Merge from mainline (168000:168310).
[official-gcc/graphite-test-results.git] / gcc / ada / freeze.adb
blob9ef3a55a508e3ade6390edfbd35e67ab4dd9b61a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- You should have received a copy of the GNU General Public License along --
19 -- with this program; see file COPYING3. If not see --
20 -- <http://www.gnu.org/licenses/>. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch3; use Exp_Ch3;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Exp_Tss; use Exp_Tss;
38 with Layout; use Layout;
39 with Lib; use Lib;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch6; use Sem_Ch6;
50 with Sem_Ch7; use Sem_Ch7;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Ch13; use Sem_Ch13;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Mech; use Sem_Mech;
55 with Sem_Prag; use Sem_Prag;
56 with Sem_Res; use Sem_Res;
57 with Sem_Util; use Sem_Util;
58 with Sinfo; use Sinfo;
59 with Snames; use Snames;
60 with Stand; use Stand;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Ttypes; use Ttypes;
64 with Uintp; use Uintp;
65 with Urealp; use Urealp;
67 package body Freeze is
69 -----------------------
70 -- Local Subprograms --
71 -----------------------
73 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
74 -- Typ is a type that is being frozen. If no size clause is given,
75 -- but a default Esize has been computed, then this default Esize is
76 -- adjusted up if necessary to be consistent with a given alignment,
77 -- but never to a value greater than Long_Long_Integer'Size. This
78 -- is used for all discrete types and for fixed-point types.
80 procedure Build_And_Analyze_Renamed_Body
81 (Decl : Node_Id;
82 New_S : Entity_Id;
83 After : in out Node_Id);
84 -- Build body for a renaming declaration, insert in tree and analyze
86 procedure Check_Address_Clause (E : Entity_Id);
87 -- Apply legality checks to address clauses for object declarations,
88 -- at the point the object is frozen.
90 procedure Check_Strict_Alignment (E : Entity_Id);
91 -- E is a base type. If E is tagged or has a component that is aliased
92 -- or tagged or contains something this is aliased or tagged, set
93 -- Strict_Alignment.
95 procedure Check_Unsigned_Type (E : Entity_Id);
96 pragma Inline (Check_Unsigned_Type);
97 -- If E is a fixed-point or discrete type, then all the necessary work
98 -- to freeze it is completed except for possible setting of the flag
99 -- Is_Unsigned_Type, which is done by this procedure. The call has no
100 -- effect if the entity E is not a discrete or fixed-point type.
102 procedure Freeze_And_Append
103 (Ent : Entity_Id;
104 N : Node_Id;
105 Result : in out List_Id);
106 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
107 -- nodes to Result, modifying Result from No_List if necessary. N has
108 -- the same usage as in Freeze_Entity.
110 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
111 -- Freeze enumeration type. The Esize field is set as processing
112 -- proceeds (i.e. set by default when the type is declared and then
113 -- adjusted by rep clauses. What this procedure does is to make sure
114 -- that if a foreign convention is specified, and no specific size
115 -- is given, then the size must be at least Integer'Size.
117 procedure Freeze_Static_Object (E : Entity_Id);
118 -- If an object is frozen which has Is_Statically_Allocated set, then
119 -- all referenced types must also be marked with this flag. This routine
120 -- is in charge of meeting this requirement for the object entity E.
122 procedure Freeze_Subprogram (E : Entity_Id);
123 -- Perform freezing actions for a subprogram (create extra formals,
124 -- and set proper default mechanism values). Note that this routine
125 -- is not called for internal subprograms, for which neither of these
126 -- actions is needed (or desirable, we do not want for example to have
127 -- these extra formals present in initialization procedures, where they
128 -- would serve no purpose). In this call E is either a subprogram or
129 -- a subprogram type (i.e. an access to a subprogram).
131 function Is_Fully_Defined (T : Entity_Id) return Boolean;
132 -- True if T is not private and has no private components, or has a full
133 -- view. Used to determine whether the designated type of an access type
134 -- should be frozen when the access type is frozen. This is done when an
135 -- allocator is frozen, or an expression that may involve attributes of
136 -- the designated type. Otherwise freezing the access type does not freeze
137 -- the designated type.
139 procedure Process_Default_Expressions
140 (E : Entity_Id;
141 After : in out Node_Id);
142 -- This procedure is called for each subprogram to complete processing of
143 -- default expressions at the point where all types are known to be frozen.
144 -- The expressions must be analyzed in full, to make sure that all error
145 -- processing is done (they have only been pre-analyzed). If the expression
146 -- is not an entity or literal, its analysis may generate code which must
147 -- not be executed. In that case we build a function body to hold that
148 -- code. This wrapper function serves no other purpose (it used to be
149 -- called to evaluate the default, but now the default is inlined at each
150 -- point of call).
152 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
153 -- Typ is a record or array type that is being frozen. This routine sets
154 -- the default component alignment from the scope stack values if the
155 -- alignment is otherwise not specified.
157 procedure Check_Debug_Info_Needed (T : Entity_Id);
158 -- As each entity is frozen, this routine is called to deal with the
159 -- setting of Debug_Info_Needed for the entity. This flag is set if
160 -- the entity comes from source, or if we are in Debug_Generated_Code
161 -- mode or if the -gnatdV debug flag is set. However, it never sets
162 -- the flag if Debug_Info_Off is set. This procedure also ensures that
163 -- subsidiary entities have the flag set as required.
165 procedure Undelay_Type (T : Entity_Id);
166 -- T is a type of a component that we know to be an Itype. We don't want
167 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
168 -- Full_View or Corresponding_Record_Type.
170 procedure Warn_Overlay
171 (Expr : Node_Id;
172 Typ : Entity_Id;
173 Nam : Node_Id);
174 -- Expr is the expression for an address clause for entity Nam whose type
175 -- is Typ. If Typ has a default initialization, and there is no explicit
176 -- initialization in the source declaration, check whether the address
177 -- clause might cause overlaying of an entity, and emit a warning on the
178 -- side effect that the initialization will cause.
180 -------------------------------
181 -- Adjust_Esize_For_Alignment --
182 -------------------------------
184 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
185 Align : Uint;
187 begin
188 if Known_Esize (Typ) and then Known_Alignment (Typ) then
189 Align := Alignment_In_Bits (Typ);
191 if Align > Esize (Typ)
192 and then Align <= Standard_Long_Long_Integer_Size
193 then
194 Set_Esize (Typ, Align);
195 end if;
196 end if;
197 end Adjust_Esize_For_Alignment;
199 ------------------------------------
200 -- Build_And_Analyze_Renamed_Body --
201 ------------------------------------
203 procedure Build_And_Analyze_Renamed_Body
204 (Decl : Node_Id;
205 New_S : Entity_Id;
206 After : in out Node_Id)
208 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
209 Ent : constant Entity_Id := Defining_Entity (Decl);
210 Body_Node : Node_Id;
211 Renamed_Subp : Entity_Id;
213 begin
214 -- If the renamed subprogram is intrinsic, there is no need for a
215 -- wrapper body: we set the alias that will be called and expanded which
216 -- completes the declaration. This transformation is only legal if the
217 -- renamed entity has already been elaborated.
219 -- Note that it is legal for a renaming_as_body to rename an intrinsic
220 -- subprogram, as long as the renaming occurs before the new entity
221 -- is frozen. See RM 8.5.4 (5).
223 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
224 and then Is_Entity_Name (Name (Body_Decl))
225 then
226 Renamed_Subp := Entity (Name (Body_Decl));
227 else
228 Renamed_Subp := Empty;
229 end if;
231 if Present (Renamed_Subp)
232 and then Is_Intrinsic_Subprogram (Renamed_Subp)
233 and then
234 (not In_Same_Source_Unit (Renamed_Subp, Ent)
235 or else Sloc (Renamed_Subp) < Sloc (Ent))
237 -- We can make the renaming entity intrinsic if the renamed function
238 -- has an interface name, or if it is one of the shift/rotate
239 -- operations known to the compiler.
241 and then (Present (Interface_Name (Renamed_Subp))
242 or else Chars (Renamed_Subp) = Name_Rotate_Left
243 or else Chars (Renamed_Subp) = Name_Rotate_Right
244 or else Chars (Renamed_Subp) = Name_Shift_Left
245 or else Chars (Renamed_Subp) = Name_Shift_Right
246 or else Chars (Renamed_Subp) = Name_Shift_Right_Arithmetic)
247 then
248 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
250 if Present (Alias (Renamed_Subp)) then
251 Set_Alias (Ent, Alias (Renamed_Subp));
252 else
253 Set_Alias (Ent, Renamed_Subp);
254 end if;
256 Set_Is_Intrinsic_Subprogram (Ent);
257 Set_Has_Completion (Ent);
259 else
260 Body_Node := Build_Renamed_Body (Decl, New_S);
261 Insert_After (After, Body_Node);
262 Mark_Rewrite_Insertion (Body_Node);
263 Analyze (Body_Node);
264 After := Body_Node;
265 end if;
266 end Build_And_Analyze_Renamed_Body;
268 ------------------------
269 -- Build_Renamed_Body --
270 ------------------------
272 function Build_Renamed_Body
273 (Decl : Node_Id;
274 New_S : Entity_Id) return Node_Id
276 Loc : constant Source_Ptr := Sloc (New_S);
277 -- We use for the source location of the renamed body, the location of
278 -- the spec entity. It might seem more natural to use the location of
279 -- the renaming declaration itself, but that would be wrong, since then
280 -- the body we create would look as though it was created far too late,
281 -- and this could cause problems with elaboration order analysis,
282 -- particularly in connection with instantiations.
284 N : constant Node_Id := Unit_Declaration_Node (New_S);
285 Nam : constant Node_Id := Name (N);
286 Old_S : Entity_Id;
287 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
288 Actuals : List_Id := No_List;
289 Call_Node : Node_Id;
290 Call_Name : Node_Id;
291 Body_Node : Node_Id;
292 Formal : Entity_Id;
293 O_Formal : Entity_Id;
294 Param_Spec : Node_Id;
296 Pref : Node_Id := Empty;
297 -- If the renamed entity is a primitive operation given in prefix form,
298 -- the prefix is the target object and it has to be added as the first
299 -- actual in the generated call.
301 begin
302 -- Determine the entity being renamed, which is the target of the call
303 -- statement. If the name is an explicit dereference, this is a renaming
304 -- of a subprogram type rather than a subprogram. The name itself is
305 -- fully analyzed.
307 if Nkind (Nam) = N_Selected_Component then
308 Old_S := Entity (Selector_Name (Nam));
310 elsif Nkind (Nam) = N_Explicit_Dereference then
311 Old_S := Etype (Nam);
313 elsif Nkind (Nam) = N_Indexed_Component then
314 if Is_Entity_Name (Prefix (Nam)) then
315 Old_S := Entity (Prefix (Nam));
316 else
317 Old_S := Entity (Selector_Name (Prefix (Nam)));
318 end if;
320 elsif Nkind (Nam) = N_Character_Literal then
321 Old_S := Etype (New_S);
323 else
324 Old_S := Entity (Nam);
325 end if;
327 if Is_Entity_Name (Nam) then
329 -- If the renamed entity is a predefined operator, retain full name
330 -- to ensure its visibility.
332 if Ekind (Old_S) = E_Operator
333 and then Nkind (Nam) = N_Expanded_Name
334 then
335 Call_Name := New_Copy (Name (N));
336 else
337 Call_Name := New_Reference_To (Old_S, Loc);
338 end if;
340 else
341 if Nkind (Nam) = N_Selected_Component
342 and then Present (First_Formal (Old_S))
343 and then
344 (Is_Controlling_Formal (First_Formal (Old_S))
345 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
346 then
348 -- Retrieve the target object, to be added as a first actual
349 -- in the call.
351 Call_Name := New_Occurrence_Of (Old_S, Loc);
352 Pref := Prefix (Nam);
354 else
355 Call_Name := New_Copy (Name (N));
356 end if;
358 -- Original name may have been overloaded, but is fully resolved now
360 Set_Is_Overloaded (Call_Name, False);
361 end if;
363 -- For simple renamings, subsequent calls can be expanded directly as
364 -- calls to the renamed entity. The body must be generated in any case
365 -- for calls that may appear elsewhere.
367 if Ekind_In (Old_S, E_Function, E_Procedure)
368 and then Nkind (Decl) = N_Subprogram_Declaration
369 then
370 Set_Body_To_Inline (Decl, Old_S);
371 end if;
373 -- The body generated for this renaming is an internal artifact, and
374 -- does not constitute a freeze point for the called entity.
376 Set_Must_Not_Freeze (Call_Name);
378 Formal := First_Formal (Defining_Entity (Decl));
380 if Present (Pref) then
381 declare
382 Pref_Type : constant Entity_Id := Etype (Pref);
383 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
385 begin
386 -- The controlling formal may be an access parameter, or the
387 -- actual may be an access value, so adjust accordingly.
389 if Is_Access_Type (Pref_Type)
390 and then not Is_Access_Type (Form_Type)
391 then
392 Actuals := New_List
393 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
395 elsif Is_Access_Type (Form_Type)
396 and then not Is_Access_Type (Pref)
397 then
398 Actuals := New_List
399 (Make_Attribute_Reference (Loc,
400 Attribute_Name => Name_Access,
401 Prefix => Relocate_Node (Pref)));
402 else
403 Actuals := New_List (Pref);
404 end if;
405 end;
407 elsif Present (Formal) then
408 Actuals := New_List;
410 else
411 Actuals := No_List;
412 end if;
414 if Present (Formal) then
415 while Present (Formal) loop
416 Append (New_Reference_To (Formal, Loc), Actuals);
417 Next_Formal (Formal);
418 end loop;
419 end if;
421 -- If the renamed entity is an entry, inherit its profile. For other
422 -- renamings as bodies, both profiles must be subtype conformant, so it
423 -- is not necessary to replace the profile given in the declaration.
424 -- However, default values that are aggregates are rewritten when
425 -- partially analyzed, so we recover the original aggregate to insure
426 -- that subsequent conformity checking works. Similarly, if the default
427 -- expression was constant-folded, recover the original expression.
429 Formal := First_Formal (Defining_Entity (Decl));
431 if Present (Formal) then
432 O_Formal := First_Formal (Old_S);
433 Param_Spec := First (Parameter_Specifications (Spec));
434 while Present (Formal) loop
435 if Is_Entry (Old_S) then
436 if Nkind (Parameter_Type (Param_Spec)) /=
437 N_Access_Definition
438 then
439 Set_Etype (Formal, Etype (O_Formal));
440 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
441 end if;
443 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
444 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
445 Nkind (Default_Value (O_Formal))
446 then
447 Set_Expression (Param_Spec,
448 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
449 end if;
451 Next_Formal (Formal);
452 Next_Formal (O_Formal);
453 Next (Param_Spec);
454 end loop;
455 end if;
457 -- If the renamed entity is a function, the generated body contains a
458 -- return statement. Otherwise, build a procedure call. If the entity is
459 -- an entry, subsequent analysis of the call will transform it into the
460 -- proper entry or protected operation call. If the renamed entity is
461 -- a character literal, return it directly.
463 if Ekind (Old_S) = E_Function
464 or else Ekind (Old_S) = E_Operator
465 or else (Ekind (Old_S) = E_Subprogram_Type
466 and then Etype (Old_S) /= Standard_Void_Type)
467 then
468 Call_Node :=
469 Make_Simple_Return_Statement (Loc,
470 Expression =>
471 Make_Function_Call (Loc,
472 Name => Call_Name,
473 Parameter_Associations => Actuals));
475 elsif Ekind (Old_S) = E_Enumeration_Literal then
476 Call_Node :=
477 Make_Simple_Return_Statement (Loc,
478 Expression => New_Occurrence_Of (Old_S, Loc));
480 elsif Nkind (Nam) = N_Character_Literal then
481 Call_Node :=
482 Make_Simple_Return_Statement (Loc,
483 Expression => Call_Name);
485 else
486 Call_Node :=
487 Make_Procedure_Call_Statement (Loc,
488 Name => Call_Name,
489 Parameter_Associations => Actuals);
490 end if;
492 -- Create entities for subprogram body and formals
494 Set_Defining_Unit_Name (Spec,
495 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
497 Param_Spec := First (Parameter_Specifications (Spec));
498 while Present (Param_Spec) loop
499 Set_Defining_Identifier (Param_Spec,
500 Make_Defining_Identifier (Loc,
501 Chars => Chars (Defining_Identifier (Param_Spec))));
502 Next (Param_Spec);
503 end loop;
505 Body_Node :=
506 Make_Subprogram_Body (Loc,
507 Specification => Spec,
508 Declarations => New_List,
509 Handled_Statement_Sequence =>
510 Make_Handled_Sequence_Of_Statements (Loc,
511 Statements => New_List (Call_Node)));
513 if Nkind (Decl) /= N_Subprogram_Declaration then
514 Rewrite (N,
515 Make_Subprogram_Declaration (Loc,
516 Specification => Specification (N)));
517 end if;
519 -- Link the body to the entity whose declaration it completes. If
520 -- the body is analyzed when the renamed entity is frozen, it may
521 -- be necessary to restore the proper scope (see package Exp_Ch13).
523 if Nkind (N) = N_Subprogram_Renaming_Declaration
524 and then Present (Corresponding_Spec (N))
525 then
526 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
527 else
528 Set_Corresponding_Spec (Body_Node, New_S);
529 end if;
531 return Body_Node;
532 end Build_Renamed_Body;
534 --------------------------
535 -- Check_Address_Clause --
536 --------------------------
538 procedure Check_Address_Clause (E : Entity_Id) is
539 Addr : constant Node_Id := Address_Clause (E);
540 Expr : Node_Id;
541 Decl : constant Node_Id := Declaration_Node (E);
542 Typ : constant Entity_Id := Etype (E);
544 begin
545 if Present (Addr) then
546 Expr := Expression (Addr);
548 if Needs_Constant_Address (Decl, Typ) then
549 Check_Constant_Address_Clause (Expr, E);
551 -- Has_Delayed_Freeze was set on E when the address clause was
552 -- analyzed. Reset the flag now unless freeze actions were
553 -- attached to it in the mean time.
555 if No (Freeze_Node (E)) then
556 Set_Has_Delayed_Freeze (E, False);
557 end if;
558 end if;
560 -- If Rep_Clauses are to be ignored, remove address clause from
561 -- list attached to entity, because it may be illegal for gigi,
562 -- for example by breaking order of elaboration..
564 if Ignore_Rep_Clauses then
565 declare
566 Rep : Node_Id;
568 begin
569 Rep := First_Rep_Item (E);
571 if Rep = Addr then
572 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
574 else
575 while Present (Rep)
576 and then Next_Rep_Item (Rep) /= Addr
577 loop
578 Rep := Next_Rep_Item (Rep);
579 end loop;
580 end if;
582 if Present (Rep) then
583 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
584 end if;
585 end;
587 Rewrite (Addr, Make_Null_Statement (Sloc (E)));
589 elsif not Error_Posted (Expr)
590 and then not Needs_Finalization (Typ)
591 then
592 Warn_Overlay (Expr, Typ, Name (Addr));
593 end if;
594 end if;
595 end Check_Address_Clause;
597 -----------------------------
598 -- Check_Compile_Time_Size --
599 -----------------------------
601 procedure Check_Compile_Time_Size (T : Entity_Id) is
603 procedure Set_Small_Size (T : Entity_Id; S : Uint);
604 -- Sets the compile time known size (32 bits or less) in the Esize
605 -- field, of T checking for a size clause that was given which attempts
606 -- to give a smaller size, and also checking for an alignment clause.
608 function Size_Known (T : Entity_Id) return Boolean;
609 -- Recursive function that does all the work
611 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
612 -- If T is a constrained subtype, its size is not known if any of its
613 -- discriminant constraints is not static and it is not a null record.
614 -- The test is conservative and doesn't check that the components are
615 -- in fact constrained by non-static discriminant values. Could be made
616 -- more precise ???
618 --------------------
619 -- Set_Small_Size --
620 --------------------
622 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
623 begin
624 if S > 32 then
625 return;
627 -- Don't bother if alignment clause with a value other than 1 is
628 -- present, because size may be padded up to meet back end alignment
629 -- requirements, and only the back end knows the rules!
631 elsif Known_Alignment (T) and then Alignment (T) /= 1 then
632 return;
634 -- Check for bad size clause given
636 elsif Has_Size_Clause (T) then
637 if RM_Size (T) < S then
638 Error_Msg_Uint_1 := S;
639 Error_Msg_NE
640 ("size for& too small, minimum allowed is ^",
641 Size_Clause (T), T);
643 elsif Unknown_Esize (T) then
644 Set_Esize (T, S);
645 end if;
647 -- Set sizes if not set already
649 else
650 if Unknown_Esize (T) then
651 Set_Esize (T, S);
652 end if;
654 if Unknown_RM_Size (T) then
655 Set_RM_Size (T, S);
656 end if;
657 end if;
658 end Set_Small_Size;
660 ----------------
661 -- Size_Known --
662 ----------------
664 function Size_Known (T : Entity_Id) return Boolean is
665 Index : Entity_Id;
666 Comp : Entity_Id;
667 Ctyp : Entity_Id;
668 Low : Node_Id;
669 High : Node_Id;
671 begin
672 if Size_Known_At_Compile_Time (T) then
673 return True;
675 -- Always True for scalar types. This is true even for generic formal
676 -- scalar types. We used to return False in the latter case, but the
677 -- size is known at compile time, even in the template, we just do
678 -- not know the exact size but that's not the point of this routine.
680 elsif Is_Scalar_Type (T)
681 or else Is_Task_Type (T)
682 then
683 return True;
685 -- Array types
687 elsif Is_Array_Type (T) then
689 -- String literals always have known size, and we can set it
691 if Ekind (T) = E_String_Literal_Subtype then
692 Set_Small_Size (T, Component_Size (T)
693 * String_Literal_Length (T));
694 return True;
696 -- Unconstrained types never have known at compile time size
698 elsif not Is_Constrained (T) then
699 return False;
701 -- Don't do any recursion on type with error posted, since we may
702 -- have a malformed type that leads us into a loop.
704 elsif Error_Posted (T) then
705 return False;
707 -- Otherwise if component size unknown, then array size unknown
709 elsif not Size_Known (Component_Type (T)) then
710 return False;
711 end if;
713 -- Check for all indexes static, and also compute possible size
714 -- (in case it is less than 32 and may be packable).
716 declare
717 Esiz : Uint := Component_Size (T);
718 Dim : Uint;
720 begin
721 Index := First_Index (T);
722 while Present (Index) loop
723 if Nkind (Index) = N_Range then
724 Get_Index_Bounds (Index, Low, High);
726 elsif Error_Posted (Scalar_Range (Etype (Index))) then
727 return False;
729 else
730 Low := Type_Low_Bound (Etype (Index));
731 High := Type_High_Bound (Etype (Index));
732 end if;
734 if not Compile_Time_Known_Value (Low)
735 or else not Compile_Time_Known_Value (High)
736 or else Etype (Index) = Any_Type
737 then
738 return False;
740 else
741 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
743 if Dim >= 0 then
744 Esiz := Esiz * Dim;
745 else
746 Esiz := Uint_0;
747 end if;
748 end if;
750 Next_Index (Index);
751 end loop;
753 Set_Small_Size (T, Esiz);
754 return True;
755 end;
757 -- Access types always have known at compile time sizes
759 elsif Is_Access_Type (T) then
760 return True;
762 -- For non-generic private types, go to underlying type if present
764 elsif Is_Private_Type (T)
765 and then not Is_Generic_Type (T)
766 and then Present (Underlying_Type (T))
767 then
768 -- Don't do any recursion on type with error posted, since we may
769 -- have a malformed type that leads us into a loop.
771 if Error_Posted (T) then
772 return False;
773 else
774 return Size_Known (Underlying_Type (T));
775 end if;
777 -- Record types
779 elsif Is_Record_Type (T) then
781 -- A class-wide type is never considered to have a known size
783 if Is_Class_Wide_Type (T) then
784 return False;
786 -- A subtype of a variant record must not have non-static
787 -- discriminated components.
789 elsif T /= Base_Type (T)
790 and then not Static_Discriminated_Components (T)
791 then
792 return False;
794 -- Don't do any recursion on type with error posted, since we may
795 -- have a malformed type that leads us into a loop.
797 elsif Error_Posted (T) then
798 return False;
799 end if;
801 -- Now look at the components of the record
803 declare
804 -- The following two variables are used to keep track of the
805 -- size of packed records if we can tell the size of the packed
806 -- record in the front end. Packed_Size_Known is True if so far
807 -- we can figure out the size. It is initialized to True for a
808 -- packed record, unless the record has discriminants. The
809 -- reason we eliminate the discriminated case is that we don't
810 -- know the way the back end lays out discriminated packed
811 -- records. If Packed_Size_Known is True, then Packed_Size is
812 -- the size in bits so far.
814 Packed_Size_Known : Boolean :=
815 Is_Packed (T)
816 and then not Has_Discriminants (T);
818 Packed_Size : Uint := Uint_0;
820 begin
821 -- Test for variant part present
823 if Has_Discriminants (T)
824 and then Present (Parent (T))
825 and then Nkind (Parent (T)) = N_Full_Type_Declaration
826 and then Nkind (Type_Definition (Parent (T))) =
827 N_Record_Definition
828 and then not Null_Present (Type_Definition (Parent (T)))
829 and then Present (Variant_Part
830 (Component_List (Type_Definition (Parent (T)))))
831 then
832 -- If variant part is present, and type is unconstrained,
833 -- then we must have defaulted discriminants, or a size
834 -- clause must be present for the type, or else the size
835 -- is definitely not known at compile time.
837 if not Is_Constrained (T)
838 and then
839 No (Discriminant_Default_Value (First_Discriminant (T)))
840 and then Unknown_Esize (T)
841 then
842 return False;
843 end if;
844 end if;
846 -- Loop through components
848 Comp := First_Component_Or_Discriminant (T);
849 while Present (Comp) loop
850 Ctyp := Etype (Comp);
852 -- We do not know the packed size if there is a component
853 -- clause present (we possibly could, but this would only
854 -- help in the case of a record with partial rep clauses.
855 -- That's because in the case of full rep clauses, the
856 -- size gets figured out anyway by a different circuit).
858 if Present (Component_Clause (Comp)) then
859 Packed_Size_Known := False;
860 end if;
862 -- We need to identify a component that is an array where
863 -- the index type is an enumeration type with non-standard
864 -- representation, and some bound of the type depends on a
865 -- discriminant.
867 -- This is because gigi computes the size by doing a
868 -- substitution of the appropriate discriminant value in
869 -- the size expression for the base type, and gigi is not
870 -- clever enough to evaluate the resulting expression (which
871 -- involves a call to rep_to_pos) at compile time.
873 -- It would be nice if gigi would either recognize that
874 -- this expression can be computed at compile time, or
875 -- alternatively figured out the size from the subtype
876 -- directly, where all the information is at hand ???
878 if Is_Array_Type (Etype (Comp))
879 and then Present (Packed_Array_Type (Etype (Comp)))
880 then
881 declare
882 Ocomp : constant Entity_Id :=
883 Original_Record_Component (Comp);
884 OCtyp : constant Entity_Id := Etype (Ocomp);
885 Ind : Node_Id;
886 Indtyp : Entity_Id;
887 Lo, Hi : Node_Id;
889 begin
890 Ind := First_Index (OCtyp);
891 while Present (Ind) loop
892 Indtyp := Etype (Ind);
894 if Is_Enumeration_Type (Indtyp)
895 and then Has_Non_Standard_Rep (Indtyp)
896 then
897 Lo := Type_Low_Bound (Indtyp);
898 Hi := Type_High_Bound (Indtyp);
900 if Is_Entity_Name (Lo)
901 and then Ekind (Entity (Lo)) = E_Discriminant
902 then
903 return False;
905 elsif Is_Entity_Name (Hi)
906 and then Ekind (Entity (Hi)) = E_Discriminant
907 then
908 return False;
909 end if;
910 end if;
912 Next_Index (Ind);
913 end loop;
914 end;
915 end if;
917 -- Clearly size of record is not known if the size of one of
918 -- the components is not known.
920 if not Size_Known (Ctyp) then
921 return False;
922 end if;
924 -- Accumulate packed size if possible
926 if Packed_Size_Known then
928 -- We can only deal with elementary types, since for
929 -- non-elementary components, alignment enters into the
930 -- picture, and we don't know enough to handle proper
931 -- alignment in this context. Packed arrays count as
932 -- elementary if the representation is a modular type.
934 if Is_Elementary_Type (Ctyp)
935 or else (Is_Array_Type (Ctyp)
936 and then Present (Packed_Array_Type (Ctyp))
937 and then Is_Modular_Integer_Type
938 (Packed_Array_Type (Ctyp)))
939 then
940 -- If RM_Size is known and static, then we can keep
941 -- accumulating the packed size.
943 if Known_Static_RM_Size (Ctyp) then
945 -- A little glitch, to be removed sometime ???
946 -- gigi does not understand zero sizes yet.
948 if RM_Size (Ctyp) = Uint_0 then
949 Packed_Size_Known := False;
951 -- Normal case where we can keep accumulating the
952 -- packed array size.
954 else
955 Packed_Size := Packed_Size + RM_Size (Ctyp);
956 end if;
958 -- If we have a field whose RM_Size is not known then
959 -- we can't figure out the packed size here.
961 else
962 Packed_Size_Known := False;
963 end if;
965 -- If we have a non-elementary type we can't figure out
966 -- the packed array size (alignment issues).
968 else
969 Packed_Size_Known := False;
970 end if;
971 end if;
973 Next_Component_Or_Discriminant (Comp);
974 end loop;
976 if Packed_Size_Known then
977 Set_Small_Size (T, Packed_Size);
978 end if;
980 return True;
981 end;
983 -- All other cases, size not known at compile time
985 else
986 return False;
987 end if;
988 end Size_Known;
990 -------------------------------------
991 -- Static_Discriminated_Components --
992 -------------------------------------
994 function Static_Discriminated_Components
995 (T : Entity_Id) return Boolean
997 Constraint : Elmt_Id;
999 begin
1000 if Has_Discriminants (T)
1001 and then Present (Discriminant_Constraint (T))
1002 and then Present (First_Component (T))
1003 then
1004 Constraint := First_Elmt (Discriminant_Constraint (T));
1005 while Present (Constraint) loop
1006 if not Compile_Time_Known_Value (Node (Constraint)) then
1007 return False;
1008 end if;
1010 Next_Elmt (Constraint);
1011 end loop;
1012 end if;
1014 return True;
1015 end Static_Discriminated_Components;
1017 -- Start of processing for Check_Compile_Time_Size
1019 begin
1020 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1021 end Check_Compile_Time_Size;
1023 -----------------------------
1024 -- Check_Debug_Info_Needed --
1025 -----------------------------
1027 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1028 begin
1029 if Debug_Info_Off (T) then
1030 return;
1032 elsif Comes_From_Source (T)
1033 or else Debug_Generated_Code
1034 or else Debug_Flag_VV
1035 or else Needs_Debug_Info (T)
1036 then
1037 Set_Debug_Info_Needed (T);
1038 end if;
1039 end Check_Debug_Info_Needed;
1041 ----------------------------
1042 -- Check_Strict_Alignment --
1043 ----------------------------
1045 procedure Check_Strict_Alignment (E : Entity_Id) is
1046 Comp : Entity_Id;
1048 begin
1049 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1050 Set_Strict_Alignment (E);
1052 elsif Is_Array_Type (E) then
1053 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1055 elsif Is_Record_Type (E) then
1056 if Is_Limited_Record (E) then
1057 Set_Strict_Alignment (E);
1058 return;
1059 end if;
1061 Comp := First_Component (E);
1062 while Present (Comp) loop
1063 if not Is_Type (Comp)
1064 and then (Strict_Alignment (Etype (Comp))
1065 or else Is_Aliased (Comp))
1066 then
1067 Set_Strict_Alignment (E);
1068 return;
1069 end if;
1071 Next_Component (Comp);
1072 end loop;
1073 end if;
1074 end Check_Strict_Alignment;
1076 -------------------------
1077 -- Check_Unsigned_Type --
1078 -------------------------
1080 procedure Check_Unsigned_Type (E : Entity_Id) is
1081 Ancestor : Entity_Id;
1082 Lo_Bound : Node_Id;
1083 Btyp : Entity_Id;
1085 begin
1086 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1087 return;
1088 end if;
1090 -- Do not attempt to analyze case where range was in error
1092 if No (Scalar_Range (E))
1093 or else Error_Posted (Scalar_Range (E))
1094 then
1095 return;
1096 end if;
1098 -- The situation that is non trivial is something like
1100 -- subtype x1 is integer range -10 .. +10;
1101 -- subtype x2 is x1 range 0 .. V1;
1102 -- subtype x3 is x2 range V2 .. V3;
1103 -- subtype x4 is x3 range V4 .. V5;
1105 -- where Vn are variables. Here the base type is signed, but we still
1106 -- know that x4 is unsigned because of the lower bound of x2.
1108 -- The only way to deal with this is to look up the ancestor chain
1110 Ancestor := E;
1111 loop
1112 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1113 return;
1114 end if;
1116 Lo_Bound := Type_Low_Bound (Ancestor);
1118 if Compile_Time_Known_Value (Lo_Bound) then
1120 if Expr_Rep_Value (Lo_Bound) >= 0 then
1121 Set_Is_Unsigned_Type (E, True);
1122 end if;
1124 return;
1126 else
1127 Ancestor := Ancestor_Subtype (Ancestor);
1129 -- If no ancestor had a static lower bound, go to base type
1131 if No (Ancestor) then
1133 -- Note: the reason we still check for a compile time known
1134 -- value for the base type is that at least in the case of
1135 -- generic formals, we can have bounds that fail this test,
1136 -- and there may be other cases in error situations.
1138 Btyp := Base_Type (E);
1140 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1141 return;
1142 end if;
1144 Lo_Bound := Type_Low_Bound (Base_Type (E));
1146 if Compile_Time_Known_Value (Lo_Bound)
1147 and then Expr_Rep_Value (Lo_Bound) >= 0
1148 then
1149 Set_Is_Unsigned_Type (E, True);
1150 end if;
1152 return;
1153 end if;
1154 end if;
1155 end loop;
1156 end Check_Unsigned_Type;
1158 -------------------------
1159 -- Is_Atomic_Aggregate --
1160 -------------------------
1162 function Is_Atomic_Aggregate
1163 (E : Entity_Id;
1164 Typ : Entity_Id) return Boolean
1166 Loc : constant Source_Ptr := Sloc (E);
1167 New_N : Node_Id;
1168 Par : Node_Id;
1169 Temp : Entity_Id;
1171 begin
1172 Par := Parent (E);
1174 -- Array may be qualified, so find outer context
1176 if Nkind (Par) = N_Qualified_Expression then
1177 Par := Parent (Par);
1178 end if;
1180 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
1181 and then Comes_From_Source (Par)
1182 then
1183 Temp := Make_Temporary (Loc, 'T', E);
1184 New_N :=
1185 Make_Object_Declaration (Loc,
1186 Defining_Identifier => Temp,
1187 Object_Definition => New_Occurrence_Of (Typ, Loc),
1188 Expression => Relocate_Node (E));
1189 Insert_Before (Par, New_N);
1190 Analyze (New_N);
1192 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1193 return True;
1195 else
1196 return False;
1197 end if;
1198 end Is_Atomic_Aggregate;
1200 ----------------
1201 -- Freeze_All --
1202 ----------------
1204 -- Note: the easy coding for this procedure would be to just build a
1205 -- single list of freeze nodes and then insert them and analyze them
1206 -- all at once. This won't work, because the analysis of earlier freeze
1207 -- nodes may recursively freeze types which would otherwise appear later
1208 -- on in the freeze list. So we must analyze and expand the freeze nodes
1209 -- as they are generated.
1211 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1212 E : Entity_Id;
1213 Decl : Node_Id;
1215 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1216 -- This is the internal recursive routine that does freezing of entities
1217 -- (but NOT the analysis of default expressions, which should not be
1218 -- recursive, we don't want to analyze those till we are sure that ALL
1219 -- the types are frozen).
1221 --------------------
1222 -- Freeze_All_Ent --
1223 --------------------
1225 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1226 E : Entity_Id;
1227 Flist : List_Id;
1228 Lastn : Node_Id;
1230 procedure Process_Flist;
1231 -- If freeze nodes are present, insert and analyze, and reset cursor
1232 -- for next insertion.
1234 -------------------
1235 -- Process_Flist --
1236 -------------------
1238 procedure Process_Flist is
1239 begin
1240 if Is_Non_Empty_List (Flist) then
1241 Lastn := Next (After);
1242 Insert_List_After_And_Analyze (After, Flist);
1244 if Present (Lastn) then
1245 After := Prev (Lastn);
1246 else
1247 After := Last (List_Containing (After));
1248 end if;
1249 end if;
1250 end Process_Flist;
1252 -- Start or processing for Freeze_All_Ent
1254 begin
1255 E := From;
1256 while Present (E) loop
1258 -- If the entity is an inner package which is not a package
1259 -- renaming, then its entities must be frozen at this point. Note
1260 -- that such entities do NOT get frozen at the end of the nested
1261 -- package itself (only library packages freeze).
1263 -- Same is true for task declarations, where anonymous records
1264 -- created for entry parameters must be frozen.
1266 if Ekind (E) = E_Package
1267 and then No (Renamed_Object (E))
1268 and then not Is_Child_Unit (E)
1269 and then not Is_Frozen (E)
1270 then
1271 Push_Scope (E);
1272 Install_Visible_Declarations (E);
1273 Install_Private_Declarations (E);
1275 Freeze_All (First_Entity (E), After);
1277 End_Package_Scope (E);
1279 elsif Ekind (E) in Task_Kind
1280 and then
1281 (Nkind (Parent (E)) = N_Task_Type_Declaration
1282 or else
1283 Nkind (Parent (E)) = N_Single_Task_Declaration)
1284 then
1285 Push_Scope (E);
1286 Freeze_All (First_Entity (E), After);
1287 End_Scope;
1289 -- For a derived tagged type, we must ensure that all the
1290 -- primitive operations of the parent have been frozen, so that
1291 -- their addresses will be in the parent's dispatch table at the
1292 -- point it is inherited.
1294 elsif Ekind (E) = E_Record_Type
1295 and then Is_Tagged_Type (E)
1296 and then Is_Tagged_Type (Etype (E))
1297 and then Is_Derived_Type (E)
1298 then
1299 declare
1300 Prim_List : constant Elist_Id :=
1301 Primitive_Operations (Etype (E));
1303 Prim : Elmt_Id;
1304 Subp : Entity_Id;
1306 begin
1307 Prim := First_Elmt (Prim_List);
1308 while Present (Prim) loop
1309 Subp := Node (Prim);
1311 if Comes_From_Source (Subp)
1312 and then not Is_Frozen (Subp)
1313 then
1314 Flist := Freeze_Entity (Subp, After);
1315 Process_Flist;
1316 end if;
1318 Next_Elmt (Prim);
1319 end loop;
1320 end;
1321 end if;
1323 if not Is_Frozen (E) then
1324 Flist := Freeze_Entity (E, After);
1325 Process_Flist;
1326 end if;
1328 -- If an incomplete type is still not frozen, this may be a
1329 -- premature freezing because of a body declaration that follows.
1330 -- Indicate where the freezing took place.
1332 -- If the freezing is caused by the end of the current declarative
1333 -- part, it is a Taft Amendment type, and there is no error.
1335 if not Is_Frozen (E)
1336 and then Ekind (E) = E_Incomplete_Type
1337 then
1338 declare
1339 Bod : constant Node_Id := Next (After);
1341 begin
1342 if (Nkind_In (Bod, N_Subprogram_Body,
1343 N_Entry_Body,
1344 N_Package_Body,
1345 N_Protected_Body,
1346 N_Task_Body)
1347 or else Nkind (Bod) in N_Body_Stub)
1348 and then
1349 List_Containing (After) = List_Containing (Parent (E))
1350 then
1351 Error_Msg_Sloc := Sloc (Next (After));
1352 Error_Msg_NE
1353 ("type& is frozen# before its full declaration",
1354 Parent (E), E);
1355 end if;
1356 end;
1357 end if;
1359 Next_Entity (E);
1360 end loop;
1361 end Freeze_All_Ent;
1363 -- Start of processing for Freeze_All
1365 begin
1366 Freeze_All_Ent (From, After);
1368 -- Now that all types are frozen, we can deal with default expressions
1369 -- that require us to build a default expression functions. This is the
1370 -- point at which such functions are constructed (after all types that
1371 -- might be used in such expressions have been frozen).
1373 -- For subprograms that are renaming_as_body, we create the wrapper
1374 -- bodies as needed.
1376 -- We also add finalization chains to access types whose designated
1377 -- types are controlled. This is normally done when freezing the type,
1378 -- but this misses recursive type definitions where the later members
1379 -- of the recursion introduce controlled components.
1381 -- Loop through entities
1383 E := From;
1384 while Present (E) loop
1385 if Is_Subprogram (E) then
1387 if not Default_Expressions_Processed (E) then
1388 Process_Default_Expressions (E, After);
1389 end if;
1391 if not Has_Completion (E) then
1392 Decl := Unit_Declaration_Node (E);
1394 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1395 Build_And_Analyze_Renamed_Body (Decl, E, After);
1397 elsif Nkind (Decl) = N_Subprogram_Declaration
1398 and then Present (Corresponding_Body (Decl))
1399 and then
1400 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1401 = N_Subprogram_Renaming_Declaration
1402 then
1403 Build_And_Analyze_Renamed_Body
1404 (Decl, Corresponding_Body (Decl), After);
1405 end if;
1406 end if;
1408 elsif Ekind (E) in Task_Kind
1409 and then
1410 (Nkind (Parent (E)) = N_Task_Type_Declaration
1411 or else
1412 Nkind (Parent (E)) = N_Single_Task_Declaration)
1413 then
1414 declare
1415 Ent : Entity_Id;
1417 begin
1418 Ent := First_Entity (E);
1419 while Present (Ent) loop
1420 if Is_Entry (Ent)
1421 and then not Default_Expressions_Processed (Ent)
1422 then
1423 Process_Default_Expressions (Ent, After);
1424 end if;
1426 Next_Entity (Ent);
1427 end loop;
1428 end;
1430 elsif Is_Access_Type (E)
1431 and then Comes_From_Source (E)
1432 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1433 and then Needs_Finalization (Designated_Type (E))
1434 and then No (Associated_Final_Chain (E))
1435 then
1436 Build_Final_List (Parent (E), E);
1437 end if;
1439 Next_Entity (E);
1440 end loop;
1441 end Freeze_All;
1443 -----------------------
1444 -- Freeze_And_Append --
1445 -----------------------
1447 procedure Freeze_And_Append
1448 (Ent : Entity_Id;
1449 N : Node_Id;
1450 Result : in out List_Id)
1452 L : constant List_Id := Freeze_Entity (Ent, N);
1453 begin
1454 if Is_Non_Empty_List (L) then
1455 if Result = No_List then
1456 Result := L;
1457 else
1458 Append_List (L, Result);
1459 end if;
1460 end if;
1461 end Freeze_And_Append;
1463 -------------------
1464 -- Freeze_Before --
1465 -------------------
1467 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1468 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
1469 begin
1470 if Is_Non_Empty_List (Freeze_Nodes) then
1471 Insert_Actions (N, Freeze_Nodes);
1472 end if;
1473 end Freeze_Before;
1475 -------------------
1476 -- Freeze_Entity --
1477 -------------------
1479 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1480 Loc : constant Source_Ptr := Sloc (N);
1481 Test_E : Entity_Id := E;
1482 Comp : Entity_Id;
1483 F_Node : Node_Id;
1484 Result : List_Id;
1485 Indx : Node_Id;
1486 Formal : Entity_Id;
1487 Atype : Entity_Id;
1489 Has_Default_Initialization : Boolean := False;
1490 -- This flag gets set to true for a variable with default initialization
1492 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1493 -- Check that an Access or Unchecked_Access attribute with a prefix
1494 -- which is the current instance type can only be applied when the type
1495 -- is limited.
1497 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1498 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1499 -- integer literal without an explicit corresponding size clause. The
1500 -- caller has checked that Utype is a modular integer type.
1502 function After_Last_Declaration return Boolean;
1503 -- If Loc is a freeze_entity that appears after the last declaration
1504 -- in the scope, inhibit error messages on late completion.
1506 procedure Freeze_Record_Type (Rec : Entity_Id);
1507 -- Freeze each component, handle some representation clauses, and freeze
1508 -- primitive operations if this is a tagged type.
1510 ----------------------------
1511 -- After_Last_Declaration --
1512 ----------------------------
1514 function After_Last_Declaration return Boolean is
1515 Spec : constant Node_Id := Parent (Current_Scope);
1516 begin
1517 if Nkind (Spec) = N_Package_Specification then
1518 if Present (Private_Declarations (Spec)) then
1519 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1520 elsif Present (Visible_Declarations (Spec)) then
1521 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1522 else
1523 return False;
1524 end if;
1525 else
1526 return False;
1527 end if;
1528 end After_Last_Declaration;
1530 ----------------------------
1531 -- Check_Current_Instance --
1532 ----------------------------
1534 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1536 Rec_Type : constant Entity_Id :=
1537 Scope (Defining_Identifier (Comp_Decl));
1539 Decl : constant Node_Id := Parent (Rec_Type);
1541 function Process (N : Node_Id) return Traverse_Result;
1542 -- Process routine to apply check to given node
1544 -------------
1545 -- Process --
1546 -------------
1548 function Process (N : Node_Id) return Traverse_Result is
1549 begin
1550 case Nkind (N) is
1551 when N_Attribute_Reference =>
1552 if (Attribute_Name (N) = Name_Access
1553 or else
1554 Attribute_Name (N) = Name_Unchecked_Access)
1555 and then Is_Entity_Name (Prefix (N))
1556 and then Is_Type (Entity (Prefix (N)))
1557 and then Entity (Prefix (N)) = E
1558 then
1559 Error_Msg_N
1560 ("current instance must be a limited type", Prefix (N));
1561 return Abandon;
1562 else
1563 return OK;
1564 end if;
1566 when others => return OK;
1567 end case;
1568 end Process;
1570 procedure Traverse is new Traverse_Proc (Process);
1572 -- Start of processing for Check_Current_Instance
1574 begin
1575 -- In Ada95, the (imprecise) rule is that the current instance of a
1576 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1577 -- either a tagged type, or a limited record.
1579 if Is_Limited_Type (Rec_Type)
1580 and then (Ada_Version < Ada_2005 or else Is_Tagged_Type (Rec_Type))
1581 then
1582 return;
1584 elsif Nkind (Decl) = N_Full_Type_Declaration
1585 and then Limited_Present (Type_Definition (Decl))
1586 then
1587 return;
1589 else
1590 Traverse (Comp_Decl);
1591 end if;
1592 end Check_Current_Instance;
1594 ------------------------------
1595 -- Check_Suspicious_Modulus --
1596 ------------------------------
1598 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1599 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1601 begin
1602 if Nkind (Decl) = N_Full_Type_Declaration then
1603 declare
1604 Tdef : constant Node_Id := Type_Definition (Decl);
1605 begin
1606 if Nkind (Tdef) = N_Modular_Type_Definition then
1607 declare
1608 Modulus : constant Node_Id :=
1609 Original_Node (Expression (Tdef));
1610 begin
1611 if Nkind (Modulus) = N_Integer_Literal then
1612 declare
1613 Modv : constant Uint := Intval (Modulus);
1614 Sizv : constant Uint := RM_Size (Utype);
1616 begin
1617 -- First case, modulus and size are the same. This
1618 -- happens if you have something like mod 32, with
1619 -- an explicit size of 32, this is for sure a case
1620 -- where the warning is given, since it is seems
1621 -- very unlikely that someone would want e.g. a
1622 -- five bit type stored in 32 bits. It is much
1623 -- more likely they wanted a 32-bit type.
1625 if Modv = Sizv then
1626 null;
1628 -- Second case, the modulus is 32 or 64 and no
1629 -- size clause is present. This is a less clear
1630 -- case for giving the warning, but in the case
1631 -- of 32/64 (5-bit or 6-bit types) these seem rare
1632 -- enough that it is a likely error (and in any
1633 -- case using 2**5 or 2**6 in these cases seems
1634 -- clearer. We don't include 8 or 16 here, simply
1635 -- because in practice 3-bit and 4-bit types are
1636 -- more common and too many false positives if
1637 -- we warn in these cases.
1639 elsif not Has_Size_Clause (Utype)
1640 and then (Modv = Uint_32 or else Modv = Uint_64)
1641 then
1642 null;
1644 -- No warning needed
1646 else
1647 return;
1648 end if;
1650 -- If we fall through, give warning
1652 Error_Msg_Uint_1 := Modv;
1653 Error_Msg_N
1654 ("?2 '*'*^' may have been intended here",
1655 Modulus);
1656 end;
1657 end if;
1658 end;
1659 end if;
1660 end;
1661 end if;
1662 end Check_Suspicious_Modulus;
1664 ------------------------
1665 -- Freeze_Record_Type --
1666 ------------------------
1668 procedure Freeze_Record_Type (Rec : Entity_Id) is
1669 Comp : Entity_Id;
1670 IR : Node_Id;
1671 ADC : Node_Id;
1672 Prev : Entity_Id;
1674 Junk : Boolean;
1675 pragma Warnings (Off, Junk);
1677 Unplaced_Component : Boolean := False;
1678 -- Set True if we find at least one component with no component
1679 -- clause (used to warn about useless Pack pragmas).
1681 Placed_Component : Boolean := False;
1682 -- Set True if we find at least one component with a component
1683 -- clause (used to warn about useless Bit_Order pragmas, and also
1684 -- to detect cases where Implicit_Packing may have an effect).
1686 All_Scalar_Components : Boolean := True;
1687 -- Set False if we encounter a component of a non-scalar type
1689 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1690 Scalar_Component_Total_Esize : Uint := Uint_0;
1691 -- Accumulates total RM_Size values and total Esize values of all
1692 -- scalar components. Used for processing of Implicit_Packing.
1694 function Check_Allocator (N : Node_Id) return Node_Id;
1695 -- If N is an allocator, possibly wrapped in one or more level of
1696 -- qualified expression(s), return the inner allocator node, else
1697 -- return Empty.
1699 procedure Check_Itype (Typ : Entity_Id);
1700 -- If the component subtype is an access to a constrained subtype of
1701 -- an already frozen type, make the subtype frozen as well. It might
1702 -- otherwise be frozen in the wrong scope, and a freeze node on
1703 -- subtype has no effect. Similarly, if the component subtype is a
1704 -- regular (not protected) access to subprogram, set the anonymous
1705 -- subprogram type to frozen as well, to prevent an out-of-scope
1706 -- freeze node at some eventual point of call. Protected operations
1707 -- are handled elsewhere.
1709 ---------------------
1710 -- Check_Allocator --
1711 ---------------------
1713 function Check_Allocator (N : Node_Id) return Node_Id is
1714 Inner : Node_Id;
1715 begin
1716 Inner := N;
1717 loop
1718 if Nkind (Inner) = N_Allocator then
1719 return Inner;
1720 elsif Nkind (Inner) = N_Qualified_Expression then
1721 Inner := Expression (Inner);
1722 else
1723 return Empty;
1724 end if;
1725 end loop;
1726 end Check_Allocator;
1728 -----------------
1729 -- Check_Itype --
1730 -----------------
1732 procedure Check_Itype (Typ : Entity_Id) is
1733 Desig : constant Entity_Id := Designated_Type (Typ);
1735 begin
1736 if not Is_Frozen (Desig)
1737 and then Is_Frozen (Base_Type (Desig))
1738 then
1739 Set_Is_Frozen (Desig);
1741 -- In addition, add an Itype_Reference to ensure that the
1742 -- access subtype is elaborated early enough. This cannot be
1743 -- done if the subtype may depend on discriminants.
1745 if Ekind (Comp) = E_Component
1746 and then Is_Itype (Etype (Comp))
1747 and then not Has_Discriminants (Rec)
1748 then
1749 IR := Make_Itype_Reference (Sloc (Comp));
1750 Set_Itype (IR, Desig);
1752 if No (Result) then
1753 Result := New_List (IR);
1754 else
1755 Append (IR, Result);
1756 end if;
1757 end if;
1759 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1760 and then Convention (Desig) /= Convention_Protected
1761 then
1762 Set_Is_Frozen (Desig);
1763 end if;
1764 end Check_Itype;
1766 -- Start of processing for Freeze_Record_Type
1768 begin
1769 -- If this is a subtype of a controlled type, declared without a
1770 -- constraint, the _controller may not appear in the component list
1771 -- if the parent was not frozen at the point of subtype declaration.
1772 -- Inherit the _controller component now.
1774 if Rec /= Base_Type (Rec)
1775 and then Has_Controlled_Component (Rec)
1776 then
1777 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1778 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1779 then
1780 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1782 -- If this is an internal type without a declaration, as for
1783 -- record component, the base type may not yet be frozen, and its
1784 -- controller has not been created. Add an explicit freeze node
1785 -- for the itype, so it will be frozen after the base type. This
1786 -- freeze node is used to communicate with the expander, in order
1787 -- to create the controller for the enclosing record, and it is
1788 -- deleted afterwards (see exp_ch3). It must not be created when
1789 -- expansion is off, because it might appear in the wrong context
1790 -- for the back end.
1792 elsif Is_Itype (Rec)
1793 and then Has_Delayed_Freeze (Base_Type (Rec))
1794 and then
1795 Nkind (Associated_Node_For_Itype (Rec)) =
1796 N_Component_Declaration
1797 and then Expander_Active
1798 then
1799 Ensure_Freeze_Node (Rec);
1800 end if;
1801 end if;
1803 -- Freeze components and embedded subtypes
1805 Comp := First_Entity (Rec);
1806 Prev := Empty;
1807 while Present (Comp) loop
1809 -- First handle the component case
1811 if Ekind (Comp) = E_Component
1812 or else Ekind (Comp) = E_Discriminant
1813 then
1814 declare
1815 CC : constant Node_Id := Component_Clause (Comp);
1817 begin
1818 -- Freezing a record type freezes the type of each of its
1819 -- components. However, if the type of the component is
1820 -- part of this record, we do not want or need a separate
1821 -- Freeze_Node. Note that Is_Itype is wrong because that's
1822 -- also set in private type cases. We also can't check for
1823 -- the Scope being exactly Rec because of private types and
1824 -- record extensions.
1826 if Is_Itype (Etype (Comp))
1827 and then Is_Record_Type (Underlying_Type
1828 (Scope (Etype (Comp))))
1829 then
1830 Undelay_Type (Etype (Comp));
1831 end if;
1833 Freeze_And_Append (Etype (Comp), N, Result);
1835 -- Check for error of component clause given for variable
1836 -- sized type. We have to delay this test till this point,
1837 -- since the component type has to be frozen for us to know
1838 -- if it is variable length. We omit this test in a generic
1839 -- context, it will be applied at instantiation time.
1841 if Present (CC) then
1842 Placed_Component := True;
1844 if Inside_A_Generic then
1845 null;
1847 elsif not
1848 Size_Known_At_Compile_Time
1849 (Underlying_Type (Etype (Comp)))
1850 then
1851 Error_Msg_N
1852 ("component clause not allowed for variable " &
1853 "length component", CC);
1854 end if;
1856 else
1857 Unplaced_Component := True;
1858 end if;
1860 -- Case of component requires byte alignment
1862 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
1864 -- Set the enclosing record to also require byte align
1866 Set_Must_Be_On_Byte_Boundary (Rec);
1868 -- Check for component clause that is inconsistent with
1869 -- the required byte boundary alignment.
1871 if Present (CC)
1872 and then Normalized_First_Bit (Comp) mod
1873 System_Storage_Unit /= 0
1874 then
1875 Error_Msg_N
1876 ("component & must be byte aligned",
1877 Component_Name (Component_Clause (Comp)));
1878 end if;
1879 end if;
1880 end;
1881 end if;
1883 -- Gather data for possible Implicit_Packing later. Note that at
1884 -- this stage we might be dealing with a real component, or with
1885 -- an implicit subtype declaration.
1887 if not Is_Scalar_Type (Etype (Comp)) then
1888 All_Scalar_Components := False;
1889 else
1890 Scalar_Component_Total_RM_Size :=
1891 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1892 Scalar_Component_Total_Esize :=
1893 Scalar_Component_Total_Esize + Esize (Etype (Comp));
1894 end if;
1896 -- If the component is an Itype with Delayed_Freeze and is either
1897 -- a record or array subtype and its base type has not yet been
1898 -- frozen, we must remove this from the entity list of this record
1899 -- and put it on the entity list of the scope of its base type.
1900 -- Note that we know that this is not the type of a component
1901 -- since we cleared Has_Delayed_Freeze for it in the previous
1902 -- loop. Thus this must be the Designated_Type of an access type,
1903 -- which is the type of a component.
1905 if Is_Itype (Comp)
1906 and then Is_Type (Scope (Comp))
1907 and then Is_Composite_Type (Comp)
1908 and then Base_Type (Comp) /= Comp
1909 and then Has_Delayed_Freeze (Comp)
1910 and then not Is_Frozen (Base_Type (Comp))
1911 then
1912 declare
1913 Will_Be_Frozen : Boolean := False;
1914 S : Entity_Id;
1916 begin
1917 -- We have a pretty bad kludge here. Suppose Rec is subtype
1918 -- being defined in a subprogram that's created as part of
1919 -- the freezing of Rec'Base. In that case, we know that
1920 -- Comp'Base must have already been frozen by the time we
1921 -- get to elaborate this because Gigi doesn't elaborate any
1922 -- bodies until it has elaborated all of the declarative
1923 -- part. But Is_Frozen will not be set at this point because
1924 -- we are processing code in lexical order.
1926 -- We detect this case by going up the Scope chain of Rec
1927 -- and seeing if we have a subprogram scope before reaching
1928 -- the top of the scope chain or that of Comp'Base. If we
1929 -- do, then mark that Comp'Base will actually be frozen. If
1930 -- so, we merely undelay it.
1932 S := Scope (Rec);
1933 while Present (S) loop
1934 if Is_Subprogram (S) then
1935 Will_Be_Frozen := True;
1936 exit;
1937 elsif S = Scope (Base_Type (Comp)) then
1938 exit;
1939 end if;
1941 S := Scope (S);
1942 end loop;
1944 if Will_Be_Frozen then
1945 Undelay_Type (Comp);
1946 else
1947 if Present (Prev) then
1948 Set_Next_Entity (Prev, Next_Entity (Comp));
1949 else
1950 Set_First_Entity (Rec, Next_Entity (Comp));
1951 end if;
1953 -- Insert in entity list of scope of base type (which
1954 -- must be an enclosing scope, because still unfrozen).
1956 Append_Entity (Comp, Scope (Base_Type (Comp)));
1957 end if;
1958 end;
1960 -- If the component is an access type with an allocator as default
1961 -- value, the designated type will be frozen by the corresponding
1962 -- expression in init_proc. In order to place the freeze node for
1963 -- the designated type before that for the current record type,
1964 -- freeze it now.
1966 -- Same process if the component is an array of access types,
1967 -- initialized with an aggregate. If the designated type is
1968 -- private, it cannot contain allocators, and it is premature
1969 -- to freeze the type, so we check for this as well.
1971 elsif Is_Access_Type (Etype (Comp))
1972 and then Present (Parent (Comp))
1973 and then Present (Expression (Parent (Comp)))
1974 then
1975 declare
1976 Alloc : constant Node_Id :=
1977 Check_Allocator (Expression (Parent (Comp)));
1979 begin
1980 if Present (Alloc) then
1982 -- If component is pointer to a classwide type, freeze
1983 -- the specific type in the expression being allocated.
1984 -- The expression may be a subtype indication, in which
1985 -- case freeze the subtype mark.
1987 if Is_Class_Wide_Type
1988 (Designated_Type (Etype (Comp)))
1989 then
1990 if Is_Entity_Name (Expression (Alloc)) then
1991 Freeze_And_Append
1992 (Entity (Expression (Alloc)), N, Result);
1993 elsif
1994 Nkind (Expression (Alloc)) = N_Subtype_Indication
1995 then
1996 Freeze_And_Append
1997 (Entity (Subtype_Mark (Expression (Alloc))),
1998 N, Result);
1999 end if;
2001 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2002 Check_Itype (Etype (Comp));
2004 else
2005 Freeze_And_Append
2006 (Designated_Type (Etype (Comp)), N, Result);
2007 end if;
2008 end if;
2009 end;
2011 elsif Is_Access_Type (Etype (Comp))
2012 and then Is_Itype (Designated_Type (Etype (Comp)))
2013 then
2014 Check_Itype (Etype (Comp));
2016 elsif Is_Array_Type (Etype (Comp))
2017 and then Is_Access_Type (Component_Type (Etype (Comp)))
2018 and then Present (Parent (Comp))
2019 and then Nkind (Parent (Comp)) = N_Component_Declaration
2020 and then Present (Expression (Parent (Comp)))
2021 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2022 and then Is_Fully_Defined
2023 (Designated_Type (Component_Type (Etype (Comp))))
2024 then
2025 Freeze_And_Append
2026 (Designated_Type
2027 (Component_Type (Etype (Comp))), N, Result);
2028 end if;
2030 Prev := Comp;
2031 Next_Entity (Comp);
2032 end loop;
2034 -- Deal with pragma Bit_Order setting non-standard bit order
2036 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2037 if not Placed_Component then
2038 ADC :=
2039 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2040 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
2041 Error_Msg_N
2042 ("\?since no component clauses were specified", ADC);
2044 -- Here is where we do the processing for reversed bit order
2046 else
2047 Adjust_Record_For_Reverse_Bit_Order (Rec);
2048 end if;
2049 end if;
2051 -- Complete error checking on record representation clause (e.g.
2052 -- overlap of components). This is called after adjusting the
2053 -- record for reverse bit order.
2055 declare
2056 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
2057 begin
2058 if Present (RRC) then
2059 Check_Record_Representation_Clause (RRC);
2060 end if;
2061 end;
2063 -- Set OK_To_Reorder_Components depending on debug flags
2065 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
2066 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2067 or else
2068 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2069 then
2070 Set_OK_To_Reorder_Components (Rec);
2071 end if;
2072 end if;
2074 -- Check for useless pragma Pack when all components placed. We only
2075 -- do this check for record types, not subtypes, since a subtype may
2076 -- have all its components placed, and it still makes perfectly good
2077 -- sense to pack other subtypes or the parent type. We do not give
2078 -- this warning if Optimize_Alignment is set to Space, since the
2079 -- pragma Pack does have an effect in this case (it always resets
2080 -- the alignment to one).
2082 if Ekind (Rec) = E_Record_Type
2083 and then Is_Packed (Rec)
2084 and then not Unplaced_Component
2085 and then Optimize_Alignment /= 'S'
2086 then
2087 -- Reset packed status. Probably not necessary, but we do it so
2088 -- that there is no chance of the back end doing something strange
2089 -- with this redundant indication of packing.
2091 Set_Is_Packed (Rec, False);
2093 -- Give warning if redundant constructs warnings on
2095 if Warn_On_Redundant_Constructs then
2096 Error_Msg_N -- CODEFIX
2097 ("?pragma Pack has no effect, no unplaced components",
2098 Get_Rep_Pragma (Rec, Name_Pack));
2099 end if;
2100 end if;
2102 -- If this is the record corresponding to a remote type, freeze the
2103 -- remote type here since that is what we are semantically freezing.
2104 -- This prevents the freeze node for that type in an inner scope.
2106 -- Also, Check for controlled components and unchecked unions.
2107 -- Finally, enforce the restriction that access attributes with a
2108 -- current instance prefix can only apply to limited types.
2110 if Ekind (Rec) = E_Record_Type then
2111 if Present (Corresponding_Remote_Type (Rec)) then
2112 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
2113 end if;
2115 Comp := First_Component (Rec);
2116 while Present (Comp) loop
2118 -- Do not set Has_Controlled_Component on a class-wide
2119 -- equivalent type. See Make_CW_Equivalent_Type.
2121 if not Is_Class_Wide_Equivalent_Type (Rec)
2122 and then (Has_Controlled_Component (Etype (Comp))
2123 or else (Chars (Comp) /= Name_uParent
2124 and then Is_Controlled (Etype (Comp)))
2125 or else (Is_Protected_Type (Etype (Comp))
2126 and then Present
2127 (Corresponding_Record_Type
2128 (Etype (Comp)))
2129 and then Has_Controlled_Component
2130 (Corresponding_Record_Type
2131 (Etype (Comp)))))
2132 then
2133 Set_Has_Controlled_Component (Rec);
2134 exit;
2135 end if;
2137 if Has_Unchecked_Union (Etype (Comp)) then
2138 Set_Has_Unchecked_Union (Rec);
2139 end if;
2141 if Has_Per_Object_Constraint (Comp) then
2143 -- Scan component declaration for likely misuses of current
2144 -- instance, either in a constraint or a default expression.
2146 Check_Current_Instance (Parent (Comp));
2147 end if;
2149 Next_Component (Comp);
2150 end loop;
2151 end if;
2153 Set_Component_Alignment_If_Not_Set (Rec);
2155 -- For first subtypes, check if there are any fixed-point fields with
2156 -- component clauses, where we must check the size. This is not done
2157 -- till the freeze point, since for fixed-point types, we do not know
2158 -- the size until the type is frozen. Similar processing applies to
2159 -- bit packed arrays.
2161 if Is_First_Subtype (Rec) then
2162 Comp := First_Component (Rec);
2163 while Present (Comp) loop
2164 if Present (Component_Clause (Comp))
2165 and then (Is_Fixed_Point_Type (Etype (Comp))
2166 or else
2167 Is_Bit_Packed_Array (Etype (Comp)))
2168 then
2169 Check_Size
2170 (Component_Name (Component_Clause (Comp)),
2171 Etype (Comp),
2172 Esize (Comp),
2173 Junk);
2174 end if;
2176 Next_Component (Comp);
2177 end loop;
2178 end if;
2180 -- Generate warning for applying C or C++ convention to a record
2181 -- with discriminants. This is suppressed for the unchecked union
2182 -- case, since the whole point in this case is interface C. We also
2183 -- do not generate this within instantiations, since we will have
2184 -- generated a message on the template.
2186 if Has_Discriminants (E)
2187 and then not Is_Unchecked_Union (E)
2188 and then (Convention (E) = Convention_C
2189 or else
2190 Convention (E) = Convention_CPP)
2191 and then Comes_From_Source (E)
2192 and then not In_Instance
2193 and then not Has_Warnings_Off (E)
2194 and then not Has_Warnings_Off (Base_Type (E))
2195 then
2196 declare
2197 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2198 A2 : Node_Id;
2200 begin
2201 if Present (Cprag) then
2202 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2204 if Convention (E) = Convention_C then
2205 Error_Msg_N
2206 ("?variant record has no direct equivalent in C", A2);
2207 else
2208 Error_Msg_N
2209 ("?variant record has no direct equivalent in C++", A2);
2210 end if;
2212 Error_Msg_NE
2213 ("\?use of convention for type& is dubious", A2, E);
2214 end if;
2215 end;
2216 end if;
2218 -- See if Size is too small as is (and implicit packing might help)
2220 if not Is_Packed (Rec)
2222 -- No implicit packing if even one component is explicitly placed
2224 and then not Placed_Component
2226 -- Must have size clause and all scalar components
2228 and then Has_Size_Clause (Rec)
2229 and then All_Scalar_Components
2231 -- Do not try implicit packing on records with discriminants, too
2232 -- complicated, especially in the variant record case.
2234 and then not Has_Discriminants (Rec)
2236 -- We can implicitly pack if the specified size of the record is
2237 -- less than the sum of the object sizes (no point in packing if
2238 -- this is not the case).
2240 and then Esize (Rec) < Scalar_Component_Total_Esize
2242 -- And the total RM size cannot be greater than the specified size
2243 -- since otherwise packing will not get us where we have to be!
2245 and then Esize (Rec) >= Scalar_Component_Total_RM_Size
2247 -- Never do implicit packing in CodePeer mode since we don't do
2248 -- any packing in this mode, since this generates over-complex
2249 -- code that confuses CodePeer, and in general, CodePeer does not
2250 -- care about the internal representation of objects.
2252 and then not CodePeer_Mode
2253 then
2254 -- If implicit packing enabled, do it
2256 if Implicit_Packing then
2257 Set_Is_Packed (Rec);
2259 -- Otherwise flag the size clause
2261 else
2262 declare
2263 Sz : constant Node_Id := Size_Clause (Rec);
2264 begin
2265 Error_Msg_NE -- CODEFIX
2266 ("size given for& too small", Sz, Rec);
2267 Error_Msg_N -- CODEFIX
2268 ("\use explicit pragma Pack "
2269 & "or use pragma Implicit_Packing", Sz);
2270 end;
2271 end if;
2272 end if;
2273 end Freeze_Record_Type;
2275 -- Start of processing for Freeze_Entity
2277 begin
2278 -- We are going to test for various reasons why this entity need not be
2279 -- frozen here, but in the case of an Itype that's defined within a
2280 -- record, that test actually applies to the record.
2282 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2283 Test_E := Scope (E);
2284 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2285 and then Is_Record_Type (Underlying_Type (Scope (E)))
2286 then
2287 Test_E := Underlying_Type (Scope (E));
2288 end if;
2290 -- Do not freeze if already frozen since we only need one freeze node
2292 if Is_Frozen (E) then
2293 return No_List;
2295 -- It is improper to freeze an external entity within a generic because
2296 -- its freeze node will appear in a non-valid context. The entity will
2297 -- be frozen in the proper scope after the current generic is analyzed.
2299 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
2300 return No_List;
2302 -- Do not freeze a global entity within an inner scope created during
2303 -- expansion. A call to subprogram E within some internal procedure
2304 -- (a stream attribute for example) might require freezing E, but the
2305 -- freeze node must appear in the same declarative part as E itself.
2306 -- The two-pass elaboration mechanism in gigi guarantees that E will
2307 -- be frozen before the inner call is elaborated. We exclude constants
2308 -- from this test, because deferred constants may be frozen early, and
2309 -- must be diagnosed (e.g. in the case of a deferred constant being used
2310 -- in a default expression). If the enclosing subprogram comes from
2311 -- source, or is a generic instance, then the freeze point is the one
2312 -- mandated by the language, and we freeze the entity. A subprogram that
2313 -- is a child unit body that acts as a spec does not have a spec that
2314 -- comes from source, but can only come from source.
2316 elsif In_Open_Scopes (Scope (Test_E))
2317 and then Scope (Test_E) /= Current_Scope
2318 and then Ekind (Test_E) /= E_Constant
2319 then
2320 declare
2321 S : Entity_Id;
2323 begin
2324 S := Current_Scope;
2325 while Present (S) loop
2326 if Is_Overloadable (S) then
2327 if Comes_From_Source (S)
2328 or else Is_Generic_Instance (S)
2329 or else Is_Child_Unit (S)
2330 then
2331 exit;
2332 else
2333 return No_List;
2334 end if;
2335 end if;
2337 S := Scope (S);
2338 end loop;
2339 end;
2341 -- Similarly, an inlined instance body may make reference to global
2342 -- entities, but these references cannot be the proper freezing point
2343 -- for them, and in the absence of inlining freezing will take place in
2344 -- their own scope. Normally instance bodies are analyzed after the
2345 -- enclosing compilation, and everything has been frozen at the proper
2346 -- place, but with front-end inlining an instance body is compiled
2347 -- before the end of the enclosing scope, and as a result out-of-order
2348 -- freezing must be prevented.
2350 elsif Front_End_Inlining
2351 and then In_Instance_Body
2352 and then Present (Scope (Test_E))
2353 then
2354 declare
2355 S : Entity_Id;
2357 begin
2358 S := Scope (Test_E);
2359 while Present (S) loop
2360 if Is_Generic_Instance (S) then
2361 exit;
2362 else
2363 S := Scope (S);
2364 end if;
2365 end loop;
2367 if No (S) then
2368 return No_List;
2369 end if;
2370 end;
2371 end if;
2373 -- Deal with delayed aspect specifications. At the point of occurrence
2374 -- of the aspect definition, we preanalyzed the argument, to capture
2375 -- the visibility at that point, but the actual analysis of the aspect
2376 -- is required to be delayed to the freeze point, so we evaluate the
2377 -- pragma or attribute definition clause in the tree at this point.
2379 if Has_Delayed_Aspects (E) then
2380 declare
2381 Ritem : Node_Id;
2382 Aitem : Node_Id;
2384 begin
2385 Ritem := First_Rep_Item (E);
2386 while Present (Ritem) loop
2387 if Nkind (Ritem) = N_Aspect_Specification then
2388 Aitem := Aspect_Rep_Item (Ritem);
2389 pragma Assert (Is_Delayed_Aspect (Aitem));
2390 Set_Parent (Aitem, Ritem);
2391 Analyze (Aitem);
2392 end if;
2394 Next_Rep_Item (Ritem);
2395 end loop;
2396 end;
2397 end if;
2399 -- Here to freeze the entity
2401 Result := No_List;
2402 Set_Is_Frozen (E);
2404 -- Case of entity being frozen is other than a type
2406 if not Is_Type (E) then
2408 -- If entity is exported or imported and does not have an external
2409 -- name, now is the time to provide the appropriate default name.
2410 -- Skip this if the entity is stubbed, since we don't need a name
2411 -- for any stubbed routine. For the case on intrinsics, if no
2412 -- external name is specified, then calls will be handled in
2413 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
2414 -- external name is provided, then Expand_Intrinsic_Call leaves
2415 -- calls in place for expansion by GIGI.
2417 if (Is_Imported (E) or else Is_Exported (E))
2418 and then No (Interface_Name (E))
2419 and then Convention (E) /= Convention_Stubbed
2420 and then Convention (E) /= Convention_Intrinsic
2421 then
2422 Set_Encoded_Interface_Name
2423 (E, Get_Default_External_Name (E));
2425 -- If entity is an atomic object appearing in a declaration and
2426 -- the expression is an aggregate, assign it to a temporary to
2427 -- ensure that the actual assignment is done atomically rather
2428 -- than component-wise (the assignment to the temp may be done
2429 -- component-wise, but that is harmless).
2431 elsif Is_Atomic (E)
2432 and then Nkind (Parent (E)) = N_Object_Declaration
2433 and then Present (Expression (Parent (E)))
2434 and then Nkind (Expression (Parent (E))) = N_Aggregate
2435 and then
2436 Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
2437 then
2438 null;
2439 end if;
2441 -- For a subprogram, freeze all parameter types and also the return
2442 -- type (RM 13.14(14)). However skip this for internal subprograms.
2443 -- This is also the point where any extra formal parameters are
2444 -- created since we now know whether the subprogram will use a
2445 -- foreign convention.
2447 if Is_Subprogram (E) then
2448 if not Is_Internal (E) then
2449 declare
2450 F_Type : Entity_Id;
2451 R_Type : Entity_Id;
2452 Warn_Node : Node_Id;
2454 begin
2455 -- Loop through formals
2457 Formal := First_Formal (E);
2458 while Present (Formal) loop
2459 F_Type := Etype (Formal);
2460 Freeze_And_Append (F_Type, N, Result);
2462 if Is_Private_Type (F_Type)
2463 and then Is_Private_Type (Base_Type (F_Type))
2464 and then No (Full_View (Base_Type (F_Type)))
2465 and then not Is_Generic_Type (F_Type)
2466 and then not Is_Derived_Type (F_Type)
2467 then
2468 -- If the type of a formal is incomplete, subprogram
2469 -- is being frozen prematurely. Within an instance
2470 -- (but not within a wrapper package) this is an
2471 -- artifact of our need to regard the end of an
2472 -- instantiation as a freeze point. Otherwise it is
2473 -- a definite error.
2475 if In_Instance then
2476 Set_Is_Frozen (E, False);
2477 return No_List;
2479 elsif not After_Last_Declaration
2480 and then not Freezing_Library_Level_Tagged_Type
2481 then
2482 Error_Msg_Node_1 := F_Type;
2483 Error_Msg
2484 ("type& must be fully defined before this point",
2485 Loc);
2486 end if;
2487 end if;
2489 -- Check suspicious parameter for C function. These tests
2490 -- apply only to exported/imported subprograms.
2492 if Warn_On_Export_Import
2493 and then Comes_From_Source (E)
2494 and then (Convention (E) = Convention_C
2495 or else
2496 Convention (E) = Convention_CPP)
2497 and then (Is_Imported (E) or else Is_Exported (E))
2498 and then Convention (E) /= Convention (Formal)
2499 and then not Has_Warnings_Off (E)
2500 and then not Has_Warnings_Off (F_Type)
2501 and then not Has_Warnings_Off (Formal)
2502 then
2503 -- Qualify mention of formals with subprogram name
2505 Error_Msg_Qual_Level := 1;
2507 -- Check suspicious use of fat C pointer
2509 if Is_Access_Type (F_Type)
2510 and then Esize (F_Type) > Ttypes.System_Address_Size
2511 then
2512 Error_Msg_N
2513 ("?type of & does not correspond to C pointer!",
2514 Formal);
2516 -- Check suspicious return of boolean
2518 elsif Root_Type (F_Type) = Standard_Boolean
2519 and then Convention (F_Type) = Convention_Ada
2520 and then not Has_Warnings_Off (F_Type)
2521 and then not Has_Size_Clause (F_Type)
2522 and then VM_Target = No_VM
2523 then
2524 Error_Msg_N ("& is an 8-bit Ada Boolean?", Formal);
2525 Error_Msg_N
2526 ("\use appropriate corresponding type in C "
2527 & "(e.g. char)?", Formal);
2529 -- Check suspicious tagged type
2531 elsif (Is_Tagged_Type (F_Type)
2532 or else (Is_Access_Type (F_Type)
2533 and then
2534 Is_Tagged_Type
2535 (Designated_Type (F_Type))))
2536 and then Convention (E) = Convention_C
2537 then
2538 Error_Msg_N
2539 ("?& involves a tagged type which does not "
2540 & "correspond to any C type!", Formal);
2542 -- Check wrong convention subprogram pointer
2544 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2545 and then not Has_Foreign_Convention (F_Type)
2546 then
2547 Error_Msg_N
2548 ("?subprogram pointer & should "
2549 & "have foreign convention!", Formal);
2550 Error_Msg_Sloc := Sloc (F_Type);
2551 Error_Msg_NE
2552 ("\?add Convention pragma to declaration of &#",
2553 Formal, F_Type);
2554 end if;
2556 -- Turn off name qualification after message output
2558 Error_Msg_Qual_Level := 0;
2559 end if;
2561 -- Check for unconstrained array in exported foreign
2562 -- convention case.
2564 if Has_Foreign_Convention (E)
2565 and then not Is_Imported (E)
2566 and then Is_Array_Type (F_Type)
2567 and then not Is_Constrained (F_Type)
2568 and then Warn_On_Export_Import
2570 -- Exclude VM case, since both .NET and JVM can handle
2571 -- unconstrained arrays without a problem.
2573 and then VM_Target = No_VM
2574 then
2575 Error_Msg_Qual_Level := 1;
2577 -- If this is an inherited operation, place the
2578 -- warning on the derived type declaration, rather
2579 -- than on the original subprogram.
2581 if Nkind (Original_Node (Parent (E))) =
2582 N_Full_Type_Declaration
2583 then
2584 Warn_Node := Parent (E);
2586 if Formal = First_Formal (E) then
2587 Error_Msg_NE
2588 ("?in inherited operation&", Warn_Node, E);
2589 end if;
2590 else
2591 Warn_Node := Formal;
2592 end if;
2594 Error_Msg_NE
2595 ("?type of argument& is unconstrained array",
2596 Warn_Node, Formal);
2597 Error_Msg_NE
2598 ("?foreign caller must pass bounds explicitly",
2599 Warn_Node, Formal);
2600 Error_Msg_Qual_Level := 0;
2601 end if;
2603 if not From_With_Type (F_Type) then
2604 if Is_Access_Type (F_Type) then
2605 F_Type := Designated_Type (F_Type);
2606 end if;
2608 -- If the formal is an anonymous_access_to_subprogram
2609 -- freeze the subprogram type as well, to prevent
2610 -- scope anomalies in gigi, because there is no other
2611 -- clear point at which it could be frozen.
2613 if Is_Itype (Etype (Formal))
2614 and then Ekind (F_Type) = E_Subprogram_Type
2615 then
2616 Freeze_And_Append (F_Type, N, Result);
2617 end if;
2618 end if;
2620 Next_Formal (Formal);
2621 end loop;
2623 -- Case of function: similar checks on return type
2625 if Ekind (E) = E_Function then
2627 -- Freeze return type
2629 R_Type := Etype (E);
2630 Freeze_And_Append (R_Type, N, Result);
2632 -- Check suspicious return type for C function
2634 if Warn_On_Export_Import
2635 and then (Convention (E) = Convention_C
2636 or else
2637 Convention (E) = Convention_CPP)
2638 and then (Is_Imported (E) or else Is_Exported (E))
2639 then
2640 -- Check suspicious return of fat C pointer
2642 if Is_Access_Type (R_Type)
2643 and then Esize (R_Type) > Ttypes.System_Address_Size
2644 and then not Has_Warnings_Off (E)
2645 and then not Has_Warnings_Off (R_Type)
2646 then
2647 Error_Msg_N
2648 ("?return type of& does not "
2649 & "correspond to C pointer!", E);
2651 -- Check suspicious return of boolean
2653 elsif Root_Type (R_Type) = Standard_Boolean
2654 and then Convention (R_Type) = Convention_Ada
2655 and then VM_Target = No_VM
2656 and then not Has_Warnings_Off (E)
2657 and then not Has_Warnings_Off (R_Type)
2658 and then not Has_Size_Clause (R_Type)
2659 then
2660 declare
2661 N : constant Node_Id :=
2662 Result_Definition (Declaration_Node (E));
2663 begin
2664 Error_Msg_NE
2665 ("return type of & is an 8-bit Ada Boolean?",
2666 N, E);
2667 Error_Msg_NE
2668 ("\use appropriate corresponding type in C "
2669 & "(e.g. char)?", N, E);
2670 end;
2672 -- Check suspicious return tagged type
2674 elsif (Is_Tagged_Type (R_Type)
2675 or else (Is_Access_Type (R_Type)
2676 and then
2677 Is_Tagged_Type
2678 (Designated_Type (R_Type))))
2679 and then Convention (E) = Convention_C
2680 and then not Has_Warnings_Off (E)
2681 and then not Has_Warnings_Off (R_Type)
2682 then
2683 Error_Msg_N
2684 ("?return type of & does not "
2685 & "correspond to C type!", E);
2687 -- Check return of wrong convention subprogram pointer
2689 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2690 and then not Has_Foreign_Convention (R_Type)
2691 and then not Has_Warnings_Off (E)
2692 and then not Has_Warnings_Off (R_Type)
2693 then
2694 Error_Msg_N
2695 ("?& should return a foreign "
2696 & "convention subprogram pointer", E);
2697 Error_Msg_Sloc := Sloc (R_Type);
2698 Error_Msg_NE
2699 ("\?add Convention pragma to declaration of& #",
2700 E, R_Type);
2701 end if;
2702 end if;
2704 -- Give warning for suspicious return of a result of an
2705 -- unconstrained array type in a foreign convention
2706 -- function.
2708 if Has_Foreign_Convention (E)
2710 -- We are looking for a return of unconstrained array
2712 and then Is_Array_Type (R_Type)
2713 and then not Is_Constrained (R_Type)
2715 -- Exclude imported routines, the warning does not
2716 -- belong on the import, but on the routine definition.
2718 and then not Is_Imported (E)
2720 -- Exclude VM case, since both .NET and JVM can handle
2721 -- return of unconstrained arrays without a problem.
2723 and then VM_Target = No_VM
2725 -- Check that general warning is enabled, and that it
2726 -- is not suppressed for this particular case.
2728 and then Warn_On_Export_Import
2729 and then not Has_Warnings_Off (E)
2730 and then not Has_Warnings_Off (R_Type)
2731 then
2732 Error_Msg_N
2733 ("?foreign convention function& should not " &
2734 "return unconstrained array!", E);
2735 end if;
2736 end if;
2737 end;
2738 end if;
2740 -- Must freeze its parent first if it is a derived subprogram
2742 if Present (Alias (E)) then
2743 Freeze_And_Append (Alias (E), N, Result);
2744 end if;
2746 -- We don't freeze internal subprograms, because we don't normally
2747 -- want addition of extra formals or mechanism setting to happen
2748 -- for those. However we do pass through predefined dispatching
2749 -- cases, since extra formals may be needed in some cases, such as
2750 -- for the stream 'Input function (build-in-place formals).
2752 if not Is_Internal (E)
2753 or else Is_Predefined_Dispatching_Operation (E)
2754 then
2755 Freeze_Subprogram (E);
2756 end if;
2758 -- Here for other than a subprogram or type
2760 else
2761 -- If entity has a type, and it is not a generic unit, then
2762 -- freeze it first (RM 13.14(10)).
2764 if Present (Etype (E))
2765 and then Ekind (E) /= E_Generic_Function
2766 then
2767 Freeze_And_Append (Etype (E), N, Result);
2768 end if;
2770 -- Special processing for objects created by object declaration
2772 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2774 -- Abstract type allowed only for C++ imported variables or
2775 -- constants.
2777 -- Note: we inhibit this check for objects that do not come
2778 -- from source because there is at least one case (the
2779 -- expansion of x'class'input where x is abstract) where we
2780 -- legitimately generate an abstract object.
2782 if Is_Abstract_Type (Etype (E))
2783 and then Comes_From_Source (Parent (E))
2784 and then not (Is_Imported (E)
2785 and then Is_CPP_Class (Etype (E)))
2786 then
2787 Error_Msg_N ("type of object cannot be abstract",
2788 Object_Definition (Parent (E)));
2790 if Is_CPP_Class (Etype (E)) then
2791 Error_Msg_NE
2792 ("\} may need a cpp_constructor",
2793 Object_Definition (Parent (E)), Etype (E));
2794 end if;
2795 end if;
2797 -- For object created by object declaration, perform required
2798 -- categorization (preelaborate and pure) checks. Defer these
2799 -- checks to freeze time since pragma Import inhibits default
2800 -- initialization and thus pragma Import affects these checks.
2802 Validate_Object_Declaration (Declaration_Node (E));
2804 -- If there is an address clause, check that it is valid
2806 Check_Address_Clause (E);
2808 -- If the object needs any kind of default initialization, an
2809 -- error must be issued if No_Default_Initialization applies.
2810 -- The check doesn't apply to imported objects, which are not
2811 -- ever default initialized, and is why the check is deferred
2812 -- until freezing, at which point we know if Import applies.
2813 -- Deferred constants are also exempted from this test because
2814 -- their completion is explicit, or through an import pragma.
2816 if Ekind (E) = E_Constant
2817 and then Present (Full_View (E))
2818 then
2819 null;
2821 elsif Comes_From_Source (E)
2822 and then not Is_Imported (E)
2823 and then not Has_Init_Expression (Declaration_Node (E))
2824 and then
2825 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2826 and then not No_Initialization (Declaration_Node (E))
2827 and then not Is_Value_Type (Etype (E))
2828 and then not Suppress_Init_Proc (Etype (E)))
2829 or else
2830 (Needs_Simple_Initialization (Etype (E))
2831 and then not Is_Internal (E)))
2832 then
2833 Has_Default_Initialization := True;
2834 Check_Restriction
2835 (No_Default_Initialization, Declaration_Node (E));
2836 end if;
2838 -- Check that a Thread_Local_Storage variable does not have
2839 -- default initialization, and any explicit initialization must
2840 -- either be the null constant or a static constant.
2842 if Has_Pragma_Thread_Local_Storage (E) then
2843 declare
2844 Decl : constant Node_Id := Declaration_Node (E);
2845 begin
2846 if Has_Default_Initialization
2847 or else
2848 (Has_Init_Expression (Decl)
2849 and then
2850 (No (Expression (Decl))
2851 or else not
2852 (Is_Static_Expression (Expression (Decl))
2853 or else
2854 Nkind (Expression (Decl)) = N_Null)))
2855 then
2856 Error_Msg_NE
2857 ("Thread_Local_Storage variable& is "
2858 & "improperly initialized", Decl, E);
2859 Error_Msg_NE
2860 ("\only allowed initialization is explicit "
2861 & "NULL or static expression", Decl, E);
2862 end if;
2863 end;
2864 end if;
2866 -- For imported objects, set Is_Public unless there is also an
2867 -- address clause, which means that there is no external symbol
2868 -- needed for the Import (Is_Public may still be set for other
2869 -- unrelated reasons). Note that we delayed this processing
2870 -- till freeze time so that we can be sure not to set the flag
2871 -- if there is an address clause. If there is such a clause,
2872 -- then the only purpose of the Import pragma is to suppress
2873 -- implicit initialization.
2875 if Is_Imported (E)
2876 and then No (Address_Clause (E))
2877 then
2878 Set_Is_Public (E);
2879 end if;
2881 -- For convention C objects of an enumeration type, warn if
2882 -- the size is not integer size and no explicit size given.
2883 -- Skip warning for Boolean, and Character, assume programmer
2884 -- expects 8-bit sizes for these cases.
2886 if (Convention (E) = Convention_C
2887 or else
2888 Convention (E) = Convention_CPP)
2889 and then Is_Enumeration_Type (Etype (E))
2890 and then not Is_Character_Type (Etype (E))
2891 and then not Is_Boolean_Type (Etype (E))
2892 and then Esize (Etype (E)) < Standard_Integer_Size
2893 and then not Has_Size_Clause (E)
2894 then
2895 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2896 Error_Msg_N
2897 ("?convention C enumeration object has size less than ^",
2899 Error_Msg_N ("\?use explicit size clause to set size", E);
2900 end if;
2901 end if;
2903 -- Check that a constant which has a pragma Volatile[_Components]
2904 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
2906 -- Note: Atomic[_Components] also sets Volatile[_Components]
2908 if Ekind (E) = E_Constant
2909 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2910 and then not Is_Imported (E)
2911 then
2912 -- Make sure we actually have a pragma, and have not merely
2913 -- inherited the indication from elsewhere (e.g. an address
2914 -- clause, which is not good enough in RM terms!)
2916 if Has_Rep_Pragma (E, Name_Atomic)
2917 or else
2918 Has_Rep_Pragma (E, Name_Atomic_Components)
2919 then
2920 Error_Msg_N
2921 ("stand alone atomic constant must be " &
2922 "imported (RM C.6(13))", E);
2924 elsif Has_Rep_Pragma (E, Name_Volatile)
2925 or else
2926 Has_Rep_Pragma (E, Name_Volatile_Components)
2927 then
2928 Error_Msg_N
2929 ("stand alone volatile constant must be " &
2930 "imported (RM C.6(13))", E);
2931 end if;
2932 end if;
2934 -- Static objects require special handling
2936 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2937 and then Is_Statically_Allocated (E)
2938 then
2939 Freeze_Static_Object (E);
2940 end if;
2942 -- Remaining step is to layout objects
2944 if Ekind (E) = E_Variable
2945 or else
2946 Ekind (E) = E_Constant
2947 or else
2948 Ekind (E) = E_Loop_Parameter
2949 or else
2950 Is_Formal (E)
2951 then
2952 Layout_Object (E);
2953 end if;
2954 end if;
2956 -- Case of a type or subtype being frozen
2958 else
2959 -- We used to check here that a full type must have preelaborable
2960 -- initialization if it completes a private type specified with
2961 -- pragma Preelaborable_Initialization, but that missed cases where
2962 -- the types occur within a generic package, since the freezing
2963 -- that occurs within a containing scope generally skips traversal
2964 -- of a generic unit's declarations (those will be frozen within
2965 -- instances). This check was moved to Analyze_Package_Specification.
2967 -- The type may be defined in a generic unit. This can occur when
2968 -- freezing a generic function that returns the type (which is
2969 -- defined in a parent unit). It is clearly meaningless to freeze
2970 -- this type. However, if it is a subtype, its size may be determi-
2971 -- nable and used in subsequent checks, so might as well try to
2972 -- compute it.
2974 if Present (Scope (E))
2975 and then Is_Generic_Unit (Scope (E))
2976 then
2977 Check_Compile_Time_Size (E);
2978 return No_List;
2979 end if;
2981 -- Deal with special cases of freezing for subtype
2983 if E /= Base_Type (E) then
2985 -- Before we do anything else, a specialized test for the case of
2986 -- a size given for an array where the array needs to be packed,
2987 -- but was not so the size cannot be honored. This would of course
2988 -- be caught by the backend, and indeed we don't catch all cases.
2989 -- The point is that we can give a better error message in those
2990 -- cases that we do catch with the circuitry here. Also if pragma
2991 -- Implicit_Packing is set, this is where the packing occurs.
2993 -- The reason we do this so early is that the processing in the
2994 -- automatic packing case affects the layout of the base type, so
2995 -- it must be done before we freeze the base type.
2997 if Is_Array_Type (E) then
2998 declare
2999 Lo, Hi : Node_Id;
3000 Ctyp : constant Entity_Id := Component_Type (E);
3002 begin
3003 -- Check enabling conditions. These are straightforward
3004 -- except for the test for a limited composite type. This
3005 -- eliminates the rare case of a array of limited components
3006 -- where there are issues of whether or not we can go ahead
3007 -- and pack the array (since we can't freely pack and unpack
3008 -- arrays if they are limited).
3010 -- Note that we check the root type explicitly because the
3011 -- whole point is we are doing this test before we have had
3012 -- a chance to freeze the base type (and it is that freeze
3013 -- action that causes stuff to be inherited).
3015 if Present (Size_Clause (E))
3016 and then Known_Static_Esize (E)
3017 and then not Is_Packed (E)
3018 and then not Has_Pragma_Pack (E)
3019 and then Number_Dimensions (E) = 1
3020 and then not Has_Component_Size_Clause (E)
3021 and then Known_Static_Esize (Ctyp)
3022 and then not Is_Limited_Composite (E)
3023 and then not Is_Packed (Root_Type (E))
3024 and then not Has_Component_Size_Clause (Root_Type (E))
3025 and then not CodePeer_Mode
3026 then
3027 Get_Index_Bounds (First_Index (E), Lo, Hi);
3029 if Compile_Time_Known_Value (Lo)
3030 and then Compile_Time_Known_Value (Hi)
3031 and then Known_Static_RM_Size (Ctyp)
3032 and then RM_Size (Ctyp) < 64
3033 then
3034 declare
3035 Lov : constant Uint := Expr_Value (Lo);
3036 Hiv : constant Uint := Expr_Value (Hi);
3037 Len : constant Uint := UI_Max
3038 (Uint_0,
3039 Hiv - Lov + 1);
3040 Rsiz : constant Uint := RM_Size (Ctyp);
3041 SZ : constant Node_Id := Size_Clause (E);
3042 Btyp : constant Entity_Id := Base_Type (E);
3044 -- What we are looking for here is the situation where
3045 -- the RM_Size given would be exactly right if there
3046 -- was a pragma Pack (resulting in the component size
3047 -- being the same as the RM_Size). Furthermore, the
3048 -- component type size must be an odd size (not a
3049 -- multiple of storage unit). If the component RM size
3050 -- is an exact number of storage units that is a power
3051 -- of two, the array is not packed and has a standard
3052 -- representation.
3054 begin
3055 if RM_Size (E) = Len * Rsiz
3056 and then Rsiz mod System_Storage_Unit /= 0
3057 then
3058 -- For implicit packing mode, just set the
3059 -- component size silently.
3061 if Implicit_Packing then
3062 Set_Component_Size (Btyp, Rsiz);
3063 Set_Is_Bit_Packed_Array (Btyp);
3064 Set_Is_Packed (Btyp);
3065 Set_Has_Non_Standard_Rep (Btyp);
3067 -- Otherwise give an error message
3069 else
3070 Error_Msg_NE
3071 ("size given for& too small", SZ, E);
3072 Error_Msg_N -- CODEFIX
3073 ("\use explicit pragma Pack "
3074 & "or use pragma Implicit_Packing", SZ);
3075 end if;
3077 elsif RM_Size (E) = Len * Rsiz
3078 and then Implicit_Packing
3079 and then
3080 (Rsiz / System_Storage_Unit = 1
3081 or else Rsiz / System_Storage_Unit = 2
3082 or else Rsiz / System_Storage_Unit = 4)
3083 then
3085 -- Not a packed array, but indicate the desired
3086 -- component size, for the back-end.
3088 Set_Component_Size (Btyp, Rsiz);
3089 end if;
3090 end;
3091 end if;
3092 end if;
3093 end;
3094 end if;
3096 -- If ancestor subtype present, freeze that first. Note that this
3097 -- will also get the base type frozen. Need RM reference ???
3099 Atype := Ancestor_Subtype (E);
3101 if Present (Atype) then
3102 Freeze_And_Append (Atype, N, Result);
3104 -- No ancestor subtype present
3106 else
3107 -- See if we have a nearest ancestor that has a predicate.
3108 -- That catches the case of derived type with a predicate.
3109 -- Need RM reference here ???
3111 Atype := Nearest_Ancestor (E);
3113 if Present (Atype) and then Has_Predicates (Atype) then
3114 Freeze_And_Append (Atype, N, Result);
3115 end if;
3117 -- Freeze base type before freezing the entity (RM 13.14(15))
3119 if E /= Base_Type (E) then
3120 Freeze_And_Append (Base_Type (E), N, Result);
3121 end if;
3122 end if;
3124 -- For a derived type, freeze its parent type first (RM 13.14(15))
3126 elsif Is_Derived_Type (E) then
3127 Freeze_And_Append (Etype (E), N, Result);
3128 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
3129 end if;
3131 -- For array type, freeze index types and component type first
3132 -- before freezing the array (RM 13.14(15)).
3134 if Is_Array_Type (E) then
3135 declare
3136 FS : constant Entity_Id := First_Subtype (E);
3137 Ctyp : constant Entity_Id := Component_Type (E);
3138 Clause : Entity_Id;
3140 Non_Standard_Enum : Boolean := False;
3141 -- Set true if any of the index types is an enumeration type
3142 -- with a non-standard representation.
3144 begin
3145 Freeze_And_Append (Ctyp, N, Result);
3147 Indx := First_Index (E);
3148 while Present (Indx) loop
3149 Freeze_And_Append (Etype (Indx), N, Result);
3151 if Is_Enumeration_Type (Etype (Indx))
3152 and then Has_Non_Standard_Rep (Etype (Indx))
3153 then
3154 Non_Standard_Enum := True;
3155 end if;
3157 Next_Index (Indx);
3158 end loop;
3160 -- Processing that is done only for base types
3162 if Ekind (E) = E_Array_Type then
3164 -- Propagate flags for component type
3166 if Is_Controlled (Component_Type (E))
3167 or else Has_Controlled_Component (Ctyp)
3168 then
3169 Set_Has_Controlled_Component (E);
3170 end if;
3172 if Has_Unchecked_Union (Component_Type (E)) then
3173 Set_Has_Unchecked_Union (E);
3174 end if;
3176 -- If packing was requested or if the component size was set
3177 -- explicitly, then see if bit packing is required. This
3178 -- processing is only done for base types, since all the
3179 -- representation aspects involved are type-related. This
3180 -- is not just an optimization, if we start processing the
3181 -- subtypes, they interfere with the settings on the base
3182 -- type (this is because Is_Packed has a slightly different
3183 -- meaning before and after freezing).
3185 declare
3186 Csiz : Uint;
3187 Esiz : Uint;
3189 begin
3190 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3191 and then Known_Static_RM_Size (Ctyp)
3192 and then not Has_Component_Size_Clause (E)
3193 then
3194 Csiz := UI_Max (RM_Size (Ctyp), 1);
3196 elsif Known_Component_Size (E) then
3197 Csiz := Component_Size (E);
3199 elsif not Known_Static_Esize (Ctyp) then
3200 Csiz := Uint_0;
3202 else
3203 Esiz := Esize (Ctyp);
3205 -- We can set the component size if it is less than
3206 -- 16, rounding it up to the next storage unit size.
3208 if Esiz <= 8 then
3209 Csiz := Uint_8;
3210 elsif Esiz <= 16 then
3211 Csiz := Uint_16;
3212 else
3213 Csiz := Uint_0;
3214 end if;
3216 -- Set component size up to match alignment if it
3217 -- would otherwise be less than the alignment. This
3218 -- deals with cases of types whose alignment exceeds
3219 -- their size (padded types).
3221 if Csiz /= 0 then
3222 declare
3223 A : constant Uint := Alignment_In_Bits (Ctyp);
3224 begin
3225 if Csiz < A then
3226 Csiz := A;
3227 end if;
3228 end;
3229 end if;
3230 end if;
3232 -- Case of component size that may result in packing
3234 if 1 <= Csiz and then Csiz <= 64 then
3235 declare
3236 Ent : constant Entity_Id :=
3237 First_Subtype (E);
3238 Pack_Pragma : constant Node_Id :=
3239 Get_Rep_Pragma (Ent, Name_Pack);
3240 Comp_Size_C : constant Node_Id :=
3241 Get_Attribute_Definition_Clause
3242 (Ent, Attribute_Component_Size);
3243 begin
3244 -- Warn if we have pack and component size so that
3245 -- the pack is ignored.
3247 -- Note: here we must check for the presence of a
3248 -- component size before checking for a Pack pragma
3249 -- to deal with the case where the array type is a
3250 -- derived type whose parent is currently private.
3252 if Present (Comp_Size_C)
3253 and then Has_Pragma_Pack (Ent)
3254 and then Warn_On_Redundant_Constructs
3255 then
3256 Error_Msg_Sloc := Sloc (Comp_Size_C);
3257 Error_Msg_NE
3258 ("?pragma Pack for& ignored!",
3259 Pack_Pragma, Ent);
3260 Error_Msg_N
3261 ("\?explicit component size given#!",
3262 Pack_Pragma);
3263 Set_Is_Packed (Base_Type (Ent), False);
3264 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
3265 end if;
3267 -- Set component size if not already set by a
3268 -- component size clause.
3270 if not Present (Comp_Size_C) then
3271 Set_Component_Size (E, Csiz);
3272 end if;
3274 -- Check for base type of 8, 16, 32 bits, where an
3275 -- unsigned subtype has a length one less than the
3276 -- base type (e.g. Natural subtype of Integer).
3278 -- In such cases, if a component size was not set
3279 -- explicitly, then generate a warning.
3281 if Has_Pragma_Pack (E)
3282 and then not Present (Comp_Size_C)
3283 and then
3284 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3285 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3286 then
3287 Error_Msg_Uint_1 := Csiz;
3289 if Present (Pack_Pragma) then
3290 Error_Msg_N
3291 ("?pragma Pack causes component size "
3292 & "to be ^!", Pack_Pragma);
3293 Error_Msg_N
3294 ("\?use Component_Size to set "
3295 & "desired value!", Pack_Pragma);
3296 end if;
3297 end if;
3299 -- Actual packing is not needed for 8, 16, 32, 64.
3300 -- Also not needed for 24 if alignment is 1.
3302 if Csiz = 8
3303 or else Csiz = 16
3304 or else Csiz = 32
3305 or else Csiz = 64
3306 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3307 then
3308 -- Here the array was requested to be packed,
3309 -- but the packing request had no effect, so
3310 -- Is_Packed is reset.
3312 -- Note: semantically this means that we lose
3313 -- track of the fact that a derived type
3314 -- inherited a pragma Pack that was non-
3315 -- effective, but that seems fine.
3317 -- We regard a Pack pragma as a request to set
3318 -- a representation characteristic, and this
3319 -- request may be ignored.
3321 Set_Is_Packed (Base_Type (E), False);
3322 Set_Is_Bit_Packed_Array (Base_Type (E), False);
3324 if Known_Static_Esize (Component_Type (E))
3325 and then Esize (Component_Type (E)) = Csiz
3326 then
3327 Set_Has_Non_Standard_Rep
3328 (Base_Type (E), False);
3329 end if;
3331 -- In all other cases, packing is indeed needed
3333 else
3334 Set_Has_Non_Standard_Rep (Base_Type (E), True);
3335 Set_Is_Bit_Packed_Array (Base_Type (E), True);
3336 Set_Is_Packed (Base_Type (E), True);
3337 end if;
3338 end;
3339 end if;
3340 end;
3342 -- Check for Atomic_Components or Aliased with unsuitable
3343 -- packing or explicit component size clause given.
3345 if (Has_Atomic_Components (E)
3346 or else Has_Aliased_Components (E))
3347 and then (Has_Component_Size_Clause (E)
3348 or else Is_Packed (E))
3349 then
3350 Alias_Atomic_Check : declare
3352 procedure Complain_CS (T : String);
3353 -- Outputs error messages for incorrect CS clause or
3354 -- pragma Pack for aliased or atomic components (T is
3355 -- "aliased" or "atomic");
3357 -----------------
3358 -- Complain_CS --
3359 -----------------
3361 procedure Complain_CS (T : String) is
3362 begin
3363 if Has_Component_Size_Clause (E) then
3364 Clause :=
3365 Get_Attribute_Definition_Clause
3366 (FS, Attribute_Component_Size);
3368 if Known_Static_Esize (Ctyp) then
3369 Error_Msg_N
3370 ("incorrect component size for "
3371 & T & " components", Clause);
3372 Error_Msg_Uint_1 := Esize (Ctyp);
3373 Error_Msg_N
3374 ("\only allowed value is^", Clause);
3376 else
3377 Error_Msg_N
3378 ("component size cannot be given for "
3379 & T & " components", Clause);
3380 end if;
3382 else
3383 Error_Msg_N
3384 ("cannot pack " & T & " components",
3385 Get_Rep_Pragma (FS, Name_Pack));
3386 end if;
3388 return;
3389 end Complain_CS;
3391 -- Start of processing for Alias_Atomic_Check
3393 begin
3394 -- Case where component size has no effect
3396 if Known_Static_Esize (Ctyp)
3397 and then Known_Static_RM_Size (Ctyp)
3398 and then Esize (Ctyp) = RM_Size (Ctyp)
3399 and then Esize (Ctyp) mod 8 = 0
3400 then
3401 null;
3403 elsif Has_Aliased_Components (E)
3404 or else Is_Aliased (Ctyp)
3405 then
3406 Complain_CS ("aliased");
3408 elsif Has_Atomic_Components (E)
3409 or else Is_Atomic (Ctyp)
3410 then
3411 Complain_CS ("atomic");
3412 end if;
3413 end Alias_Atomic_Check;
3414 end if;
3416 -- Warn for case of atomic type
3418 Clause := Get_Rep_Pragma (FS, Name_Atomic);
3420 if Present (Clause)
3421 and then not Addressable (Component_Size (FS))
3422 then
3423 Error_Msg_NE
3424 ("non-atomic components of type& may not be "
3425 & "accessible by separate tasks?", Clause, E);
3427 if Has_Component_Size_Clause (E) then
3428 Error_Msg_Sloc :=
3429 Sloc
3430 (Get_Attribute_Definition_Clause
3431 (FS, Attribute_Component_Size));
3432 Error_Msg_N
3433 ("\because of component size clause#?",
3434 Clause);
3436 elsif Has_Pragma_Pack (E) then
3437 Error_Msg_Sloc :=
3438 Sloc (Get_Rep_Pragma (FS, Name_Pack));
3439 Error_Msg_N
3440 ("\because of pragma Pack#?", Clause);
3441 end if;
3442 end if;
3444 -- Processing that is done only for subtypes
3446 else
3447 -- Acquire alignment from base type
3449 if Unknown_Alignment (E) then
3450 Set_Alignment (E, Alignment (Base_Type (E)));
3451 Adjust_Esize_Alignment (E);
3452 end if;
3453 end if;
3455 -- For bit-packed arrays, check the size
3457 if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
3458 declare
3459 SizC : constant Node_Id := Size_Clause (E);
3461 Discard : Boolean;
3462 pragma Warnings (Off, Discard);
3464 begin
3465 -- It is not clear if it is possible to have no size
3466 -- clause at this stage, but it is not worth worrying
3467 -- about. Post error on the entity name in the size
3468 -- clause if present, else on the type entity itself.
3470 if Present (SizC) then
3471 Check_Size (Name (SizC), E, RM_Size (E), Discard);
3472 else
3473 Check_Size (E, E, RM_Size (E), Discard);
3474 end if;
3475 end;
3476 end if;
3478 -- If any of the index types was an enumeration type with a
3479 -- non-standard rep clause, then we indicate that the array
3480 -- type is always packed (even if it is not bit packed).
3482 if Non_Standard_Enum then
3483 Set_Has_Non_Standard_Rep (Base_Type (E));
3484 Set_Is_Packed (Base_Type (E));
3485 end if;
3487 Set_Component_Alignment_If_Not_Set (E);
3489 -- If the array is packed, we must create the packed array
3490 -- type to be used to actually implement the type. This is
3491 -- only needed for real array types (not for string literal
3492 -- types, since they are present only for the front end).
3494 if Is_Packed (E)
3495 and then Ekind (E) /= E_String_Literal_Subtype
3496 then
3497 Create_Packed_Array_Type (E);
3498 Freeze_And_Append (Packed_Array_Type (E), N, Result);
3500 -- Size information of packed array type is copied to the
3501 -- array type, since this is really the representation. But
3502 -- do not override explicit existing size values. If the
3503 -- ancestor subtype is constrained the packed_array_type
3504 -- will be inherited from it, but the size may have been
3505 -- provided already, and must not be overridden either.
3507 if not Has_Size_Clause (E)
3508 and then
3509 (No (Ancestor_Subtype (E))
3510 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3511 then
3512 Set_Esize (E, Esize (Packed_Array_Type (E)));
3513 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3514 end if;
3516 if not Has_Alignment_Clause (E) then
3517 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3518 end if;
3519 end if;
3521 -- For non-packed arrays set the alignment of the array to the
3522 -- alignment of the component type if it is unknown. Skip this
3523 -- in atomic case (atomic arrays may need larger alignments).
3525 if not Is_Packed (E)
3526 and then Unknown_Alignment (E)
3527 and then Known_Alignment (Ctyp)
3528 and then Known_Static_Component_Size (E)
3529 and then Known_Static_Esize (Ctyp)
3530 and then Esize (Ctyp) = Component_Size (E)
3531 and then not Is_Atomic (E)
3532 then
3533 Set_Alignment (E, Alignment (Component_Type (E)));
3534 end if;
3535 end;
3537 -- For a class-wide type, the corresponding specific type is
3538 -- frozen as well (RM 13.14(15))
3540 elsif Is_Class_Wide_Type (E) then
3541 Freeze_And_Append (Root_Type (E), N, Result);
3543 -- If the base type of the class-wide type is still incomplete,
3544 -- the class-wide remains unfrozen as well. This is legal when
3545 -- E is the formal of a primitive operation of some other type
3546 -- which is being frozen.
3548 if not Is_Frozen (Root_Type (E)) then
3549 Set_Is_Frozen (E, False);
3550 return Result;
3551 end if;
3553 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3554 -- parent of a derived type) and it is a library-level entity,
3555 -- generate an itype reference for it. Otherwise, its first
3556 -- explicit reference may be in an inner scope, which will be
3557 -- rejected by the back-end.
3559 if Is_Itype (E)
3560 and then Is_Compilation_Unit (Scope (E))
3561 then
3562 declare
3563 Ref : constant Node_Id := Make_Itype_Reference (Loc);
3565 begin
3566 Set_Itype (Ref, E);
3567 if No (Result) then
3568 Result := New_List (Ref);
3569 else
3570 Append (Ref, Result);
3571 end if;
3572 end;
3573 end if;
3575 -- The equivalent type associated with a class-wide subtype needs
3576 -- to be frozen to ensure that its layout is done.
3578 if Ekind (E) = E_Class_Wide_Subtype
3579 and then Present (Equivalent_Type (E))
3580 then
3581 Freeze_And_Append (Equivalent_Type (E), N, Result);
3582 end if;
3584 -- For a record (sub)type, freeze all the component types (RM
3585 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3586 -- Is_Record_Type, because we don't want to attempt the freeze for
3587 -- the case of a private type with record extension (we will do that
3588 -- later when the full type is frozen).
3590 elsif Ekind (E) = E_Record_Type
3591 or else Ekind (E) = E_Record_Subtype
3592 then
3593 Freeze_Record_Type (E);
3595 -- For a concurrent type, freeze corresponding record type. This
3596 -- does not correspond to any specific rule in the RM, but the
3597 -- record type is essentially part of the concurrent type.
3598 -- Freeze as well all local entities. This includes record types
3599 -- created for entry parameter blocks, and whatever local entities
3600 -- may appear in the private part.
3602 elsif Is_Concurrent_Type (E) then
3603 if Present (Corresponding_Record_Type (E)) then
3604 Freeze_And_Append
3605 (Corresponding_Record_Type (E), N, Result);
3606 end if;
3608 Comp := First_Entity (E);
3609 while Present (Comp) loop
3610 if Is_Type (Comp) then
3611 Freeze_And_Append (Comp, N, Result);
3613 elsif (Ekind (Comp)) /= E_Function then
3614 if Is_Itype (Etype (Comp))
3615 and then Underlying_Type (Scope (Etype (Comp))) = E
3616 then
3617 Undelay_Type (Etype (Comp));
3618 end if;
3620 Freeze_And_Append (Etype (Comp), N, Result);
3621 end if;
3623 Next_Entity (Comp);
3624 end loop;
3626 -- Private types are required to point to the same freeze node as
3627 -- their corresponding full views. The freeze node itself has to
3628 -- point to the partial view of the entity (because from the partial
3629 -- view, we can retrieve the full view, but not the reverse).
3630 -- However, in order to freeze correctly, we need to freeze the full
3631 -- view. If we are freezing at the end of a scope (or within the
3632 -- scope of the private type), the partial and full views will have
3633 -- been swapped, the full view appears first in the entity chain and
3634 -- the swapping mechanism ensures that the pointers are properly set
3635 -- (on scope exit).
3637 -- If we encounter the partial view before the full view (e.g. when
3638 -- freezing from another scope), we freeze the full view, and then
3639 -- set the pointers appropriately since we cannot rely on swapping to
3640 -- fix things up (subtypes in an outer scope might not get swapped).
3642 elsif Is_Incomplete_Or_Private_Type (E)
3643 and then not Is_Generic_Type (E)
3644 then
3645 -- The construction of the dispatch table associated with library
3646 -- level tagged types forces freezing of all the primitives of the
3647 -- type, which may cause premature freezing of the partial view.
3648 -- For example:
3650 -- package Pkg is
3651 -- type T is tagged private;
3652 -- type DT is new T with private;
3653 -- procedure Prim (X : in out T; Y : in out DT'class);
3654 -- private
3655 -- type T is tagged null record;
3656 -- Obj : T;
3657 -- type DT is new T with null record;
3658 -- end;
3660 -- In this case the type will be frozen later by the usual
3661 -- mechanism: an object declaration, an instantiation, or the
3662 -- end of a declarative part.
3664 if Is_Library_Level_Tagged_Type (E)
3665 and then not Present (Full_View (E))
3666 then
3667 Set_Is_Frozen (E, False);
3668 return Result;
3670 -- Case of full view present
3672 elsif Present (Full_View (E)) then
3674 -- If full view has already been frozen, then no further
3675 -- processing is required
3677 if Is_Frozen (Full_View (E)) then
3678 Set_Has_Delayed_Freeze (E, False);
3679 Set_Freeze_Node (E, Empty);
3680 Check_Debug_Info_Needed (E);
3682 -- Otherwise freeze full view and patch the pointers so that
3683 -- the freeze node will elaborate both views in the back-end.
3685 else
3686 declare
3687 Full : constant Entity_Id := Full_View (E);
3689 begin
3690 if Is_Private_Type (Full)
3691 and then Present (Underlying_Full_View (Full))
3692 then
3693 Freeze_And_Append
3694 (Underlying_Full_View (Full), N, Result);
3695 end if;
3697 Freeze_And_Append (Full, N, Result);
3699 if Has_Delayed_Freeze (E) then
3700 F_Node := Freeze_Node (Full);
3702 if Present (F_Node) then
3703 Set_Freeze_Node (E, F_Node);
3704 Set_Entity (F_Node, E);
3706 else
3707 -- {Incomplete,Private}_Subtypes with Full_Views
3708 -- constrained by discriminants.
3710 Set_Has_Delayed_Freeze (E, False);
3711 Set_Freeze_Node (E, Empty);
3712 end if;
3713 end if;
3714 end;
3716 Check_Debug_Info_Needed (E);
3717 end if;
3719 -- AI-117 requires that the convention of a partial view be the
3720 -- same as the convention of the full view. Note that this is a
3721 -- recognized breach of privacy, but it's essential for logical
3722 -- consistency of representation, and the lack of a rule in
3723 -- RM95 was an oversight.
3725 Set_Convention (E, Convention (Full_View (E)));
3727 Set_Size_Known_At_Compile_Time (E,
3728 Size_Known_At_Compile_Time (Full_View (E)));
3730 -- Size information is copied from the full view to the
3731 -- incomplete or private view for consistency.
3733 -- We skip this is the full view is not a type. This is very
3734 -- strange of course, and can only happen as a result of
3735 -- certain illegalities, such as a premature attempt to derive
3736 -- from an incomplete type.
3738 if Is_Type (Full_View (E)) then
3739 Set_Size_Info (E, Full_View (E));
3740 Set_RM_Size (E, RM_Size (Full_View (E)));
3741 end if;
3743 return Result;
3745 -- Case of no full view present. If entity is derived or subtype,
3746 -- it is safe to freeze, correctness depends on the frozen status
3747 -- of parent. Otherwise it is either premature usage, or a Taft
3748 -- amendment type, so diagnosis is at the point of use and the
3749 -- type might be frozen later.
3751 elsif E /= Base_Type (E)
3752 or else Is_Derived_Type (E)
3753 then
3754 null;
3756 else
3757 Set_Is_Frozen (E, False);
3758 return No_List;
3759 end if;
3761 -- For access subprogram, freeze types of all formals, the return
3762 -- type was already frozen, since it is the Etype of the function.
3763 -- Formal types can be tagged Taft amendment types, but otherwise
3764 -- they cannot be incomplete.
3766 elsif Ekind (E) = E_Subprogram_Type then
3767 Formal := First_Formal (E);
3768 while Present (Formal) loop
3769 if Ekind (Etype (Formal)) = E_Incomplete_Type
3770 and then No (Full_View (Etype (Formal)))
3771 and then not Is_Value_Type (Etype (Formal))
3772 then
3773 if Is_Tagged_Type (Etype (Formal)) then
3774 null;
3776 -- AI05-151: Incomplete types are allowed in access to
3777 -- subprogram specifications.
3779 elsif Ada_Version < Ada_2012 then
3780 Error_Msg_NE
3781 ("invalid use of incomplete type&", E, Etype (Formal));
3782 end if;
3783 end if;
3785 Freeze_And_Append (Etype (Formal), N, Result);
3786 Next_Formal (Formal);
3787 end loop;
3789 Freeze_Subprogram (E);
3791 -- For access to a protected subprogram, freeze the equivalent type
3792 -- (however this is not set if we are not generating code or if this
3793 -- is an anonymous type used just for resolution).
3795 elsif Is_Access_Protected_Subprogram_Type (E) then
3796 if Present (Equivalent_Type (E)) then
3797 Freeze_And_Append (Equivalent_Type (E), N, Result);
3798 end if;
3799 end if;
3801 -- Generic types are never seen by the back-end, and are also not
3802 -- processed by the expander (since the expander is turned off for
3803 -- generic processing), so we never need freeze nodes for them.
3805 if Is_Generic_Type (E) then
3806 return Result;
3807 end if;
3809 -- Some special processing for non-generic types to complete
3810 -- representation details not known till the freeze point.
3812 if Is_Fixed_Point_Type (E) then
3813 Freeze_Fixed_Point_Type (E);
3815 -- Some error checks required for ordinary fixed-point type. Defer
3816 -- these till the freeze-point since we need the small and range
3817 -- values. We only do these checks for base types
3819 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
3820 if Small_Value (E) < Ureal_2_M_80 then
3821 Error_Msg_Name_1 := Name_Small;
3822 Error_Msg_N
3823 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
3825 elsif Small_Value (E) > Ureal_2_80 then
3826 Error_Msg_Name_1 := Name_Small;
3827 Error_Msg_N
3828 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
3829 end if;
3831 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3832 Error_Msg_Name_1 := Name_First;
3833 Error_Msg_N
3834 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
3835 end if;
3837 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3838 Error_Msg_Name_1 := Name_Last;
3839 Error_Msg_N
3840 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
3841 end if;
3842 end if;
3844 elsif Is_Enumeration_Type (E) then
3845 Freeze_Enumeration_Type (E);
3847 elsif Is_Integer_Type (E) then
3848 Adjust_Esize_For_Alignment (E);
3850 if Is_Modular_Integer_Type (E)
3851 and then Warn_On_Suspicious_Modulus_Value
3852 then
3853 Check_Suspicious_Modulus (E);
3854 end if;
3856 elsif Is_Access_Type (E) then
3858 -- If a pragma Default_Storage_Pool applies, and this type has no
3859 -- Storage_Pool or Storage_Size clause (which must have occurred
3860 -- before the freezing point), then use the default. This applies
3861 -- only to base types.
3863 if Present (Default_Pool)
3864 and then Is_Base_Type (E)
3865 and then not Has_Storage_Size_Clause (E)
3866 and then No (Associated_Storage_Pool (E))
3867 then
3868 -- Case of pragma Default_Storage_Pool (null)
3870 if Nkind (Default_Pool) = N_Null then
3871 Set_No_Pool_Assigned (E);
3873 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
3875 else
3876 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
3877 end if;
3878 end if;
3880 -- Check restriction for standard storage pool
3882 if No (Associated_Storage_Pool (E)) then
3883 Check_Restriction (No_Standard_Storage_Pools, E);
3884 end if;
3886 -- Deal with error message for pure access type. This is not an
3887 -- error in Ada 2005 if there is no pool (see AI-366).
3889 if Is_Pure_Unit_Access_Type (E)
3890 and then (Ada_Version < Ada_2005
3891 or else not No_Pool_Assigned (E))
3892 then
3893 Error_Msg_N ("named access type not allowed in pure unit", E);
3895 if Ada_Version >= Ada_2005 then
3896 Error_Msg_N
3897 ("\would be legal if Storage_Size of 0 given?", E);
3899 elsif No_Pool_Assigned (E) then
3900 Error_Msg_N
3901 ("\would be legal in Ada 2005?", E);
3903 else
3904 Error_Msg_N
3905 ("\would be legal in Ada 2005 if "
3906 & "Storage_Size of 0 given?", E);
3907 end if;
3908 end if;
3909 end if;
3911 -- Case of composite types
3913 if Is_Composite_Type (E) then
3915 -- AI-117 requires that all new primitives of a tagged type must
3916 -- inherit the convention of the full view of the type. Inherited
3917 -- and overriding operations are defined to inherit the convention
3918 -- of their parent or overridden subprogram (also specified in
3919 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3920 -- and New_Overloaded_Entity). Here we set the convention of
3921 -- primitives that are still convention Ada, which will ensure
3922 -- that any new primitives inherit the type's convention. Class-
3923 -- wide types can have a foreign convention inherited from their
3924 -- specific type, but are excluded from this since they don't have
3925 -- any associated primitives.
3927 if Is_Tagged_Type (E)
3928 and then not Is_Class_Wide_Type (E)
3929 and then Convention (E) /= Convention_Ada
3930 then
3931 declare
3932 Prim_List : constant Elist_Id := Primitive_Operations (E);
3933 Prim : Elmt_Id;
3935 begin
3936 Prim := First_Elmt (Prim_List);
3937 while Present (Prim) loop
3938 if Convention (Node (Prim)) = Convention_Ada then
3939 Set_Convention (Node (Prim), Convention (E));
3940 end if;
3942 Next_Elmt (Prim);
3943 end loop;
3944 end;
3945 end if;
3946 end if;
3948 -- Now that all types from which E may depend are frozen, see if the
3949 -- size is known at compile time, if it must be unsigned, or if
3950 -- strict alignment is required
3952 Check_Compile_Time_Size (E);
3953 Check_Unsigned_Type (E);
3955 if Base_Type (E) = E then
3956 Check_Strict_Alignment (E);
3957 end if;
3959 -- Do not allow a size clause for a type which does not have a size
3960 -- that is known at compile time
3962 if Has_Size_Clause (E)
3963 and then not Size_Known_At_Compile_Time (E)
3964 then
3965 -- Suppress this message if errors posted on E, even if we are
3966 -- in all errors mode, since this is often a junk message
3968 if not Error_Posted (E) then
3969 Error_Msg_N
3970 ("size clause not allowed for variable length type",
3971 Size_Clause (E));
3972 end if;
3973 end if;
3975 -- Remaining process is to set/verify the representation information,
3976 -- in particular the size and alignment values. This processing is
3977 -- not required for generic types, since generic types do not play
3978 -- any part in code generation, and so the size and alignment values
3979 -- for such types are irrelevant.
3981 if Is_Generic_Type (E) then
3982 return Result;
3984 -- Otherwise we call the layout procedure
3986 else
3987 Layout_Type (E);
3988 end if;
3990 -- End of freeze processing for type entities
3991 end if;
3993 -- Here is where we logically freeze the current entity. If it has a
3994 -- freeze node, then this is the point at which the freeze node is
3995 -- linked into the result list.
3997 if Has_Delayed_Freeze (E) then
3999 -- If a freeze node is already allocated, use it, otherwise allocate
4000 -- a new one. The preallocation happens in the case of anonymous base
4001 -- types, where we preallocate so that we can set First_Subtype_Link.
4002 -- Note that we reset the Sloc to the current freeze location.
4004 if Present (Freeze_Node (E)) then
4005 F_Node := Freeze_Node (E);
4006 Set_Sloc (F_Node, Loc);
4008 else
4009 F_Node := New_Node (N_Freeze_Entity, Loc);
4010 Set_Freeze_Node (E, F_Node);
4011 Set_Access_Types_To_Process (F_Node, No_Elist);
4012 Set_TSS_Elist (F_Node, No_Elist);
4013 Set_Actions (F_Node, No_List);
4014 end if;
4016 Set_Entity (F_Node, E);
4018 if Result = No_List then
4019 Result := New_List (F_Node);
4020 else
4021 Append (F_Node, Result);
4022 end if;
4024 -- A final pass over record types with discriminants. If the type
4025 -- has an incomplete declaration, there may be constrained access
4026 -- subtypes declared elsewhere, which do not depend on the discrimi-
4027 -- nants of the type, and which are used as component types (i.e.
4028 -- the full view is a recursive type). The designated types of these
4029 -- subtypes can only be elaborated after the type itself, and they
4030 -- need an itype reference.
4032 if Ekind (E) = E_Record_Type
4033 and then Has_Discriminants (E)
4034 then
4035 declare
4036 Comp : Entity_Id;
4037 IR : Node_Id;
4038 Typ : Entity_Id;
4040 begin
4041 Comp := First_Component (E);
4042 while Present (Comp) loop
4043 Typ := Etype (Comp);
4045 if Ekind (Comp) = E_Component
4046 and then Is_Access_Type (Typ)
4047 and then Scope (Typ) /= E
4048 and then Base_Type (Designated_Type (Typ)) = E
4049 and then Is_Itype (Designated_Type (Typ))
4050 then
4051 IR := Make_Itype_Reference (Sloc (Comp));
4052 Set_Itype (IR, Designated_Type (Typ));
4053 Append (IR, Result);
4054 end if;
4056 Next_Component (Comp);
4057 end loop;
4058 end;
4059 end if;
4060 end if;
4062 -- When a type is frozen, the first subtype of the type is frozen as
4063 -- well (RM 13.14(15)). This has to be done after freezing the type,
4064 -- since obviously the first subtype depends on its own base type.
4066 if Is_Type (E) then
4067 Freeze_And_Append (First_Subtype (E), N, Result);
4069 -- If we just froze a tagged non-class wide record, then freeze the
4070 -- corresponding class-wide type. This must be done after the tagged
4071 -- type itself is frozen, because the class-wide type refers to the
4072 -- tagged type which generates the class.
4074 if Is_Tagged_Type (E)
4075 and then not Is_Class_Wide_Type (E)
4076 and then Present (Class_Wide_Type (E))
4077 then
4078 Freeze_And_Append (Class_Wide_Type (E), N, Result);
4079 end if;
4080 end if;
4082 Check_Debug_Info_Needed (E);
4084 -- Special handling for subprograms
4086 if Is_Subprogram (E) then
4088 -- If subprogram has address clause then reset Is_Public flag, since
4089 -- we do not want the backend to generate external references.
4091 if Present (Address_Clause (E))
4092 and then not Is_Library_Level_Entity (E)
4093 then
4094 Set_Is_Public (E, False);
4096 -- If no address clause and not intrinsic, then for imported
4097 -- subprogram in main unit, generate descriptor if we are in
4098 -- Propagate_Exceptions mode.
4100 elsif Propagate_Exceptions
4101 and then Is_Imported (E)
4102 and then not Is_Intrinsic_Subprogram (E)
4103 and then Convention (E) /= Convention_Stubbed
4104 then
4105 if Result = No_List then
4106 Result := Empty_List;
4107 end if;
4108 end if;
4109 end if;
4111 return Result;
4112 end Freeze_Entity;
4114 -----------------------------
4115 -- Freeze_Enumeration_Type --
4116 -----------------------------
4118 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
4119 begin
4120 -- By default, if no size clause is present, an enumeration type with
4121 -- Convention C is assumed to interface to a C enum, and has integer
4122 -- size. This applies to types. For subtypes, verify that its base
4123 -- type has no size clause either.
4125 if Has_Foreign_Convention (Typ)
4126 and then not Has_Size_Clause (Typ)
4127 and then not Has_Size_Clause (Base_Type (Typ))
4128 and then Esize (Typ) < Standard_Integer_Size
4129 then
4130 Init_Esize (Typ, Standard_Integer_Size);
4132 else
4133 -- If the enumeration type interfaces to C, and it has a size clause
4134 -- that specifies less than int size, it warrants a warning. The
4135 -- user may intend the C type to be an enum or a char, so this is
4136 -- not by itself an error that the Ada compiler can detect, but it
4137 -- it is a worth a heads-up. For Boolean and Character types we
4138 -- assume that the programmer has the proper C type in mind.
4140 if Convention (Typ) = Convention_C
4141 and then Has_Size_Clause (Typ)
4142 and then Esize (Typ) /= Esize (Standard_Integer)
4143 and then not Is_Boolean_Type (Typ)
4144 and then not Is_Character_Type (Typ)
4145 then
4146 Error_Msg_N
4147 ("C enum types have the size of a C int?", Size_Clause (Typ));
4148 end if;
4150 Adjust_Esize_For_Alignment (Typ);
4151 end if;
4152 end Freeze_Enumeration_Type;
4154 -----------------------
4155 -- Freeze_Expression --
4156 -----------------------
4158 procedure Freeze_Expression (N : Node_Id) is
4159 In_Spec_Exp : constant Boolean := In_Spec_Expression;
4160 Typ : Entity_Id;
4161 Nam : Entity_Id;
4162 Desig_Typ : Entity_Id;
4163 P : Node_Id;
4164 Parent_P : Node_Id;
4166 Freeze_Outside : Boolean := False;
4167 -- This flag is set true if the entity must be frozen outside the
4168 -- current subprogram. This happens in the case of expander generated
4169 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4170 -- not freeze all entities like other bodies, but which nevertheless
4171 -- may reference entities that have to be frozen before the body and
4172 -- obviously cannot be frozen inside the body.
4174 function In_Exp_Body (N : Node_Id) return Boolean;
4175 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
4176 -- it is the handled statement sequence of an expander-generated
4177 -- subprogram (init proc, stream subprogram, or renaming as body).
4178 -- If so, this is not a freezing context.
4180 -----------------
4181 -- In_Exp_Body --
4182 -----------------
4184 function In_Exp_Body (N : Node_Id) return Boolean is
4185 P : Node_Id;
4186 Id : Entity_Id;
4188 begin
4189 if Nkind (N) = N_Subprogram_Body then
4190 P := N;
4191 else
4192 P := Parent (N);
4193 end if;
4195 if Nkind (P) /= N_Subprogram_Body then
4196 return False;
4198 else
4199 Id := Defining_Unit_Name (Specification (P));
4201 if Nkind (Id) = N_Defining_Identifier
4202 and then (Is_Init_Proc (Id) or else
4203 Is_TSS (Id, TSS_Stream_Input) or else
4204 Is_TSS (Id, TSS_Stream_Output) or else
4205 Is_TSS (Id, TSS_Stream_Read) or else
4206 Is_TSS (Id, TSS_Stream_Write) or else
4207 Nkind (Original_Node (P)) =
4208 N_Subprogram_Renaming_Declaration)
4209 then
4210 return True;
4211 else
4212 return False;
4213 end if;
4214 end if;
4215 end In_Exp_Body;
4217 -- Start of processing for Freeze_Expression
4219 begin
4220 -- Immediate return if freezing is inhibited. This flag is set by the
4221 -- analyzer to stop freezing on generated expressions that would cause
4222 -- freezing if they were in the source program, but which are not
4223 -- supposed to freeze, since they are created.
4225 if Must_Not_Freeze (N) then
4226 return;
4227 end if;
4229 -- If expression is non-static, then it does not freeze in a default
4230 -- expression, see section "Handling of Default Expressions" in the
4231 -- spec of package Sem for further details. Note that we have to
4232 -- make sure that we actually have a real expression (if we have
4233 -- a subtype indication, we can't test Is_Static_Expression!)
4235 if In_Spec_Exp
4236 and then Nkind (N) in N_Subexpr
4237 and then not Is_Static_Expression (N)
4238 then
4239 return;
4240 end if;
4242 -- Freeze type of expression if not frozen already
4244 Typ := Empty;
4246 if Nkind (N) in N_Has_Etype then
4247 if not Is_Frozen (Etype (N)) then
4248 Typ := Etype (N);
4250 -- Base type may be an derived numeric type that is frozen at
4251 -- the point of declaration, but first_subtype is still unfrozen.
4253 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4254 Typ := First_Subtype (Etype (N));
4255 end if;
4256 end if;
4258 -- For entity name, freeze entity if not frozen already. A special
4259 -- exception occurs for an identifier that did not come from source.
4260 -- We don't let such identifiers freeze a non-internal entity, i.e.
4261 -- an entity that did come from source, since such an identifier was
4262 -- generated by the expander, and cannot have any semantic effect on
4263 -- the freezing semantics. For example, this stops the parameter of
4264 -- an initialization procedure from freezing the variable.
4266 if Is_Entity_Name (N)
4267 and then not Is_Frozen (Entity (N))
4268 and then (Nkind (N) /= N_Identifier
4269 or else Comes_From_Source (N)
4270 or else not Comes_From_Source (Entity (N)))
4271 then
4272 Nam := Entity (N);
4273 else
4274 Nam := Empty;
4275 end if;
4277 -- For an allocator freeze designated type if not frozen already
4279 -- For an aggregate whose component type is an access type, freeze the
4280 -- designated type now, so that its freeze does not appear within the
4281 -- loop that might be created in the expansion of the aggregate. If the
4282 -- designated type is a private type without full view, the expression
4283 -- cannot contain an allocator, so the type is not frozen.
4285 -- For a function, we freeze the entity when the subprogram declaration
4286 -- is frozen, but a function call may appear in an initialization proc.
4287 -- before the declaration is frozen. We need to generate the extra
4288 -- formals, if any, to ensure that the expansion of the call includes
4289 -- the proper actuals. This only applies to Ada subprograms, not to
4290 -- imported ones.
4292 Desig_Typ := Empty;
4294 case Nkind (N) is
4295 when N_Allocator =>
4296 Desig_Typ := Designated_Type (Etype (N));
4298 when N_Aggregate =>
4299 if Is_Array_Type (Etype (N))
4300 and then Is_Access_Type (Component_Type (Etype (N)))
4301 then
4302 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4303 end if;
4305 when N_Selected_Component |
4306 N_Indexed_Component |
4307 N_Slice =>
4309 if Is_Access_Type (Etype (Prefix (N))) then
4310 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4311 end if;
4313 when N_Identifier =>
4314 if Present (Nam)
4315 and then Ekind (Nam) = E_Function
4316 and then Nkind (Parent (N)) = N_Function_Call
4317 and then Convention (Nam) = Convention_Ada
4318 then
4319 Create_Extra_Formals (Nam);
4320 end if;
4322 when others =>
4323 null;
4324 end case;
4326 if Desig_Typ /= Empty
4327 and then (Is_Frozen (Desig_Typ)
4328 or else (not Is_Fully_Defined (Desig_Typ)))
4329 then
4330 Desig_Typ := Empty;
4331 end if;
4333 -- All done if nothing needs freezing
4335 if No (Typ)
4336 and then No (Nam)
4337 and then No (Desig_Typ)
4338 then
4339 return;
4340 end if;
4342 -- Loop for looking at the right place to insert the freeze nodes,
4343 -- exiting from the loop when it is appropriate to insert the freeze
4344 -- node before the current node P.
4346 -- Also checks some special exceptions to the freezing rules. These
4347 -- cases result in a direct return, bypassing the freeze action.
4349 P := N;
4350 loop
4351 Parent_P := Parent (P);
4353 -- If we don't have a parent, then we are not in a well-formed tree.
4354 -- This is an unusual case, but there are some legitimate situations
4355 -- in which this occurs, notably when the expressions in the range of
4356 -- a type declaration are resolved. We simply ignore the freeze
4357 -- request in this case. Is this right ???
4359 if No (Parent_P) then
4360 return;
4361 end if;
4363 -- See if we have got to an appropriate point in the tree
4365 case Nkind (Parent_P) is
4367 -- A special test for the exception of (RM 13.14(8)) for the case
4368 -- of per-object expressions (RM 3.8(18)) occurring in component
4369 -- definition or a discrete subtype definition. Note that we test
4370 -- for a component declaration which includes both cases we are
4371 -- interested in, and furthermore the tree does not have explicit
4372 -- nodes for either of these two constructs.
4374 when N_Component_Declaration =>
4376 -- The case we want to test for here is an identifier that is
4377 -- a per-object expression, this is either a discriminant that
4378 -- appears in a context other than the component declaration
4379 -- or it is a reference to the type of the enclosing construct.
4381 -- For either of these cases, we skip the freezing
4383 if not In_Spec_Expression
4384 and then Nkind (N) = N_Identifier
4385 and then (Present (Entity (N)))
4386 then
4387 -- We recognize the discriminant case by just looking for
4388 -- a reference to a discriminant. It can only be one for
4389 -- the enclosing construct. Skip freezing in this case.
4391 if Ekind (Entity (N)) = E_Discriminant then
4392 return;
4394 -- For the case of a reference to the enclosing record,
4395 -- (or task or protected type), we look for a type that
4396 -- matches the current scope.
4398 elsif Entity (N) = Current_Scope then
4399 return;
4400 end if;
4401 end if;
4403 -- If we have an enumeration literal that appears as the choice in
4404 -- the aggregate of an enumeration representation clause, then
4405 -- freezing does not occur (RM 13.14(10)).
4407 when N_Enumeration_Representation_Clause =>
4409 -- The case we are looking for is an enumeration literal
4411 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4412 and then Is_Enumeration_Type (Etype (N))
4413 then
4414 -- If enumeration literal appears directly as the choice,
4415 -- do not freeze (this is the normal non-overloaded case)
4417 if Nkind (Parent (N)) = N_Component_Association
4418 and then First (Choices (Parent (N))) = N
4419 then
4420 return;
4422 -- If enumeration literal appears as the name of function
4423 -- which is the choice, then also do not freeze. This
4424 -- happens in the overloaded literal case, where the
4425 -- enumeration literal is temporarily changed to a function
4426 -- call for overloading analysis purposes.
4428 elsif Nkind (Parent (N)) = N_Function_Call
4429 and then
4430 Nkind (Parent (Parent (N))) = N_Component_Association
4431 and then
4432 First (Choices (Parent (Parent (N)))) = Parent (N)
4433 then
4434 return;
4435 end if;
4436 end if;
4438 -- Normally if the parent is a handled sequence of statements,
4439 -- then the current node must be a statement, and that is an
4440 -- appropriate place to insert a freeze node.
4442 when N_Handled_Sequence_Of_Statements =>
4444 -- An exception occurs when the sequence of statements is for
4445 -- an expander generated body that did not do the usual freeze
4446 -- all operation. In this case we usually want to freeze
4447 -- outside this body, not inside it, and we skip past the
4448 -- subprogram body that we are inside.
4450 if In_Exp_Body (Parent_P) then
4452 -- However, we *do* want to freeze at this point if we have
4453 -- an entity to freeze, and that entity is declared *inside*
4454 -- the body of the expander generated procedure. This case
4455 -- is recognized by the scope of the type, which is either
4456 -- the spec for some enclosing body, or (in the case of
4457 -- init_procs, for which there are no separate specs) the
4458 -- current scope.
4460 declare
4461 Subp : constant Node_Id := Parent (Parent_P);
4462 Cspc : Entity_Id;
4464 begin
4465 if Nkind (Subp) = N_Subprogram_Body then
4466 Cspc := Corresponding_Spec (Subp);
4468 if (Present (Typ) and then Scope (Typ) = Cspc)
4469 or else
4470 (Present (Nam) and then Scope (Nam) = Cspc)
4471 then
4472 exit;
4474 elsif Present (Typ)
4475 and then Scope (Typ) = Current_Scope
4476 and then Current_Scope = Defining_Entity (Subp)
4477 then
4478 exit;
4479 end if;
4480 end if;
4481 end;
4483 -- If not that exception to the exception, then this is
4484 -- where we delay the freeze till outside the body.
4486 Parent_P := Parent (Parent_P);
4487 Freeze_Outside := True;
4489 -- Here if normal case where we are in handled statement
4490 -- sequence and want to do the insertion right there.
4492 else
4493 exit;
4494 end if;
4496 -- If parent is a body or a spec or a block, then the current node
4497 -- is a statement or declaration and we can insert the freeze node
4498 -- before it.
4500 when N_Package_Specification |
4501 N_Package_Body |
4502 N_Subprogram_Body |
4503 N_Task_Body |
4504 N_Protected_Body |
4505 N_Entry_Body |
4506 N_Block_Statement => exit;
4508 -- The expander is allowed to define types in any statements list,
4509 -- so any of the following parent nodes also mark a freezing point
4510 -- if the actual node is in a list of statements or declarations.
4512 when N_Exception_Handler |
4513 N_If_Statement |
4514 N_Elsif_Part |
4515 N_Case_Statement_Alternative |
4516 N_Compilation_Unit_Aux |
4517 N_Selective_Accept |
4518 N_Accept_Alternative |
4519 N_Delay_Alternative |
4520 N_Conditional_Entry_Call |
4521 N_Entry_Call_Alternative |
4522 N_Triggering_Alternative |
4523 N_Abortable_Part |
4524 N_And_Then |
4525 N_Or_Else |
4526 N_Freeze_Entity =>
4528 exit when Is_List_Member (P);
4530 -- Note: The N_Loop_Statement is a special case. A type that
4531 -- appears in the source can never be frozen in a loop (this
4532 -- occurs only because of a loop expanded by the expander), so we
4533 -- keep on going. Otherwise we terminate the search. Same is true
4534 -- of any entity which comes from source. (if they have predefined
4535 -- type, that type does not appear to come from source, but the
4536 -- entity should not be frozen here).
4538 when N_Loop_Statement =>
4539 exit when not Comes_From_Source (Etype (N))
4540 and then (No (Nam) or else not Comes_From_Source (Nam));
4542 -- For all other cases, keep looking at parents
4544 when others =>
4545 null;
4546 end case;
4548 -- We fall through the case if we did not yet find the proper
4549 -- place in the free for inserting the freeze node, so climb!
4551 P := Parent_P;
4552 end loop;
4554 -- If the expression appears in a record or an initialization procedure,
4555 -- the freeze nodes are collected and attached to the current scope, to
4556 -- be inserted and analyzed on exit from the scope, to insure that
4557 -- generated entities appear in the correct scope. If the expression is
4558 -- a default for a discriminant specification, the scope is still void.
4559 -- The expression can also appear in the discriminant part of a private
4560 -- or concurrent type.
4562 -- If the expression appears in a constrained subcomponent of an
4563 -- enclosing record declaration, the freeze nodes must be attached to
4564 -- the outer record type so they can eventually be placed in the
4565 -- enclosing declaration list.
4567 -- The other case requiring this special handling is if we are in a
4568 -- default expression, since in that case we are about to freeze a
4569 -- static type, and the freeze scope needs to be the outer scope, not
4570 -- the scope of the subprogram with the default parameter.
4572 -- For default expressions and other spec expressions in generic units,
4573 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4574 -- placing them at the proper place, after the generic unit.
4576 if (In_Spec_Exp and not Inside_A_Generic)
4577 or else Freeze_Outside
4578 or else (Is_Type (Current_Scope)
4579 and then (not Is_Concurrent_Type (Current_Scope)
4580 or else not Has_Completion (Current_Scope)))
4581 or else Ekind (Current_Scope) = E_Void
4582 then
4583 declare
4584 N : constant Node_Id := Current_Scope;
4585 Freeze_Nodes : List_Id := No_List;
4586 Pos : Int := Scope_Stack.Last;
4588 begin
4589 if Present (Desig_Typ) then
4590 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
4591 end if;
4593 if Present (Typ) then
4594 Freeze_And_Append (Typ, N, Freeze_Nodes);
4595 end if;
4597 if Present (Nam) then
4598 Freeze_And_Append (Nam, N, Freeze_Nodes);
4599 end if;
4601 -- The current scope may be that of a constrained component of
4602 -- an enclosing record declaration, which is above the current
4603 -- scope in the scope stack.
4604 -- If the expression is within a top-level pragma, as for a pre-
4605 -- condition on a library-level subprogram, nothing to do.
4607 if not Is_Compilation_Unit (Current_Scope)
4608 and then Is_Record_Type (Scope (Current_Scope))
4609 then
4610 Pos := Pos - 1;
4611 end if;
4613 if Is_Non_Empty_List (Freeze_Nodes) then
4614 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4615 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
4616 Freeze_Nodes;
4617 else
4618 Append_List (Freeze_Nodes,
4619 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
4620 end if;
4621 end if;
4622 end;
4624 return;
4625 end if;
4627 -- Now we have the right place to do the freezing. First, a special
4628 -- adjustment, if we are in spec-expression analysis mode, these freeze
4629 -- actions must not be thrown away (normally all inserted actions are
4630 -- thrown away in this mode. However, the freeze actions are from static
4631 -- expressions and one of the important reasons we are doing this
4632 -- special analysis is to get these freeze actions. Therefore we turn
4633 -- off the In_Spec_Expression mode to propagate these freeze actions.
4634 -- This also means they get properly analyzed and expanded.
4636 In_Spec_Expression := False;
4638 -- Freeze the designated type of an allocator (RM 13.14(13))
4640 if Present (Desig_Typ) then
4641 Freeze_Before (P, Desig_Typ);
4642 end if;
4644 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
4645 -- the enumeration representation clause exception in the loop above.
4647 if Present (Typ) then
4648 Freeze_Before (P, Typ);
4649 end if;
4651 -- Freeze name if one is present (RM 13.14(11))
4653 if Present (Nam) then
4654 Freeze_Before (P, Nam);
4655 end if;
4657 -- Restore In_Spec_Expression flag
4659 In_Spec_Expression := In_Spec_Exp;
4660 end Freeze_Expression;
4662 -----------------------------
4663 -- Freeze_Fixed_Point_Type --
4664 -----------------------------
4666 -- Certain fixed-point types and subtypes, including implicit base types
4667 -- and declared first subtypes, have not yet set up a range. This is
4668 -- because the range cannot be set until the Small and Size values are
4669 -- known, and these are not known till the type is frozen.
4671 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4672 -- whose bounds are unanalyzed real literals. This routine will recognize
4673 -- this case, and transform this range node into a properly typed range
4674 -- with properly analyzed and resolved values.
4676 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4677 Rng : constant Node_Id := Scalar_Range (Typ);
4678 Lo : constant Node_Id := Low_Bound (Rng);
4679 Hi : constant Node_Id := High_Bound (Rng);
4680 Btyp : constant Entity_Id := Base_Type (Typ);
4681 Brng : constant Node_Id := Scalar_Range (Btyp);
4682 BLo : constant Node_Id := Low_Bound (Brng);
4683 BHi : constant Node_Id := High_Bound (Brng);
4684 Small : constant Ureal := Small_Value (Typ);
4685 Loval : Ureal;
4686 Hival : Ureal;
4687 Atype : Entity_Id;
4689 Actual_Size : Nat;
4691 function Fsize (Lov, Hiv : Ureal) return Nat;
4692 -- Returns size of type with given bounds. Also leaves these
4693 -- bounds set as the current bounds of the Typ.
4695 -----------
4696 -- Fsize --
4697 -----------
4699 function Fsize (Lov, Hiv : Ureal) return Nat is
4700 begin
4701 Set_Realval (Lo, Lov);
4702 Set_Realval (Hi, Hiv);
4703 return Minimum_Size (Typ);
4704 end Fsize;
4706 -- Start of processing for Freeze_Fixed_Point_Type
4708 begin
4709 -- If Esize of a subtype has not previously been set, set it now
4711 if Unknown_Esize (Typ) then
4712 Atype := Ancestor_Subtype (Typ);
4714 if Present (Atype) then
4715 Set_Esize (Typ, Esize (Atype));
4716 else
4717 Set_Esize (Typ, Esize (Base_Type (Typ)));
4718 end if;
4719 end if;
4721 -- Immediate return if the range is already analyzed. This means that
4722 -- the range is already set, and does not need to be computed by this
4723 -- routine.
4725 if Analyzed (Rng) then
4726 return;
4727 end if;
4729 -- Immediate return if either of the bounds raises Constraint_Error
4731 if Raises_Constraint_Error (Lo)
4732 or else Raises_Constraint_Error (Hi)
4733 then
4734 return;
4735 end if;
4737 Loval := Realval (Lo);
4738 Hival := Realval (Hi);
4740 -- Ordinary fixed-point case
4742 if Is_Ordinary_Fixed_Point_Type (Typ) then
4744 -- For the ordinary fixed-point case, we are allowed to fudge the
4745 -- end-points up or down by small. Generally we prefer to fudge up,
4746 -- i.e. widen the bounds for non-model numbers so that the end points
4747 -- are included. However there are cases in which this cannot be
4748 -- done, and indeed cases in which we may need to narrow the bounds.
4749 -- The following circuit makes the decision.
4751 -- Note: our terminology here is that Incl_EP means that the bounds
4752 -- are widened by Small if necessary to include the end points, and
4753 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4754 -- end-points if this reduces the size.
4756 -- Note that in the Incl case, all we care about is including the
4757 -- end-points. In the Excl case, we want to narrow the bounds as
4758 -- much as permitted by the RM, to give the smallest possible size.
4760 Fudge : declare
4761 Loval_Incl_EP : Ureal;
4762 Hival_Incl_EP : Ureal;
4764 Loval_Excl_EP : Ureal;
4765 Hival_Excl_EP : Ureal;
4767 Size_Incl_EP : Nat;
4768 Size_Excl_EP : Nat;
4770 Model_Num : Ureal;
4771 First_Subt : Entity_Id;
4772 Actual_Lo : Ureal;
4773 Actual_Hi : Ureal;
4775 begin
4776 -- First step. Base types are required to be symmetrical. Right
4777 -- now, the base type range is a copy of the first subtype range.
4778 -- This will be corrected before we are done, but right away we
4779 -- need to deal with the case where both bounds are non-negative.
4780 -- In this case, we set the low bound to the negative of the high
4781 -- bound, to make sure that the size is computed to include the
4782 -- required sign. Note that we do not need to worry about the
4783 -- case of both bounds negative, because the sign will be dealt
4784 -- with anyway. Furthermore we can't just go making such a bound
4785 -- symmetrical, since in a twos-complement system, there is an
4786 -- extra negative value which could not be accommodated on the
4787 -- positive side.
4789 if Typ = Btyp
4790 and then not UR_Is_Negative (Loval)
4791 and then Hival > Loval
4792 then
4793 Loval := -Hival;
4794 Set_Realval (Lo, Loval);
4795 end if;
4797 -- Compute the fudged bounds. If the number is a model number,
4798 -- then we do nothing to include it, but we are allowed to backoff
4799 -- to the next adjacent model number when we exclude it. If it is
4800 -- not a model number then we straddle the two values with the
4801 -- model numbers on either side.
4803 Model_Num := UR_Trunc (Loval / Small) * Small;
4805 if Loval = Model_Num then
4806 Loval_Incl_EP := Model_Num;
4807 else
4808 Loval_Incl_EP := Model_Num - Small;
4809 end if;
4811 -- The low value excluding the end point is Small greater, but
4812 -- we do not do this exclusion if the low value is positive,
4813 -- since it can't help the size and could actually hurt by
4814 -- crossing the high bound.
4816 if UR_Is_Negative (Loval_Incl_EP) then
4817 Loval_Excl_EP := Loval_Incl_EP + Small;
4819 -- If the value went from negative to zero, then we have the
4820 -- case where Loval_Incl_EP is the model number just below
4821 -- zero, so we want to stick to the negative value for the
4822 -- base type to maintain the condition that the size will
4823 -- include signed values.
4825 if Typ = Btyp
4826 and then UR_Is_Zero (Loval_Excl_EP)
4827 then
4828 Loval_Excl_EP := Loval_Incl_EP;
4829 end if;
4831 else
4832 Loval_Excl_EP := Loval_Incl_EP;
4833 end if;
4835 -- Similar processing for upper bound and high value
4837 Model_Num := UR_Trunc (Hival / Small) * Small;
4839 if Hival = Model_Num then
4840 Hival_Incl_EP := Model_Num;
4841 else
4842 Hival_Incl_EP := Model_Num + Small;
4843 end if;
4845 if UR_Is_Positive (Hival_Incl_EP) then
4846 Hival_Excl_EP := Hival_Incl_EP - Small;
4847 else
4848 Hival_Excl_EP := Hival_Incl_EP;
4849 end if;
4851 -- One further adjustment is needed. In the case of subtypes, we
4852 -- cannot go outside the range of the base type, or we get
4853 -- peculiarities, and the base type range is already set. This
4854 -- only applies to the Incl values, since clearly the Excl values
4855 -- are already as restricted as they are allowed to be.
4857 if Typ /= Btyp then
4858 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4859 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4860 end if;
4862 -- Get size including and excluding end points
4864 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4865 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4867 -- No need to exclude end-points if it does not reduce size
4869 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4870 Loval_Excl_EP := Loval_Incl_EP;
4871 end if;
4873 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4874 Hival_Excl_EP := Hival_Incl_EP;
4875 end if;
4877 -- Now we set the actual size to be used. We want to use the
4878 -- bounds fudged up to include the end-points but only if this
4879 -- can be done without violating a specifically given size
4880 -- size clause or causing an unacceptable increase in size.
4882 -- Case of size clause given
4884 if Has_Size_Clause (Typ) then
4886 -- Use the inclusive size only if it is consistent with
4887 -- the explicitly specified size.
4889 if Size_Incl_EP <= RM_Size (Typ) then
4890 Actual_Lo := Loval_Incl_EP;
4891 Actual_Hi := Hival_Incl_EP;
4892 Actual_Size := Size_Incl_EP;
4894 -- If the inclusive size is too large, we try excluding
4895 -- the end-points (will be caught later if does not work).
4897 else
4898 Actual_Lo := Loval_Excl_EP;
4899 Actual_Hi := Hival_Excl_EP;
4900 Actual_Size := Size_Excl_EP;
4901 end if;
4903 -- Case of size clause not given
4905 else
4906 -- If we have a base type whose corresponding first subtype
4907 -- has an explicit size that is large enough to include our
4908 -- end-points, then do so. There is no point in working hard
4909 -- to get a base type whose size is smaller than the specified
4910 -- size of the first subtype.
4912 First_Subt := First_Subtype (Typ);
4914 if Has_Size_Clause (First_Subt)
4915 and then Size_Incl_EP <= Esize (First_Subt)
4916 then
4917 Actual_Size := Size_Incl_EP;
4918 Actual_Lo := Loval_Incl_EP;
4919 Actual_Hi := Hival_Incl_EP;
4921 -- If excluding the end-points makes the size smaller and
4922 -- results in a size of 8,16,32,64, then we take the smaller
4923 -- size. For the 64 case, this is compulsory. For the other
4924 -- cases, it seems reasonable. We like to include end points
4925 -- if we can, but not at the expense of moving to the next
4926 -- natural boundary of size.
4928 elsif Size_Incl_EP /= Size_Excl_EP
4929 and then Addressable (Size_Excl_EP)
4930 then
4931 Actual_Size := Size_Excl_EP;
4932 Actual_Lo := Loval_Excl_EP;
4933 Actual_Hi := Hival_Excl_EP;
4935 -- Otherwise we can definitely include the end points
4937 else
4938 Actual_Size := Size_Incl_EP;
4939 Actual_Lo := Loval_Incl_EP;
4940 Actual_Hi := Hival_Incl_EP;
4941 end if;
4943 -- One pathological case: normally we never fudge a low bound
4944 -- down, since it would seem to increase the size (if it has
4945 -- any effect), but for ranges containing single value, or no
4946 -- values, the high bound can be small too large. Consider:
4948 -- type t is delta 2.0**(-14)
4949 -- range 131072.0 .. 0;
4951 -- That lower bound is *just* outside the range of 32 bits, and
4952 -- does need fudging down in this case. Note that the bounds
4953 -- will always have crossed here, since the high bound will be
4954 -- fudged down if necessary, as in the case of:
4956 -- type t is delta 2.0**(-14)
4957 -- range 131072.0 .. 131072.0;
4959 -- So we detect the situation by looking for crossed bounds,
4960 -- and if the bounds are crossed, and the low bound is greater
4961 -- than zero, we will always back it off by small, since this
4962 -- is completely harmless.
4964 if Actual_Lo > Actual_Hi then
4965 if UR_Is_Positive (Actual_Lo) then
4966 Actual_Lo := Loval_Incl_EP - Small;
4967 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4969 -- And of course, we need to do exactly the same parallel
4970 -- fudge for flat ranges in the negative region.
4972 elsif UR_Is_Negative (Actual_Hi) then
4973 Actual_Hi := Hival_Incl_EP + Small;
4974 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4975 end if;
4976 end if;
4977 end if;
4979 Set_Realval (Lo, Actual_Lo);
4980 Set_Realval (Hi, Actual_Hi);
4981 end Fudge;
4983 -- For the decimal case, none of this fudging is required, since there
4984 -- are no end-point problems in the decimal case (the end-points are
4985 -- always included).
4987 else
4988 Actual_Size := Fsize (Loval, Hival);
4989 end if;
4991 -- At this stage, the actual size has been calculated and the proper
4992 -- required bounds are stored in the low and high bounds.
4994 if Actual_Size > 64 then
4995 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4996 Error_Msg_N
4997 ("size required (^) for type& too large, maximum allowed is 64",
4998 Typ);
4999 Actual_Size := 64;
5000 end if;
5002 -- Check size against explicit given size
5004 if Has_Size_Clause (Typ) then
5005 if Actual_Size > RM_Size (Typ) then
5006 Error_Msg_Uint_1 := RM_Size (Typ);
5007 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
5008 Error_Msg_NE
5009 ("size given (^) for type& too small, minimum allowed is ^",
5010 Size_Clause (Typ), Typ);
5012 else
5013 Actual_Size := UI_To_Int (Esize (Typ));
5014 end if;
5016 -- Increase size to next natural boundary if no size clause given
5018 else
5019 if Actual_Size <= 8 then
5020 Actual_Size := 8;
5021 elsif Actual_Size <= 16 then
5022 Actual_Size := 16;
5023 elsif Actual_Size <= 32 then
5024 Actual_Size := 32;
5025 else
5026 Actual_Size := 64;
5027 end if;
5029 Init_Esize (Typ, Actual_Size);
5030 Adjust_Esize_For_Alignment (Typ);
5031 end if;
5033 -- If we have a base type, then expand the bounds so that they extend to
5034 -- the full width of the allocated size in bits, to avoid junk range
5035 -- checks on intermediate computations.
5037 if Base_Type (Typ) = Typ then
5038 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
5039 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
5040 end if;
5042 -- Final step is to reanalyze the bounds using the proper type
5043 -- and set the Corresponding_Integer_Value fields of the literals.
5045 Set_Etype (Lo, Empty);
5046 Set_Analyzed (Lo, False);
5047 Analyze (Lo);
5049 -- Resolve with universal fixed if the base type, and the base type if
5050 -- it is a subtype. Note we can't resolve the base type with itself,
5051 -- that would be a reference before definition.
5053 if Typ = Btyp then
5054 Resolve (Lo, Universal_Fixed);
5055 else
5056 Resolve (Lo, Btyp);
5057 end if;
5059 -- Set corresponding integer value for bound
5061 Set_Corresponding_Integer_Value
5062 (Lo, UR_To_Uint (Realval (Lo) / Small));
5064 -- Similar processing for high bound
5066 Set_Etype (Hi, Empty);
5067 Set_Analyzed (Hi, False);
5068 Analyze (Hi);
5070 if Typ = Btyp then
5071 Resolve (Hi, Universal_Fixed);
5072 else
5073 Resolve (Hi, Btyp);
5074 end if;
5076 Set_Corresponding_Integer_Value
5077 (Hi, UR_To_Uint (Realval (Hi) / Small));
5079 -- Set type of range to correspond to bounds
5081 Set_Etype (Rng, Etype (Lo));
5083 -- Set Esize to calculated size if not set already
5085 if Unknown_Esize (Typ) then
5086 Init_Esize (Typ, Actual_Size);
5087 end if;
5089 -- Set RM_Size if not already set. If already set, check value
5091 declare
5092 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
5094 begin
5095 if RM_Size (Typ) /= Uint_0 then
5096 if RM_Size (Typ) < Minsiz then
5097 Error_Msg_Uint_1 := RM_Size (Typ);
5098 Error_Msg_Uint_2 := Minsiz;
5099 Error_Msg_NE
5100 ("size given (^) for type& too small, minimum allowed is ^",
5101 Size_Clause (Typ), Typ);
5102 end if;
5104 else
5105 Set_RM_Size (Typ, Minsiz);
5106 end if;
5107 end;
5108 end Freeze_Fixed_Point_Type;
5110 ------------------
5111 -- Freeze_Itype --
5112 ------------------
5114 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
5115 L : List_Id;
5117 begin
5118 Set_Has_Delayed_Freeze (T);
5119 L := Freeze_Entity (T, N);
5121 if Is_Non_Empty_List (L) then
5122 Insert_Actions (N, L);
5123 end if;
5124 end Freeze_Itype;
5126 --------------------------
5127 -- Freeze_Static_Object --
5128 --------------------------
5130 procedure Freeze_Static_Object (E : Entity_Id) is
5132 Cannot_Be_Static : exception;
5133 -- Exception raised if the type of a static object cannot be made
5134 -- static. This happens if the type depends on non-global objects.
5136 procedure Ensure_Expression_Is_SA (N : Node_Id);
5137 -- Called to ensure that an expression used as part of a type definition
5138 -- is statically allocatable, which means that the expression type is
5139 -- statically allocatable, and the expression is either static, or a
5140 -- reference to a library level constant.
5142 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
5143 -- Called to mark a type as static, checking that it is possible
5144 -- to set the type as static. If it is not possible, then the
5145 -- exception Cannot_Be_Static is raised.
5147 -----------------------------
5148 -- Ensure_Expression_Is_SA --
5149 -----------------------------
5151 procedure Ensure_Expression_Is_SA (N : Node_Id) is
5152 Ent : Entity_Id;
5154 begin
5155 Ensure_Type_Is_SA (Etype (N));
5157 if Is_Static_Expression (N) then
5158 return;
5160 elsif Nkind (N) = N_Identifier then
5161 Ent := Entity (N);
5163 if Present (Ent)
5164 and then Ekind (Ent) = E_Constant
5165 and then Is_Library_Level_Entity (Ent)
5166 then
5167 return;
5168 end if;
5169 end if;
5171 raise Cannot_Be_Static;
5172 end Ensure_Expression_Is_SA;
5174 -----------------------
5175 -- Ensure_Type_Is_SA --
5176 -----------------------
5178 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5179 N : Node_Id;
5180 C : Entity_Id;
5182 begin
5183 -- If type is library level, we are all set
5185 if Is_Library_Level_Entity (Typ) then
5186 return;
5187 end if;
5189 -- We are also OK if the type already marked as statically allocated,
5190 -- which means we processed it before.
5192 if Is_Statically_Allocated (Typ) then
5193 return;
5194 end if;
5196 -- Mark type as statically allocated
5198 Set_Is_Statically_Allocated (Typ);
5200 -- Check that it is safe to statically allocate this type
5202 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5203 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5204 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5206 elsif Is_Array_Type (Typ) then
5207 N := First_Index (Typ);
5208 while Present (N) loop
5209 Ensure_Type_Is_SA (Etype (N));
5210 Next_Index (N);
5211 end loop;
5213 Ensure_Type_Is_SA (Component_Type (Typ));
5215 elsif Is_Access_Type (Typ) then
5216 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5218 declare
5219 F : Entity_Id;
5220 T : constant Entity_Id := Etype (Designated_Type (Typ));
5222 begin
5223 if T /= Standard_Void_Type then
5224 Ensure_Type_Is_SA (T);
5225 end if;
5227 F := First_Formal (Designated_Type (Typ));
5228 while Present (F) loop
5229 Ensure_Type_Is_SA (Etype (F));
5230 Next_Formal (F);
5231 end loop;
5232 end;
5234 else
5235 Ensure_Type_Is_SA (Designated_Type (Typ));
5236 end if;
5238 elsif Is_Record_Type (Typ) then
5239 C := First_Entity (Typ);
5240 while Present (C) loop
5241 if Ekind (C) = E_Discriminant
5242 or else Ekind (C) = E_Component
5243 then
5244 Ensure_Type_Is_SA (Etype (C));
5246 elsif Is_Type (C) then
5247 Ensure_Type_Is_SA (C);
5248 end if;
5250 Next_Entity (C);
5251 end loop;
5253 elsif Ekind (Typ) = E_Subprogram_Type then
5254 Ensure_Type_Is_SA (Etype (Typ));
5256 C := First_Formal (Typ);
5257 while Present (C) loop
5258 Ensure_Type_Is_SA (Etype (C));
5259 Next_Formal (C);
5260 end loop;
5262 else
5263 raise Cannot_Be_Static;
5264 end if;
5265 end Ensure_Type_Is_SA;
5267 -- Start of processing for Freeze_Static_Object
5269 begin
5270 Ensure_Type_Is_SA (Etype (E));
5272 exception
5273 when Cannot_Be_Static =>
5275 -- If the object that cannot be static is imported or exported, then
5276 -- issue an error message saying that this object cannot be imported
5277 -- or exported. If it has an address clause it is an overlay in the
5278 -- current partition and the static requirement is not relevant.
5279 -- Do not issue any error message when ignoring rep clauses.
5281 if Ignore_Rep_Clauses then
5282 null;
5284 elsif Is_Imported (E) then
5285 if No (Address_Clause (E)) then
5286 Error_Msg_N
5287 ("& cannot be imported (local type is not constant)", E);
5288 end if;
5290 -- Otherwise must be exported, something is wrong if compiler
5291 -- is marking something as statically allocated which cannot be).
5293 else pragma Assert (Is_Exported (E));
5294 Error_Msg_N
5295 ("& cannot be exported (local type is not constant)", E);
5296 end if;
5297 end Freeze_Static_Object;
5299 -----------------------
5300 -- Freeze_Subprogram --
5301 -----------------------
5303 procedure Freeze_Subprogram (E : Entity_Id) is
5304 Retype : Entity_Id;
5305 F : Entity_Id;
5307 begin
5308 -- Subprogram may not have an address clause unless it is imported
5310 if Present (Address_Clause (E)) then
5311 if not Is_Imported (E) then
5312 Error_Msg_N
5313 ("address clause can only be given " &
5314 "for imported subprogram",
5315 Name (Address_Clause (E)));
5316 end if;
5317 end if;
5319 -- Reset the Pure indication on an imported subprogram unless an
5320 -- explicit Pure_Function pragma was present. We do this because
5321 -- otherwise it is an insidious error to call a non-pure function from
5322 -- pure unit and have calls mysteriously optimized away. What happens
5323 -- here is that the Import can bypass the normal check to ensure that
5324 -- pure units call only pure subprograms.
5326 if Is_Imported (E)
5327 and then Is_Pure (E)
5328 and then not Has_Pragma_Pure_Function (E)
5329 then
5330 Set_Is_Pure (E, False);
5331 end if;
5333 -- For non-foreign convention subprograms, this is where we create
5334 -- the extra formals (for accessibility level and constrained bit
5335 -- information). We delay this till the freeze point precisely so
5336 -- that we know the convention!
5338 if not Has_Foreign_Convention (E) then
5339 Create_Extra_Formals (E);
5340 Set_Mechanisms (E);
5342 -- If this is convention Ada and a Valued_Procedure, that's odd
5344 if Ekind (E) = E_Procedure
5345 and then Is_Valued_Procedure (E)
5346 and then Convention (E) = Convention_Ada
5347 and then Warn_On_Export_Import
5348 then
5349 Error_Msg_N
5350 ("?Valued_Procedure has no effect for convention Ada", E);
5351 Set_Is_Valued_Procedure (E, False);
5352 end if;
5354 -- Case of foreign convention
5356 else
5357 Set_Mechanisms (E);
5359 -- For foreign conventions, warn about return of an
5360 -- unconstrained array.
5362 -- Note: we *do* allow a return by descriptor for the VMS case,
5363 -- though here there is probably more to be done ???
5365 if Ekind (E) = E_Function then
5366 Retype := Underlying_Type (Etype (E));
5368 -- If no return type, probably some other error, e.g. a
5369 -- missing full declaration, so ignore.
5371 if No (Retype) then
5372 null;
5374 -- If the return type is generic, we have emitted a warning
5375 -- earlier on, and there is nothing else to check here. Specific
5376 -- instantiations may lead to erroneous behavior.
5378 elsif Is_Generic_Type (Etype (E)) then
5379 null;
5381 -- Display warning if returning unconstrained array
5383 elsif Is_Array_Type (Retype)
5384 and then not Is_Constrained (Retype)
5386 -- Exclude cases where descriptor mechanism is set, since the
5387 -- VMS descriptor mechanisms allow such unconstrained returns.
5389 and then Mechanism (E) not in Descriptor_Codes
5391 -- Check appropriate warning is enabled (should we check for
5392 -- Warnings (Off) on specific entities here, probably so???)
5394 and then Warn_On_Export_Import
5396 -- Exclude the VM case, since return of unconstrained arrays
5397 -- is properly handled in both the JVM and .NET cases.
5399 and then VM_Target = No_VM
5400 then
5401 Error_Msg_N
5402 ("?foreign convention function& should not return " &
5403 "unconstrained array", E);
5404 return;
5405 end if;
5406 end if;
5408 -- If any of the formals for an exported foreign convention
5409 -- subprogram have defaults, then emit an appropriate warning since
5410 -- this is odd (default cannot be used from non-Ada code)
5412 if Is_Exported (E) then
5413 F := First_Formal (E);
5414 while Present (F) loop
5415 if Warn_On_Export_Import
5416 and then Present (Default_Value (F))
5417 then
5418 Error_Msg_N
5419 ("?parameter cannot be defaulted in non-Ada call",
5420 Default_Value (F));
5421 end if;
5423 Next_Formal (F);
5424 end loop;
5425 end if;
5426 end if;
5428 -- For VMS, descriptor mechanisms for parameters are allowed only for
5429 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5430 -- allowed for parameters of exported subprograms.
5432 if OpenVMS_On_Target then
5433 if Is_Exported (E) then
5434 F := First_Formal (E);
5435 while Present (F) loop
5436 if Mechanism (F) = By_Descriptor_NCA then
5437 Error_Msg_N
5438 ("'N'C'A' descriptor for parameter not permitted", F);
5439 Error_Msg_N
5440 ("\can only be used for imported subprogram", F);
5441 end if;
5443 Next_Formal (F);
5444 end loop;
5446 elsif not Is_Imported (E) then
5447 F := First_Formal (E);
5448 while Present (F) loop
5449 if Mechanism (F) in Descriptor_Codes then
5450 Error_Msg_N
5451 ("descriptor mechanism for parameter not permitted", F);
5452 Error_Msg_N
5453 ("\can only be used for imported/exported subprogram", F);
5454 end if;
5456 Next_Formal (F);
5457 end loop;
5458 end if;
5459 end if;
5461 -- Pragma Inline_Always is disallowed for dispatching subprograms
5462 -- because the address of such subprograms is saved in the dispatch
5463 -- table to support dispatching calls, and dispatching calls cannot
5464 -- be inlined. This is consistent with the restriction against using
5465 -- 'Access or 'Address on an Inline_Always subprogram.
5467 if Is_Dispatching_Operation (E)
5468 and then Has_Pragma_Inline_Always (E)
5469 then
5470 Error_Msg_N
5471 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5472 end if;
5474 -- Because of the implicit representation of inherited predefined
5475 -- operators in the front-end, the overriding status of the operation
5476 -- may be affected when a full view of a type is analyzed, and this is
5477 -- not captured by the analysis of the corresponding type declaration.
5478 -- Therefore the correctness of a not-overriding indicator must be
5479 -- rechecked when the subprogram is frozen.
5481 if Nkind (E) = N_Defining_Operator_Symbol
5482 and then not Error_Posted (Parent (E))
5483 then
5484 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5485 end if;
5486 end Freeze_Subprogram;
5488 ----------------------
5489 -- Is_Fully_Defined --
5490 ----------------------
5492 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5493 begin
5494 if Ekind (T) = E_Class_Wide_Type then
5495 return Is_Fully_Defined (Etype (T));
5497 elsif Is_Array_Type (T) then
5498 return Is_Fully_Defined (Component_Type (T));
5500 elsif Is_Record_Type (T)
5501 and not Is_Private_Type (T)
5502 then
5503 -- Verify that the record type has no components with private types
5504 -- without completion.
5506 declare
5507 Comp : Entity_Id;
5509 begin
5510 Comp := First_Component (T);
5511 while Present (Comp) loop
5512 if not Is_Fully_Defined (Etype (Comp)) then
5513 return False;
5514 end if;
5516 Next_Component (Comp);
5517 end loop;
5518 return True;
5519 end;
5521 -- For the designated type of an access to subprogram, all types in
5522 -- the profile must be fully defined.
5524 elsif Ekind (T) = E_Subprogram_Type then
5525 declare
5526 F : Entity_Id;
5528 begin
5529 F := First_Formal (T);
5530 while Present (F) loop
5531 if not Is_Fully_Defined (Etype (F)) then
5532 return False;
5533 end if;
5535 Next_Formal (F);
5536 end loop;
5538 return Is_Fully_Defined (Etype (T));
5539 end;
5541 else
5542 return not Is_Private_Type (T)
5543 or else Present (Full_View (Base_Type (T)));
5544 end if;
5545 end Is_Fully_Defined;
5547 ---------------------------------
5548 -- Process_Default_Expressions --
5549 ---------------------------------
5551 procedure Process_Default_Expressions
5552 (E : Entity_Id;
5553 After : in out Node_Id)
5555 Loc : constant Source_Ptr := Sloc (E);
5556 Dbody : Node_Id;
5557 Formal : Node_Id;
5558 Dcopy : Node_Id;
5559 Dnam : Entity_Id;
5561 begin
5562 Set_Default_Expressions_Processed (E);
5564 -- A subprogram instance and its associated anonymous subprogram share
5565 -- their signature. The default expression functions are defined in the
5566 -- wrapper packages for the anonymous subprogram, and should not be
5567 -- generated again for the instance.
5569 if Is_Generic_Instance (E)
5570 and then Present (Alias (E))
5571 and then Default_Expressions_Processed (Alias (E))
5572 then
5573 return;
5574 end if;
5576 Formal := First_Formal (E);
5577 while Present (Formal) loop
5578 if Present (Default_Value (Formal)) then
5580 -- We work with a copy of the default expression because we
5581 -- do not want to disturb the original, since this would mess
5582 -- up the conformance checking.
5584 Dcopy := New_Copy_Tree (Default_Value (Formal));
5586 -- The analysis of the expression may generate insert actions,
5587 -- which of course must not be executed. We wrap those actions
5588 -- in a procedure that is not called, and later on eliminated.
5589 -- The following cases have no side-effects, and are analyzed
5590 -- directly.
5592 if Nkind (Dcopy) = N_Identifier
5593 or else Nkind (Dcopy) = N_Expanded_Name
5594 or else Nkind (Dcopy) = N_Integer_Literal
5595 or else (Nkind (Dcopy) = N_Real_Literal
5596 and then not Vax_Float (Etype (Dcopy)))
5597 or else Nkind (Dcopy) = N_Character_Literal
5598 or else Nkind (Dcopy) = N_String_Literal
5599 or else Known_Null (Dcopy)
5600 or else (Nkind (Dcopy) = N_Attribute_Reference
5601 and then
5602 Attribute_Name (Dcopy) = Name_Null_Parameter)
5603 then
5605 -- If there is no default function, we must still do a full
5606 -- analyze call on the default value, to ensure that all error
5607 -- checks are performed, e.g. those associated with static
5608 -- evaluation. Note: this branch will always be taken if the
5609 -- analyzer is turned off (but we still need the error checks).
5611 -- Note: the setting of parent here is to meet the requirement
5612 -- that we can only analyze the expression while attached to
5613 -- the tree. Really the requirement is that the parent chain
5614 -- be set, we don't actually need to be in the tree.
5616 Set_Parent (Dcopy, Declaration_Node (Formal));
5617 Analyze (Dcopy);
5619 -- Default expressions are resolved with their own type if the
5620 -- context is generic, to avoid anomalies with private types.
5622 if Ekind (Scope (E)) = E_Generic_Package then
5623 Resolve (Dcopy);
5624 else
5625 Resolve (Dcopy, Etype (Formal));
5626 end if;
5628 -- If that resolved expression will raise constraint error,
5629 -- then flag the default value as raising constraint error.
5630 -- This allows a proper error message on the calls.
5632 if Raises_Constraint_Error (Dcopy) then
5633 Set_Raises_Constraint_Error (Default_Value (Formal));
5634 end if;
5636 -- If the default is a parameterless call, we use the name of
5637 -- the called function directly, and there is no body to build.
5639 elsif Nkind (Dcopy) = N_Function_Call
5640 and then No (Parameter_Associations (Dcopy))
5641 then
5642 null;
5644 -- Else construct and analyze the body of a wrapper procedure
5645 -- that contains an object declaration to hold the expression.
5646 -- Given that this is done only to complete the analysis, it
5647 -- simpler to build a procedure than a function which might
5648 -- involve secondary stack expansion.
5650 else
5651 Dnam := Make_Temporary (Loc, 'D');
5653 Dbody :=
5654 Make_Subprogram_Body (Loc,
5655 Specification =>
5656 Make_Procedure_Specification (Loc,
5657 Defining_Unit_Name => Dnam),
5659 Declarations => New_List (
5660 Make_Object_Declaration (Loc,
5661 Defining_Identifier =>
5662 Make_Defining_Identifier (Loc,
5663 New_Internal_Name ('T')),
5664 Object_Definition =>
5665 New_Occurrence_Of (Etype (Formal), Loc),
5666 Expression => New_Copy_Tree (Dcopy))),
5668 Handled_Statement_Sequence =>
5669 Make_Handled_Sequence_Of_Statements (Loc,
5670 Statements => New_List));
5672 Set_Scope (Dnam, Scope (E));
5673 Set_Assignment_OK (First (Declarations (Dbody)));
5674 Set_Is_Eliminated (Dnam);
5675 Insert_After (After, Dbody);
5676 Analyze (Dbody);
5677 After := Dbody;
5678 end if;
5679 end if;
5681 Next_Formal (Formal);
5682 end loop;
5683 end Process_Default_Expressions;
5685 ----------------------------------------
5686 -- Set_Component_Alignment_If_Not_Set --
5687 ----------------------------------------
5689 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5690 begin
5691 -- Ignore if not base type, subtypes don't need anything
5693 if Typ /= Base_Type (Typ) then
5694 return;
5695 end if;
5697 -- Do not override existing representation
5699 if Is_Packed (Typ) then
5700 return;
5702 elsif Has_Specified_Layout (Typ) then
5703 return;
5705 elsif Component_Alignment (Typ) /= Calign_Default then
5706 return;
5708 else
5709 Set_Component_Alignment
5710 (Typ, Scope_Stack.Table
5711 (Scope_Stack.Last).Component_Alignment_Default);
5712 end if;
5713 end Set_Component_Alignment_If_Not_Set;
5715 ------------------
5716 -- Undelay_Type --
5717 ------------------
5719 procedure Undelay_Type (T : Entity_Id) is
5720 begin
5721 Set_Has_Delayed_Freeze (T, False);
5722 Set_Freeze_Node (T, Empty);
5724 -- Since we don't want T to have a Freeze_Node, we don't want its
5725 -- Full_View or Corresponding_Record_Type to have one either.
5727 -- ??? Fundamentally, this whole handling is a kludge. What we really
5728 -- want is to be sure that for an Itype that's part of record R and is a
5729 -- subtype of type T, that it's frozen after the later of the freeze
5730 -- points of R and T. We have no way of doing that directly, so what we
5731 -- do is force most such Itypes to be frozen as part of freezing R via
5732 -- this procedure and only delay the ones that need to be delayed
5733 -- (mostly the designated types of access types that are defined as part
5734 -- of the record).
5736 if Is_Private_Type (T)
5737 and then Present (Full_View (T))
5738 and then Is_Itype (Full_View (T))
5739 and then Is_Record_Type (Scope (Full_View (T)))
5740 then
5741 Undelay_Type (Full_View (T));
5742 end if;
5744 if Is_Concurrent_Type (T)
5745 and then Present (Corresponding_Record_Type (T))
5746 and then Is_Itype (Corresponding_Record_Type (T))
5747 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5748 then
5749 Undelay_Type (Corresponding_Record_Type (T));
5750 end if;
5751 end Undelay_Type;
5753 ------------------
5754 -- Warn_Overlay --
5755 ------------------
5757 procedure Warn_Overlay
5758 (Expr : Node_Id;
5759 Typ : Entity_Id;
5760 Nam : Entity_Id)
5762 Ent : constant Entity_Id := Entity (Nam);
5763 -- The object to which the address clause applies
5765 Init : Node_Id;
5766 Old : Entity_Id := Empty;
5767 Decl : Node_Id;
5769 begin
5770 -- No warning if address clause overlay warnings are off
5772 if not Address_Clause_Overlay_Warnings then
5773 return;
5774 end if;
5776 -- No warning if there is an explicit initialization
5778 Init := Original_Node (Expression (Declaration_Node (Ent)));
5780 if Present (Init) and then Comes_From_Source (Init) then
5781 return;
5782 end if;
5784 -- We only give the warning for non-imported entities of a type for
5785 -- which a non-null base init proc is defined, or for objects of access
5786 -- types with implicit null initialization, or when Normalize_Scalars
5787 -- applies and the type is scalar or a string type (the latter being
5788 -- tested for because predefined String types are initialized by inline
5789 -- code rather than by an init_proc). Note that we do not give the
5790 -- warning for Initialize_Scalars, since we suppressed initialization
5791 -- in this case.
5793 if Present (Expr)
5794 and then not Is_Imported (Ent)
5795 and then (Has_Non_Null_Base_Init_Proc (Typ)
5796 or else Is_Access_Type (Typ)
5797 or else (Normalize_Scalars
5798 and then (Is_Scalar_Type (Typ)
5799 or else Is_String_Type (Typ))))
5800 then
5801 if Nkind (Expr) = N_Attribute_Reference
5802 and then Is_Entity_Name (Prefix (Expr))
5803 then
5804 Old := Entity (Prefix (Expr));
5806 elsif Is_Entity_Name (Expr)
5807 and then Ekind (Entity (Expr)) = E_Constant
5808 then
5809 Decl := Declaration_Node (Entity (Expr));
5811 if Nkind (Decl) = N_Object_Declaration
5812 and then Present (Expression (Decl))
5813 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5814 and then Is_Entity_Name (Prefix (Expression (Decl)))
5815 then
5816 Old := Entity (Prefix (Expression (Decl)));
5818 elsif Nkind (Expr) = N_Function_Call then
5819 return;
5820 end if;
5822 -- A function call (most likely to To_Address) is probably not an
5823 -- overlay, so skip warning. Ditto if the function call was inlined
5824 -- and transformed into an entity.
5826 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5827 return;
5828 end if;
5830 Decl := Next (Parent (Expr));
5832 -- If a pragma Import follows, we assume that it is for the current
5833 -- target of the address clause, and skip the warning.
5835 if Present (Decl)
5836 and then Nkind (Decl) = N_Pragma
5837 and then Pragma_Name (Decl) = Name_Import
5838 then
5839 return;
5840 end if;
5842 if Present (Old) then
5843 Error_Msg_Node_2 := Old;
5844 Error_Msg_N
5845 ("default initialization of & may modify &?",
5846 Nam);
5847 else
5848 Error_Msg_N
5849 ("default initialization of & may modify overlaid storage?",
5850 Nam);
5851 end if;
5853 -- Add friendly warning if initialization comes from a packed array
5854 -- component.
5856 if Is_Record_Type (Typ) then
5857 declare
5858 Comp : Entity_Id;
5860 begin
5861 Comp := First_Component (Typ);
5862 while Present (Comp) loop
5863 if Nkind (Parent (Comp)) = N_Component_Declaration
5864 and then Present (Expression (Parent (Comp)))
5865 then
5866 exit;
5867 elsif Is_Array_Type (Etype (Comp))
5868 and then Present (Packed_Array_Type (Etype (Comp)))
5869 then
5870 Error_Msg_NE
5871 ("\packed array component& " &
5872 "will be initialized to zero?",
5873 Nam, Comp);
5874 exit;
5875 else
5876 Next_Component (Comp);
5877 end if;
5878 end loop;
5879 end;
5880 end if;
5882 Error_Msg_N
5883 ("\use pragma Import for & to " &
5884 "suppress initialization (RM B.1(24))?",
5885 Nam);
5886 end if;
5887 end Warn_Overlay;
5889 end Freeze;