Remove outermost loop parameter.
[official-gcc/graphite-test-results.git] / gcc / ada / freeze.adb
blobc9639361ec01c87b9d4e37df77b89579c8ec1ec2
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- You should have received a copy of the GNU General Public License along --
19 -- with this program; see file COPYING3. If not see --
20 -- <http://www.gnu.org/licenses/>. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch3; use Exp_Ch3;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Exp_Tss; use Exp_Tss;
38 with Layout; use Layout;
39 with Namet; use Namet;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Cat; use Sem_Cat;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch7; use Sem_Ch7;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch13; use Sem_Ch13;
52 with Sem_Eval; use Sem_Eval;
53 with Sem_Mech; use Sem_Mech;
54 with Sem_Prag; use Sem_Prag;
55 with Sem_Res; use Sem_Res;
56 with Sem_Util; use Sem_Util;
57 with Sinfo; use Sinfo;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Targparm; use Targparm;
61 with Tbuild; use Tbuild;
62 with Ttypes; use Ttypes;
63 with Uintp; use Uintp;
64 with Urealp; use Urealp;
66 package body Freeze is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
73 -- Typ is a type that is being frozen. If no size clause is given,
74 -- but a default Esize has been computed, then this default Esize is
75 -- adjusted up if necessary to be consistent with a given alignment,
76 -- but never to a value greater than Long_Long_Integer'Size. This
77 -- is used for all discrete types and for fixed-point types.
79 procedure Build_And_Analyze_Renamed_Body
80 (Decl : Node_Id;
81 New_S : Entity_Id;
82 After : in out Node_Id);
83 -- Build body for a renaming declaration, insert in tree and analyze
85 procedure Check_Address_Clause (E : Entity_Id);
86 -- Apply legality checks to address clauses for object declarations,
87 -- at the point the object is frozen.
89 procedure Check_Strict_Alignment (E : Entity_Id);
90 -- E is a base type. If E is tagged or has a component that is aliased
91 -- or tagged or contains something this is aliased or tagged, set
92 -- Strict_Alignment.
94 procedure Check_Unsigned_Type (E : Entity_Id);
95 pragma Inline (Check_Unsigned_Type);
96 -- If E is a fixed-point or discrete type, then all the necessary work
97 -- to freeze it is completed except for possible setting of the flag
98 -- Is_Unsigned_Type, which is done by this procedure. The call has no
99 -- effect if the entity E is not a discrete or fixed-point type.
101 procedure Freeze_And_Append
102 (Ent : Entity_Id;
103 Loc : Source_Ptr;
104 Result : in out List_Id);
105 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
106 -- nodes to Result, modifying Result from No_List if necessary.
108 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
109 -- Freeze enumeration type. The Esize field is set as processing
110 -- proceeds (i.e. set by default when the type is declared and then
111 -- adjusted by rep clauses. What this procedure does is to make sure
112 -- that if a foreign convention is specified, and no specific size
113 -- is given, then the size must be at least Integer'Size.
115 procedure Freeze_Static_Object (E : Entity_Id);
116 -- If an object is frozen which has Is_Statically_Allocated set, then
117 -- all referenced types must also be marked with this flag. This routine
118 -- is in charge of meeting this requirement for the object entity E.
120 procedure Freeze_Subprogram (E : Entity_Id);
121 -- Perform freezing actions for a subprogram (create extra formals,
122 -- and set proper default mechanism values). Note that this routine
123 -- is not called for internal subprograms, for which neither of these
124 -- actions is needed (or desirable, we do not want for example to have
125 -- these extra formals present in initialization procedures, where they
126 -- would serve no purpose). In this call E is either a subprogram or
127 -- a subprogram type (i.e. an access to a subprogram).
129 function Is_Fully_Defined (T : Entity_Id) return Boolean;
130 -- True if T is not private and has no private components, or has a full
131 -- view. Used to determine whether the designated type of an access type
132 -- should be frozen when the access type is frozen. This is done when an
133 -- allocator is frozen, or an expression that may involve attributes of
134 -- the designated type. Otherwise freezing the access type does not freeze
135 -- the designated type.
137 procedure Process_Default_Expressions
138 (E : Entity_Id;
139 After : in out Node_Id);
140 -- This procedure is called for each subprogram to complete processing
141 -- of default expressions at the point where all types are known to be
142 -- frozen. The expressions must be analyzed in full, to make sure that
143 -- all error processing is done (they have only been pre-analyzed). If
144 -- the expression is not an entity or literal, its analysis may generate
145 -- code which must not be executed. In that case we build a function
146 -- body to hold that code. This wrapper function serves no other purpose
147 -- (it used to be called to evaluate the default, but now the default is
148 -- inlined at each point of call).
150 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
151 -- Typ is a record or array type that is being frozen. This routine
152 -- sets the default component alignment from the scope stack values
153 -- if the alignment is otherwise not specified.
155 procedure Check_Debug_Info_Needed (T : Entity_Id);
156 -- As each entity is frozen, this routine is called to deal with the
157 -- setting of Debug_Info_Needed for the entity. This flag is set if
158 -- the entity comes from source, or if we are in Debug_Generated_Code
159 -- mode or if the -gnatdV debug flag is set. However, it never sets
160 -- the flag if Debug_Info_Off is set. This procedure also ensures that
161 -- subsidiary entities have the flag set as required.
163 procedure Undelay_Type (T : Entity_Id);
164 -- T is a type of a component that we know to be an Itype.
165 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
166 -- Do the same for any Full_View or Corresponding_Record_Type.
168 procedure Warn_Overlay
169 (Expr : Node_Id;
170 Typ : Entity_Id;
171 Nam : Node_Id);
172 -- Expr is the expression for an address clause for entity Nam whose type
173 -- is Typ. If Typ has a default initialization, and there is no explicit
174 -- initialization in the source declaration, check whether the address
175 -- clause might cause overlaying of an entity, and emit a warning on the
176 -- side effect that the initialization will cause.
178 -------------------------------
179 -- Adjust_Esize_For_Alignment --
180 -------------------------------
182 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
183 Align : Uint;
185 begin
186 if Known_Esize (Typ) and then Known_Alignment (Typ) then
187 Align := Alignment_In_Bits (Typ);
189 if Align > Esize (Typ)
190 and then Align <= Standard_Long_Long_Integer_Size
191 then
192 Set_Esize (Typ, Align);
193 end if;
194 end if;
195 end Adjust_Esize_For_Alignment;
197 ------------------------------------
198 -- Build_And_Analyze_Renamed_Body --
199 ------------------------------------
201 procedure Build_And_Analyze_Renamed_Body
202 (Decl : Node_Id;
203 New_S : Entity_Id;
204 After : in out Node_Id)
206 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
207 begin
208 Insert_After (After, Body_Node);
209 Mark_Rewrite_Insertion (Body_Node);
210 Analyze (Body_Node);
211 After := Body_Node;
212 end Build_And_Analyze_Renamed_Body;
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
218 function Build_Renamed_Body
219 (Decl : Node_Id;
220 New_S : Entity_Id) return Node_Id
222 Loc : constant Source_Ptr := Sloc (New_S);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
230 N : constant Node_Id := Unit_Declaration_Node (New_S);
231 Nam : constant Node_Id := Name (N);
232 Old_S : Entity_Id;
233 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
234 Actuals : List_Id := No_List;
235 Call_Node : Node_Id;
236 Call_Name : Node_Id;
237 Body_Node : Node_Id;
238 Formal : Entity_Id;
239 O_Formal : Entity_Id;
240 Param_Spec : Node_Id;
242 Pref : Node_Id := Empty;
243 -- If the renamed entity is a primitive operation given in prefix form,
244 -- the prefix is the target object and it has to be added as the first
245 -- actual in the generated call.
247 begin
248 -- Determine the entity being renamed, which is the target of the call
249 -- statement. If the name is an explicit dereference, this is a renaming
250 -- of a subprogram type rather than a subprogram. The name itself is
251 -- fully analyzed.
253 if Nkind (Nam) = N_Selected_Component then
254 Old_S := Entity (Selector_Name (Nam));
256 elsif Nkind (Nam) = N_Explicit_Dereference then
257 Old_S := Etype (Nam);
259 elsif Nkind (Nam) = N_Indexed_Component then
260 if Is_Entity_Name (Prefix (Nam)) then
261 Old_S := Entity (Prefix (Nam));
262 else
263 Old_S := Entity (Selector_Name (Prefix (Nam)));
264 end if;
266 elsif Nkind (Nam) = N_Character_Literal then
267 Old_S := Etype (New_S);
269 else
270 Old_S := Entity (Nam);
271 end if;
273 if Is_Entity_Name (Nam) then
275 -- If the renamed entity is a predefined operator, retain full name
276 -- to ensure its visibility.
278 if Ekind (Old_S) = E_Operator
279 and then Nkind (Nam) = N_Expanded_Name
280 then
281 Call_Name := New_Copy (Name (N));
282 else
283 Call_Name := New_Reference_To (Old_S, Loc);
284 end if;
286 else
287 if Nkind (Nam) = N_Selected_Component
288 and then Present (First_Formal (Old_S))
289 and then
290 (Is_Controlling_Formal (First_Formal (Old_S))
291 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
292 then
294 -- Retrieve the target object, to be added as a first actual
295 -- in the call.
297 Call_Name := New_Occurrence_Of (Old_S, Loc);
298 Pref := Prefix (Nam);
300 else
301 Call_Name := New_Copy (Name (N));
302 end if;
304 -- The original name may have been overloaded, but
305 -- is fully resolved now.
307 Set_Is_Overloaded (Call_Name, False);
308 end if;
310 -- For simple renamings, subsequent calls can be expanded directly as
311 -- called to the renamed entity. The body must be generated in any case
312 -- for calls they may appear elsewhere.
314 if (Ekind (Old_S) = E_Function
315 or else Ekind (Old_S) = E_Procedure)
316 and then Nkind (Decl) = N_Subprogram_Declaration
317 then
318 Set_Body_To_Inline (Decl, Old_S);
319 end if;
321 -- The body generated for this renaming is an internal artifact, and
322 -- does not constitute a freeze point for the called entity.
324 Set_Must_Not_Freeze (Call_Name);
326 Formal := First_Formal (Defining_Entity (Decl));
328 if Present (Pref) then
329 declare
330 Pref_Type : constant Entity_Id := Etype (Pref);
331 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
333 begin
335 -- The controlling formal may be an access parameter, or the
336 -- actual may be an access value, so adjust accordingly.
338 if Is_Access_Type (Pref_Type)
339 and then not Is_Access_Type (Form_Type)
340 then
341 Actuals := New_List
342 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
344 elsif Is_Access_Type (Form_Type)
345 and then not Is_Access_Type (Pref)
346 then
347 Actuals := New_List
348 (Make_Attribute_Reference (Loc,
349 Attribute_Name => Name_Access,
350 Prefix => Relocate_Node (Pref)));
351 else
352 Actuals := New_List (Pref);
353 end if;
354 end;
356 elsif Present (Formal) then
357 Actuals := New_List;
359 else
360 Actuals := No_List;
361 end if;
363 if Present (Formal) then
364 while Present (Formal) loop
365 Append (New_Reference_To (Formal, Loc), Actuals);
366 Next_Formal (Formal);
367 end loop;
368 end if;
370 -- If the renamed entity is an entry, inherit its profile. For other
371 -- renamings as bodies, both profiles must be subtype conformant, so it
372 -- is not necessary to replace the profile given in the declaration.
373 -- However, default values that are aggregates are rewritten when
374 -- partially analyzed, so we recover the original aggregate to insure
375 -- that subsequent conformity checking works. Similarly, if the default
376 -- expression was constant-folded, recover the original expression.
378 Formal := First_Formal (Defining_Entity (Decl));
380 if Present (Formal) then
381 O_Formal := First_Formal (Old_S);
382 Param_Spec := First (Parameter_Specifications (Spec));
384 while Present (Formal) loop
385 if Is_Entry (Old_S) then
387 if Nkind (Parameter_Type (Param_Spec)) /=
388 N_Access_Definition
389 then
390 Set_Etype (Formal, Etype (O_Formal));
391 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
392 end if;
394 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
395 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
396 Nkind (Default_Value (O_Formal))
397 then
398 Set_Expression (Param_Spec,
399 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
400 end if;
402 Next_Formal (Formal);
403 Next_Formal (O_Formal);
404 Next (Param_Spec);
405 end loop;
406 end if;
408 -- If the renamed entity is a function, the generated body contains a
409 -- return statement. Otherwise, build a procedure call. If the entity is
410 -- an entry, subsequent analysis of the call will transform it into the
411 -- proper entry or protected operation call. If the renamed entity is
412 -- a character literal, return it directly.
414 if Ekind (Old_S) = E_Function
415 or else Ekind (Old_S) = E_Operator
416 or else (Ekind (Old_S) = E_Subprogram_Type
417 and then Etype (Old_S) /= Standard_Void_Type)
418 then
419 Call_Node :=
420 Make_Simple_Return_Statement (Loc,
421 Expression =>
422 Make_Function_Call (Loc,
423 Name => Call_Name,
424 Parameter_Associations => Actuals));
426 elsif Ekind (Old_S) = E_Enumeration_Literal then
427 Call_Node :=
428 Make_Simple_Return_Statement (Loc,
429 Expression => New_Occurrence_Of (Old_S, Loc));
431 elsif Nkind (Nam) = N_Character_Literal then
432 Call_Node :=
433 Make_Simple_Return_Statement (Loc,
434 Expression => Call_Name);
436 else
437 Call_Node :=
438 Make_Procedure_Call_Statement (Loc,
439 Name => Call_Name,
440 Parameter_Associations => Actuals);
441 end if;
443 -- Create entities for subprogram body and formals
445 Set_Defining_Unit_Name (Spec,
446 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
448 Param_Spec := First (Parameter_Specifications (Spec));
450 while Present (Param_Spec) loop
451 Set_Defining_Identifier (Param_Spec,
452 Make_Defining_Identifier (Loc,
453 Chars => Chars (Defining_Identifier (Param_Spec))));
454 Next (Param_Spec);
455 end loop;
457 Body_Node :=
458 Make_Subprogram_Body (Loc,
459 Specification => Spec,
460 Declarations => New_List,
461 Handled_Statement_Sequence =>
462 Make_Handled_Sequence_Of_Statements (Loc,
463 Statements => New_List (Call_Node)));
465 if Nkind (Decl) /= N_Subprogram_Declaration then
466 Rewrite (N,
467 Make_Subprogram_Declaration (Loc,
468 Specification => Specification (N)));
469 end if;
471 -- Link the body to the entity whose declaration it completes. If
472 -- the body is analyzed when the renamed entity is frozen, it may
473 -- be necessary to restore the proper scope (see package Exp_Ch13).
475 if Nkind (N) = N_Subprogram_Renaming_Declaration
476 and then Present (Corresponding_Spec (N))
477 then
478 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
479 else
480 Set_Corresponding_Spec (Body_Node, New_S);
481 end if;
483 return Body_Node;
484 end Build_Renamed_Body;
486 --------------------------
487 -- Check_Address_Clause --
488 --------------------------
490 procedure Check_Address_Clause (E : Entity_Id) is
491 Addr : constant Node_Id := Address_Clause (E);
492 Expr : Node_Id;
493 Decl : constant Node_Id := Declaration_Node (E);
494 Typ : constant Entity_Id := Etype (E);
496 begin
497 if Present (Addr) then
498 Expr := Expression (Addr);
500 -- If we have no initialization of any kind, then we don't need to
501 -- place any restrictions on the address clause, because the object
502 -- will be elaborated after the address clause is evaluated. This
503 -- happens if the declaration has no initial expression, or the type
504 -- has no implicit initialization, or the object is imported.
506 -- The same holds for all initialized scalar types and all access
507 -- types. Packed bit arrays of size up to 64 are represented using a
508 -- modular type with an initialization (to zero) and can be processed
509 -- like other initialized scalar types.
511 -- If the type is controlled, code to attach the object to a
512 -- finalization chain is generated at the point of declaration,
513 -- and therefore the elaboration of the object cannot be delayed:
514 -- the address expression must be a constant.
516 if (No (Expression (Decl))
517 and then not Needs_Finalization (Typ)
518 and then
519 (not Has_Non_Null_Base_Init_Proc (Typ)
520 or else Is_Imported (E)))
522 or else
523 (Present (Expression (Decl))
524 and then Is_Scalar_Type (Typ))
526 or else
527 Is_Access_Type (Typ)
529 or else
530 (Is_Bit_Packed_Array (Typ)
531 and then
532 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
533 then
534 null;
536 -- Otherwise, we require the address clause to be constant because
537 -- the call to the initialization procedure (or the attach code) has
538 -- to happen at the point of the declaration.
539 -- Actually the IP call has been moved to the freeze actions
540 -- anyway, so maybe we can relax this restriction???
542 else
543 Check_Constant_Address_Clause (Expr, E);
545 -- Has_Delayed_Freeze was set on E when the address clause was
546 -- analyzed. Reset the flag now unless freeze actions were
547 -- attached to it in the mean time.
549 if No (Freeze_Node (E)) then
550 Set_Has_Delayed_Freeze (E, False);
551 end if;
552 end if;
554 if not Error_Posted (Expr)
555 and then not Needs_Finalization (Typ)
556 then
557 Warn_Overlay (Expr, Typ, Name (Addr));
558 end if;
559 end if;
560 end Check_Address_Clause;
562 -----------------------------
563 -- Check_Compile_Time_Size --
564 -----------------------------
566 procedure Check_Compile_Time_Size (T : Entity_Id) is
568 procedure Set_Small_Size (T : Entity_Id; S : Uint);
569 -- Sets the compile time known size (32 bits or less) in the Esize
570 -- field, of T checking for a size clause that was given which attempts
571 -- to give a smaller size, and also checking for an alignment clause.
573 function Size_Known (T : Entity_Id) return Boolean;
574 -- Recursive function that does all the work
576 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
577 -- If T is a constrained subtype, its size is not known if any of its
578 -- discriminant constraints is not static and it is not a null record.
579 -- The test is conservative and doesn't check that the components are
580 -- in fact constrained by non-static discriminant values. Could be made
581 -- more precise ???
583 --------------------
584 -- Set_Small_Size --
585 --------------------
587 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
588 begin
589 if S > 32 then
590 return;
592 -- Don't bother if alignment clause with a value other than 1 is
593 -- present, because size may be padded up to meet back end alignment
594 -- requirements, and only the back end knows the rules!
596 elsif Known_Alignment (T) and then Alignment (T) /= 1 then
597 return;
599 -- Check for bad size clause given
601 elsif Has_Size_Clause (T) then
602 if RM_Size (T) < S then
603 Error_Msg_Uint_1 := S;
604 Error_Msg_NE
605 ("size for& too small, minimum allowed is ^",
606 Size_Clause (T), T);
608 elsif Unknown_Esize (T) then
609 Set_Esize (T, S);
610 end if;
612 -- Set sizes if not set already
614 else
615 if Unknown_Esize (T) then
616 Set_Esize (T, S);
617 end if;
619 if Unknown_RM_Size (T) then
620 Set_RM_Size (T, S);
621 end if;
622 end if;
623 end Set_Small_Size;
625 ----------------
626 -- Size_Known --
627 ----------------
629 function Size_Known (T : Entity_Id) return Boolean is
630 Index : Entity_Id;
631 Comp : Entity_Id;
632 Ctyp : Entity_Id;
633 Low : Node_Id;
634 High : Node_Id;
636 begin
637 if Size_Known_At_Compile_Time (T) then
638 return True;
640 -- Always True for scalar types. This is true even for generic formal
641 -- scalar types. We used to return False in the latter case, but the
642 -- size is known at compile time, even in the template, we just do
643 -- not know the exact size but that's not the point of this routine.
645 elsif Is_Scalar_Type (T)
646 or else Is_Task_Type (T)
647 then
648 return True;
650 -- Array types
652 elsif Is_Array_Type (T) then
654 -- String literals always have known size, and we can set it
656 if Ekind (T) = E_String_Literal_Subtype then
657 Set_Small_Size (T, Component_Size (T)
658 * String_Literal_Length (T));
659 return True;
661 -- Unconstrained types never have known at compile time size
663 elsif not Is_Constrained (T) then
664 return False;
666 -- Don't do any recursion on type with error posted, since we may
667 -- have a malformed type that leads us into a loop.
669 elsif Error_Posted (T) then
670 return False;
672 -- Otherwise if component size unknown, then array size unknown
674 elsif not Size_Known (Component_Type (T)) then
675 return False;
676 end if;
678 -- Check for all indexes static, and also compute possible size
679 -- (in case it is less than 32 and may be packable).
681 declare
682 Esiz : Uint := Component_Size (T);
683 Dim : Uint;
685 begin
686 Index := First_Index (T);
687 while Present (Index) loop
688 if Nkind (Index) = N_Range then
689 Get_Index_Bounds (Index, Low, High);
691 elsif Error_Posted (Scalar_Range (Etype (Index))) then
692 return False;
694 else
695 Low := Type_Low_Bound (Etype (Index));
696 High := Type_High_Bound (Etype (Index));
697 end if;
699 if not Compile_Time_Known_Value (Low)
700 or else not Compile_Time_Known_Value (High)
701 or else Etype (Index) = Any_Type
702 then
703 return False;
705 else
706 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
708 if Dim >= 0 then
709 Esiz := Esiz * Dim;
710 else
711 Esiz := Uint_0;
712 end if;
713 end if;
715 Next_Index (Index);
716 end loop;
718 Set_Small_Size (T, Esiz);
719 return True;
720 end;
722 -- Access types always have known at compile time sizes
724 elsif Is_Access_Type (T) then
725 return True;
727 -- For non-generic private types, go to underlying type if present
729 elsif Is_Private_Type (T)
730 and then not Is_Generic_Type (T)
731 and then Present (Underlying_Type (T))
732 then
733 -- Don't do any recursion on type with error posted, since we may
734 -- have a malformed type that leads us into a loop.
736 if Error_Posted (T) then
737 return False;
738 else
739 return Size_Known (Underlying_Type (T));
740 end if;
742 -- Record types
744 elsif Is_Record_Type (T) then
746 -- A class-wide type is never considered to have a known size
748 if Is_Class_Wide_Type (T) then
749 return False;
751 -- A subtype of a variant record must not have non-static
752 -- discriminanted components.
754 elsif T /= Base_Type (T)
755 and then not Static_Discriminated_Components (T)
756 then
757 return False;
759 -- Don't do any recursion on type with error posted, since we may
760 -- have a malformed type that leads us into a loop.
762 elsif Error_Posted (T) then
763 return False;
764 end if;
766 -- Now look at the components of the record
768 declare
769 -- The following two variables are used to keep track of the
770 -- size of packed records if we can tell the size of the packed
771 -- record in the front end. Packed_Size_Known is True if so far
772 -- we can figure out the size. It is initialized to True for a
773 -- packed record, unless the record has discriminants. The
774 -- reason we eliminate the discriminated case is that we don't
775 -- know the way the back end lays out discriminated packed
776 -- records. If Packed_Size_Known is True, then Packed_Size is
777 -- the size in bits so far.
779 Packed_Size_Known : Boolean :=
780 Is_Packed (T)
781 and then not Has_Discriminants (T);
783 Packed_Size : Uint := Uint_0;
785 begin
786 -- Test for variant part present
788 if Has_Discriminants (T)
789 and then Present (Parent (T))
790 and then Nkind (Parent (T)) = N_Full_Type_Declaration
791 and then Nkind (Type_Definition (Parent (T))) =
792 N_Record_Definition
793 and then not Null_Present (Type_Definition (Parent (T)))
794 and then Present (Variant_Part
795 (Component_List (Type_Definition (Parent (T)))))
796 then
797 -- If variant part is present, and type is unconstrained,
798 -- then we must have defaulted discriminants, or a size
799 -- clause must be present for the type, or else the size
800 -- is definitely not known at compile time.
802 if not Is_Constrained (T)
803 and then
804 No (Discriminant_Default_Value
805 (First_Discriminant (T)))
806 and then Unknown_Esize (T)
807 then
808 return False;
809 end if;
810 end if;
812 -- Loop through components
814 Comp := First_Component_Or_Discriminant (T);
815 while Present (Comp) loop
816 Ctyp := Etype (Comp);
818 -- We do not know the packed size if there is a component
819 -- clause present (we possibly could, but this would only
820 -- help in the case of a record with partial rep clauses.
821 -- That's because in the case of full rep clauses, the
822 -- size gets figured out anyway by a different circuit).
824 if Present (Component_Clause (Comp)) then
825 Packed_Size_Known := False;
826 end if;
828 -- We need to identify a component that is an array where
829 -- the index type is an enumeration type with non-standard
830 -- representation, and some bound of the type depends on a
831 -- discriminant.
833 -- This is because gigi computes the size by doing a
834 -- substitution of the appropriate discriminant value in
835 -- the size expression for the base type, and gigi is not
836 -- clever enough to evaluate the resulting expression (which
837 -- involves a call to rep_to_pos) at compile time.
839 -- It would be nice if gigi would either recognize that
840 -- this expression can be computed at compile time, or
841 -- alternatively figured out the size from the subtype
842 -- directly, where all the information is at hand ???
844 if Is_Array_Type (Etype (Comp))
845 and then Present (Packed_Array_Type (Etype (Comp)))
846 then
847 declare
848 Ocomp : constant Entity_Id :=
849 Original_Record_Component (Comp);
850 OCtyp : constant Entity_Id := Etype (Ocomp);
851 Ind : Node_Id;
852 Indtyp : Entity_Id;
853 Lo, Hi : Node_Id;
855 begin
856 Ind := First_Index (OCtyp);
857 while Present (Ind) loop
858 Indtyp := Etype (Ind);
860 if Is_Enumeration_Type (Indtyp)
861 and then Has_Non_Standard_Rep (Indtyp)
862 then
863 Lo := Type_Low_Bound (Indtyp);
864 Hi := Type_High_Bound (Indtyp);
866 if Is_Entity_Name (Lo)
867 and then Ekind (Entity (Lo)) = E_Discriminant
868 then
869 return False;
871 elsif Is_Entity_Name (Hi)
872 and then Ekind (Entity (Hi)) = E_Discriminant
873 then
874 return False;
875 end if;
876 end if;
878 Next_Index (Ind);
879 end loop;
880 end;
881 end if;
883 -- Clearly size of record is not known if the size of one of
884 -- the components is not known.
886 if not Size_Known (Ctyp) then
887 return False;
888 end if;
890 -- Accumulate packed size if possible
892 if Packed_Size_Known then
894 -- We can only deal with elementary types, since for
895 -- non-elementary components, alignment enters into the
896 -- picture, and we don't know enough to handle proper
897 -- alignment in this context. Packed arrays count as
898 -- elementary if the representation is a modular type.
900 if Is_Elementary_Type (Ctyp)
901 or else (Is_Array_Type (Ctyp)
902 and then Present (Packed_Array_Type (Ctyp))
903 and then Is_Modular_Integer_Type
904 (Packed_Array_Type (Ctyp)))
905 then
906 -- If RM_Size is known and static, then we can keep
907 -- accumulating the packed size.
909 if Known_Static_RM_Size (Ctyp) then
911 -- A little glitch, to be removed sometime ???
912 -- gigi does not understand zero sizes yet.
914 if RM_Size (Ctyp) = Uint_0 then
915 Packed_Size_Known := False;
917 -- Normal case where we can keep accumulating the
918 -- packed array size.
920 else
921 Packed_Size := Packed_Size + RM_Size (Ctyp);
922 end if;
924 -- If we have a field whose RM_Size is not known then
925 -- we can't figure out the packed size here.
927 else
928 Packed_Size_Known := False;
929 end if;
931 -- If we have a non-elementary type we can't figure out
932 -- the packed array size (alignment issues).
934 else
935 Packed_Size_Known := False;
936 end if;
937 end if;
939 Next_Component_Or_Discriminant (Comp);
940 end loop;
942 if Packed_Size_Known then
943 Set_Small_Size (T, Packed_Size);
944 end if;
946 return True;
947 end;
949 -- All other cases, size not known at compile time
951 else
952 return False;
953 end if;
954 end Size_Known;
956 -------------------------------------
957 -- Static_Discriminated_Components --
958 -------------------------------------
960 function Static_Discriminated_Components
961 (T : Entity_Id) return Boolean
963 Constraint : Elmt_Id;
965 begin
966 if Has_Discriminants (T)
967 and then Present (Discriminant_Constraint (T))
968 and then Present (First_Component (T))
969 then
970 Constraint := First_Elmt (Discriminant_Constraint (T));
971 while Present (Constraint) loop
972 if not Compile_Time_Known_Value (Node (Constraint)) then
973 return False;
974 end if;
976 Next_Elmt (Constraint);
977 end loop;
978 end if;
980 return True;
981 end Static_Discriminated_Components;
983 -- Start of processing for Check_Compile_Time_Size
985 begin
986 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
987 end Check_Compile_Time_Size;
989 -----------------------------
990 -- Check_Debug_Info_Needed --
991 -----------------------------
993 procedure Check_Debug_Info_Needed (T : Entity_Id) is
994 begin
995 if Debug_Info_Off (T) then
996 return;
998 elsif Comes_From_Source (T)
999 or else Debug_Generated_Code
1000 or else Debug_Flag_VV
1001 or else Needs_Debug_Info (T)
1002 then
1003 Set_Debug_Info_Needed (T);
1004 end if;
1005 end Check_Debug_Info_Needed;
1007 ----------------------------
1008 -- Check_Strict_Alignment --
1009 ----------------------------
1011 procedure Check_Strict_Alignment (E : Entity_Id) is
1012 Comp : Entity_Id;
1014 begin
1015 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1016 Set_Strict_Alignment (E);
1018 elsif Is_Array_Type (E) then
1019 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1021 elsif Is_Record_Type (E) then
1022 if Is_Limited_Record (E) then
1023 Set_Strict_Alignment (E);
1024 return;
1025 end if;
1027 Comp := First_Component (E);
1029 while Present (Comp) loop
1030 if not Is_Type (Comp)
1031 and then (Strict_Alignment (Etype (Comp))
1032 or else Is_Aliased (Comp))
1033 then
1034 Set_Strict_Alignment (E);
1035 return;
1036 end if;
1038 Next_Component (Comp);
1039 end loop;
1040 end if;
1041 end Check_Strict_Alignment;
1043 -------------------------
1044 -- Check_Unsigned_Type --
1045 -------------------------
1047 procedure Check_Unsigned_Type (E : Entity_Id) is
1048 Ancestor : Entity_Id;
1049 Lo_Bound : Node_Id;
1050 Btyp : Entity_Id;
1052 begin
1053 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1054 return;
1055 end if;
1057 -- Do not attempt to analyze case where range was in error
1059 if Error_Posted (Scalar_Range (E)) then
1060 return;
1061 end if;
1063 -- The situation that is non trivial is something like
1065 -- subtype x1 is integer range -10 .. +10;
1066 -- subtype x2 is x1 range 0 .. V1;
1067 -- subtype x3 is x2 range V2 .. V3;
1068 -- subtype x4 is x3 range V4 .. V5;
1070 -- where Vn are variables. Here the base type is signed, but we still
1071 -- know that x4 is unsigned because of the lower bound of x2.
1073 -- The only way to deal with this is to look up the ancestor chain
1075 Ancestor := E;
1076 loop
1077 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1078 return;
1079 end if;
1081 Lo_Bound := Type_Low_Bound (Ancestor);
1083 if Compile_Time_Known_Value (Lo_Bound) then
1085 if Expr_Rep_Value (Lo_Bound) >= 0 then
1086 Set_Is_Unsigned_Type (E, True);
1087 end if;
1089 return;
1091 else
1092 Ancestor := Ancestor_Subtype (Ancestor);
1094 -- If no ancestor had a static lower bound, go to base type
1096 if No (Ancestor) then
1098 -- Note: the reason we still check for a compile time known
1099 -- value for the base type is that at least in the case of
1100 -- generic formals, we can have bounds that fail this test,
1101 -- and there may be other cases in error situations.
1103 Btyp := Base_Type (E);
1105 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1106 return;
1107 end if;
1109 Lo_Bound := Type_Low_Bound (Base_Type (E));
1111 if Compile_Time_Known_Value (Lo_Bound)
1112 and then Expr_Rep_Value (Lo_Bound) >= 0
1113 then
1114 Set_Is_Unsigned_Type (E, True);
1115 end if;
1117 return;
1118 end if;
1119 end if;
1120 end loop;
1121 end Check_Unsigned_Type;
1123 -------------------------
1124 -- Is_Atomic_Aggregate --
1125 -------------------------
1127 function Is_Atomic_Aggregate
1128 (E : Entity_Id;
1129 Typ : Entity_Id) return Boolean
1131 Loc : constant Source_Ptr := Sloc (E);
1132 New_N : Node_Id;
1133 Par : Node_Id;
1134 Temp : Entity_Id;
1136 begin
1137 Par := Parent (E);
1139 -- Array may be qualified, so find outer context
1141 if Nkind (Par) = N_Qualified_Expression then
1142 Par := Parent (Par);
1143 end if;
1145 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
1146 and then Comes_From_Source (Par)
1147 then
1148 Temp :=
1149 Make_Defining_Identifier (Loc,
1150 New_Internal_Name ('T'));
1152 New_N :=
1153 Make_Object_Declaration (Loc,
1154 Defining_Identifier => Temp,
1155 Object_Definition => New_Occurrence_Of (Typ, Loc),
1156 Expression => Relocate_Node (E));
1157 Insert_Before (Par, New_N);
1158 Analyze (New_N);
1160 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1161 return True;
1163 else
1164 return False;
1165 end if;
1166 end Is_Atomic_Aggregate;
1168 ----------------
1169 -- Freeze_All --
1170 ----------------
1172 -- Note: the easy coding for this procedure would be to just build a
1173 -- single list of freeze nodes and then insert them and analyze them
1174 -- all at once. This won't work, because the analysis of earlier freeze
1175 -- nodes may recursively freeze types which would otherwise appear later
1176 -- on in the freeze list. So we must analyze and expand the freeze nodes
1177 -- as they are generated.
1179 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1180 Loc : constant Source_Ptr := Sloc (After);
1181 E : Entity_Id;
1182 Decl : Node_Id;
1184 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1185 -- This is the internal recursive routine that does freezing of entities
1186 -- (but NOT the analysis of default expressions, which should not be
1187 -- recursive, we don't want to analyze those till we are sure that ALL
1188 -- the types are frozen).
1190 --------------------
1191 -- Freeze_All_Ent --
1192 --------------------
1194 procedure Freeze_All_Ent
1195 (From : Entity_Id;
1196 After : in out Node_Id)
1198 E : Entity_Id;
1199 Flist : List_Id;
1200 Lastn : Node_Id;
1202 procedure Process_Flist;
1203 -- If freeze nodes are present, insert and analyze, and reset cursor
1204 -- for next insertion.
1206 -------------------
1207 -- Process_Flist --
1208 -------------------
1210 procedure Process_Flist is
1211 begin
1212 if Is_Non_Empty_List (Flist) then
1213 Lastn := Next (After);
1214 Insert_List_After_And_Analyze (After, Flist);
1216 if Present (Lastn) then
1217 After := Prev (Lastn);
1218 else
1219 After := Last (List_Containing (After));
1220 end if;
1221 end if;
1222 end Process_Flist;
1224 -- Start or processing for Freeze_All_Ent
1226 begin
1227 E := From;
1228 while Present (E) loop
1230 -- If the entity is an inner package which is not a package
1231 -- renaming, then its entities must be frozen at this point. Note
1232 -- that such entities do NOT get frozen at the end of the nested
1233 -- package itself (only library packages freeze).
1235 -- Same is true for task declarations, where anonymous records
1236 -- created for entry parameters must be frozen.
1238 if Ekind (E) = E_Package
1239 and then No (Renamed_Object (E))
1240 and then not Is_Child_Unit (E)
1241 and then not Is_Frozen (E)
1242 then
1243 Push_Scope (E);
1244 Install_Visible_Declarations (E);
1245 Install_Private_Declarations (E);
1247 Freeze_All (First_Entity (E), After);
1249 End_Package_Scope (E);
1251 elsif Ekind (E) in Task_Kind
1252 and then
1253 (Nkind (Parent (E)) = N_Task_Type_Declaration
1254 or else
1255 Nkind (Parent (E)) = N_Single_Task_Declaration)
1256 then
1257 Push_Scope (E);
1258 Freeze_All (First_Entity (E), After);
1259 End_Scope;
1261 -- For a derived tagged type, we must ensure that all the
1262 -- primitive operations of the parent have been frozen, so that
1263 -- their addresses will be in the parent's dispatch table at the
1264 -- point it is inherited.
1266 elsif Ekind (E) = E_Record_Type
1267 and then Is_Tagged_Type (E)
1268 and then Is_Tagged_Type (Etype (E))
1269 and then Is_Derived_Type (E)
1270 then
1271 declare
1272 Prim_List : constant Elist_Id :=
1273 Primitive_Operations (Etype (E));
1275 Prim : Elmt_Id;
1276 Subp : Entity_Id;
1278 begin
1279 Prim := First_Elmt (Prim_List);
1281 while Present (Prim) loop
1282 Subp := Node (Prim);
1284 if Comes_From_Source (Subp)
1285 and then not Is_Frozen (Subp)
1286 then
1287 Flist := Freeze_Entity (Subp, Loc);
1288 Process_Flist;
1289 end if;
1291 Next_Elmt (Prim);
1292 end loop;
1293 end;
1294 end if;
1296 if not Is_Frozen (E) then
1297 Flist := Freeze_Entity (E, Loc);
1298 Process_Flist;
1299 end if;
1301 -- If an incomplete type is still not frozen, this may be a
1302 -- premature freezing because of a body declaration that follows.
1303 -- Indicate where the freezing took place.
1305 -- If the freezing is caused by the end of the current declarative
1306 -- part, it is a Taft Amendment type, and there is no error.
1308 if not Is_Frozen (E)
1309 and then Ekind (E) = E_Incomplete_Type
1310 then
1311 declare
1312 Bod : constant Node_Id := Next (After);
1314 begin
1315 if (Nkind (Bod) = N_Subprogram_Body
1316 or else Nkind (Bod) = N_Entry_Body
1317 or else Nkind (Bod) = N_Package_Body
1318 or else Nkind (Bod) = N_Protected_Body
1319 or else Nkind (Bod) = N_Task_Body
1320 or else Nkind (Bod) in N_Body_Stub)
1321 and then
1322 List_Containing (After) = List_Containing (Parent (E))
1323 then
1324 Error_Msg_Sloc := Sloc (Next (After));
1325 Error_Msg_NE
1326 ("type& is frozen# before its full declaration",
1327 Parent (E), E);
1328 end if;
1329 end;
1330 end if;
1332 Next_Entity (E);
1333 end loop;
1334 end Freeze_All_Ent;
1336 -- Start of processing for Freeze_All
1338 begin
1339 Freeze_All_Ent (From, After);
1341 -- Now that all types are frozen, we can deal with default expressions
1342 -- that require us to build a default expression functions. This is the
1343 -- point at which such functions are constructed (after all types that
1344 -- might be used in such expressions have been frozen).
1346 -- We also add finalization chains to access types whose designated
1347 -- types are controlled. This is normally done when freezing the type,
1348 -- but this misses recursive type definitions where the later members
1349 -- of the recursion introduce controlled components.
1351 -- Loop through entities
1353 E := From;
1354 while Present (E) loop
1355 if Is_Subprogram (E) then
1357 if not Default_Expressions_Processed (E) then
1358 Process_Default_Expressions (E, After);
1359 end if;
1361 if not Has_Completion (E) then
1362 Decl := Unit_Declaration_Node (E);
1364 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1365 Build_And_Analyze_Renamed_Body (Decl, E, After);
1367 elsif Nkind (Decl) = N_Subprogram_Declaration
1368 and then Present (Corresponding_Body (Decl))
1369 and then
1370 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1371 = N_Subprogram_Renaming_Declaration
1372 then
1373 Build_And_Analyze_Renamed_Body
1374 (Decl, Corresponding_Body (Decl), After);
1375 end if;
1376 end if;
1378 elsif Ekind (E) in Task_Kind
1379 and then
1380 (Nkind (Parent (E)) = N_Task_Type_Declaration
1381 or else
1382 Nkind (Parent (E)) = N_Single_Task_Declaration)
1383 then
1384 declare
1385 Ent : Entity_Id;
1386 begin
1387 Ent := First_Entity (E);
1389 while Present (Ent) loop
1391 if Is_Entry (Ent)
1392 and then not Default_Expressions_Processed (Ent)
1393 then
1394 Process_Default_Expressions (Ent, After);
1395 end if;
1397 Next_Entity (Ent);
1398 end loop;
1399 end;
1401 elsif Is_Access_Type (E)
1402 and then Comes_From_Source (E)
1403 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1404 and then Needs_Finalization (Designated_Type (E))
1405 and then No (Associated_Final_Chain (E))
1406 then
1407 Build_Final_List (Parent (E), E);
1408 end if;
1410 Next_Entity (E);
1411 end loop;
1412 end Freeze_All;
1414 -----------------------
1415 -- Freeze_And_Append --
1416 -----------------------
1418 procedure Freeze_And_Append
1419 (Ent : Entity_Id;
1420 Loc : Source_Ptr;
1421 Result : in out List_Id)
1423 L : constant List_Id := Freeze_Entity (Ent, Loc);
1424 begin
1425 if Is_Non_Empty_List (L) then
1426 if Result = No_List then
1427 Result := L;
1428 else
1429 Append_List (L, Result);
1430 end if;
1431 end if;
1432 end Freeze_And_Append;
1434 -------------------
1435 -- Freeze_Before --
1436 -------------------
1438 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1439 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
1440 begin
1441 if Is_Non_Empty_List (Freeze_Nodes) then
1442 Insert_Actions (N, Freeze_Nodes);
1443 end if;
1444 end Freeze_Before;
1446 -------------------
1447 -- Freeze_Entity --
1448 -------------------
1450 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
1451 Test_E : Entity_Id := E;
1452 Comp : Entity_Id;
1453 F_Node : Node_Id;
1454 Result : List_Id;
1455 Indx : Node_Id;
1456 Formal : Entity_Id;
1457 Atype : Entity_Id;
1459 Has_Default_Initialization : Boolean := False;
1460 -- This flag gets set to true for a variable with default initialization
1462 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1463 -- Check that an Access or Unchecked_Access attribute with a prefix
1464 -- which is the current instance type can only be applied when the type
1465 -- is limited.
1467 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1468 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1469 -- integer literal without an explicit corresponding size clause. The
1470 -- caller has checked that Utype is a modular integer type.
1472 function After_Last_Declaration return Boolean;
1473 -- If Loc is a freeze_entity that appears after the last declaration
1474 -- in the scope, inhibit error messages on late completion.
1476 procedure Freeze_Record_Type (Rec : Entity_Id);
1477 -- Freeze each component, handle some representation clauses, and freeze
1478 -- primitive operations if this is a tagged type.
1480 ----------------------------
1481 -- After_Last_Declaration --
1482 ----------------------------
1484 function After_Last_Declaration return Boolean is
1485 Spec : constant Node_Id := Parent (Current_Scope);
1486 begin
1487 if Nkind (Spec) = N_Package_Specification then
1488 if Present (Private_Declarations (Spec)) then
1489 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1490 elsif Present (Visible_Declarations (Spec)) then
1491 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1492 else
1493 return False;
1494 end if;
1495 else
1496 return False;
1497 end if;
1498 end After_Last_Declaration;
1500 ----------------------------
1501 -- Check_Current_Instance --
1502 ----------------------------
1504 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1506 Rec_Type : constant Entity_Id :=
1507 Scope (Defining_Identifier (Comp_Decl));
1509 Decl : constant Node_Id := Parent (Rec_Type);
1511 function Process (N : Node_Id) return Traverse_Result;
1512 -- Process routine to apply check to given node
1514 -------------
1515 -- Process --
1516 -------------
1518 function Process (N : Node_Id) return Traverse_Result is
1519 begin
1520 case Nkind (N) is
1521 when N_Attribute_Reference =>
1522 if (Attribute_Name (N) = Name_Access
1523 or else
1524 Attribute_Name (N) = Name_Unchecked_Access)
1525 and then Is_Entity_Name (Prefix (N))
1526 and then Is_Type (Entity (Prefix (N)))
1527 and then Entity (Prefix (N)) = E
1528 then
1529 Error_Msg_N
1530 ("current instance must be a limited type", Prefix (N));
1531 return Abandon;
1532 else
1533 return OK;
1534 end if;
1536 when others => return OK;
1537 end case;
1538 end Process;
1540 procedure Traverse is new Traverse_Proc (Process);
1542 -- Start of processing for Check_Current_Instance
1544 begin
1545 -- In Ada95, the (imprecise) rule is that the current instance of a
1546 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1547 -- either a tagged type, or a limited record.
1549 if Is_Limited_Type (Rec_Type)
1550 and then (Ada_Version < Ada_05 or else Is_Tagged_Type (Rec_Type))
1551 then
1552 return;
1554 elsif Nkind (Decl) = N_Full_Type_Declaration
1555 and then Limited_Present (Type_Definition (Decl))
1556 then
1557 return;
1559 else
1560 Traverse (Comp_Decl);
1561 end if;
1562 end Check_Current_Instance;
1564 ------------------------------
1565 -- Check_Suspicious_Modulus --
1566 ------------------------------
1568 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1569 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1571 begin
1572 if Nkind (Decl) = N_Full_Type_Declaration then
1573 declare
1574 Tdef : constant Node_Id := Type_Definition (Decl);
1575 begin
1576 if Nkind (Tdef) = N_Modular_Type_Definition then
1577 declare
1578 Modulus : constant Node_Id :=
1579 Original_Node (Expression (Tdef));
1580 begin
1581 if Nkind (Modulus) = N_Integer_Literal then
1582 declare
1583 Modv : constant Uint := Intval (Modulus);
1584 Sizv : constant Uint := RM_Size (Utype);
1586 begin
1587 -- First case, modulus and size are the same. This
1588 -- happens if you have something like mod 32, with
1589 -- an explicit size of 32, this is for sure a case
1590 -- where the warning is given, since it is seems
1591 -- very unlikely that someone would want e.g. a
1592 -- five bit type stored in 32 bits. It is much
1593 -- more likely they wanted a 32-bit type.
1595 if Modv = Sizv then
1596 null;
1598 -- Second case, the modulus is 32 or 64 and no
1599 -- size clause is present. This is a less clear
1600 -- case for giving the warning, but in the case
1601 -- of 32/64 (5-bit or 6-bit types) these seem rare
1602 -- enough that it is a likely error (and in any
1603 -- case using 2**5 or 2**6 in these cases seems
1604 -- clearer. We don't include 8 or 16 here, simply
1605 -- because in practice 3-bit and 4-bit types are
1606 -- more common and too many false positives if
1607 -- we warn in these cases.
1609 elsif not Has_Size_Clause (Utype)
1610 and then (Modv = Uint_32 or else Modv = Uint_64)
1611 then
1612 null;
1614 -- No warning needed
1616 else
1617 return;
1618 end if;
1620 -- If we fall through, give warning
1622 Error_Msg_Uint_1 := Modv;
1623 Error_Msg_N
1624 ("?2 '*'*^' may have been intended here",
1625 Modulus);
1626 end;
1627 end if;
1628 end;
1629 end if;
1630 end;
1631 end if;
1632 end Check_Suspicious_Modulus;
1634 ------------------------
1635 -- Freeze_Record_Type --
1636 ------------------------
1638 procedure Freeze_Record_Type (Rec : Entity_Id) is
1639 Comp : Entity_Id;
1640 IR : Node_Id;
1641 ADC : Node_Id;
1642 Prev : Entity_Id;
1644 Junk : Boolean;
1645 pragma Warnings (Off, Junk);
1647 Unplaced_Component : Boolean := False;
1648 -- Set True if we find at least one component with no component
1649 -- clause (used to warn about useless Pack pragmas).
1651 Placed_Component : Boolean := False;
1652 -- Set True if we find at least one component with a component
1653 -- clause (used to warn about useless Bit_Order pragmas, and also
1654 -- to detect cases where Implicit_Packing may have an effect).
1656 All_Scalar_Components : Boolean := True;
1657 -- Set False if we encounter a component of a non-scalar type
1659 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1660 Scalar_Component_Total_Esize : Uint := Uint_0;
1661 -- Accumulates total RM_Size values and total Esize values of all
1662 -- scalar components. Used for processing of Implicit_Packing.
1664 function Check_Allocator (N : Node_Id) return Node_Id;
1665 -- If N is an allocator, possibly wrapped in one or more level of
1666 -- qualified expression(s), return the inner allocator node, else
1667 -- return Empty.
1669 procedure Check_Itype (Typ : Entity_Id);
1670 -- If the component subtype is an access to a constrained subtype of
1671 -- an already frozen type, make the subtype frozen as well. It might
1672 -- otherwise be frozen in the wrong scope, and a freeze node on
1673 -- subtype has no effect. Similarly, if the component subtype is a
1674 -- regular (not protected) access to subprogram, set the anonymous
1675 -- subprogram type to frozen as well, to prevent an out-of-scope
1676 -- freeze node at some eventual point of call. Protected operations
1677 -- are handled elsewhere.
1679 ---------------------
1680 -- Check_Allocator --
1681 ---------------------
1683 function Check_Allocator (N : Node_Id) return Node_Id is
1684 Inner : Node_Id;
1685 begin
1686 Inner := N;
1687 loop
1688 if Nkind (Inner) = N_Allocator then
1689 return Inner;
1690 elsif Nkind (Inner) = N_Qualified_Expression then
1691 Inner := Expression (Inner);
1692 else
1693 return Empty;
1694 end if;
1695 end loop;
1696 end Check_Allocator;
1698 -----------------
1699 -- Check_Itype --
1700 -----------------
1702 procedure Check_Itype (Typ : Entity_Id) is
1703 Desig : constant Entity_Id := Designated_Type (Typ);
1705 begin
1706 if not Is_Frozen (Desig)
1707 and then Is_Frozen (Base_Type (Desig))
1708 then
1709 Set_Is_Frozen (Desig);
1711 -- In addition, add an Itype_Reference to ensure that the
1712 -- access subtype is elaborated early enough. This cannot be
1713 -- done if the subtype may depend on discriminants.
1715 if Ekind (Comp) = E_Component
1716 and then Is_Itype (Etype (Comp))
1717 and then not Has_Discriminants (Rec)
1718 then
1719 IR := Make_Itype_Reference (Sloc (Comp));
1720 Set_Itype (IR, Desig);
1722 if No (Result) then
1723 Result := New_List (IR);
1724 else
1725 Append (IR, Result);
1726 end if;
1727 end if;
1729 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1730 and then Convention (Desig) /= Convention_Protected
1731 then
1732 Set_Is_Frozen (Desig);
1733 end if;
1734 end Check_Itype;
1736 -- Start of processing for Freeze_Record_Type
1738 begin
1739 -- If this is a subtype of a controlled type, declared without a
1740 -- constraint, the _controller may not appear in the component list
1741 -- if the parent was not frozen at the point of subtype declaration.
1742 -- Inherit the _controller component now.
1744 if Rec /= Base_Type (Rec)
1745 and then Has_Controlled_Component (Rec)
1746 then
1747 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1748 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1749 then
1750 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1752 -- If this is an internal type without a declaration, as for
1753 -- record component, the base type may not yet be frozen, and its
1754 -- controller has not been created. Add an explicit freeze node
1755 -- for the itype, so it will be frozen after the base type. This
1756 -- freeze node is used to communicate with the expander, in order
1757 -- to create the controller for the enclosing record, and it is
1758 -- deleted afterwards (see exp_ch3). It must not be created when
1759 -- expansion is off, because it might appear in the wrong context
1760 -- for the back end.
1762 elsif Is_Itype (Rec)
1763 and then Has_Delayed_Freeze (Base_Type (Rec))
1764 and then
1765 Nkind (Associated_Node_For_Itype (Rec)) =
1766 N_Component_Declaration
1767 and then Expander_Active
1768 then
1769 Ensure_Freeze_Node (Rec);
1770 end if;
1771 end if;
1773 -- Freeze components and embedded subtypes
1775 Comp := First_Entity (Rec);
1776 Prev := Empty;
1777 while Present (Comp) loop
1779 -- First handle the (real) component case
1781 if Ekind (Comp) = E_Component
1782 or else Ekind (Comp) = E_Discriminant
1783 then
1784 declare
1785 CC : constant Node_Id := Component_Clause (Comp);
1787 begin
1788 -- Freezing a record type freezes the type of each of its
1789 -- components. However, if the type of the component is
1790 -- part of this record, we do not want or need a separate
1791 -- Freeze_Node. Note that Is_Itype is wrong because that's
1792 -- also set in private type cases. We also can't check for
1793 -- the Scope being exactly Rec because of private types and
1794 -- record extensions.
1796 if Is_Itype (Etype (Comp))
1797 and then Is_Record_Type (Underlying_Type
1798 (Scope (Etype (Comp))))
1799 then
1800 Undelay_Type (Etype (Comp));
1801 end if;
1803 Freeze_And_Append (Etype (Comp), Loc, Result);
1805 -- Check for error of component clause given for variable
1806 -- sized type. We have to delay this test till this point,
1807 -- since the component type has to be frozen for us to know
1808 -- if it is variable length. We omit this test in a generic
1809 -- context, it will be applied at instantiation time.
1811 if Present (CC) then
1812 Placed_Component := True;
1814 if Inside_A_Generic then
1815 null;
1817 elsif not
1818 Size_Known_At_Compile_Time
1819 (Underlying_Type (Etype (Comp)))
1820 then
1821 Error_Msg_N
1822 ("component clause not allowed for variable " &
1823 "length component", CC);
1824 end if;
1826 else
1827 Unplaced_Component := True;
1828 end if;
1830 -- Case of component requires byte alignment
1832 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
1834 -- Set the enclosing record to also require byte align
1836 Set_Must_Be_On_Byte_Boundary (Rec);
1838 -- Check for component clause that is inconsistent with
1839 -- the required byte boundary alignment.
1841 if Present (CC)
1842 and then Normalized_First_Bit (Comp) mod
1843 System_Storage_Unit /= 0
1844 then
1845 Error_Msg_N
1846 ("component & must be byte aligned",
1847 Component_Name (Component_Clause (Comp)));
1848 end if;
1849 end if;
1851 -- If component clause is present, then deal with the non-
1852 -- default bit order case for Ada 95 mode. The required
1853 -- processing for Ada 2005 mode is handled separately after
1854 -- processing all components.
1856 -- We only do this processing for the base type, and in
1857 -- fact that's important, since otherwise if there are
1858 -- record subtypes, we could reverse the bits once for
1859 -- each subtype, which would be incorrect.
1861 if Present (CC)
1862 and then Reverse_Bit_Order (Rec)
1863 and then Ekind (E) = E_Record_Type
1864 and then Ada_Version <= Ada_95
1865 then
1866 declare
1867 CFB : constant Uint := Component_Bit_Offset (Comp);
1868 CSZ : constant Uint := Esize (Comp);
1869 CLC : constant Node_Id := Component_Clause (Comp);
1870 Pos : constant Node_Id := Position (CLC);
1871 FB : constant Node_Id := First_Bit (CLC);
1873 Storage_Unit_Offset : constant Uint :=
1874 CFB / System_Storage_Unit;
1876 Start_Bit : constant Uint :=
1877 CFB mod System_Storage_Unit;
1879 begin
1880 -- Cases where field goes over storage unit boundary
1882 if Start_Bit + CSZ > System_Storage_Unit then
1884 -- Allow multi-byte field but generate warning
1886 if Start_Bit mod System_Storage_Unit = 0
1887 and then CSZ mod System_Storage_Unit = 0
1888 then
1889 Error_Msg_N
1890 ("multi-byte field specified with non-standard"
1891 & " Bit_Order?", CLC);
1893 if Bytes_Big_Endian then
1894 Error_Msg_N
1895 ("bytes are not reversed "
1896 & "(component is big-endian)?", CLC);
1897 else
1898 Error_Msg_N
1899 ("bytes are not reversed "
1900 & "(component is little-endian)?", CLC);
1901 end if;
1903 -- Do not allow non-contiguous field
1905 else
1906 Error_Msg_N
1907 ("attempt to specify non-contiguous field "
1908 & "not permitted", CLC);
1909 Error_Msg_N
1910 ("\caused by non-standard Bit_Order "
1911 & "specified", CLC);
1912 Error_Msg_N
1913 ("\consider possibility of using "
1914 & "Ada 2005 mode here", CLC);
1915 end if;
1917 -- Case where field fits in one storage unit
1919 else
1920 -- Give warning if suspicious component clause
1922 if Intval (FB) >= System_Storage_Unit
1923 and then Warn_On_Reverse_Bit_Order
1924 then
1925 Error_Msg_N
1926 ("?Bit_Order clause does not affect " &
1927 "byte ordering", Pos);
1928 Error_Msg_Uint_1 :=
1929 Intval (Pos) + Intval (FB) /
1930 System_Storage_Unit;
1931 Error_Msg_N
1932 ("?position normalized to ^ before bit " &
1933 "order interpreted", Pos);
1934 end if;
1936 -- Here is where we fix up the Component_Bit_Offset
1937 -- value to account for the reverse bit order.
1938 -- Some examples of what needs to be done are:
1940 -- First_Bit .. Last_Bit Component_Bit_Offset
1941 -- old new old new
1943 -- 0 .. 0 7 .. 7 0 7
1944 -- 0 .. 1 6 .. 7 0 6
1945 -- 0 .. 2 5 .. 7 0 5
1946 -- 0 .. 7 0 .. 7 0 4
1948 -- 1 .. 1 6 .. 6 1 6
1949 -- 1 .. 4 3 .. 6 1 3
1950 -- 4 .. 7 0 .. 3 4 0
1952 -- The general rule is that the first bit is
1953 -- is obtained by subtracting the old ending bit
1954 -- from storage_unit - 1.
1956 Set_Component_Bit_Offset
1957 (Comp,
1958 (Storage_Unit_Offset * System_Storage_Unit) +
1959 (System_Storage_Unit - 1) -
1960 (Start_Bit + CSZ - 1));
1962 Set_Normalized_First_Bit
1963 (Comp,
1964 Component_Bit_Offset (Comp) mod
1965 System_Storage_Unit);
1966 end if;
1967 end;
1968 end if;
1969 end;
1970 end if;
1972 -- Gather data for possible Implicit_Packing later
1974 if not Is_Scalar_Type (Etype (Comp)) then
1975 All_Scalar_Components := False;
1976 else
1977 Scalar_Component_Total_RM_Size :=
1978 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1979 Scalar_Component_Total_Esize :=
1980 Scalar_Component_Total_Esize + Esize (Etype (Comp));
1981 end if;
1983 -- If the component is an Itype with Delayed_Freeze and is either
1984 -- a record or array subtype and its base type has not yet been
1985 -- frozen, we must remove this from the entity list of this
1986 -- record and put it on the entity list of the scope of its base
1987 -- type. Note that we know that this is not the type of a
1988 -- component since we cleared Has_Delayed_Freeze for it in the
1989 -- previous loop. Thus this must be the Designated_Type of an
1990 -- access type, which is the type of a component.
1992 if Is_Itype (Comp)
1993 and then Is_Type (Scope (Comp))
1994 and then Is_Composite_Type (Comp)
1995 and then Base_Type (Comp) /= Comp
1996 and then Has_Delayed_Freeze (Comp)
1997 and then not Is_Frozen (Base_Type (Comp))
1998 then
1999 declare
2000 Will_Be_Frozen : Boolean := False;
2001 S : Entity_Id;
2003 begin
2004 -- We have a pretty bad kludge here. Suppose Rec is subtype
2005 -- being defined in a subprogram that's created as part of
2006 -- the freezing of Rec'Base. In that case, we know that
2007 -- Comp'Base must have already been frozen by the time we
2008 -- get to elaborate this because Gigi doesn't elaborate any
2009 -- bodies until it has elaborated all of the declarative
2010 -- part. But Is_Frozen will not be set at this point because
2011 -- we are processing code in lexical order.
2013 -- We detect this case by going up the Scope chain of Rec
2014 -- and seeing if we have a subprogram scope before reaching
2015 -- the top of the scope chain or that of Comp'Base. If we
2016 -- do, then mark that Comp'Base will actually be frozen. If
2017 -- so, we merely undelay it.
2019 S := Scope (Rec);
2020 while Present (S) loop
2021 if Is_Subprogram (S) then
2022 Will_Be_Frozen := True;
2023 exit;
2024 elsif S = Scope (Base_Type (Comp)) then
2025 exit;
2026 end if;
2028 S := Scope (S);
2029 end loop;
2031 if Will_Be_Frozen then
2032 Undelay_Type (Comp);
2033 else
2034 if Present (Prev) then
2035 Set_Next_Entity (Prev, Next_Entity (Comp));
2036 else
2037 Set_First_Entity (Rec, Next_Entity (Comp));
2038 end if;
2040 -- Insert in entity list of scope of base type (which
2041 -- must be an enclosing scope, because still unfrozen).
2043 Append_Entity (Comp, Scope (Base_Type (Comp)));
2044 end if;
2045 end;
2047 -- If the component is an access type with an allocator as default
2048 -- value, the designated type will be frozen by the corresponding
2049 -- expression in init_proc. In order to place the freeze node for
2050 -- the designated type before that for the current record type,
2051 -- freeze it now.
2053 -- Same process if the component is an array of access types,
2054 -- initialized with an aggregate. If the designated type is
2055 -- private, it cannot contain allocators, and it is premature
2056 -- to freeze the type, so we check for this as well.
2058 elsif Is_Access_Type (Etype (Comp))
2059 and then Present (Parent (Comp))
2060 and then Present (Expression (Parent (Comp)))
2061 then
2062 declare
2063 Alloc : constant Node_Id :=
2064 Check_Allocator (Expression (Parent (Comp)));
2066 begin
2067 if Present (Alloc) then
2069 -- If component is pointer to a classwide type, freeze
2070 -- the specific type in the expression being allocated.
2071 -- The expression may be a subtype indication, in which
2072 -- case freeze the subtype mark.
2074 if Is_Class_Wide_Type
2075 (Designated_Type (Etype (Comp)))
2076 then
2077 if Is_Entity_Name (Expression (Alloc)) then
2078 Freeze_And_Append
2079 (Entity (Expression (Alloc)), Loc, Result);
2080 elsif
2081 Nkind (Expression (Alloc)) = N_Subtype_Indication
2082 then
2083 Freeze_And_Append
2084 (Entity (Subtype_Mark (Expression (Alloc))),
2085 Loc, Result);
2086 end if;
2088 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2089 Check_Itype (Etype (Comp));
2091 else
2092 Freeze_And_Append
2093 (Designated_Type (Etype (Comp)), Loc, Result);
2094 end if;
2095 end if;
2096 end;
2098 elsif Is_Access_Type (Etype (Comp))
2099 and then Is_Itype (Designated_Type (Etype (Comp)))
2100 then
2101 Check_Itype (Etype (Comp));
2103 elsif Is_Array_Type (Etype (Comp))
2104 and then Is_Access_Type (Component_Type (Etype (Comp)))
2105 and then Present (Parent (Comp))
2106 and then Nkind (Parent (Comp)) = N_Component_Declaration
2107 and then Present (Expression (Parent (Comp)))
2108 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2109 and then Is_Fully_Defined
2110 (Designated_Type (Component_Type (Etype (Comp))))
2111 then
2112 Freeze_And_Append
2113 (Designated_Type
2114 (Component_Type (Etype (Comp))), Loc, Result);
2115 end if;
2117 Prev := Comp;
2118 Next_Entity (Comp);
2119 end loop;
2121 -- Deal with pragma Bit_Order
2123 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2124 if not Placed_Component then
2125 ADC :=
2126 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2127 Error_Msg_N
2128 ("?Bit_Order specification has no effect", ADC);
2129 Error_Msg_N
2130 ("\?since no component clauses were specified", ADC);
2132 -- Here is where we do Ada 2005 processing for bit order (the Ada
2133 -- 95 case was already taken care of above).
2135 elsif Ada_Version >= Ada_05 then
2136 Adjust_Record_For_Reverse_Bit_Order (Rec);
2137 end if;
2138 end if;
2140 -- Set OK_To_Reorder_Components depending on debug flags
2142 if Rec = Base_Type (Rec)
2143 and then Convention (Rec) = Convention_Ada
2144 then
2145 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2146 or else
2147 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2148 then
2149 Set_OK_To_Reorder_Components (Rec);
2150 end if;
2151 end if;
2153 -- Check for useless pragma Pack when all components placed. We only
2154 -- do this check for record types, not subtypes, since a subtype may
2155 -- have all its components placed, and it still makes perfectly good
2156 -- sense to pack other subtypes or the parent type. We do not give
2157 -- this warning if Optimize_Alignment is set to Space, since the
2158 -- pragma Pack does have an effect in this case (it always resets
2159 -- the alignment to one).
2161 if Ekind (Rec) = E_Record_Type
2162 and then Is_Packed (Rec)
2163 and then not Unplaced_Component
2164 and then Optimize_Alignment /= 'S'
2165 then
2166 -- Reset packed status. Probably not necessary, but we do it so
2167 -- that there is no chance of the back end doing something strange
2168 -- with this redundant indication of packing.
2170 Set_Is_Packed (Rec, False);
2172 -- Give warning if redundant constructs warnings on
2174 if Warn_On_Redundant_Constructs then
2175 Error_Msg_N
2176 ("?pragma Pack has no effect, no unplaced components",
2177 Get_Rep_Pragma (Rec, Name_Pack));
2178 end if;
2179 end if;
2181 -- If this is the record corresponding to a remote type, freeze the
2182 -- remote type here since that is what we are semantically freezing.
2183 -- This prevents the freeze node for that type in an inner scope.
2185 -- Also, Check for controlled components and unchecked unions.
2186 -- Finally, enforce the restriction that access attributes with a
2187 -- current instance prefix can only apply to limited types.
2189 if Ekind (Rec) = E_Record_Type then
2190 if Present (Corresponding_Remote_Type (Rec)) then
2191 Freeze_And_Append
2192 (Corresponding_Remote_Type (Rec), Loc, Result);
2193 end if;
2195 Comp := First_Component (Rec);
2196 while Present (Comp) loop
2198 -- Do not set Has_Controlled_Component on a class-wide
2199 -- equivalent type. See Make_CW_Equivalent_Type.
2201 if not Is_Class_Wide_Equivalent_Type (Rec)
2202 and then (Has_Controlled_Component (Etype (Comp))
2203 or else (Chars (Comp) /= Name_uParent
2204 and then Is_Controlled (Etype (Comp)))
2205 or else (Is_Protected_Type (Etype (Comp))
2206 and then Present
2207 (Corresponding_Record_Type
2208 (Etype (Comp)))
2209 and then Has_Controlled_Component
2210 (Corresponding_Record_Type
2211 (Etype (Comp)))))
2212 then
2213 Set_Has_Controlled_Component (Rec);
2214 exit;
2215 end if;
2217 if Has_Unchecked_Union (Etype (Comp)) then
2218 Set_Has_Unchecked_Union (Rec);
2219 end if;
2221 if Has_Per_Object_Constraint (Comp) then
2223 -- Scan component declaration for likely misuses of current
2224 -- instance, either in a constraint or a default expression.
2226 Check_Current_Instance (Parent (Comp));
2227 end if;
2229 Next_Component (Comp);
2230 end loop;
2231 end if;
2233 Set_Component_Alignment_If_Not_Set (Rec);
2235 -- For first subtypes, check if there are any fixed-point fields with
2236 -- component clauses, where we must check the size. This is not done
2237 -- till the freeze point, since for fixed-point types, we do not know
2238 -- the size until the type is frozen. Similar processing applies to
2239 -- bit packed arrays.
2241 if Is_First_Subtype (Rec) then
2242 Comp := First_Component (Rec);
2244 while Present (Comp) loop
2245 if Present (Component_Clause (Comp))
2246 and then (Is_Fixed_Point_Type (Etype (Comp))
2247 or else
2248 Is_Bit_Packed_Array (Etype (Comp)))
2249 then
2250 Check_Size
2251 (Component_Name (Component_Clause (Comp)),
2252 Etype (Comp),
2253 Esize (Comp),
2254 Junk);
2255 end if;
2257 Next_Component (Comp);
2258 end loop;
2259 end if;
2261 -- Generate warning for applying C or C++ convention to a record
2262 -- with discriminants. This is suppressed for the unchecked union
2263 -- case, since the whole point in this case is interface C. We also
2264 -- do not generate this within instantiations, since we will have
2265 -- generated a message on the template.
2267 if Has_Discriminants (E)
2268 and then not Is_Unchecked_Union (E)
2269 and then (Convention (E) = Convention_C
2270 or else
2271 Convention (E) = Convention_CPP)
2272 and then Comes_From_Source (E)
2273 and then not In_Instance
2274 and then not Has_Warnings_Off (E)
2275 and then not Has_Warnings_Off (Base_Type (E))
2276 then
2277 declare
2278 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2279 A2 : Node_Id;
2281 begin
2282 if Present (Cprag) then
2283 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2285 if Convention (E) = Convention_C then
2286 Error_Msg_N
2287 ("?variant record has no direct equivalent in C", A2);
2288 else
2289 Error_Msg_N
2290 ("?variant record has no direct equivalent in C++", A2);
2291 end if;
2293 Error_Msg_NE
2294 ("\?use of convention for type& is dubious", A2, E);
2295 end if;
2296 end;
2297 end if;
2299 -- See if Size is too small as is (and implicit packing might help)
2301 if not Is_Packed (Rec)
2303 -- No implicit packing if even one component is explicitly placed
2305 and then not Placed_Component
2307 -- Must have size clause and all scalar components
2309 and then Has_Size_Clause (Rec)
2310 and then All_Scalar_Components
2312 -- Do not try implicit packing on records with discriminants, too
2313 -- complicated, especially in the variant record case.
2315 and then not Has_Discriminants (Rec)
2317 -- We can implicitly pack if the specified size of the record is
2318 -- less than the sum of the object sizes (no point in packing if
2319 -- this is not the case).
2321 and then Esize (Rec) < Scalar_Component_Total_Esize
2323 -- And the total RM size cannot be greater than the specified size
2324 -- since otherwise packing will not get us where we have to be!
2326 and then Esize (Rec) >= Scalar_Component_Total_RM_Size
2328 -- Never do implicit packing in CodePeer mode since we don't do
2329 -- any packing ever in this mode (why not???)
2331 and then not CodePeer_Mode
2332 then
2333 -- If implicit packing enabled, do it
2335 if Implicit_Packing then
2336 Set_Is_Packed (Rec);
2338 -- Otherwise flag the size clause
2340 else
2341 declare
2342 Sz : constant Node_Id := Size_Clause (Rec);
2343 begin
2344 Error_Msg_NE -- CODEFIX
2345 ("size given for& too small", Sz, Rec);
2346 Error_Msg_N -- CODEFIX
2347 ("\use explicit pragma Pack "
2348 & "or use pragma Implicit_Packing", Sz);
2349 end;
2350 end if;
2351 end if;
2352 end Freeze_Record_Type;
2354 -- Start of processing for Freeze_Entity
2356 begin
2357 -- We are going to test for various reasons why this entity need not be
2358 -- frozen here, but in the case of an Itype that's defined within a
2359 -- record, that test actually applies to the record.
2361 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2362 Test_E := Scope (E);
2363 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2364 and then Is_Record_Type (Underlying_Type (Scope (E)))
2365 then
2366 Test_E := Underlying_Type (Scope (E));
2367 end if;
2369 -- Do not freeze if already frozen since we only need one freeze node
2371 if Is_Frozen (E) then
2372 return No_List;
2374 -- It is improper to freeze an external entity within a generic because
2375 -- its freeze node will appear in a non-valid context. The entity will
2376 -- be frozen in the proper scope after the current generic is analyzed.
2378 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
2379 return No_List;
2381 -- Do not freeze a global entity within an inner scope created during
2382 -- expansion. A call to subprogram E within some internal procedure
2383 -- (a stream attribute for example) might require freezing E, but the
2384 -- freeze node must appear in the same declarative part as E itself.
2385 -- The two-pass elaboration mechanism in gigi guarantees that E will
2386 -- be frozen before the inner call is elaborated. We exclude constants
2387 -- from this test, because deferred constants may be frozen early, and
2388 -- must be diagnosed (e.g. in the case of a deferred constant being used
2389 -- in a default expression). If the enclosing subprogram comes from
2390 -- source, or is a generic instance, then the freeze point is the one
2391 -- mandated by the language, and we freeze the entity. A subprogram that
2392 -- is a child unit body that acts as a spec does not have a spec that
2393 -- comes from source, but can only come from source.
2395 elsif In_Open_Scopes (Scope (Test_E))
2396 and then Scope (Test_E) /= Current_Scope
2397 and then Ekind (Test_E) /= E_Constant
2398 then
2399 declare
2400 S : Entity_Id := Current_Scope;
2402 begin
2403 while Present (S) loop
2404 if Is_Overloadable (S) then
2405 if Comes_From_Source (S)
2406 or else Is_Generic_Instance (S)
2407 or else Is_Child_Unit (S)
2408 then
2409 exit;
2410 else
2411 return No_List;
2412 end if;
2413 end if;
2415 S := Scope (S);
2416 end loop;
2417 end;
2419 -- Similarly, an inlined instance body may make reference to global
2420 -- entities, but these references cannot be the proper freezing point
2421 -- for them, and in the absence of inlining freezing will take place in
2422 -- their own scope. Normally instance bodies are analyzed after the
2423 -- enclosing compilation, and everything has been frozen at the proper
2424 -- place, but with front-end inlining an instance body is compiled
2425 -- before the end of the enclosing scope, and as a result out-of-order
2426 -- freezing must be prevented.
2428 elsif Front_End_Inlining
2429 and then In_Instance_Body
2430 and then Present (Scope (Test_E))
2431 then
2432 declare
2433 S : Entity_Id := Scope (Test_E);
2435 begin
2436 while Present (S) loop
2437 if Is_Generic_Instance (S) then
2438 exit;
2439 else
2440 S := Scope (S);
2441 end if;
2442 end loop;
2444 if No (S) then
2445 return No_List;
2446 end if;
2447 end;
2448 end if;
2450 -- Here to freeze the entity
2452 Result := No_List;
2453 Set_Is_Frozen (E);
2455 -- Case of entity being frozen is other than a type
2457 if not Is_Type (E) then
2459 -- If entity is exported or imported and does not have an external
2460 -- name, now is the time to provide the appropriate default name.
2461 -- Skip this if the entity is stubbed, since we don't need a name
2462 -- for any stubbed routine. For the case on intrinsics, if no
2463 -- external name is specified, then calls will be handled in
2464 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed; if
2465 -- an external name is provided, then Expand_Intrinsic_Call leaves
2466 -- calls in place for expansion by GIGI.
2468 if (Is_Imported (E) or else Is_Exported (E))
2469 and then No (Interface_Name (E))
2470 and then Convention (E) /= Convention_Stubbed
2471 and then Convention (E) /= Convention_Intrinsic
2472 then
2473 Set_Encoded_Interface_Name
2474 (E, Get_Default_External_Name (E));
2476 -- If entity is an atomic object appearing in a declaration and
2477 -- the expression is an aggregate, assign it to a temporary to
2478 -- ensure that the actual assignment is done atomically rather
2479 -- than component-wise (the assignment to the temp may be done
2480 -- component-wise, but that is harmless).
2482 elsif Is_Atomic (E)
2483 and then Nkind (Parent (E)) = N_Object_Declaration
2484 and then Present (Expression (Parent (E)))
2485 and then Nkind (Expression (Parent (E))) = N_Aggregate
2486 and then
2487 Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
2488 then
2489 null;
2490 end if;
2492 -- For a subprogram, freeze all parameter types and also the return
2493 -- type (RM 13.14(14)). However skip this for internal subprograms.
2494 -- This is also the point where any extra formal parameters are
2495 -- created since we now know whether the subprogram will use a
2496 -- foreign convention.
2498 if Is_Subprogram (E) then
2499 if not Is_Internal (E) then
2500 declare
2501 F_Type : Entity_Id;
2502 R_Type : Entity_Id;
2503 Warn_Node : Node_Id;
2505 begin
2506 -- Loop through formals
2508 Formal := First_Formal (E);
2509 while Present (Formal) loop
2510 F_Type := Etype (Formal);
2511 Freeze_And_Append (F_Type, Loc, Result);
2513 if Is_Private_Type (F_Type)
2514 and then Is_Private_Type (Base_Type (F_Type))
2515 and then No (Full_View (Base_Type (F_Type)))
2516 and then not Is_Generic_Type (F_Type)
2517 and then not Is_Derived_Type (F_Type)
2518 then
2519 -- If the type of a formal is incomplete, subprogram
2520 -- is being frozen prematurely. Within an instance
2521 -- (but not within a wrapper package) this is an
2522 -- artifact of our need to regard the end of an
2523 -- instantiation as a freeze point. Otherwise it is
2524 -- a definite error.
2526 if In_Instance then
2527 Set_Is_Frozen (E, False);
2528 return No_List;
2530 elsif not After_Last_Declaration
2531 and then not Freezing_Library_Level_Tagged_Type
2532 then
2533 Error_Msg_Node_1 := F_Type;
2534 Error_Msg
2535 ("type& must be fully defined before this point",
2536 Loc);
2537 end if;
2538 end if;
2540 -- Check suspicious parameter for C function. These tests
2541 -- apply only to exported/imported subprograms.
2543 if Warn_On_Export_Import
2544 and then Comes_From_Source (E)
2545 and then (Convention (E) = Convention_C
2546 or else
2547 Convention (E) = Convention_CPP)
2548 and then (Is_Imported (E) or else Is_Exported (E))
2549 and then Convention (E) /= Convention (Formal)
2550 and then not Has_Warnings_Off (E)
2551 and then not Has_Warnings_Off (F_Type)
2552 and then not Has_Warnings_Off (Formal)
2553 then
2554 -- Qualify mention of formals with subprogram name
2556 Error_Msg_Qual_Level := 1;
2558 -- Check suspicious use of fat C pointer
2560 if Is_Access_Type (F_Type)
2561 and then Esize (F_Type) > Ttypes.System_Address_Size
2562 then
2563 Error_Msg_N
2564 ("?type of & does not correspond to C pointer!",
2565 Formal);
2567 -- Check suspicious return of boolean
2569 elsif Root_Type (F_Type) = Standard_Boolean
2570 and then Convention (F_Type) = Convention_Ada
2571 and then not Has_Warnings_Off (F_Type)
2572 and then not Has_Size_Clause (F_Type)
2573 and then VM_Target = No_VM
2574 then
2575 Error_Msg_N
2576 ("& is an 8-bit Ada Boolean?", Formal);
2577 Error_Msg_N
2578 ("\use appropriate corresponding type in C "
2579 & "(e.g. char)?", Formal);
2581 -- Check suspicious tagged type
2583 elsif (Is_Tagged_Type (F_Type)
2584 or else (Is_Access_Type (F_Type)
2585 and then
2586 Is_Tagged_Type
2587 (Designated_Type (F_Type))))
2588 and then Convention (E) = Convention_C
2589 then
2590 Error_Msg_N
2591 ("?& involves a tagged type which does not "
2592 & "correspond to any C type!", Formal);
2594 -- Check wrong convention subprogram pointer
2596 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2597 and then not Has_Foreign_Convention (F_Type)
2598 then
2599 Error_Msg_N
2600 ("?subprogram pointer & should "
2601 & "have foreign convention!", Formal);
2602 Error_Msg_Sloc := Sloc (F_Type);
2603 Error_Msg_NE
2604 ("\?add Convention pragma to declaration of &#",
2605 Formal, F_Type);
2606 end if;
2608 -- Turn off name qualification after message output
2610 Error_Msg_Qual_Level := 0;
2611 end if;
2613 -- Check for unconstrained array in exported foreign
2614 -- convention case.
2616 if Has_Foreign_Convention (E)
2617 and then not Is_Imported (E)
2618 and then Is_Array_Type (F_Type)
2619 and then not Is_Constrained (F_Type)
2620 and then Warn_On_Export_Import
2622 -- Exclude VM case, since both .NET and JVM can handle
2623 -- unconstrained arrays without a problem.
2625 and then VM_Target = No_VM
2626 then
2627 Error_Msg_Qual_Level := 1;
2629 -- If this is an inherited operation, place the
2630 -- warning on the derived type declaration, rather
2631 -- than on the original subprogram.
2633 if Nkind (Original_Node (Parent (E))) =
2634 N_Full_Type_Declaration
2635 then
2636 Warn_Node := Parent (E);
2638 if Formal = First_Formal (E) then
2639 Error_Msg_NE
2640 ("?in inherited operation&", Warn_Node, E);
2641 end if;
2642 else
2643 Warn_Node := Formal;
2644 end if;
2646 Error_Msg_NE
2647 ("?type of argument& is unconstrained array",
2648 Warn_Node, Formal);
2649 Error_Msg_NE
2650 ("?foreign caller must pass bounds explicitly",
2651 Warn_Node, Formal);
2652 Error_Msg_Qual_Level := 0;
2653 end if;
2655 if not From_With_Type (F_Type) then
2656 if Is_Access_Type (F_Type) then
2657 F_Type := Designated_Type (F_Type);
2658 end if;
2660 -- If the formal is an anonymous_access_to_subprogram
2661 -- freeze the subprogram type as well, to prevent
2662 -- scope anomalies in gigi, because there is no other
2663 -- clear point at which it could be frozen.
2665 if Is_Itype (Etype (Formal))
2666 and then Ekind (F_Type) = E_Subprogram_Type
2667 then
2668 Freeze_And_Append (F_Type, Loc, Result);
2669 end if;
2670 end if;
2672 Next_Formal (Formal);
2673 end loop;
2675 -- Case of function: similar checks on return type
2677 if Ekind (E) = E_Function then
2679 -- Freeze return type
2681 R_Type := Etype (E);
2682 Freeze_And_Append (R_Type, Loc, Result);
2684 -- Check suspicious return type for C function
2686 if Warn_On_Export_Import
2687 and then (Convention (E) = Convention_C
2688 or else
2689 Convention (E) = Convention_CPP)
2690 and then (Is_Imported (E) or else Is_Exported (E))
2691 then
2692 -- Check suspicious return of fat C pointer
2694 if Is_Access_Type (R_Type)
2695 and then Esize (R_Type) > Ttypes.System_Address_Size
2696 and then not Has_Warnings_Off (E)
2697 and then not Has_Warnings_Off (R_Type)
2698 then
2699 Error_Msg_N
2700 ("?return type of& does not "
2701 & "correspond to C pointer!", E);
2703 -- Check suspicious return of boolean
2705 elsif Root_Type (R_Type) = Standard_Boolean
2706 and then Convention (R_Type) = Convention_Ada
2707 and then VM_Target = No_VM
2708 and then not Has_Warnings_Off (E)
2709 and then not Has_Warnings_Off (R_Type)
2710 and then not Has_Size_Clause (R_Type)
2711 then
2712 declare
2713 N : constant Node_Id :=
2714 Result_Definition (Declaration_Node (E));
2715 begin
2716 Error_Msg_NE
2717 ("return type of & is an 8-bit Ada Boolean?",
2718 N, E);
2719 Error_Msg_NE
2720 ("\use appropriate corresponding type in C "
2721 & "(e.g. char)?", N, E);
2722 end;
2724 -- Check suspicious return tagged type
2726 elsif (Is_Tagged_Type (R_Type)
2727 or else (Is_Access_Type (R_Type)
2728 and then
2729 Is_Tagged_Type
2730 (Designated_Type (R_Type))))
2731 and then Convention (E) = Convention_C
2732 and then not Has_Warnings_Off (E)
2733 and then not Has_Warnings_Off (R_Type)
2734 then
2735 Error_Msg_N
2736 ("?return type of & does not "
2737 & "correspond to C type!", E);
2739 -- Check return of wrong convention subprogram pointer
2741 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2742 and then not Has_Foreign_Convention (R_Type)
2743 and then not Has_Warnings_Off (E)
2744 and then not Has_Warnings_Off (R_Type)
2745 then
2746 Error_Msg_N
2747 ("?& should return a foreign "
2748 & "convention subprogram pointer", E);
2749 Error_Msg_Sloc := Sloc (R_Type);
2750 Error_Msg_NE
2751 ("\?add Convention pragma to declaration of& #",
2752 E, R_Type);
2753 end if;
2754 end if;
2756 -- Give warning for suspicous return of a result of an
2757 -- unconstrained array type in a foreign convention
2758 -- function.
2760 if Has_Foreign_Convention (E)
2762 -- We are looking for a return of unconstrained array
2764 and then Is_Array_Type (R_Type)
2765 and then not Is_Constrained (R_Type)
2767 -- Exclude imported routines, the warning does not
2768 -- belong on the import, but on the routine definition.
2770 and then not Is_Imported (E)
2772 -- Exclude VM case, since both .NET and JVM can handle
2773 -- return of unconstrained arrays without a problem.
2775 and then VM_Target = No_VM
2777 -- Check that general warning is enabled, and that it
2778 -- is not suppressed for this particular case.
2780 and then Warn_On_Export_Import
2781 and then not Has_Warnings_Off (E)
2782 and then not Has_Warnings_Off (R_Type)
2783 then
2784 Error_Msg_N
2785 ("?foreign convention function& should not " &
2786 "return unconstrained array!", E);
2787 end if;
2788 end if;
2789 end;
2790 end if;
2792 -- Must freeze its parent first if it is a derived subprogram
2794 if Present (Alias (E)) then
2795 Freeze_And_Append (Alias (E), Loc, Result);
2796 end if;
2798 -- We don't freeze internal subprograms, because we don't normally
2799 -- want addition of extra formals or mechanism setting to happen
2800 -- for those. However we do pass through predefined dispatching
2801 -- cases, since extra formals may be needed in some cases, such as
2802 -- for the stream 'Input function (build-in-place formals).
2804 if not Is_Internal (E)
2805 or else Is_Predefined_Dispatching_Operation (E)
2806 then
2807 Freeze_Subprogram (E);
2808 end if;
2810 -- Here for other than a subprogram or type
2812 else
2813 -- If entity has a type, and it is not a generic unit, then
2814 -- freeze it first (RM 13.14(10)).
2816 if Present (Etype (E))
2817 and then Ekind (E) /= E_Generic_Function
2818 then
2819 Freeze_And_Append (Etype (E), Loc, Result);
2820 end if;
2822 -- Special processing for objects created by object declaration
2824 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2826 -- Abstract type allowed only for C++ imported variables or
2827 -- constants.
2829 -- Note: we inhibit this check for objects that do not come
2830 -- from source because there is at least one case (the
2831 -- expansion of x'class'input where x is abstract) where we
2832 -- legitimately generate an abstract object.
2834 if Is_Abstract_Type (Etype (E))
2835 and then Comes_From_Source (Parent (E))
2836 and then not (Is_Imported (E)
2837 and then Is_CPP_Class (Etype (E)))
2838 then
2839 Error_Msg_N ("type of object cannot be abstract",
2840 Object_Definition (Parent (E)));
2842 if Is_CPP_Class (Etype (E)) then
2843 Error_Msg_NE ("\} may need a cpp_constructor",
2844 Object_Definition (Parent (E)), Etype (E));
2845 end if;
2846 end if;
2848 -- For object created by object declaration, perform required
2849 -- categorization (preelaborate and pure) checks. Defer these
2850 -- checks to freeze time since pragma Import inhibits default
2851 -- initialization and thus pragma Import affects these checks.
2853 Validate_Object_Declaration (Declaration_Node (E));
2855 -- If there is an address clause, check that it is valid
2857 Check_Address_Clause (E);
2859 -- If the object needs any kind of default initialization, an
2860 -- error must be issued if No_Default_Initialization applies.
2861 -- The check doesn't apply to imported objects, which are not
2862 -- ever default initialized, and is why the check is deferred
2863 -- until freezing, at which point we know if Import applies.
2864 -- Deferred constants are also exempted from this test because
2865 -- their completion is explicit, or through an import pragma.
2867 if Ekind (E) = E_Constant
2868 and then Present (Full_View (E))
2869 then
2870 null;
2872 elsif Comes_From_Source (E)
2873 and then not Is_Imported (E)
2874 and then not Has_Init_Expression (Declaration_Node (E))
2875 and then
2876 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2877 and then not No_Initialization (Declaration_Node (E))
2878 and then not Is_Value_Type (Etype (E))
2879 and then not Suppress_Init_Proc (Etype (E)))
2880 or else
2881 (Needs_Simple_Initialization (Etype (E))
2882 and then not Is_Internal (E)))
2883 then
2884 Has_Default_Initialization := True;
2885 Check_Restriction
2886 (No_Default_Initialization, Declaration_Node (E));
2887 end if;
2889 -- Check that a Thread_Local_Storage variable does not have
2890 -- default initialization, and any explicit initialization must
2891 -- either be the null constant or a static constant.
2893 if Has_Pragma_Thread_Local_Storage (E) then
2894 declare
2895 Decl : constant Node_Id := Declaration_Node (E);
2896 begin
2897 if Has_Default_Initialization
2898 or else
2899 (Has_Init_Expression (Decl)
2900 and then
2901 (No (Expression (Decl))
2902 or else not
2903 (Is_Static_Expression (Expression (Decl))
2904 or else
2905 Nkind (Expression (Decl)) = N_Null)))
2906 then
2907 Error_Msg_NE
2908 ("Thread_Local_Storage variable& is "
2909 & "improperly initialized", Decl, E);
2910 Error_Msg_NE
2911 ("\only allowed initialization is explicit "
2912 & "NULL or static expression", Decl, E);
2913 end if;
2914 end;
2915 end if;
2917 -- For imported objects, set Is_Public unless there is also an
2918 -- address clause, which means that there is no external symbol
2919 -- needed for the Import (Is_Public may still be set for other
2920 -- unrelated reasons). Note that we delayed this processing
2921 -- till freeze time so that we can be sure not to set the flag
2922 -- if there is an address clause. If there is such a clause,
2923 -- then the only purpose of the Import pragma is to suppress
2924 -- implicit initialization.
2926 if Is_Imported (E)
2927 and then No (Address_Clause (E))
2928 then
2929 Set_Is_Public (E);
2930 end if;
2932 -- For convention C objects of an enumeration type, warn if
2933 -- the size is not integer size and no explicit size given.
2934 -- Skip warning for Boolean, and Character, assume programmer
2935 -- expects 8-bit sizes for these cases.
2937 if (Convention (E) = Convention_C
2938 or else
2939 Convention (E) = Convention_CPP)
2940 and then Is_Enumeration_Type (Etype (E))
2941 and then not Is_Character_Type (Etype (E))
2942 and then not Is_Boolean_Type (Etype (E))
2943 and then Esize (Etype (E)) < Standard_Integer_Size
2944 and then not Has_Size_Clause (E)
2945 then
2946 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2947 Error_Msg_N
2948 ("?convention C enumeration object has size less than ^",
2950 Error_Msg_N ("\?use explicit size clause to set size", E);
2951 end if;
2952 end if;
2954 -- Check that a constant which has a pragma Volatile[_Components]
2955 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
2957 -- Note: Atomic[_Components] also sets Volatile[_Components]
2959 if Ekind (E) = E_Constant
2960 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2961 and then not Is_Imported (E)
2962 then
2963 -- Make sure we actually have a pragma, and have not merely
2964 -- inherited the indication from elsewhere (e.g. an address
2965 -- clause, which is not good enough in RM terms!)
2967 if Has_Rep_Pragma (E, Name_Atomic)
2968 or else
2969 Has_Rep_Pragma (E, Name_Atomic_Components)
2970 then
2971 Error_Msg_N
2972 ("stand alone atomic constant must be " &
2973 "imported (RM C.6(13))", E);
2975 elsif Has_Rep_Pragma (E, Name_Volatile)
2976 or else
2977 Has_Rep_Pragma (E, Name_Volatile_Components)
2978 then
2979 Error_Msg_N
2980 ("stand alone volatile constant must be " &
2981 "imported (RM C.6(13))", E);
2982 end if;
2983 end if;
2985 -- Static objects require special handling
2987 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2988 and then Is_Statically_Allocated (E)
2989 then
2990 Freeze_Static_Object (E);
2991 end if;
2993 -- Remaining step is to layout objects
2995 if Ekind (E) = E_Variable
2996 or else
2997 Ekind (E) = E_Constant
2998 or else
2999 Ekind (E) = E_Loop_Parameter
3000 or else
3001 Is_Formal (E)
3002 then
3003 Layout_Object (E);
3004 end if;
3005 end if;
3007 -- Case of a type or subtype being frozen
3009 else
3010 -- We used to check here that a full type must have preelaborable
3011 -- initialization if it completes a private type specified with
3012 -- pragma Preelaborable_Intialization, but that missed cases where
3013 -- the types occur within a generic package, since the freezing
3014 -- that occurs within a containing scope generally skips traversal
3015 -- of a generic unit's declarations (those will be frozen within
3016 -- instances). This check was moved to Analyze_Package_Specification.
3018 -- The type may be defined in a generic unit. This can occur when
3019 -- freezing a generic function that returns the type (which is
3020 -- defined in a parent unit). It is clearly meaningless to freeze
3021 -- this type. However, if it is a subtype, its size may be determi-
3022 -- nable and used in subsequent checks, so might as well try to
3023 -- compute it.
3025 if Present (Scope (E))
3026 and then Is_Generic_Unit (Scope (E))
3027 then
3028 Check_Compile_Time_Size (E);
3029 return No_List;
3030 end if;
3032 -- Deal with special cases of freezing for subtype
3034 if E /= Base_Type (E) then
3036 -- Before we do anything else, a specialized test for the case of
3037 -- a size given for an array where the array needs to be packed,
3038 -- but was not so the size cannot be honored. This would of course
3039 -- be caught by the backend, and indeed we don't catch all cases.
3040 -- The point is that we can give a better error message in those
3041 -- cases that we do catch with the circuitry here. Also if pragma
3042 -- Implicit_Packing is set, this is where the packing occurs.
3044 -- The reason we do this so early is that the processing in the
3045 -- automatic packing case affects the layout of the base type, so
3046 -- it must be done before we freeze the base type.
3048 if Is_Array_Type (E) then
3049 declare
3050 Lo, Hi : Node_Id;
3051 Ctyp : constant Entity_Id := Component_Type (E);
3053 begin
3054 -- Check enabling conditions. These are straightforward
3055 -- except for the test for a limited composite type. This
3056 -- eliminates the rare case of a array of limited components
3057 -- where there are issues of whether or not we can go ahead
3058 -- and pack the array (since we can't freely pack and unpack
3059 -- arrays if they are limited).
3061 -- Note that we check the root type explicitly because the
3062 -- whole point is we are doing this test before we have had
3063 -- a chance to freeze the base type (and it is that freeze
3064 -- action that causes stuff to be inherited).
3066 if Present (Size_Clause (E))
3067 and then Known_Static_Esize (E)
3068 and then not Is_Packed (E)
3069 and then not Has_Pragma_Pack (E)
3070 and then Number_Dimensions (E) = 1
3071 and then not Has_Component_Size_Clause (E)
3072 and then Known_Static_Esize (Ctyp)
3073 and then not Is_Limited_Composite (E)
3074 and then not Is_Packed (Root_Type (E))
3075 and then not Has_Component_Size_Clause (Root_Type (E))
3076 and then not CodePeer_Mode
3077 then
3078 Get_Index_Bounds (First_Index (E), Lo, Hi);
3080 if Compile_Time_Known_Value (Lo)
3081 and then Compile_Time_Known_Value (Hi)
3082 and then Known_Static_RM_Size (Ctyp)
3083 and then RM_Size (Ctyp) < 64
3084 then
3085 declare
3086 Lov : constant Uint := Expr_Value (Lo);
3087 Hiv : constant Uint := Expr_Value (Hi);
3088 Len : constant Uint := UI_Max
3089 (Uint_0,
3090 Hiv - Lov + 1);
3091 Rsiz : constant Uint := RM_Size (Ctyp);
3092 SZ : constant Node_Id := Size_Clause (E);
3093 Btyp : constant Entity_Id := Base_Type (E);
3095 -- What we are looking for here is the situation where
3096 -- the RM_Size given would be exactly right if there
3097 -- was a pragma Pack (resulting in the component size
3098 -- being the same as the RM_Size). Furthermore, the
3099 -- component type size must be an odd size (not a
3100 -- multiple of storage unit). If the component RM size
3101 -- is an exact number of storage units that is a power
3102 -- of two, the array is not packed and has a standard
3103 -- representation.
3105 begin
3106 if RM_Size (E) = Len * Rsiz
3107 and then Rsiz mod System_Storage_Unit /= 0
3108 then
3109 -- For implicit packing mode, just set the
3110 -- component size silently.
3112 if Implicit_Packing then
3113 Set_Component_Size (Btyp, Rsiz);
3114 Set_Is_Bit_Packed_Array (Btyp);
3115 Set_Is_Packed (Btyp);
3116 Set_Has_Non_Standard_Rep (Btyp);
3118 -- Otherwise give an error message
3120 else
3121 Error_Msg_NE
3122 ("size given for& too small", SZ, E);
3123 Error_Msg_N
3124 ("\use explicit pragma Pack "
3125 & "or use pragma Implicit_Packing", SZ);
3126 end if;
3128 elsif RM_Size (E) = Len * Rsiz
3129 and then Implicit_Packing
3130 and then
3131 (Rsiz / System_Storage_Unit = 1
3132 or else Rsiz / System_Storage_Unit = 2
3133 or else Rsiz / System_Storage_Unit = 4)
3134 then
3136 -- Not a packed array, but indicate the desired
3137 -- component size, for the back-end.
3139 Set_Component_Size (Btyp, Rsiz);
3140 end if;
3141 end;
3142 end if;
3143 end if;
3144 end;
3145 end if;
3147 -- If ancestor subtype present, freeze that first. Note that this
3148 -- will also get the base type frozen.
3150 Atype := Ancestor_Subtype (E);
3152 if Present (Atype) then
3153 Freeze_And_Append (Atype, Loc, Result);
3155 -- Otherwise freeze the base type of the entity before freezing
3156 -- the entity itself (RM 13.14(15)).
3158 elsif E /= Base_Type (E) then
3159 Freeze_And_Append (Base_Type (E), Loc, Result);
3160 end if;
3162 -- For a derived type, freeze its parent type first (RM 13.14(15))
3164 elsif Is_Derived_Type (E) then
3165 Freeze_And_Append (Etype (E), Loc, Result);
3166 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
3167 end if;
3169 -- For array type, freeze index types and component type first
3170 -- before freezing the array (RM 13.14(15)).
3172 if Is_Array_Type (E) then
3173 declare
3174 Ctyp : constant Entity_Id := Component_Type (E);
3176 Non_Standard_Enum : Boolean := False;
3177 -- Set true if any of the index types is an enumeration type
3178 -- with a non-standard representation.
3180 begin
3181 Freeze_And_Append (Ctyp, Loc, Result);
3183 Indx := First_Index (E);
3184 while Present (Indx) loop
3185 Freeze_And_Append (Etype (Indx), Loc, Result);
3187 if Is_Enumeration_Type (Etype (Indx))
3188 and then Has_Non_Standard_Rep (Etype (Indx))
3189 then
3190 Non_Standard_Enum := True;
3191 end if;
3193 Next_Index (Indx);
3194 end loop;
3196 -- Processing that is done only for base types
3198 if Ekind (E) = E_Array_Type then
3200 -- Propagate flags for component type
3202 if Is_Controlled (Component_Type (E))
3203 or else Has_Controlled_Component (Ctyp)
3204 then
3205 Set_Has_Controlled_Component (E);
3206 end if;
3208 if Has_Unchecked_Union (Component_Type (E)) then
3209 Set_Has_Unchecked_Union (E);
3210 end if;
3212 -- If packing was requested or if the component size was set
3213 -- explicitly, then see if bit packing is required. This
3214 -- processing is only done for base types, since all the
3215 -- representation aspects involved are type-related. This
3216 -- is not just an optimization, if we start processing the
3217 -- subtypes, they interfere with the settings on the base
3218 -- type (this is because Is_Packed has a slightly different
3219 -- meaning before and after freezing).
3221 declare
3222 Csiz : Uint;
3223 Esiz : Uint;
3225 begin
3226 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3227 and then not Has_Atomic_Components (E)
3228 and then Known_Static_RM_Size (Ctyp)
3229 then
3230 Csiz := UI_Max (RM_Size (Ctyp), 1);
3232 elsif Known_Component_Size (E) then
3233 Csiz := Component_Size (E);
3235 elsif not Known_Static_Esize (Ctyp) then
3236 Csiz := Uint_0;
3238 else
3239 Esiz := Esize (Ctyp);
3241 -- We can set the component size if it is less than
3242 -- 16, rounding it up to the next storage unit size.
3244 if Esiz <= 8 then
3245 Csiz := Uint_8;
3246 elsif Esiz <= 16 then
3247 Csiz := Uint_16;
3248 else
3249 Csiz := Uint_0;
3250 end if;
3252 -- Set component size up to match alignment if it
3253 -- would otherwise be less than the alignment. This
3254 -- deals with cases of types whose alignment exceeds
3255 -- their size (padded types).
3257 if Csiz /= 0 then
3258 declare
3259 A : constant Uint := Alignment_In_Bits (Ctyp);
3260 begin
3261 if Csiz < A then
3262 Csiz := A;
3263 end if;
3264 end;
3265 end if;
3266 end if;
3268 -- Case of component size that may result in packing
3270 if 1 <= Csiz and then Csiz <= 64 then
3271 declare
3272 Ent : constant Entity_Id :=
3273 First_Subtype (E);
3274 Pack_Pragma : constant Node_Id :=
3275 Get_Rep_Pragma (Ent, Name_Pack);
3276 Comp_Size_C : constant Node_Id :=
3277 Get_Attribute_Definition_Clause
3278 (Ent, Attribute_Component_Size);
3279 begin
3280 -- Warn if we have pack and component size so that
3281 -- the pack is ignored.
3283 -- Note: here we must check for the presence of a
3284 -- component size before checking for a Pack pragma
3285 -- to deal with the case where the array type is a
3286 -- derived type whose parent is currently private.
3288 if Present (Comp_Size_C)
3289 and then Has_Pragma_Pack (Ent)
3290 then
3291 Error_Msg_Sloc := Sloc (Comp_Size_C);
3292 Error_Msg_NE
3293 ("?pragma Pack for& ignored!",
3294 Pack_Pragma, Ent);
3295 Error_Msg_N
3296 ("\?explicit component size given#!",
3297 Pack_Pragma);
3298 end if;
3300 -- Set component size if not already set by a
3301 -- component size clause.
3303 if not Present (Comp_Size_C) then
3304 Set_Component_Size (E, Csiz);
3305 end if;
3307 -- Check for base type of 8, 16, 32 bits, where an
3308 -- unsigned subtype has a length one less than the
3309 -- base type (e.g. Natural subtype of Integer).
3311 -- In such cases, if a component size was not set
3312 -- explicitly, then generate a warning.
3314 if Has_Pragma_Pack (E)
3315 and then not Present (Comp_Size_C)
3316 and then
3317 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3318 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3319 then
3320 Error_Msg_Uint_1 := Csiz;
3322 if Present (Pack_Pragma) then
3323 Error_Msg_N
3324 ("?pragma Pack causes component size "
3325 & "to be ^!", Pack_Pragma);
3326 Error_Msg_N
3327 ("\?use Component_Size to set "
3328 & "desired value!", Pack_Pragma);
3329 end if;
3330 end if;
3332 -- Actual packing is not needed for 8, 16, 32, 64.
3333 -- Also not needed for 24 if alignment is 1.
3335 if Csiz = 8
3336 or else Csiz = 16
3337 or else Csiz = 32
3338 or else Csiz = 64
3339 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3340 then
3341 -- Here the array was requested to be packed,
3342 -- but the packing request had no effect, so
3343 -- Is_Packed is reset.
3345 -- Note: semantically this means that we lose
3346 -- track of the fact that a derived type
3347 -- inherited a pragma Pack that was non-
3348 -- effective, but that seems fine.
3350 -- We regard a Pack pragma as a request to set
3351 -- a representation characteristic, and this
3352 -- request may be ignored.
3354 Set_Is_Packed (Base_Type (E), False);
3356 -- In all other cases, packing is indeed needed
3358 else
3359 Set_Has_Non_Standard_Rep (Base_Type (E));
3360 Set_Is_Bit_Packed_Array (Base_Type (E));
3361 Set_Is_Packed (Base_Type (E));
3362 end if;
3363 end;
3364 end if;
3365 end;
3367 -- Processing that is done only for subtypes
3369 else
3370 -- Acquire alignment from base type
3372 if Unknown_Alignment (E) then
3373 Set_Alignment (E, Alignment (Base_Type (E)));
3374 Adjust_Esize_Alignment (E);
3375 end if;
3376 end if;
3378 -- For bit-packed arrays, check the size
3380 if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
3381 declare
3382 SizC : constant Node_Id := Size_Clause (E);
3384 Discard : Boolean;
3385 pragma Warnings (Off, Discard);
3387 begin
3388 -- It is not clear if it is possible to have no size
3389 -- clause at this stage, but it is not worth worrying
3390 -- about. Post error on the entity name in the size
3391 -- clause if present, else on the type entity itself.
3393 if Present (SizC) then
3394 Check_Size (Name (SizC), E, RM_Size (E), Discard);
3395 else
3396 Check_Size (E, E, RM_Size (E), Discard);
3397 end if;
3398 end;
3399 end if;
3401 -- If any of the index types was an enumeration type with
3402 -- a non-standard rep clause, then we indicate that the
3403 -- array type is always packed (even if it is not bit packed).
3405 if Non_Standard_Enum then
3406 Set_Has_Non_Standard_Rep (Base_Type (E));
3407 Set_Is_Packed (Base_Type (E));
3408 end if;
3410 Set_Component_Alignment_If_Not_Set (E);
3412 -- If the array is packed, we must create the packed array
3413 -- type to be used to actually implement the type. This is
3414 -- only needed for real array types (not for string literal
3415 -- types, since they are present only for the front end).
3417 if Is_Packed (E)
3418 and then Ekind (E) /= E_String_Literal_Subtype
3419 then
3420 Create_Packed_Array_Type (E);
3421 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
3423 -- Size information of packed array type is copied to the
3424 -- array type, since this is really the representation. But
3425 -- do not override explicit existing size values. If the
3426 -- ancestor subtype is constrained the packed_array_type
3427 -- will be inherited from it, but the size may have been
3428 -- provided already, and must not be overridden either.
3430 if not Has_Size_Clause (E)
3431 and then
3432 (No (Ancestor_Subtype (E))
3433 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3434 then
3435 Set_Esize (E, Esize (Packed_Array_Type (E)));
3436 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3437 end if;
3439 if not Has_Alignment_Clause (E) then
3440 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3441 end if;
3442 end if;
3444 -- For non-packed arrays set the alignment of the array to the
3445 -- alignment of the component type if it is unknown. Skip this
3446 -- in atomic case (atomic arrays may need larger alignments).
3448 if not Is_Packed (E)
3449 and then Unknown_Alignment (E)
3450 and then Known_Alignment (Ctyp)
3451 and then Known_Static_Component_Size (E)
3452 and then Known_Static_Esize (Ctyp)
3453 and then Esize (Ctyp) = Component_Size (E)
3454 and then not Is_Atomic (E)
3455 then
3456 Set_Alignment (E, Alignment (Component_Type (E)));
3457 end if;
3458 end;
3460 -- For a class-wide type, the corresponding specific type is
3461 -- frozen as well (RM 13.14(15))
3463 elsif Is_Class_Wide_Type (E) then
3464 Freeze_And_Append (Root_Type (E), Loc, Result);
3466 -- If the base type of the class-wide type is still incomplete,
3467 -- the class-wide remains unfrozen as well. This is legal when
3468 -- E is the formal of a primitive operation of some other type
3469 -- which is being frozen.
3471 if not Is_Frozen (Root_Type (E)) then
3472 Set_Is_Frozen (E, False);
3473 return Result;
3474 end if;
3476 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3477 -- parent of a derived type) and it is a library-level entity,
3478 -- generate an itype reference for it. Otherwise, its first
3479 -- explicit reference may be in an inner scope, which will be
3480 -- rejected by the back-end.
3482 if Is_Itype (E)
3483 and then Is_Compilation_Unit (Scope (E))
3484 then
3485 declare
3486 Ref : constant Node_Id := Make_Itype_Reference (Loc);
3488 begin
3489 Set_Itype (Ref, E);
3490 if No (Result) then
3491 Result := New_List (Ref);
3492 else
3493 Append (Ref, Result);
3494 end if;
3495 end;
3496 end if;
3498 -- The equivalent type associated with a class-wide subtype needs
3499 -- to be frozen to ensure that its layout is done.
3501 if Ekind (E) = E_Class_Wide_Subtype
3502 and then Present (Equivalent_Type (E))
3503 then
3504 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3505 end if;
3507 -- For a record (sub)type, freeze all the component types (RM
3508 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3509 -- Is_Record_Type, because we don't want to attempt the freeze for
3510 -- the case of a private type with record extension (we will do that
3511 -- later when the full type is frozen).
3513 elsif Ekind (E) = E_Record_Type
3514 or else Ekind (E) = E_Record_Subtype
3515 then
3516 Freeze_Record_Type (E);
3518 -- For a concurrent type, freeze corresponding record type. This
3519 -- does not correspond to any specific rule in the RM, but the
3520 -- record type is essentially part of the concurrent type.
3521 -- Freeze as well all local entities. This includes record types
3522 -- created for entry parameter blocks, and whatever local entities
3523 -- may appear in the private part.
3525 elsif Is_Concurrent_Type (E) then
3526 if Present (Corresponding_Record_Type (E)) then
3527 Freeze_And_Append
3528 (Corresponding_Record_Type (E), Loc, Result);
3529 end if;
3531 Comp := First_Entity (E);
3532 while Present (Comp) loop
3533 if Is_Type (Comp) then
3534 Freeze_And_Append (Comp, Loc, Result);
3536 elsif (Ekind (Comp)) /= E_Function then
3537 if Is_Itype (Etype (Comp))
3538 and then Underlying_Type (Scope (Etype (Comp))) = E
3539 then
3540 Undelay_Type (Etype (Comp));
3541 end if;
3543 Freeze_And_Append (Etype (Comp), Loc, Result);
3544 end if;
3546 Next_Entity (Comp);
3547 end loop;
3549 -- Private types are required to point to the same freeze node as
3550 -- their corresponding full views. The freeze node itself has to
3551 -- point to the partial view of the entity (because from the partial
3552 -- view, we can retrieve the full view, but not the reverse).
3553 -- However, in order to freeze correctly, we need to freeze the full
3554 -- view. If we are freezing at the end of a scope (or within the
3555 -- scope of the private type), the partial and full views will have
3556 -- been swapped, the full view appears first in the entity chain and
3557 -- the swapping mechanism ensures that the pointers are properly set
3558 -- (on scope exit).
3560 -- If we encounter the partial view before the full view (e.g. when
3561 -- freezing from another scope), we freeze the full view, and then
3562 -- set the pointers appropriately since we cannot rely on swapping to
3563 -- fix things up (subtypes in an outer scope might not get swapped).
3565 elsif Is_Incomplete_Or_Private_Type (E)
3566 and then not Is_Generic_Type (E)
3567 then
3568 -- The construction of the dispatch table associated with library
3569 -- level tagged types forces freezing of all the primitives of the
3570 -- type, which may cause premature freezing of the partial view.
3571 -- For example:
3573 -- package Pkg is
3574 -- type T is tagged private;
3575 -- type DT is new T with private;
3576 -- procedure Prim (X : in out T; Y : in out DT'class);
3577 -- private
3578 -- type T is tagged null record;
3579 -- Obj : T;
3580 -- type DT is new T with null record;
3581 -- end;
3583 -- In this case the type will be frozen later by the usual
3584 -- mechanism: an object declaration, an instantiation, or the
3585 -- end of a declarative part.
3587 if Is_Library_Level_Tagged_Type (E)
3588 and then not Present (Full_View (E))
3589 then
3590 Set_Is_Frozen (E, False);
3591 return Result;
3593 -- Case of full view present
3595 elsif Present (Full_View (E)) then
3597 -- If full view has already been frozen, then no further
3598 -- processing is required
3600 if Is_Frozen (Full_View (E)) then
3602 Set_Has_Delayed_Freeze (E, False);
3603 Set_Freeze_Node (E, Empty);
3604 Check_Debug_Info_Needed (E);
3606 -- Otherwise freeze full view and patch the pointers so that
3607 -- the freeze node will elaborate both views in the back-end.
3609 else
3610 declare
3611 Full : constant Entity_Id := Full_View (E);
3613 begin
3614 if Is_Private_Type (Full)
3615 and then Present (Underlying_Full_View (Full))
3616 then
3617 Freeze_And_Append
3618 (Underlying_Full_View (Full), Loc, Result);
3619 end if;
3621 Freeze_And_Append (Full, Loc, Result);
3623 if Has_Delayed_Freeze (E) then
3624 F_Node := Freeze_Node (Full);
3626 if Present (F_Node) then
3627 Set_Freeze_Node (E, F_Node);
3628 Set_Entity (F_Node, E);
3630 else
3631 -- {Incomplete,Private}_Subtypes with Full_Views
3632 -- constrained by discriminants.
3634 Set_Has_Delayed_Freeze (E, False);
3635 Set_Freeze_Node (E, Empty);
3636 end if;
3637 end if;
3638 end;
3640 Check_Debug_Info_Needed (E);
3641 end if;
3643 -- AI-117 requires that the convention of a partial view be the
3644 -- same as the convention of the full view. Note that this is a
3645 -- recognized breach of privacy, but it's essential for logical
3646 -- consistency of representation, and the lack of a rule in
3647 -- RM95 was an oversight.
3649 Set_Convention (E, Convention (Full_View (E)));
3651 Set_Size_Known_At_Compile_Time (E,
3652 Size_Known_At_Compile_Time (Full_View (E)));
3654 -- Size information is copied from the full view to the
3655 -- incomplete or private view for consistency.
3657 -- We skip this is the full view is not a type. This is very
3658 -- strange of course, and can only happen as a result of
3659 -- certain illegalities, such as a premature attempt to derive
3660 -- from an incomplete type.
3662 if Is_Type (Full_View (E)) then
3663 Set_Size_Info (E, Full_View (E));
3664 Set_RM_Size (E, RM_Size (Full_View (E)));
3665 end if;
3667 return Result;
3669 -- Case of no full view present. If entity is derived or subtype,
3670 -- it is safe to freeze, correctness depends on the frozen status
3671 -- of parent. Otherwise it is either premature usage, or a Taft
3672 -- amendment type, so diagnosis is at the point of use and the
3673 -- type might be frozen later.
3675 elsif E /= Base_Type (E)
3676 or else Is_Derived_Type (E)
3677 then
3678 null;
3680 else
3681 Set_Is_Frozen (E, False);
3682 return No_List;
3683 end if;
3685 -- For access subprogram, freeze types of all formals, the return
3686 -- type was already frozen, since it is the Etype of the function.
3687 -- Formal types can be tagged Taft amendment types, but otherwise
3688 -- they cannot be incomplete.
3690 elsif Ekind (E) = E_Subprogram_Type then
3691 Formal := First_Formal (E);
3693 while Present (Formal) loop
3694 if Ekind (Etype (Formal)) = E_Incomplete_Type
3695 and then No (Full_View (Etype (Formal)))
3696 and then not Is_Value_Type (Etype (Formal))
3697 then
3698 if Is_Tagged_Type (Etype (Formal)) then
3699 null;
3700 else
3701 Error_Msg_NE
3702 ("invalid use of incomplete type&", E, Etype (Formal));
3703 end if;
3704 end if;
3706 Freeze_And_Append (Etype (Formal), Loc, Result);
3707 Next_Formal (Formal);
3708 end loop;
3710 Freeze_Subprogram (E);
3712 -- For access to a protected subprogram, freeze the equivalent type
3713 -- (however this is not set if we are not generating code or if this
3714 -- is an anonymous type used just for resolution).
3716 elsif Is_Access_Protected_Subprogram_Type (E) then
3717 if Present (Equivalent_Type (E)) then
3718 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3719 end if;
3720 end if;
3722 -- Generic types are never seen by the back-end, and are also not
3723 -- processed by the expander (since the expander is turned off for
3724 -- generic processing), so we never need freeze nodes for them.
3726 if Is_Generic_Type (E) then
3727 return Result;
3728 end if;
3730 -- Some special processing for non-generic types to complete
3731 -- representation details not known till the freeze point.
3733 if Is_Fixed_Point_Type (E) then
3734 Freeze_Fixed_Point_Type (E);
3736 -- Some error checks required for ordinary fixed-point type. Defer
3737 -- these till the freeze-point since we need the small and range
3738 -- values. We only do these checks for base types
3740 if Is_Ordinary_Fixed_Point_Type (E)
3741 and then E = Base_Type (E)
3742 then
3743 if Small_Value (E) < Ureal_2_M_80 then
3744 Error_Msg_Name_1 := Name_Small;
3745 Error_Msg_N
3746 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
3748 elsif Small_Value (E) > Ureal_2_80 then
3749 Error_Msg_Name_1 := Name_Small;
3750 Error_Msg_N
3751 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
3752 end if;
3754 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3755 Error_Msg_Name_1 := Name_First;
3756 Error_Msg_N
3757 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
3758 end if;
3760 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3761 Error_Msg_Name_1 := Name_Last;
3762 Error_Msg_N
3763 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
3764 end if;
3765 end if;
3767 elsif Is_Enumeration_Type (E) then
3768 Freeze_Enumeration_Type (E);
3770 elsif Is_Integer_Type (E) then
3771 Adjust_Esize_For_Alignment (E);
3773 if Is_Modular_Integer_Type (E)
3774 and then Warn_On_Suspicious_Modulus_Value
3775 then
3776 Check_Suspicious_Modulus (E);
3777 end if;
3779 elsif Is_Access_Type (E) then
3781 -- Check restriction for standard storage pool
3783 if No (Associated_Storage_Pool (E)) then
3784 Check_Restriction (No_Standard_Storage_Pools, E);
3785 end if;
3787 -- Deal with error message for pure access type. This is not an
3788 -- error in Ada 2005 if there is no pool (see AI-366).
3790 if Is_Pure_Unit_Access_Type (E)
3791 and then (Ada_Version < Ada_05
3792 or else not No_Pool_Assigned (E))
3793 then
3794 Error_Msg_N ("named access type not allowed in pure unit", E);
3796 if Ada_Version >= Ada_05 then
3797 Error_Msg_N
3798 ("\would be legal if Storage_Size of 0 given?", E);
3800 elsif No_Pool_Assigned (E) then
3801 Error_Msg_N
3802 ("\would be legal in Ada 2005?", E);
3804 else
3805 Error_Msg_N
3806 ("\would be legal in Ada 2005 if "
3807 & "Storage_Size of 0 given?", E);
3808 end if;
3809 end if;
3810 end if;
3812 -- Case of composite types
3814 if Is_Composite_Type (E) then
3816 -- AI-117 requires that all new primitives of a tagged type must
3817 -- inherit the convention of the full view of the type. Inherited
3818 -- and overriding operations are defined to inherit the convention
3819 -- of their parent or overridden subprogram (also specified in
3820 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3821 -- and New_Overloaded_Entity). Here we set the convention of
3822 -- primitives that are still convention Ada, which will ensure
3823 -- that any new primitives inherit the type's convention. Class-
3824 -- wide types can have a foreign convention inherited from their
3825 -- specific type, but are excluded from this since they don't have
3826 -- any associated primitives.
3828 if Is_Tagged_Type (E)
3829 and then not Is_Class_Wide_Type (E)
3830 and then Convention (E) /= Convention_Ada
3831 then
3832 declare
3833 Prim_List : constant Elist_Id := Primitive_Operations (E);
3834 Prim : Elmt_Id;
3835 begin
3836 Prim := First_Elmt (Prim_List);
3837 while Present (Prim) loop
3838 if Convention (Node (Prim)) = Convention_Ada then
3839 Set_Convention (Node (Prim), Convention (E));
3840 end if;
3842 Next_Elmt (Prim);
3843 end loop;
3844 end;
3845 end if;
3846 end if;
3848 -- Now that all types from which E may depend are frozen, see if the
3849 -- size is known at compile time, if it must be unsigned, or if
3850 -- strict alignment is required
3852 Check_Compile_Time_Size (E);
3853 Check_Unsigned_Type (E);
3855 if Base_Type (E) = E then
3856 Check_Strict_Alignment (E);
3857 end if;
3859 -- Do not allow a size clause for a type which does not have a size
3860 -- that is known at compile time
3862 if Has_Size_Clause (E)
3863 and then not Size_Known_At_Compile_Time (E)
3864 then
3865 -- Suppress this message if errors posted on E, even if we are
3866 -- in all errors mode, since this is often a junk message
3868 if not Error_Posted (E) then
3869 Error_Msg_N
3870 ("size clause not allowed for variable length type",
3871 Size_Clause (E));
3872 end if;
3873 end if;
3875 -- Remaining process is to set/verify the representation information,
3876 -- in particular the size and alignment values. This processing is
3877 -- not required for generic types, since generic types do not play
3878 -- any part in code generation, and so the size and alignment values
3879 -- for such types are irrelevant.
3881 if Is_Generic_Type (E) then
3882 return Result;
3884 -- Otherwise we call the layout procedure
3886 else
3887 Layout_Type (E);
3888 end if;
3890 -- End of freeze processing for type entities
3891 end if;
3893 -- Here is where we logically freeze the current entity. If it has a
3894 -- freeze node, then this is the point at which the freeze node is
3895 -- linked into the result list.
3897 if Has_Delayed_Freeze (E) then
3899 -- If a freeze node is already allocated, use it, otherwise allocate
3900 -- a new one. The preallocation happens in the case of anonymous base
3901 -- types, where we preallocate so that we can set First_Subtype_Link.
3902 -- Note that we reset the Sloc to the current freeze location.
3904 if Present (Freeze_Node (E)) then
3905 F_Node := Freeze_Node (E);
3906 Set_Sloc (F_Node, Loc);
3908 else
3909 F_Node := New_Node (N_Freeze_Entity, Loc);
3910 Set_Freeze_Node (E, F_Node);
3911 Set_Access_Types_To_Process (F_Node, No_Elist);
3912 Set_TSS_Elist (F_Node, No_Elist);
3913 Set_Actions (F_Node, No_List);
3914 end if;
3916 Set_Entity (F_Node, E);
3918 if Result = No_List then
3919 Result := New_List (F_Node);
3920 else
3921 Append (F_Node, Result);
3922 end if;
3924 -- A final pass over record types with discriminants. If the type
3925 -- has an incomplete declaration, there may be constrained access
3926 -- subtypes declared elsewhere, which do not depend on the discrimi-
3927 -- nants of the type, and which are used as component types (i.e.
3928 -- the full view is a recursive type). The designated types of these
3929 -- subtypes can only be elaborated after the type itself, and they
3930 -- need an itype reference.
3932 if Ekind (E) = E_Record_Type
3933 and then Has_Discriminants (E)
3934 then
3935 declare
3936 Comp : Entity_Id;
3937 IR : Node_Id;
3938 Typ : Entity_Id;
3940 begin
3941 Comp := First_Component (E);
3943 while Present (Comp) loop
3944 Typ := Etype (Comp);
3946 if Ekind (Comp) = E_Component
3947 and then Is_Access_Type (Typ)
3948 and then Scope (Typ) /= E
3949 and then Base_Type (Designated_Type (Typ)) = E
3950 and then Is_Itype (Designated_Type (Typ))
3951 then
3952 IR := Make_Itype_Reference (Sloc (Comp));
3953 Set_Itype (IR, Designated_Type (Typ));
3954 Append (IR, Result);
3955 end if;
3957 Next_Component (Comp);
3958 end loop;
3959 end;
3960 end if;
3961 end if;
3963 -- When a type is frozen, the first subtype of the type is frozen as
3964 -- well (RM 13.14(15)). This has to be done after freezing the type,
3965 -- since obviously the first subtype depends on its own base type.
3967 if Is_Type (E) then
3968 Freeze_And_Append (First_Subtype (E), Loc, Result);
3970 -- If we just froze a tagged non-class wide record, then freeze the
3971 -- corresponding class-wide type. This must be done after the tagged
3972 -- type itself is frozen, because the class-wide type refers to the
3973 -- tagged type which generates the class.
3975 if Is_Tagged_Type (E)
3976 and then not Is_Class_Wide_Type (E)
3977 and then Present (Class_Wide_Type (E))
3978 then
3979 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3980 end if;
3981 end if;
3983 Check_Debug_Info_Needed (E);
3985 -- Special handling for subprograms
3987 if Is_Subprogram (E) then
3989 -- If subprogram has address clause then reset Is_Public flag, since
3990 -- we do not want the backend to generate external references.
3992 if Present (Address_Clause (E))
3993 and then not Is_Library_Level_Entity (E)
3994 then
3995 Set_Is_Public (E, False);
3997 -- If no address clause and not intrinsic, then for imported
3998 -- subprogram in main unit, generate descriptor if we are in
3999 -- Propagate_Exceptions mode.
4001 elsif Propagate_Exceptions
4002 and then Is_Imported (E)
4003 and then not Is_Intrinsic_Subprogram (E)
4004 and then Convention (E) /= Convention_Stubbed
4005 then
4006 if Result = No_List then
4007 Result := Empty_List;
4008 end if;
4009 end if;
4010 end if;
4012 return Result;
4013 end Freeze_Entity;
4015 -----------------------------
4016 -- Freeze_Enumeration_Type --
4017 -----------------------------
4019 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
4020 begin
4021 -- By default, if no size clause is present, an enumeration type with
4022 -- Convention C is assumed to interface to a C enum, and has integer
4023 -- size. This applies to types. For subtypes, verify that its base
4024 -- type has no size clause either.
4026 if Has_Foreign_Convention (Typ)
4027 and then not Has_Size_Clause (Typ)
4028 and then not Has_Size_Clause (Base_Type (Typ))
4029 and then Esize (Typ) < Standard_Integer_Size
4030 then
4031 Init_Esize (Typ, Standard_Integer_Size);
4033 else
4034 -- If the enumeration type interfaces to C, and it has a size clause
4035 -- that specifies less than int size, it warrants a warning. The
4036 -- user may intend the C type to be an enum or a char, so this is
4037 -- not by itself an error that the Ada compiler can detect, but it
4038 -- it is a worth a heads-up. For Boolean and Character types we
4039 -- assume that the programmer has the proper C type in mind.
4041 if Convention (Typ) = Convention_C
4042 and then Has_Size_Clause (Typ)
4043 and then Esize (Typ) /= Esize (Standard_Integer)
4044 and then not Is_Boolean_Type (Typ)
4045 and then not Is_Character_Type (Typ)
4046 then
4047 Error_Msg_N
4048 ("C enum types have the size of a C int?", Size_Clause (Typ));
4049 end if;
4051 Adjust_Esize_For_Alignment (Typ);
4052 end if;
4053 end Freeze_Enumeration_Type;
4055 -----------------------
4056 -- Freeze_Expression --
4057 -----------------------
4059 procedure Freeze_Expression (N : Node_Id) is
4060 In_Spec_Exp : constant Boolean := In_Spec_Expression;
4061 Typ : Entity_Id;
4062 Nam : Entity_Id;
4063 Desig_Typ : Entity_Id;
4064 P : Node_Id;
4065 Parent_P : Node_Id;
4067 Freeze_Outside : Boolean := False;
4068 -- This flag is set true if the entity must be frozen outside the
4069 -- current subprogram. This happens in the case of expander generated
4070 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4071 -- not freeze all entities like other bodies, but which nevertheless
4072 -- may reference entities that have to be frozen before the body and
4073 -- obviously cannot be frozen inside the body.
4075 function In_Exp_Body (N : Node_Id) return Boolean;
4076 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
4077 -- it is the handled statement sequence of an expander-generated
4078 -- subprogram (init proc, stream subprogram, or renaming as body).
4079 -- If so, this is not a freezing context.
4081 -----------------
4082 -- In_Exp_Body --
4083 -----------------
4085 function In_Exp_Body (N : Node_Id) return Boolean is
4086 P : Node_Id;
4087 Id : Entity_Id;
4089 begin
4090 if Nkind (N) = N_Subprogram_Body then
4091 P := N;
4092 else
4093 P := Parent (N);
4094 end if;
4096 if Nkind (P) /= N_Subprogram_Body then
4097 return False;
4099 else
4100 Id := Defining_Unit_Name (Specification (P));
4102 if Nkind (Id) = N_Defining_Identifier
4103 and then (Is_Init_Proc (Id) or else
4104 Is_TSS (Id, TSS_Stream_Input) or else
4105 Is_TSS (Id, TSS_Stream_Output) or else
4106 Is_TSS (Id, TSS_Stream_Read) or else
4107 Is_TSS (Id, TSS_Stream_Write) or else
4108 Nkind (Original_Node (P)) =
4109 N_Subprogram_Renaming_Declaration)
4110 then
4111 return True;
4112 else
4113 return False;
4114 end if;
4115 end if;
4116 end In_Exp_Body;
4118 -- Start of processing for Freeze_Expression
4120 begin
4121 -- Immediate return if freezing is inhibited. This flag is set by the
4122 -- analyzer to stop freezing on generated expressions that would cause
4123 -- freezing if they were in the source program, but which are not
4124 -- supposed to freeze, since they are created.
4126 if Must_Not_Freeze (N) then
4127 return;
4128 end if;
4130 -- If expression is non-static, then it does not freeze in a default
4131 -- expression, see section "Handling of Default Expressions" in the
4132 -- spec of package Sem for further details. Note that we have to
4133 -- make sure that we actually have a real expression (if we have
4134 -- a subtype indication, we can't test Is_Static_Expression!)
4136 if In_Spec_Exp
4137 and then Nkind (N) in N_Subexpr
4138 and then not Is_Static_Expression (N)
4139 then
4140 return;
4141 end if;
4143 -- Freeze type of expression if not frozen already
4145 Typ := Empty;
4147 if Nkind (N) in N_Has_Etype then
4148 if not Is_Frozen (Etype (N)) then
4149 Typ := Etype (N);
4151 -- Base type may be an derived numeric type that is frozen at
4152 -- the point of declaration, but first_subtype is still unfrozen.
4154 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4155 Typ := First_Subtype (Etype (N));
4156 end if;
4157 end if;
4159 -- For entity name, freeze entity if not frozen already. A special
4160 -- exception occurs for an identifier that did not come from source.
4161 -- We don't let such identifiers freeze a non-internal entity, i.e.
4162 -- an entity that did come from source, since such an identifier was
4163 -- generated by the expander, and cannot have any semantic effect on
4164 -- the freezing semantics. For example, this stops the parameter of
4165 -- an initialization procedure from freezing the variable.
4167 if Is_Entity_Name (N)
4168 and then not Is_Frozen (Entity (N))
4169 and then (Nkind (N) /= N_Identifier
4170 or else Comes_From_Source (N)
4171 or else not Comes_From_Source (Entity (N)))
4172 then
4173 Nam := Entity (N);
4174 else
4175 Nam := Empty;
4176 end if;
4178 -- For an allocator freeze designated type if not frozen already
4180 -- For an aggregate whose component type is an access type, freeze the
4181 -- designated type now, so that its freeze does not appear within the
4182 -- loop that might be created in the expansion of the aggregate. If the
4183 -- designated type is a private type without full view, the expression
4184 -- cannot contain an allocator, so the type is not frozen.
4186 -- For a function, we freeze the entity when the subprogram declaration
4187 -- is frozen, but a function call may appear in an initialization proc.
4188 -- before the declaration is frozen. We need to generate the extra
4189 -- formals, if any, to ensure that the expansion of the call includes
4190 -- the proper actuals. This only applies to Ada subprograms, not to
4191 -- imported ones.
4193 Desig_Typ := Empty;
4195 case Nkind (N) is
4196 when N_Allocator =>
4197 Desig_Typ := Designated_Type (Etype (N));
4199 when N_Aggregate =>
4200 if Is_Array_Type (Etype (N))
4201 and then Is_Access_Type (Component_Type (Etype (N)))
4202 then
4203 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4204 end if;
4206 when N_Selected_Component |
4207 N_Indexed_Component |
4208 N_Slice =>
4210 if Is_Access_Type (Etype (Prefix (N))) then
4211 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4212 end if;
4214 when N_Identifier =>
4215 if Present (Nam)
4216 and then Ekind (Nam) = E_Function
4217 and then Nkind (Parent (N)) = N_Function_Call
4218 and then Convention (Nam) = Convention_Ada
4219 then
4220 Create_Extra_Formals (Nam);
4221 end if;
4223 when others =>
4224 null;
4225 end case;
4227 if Desig_Typ /= Empty
4228 and then (Is_Frozen (Desig_Typ)
4229 or else (not Is_Fully_Defined (Desig_Typ)))
4230 then
4231 Desig_Typ := Empty;
4232 end if;
4234 -- All done if nothing needs freezing
4236 if No (Typ)
4237 and then No (Nam)
4238 and then No (Desig_Typ)
4239 then
4240 return;
4241 end if;
4243 -- Loop for looking at the right place to insert the freeze nodes,
4244 -- exiting from the loop when it is appropriate to insert the freeze
4245 -- node before the current node P.
4247 -- Also checks som special exceptions to the freezing rules. These cases
4248 -- result in a direct return, bypassing the freeze action.
4250 P := N;
4251 loop
4252 Parent_P := Parent (P);
4254 -- If we don't have a parent, then we are not in a well-formed tree.
4255 -- This is an unusual case, but there are some legitimate situations
4256 -- in which this occurs, notably when the expressions in the range of
4257 -- a type declaration are resolved. We simply ignore the freeze
4258 -- request in this case. Is this right ???
4260 if No (Parent_P) then
4261 return;
4262 end if;
4264 -- See if we have got to an appropriate point in the tree
4266 case Nkind (Parent_P) is
4268 -- A special test for the exception of (RM 13.14(8)) for the case
4269 -- of per-object expressions (RM 3.8(18)) occurring in component
4270 -- definition or a discrete subtype definition. Note that we test
4271 -- for a component declaration which includes both cases we are
4272 -- interested in, and furthermore the tree does not have explicit
4273 -- nodes for either of these two constructs.
4275 when N_Component_Declaration =>
4277 -- The case we want to test for here is an identifier that is
4278 -- a per-object expression, this is either a discriminant that
4279 -- appears in a context other than the component declaration
4280 -- or it is a reference to the type of the enclosing construct.
4282 -- For either of these cases, we skip the freezing
4284 if not In_Spec_Expression
4285 and then Nkind (N) = N_Identifier
4286 and then (Present (Entity (N)))
4287 then
4288 -- We recognize the discriminant case by just looking for
4289 -- a reference to a discriminant. It can only be one for
4290 -- the enclosing construct. Skip freezing in this case.
4292 if Ekind (Entity (N)) = E_Discriminant then
4293 return;
4295 -- For the case of a reference to the enclosing record,
4296 -- (or task or protected type), we look for a type that
4297 -- matches the current scope.
4299 elsif Entity (N) = Current_Scope then
4300 return;
4301 end if;
4302 end if;
4304 -- If we have an enumeration literal that appears as the choice in
4305 -- the aggregate of an enumeration representation clause, then
4306 -- freezing does not occur (RM 13.14(10)).
4308 when N_Enumeration_Representation_Clause =>
4310 -- The case we are looking for is an enumeration literal
4312 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4313 and then Is_Enumeration_Type (Etype (N))
4314 then
4315 -- If enumeration literal appears directly as the choice,
4316 -- do not freeze (this is the normal non-overloaded case)
4318 if Nkind (Parent (N)) = N_Component_Association
4319 and then First (Choices (Parent (N))) = N
4320 then
4321 return;
4323 -- If enumeration literal appears as the name of function
4324 -- which is the choice, then also do not freeze. This
4325 -- happens in the overloaded literal case, where the
4326 -- enumeration literal is temporarily changed to a function
4327 -- call for overloading analysis purposes.
4329 elsif Nkind (Parent (N)) = N_Function_Call
4330 and then
4331 Nkind (Parent (Parent (N))) = N_Component_Association
4332 and then
4333 First (Choices (Parent (Parent (N)))) = Parent (N)
4334 then
4335 return;
4336 end if;
4337 end if;
4339 -- Normally if the parent is a handled sequence of statements,
4340 -- then the current node must be a statement, and that is an
4341 -- appropriate place to insert a freeze node.
4343 when N_Handled_Sequence_Of_Statements =>
4345 -- An exception occurs when the sequence of statements is for
4346 -- an expander generated body that did not do the usual freeze
4347 -- all operation. In this case we usually want to freeze
4348 -- outside this body, not inside it, and we skip past the
4349 -- subprogram body that we are inside.
4351 if In_Exp_Body (Parent_P) then
4353 -- However, we *do* want to freeze at this point if we have
4354 -- an entity to freeze, and that entity is declared *inside*
4355 -- the body of the expander generated procedure. This case
4356 -- is recognized by the scope of the type, which is either
4357 -- the spec for some enclosing body, or (in the case of
4358 -- init_procs, for which there are no separate specs) the
4359 -- current scope.
4361 declare
4362 Subp : constant Node_Id := Parent (Parent_P);
4363 Cspc : Entity_Id;
4365 begin
4366 if Nkind (Subp) = N_Subprogram_Body then
4367 Cspc := Corresponding_Spec (Subp);
4369 if (Present (Typ) and then Scope (Typ) = Cspc)
4370 or else
4371 (Present (Nam) and then Scope (Nam) = Cspc)
4372 then
4373 exit;
4375 elsif Present (Typ)
4376 and then Scope (Typ) = Current_Scope
4377 and then Current_Scope = Defining_Entity (Subp)
4378 then
4379 exit;
4380 end if;
4381 end if;
4382 end;
4384 -- If not that exception to the exception, then this is
4385 -- where we delay the freeze till outside the body.
4387 Parent_P := Parent (Parent_P);
4388 Freeze_Outside := True;
4390 -- Here if normal case where we are in handled statement
4391 -- sequence and want to do the insertion right there.
4393 else
4394 exit;
4395 end if;
4397 -- If parent is a body or a spec or a block, then the current node
4398 -- is a statement or declaration and we can insert the freeze node
4399 -- before it.
4401 when N_Package_Specification |
4402 N_Package_Body |
4403 N_Subprogram_Body |
4404 N_Task_Body |
4405 N_Protected_Body |
4406 N_Entry_Body |
4407 N_Block_Statement => exit;
4409 -- The expander is allowed to define types in any statements list,
4410 -- so any of the following parent nodes also mark a freezing point
4411 -- if the actual node is in a list of statements or declarations.
4413 when N_Exception_Handler |
4414 N_If_Statement |
4415 N_Elsif_Part |
4416 N_Case_Statement_Alternative |
4417 N_Compilation_Unit_Aux |
4418 N_Selective_Accept |
4419 N_Accept_Alternative |
4420 N_Delay_Alternative |
4421 N_Conditional_Entry_Call |
4422 N_Entry_Call_Alternative |
4423 N_Triggering_Alternative |
4424 N_Abortable_Part |
4425 N_Freeze_Entity =>
4427 exit when Is_List_Member (P);
4429 -- Note: The N_Loop_Statement is a special case. A type that
4430 -- appears in the source can never be frozen in a loop (this
4431 -- occurs only because of a loop expanded by the expander), so we
4432 -- keep on going. Otherwise we terminate the search. Same is true
4433 -- of any entity which comes from source. (if they have predefined
4434 -- type, that type does not appear to come from source, but the
4435 -- entity should not be frozen here).
4437 when N_Loop_Statement =>
4438 exit when not Comes_From_Source (Etype (N))
4439 and then (No (Nam) or else not Comes_From_Source (Nam));
4441 -- For all other cases, keep looking at parents
4443 when others =>
4444 null;
4445 end case;
4447 -- We fall through the case if we did not yet find the proper
4448 -- place in the free for inserting the freeze node, so climb!
4450 P := Parent_P;
4451 end loop;
4453 -- If the expression appears in a record or an initialization procedure,
4454 -- the freeze nodes are collected and attached to the current scope, to
4455 -- be inserted and analyzed on exit from the scope, to insure that
4456 -- generated entities appear in the correct scope. If the expression is
4457 -- a default for a discriminant specification, the scope is still void.
4458 -- The expression can also appear in the discriminant part of a private
4459 -- or concurrent type.
4461 -- If the expression appears in a constrained subcomponent of an
4462 -- enclosing record declaration, the freeze nodes must be attached to
4463 -- the outer record type so they can eventually be placed in the
4464 -- enclosing declaration list.
4466 -- The other case requiring this special handling is if we are in a
4467 -- default expression, since in that case we are about to freeze a
4468 -- static type, and the freeze scope needs to be the outer scope, not
4469 -- the scope of the subprogram with the default parameter.
4471 -- For default expressions and other spec expressions in generic units,
4472 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4473 -- placing them at the proper place, after the generic unit.
4475 if (In_Spec_Exp and not Inside_A_Generic)
4476 or else Freeze_Outside
4477 or else (Is_Type (Current_Scope)
4478 and then (not Is_Concurrent_Type (Current_Scope)
4479 or else not Has_Completion (Current_Scope)))
4480 or else Ekind (Current_Scope) = E_Void
4481 then
4482 declare
4483 Loc : constant Source_Ptr := Sloc (Current_Scope);
4484 Freeze_Nodes : List_Id := No_List;
4485 Pos : Int := Scope_Stack.Last;
4487 begin
4488 if Present (Desig_Typ) then
4489 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4490 end if;
4492 if Present (Typ) then
4493 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4494 end if;
4496 if Present (Nam) then
4497 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4498 end if;
4500 -- The current scope may be that of a constrained component of
4501 -- an enclosing record declaration, which is above the current
4502 -- scope in the scope stack.
4504 if Is_Record_Type (Scope (Current_Scope)) then
4505 Pos := Pos - 1;
4506 end if;
4508 if Is_Non_Empty_List (Freeze_Nodes) then
4509 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4510 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
4511 Freeze_Nodes;
4512 else
4513 Append_List (Freeze_Nodes, Scope_Stack.Table
4514 (Pos).Pending_Freeze_Actions);
4515 end if;
4516 end if;
4517 end;
4519 return;
4520 end if;
4522 -- Now we have the right place to do the freezing. First, a special
4523 -- adjustment, if we are in spec-expression analysis mode, these freeze
4524 -- actions must not be thrown away (normally all inserted actions are
4525 -- thrown away in this mode. However, the freeze actions are from static
4526 -- expressions and one of the important reasons we are doing this
4527 -- special analysis is to get these freeze actions. Therefore we turn
4528 -- off the In_Spec_Expression mode to propagate these freeze actions.
4529 -- This also means they get properly analyzed and expanded.
4531 In_Spec_Expression := False;
4533 -- Freeze the designated type of an allocator (RM 13.14(13))
4535 if Present (Desig_Typ) then
4536 Freeze_Before (P, Desig_Typ);
4537 end if;
4539 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
4540 -- the enumeration representation clause exception in the loop above.
4542 if Present (Typ) then
4543 Freeze_Before (P, Typ);
4544 end if;
4546 -- Freeze name if one is present (RM 13.14(11))
4548 if Present (Nam) then
4549 Freeze_Before (P, Nam);
4550 end if;
4552 -- Restore In_Spec_Expression flag
4554 In_Spec_Expression := In_Spec_Exp;
4555 end Freeze_Expression;
4557 -----------------------------
4558 -- Freeze_Fixed_Point_Type --
4559 -----------------------------
4561 -- Certain fixed-point types and subtypes, including implicit base types
4562 -- and declared first subtypes, have not yet set up a range. This is
4563 -- because the range cannot be set until the Small and Size values are
4564 -- known, and these are not known till the type is frozen.
4566 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4567 -- whose bounds are unanalyzed real literals. This routine will recognize
4568 -- this case, and transform this range node into a properly typed range
4569 -- with properly analyzed and resolved values.
4571 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4572 Rng : constant Node_Id := Scalar_Range (Typ);
4573 Lo : constant Node_Id := Low_Bound (Rng);
4574 Hi : constant Node_Id := High_Bound (Rng);
4575 Btyp : constant Entity_Id := Base_Type (Typ);
4576 Brng : constant Node_Id := Scalar_Range (Btyp);
4577 BLo : constant Node_Id := Low_Bound (Brng);
4578 BHi : constant Node_Id := High_Bound (Brng);
4579 Small : constant Ureal := Small_Value (Typ);
4580 Loval : Ureal;
4581 Hival : Ureal;
4582 Atype : Entity_Id;
4584 Actual_Size : Nat;
4586 function Fsize (Lov, Hiv : Ureal) return Nat;
4587 -- Returns size of type with given bounds. Also leaves these
4588 -- bounds set as the current bounds of the Typ.
4590 -----------
4591 -- Fsize --
4592 -----------
4594 function Fsize (Lov, Hiv : Ureal) return Nat is
4595 begin
4596 Set_Realval (Lo, Lov);
4597 Set_Realval (Hi, Hiv);
4598 return Minimum_Size (Typ);
4599 end Fsize;
4601 -- Start of processing for Freeze_Fixed_Point_Type
4603 begin
4604 -- If Esize of a subtype has not previously been set, set it now
4606 if Unknown_Esize (Typ) then
4607 Atype := Ancestor_Subtype (Typ);
4609 if Present (Atype) then
4610 Set_Esize (Typ, Esize (Atype));
4611 else
4612 Set_Esize (Typ, Esize (Base_Type (Typ)));
4613 end if;
4614 end if;
4616 -- Immediate return if the range is already analyzed. This means that
4617 -- the range is already set, and does not need to be computed by this
4618 -- routine.
4620 if Analyzed (Rng) then
4621 return;
4622 end if;
4624 -- Immediate return if either of the bounds raises Constraint_Error
4626 if Raises_Constraint_Error (Lo)
4627 or else Raises_Constraint_Error (Hi)
4628 then
4629 return;
4630 end if;
4632 Loval := Realval (Lo);
4633 Hival := Realval (Hi);
4635 -- Ordinary fixed-point case
4637 if Is_Ordinary_Fixed_Point_Type (Typ) then
4639 -- For the ordinary fixed-point case, we are allowed to fudge the
4640 -- end-points up or down by small. Generally we prefer to fudge up,
4641 -- i.e. widen the bounds for non-model numbers so that the end points
4642 -- are included. However there are cases in which this cannot be
4643 -- done, and indeed cases in which we may need to narrow the bounds.
4644 -- The following circuit makes the decision.
4646 -- Note: our terminology here is that Incl_EP means that the bounds
4647 -- are widened by Small if necessary to include the end points, and
4648 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4649 -- end-points if this reduces the size.
4651 -- Note that in the Incl case, all we care about is including the
4652 -- end-points. In the Excl case, we want to narrow the bounds as
4653 -- much as permitted by the RM, to give the smallest possible size.
4655 Fudge : declare
4656 Loval_Incl_EP : Ureal;
4657 Hival_Incl_EP : Ureal;
4659 Loval_Excl_EP : Ureal;
4660 Hival_Excl_EP : Ureal;
4662 Size_Incl_EP : Nat;
4663 Size_Excl_EP : Nat;
4665 Model_Num : Ureal;
4666 First_Subt : Entity_Id;
4667 Actual_Lo : Ureal;
4668 Actual_Hi : Ureal;
4670 begin
4671 -- First step. Base types are required to be symmetrical. Right
4672 -- now, the base type range is a copy of the first subtype range.
4673 -- This will be corrected before we are done, but right away we
4674 -- need to deal with the case where both bounds are non-negative.
4675 -- In this case, we set the low bound to the negative of the high
4676 -- bound, to make sure that the size is computed to include the
4677 -- required sign. Note that we do not need to worry about the
4678 -- case of both bounds negative, because the sign will be dealt
4679 -- with anyway. Furthermore we can't just go making such a bound
4680 -- symmetrical, since in a twos-complement system, there is an
4681 -- extra negative value which could not be accommodated on the
4682 -- positive side.
4684 if Typ = Btyp
4685 and then not UR_Is_Negative (Loval)
4686 and then Hival > Loval
4687 then
4688 Loval := -Hival;
4689 Set_Realval (Lo, Loval);
4690 end if;
4692 -- Compute the fudged bounds. If the number is a model number,
4693 -- then we do nothing to include it, but we are allowed to backoff
4694 -- to the next adjacent model number when we exclude it. If it is
4695 -- not a model number then we straddle the two values with the
4696 -- model numbers on either side.
4698 Model_Num := UR_Trunc (Loval / Small) * Small;
4700 if Loval = Model_Num then
4701 Loval_Incl_EP := Model_Num;
4702 else
4703 Loval_Incl_EP := Model_Num - Small;
4704 end if;
4706 -- The low value excluding the end point is Small greater, but
4707 -- we do not do this exclusion if the low value is positive,
4708 -- since it can't help the size and could actually hurt by
4709 -- crossing the high bound.
4711 if UR_Is_Negative (Loval_Incl_EP) then
4712 Loval_Excl_EP := Loval_Incl_EP + Small;
4714 -- If the value went from negative to zero, then we have the
4715 -- case where Loval_Incl_EP is the model number just below
4716 -- zero, so we want to stick to the negative value for the
4717 -- base type to maintain the condition that the size will
4718 -- include signed values.
4720 if Typ = Btyp
4721 and then UR_Is_Zero (Loval_Excl_EP)
4722 then
4723 Loval_Excl_EP := Loval_Incl_EP;
4724 end if;
4726 else
4727 Loval_Excl_EP := Loval_Incl_EP;
4728 end if;
4730 -- Similar processing for upper bound and high value
4732 Model_Num := UR_Trunc (Hival / Small) * Small;
4734 if Hival = Model_Num then
4735 Hival_Incl_EP := Model_Num;
4736 else
4737 Hival_Incl_EP := Model_Num + Small;
4738 end if;
4740 if UR_Is_Positive (Hival_Incl_EP) then
4741 Hival_Excl_EP := Hival_Incl_EP - Small;
4742 else
4743 Hival_Excl_EP := Hival_Incl_EP;
4744 end if;
4746 -- One further adjustment is needed. In the case of subtypes, we
4747 -- cannot go outside the range of the base type, or we get
4748 -- peculiarities, and the base type range is already set. This
4749 -- only applies to the Incl values, since clearly the Excl values
4750 -- are already as restricted as they are allowed to be.
4752 if Typ /= Btyp then
4753 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4754 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4755 end if;
4757 -- Get size including and excluding end points
4759 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4760 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4762 -- No need to exclude end-points if it does not reduce size
4764 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4765 Loval_Excl_EP := Loval_Incl_EP;
4766 end if;
4768 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4769 Hival_Excl_EP := Hival_Incl_EP;
4770 end if;
4772 -- Now we set the actual size to be used. We want to use the
4773 -- bounds fudged up to include the end-points but only if this
4774 -- can be done without violating a specifically given size
4775 -- size clause or causing an unacceptable increase in size.
4777 -- Case of size clause given
4779 if Has_Size_Clause (Typ) then
4781 -- Use the inclusive size only if it is consistent with
4782 -- the explicitly specified size.
4784 if Size_Incl_EP <= RM_Size (Typ) then
4785 Actual_Lo := Loval_Incl_EP;
4786 Actual_Hi := Hival_Incl_EP;
4787 Actual_Size := Size_Incl_EP;
4789 -- If the inclusive size is too large, we try excluding
4790 -- the end-points (will be caught later if does not work).
4792 else
4793 Actual_Lo := Loval_Excl_EP;
4794 Actual_Hi := Hival_Excl_EP;
4795 Actual_Size := Size_Excl_EP;
4796 end if;
4798 -- Case of size clause not given
4800 else
4801 -- If we have a base type whose corresponding first subtype
4802 -- has an explicit size that is large enough to include our
4803 -- end-points, then do so. There is no point in working hard
4804 -- to get a base type whose size is smaller than the specified
4805 -- size of the first subtype.
4807 First_Subt := First_Subtype (Typ);
4809 if Has_Size_Clause (First_Subt)
4810 and then Size_Incl_EP <= Esize (First_Subt)
4811 then
4812 Actual_Size := Size_Incl_EP;
4813 Actual_Lo := Loval_Incl_EP;
4814 Actual_Hi := Hival_Incl_EP;
4816 -- If excluding the end-points makes the size smaller and
4817 -- results in a size of 8,16,32,64, then we take the smaller
4818 -- size. For the 64 case, this is compulsory. For the other
4819 -- cases, it seems reasonable. We like to include end points
4820 -- if we can, but not at the expense of moving to the next
4821 -- natural boundary of size.
4823 elsif Size_Incl_EP /= Size_Excl_EP
4824 and then
4825 (Size_Excl_EP = 8 or else
4826 Size_Excl_EP = 16 or else
4827 Size_Excl_EP = 32 or else
4828 Size_Excl_EP = 64)
4829 then
4830 Actual_Size := Size_Excl_EP;
4831 Actual_Lo := Loval_Excl_EP;
4832 Actual_Hi := Hival_Excl_EP;
4834 -- Otherwise we can definitely include the end points
4836 else
4837 Actual_Size := Size_Incl_EP;
4838 Actual_Lo := Loval_Incl_EP;
4839 Actual_Hi := Hival_Incl_EP;
4840 end if;
4842 -- One pathological case: normally we never fudge a low bound
4843 -- down, since it would seem to increase the size (if it has
4844 -- any effect), but for ranges containing single value, or no
4845 -- values, the high bound can be small too large. Consider:
4847 -- type t is delta 2.0**(-14)
4848 -- range 131072.0 .. 0;
4850 -- That lower bound is *just* outside the range of 32 bits, and
4851 -- does need fudging down in this case. Note that the bounds
4852 -- will always have crossed here, since the high bound will be
4853 -- fudged down if necessary, as in the case of:
4855 -- type t is delta 2.0**(-14)
4856 -- range 131072.0 .. 131072.0;
4858 -- So we detect the situation by looking for crossed bounds,
4859 -- and if the bounds are crossed, and the low bound is greater
4860 -- than zero, we will always back it off by small, since this
4861 -- is completely harmless.
4863 if Actual_Lo > Actual_Hi then
4864 if UR_Is_Positive (Actual_Lo) then
4865 Actual_Lo := Loval_Incl_EP - Small;
4866 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4868 -- And of course, we need to do exactly the same parallel
4869 -- fudge for flat ranges in the negative region.
4871 elsif UR_Is_Negative (Actual_Hi) then
4872 Actual_Hi := Hival_Incl_EP + Small;
4873 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4874 end if;
4875 end if;
4876 end if;
4878 Set_Realval (Lo, Actual_Lo);
4879 Set_Realval (Hi, Actual_Hi);
4880 end Fudge;
4882 -- For the decimal case, none of this fudging is required, since there
4883 -- are no end-point problems in the decimal case (the end-points are
4884 -- always included).
4886 else
4887 Actual_Size := Fsize (Loval, Hival);
4888 end if;
4890 -- At this stage, the actual size has been calculated and the proper
4891 -- required bounds are stored in the low and high bounds.
4893 if Actual_Size > 64 then
4894 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4895 Error_Msg_N
4896 ("size required (^) for type& too large, maximum allowed is 64",
4897 Typ);
4898 Actual_Size := 64;
4899 end if;
4901 -- Check size against explicit given size
4903 if Has_Size_Clause (Typ) then
4904 if Actual_Size > RM_Size (Typ) then
4905 Error_Msg_Uint_1 := RM_Size (Typ);
4906 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4907 Error_Msg_NE
4908 ("size given (^) for type& too small, minimum allowed is ^",
4909 Size_Clause (Typ), Typ);
4911 else
4912 Actual_Size := UI_To_Int (Esize (Typ));
4913 end if;
4915 -- Increase size to next natural boundary if no size clause given
4917 else
4918 if Actual_Size <= 8 then
4919 Actual_Size := 8;
4920 elsif Actual_Size <= 16 then
4921 Actual_Size := 16;
4922 elsif Actual_Size <= 32 then
4923 Actual_Size := 32;
4924 else
4925 Actual_Size := 64;
4926 end if;
4928 Init_Esize (Typ, Actual_Size);
4929 Adjust_Esize_For_Alignment (Typ);
4930 end if;
4932 -- If we have a base type, then expand the bounds so that they extend to
4933 -- the full width of the allocated size in bits, to avoid junk range
4934 -- checks on intermediate computations.
4936 if Base_Type (Typ) = Typ then
4937 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4938 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4939 end if;
4941 -- Final step is to reanalyze the bounds using the proper type
4942 -- and set the Corresponding_Integer_Value fields of the literals.
4944 Set_Etype (Lo, Empty);
4945 Set_Analyzed (Lo, False);
4946 Analyze (Lo);
4948 -- Resolve with universal fixed if the base type, and the base type if
4949 -- it is a subtype. Note we can't resolve the base type with itself,
4950 -- that would be a reference before definition.
4952 if Typ = Btyp then
4953 Resolve (Lo, Universal_Fixed);
4954 else
4955 Resolve (Lo, Btyp);
4956 end if;
4958 -- Set corresponding integer value for bound
4960 Set_Corresponding_Integer_Value
4961 (Lo, UR_To_Uint (Realval (Lo) / Small));
4963 -- Similar processing for high bound
4965 Set_Etype (Hi, Empty);
4966 Set_Analyzed (Hi, False);
4967 Analyze (Hi);
4969 if Typ = Btyp then
4970 Resolve (Hi, Universal_Fixed);
4971 else
4972 Resolve (Hi, Btyp);
4973 end if;
4975 Set_Corresponding_Integer_Value
4976 (Hi, UR_To_Uint (Realval (Hi) / Small));
4978 -- Set type of range to correspond to bounds
4980 Set_Etype (Rng, Etype (Lo));
4982 -- Set Esize to calculated size if not set already
4984 if Unknown_Esize (Typ) then
4985 Init_Esize (Typ, Actual_Size);
4986 end if;
4988 -- Set RM_Size if not already set. If already set, check value
4990 declare
4991 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4993 begin
4994 if RM_Size (Typ) /= Uint_0 then
4995 if RM_Size (Typ) < Minsiz then
4996 Error_Msg_Uint_1 := RM_Size (Typ);
4997 Error_Msg_Uint_2 := Minsiz;
4998 Error_Msg_NE
4999 ("size given (^) for type& too small, minimum allowed is ^",
5000 Size_Clause (Typ), Typ);
5001 end if;
5003 else
5004 Set_RM_Size (Typ, Minsiz);
5005 end if;
5006 end;
5007 end Freeze_Fixed_Point_Type;
5009 ------------------
5010 -- Freeze_Itype --
5011 ------------------
5013 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
5014 L : List_Id;
5016 begin
5017 Set_Has_Delayed_Freeze (T);
5018 L := Freeze_Entity (T, Sloc (N));
5020 if Is_Non_Empty_List (L) then
5021 Insert_Actions (N, L);
5022 end if;
5023 end Freeze_Itype;
5025 --------------------------
5026 -- Freeze_Static_Object --
5027 --------------------------
5029 procedure Freeze_Static_Object (E : Entity_Id) is
5031 Cannot_Be_Static : exception;
5032 -- Exception raised if the type of a static object cannot be made
5033 -- static. This happens if the type depends on non-global objects.
5035 procedure Ensure_Expression_Is_SA (N : Node_Id);
5036 -- Called to ensure that an expression used as part of a type definition
5037 -- is statically allocatable, which means that the expression type is
5038 -- statically allocatable, and the expression is either static, or a
5039 -- reference to a library level constant.
5041 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
5042 -- Called to mark a type as static, checking that it is possible
5043 -- to set the type as static. If it is not possible, then the
5044 -- exception Cannot_Be_Static is raised.
5046 -----------------------------
5047 -- Ensure_Expression_Is_SA --
5048 -----------------------------
5050 procedure Ensure_Expression_Is_SA (N : Node_Id) is
5051 Ent : Entity_Id;
5053 begin
5054 Ensure_Type_Is_SA (Etype (N));
5056 if Is_Static_Expression (N) then
5057 return;
5059 elsif Nkind (N) = N_Identifier then
5060 Ent := Entity (N);
5062 if Present (Ent)
5063 and then Ekind (Ent) = E_Constant
5064 and then Is_Library_Level_Entity (Ent)
5065 then
5066 return;
5067 end if;
5068 end if;
5070 raise Cannot_Be_Static;
5071 end Ensure_Expression_Is_SA;
5073 -----------------------
5074 -- Ensure_Type_Is_SA --
5075 -----------------------
5077 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5078 N : Node_Id;
5079 C : Entity_Id;
5081 begin
5082 -- If type is library level, we are all set
5084 if Is_Library_Level_Entity (Typ) then
5085 return;
5086 end if;
5088 -- We are also OK if the type already marked as statically allocated,
5089 -- which means we processed it before.
5091 if Is_Statically_Allocated (Typ) then
5092 return;
5093 end if;
5095 -- Mark type as statically allocated
5097 Set_Is_Statically_Allocated (Typ);
5099 -- Check that it is safe to statically allocate this type
5101 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5102 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5103 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5105 elsif Is_Array_Type (Typ) then
5106 N := First_Index (Typ);
5107 while Present (N) loop
5108 Ensure_Type_Is_SA (Etype (N));
5109 Next_Index (N);
5110 end loop;
5112 Ensure_Type_Is_SA (Component_Type (Typ));
5114 elsif Is_Access_Type (Typ) then
5115 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5117 declare
5118 F : Entity_Id;
5119 T : constant Entity_Id := Etype (Designated_Type (Typ));
5121 begin
5122 if T /= Standard_Void_Type then
5123 Ensure_Type_Is_SA (T);
5124 end if;
5126 F := First_Formal (Designated_Type (Typ));
5128 while Present (F) loop
5129 Ensure_Type_Is_SA (Etype (F));
5130 Next_Formal (F);
5131 end loop;
5132 end;
5134 else
5135 Ensure_Type_Is_SA (Designated_Type (Typ));
5136 end if;
5138 elsif Is_Record_Type (Typ) then
5139 C := First_Entity (Typ);
5140 while Present (C) loop
5141 if Ekind (C) = E_Discriminant
5142 or else Ekind (C) = E_Component
5143 then
5144 Ensure_Type_Is_SA (Etype (C));
5146 elsif Is_Type (C) then
5147 Ensure_Type_Is_SA (C);
5148 end if;
5150 Next_Entity (C);
5151 end loop;
5153 elsif Ekind (Typ) = E_Subprogram_Type then
5154 Ensure_Type_Is_SA (Etype (Typ));
5156 C := First_Formal (Typ);
5157 while Present (C) loop
5158 Ensure_Type_Is_SA (Etype (C));
5159 Next_Formal (C);
5160 end loop;
5162 else
5163 raise Cannot_Be_Static;
5164 end if;
5165 end Ensure_Type_Is_SA;
5167 -- Start of processing for Freeze_Static_Object
5169 begin
5170 Ensure_Type_Is_SA (Etype (E));
5172 exception
5173 when Cannot_Be_Static =>
5175 -- If the object that cannot be static is imported or exported, then
5176 -- issue an error message saying that this object cannot be imported
5177 -- or exported. If it has an address clause it is an overlay in the
5178 -- current partition and the static requirement is not relevant.
5180 if Is_Imported (E) and then No (Address_Clause (E)) then
5181 Error_Msg_N
5182 ("& cannot be imported (local type is not constant)", E);
5184 -- Otherwise must be exported, something is wrong if compiler
5185 -- is marking something as statically allocated which cannot be).
5187 else pragma Assert (Is_Exported (E));
5188 Error_Msg_N
5189 ("& cannot be exported (local type is not constant)", E);
5190 end if;
5191 end Freeze_Static_Object;
5193 -----------------------
5194 -- Freeze_Subprogram --
5195 -----------------------
5197 procedure Freeze_Subprogram (E : Entity_Id) is
5198 Retype : Entity_Id;
5199 F : Entity_Id;
5201 begin
5202 -- Subprogram may not have an address clause unless it is imported
5204 if Present (Address_Clause (E)) then
5205 if not Is_Imported (E) then
5206 Error_Msg_N
5207 ("address clause can only be given " &
5208 "for imported subprogram",
5209 Name (Address_Clause (E)));
5210 end if;
5211 end if;
5213 -- Reset the Pure indication on an imported subprogram unless an
5214 -- explicit Pure_Function pragma was present. We do this because
5215 -- otherwise it is an insidious error to call a non-pure function from
5216 -- pure unit and have calls mysteriously optimized away. What happens
5217 -- here is that the Import can bypass the normal check to ensure that
5218 -- pure units call only pure subprograms.
5220 if Is_Imported (E)
5221 and then Is_Pure (E)
5222 and then not Has_Pragma_Pure_Function (E)
5223 then
5224 Set_Is_Pure (E, False);
5225 end if;
5227 -- For non-foreign convention subprograms, this is where we create
5228 -- the extra formals (for accessibility level and constrained bit
5229 -- information). We delay this till the freeze point precisely so
5230 -- that we know the convention!
5232 if not Has_Foreign_Convention (E) then
5233 Create_Extra_Formals (E);
5234 Set_Mechanisms (E);
5236 -- If this is convention Ada and a Valued_Procedure, that's odd
5238 if Ekind (E) = E_Procedure
5239 and then Is_Valued_Procedure (E)
5240 and then Convention (E) = Convention_Ada
5241 and then Warn_On_Export_Import
5242 then
5243 Error_Msg_N
5244 ("?Valued_Procedure has no effect for convention Ada", E);
5245 Set_Is_Valued_Procedure (E, False);
5246 end if;
5248 -- Case of foreign convention
5250 else
5251 Set_Mechanisms (E);
5253 -- For foreign conventions, warn about return of an
5254 -- unconstrained array.
5256 -- Note: we *do* allow a return by descriptor for the VMS case,
5257 -- though here there is probably more to be done ???
5259 if Ekind (E) = E_Function then
5260 Retype := Underlying_Type (Etype (E));
5262 -- If no return type, probably some other error, e.g. a
5263 -- missing full declaration, so ignore.
5265 if No (Retype) then
5266 null;
5268 -- If the return type is generic, we have emitted a warning
5269 -- earlier on, and there is nothing else to check here. Specific
5270 -- instantiations may lead to erroneous behavior.
5272 elsif Is_Generic_Type (Etype (E)) then
5273 null;
5275 -- Display warning if returning unconstrained array
5277 elsif Is_Array_Type (Retype)
5278 and then not Is_Constrained (Retype)
5280 -- Exclude cases where descriptor mechanism is set, since the
5281 -- VMS descriptor mechanisms allow such unconstrained returns.
5283 and then Mechanism (E) not in Descriptor_Codes
5285 -- Check appropriate warning is enabled (should we check for
5286 -- Warnings (Off) on specific entities here, probably so???)
5288 and then Warn_On_Export_Import
5290 -- Exclude the VM case, since return of unconstrained arrays
5291 -- is properly handled in both the JVM and .NET cases.
5293 and then VM_Target = No_VM
5294 then
5295 Error_Msg_N
5296 ("?foreign convention function& should not return " &
5297 "unconstrained array", E);
5298 return;
5299 end if;
5300 end if;
5302 -- If any of the formals for an exported foreign convention
5303 -- subprogram have defaults, then emit an appropriate warning since
5304 -- this is odd (default cannot be used from non-Ada code)
5306 if Is_Exported (E) then
5307 F := First_Formal (E);
5308 while Present (F) loop
5309 if Warn_On_Export_Import
5310 and then Present (Default_Value (F))
5311 then
5312 Error_Msg_N
5313 ("?parameter cannot be defaulted in non-Ada call",
5314 Default_Value (F));
5315 end if;
5317 Next_Formal (F);
5318 end loop;
5319 end if;
5320 end if;
5322 -- For VMS, descriptor mechanisms for parameters are allowed only for
5323 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5324 -- allowed for parameters of exported subprograms.
5326 if OpenVMS_On_Target then
5327 if Is_Exported (E) then
5328 F := First_Formal (E);
5329 while Present (F) loop
5330 if Mechanism (F) = By_Descriptor_NCA then
5331 Error_Msg_N
5332 ("'N'C'A' descriptor for parameter not permitted", F);
5333 Error_Msg_N
5334 ("\can only be used for imported subprogram", F);
5335 end if;
5337 Next_Formal (F);
5338 end loop;
5340 elsif not Is_Imported (E) then
5341 F := First_Formal (E);
5342 while Present (F) loop
5343 if Mechanism (F) in Descriptor_Codes then
5344 Error_Msg_N
5345 ("descriptor mechanism for parameter not permitted", F);
5346 Error_Msg_N
5347 ("\can only be used for imported/exported subprogram", F);
5348 end if;
5350 Next_Formal (F);
5351 end loop;
5352 end if;
5353 end if;
5355 -- Pragma Inline_Always is disallowed for dispatching subprograms
5356 -- because the address of such subprograms is saved in the dispatch
5357 -- table to support dispatching calls, and dispatching calls cannot
5358 -- be inlined. This is consistent with the restriction against using
5359 -- 'Access or 'Address on an Inline_Always subprogram.
5361 if Is_Dispatching_Operation (E)
5362 and then Has_Pragma_Inline_Always (E)
5363 then
5364 Error_Msg_N
5365 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5366 end if;
5368 -- Because of the implicit representation of inherited predefined
5369 -- operators in the front-end, the overriding status of the operation
5370 -- may be affected when a full view of a type is analyzed, and this is
5371 -- not captured by the analysis of the corresponding type declaration.
5372 -- Therefore the correctness of a not-overriding indicator must be
5373 -- rechecked when the subprogram is frozen.
5375 if Nkind (E) = N_Defining_Operator_Symbol
5376 and then not Error_Posted (Parent (E))
5377 then
5378 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5379 end if;
5380 end Freeze_Subprogram;
5382 ----------------------
5383 -- Is_Fully_Defined --
5384 ----------------------
5386 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5387 begin
5388 if Ekind (T) = E_Class_Wide_Type then
5389 return Is_Fully_Defined (Etype (T));
5391 elsif Is_Array_Type (T) then
5392 return Is_Fully_Defined (Component_Type (T));
5394 elsif Is_Record_Type (T)
5395 and not Is_Private_Type (T)
5396 then
5397 -- Verify that the record type has no components with private types
5398 -- without completion.
5400 declare
5401 Comp : Entity_Id;
5403 begin
5404 Comp := First_Component (T);
5406 while Present (Comp) loop
5407 if not Is_Fully_Defined (Etype (Comp)) then
5408 return False;
5409 end if;
5411 Next_Component (Comp);
5412 end loop;
5413 return True;
5414 end;
5416 else
5417 return not Is_Private_Type (T)
5418 or else Present (Full_View (Base_Type (T)));
5419 end if;
5420 end Is_Fully_Defined;
5422 ---------------------------------
5423 -- Process_Default_Expressions --
5424 ---------------------------------
5426 procedure Process_Default_Expressions
5427 (E : Entity_Id;
5428 After : in out Node_Id)
5430 Loc : constant Source_Ptr := Sloc (E);
5431 Dbody : Node_Id;
5432 Formal : Node_Id;
5433 Dcopy : Node_Id;
5434 Dnam : Entity_Id;
5436 begin
5437 Set_Default_Expressions_Processed (E);
5439 -- A subprogram instance and its associated anonymous subprogram share
5440 -- their signature. The default expression functions are defined in the
5441 -- wrapper packages for the anonymous subprogram, and should not be
5442 -- generated again for the instance.
5444 if Is_Generic_Instance (E)
5445 and then Present (Alias (E))
5446 and then Default_Expressions_Processed (Alias (E))
5447 then
5448 return;
5449 end if;
5451 Formal := First_Formal (E);
5452 while Present (Formal) loop
5453 if Present (Default_Value (Formal)) then
5455 -- We work with a copy of the default expression because we
5456 -- do not want to disturb the original, since this would mess
5457 -- up the conformance checking.
5459 Dcopy := New_Copy_Tree (Default_Value (Formal));
5461 -- The analysis of the expression may generate insert actions,
5462 -- which of course must not be executed. We wrap those actions
5463 -- in a procedure that is not called, and later on eliminated.
5464 -- The following cases have no side-effects, and are analyzed
5465 -- directly.
5467 if Nkind (Dcopy) = N_Identifier
5468 or else Nkind (Dcopy) = N_Expanded_Name
5469 or else Nkind (Dcopy) = N_Integer_Literal
5470 or else (Nkind (Dcopy) = N_Real_Literal
5471 and then not Vax_Float (Etype (Dcopy)))
5472 or else Nkind (Dcopy) = N_Character_Literal
5473 or else Nkind (Dcopy) = N_String_Literal
5474 or else Known_Null (Dcopy)
5475 or else (Nkind (Dcopy) = N_Attribute_Reference
5476 and then
5477 Attribute_Name (Dcopy) = Name_Null_Parameter)
5478 then
5480 -- If there is no default function, we must still do a full
5481 -- analyze call on the default value, to ensure that all error
5482 -- checks are performed, e.g. those associated with static
5483 -- evaluation. Note: this branch will always be taken if the
5484 -- analyzer is turned off (but we still need the error checks).
5486 -- Note: the setting of parent here is to meet the requirement
5487 -- that we can only analyze the expression while attached to
5488 -- the tree. Really the requirement is that the parent chain
5489 -- be set, we don't actually need to be in the tree.
5491 Set_Parent (Dcopy, Declaration_Node (Formal));
5492 Analyze (Dcopy);
5494 -- Default expressions are resolved with their own type if the
5495 -- context is generic, to avoid anomalies with private types.
5497 if Ekind (Scope (E)) = E_Generic_Package then
5498 Resolve (Dcopy);
5499 else
5500 Resolve (Dcopy, Etype (Formal));
5501 end if;
5503 -- If that resolved expression will raise constraint error,
5504 -- then flag the default value as raising constraint error.
5505 -- This allows a proper error message on the calls.
5507 if Raises_Constraint_Error (Dcopy) then
5508 Set_Raises_Constraint_Error (Default_Value (Formal));
5509 end if;
5511 -- If the default is a parameterless call, we use the name of
5512 -- the called function directly, and there is no body to build.
5514 elsif Nkind (Dcopy) = N_Function_Call
5515 and then No (Parameter_Associations (Dcopy))
5516 then
5517 null;
5519 -- Else construct and analyze the body of a wrapper procedure
5520 -- that contains an object declaration to hold the expression.
5521 -- Given that this is done only to complete the analysis, it
5522 -- simpler to build a procedure than a function which might
5523 -- involve secondary stack expansion.
5525 else
5526 Dnam :=
5527 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5529 Dbody :=
5530 Make_Subprogram_Body (Loc,
5531 Specification =>
5532 Make_Procedure_Specification (Loc,
5533 Defining_Unit_Name => Dnam),
5535 Declarations => New_List (
5536 Make_Object_Declaration (Loc,
5537 Defining_Identifier =>
5538 Make_Defining_Identifier (Loc,
5539 New_Internal_Name ('T')),
5540 Object_Definition =>
5541 New_Occurrence_Of (Etype (Formal), Loc),
5542 Expression => New_Copy_Tree (Dcopy))),
5544 Handled_Statement_Sequence =>
5545 Make_Handled_Sequence_Of_Statements (Loc,
5546 Statements => New_List));
5548 Set_Scope (Dnam, Scope (E));
5549 Set_Assignment_OK (First (Declarations (Dbody)));
5550 Set_Is_Eliminated (Dnam);
5551 Insert_After (After, Dbody);
5552 Analyze (Dbody);
5553 After := Dbody;
5554 end if;
5555 end if;
5557 Next_Formal (Formal);
5558 end loop;
5559 end Process_Default_Expressions;
5561 ----------------------------------------
5562 -- Set_Component_Alignment_If_Not_Set --
5563 ----------------------------------------
5565 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5566 begin
5567 -- Ignore if not base type, subtypes don't need anything
5569 if Typ /= Base_Type (Typ) then
5570 return;
5571 end if;
5573 -- Do not override existing representation
5575 if Is_Packed (Typ) then
5576 return;
5578 elsif Has_Specified_Layout (Typ) then
5579 return;
5581 elsif Component_Alignment (Typ) /= Calign_Default then
5582 return;
5584 else
5585 Set_Component_Alignment
5586 (Typ, Scope_Stack.Table
5587 (Scope_Stack.Last).Component_Alignment_Default);
5588 end if;
5589 end Set_Component_Alignment_If_Not_Set;
5591 ------------------
5592 -- Undelay_Type --
5593 ------------------
5595 procedure Undelay_Type (T : Entity_Id) is
5596 begin
5597 Set_Has_Delayed_Freeze (T, False);
5598 Set_Freeze_Node (T, Empty);
5600 -- Since we don't want T to have a Freeze_Node, we don't want its
5601 -- Full_View or Corresponding_Record_Type to have one either.
5603 -- ??? Fundamentally, this whole handling is a kludge. What we really
5604 -- want is to be sure that for an Itype that's part of record R and is a
5605 -- subtype of type T, that it's frozen after the later of the freeze
5606 -- points of R and T. We have no way of doing that directly, so what we
5607 -- do is force most such Itypes to be frozen as part of freezing R via
5608 -- this procedure and only delay the ones that need to be delayed
5609 -- (mostly the designated types of access types that are defined as part
5610 -- of the record).
5612 if Is_Private_Type (T)
5613 and then Present (Full_View (T))
5614 and then Is_Itype (Full_View (T))
5615 and then Is_Record_Type (Scope (Full_View (T)))
5616 then
5617 Undelay_Type (Full_View (T));
5618 end if;
5620 if Is_Concurrent_Type (T)
5621 and then Present (Corresponding_Record_Type (T))
5622 and then Is_Itype (Corresponding_Record_Type (T))
5623 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5624 then
5625 Undelay_Type (Corresponding_Record_Type (T));
5626 end if;
5627 end Undelay_Type;
5629 ------------------
5630 -- Warn_Overlay --
5631 ------------------
5633 procedure Warn_Overlay
5634 (Expr : Node_Id;
5635 Typ : Entity_Id;
5636 Nam : Entity_Id)
5638 Ent : constant Entity_Id := Entity (Nam);
5639 -- The object to which the address clause applies
5641 Init : Node_Id;
5642 Old : Entity_Id := Empty;
5643 Decl : Node_Id;
5645 begin
5646 -- No warning if address clause overlay warnings are off
5648 if not Address_Clause_Overlay_Warnings then
5649 return;
5650 end if;
5652 -- No warning if there is an explicit initialization
5654 Init := Original_Node (Expression (Declaration_Node (Ent)));
5656 if Present (Init) and then Comes_From_Source (Init) then
5657 return;
5658 end if;
5660 -- We only give the warning for non-imported entities of a type for
5661 -- which a non-null base init proc is defined, or for objects of access
5662 -- types with implicit null initialization, or when Initialize_Scalars
5663 -- applies and the type is scalar or a string type (the latter being
5664 -- tested for because predefined String types are initialized by inline
5665 -- code rather than by an init_proc).
5667 if Present (Expr)
5668 and then not Is_Imported (Ent)
5669 and then (Has_Non_Null_Base_Init_Proc (Typ)
5670 or else Is_Access_Type (Typ)
5671 or else (Init_Or_Norm_Scalars
5672 and then (Is_Scalar_Type (Typ)
5673 or else Is_String_Type (Typ))))
5674 then
5675 if Nkind (Expr) = N_Attribute_Reference
5676 and then Is_Entity_Name (Prefix (Expr))
5677 then
5678 Old := Entity (Prefix (Expr));
5680 elsif Is_Entity_Name (Expr)
5681 and then Ekind (Entity (Expr)) = E_Constant
5682 then
5683 Decl := Declaration_Node (Entity (Expr));
5685 if Nkind (Decl) = N_Object_Declaration
5686 and then Present (Expression (Decl))
5687 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5688 and then Is_Entity_Name (Prefix (Expression (Decl)))
5689 then
5690 Old := Entity (Prefix (Expression (Decl)));
5692 elsif Nkind (Expr) = N_Function_Call then
5693 return;
5694 end if;
5696 -- A function call (most likely to To_Address) is probably not an
5697 -- overlay, so skip warning. Ditto if the function call was inlined
5698 -- and transformed into an entity.
5700 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5701 return;
5702 end if;
5704 Decl := Next (Parent (Expr));
5706 -- If a pragma Import follows, we assume that it is for the current
5707 -- target of the address clause, and skip the warning.
5709 if Present (Decl)
5710 and then Nkind (Decl) = N_Pragma
5711 and then Pragma_Name (Decl) = Name_Import
5712 then
5713 return;
5714 end if;
5716 if Present (Old) then
5717 Error_Msg_Node_2 := Old;
5718 Error_Msg_N
5719 ("default initialization of & may modify &?",
5720 Nam);
5721 else
5722 Error_Msg_N
5723 ("default initialization of & may modify overlaid storage?",
5724 Nam);
5725 end if;
5727 -- Add friendly warning if initialization comes from a packed array
5728 -- component.
5730 if Is_Record_Type (Typ) then
5731 declare
5732 Comp : Entity_Id;
5734 begin
5735 Comp := First_Component (Typ);
5737 while Present (Comp) loop
5738 if Nkind (Parent (Comp)) = N_Component_Declaration
5739 and then Present (Expression (Parent (Comp)))
5740 then
5741 exit;
5742 elsif Is_Array_Type (Etype (Comp))
5743 and then Present (Packed_Array_Type (Etype (Comp)))
5744 then
5745 Error_Msg_NE
5746 ("\packed array component& " &
5747 "will be initialized to zero?",
5748 Nam, Comp);
5749 exit;
5750 else
5751 Next_Component (Comp);
5752 end if;
5753 end loop;
5754 end;
5755 end if;
5757 Error_Msg_N
5758 ("\use pragma Import for & to " &
5759 "suppress initialization (RM B.1(24))?",
5760 Nam);
5761 end if;
5762 end Warn_Overlay;
5764 end Freeze;