578 for (i
= 0; i
< 4; i
++) {
579 *((uint8_t *)pBuffer
) =
580 (data
>> 8 * (adr
& 0x3));
590 static int mem_ap_read_buf_packed_u16(struct adiv5_dap
*dap
,
591 uint8_t *buffer
, int count
, uint32_t address
)
594 int retval
= ERROR_OK
;
595 int wcount
, blocksize
, readcount
, i
;
602 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
603 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
, address
) / 2;
604 if (wcount
< blocksize
)
607 retval
= dap_setup_accessport(dap
, CSW_16BIT
| CSW_ADDRINC_PACKED
, address
);
608 if (retval
!= ERROR_OK
)
611 /* handle unaligned data at 4k boundary */
614 readcount
= blocksize
;
617 retval
= dap_queue_ap_read(dap
, AP_REG_DRW
, &invalue
);
618 if (retval
!= ERROR_OK
)
620 retval
= dap_run(dap
);
621 if (retval
!= ERROR_OK
) {
622 LOG_WARNING("Block read error address 0x%" PRIx32
", count 0x%x", address
, count
);
626 nbytes
= MIN((readcount
<< 1), 4);
628 for (i
= 0; i
< nbytes
; i
++) {
629 *((uint8_t *)buffer
) = (invalue
>> 8 * (address
& 0x3));
634 readcount
-= (nbytes
>> 1);
643 * Synchronously read a block of 16-bit halfwords into a buffer
644 * @param dap The DAP connected to the MEM-AP.
645 * @param buffer where the halfwords will be stored (in host byte order).
646 * @param count How many halfwords to read.
647 * @param address Memory address from which to read words; all the
648 * words must be readable by the currently selected MEM-AP.
650 int mem_ap_read_buf_u16(struct adiv5_dap
*dap
, uint8_t *buffer
,
651 int count
, uint32_t address
)
654 int retval
= ERROR_OK
;
656 if (dap
->packed_transfers
&& count
>= 4)
657 return mem_ap_read_buf_packed_u16(dap
, buffer
, count
, address
);
660 retval
= dap_setup_accessport(dap
, CSW_16BIT
| CSW_ADDRINC_SINGLE
, address
);
661 if (retval
!= ERROR_OK
)
663 retval
= dap_queue_ap_read(dap
, AP_REG_DRW
, &invalue
);
664 if (retval
!= ERROR_OK
)
667 retval
= dap_run(dap
);
668 if (retval
!= ERROR_OK
)
672 for (i
= 0; i
< 2; i
++) {
673 *((uint8_t *)buffer
) = (invalue
>> 8 * (address
& 0x3));
678 uint16_t svalue
= (invalue
>> 8 * (address
& 0x3));
679 memcpy(buffer
, &svalue
, sizeof(uint16_t));
689 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
690 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
692 * The solution is to arrange for a large out/in scan in this loop and
693 * and convert data afterwards.
695 static int mem_ap_read_buf_packed_u8(struct adiv5_dap
*dap
,
696 uint8_t *buffer
, int count
, uint32_t address
)
699 int retval
= ERROR_OK
;
700 int wcount
, blocksize
, readcount
, i
;
707 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
708 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
, address
);
710 if (wcount
< blocksize
)
713 retval
= dap_setup_accessport(dap
, CSW_8BIT
| CSW_ADDRINC_PACKED
, address
);
714 if (retval
!= ERROR_OK
)
716 readcount
= blocksize
;
719 retval
= dap_queue_ap_read(dap
, AP_REG_DRW
, &invalue
);
720 if (retval
!= ERROR_OK
)
722 retval
= dap_run(dap
);
723 if (retval
!= ERROR_OK
) {
724 LOG_WARNING("Block read error address 0x%" PRIx32
", count 0x%x", address
, count
);
728 nbytes
= MIN(readcount
, 4);
730 for (i
= 0; i
< nbytes
; i
++) {
731 *((uint8_t *)buffer
) = (invalue
>> 8 * (address
& 0x3));
745 * Synchronously read a block of bytes into a buffer
746 * @param dap The DAP connected to the MEM-AP.
747 * @param buffer where the bytes will be stored.
748 * @param count How many bytes to read.
749 * @param address Memory address from which to read data; all the
750 * data must be readable by the currently selected MEM-AP.
752 int mem_ap_read_buf_u8(struct adiv5_dap
*dap
, uint8_t *buffer
,
753 int count
, uint32_t address
)
756 int retval
= ERROR_OK
;
758 if (dap
->packed_transfers
&& count
>= 4)
759 return mem_ap_read_buf_packed_u8(dap
, buffer
, count
, address
);
762 retval
= dap_setup_accessport(dap
, CSW_8BIT
| CSW_ADDRINC_SINGLE
, address
);
763 if (retval
!= ERROR_OK
)
765 retval
= dap_queue_ap_read(dap
, AP_REG_DRW
, &invalue
);
766 if (retval
!= ERROR_OK
)
768 retval
= dap_run(dap
);
769 if (retval
!= ERROR_OK
)
772 *((uint8_t *)buffer
) = (invalue
>> 8 * (address
& 0x3));
781 /*--------------------------------------------------------------------*/
782 /* Wrapping function with selection of AP */
783 /*--------------------------------------------------------------------*/
784 int mem_ap_sel_read_u32(struct adiv5_dap
*swjdp
, uint8_t ap
,
785 uint32_t address
, uint32_t *value
)
787 dap_ap_select(swjdp
, ap
);
788 return mem_ap_read_u32(swjdp
, address
, value
);
791 int mem_ap_sel_write_u32(struct adiv5_dap
*swjdp
, uint8_t ap
,
792 uint32_t address
, uint32_t value
)
794 dap_ap_select(swjdp
, ap
);
795 return mem_ap_write_u32(swjdp
, address
, value
);
798 int mem_ap_sel_read_atomic_u32(struct adiv5_dap
*swjdp
, uint8_t ap
,
799 uint32_t address
, uint32_t *value
)
801 dap_ap_select(swjdp
, ap
);
802 return mem_ap_read_atomic_u32(swjdp
, address
, value
);
805 int mem_ap_sel_write_atomic_u32(struct adiv5_dap
*swjdp
, uint8_t ap
,
806 uint32_t address
, uint32_t value
)
808 dap_ap_select(swjdp
, ap
);
809 return mem_ap_write_atomic_u32(swjdp
, address
, value
);
812 int mem_ap_sel_read_buf_u8(struct adiv5_dap
*swjdp
, uint8_t ap
,
813 uint8_t *buffer
, int count
, uint32_t address
)
815 dap_ap_select(swjdp
, ap
);
816 return mem_ap_read_buf_u8(swjdp
, buffer
, count
, address
);
819 int mem_ap_sel_read_buf_u16(struct adiv5_dap
*swjdp
, uint8_t ap
,
820 uint8_t *buffer
, int count
, uint32_t address
)
822 dap_ap_select(swjdp
, ap
);
823 return mem_ap_read_buf_u16(swjdp
, buffer
, count
, address
);
826 int mem_ap_sel_read_buf_u32_noincr(struct adiv5_dap
*swjdp
, uint8_t ap
,
827 uint8_t *buffer
, int count
, uint32_t address
)
829 dap_ap_select(swjdp
, ap
);
830 return mem_ap_read_buf_u32(swjdp
, buffer
, count
, address
, false);
833 int mem_ap_sel_read_buf_u32(struct adiv5_dap
*swjdp
, uint8_t ap
,
834 uint8_t *buffer
, int count
, uint32_t address
)
836 dap_ap_select(swjdp
, ap
);
837 return mem_ap_read_buf_u32(swjdp
, buffer
, count
, address
, true);
840 int mem_ap_sel_write_buf_u8(struct adiv5_dap
*swjdp
, uint8_t ap
,
841 const uint8_t *buffer
, int count
, uint32_t address
)
843 dap_ap_select(swjdp
, ap
);
844 return mem_ap_write_buf_u8(swjdp
, buffer
, count
, address
);
847 int mem_ap_sel_write_buf_u16(struct adiv5_dap
*swjdp
, uint8_t ap
,
848 const uint8_t *buffer
, int count
, uint32_t address
)
850 dap_ap_select(swjdp
, ap
);
851 return mem_ap_write_buf_u16(swjdp
, buffer
, count
, address
);
854 int mem_ap_sel_write_buf_u32(struct adiv5_dap
*swjdp
, uint8_t ap
,
855 const uint8_t *buffer
, int count
, uint32_t address
)
857 dap_ap_select(swjdp
, ap
);
858 return mem_ap_write_buf_u32(swjdp
, buffer
, count
, address
, true);
861 int mem_ap_sel_write_buf_u32_noincr(struct adiv5_dap
*swjdp
, uint8_t ap
,
862 const uint8_t *buffer
, int count
, uint32_t address
)
864 dap_ap_select(swjdp
, ap
);
865 return mem_ap_write_buf_u32(swjdp
, buffer
, count
, address
, false);
868 #define MDM_REG_STAT 0x00
869 #define MDM_REG_CTRL 0x04
870 #define MDM_REG_ID 0xfc
872 #define MDM_STAT_FMEACK (1<<0)
873 #define MDM_STAT_FREADY (1<<1)
874 #define MDM_STAT_SYSSEC (1<<2)
875 #define MDM_STAT_SYSRES (1<<3)
876 #define MDM_STAT_FMEEN (1<<5)
877 #define MDM_STAT_BACKDOOREN (1<<6)
878 #define MDM_STAT_LPEN (1<<7)
879 #define MDM_STAT_VLPEN (1<<8)
880 #define MDM_STAT_LLSMODEXIT (1<<9)
881 #define MDM_STAT_VLLSXMODEXIT (1<<10)
882 #define MDM_STAT_CORE_HALTED (1<<16)
883 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
884 #define MDM_STAT_CORESLEEPING (1<<18)
886 #define MEM_CTRL_FMEIP (1<<0)
887 #define MEM_CTRL_DBG_DIS (1<<1)
888 #define MEM_CTRL_DBG_REQ (1<<2)
889 #define MEM_CTRL_SYS_RES_REQ (1<<3)
890 #define MEM_CTRL_CORE_HOLD_RES (1<<4)
891 #define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
892 #define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
893 #define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
898 int dap_syssec_kinetis_mdmap(struct adiv5_dap
*dap
)
902 enum reset_types jtag_reset_config
= jtag_get_reset_config();
904 dap_ap_select(dap
, 1);
906 /* first check mdm-ap id register */
907 retval
= dap_queue_ap_read(dap
, MDM_REG_ID
, &val
);
908 if (retval
!= ERROR_OK
)
912 if (val
!= 0x001C0000) {
913 LOG_DEBUG("id doesn't match %08X != 0x001C0000", val
);
914 dap_ap_select(dap
, 0);
918 /* read and parse status register
919 * it's important that the device is out of
922 retval
= dap_queue_ap_read(dap
, MDM_REG_STAT
, &val
);
923 if (retval
!= ERROR_OK
)
927 LOG_DEBUG("MDM_REG_STAT %08X", val
);
929 if ((val
& (MDM_STAT_SYSSEC
|MDM_STAT_FREADY
)) != (MDM_STAT_FREADY
)) {
930 LOG_DEBUG("MDMAP: system is secured, masserase needed");
932 if (!(val
& MDM_STAT_FMEEN
))
933 LOG_DEBUG("MDMAP: masserase is disabled");
935 /* we need to assert reset */
936 if (jtag_reset_config
& RESET_HAS_SRST
) {
937 /* default to asserting srst */
938 adapter_assert_reset();
940 LOG_DEBUG("SRST not configured");
941 dap_ap_select(dap
, 0);
946 retval
= dap_queue_ap_write(dap
, MDM_REG_CTRL
, MEM_CTRL_FMEIP
);
947 if (retval
!= ERROR_OK
)
950 /* read status register and wait for ready */
951 retval
= dap_queue_ap_read(dap
, MDM_REG_STAT
, &val
);
952 if (retval
!= ERROR_OK
)
955 LOG_DEBUG("MDM_REG_STAT %08X", val
);
962 retval
= dap_queue_ap_write(dap
, MDM_REG_CTRL
, 0);
963 if (retval
!= ERROR_OK
)
966 /* read status register */
967 retval
= dap_queue_ap_read(dap
, MDM_REG_STAT
, &val
);
968 if (retval
!= ERROR_OK
)
971 LOG_DEBUG("MDM_REG_STAT %08X", val
);
972 /* read control register and wait for ready */
973 retval
= dap_queue_ap_read(dap
, MDM_REG_CTRL
, &val
);
974 if (retval
!= ERROR_OK
)
977 LOG_DEBUG("MDM_REG_CTRL %08X", val
);
985 dap_ap_select(dap
, 0);
991 struct dap_syssec_filter
{
995 int (*dap_init
)(struct adiv5_dap
*dap
);
999 static struct dap_syssec_filter dap_syssec_filter_data
[] = {
1000 { 0x4BA00477, dap_syssec_kinetis_mdmap
}
1006 int dap_syssec(struct adiv5_dap
*dap
)
1009 struct jtag_tap
*tap
;
1011 for (i
= 0; i
< sizeof(dap_syssec_filter_data
); i
++) {
1012 tap
= dap
->jtag_info
->tap
;
1014 while (tap
!= NULL
) {
1015 if (tap
->hasidcode
&& (dap_syssec_filter_data
[i
].idcode
== tap
->idcode
)) {
1016 LOG_DEBUG("DAP: mdmap_init for idcode: %08x", tap
->idcode
);
1017 dap_syssec_filter_data
[i
].dap_init(dap
);
1019 tap
= tap
->next_tap
;
1026 /*--------------------------------------------------------------------------*/
1029 /* FIXME don't import ... just initialize as
1030 * part of DAP transport setup
1032 extern const struct dap_ops jtag_dp_ops
;
1034 /*--------------------------------------------------------------------------*/
1037 * Initialize a DAP. This sets up the power domains, prepares the DP
1038 * for further use, and arranges to use AP #0 for all AP operations
1039 * until dap_ap-select() changes that policy.
1041 * @param dap The DAP being initialized.
1043 * @todo Rename this. We also need an initialization scheme which account
1044 * for SWD transports not just JTAG; that will need to address differences
1045 * in layering. (JTAG is useful without any debug target; but not SWD.)
1046 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
1048 int ahbap_debugport_init(struct adiv5_dap
*dap
)
1056 /* JTAG-DP or SWJ-DP, in JTAG mode
1057 * ... for SWD mode this is patched as part
1058 * of link switchover
1061 dap
->ops
= &jtag_dp_ops
;
1063 /* Default MEM-AP setup.
1065 * REVISIT AP #0 may be an inappropriate default for this.
1066 * Should we probe, or take a hint from the caller?
1067 * Presumably we can ignore the possibility of multiple APs.
1069 dap
->ap_current
= !0;
1070 dap_ap_select(dap
, 0);
1072 /* DP initialization */
1074 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, NULL
);
1075 if (retval
!= ERROR_OK
)
1078 retval
= dap_queue_dp_write(dap
, DP_CTRL_STAT
, SSTICKYERR
);
1079 if (retval
!= ERROR_OK
)
1082 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, NULL
);
1083 if (retval
!= ERROR_OK
)
1086 dap
->dp_ctrl_stat
= CDBGPWRUPREQ
| CSYSPWRUPREQ
;
1087 retval
= dap_queue_dp_write(dap
, DP_CTRL_STAT
, dap
->dp_ctrl_stat
);
1088 if (retval
!= ERROR_OK
)
1091 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &ctrlstat
);
1092 if (retval
!= ERROR_OK
)
1094 retval
= dap_run(dap
);
1095 if (retval
!= ERROR_OK
)
1098 /* Check that we have debug power domains activated */
1099 while (!(ctrlstat
& CDBGPWRUPACK
) && (cnt
++ < 10)) {
1100 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1101 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &ctrlstat
);
1102 if (retval
!= ERROR_OK
)
1104 retval
= dap_run(dap
);
1105 if (retval
!= ERROR_OK
)
1110 while (!(ctrlstat
& CSYSPWRUPACK
) && (cnt
++ < 10)) {
1111 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1112 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &ctrlstat
);
1113 if (retval
!= ERROR_OK
)
1115 retval
= dap_run(dap
);
1116 if (retval
!= ERROR_OK
)
1121 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, NULL
);
1122 if (retval
!= ERROR_OK
)
1124 /* With debug power on we can activate OVERRUN checking */
1125 dap
->dp_ctrl_stat
= CDBGPWRUPREQ
| CSYSPWRUPREQ
| CORUNDETECT
;
1126 retval
= dap_queue_dp_write(dap
, DP_CTRL_STAT
, dap
->dp_ctrl_stat
);
1127 if (retval
!= ERROR_OK
)
1129 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, NULL
);
1130 if (retval
!= ERROR_OK
)
1135 /* check that we support packed transfers */
1138 retval
= dap_setup_accessport(dap
, CSW_8BIT
| CSW_ADDRINC_PACKED
, 0);
1139 if (retval
!= ERROR_OK
)
1142 retval
= dap_queue_ap_read(dap
, AP_REG_CSW
, &csw
);
1143 if (retval
!= ERROR_OK
)
1146 retval
= dap_run(dap
);
1147 if (retval
!= ERROR_OK
)
1150 if (csw
& CSW_ADDRINC_PACKED
)
1151 dap
->packed_transfers
= true;
1153 dap
->packed_transfers
= false;
1155 LOG_DEBUG("MEM_AP Packed Transfers: %s",
1156 dap
->packed_transfers
? "enabled" : "disabled");
1161 /* CID interpretation -- see ARM IHI 0029B section 3
1162 * and ARM IHI 0031A table 13-3.
1164 static const char *class_description
[16] = {
1165 "Reserved", "ROM table", "Reserved", "Reserved",
1166 "Reserved", "Reserved", "Reserved", "Reserved",
1167 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1168 "Reserved", "OptimoDE DESS",
1169 "Generic IP component", "PrimeCell or System component"
1172 static bool is_dap_cid_ok(uint32_t cid3
, uint32_t cid2
, uint32_t cid1
, uint32_t cid0
)
1174 return cid3
== 0xb1 && cid2
== 0x05
1175 && ((cid1
& 0x0f) == 0) && cid0
== 0x0d;
1179 * This function checks the ID for each access port to find the requested Access Port type
1181 int dap_find_ap(struct adiv5_dap
*dap
, enum ap_type type_to_find
, uint8_t *ap_num_out
)
1185 /* Maximum AP number is 255 since the SELECT register is 8 bits */
1186 for (ap
= 0; ap
<= 255; ap
++) {
1188 /* read the IDR register of the Access Port */
1189 uint32_t id_val
= 0;
1190 dap_ap_select(dap
, ap
);
1192 int retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &id_val
);
1193 if (retval
!= ERROR_OK
)
1196 retval
= dap_run(dap
);
1200 * 27-24 : JEDEC bank (0x4 for ARM)
1201 * 23-17 : JEDEC code (0x3B for ARM)
1204 * 7-0 : AP Identity (1=AHB-AP 2=APB-AP 0x10=JTAG-AP)
1207 /* Reading register for a non-existant AP should not cause an error,
1208 * but just to be sure, try to continue searching if an error does happen.
1210 if ((retval
== ERROR_OK
) && /* Register read success */
1211 ((id_val
& 0x0FFF0000) == 0x04770000) && /* Jedec codes match */
1212 ((id_val
& 0xFF) == type_to_find
)) { /* type matches*/
1214 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08X)",
1215 (type_to_find
== AP_TYPE_AHB_AP
) ? "AHB-AP" :
1216 (type_to_find
== AP_TYPE_APB_AP
) ? "APB-AP" :
1217 (type_to_find
== AP_TYPE_JTAG_AP
) ? "JTAG-AP" : "Unknown",
1225 LOG_DEBUG("No %s found",
1226 (type_to_find
== AP_TYPE_AHB_AP
) ? "AHB-AP" :
1227 (type_to_find
== AP_TYPE_APB_AP
) ? "APB-AP" :
1228 (type_to_find
== AP_TYPE_JTAG_AP
) ? "JTAG-AP" : "Unknown");
1232 int dap_get_debugbase(struct adiv5_dap
*dap
, int ap
,
1233 uint32_t *out_dbgbase
, uint32_t *out_apid
)
1237 uint32_t dbgbase
, apid
;
1239 /* AP address is in bits 31:24 of DP_SELECT */
1241 return ERROR_COMMAND_SYNTAX_ERROR
;
1243 ap_old
= dap
->ap_current
;
1244 dap_ap_select(dap
, ap
);
1246 retval
= dap_queue_ap_read(dap
, AP_REG_BASE
, &dbgbase
);
1247 if (retval
!= ERROR_OK
)
1249 retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &apid
);
1250 if (retval
!= ERROR_OK
)
1252 retval
= dap_run(dap
);
1253 if (retval
!= ERROR_OK
)
1256 /* Excavate the device ID code */
1257 struct jtag_tap
*tap
= dap
->jtag_info
->tap
;
1258 while (tap
!= NULL
) {
1261 tap
= tap
->next_tap
;
1263 if (tap
== NULL
|| !tap
->hasidcode
)
1266 dap_ap_select(dap
, ap_old
);
1268 /* The asignment happens only here to prevent modification of these
1269 * values before they are certain. */
1270 *out_dbgbase
= dbgbase
;
1276 int dap_lookup_cs_component(struct adiv5_dap
*dap
, int ap
,
1277 uint32_t dbgbase
, uint8_t type
, uint32_t *addr
)
1280 uint32_t romentry
, entry_offset
= 0, component_base
, devtype
;
1281 int retval
= ERROR_FAIL
;
1284 return ERROR_COMMAND_SYNTAX_ERROR
;
1286 ap_old
= dap
->ap_current
;
1287 dap_ap_select(dap
, ap
);
1290 retval
= mem_ap_read_atomic_u32(dap
, (dbgbase
&0xFFFFF000) |
1291 entry_offset
, &romentry
);
1292 if (retval
!= ERROR_OK
)
1295 component_base
= (dbgbase
& 0xFFFFF000)
1296 + (romentry
& 0xFFFFF000);
1298 if (romentry
& 0x1) {
1299 retval
= mem_ap_read_atomic_u32(dap
,
1300 (component_base
& 0xfffff000) | 0xfcc,
1302 if (retval
!= ERROR_OK
)
1304 if ((devtype
& 0xff) == type
) {
1305 *addr
= component_base
;
1311 } while (romentry
> 0);
1313 dap_ap_select(dap
, ap_old
);
1318 static int dap_info_command(struct command_context
*cmd_ctx
,
1319 struct adiv5_dap
*dap
, int ap
)
1322 uint32_t dbgbase
= 0, apid
= 0; /* Silence gcc by initializing */
1323 int romtable_present
= 0;
1327 retval
= dap_get_debugbase(dap
, ap
, &dbgbase
, &apid
);
1328 if (retval
!= ERROR_OK
)
1331 ap_old
= dap
->ap_current
;
1332 dap_ap_select(dap
, ap
);
1334 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1335 mem_ap
= ((apid
&0x10000) && ((apid
&0x0F) != 0));
1336 command_print(cmd_ctx
, "AP ID register 0x%8.8" PRIx32
, apid
);
1338 switch (apid
&0x0F) {
1340 command_print(cmd_ctx
, "\tType is JTAG-AP");
1343 command_print(cmd_ctx
, "\tType is MEM-AP AHB");
1346 command_print(cmd_ctx
, "\tType is MEM-AP APB");
1349 command_print(cmd_ctx
, "\tUnknown AP type");
1353 /* NOTE: a MEM-AP may have a single CoreSight component that's
1354 * not a ROM table ... or have no such components at all.
1357 command_print(cmd_ctx
, "AP BASE 0x%8.8" PRIx32
, dbgbase
);
1359 command_print(cmd_ctx
, "No AP found at this ap 0x%x", ap
);
1361 romtable_present
= ((mem_ap
) && (dbgbase
!= 0xFFFFFFFF));
1362 if (romtable_present
) {
1363 uint32_t cid0
, cid1
, cid2
, cid3
, memtype
, romentry
;
1364 uint16_t entry_offset
;
1366 /* bit 16 of apid indicates a memory access port */
1368 command_print(cmd_ctx
, "\tValid ROM table present");
1370 command_print(cmd_ctx
, "\tROM table in legacy format");
1372 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1373 retval
= mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFF0, &cid0
);
1374 if (retval
!= ERROR_OK
)
1376 retval
= mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFF4, &cid1
);
1377 if (retval
!= ERROR_OK
)
1379 retval
= mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFF8, &cid2
);
1380 if (retval
!= ERROR_OK
)
1382 retval
= mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFFC, &cid3
);
1383 if (retval
!= ERROR_OK
)
1385 retval
= mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFCC, &memtype
);
1386 if (retval
!= ERROR_OK
)
1388 retval
= dap_run(dap
);
1389 if (retval
!= ERROR_OK
)
1392 if (!is_dap_cid_ok(cid3
, cid2
, cid1
, cid0
))
1393 command_print(cmd_ctx
, "\tCID3 0x%2.2x"
1397 (unsigned) cid3
, (unsigned)cid2
,
1398 (unsigned) cid1
, (unsigned) cid0
);
1400 command_print(cmd_ctx
, "\tMEMTYPE system memory present on bus");
1402 command_print(cmd_ctx
, "\tMEMTYPE System memory not present. "
1403 "Dedicated debug bus.");
1405 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1408 retval
= mem_ap_read_atomic_u32(dap
, (dbgbase
&0xFFFFF000) | entry_offset
, &romentry
);
1409 if (retval
!= ERROR_OK
)
1411 command_print(cmd_ctx
, "\tROMTABLE[0x%x] = 0x%" PRIx32
"", entry_offset
, romentry
);
1412 if (romentry
& 0x01) {
1413 uint32_t c_cid0
, c_cid1
, c_cid2
, c_cid3
;
1414 uint32_t c_pid0
, c_pid1
, c_pid2
, c_pid3
, c_pid4
;
1415 uint32_t component_base
;
1419 component_base
= (dbgbase
& 0xFFFFF000) + (romentry
& 0xFFFFF000);
1421 /* IDs are in last 4K section */
1422 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFE0, &c_pid0
);
1423 if (retval
!= ERROR_OK
)
1426 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFE4, &c_pid1
);
1427 if (retval
!= ERROR_OK
)
1430 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFE8, &c_pid2
);
1431 if (retval
!= ERROR_OK
)
1434 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFEC, &c_pid3
);
1435 if (retval
!= ERROR_OK
)
1438 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFD0, &c_pid4
);
1439 if (retval
!= ERROR_OK
)
1443 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFF0, &c_cid0
);
1444 if (retval
!= ERROR_OK
)
1447 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFF4, &c_cid1
);
1448 if (retval
!= ERROR_OK
)
1451 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFF8, &c_cid2
);
1452 if (retval
!= ERROR_OK
)
1455 retval
= mem_ap_read_atomic_u32(dap
, component_base
+ 0xFFC, &c_cid3
);
1456 if (retval
!= ERROR_OK
)
1460 command_print(cmd_ctx
, "\t\tComponent base address 0x%" PRIx32
","
1461 "start address 0x%" PRIx32
, component_base
,
1462 /* component may take multiple 4K pages */
1463 component_base
- 0x1000*(c_pid4
>> 4));
1464 command_print(cmd_ctx
, "\t\tComponent class is 0x%x, %s",
1465 (int) (c_cid1
>> 4) & 0xf,
1466 /* See ARM IHI 0029B Table 3-3 */
1467 class_description
[(c_cid1
>> 4) & 0xf]);
1469 /* CoreSight component? */
1470 if (((c_cid1
>> 4) & 0x0f) == 9) {
1473 char *major
= "Reserved", *subtype
= "Reserved";
1475 retval
= mem_ap_read_atomic_u32(dap
,
1476 (component_base
& 0xfffff000) | 0xfcc,
1478 if (retval
!= ERROR_OK
)
1480 minor
= (devtype
>> 4) & 0x0f;
1481 switch (devtype
& 0x0f) {
1483 major
= "Miscellaneous";
1489 subtype
= "Validation component";
1494 major
= "Trace Sink";
1508 major
= "Trace Link";
1514 subtype
= "Funnel, router";
1520 subtype
= "FIFO, buffer";
1525 major
= "Trace Source";
1531 subtype
= "Processor";
1537 subtype
= "Engine/Coprocessor";
1545 major
= "Debug Control";
1551 subtype
= "Trigger Matrix";
1554 subtype
= "Debug Auth";
1559 major
= "Debug Logic";
1565 subtype
= "Processor";
1571 subtype
= "Engine/Coprocessor";
1576 command_print(cmd_ctx
, "\t\tType is 0x%2.2x, %s, %s",
1577 (unsigned) (devtype
& 0xff),
1579 /* REVISIT also show 0xfc8 DevId */
1582 if (!is_dap_cid_ok(cid3
, cid2
, cid1
, cid0
))
1583 command_print(cmd_ctx
,
1592 command_print(cmd_ctx
,
1593 "\t\tPeripheral ID[4..0] = hex "
1594 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1595 (int) c_pid4
, (int) c_pid3
, (int) c_pid2
,
1596 (int) c_pid1
, (int) c_pid0
);
1598 /* Part number interpretations are from Cortex
1599 * core specs, the CoreSight components TRM
1600 * (ARM DDI 0314H), CoreSight System Design
1601 * Guide (ARM DGI 0012D) and ETM specs; also
1602 * from chip observation (e.g. TI SDTI).
1604 part_num
= (c_pid0
& 0xff);
1605 part_num
|= (c_pid1
& 0x0f) << 8;
1608 type
= "Cortex-M3 NVIC";
1609 full
= "(Interrupt Controller)";
1612 type
= "Cortex-M3 ITM";
1613 full
= "(Instrumentation Trace Module)";
1616 type
= "Cortex-M3 DWT";
1617 full
= "(Data Watchpoint and Trace)";
1620 type
= "Cortex-M3 FBP";
1621 full
= "(Flash Patch and Breakpoint)";
1624 type
= "Cortex-M4 SCS";
1625 full
= "(System Control Space)";
1628 type
= "CoreSight ETM11";
1629 full
= "(Embedded Trace)";
1631 /* case 0x113: what? */
1632 case 0x120: /* from OMAP3 memmap */
1634 full
= "(System Debug Trace Interface)";
1636 case 0x343: /* from OMAP3 memmap */
1641 type
= "Coresight CTI";
1642 full
= "(Cross Trigger)";
1645 type
= "Coresight ETB";
1646 full
= "(Trace Buffer)";
1649 type
= "Coresight CSTF";
1650 full
= "(Trace Funnel)";
1653 type
= "CoreSight ETM9";
1654 full
= "(Embedded Trace)";
1657 type
= "Coresight TPIU";
1658 full
= "(Trace Port Interface Unit)";
1661 type
= "Cortex-A8 ETM";
1662 full
= "(Embedded Trace)";
1665 type
= "Cortex-A8 CTI";
1666 full
= "(Cross Trigger)";
1669 type
= "Cortex-M3 TPIU";
1670 full
= "(Trace Port Interface Unit)";
1673 type
= "Cortex-M3 ETM";
1674 full
= "(Embedded Trace)";
1677 type
= "Cortex-M4 ETM";
1678 full
= "(Embedded Trace)";
1681 type
= "Cortex-R4 ETM";
1682 full
= "(Embedded Trace)";
1685 type
= "Cortex-M4 TPUI";
1686 full
= "(Trace Port Interface Unit)";
1689 type
= "Cortex-A8 Debug";
1690 full
= "(Debug Unit)";
1693 type
= "-*- unrecognized -*-";
1697 command_print(cmd_ctx
, "\t\tPart is %s %s",
1701 command_print(cmd_ctx
, "\t\tComponent not present");
1703 command_print(cmd_ctx
, "\t\tEnd of ROM table");
1706 } while (romentry
> 0);
1708 command_print(cmd_ctx
, "\tNo ROM table present");
1709 dap_ap_select(dap
, ap_old
);
1714 COMMAND_HANDLER(handle_dap_info_command
)
1716 struct target
*target
= get_current_target(CMD_CTX
);
1717 struct arm
*arm
= target_to_arm(target
);
1718 struct adiv5_dap
*dap
= arm
->dap
;
1726 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1729 return ERROR_COMMAND_SYNTAX_ERROR
;
1732 return dap_info_command(CMD_CTX
, dap
, apsel
);
1735 COMMAND_HANDLER(dap_baseaddr_command
)
1737 struct target
*target
= get_current_target(CMD_CTX
);
1738 struct arm
*arm
= target_to_arm(target
);
1739 struct adiv5_dap
*dap
= arm
->dap
;
1741 uint32_t apsel
, baseaddr
;
1749 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1750 /* AP address is in bits 31:24 of DP_SELECT */
1752 return ERROR_COMMAND_SYNTAX_ERROR
;
1755 return ERROR_COMMAND_SYNTAX_ERROR
;
1758 dap_ap_select(dap
, apsel
);
1760 /* NOTE: assumes we're talking to a MEM-AP, which
1761 * has a base address. There are other kinds of AP,
1762 * though they're not common for now. This should
1763 * use the ID register to verify it's a MEM-AP.
1765 retval
= dap_queue_ap_read(dap
, AP_REG_BASE
, &baseaddr
);
1766 if (retval
!= ERROR_OK
)
1768 retval
= dap_run(dap
);
1769 if (retval
!= ERROR_OK
)
1772 command_print(CMD_CTX
, "0x%8.8" PRIx32
, baseaddr
);
1777 COMMAND_HANDLER(dap_memaccess_command
)
1779 struct target
*target
= get_current_target(CMD_CTX
);
1780 struct arm
*arm
= target_to_arm(target
);
1781 struct adiv5_dap
*dap
= arm
->dap
;
1783 uint32_t memaccess_tck
;
1787 memaccess_tck
= dap
->memaccess_tck
;
1790 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], memaccess_tck
);
1793 return ERROR_COMMAND_SYNTAX_ERROR
;
1795 dap
->memaccess_tck
= memaccess_tck
;
1797 command_print(CMD_CTX
, "memory bus access delay set to %" PRIi32
" tck",
1798 dap
->memaccess_tck
);
1803 COMMAND_HANDLER(dap_apsel_command
)
1805 struct target
*target
= get_current_target(CMD_CTX
);
1806 struct arm
*arm
= target_to_arm(target
);
1807 struct adiv5_dap
*dap
= arm
->dap
;
1809 uint32_t apsel
, apid
;
1817 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1818 /* AP address is in bits 31:24 of DP_SELECT */
1820 return ERROR_COMMAND_SYNTAX_ERROR
;
1823 return ERROR_COMMAND_SYNTAX_ERROR
;
1827 dap_ap_select(dap
, apsel
);
1829 retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &apid
);
1830 if (retval
!= ERROR_OK
)
1832 retval
= dap_run(dap
);
1833 if (retval
!= ERROR_OK
)
1836 command_print(CMD_CTX
, "ap %" PRIi32
" selected, identification register 0x%8.8" PRIx32
,
1842 COMMAND_HANDLER(dap_apcsw_command
)
1844 struct target
*target
= get_current_target(CMD_CTX
);
1845 struct arm
*arm
= target_to_arm(target
);
1846 struct adiv5_dap
*dap
= arm
->dap
;
1848 uint32_t apcsw
= dap
->apcsw
[dap
->apsel
], sprot
= 0;
1852 command_print(CMD_CTX
, "apsel %" PRIi32
" selected, csw 0x%8.8" PRIx32
,
1853 (dap
->apsel
), apcsw
);
1856 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], sprot
);
1857 /* AP address is in bits 31:24 of DP_SELECT */
1859 return ERROR_COMMAND_SYNTAX_ERROR
;
1863 apcsw
&= ~CSW_SPROT
;
1866 return ERROR_COMMAND_SYNTAX_ERROR
;
1868 dap
->apcsw
[dap
->apsel
] = apcsw
;
1875 COMMAND_HANDLER(dap_apid_command
)
1877 struct target
*target
= get_current_target(CMD_CTX
);
1878 struct arm
*arm
= target_to_arm(target
);
1879 struct adiv5_dap
*dap
= arm
->dap
;
1881 uint32_t apsel
, apid
;
1889 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1890 /* AP address is in bits 31:24 of DP_SELECT */
1892 return ERROR_COMMAND_SYNTAX_ERROR
;
1895 return ERROR_COMMAND_SYNTAX_ERROR
;
1898 dap_ap_select(dap
, apsel
);
1900 retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &apid
);
1901 if (retval
!= ERROR_OK
)
1903 retval
= dap_run(dap
);
1904 if (retval
!= ERROR_OK
)
1907 command_print(CMD_CTX
, "0x%8.8" PRIx32
, apid
);
1912 static const struct command_registration dap_commands
[] = {
1915 .handler
= handle_dap_info_command
,
1916 .mode
= COMMAND_EXEC
,
1917 .help
= "display ROM table for MEM-AP "
1918 "(default currently selected AP)",
1919 .usage
= "[ap_num]",
1923 .handler
= dap_apsel_command
,
1924 .mode
= COMMAND_EXEC
,
1925 .help
= "Set the currently selected AP (default 0) "
1926 "and display the result",
1927 .usage
= "[ap_num]",
1931 .handler
= dap_apcsw_command
,
1932 .mode
= COMMAND_EXEC
,
1933 .help
= "Set csw access bit ",
1939 .handler
= dap_apid_command
,
1940 .mode
= COMMAND_EXEC
,
1941 .help
= "return ID register from AP "
1942 "(default currently selected AP)",
1943 .usage
= "[ap_num]",
1947 .handler
= dap_baseaddr_command
,
1948 .mode
= COMMAND_EXEC
,
1949 .help
= "return debug base address from MEM-AP "
1950 "(default currently selected AP)",
1951 .usage
= "[ap_num]",
1954 .name
= "memaccess",
1955 .handler
= dap_memaccess_command
,
1956 .mode
= COMMAND_EXEC
,
1957 .help
= "set/get number of extra tck for MEM-AP memory "
1958 "bus access [0-255]",
1959 .usage
= "[cycles]",
1961 COMMAND_REGISTRATION_DONE
1964 const struct command_registration dap_command_handlers
[] = {
1967 .mode
= COMMAND_EXEC
,
1968 .help
= "DAP command group",
1970 .chain
= dap_commands
,
1972 COMMAND_REGISTRATION_DONE