Fix unused warnings.
[official-gcc/graphite-test-results.git] / gcc / ada / freeze.adb
blob5bbcab0134c6bc0a2dcf87443111ce48b06ca393
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- You should have received a copy of the GNU General Public License along --
19 -- with this program; see file COPYING3. If not see --
20 -- <http://www.gnu.org/licenses/>. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch3; use Exp_Ch3;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Exp_Tss; use Exp_Tss;
38 with Layout; use Layout;
39 with Lib; use Lib;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch6; use Sem_Ch6;
50 with Sem_Ch7; use Sem_Ch7;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Ch13; use Sem_Ch13;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Mech; use Sem_Mech;
55 with Sem_Prag; use Sem_Prag;
56 with Sem_Res; use Sem_Res;
57 with Sem_Util; use Sem_Util;
58 with Sinfo; use Sinfo;
59 with Snames; use Snames;
60 with Stand; use Stand;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Ttypes; use Ttypes;
64 with Uintp; use Uintp;
65 with Urealp; use Urealp;
67 package body Freeze is
69 -----------------------
70 -- Local Subprograms --
71 -----------------------
73 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
74 -- Typ is a type that is being frozen. If no size clause is given,
75 -- but a default Esize has been computed, then this default Esize is
76 -- adjusted up if necessary to be consistent with a given alignment,
77 -- but never to a value greater than Long_Long_Integer'Size. This
78 -- is used for all discrete types and for fixed-point types.
80 procedure Build_And_Analyze_Renamed_Body
81 (Decl : Node_Id;
82 New_S : Entity_Id;
83 After : in out Node_Id);
84 -- Build body for a renaming declaration, insert in tree and analyze
86 procedure Check_Address_Clause (E : Entity_Id);
87 -- Apply legality checks to address clauses for object declarations,
88 -- at the point the object is frozen.
90 procedure Check_Strict_Alignment (E : Entity_Id);
91 -- E is a base type. If E is tagged or has a component that is aliased
92 -- or tagged or contains something this is aliased or tagged, set
93 -- Strict_Alignment.
95 procedure Check_Unsigned_Type (E : Entity_Id);
96 pragma Inline (Check_Unsigned_Type);
97 -- If E is a fixed-point or discrete type, then all the necessary work
98 -- to freeze it is completed except for possible setting of the flag
99 -- Is_Unsigned_Type, which is done by this procedure. The call has no
100 -- effect if the entity E is not a discrete or fixed-point type.
102 procedure Freeze_And_Append
103 (Ent : Entity_Id;
104 N : Node_Id;
105 Result : in out List_Id);
106 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
107 -- nodes to Result, modifying Result from No_List if necessary. N has
108 -- the same usage as in Freeze_Entity.
110 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
111 -- Freeze enumeration type. The Esize field is set as processing
112 -- proceeds (i.e. set by default when the type is declared and then
113 -- adjusted by rep clauses. What this procedure does is to make sure
114 -- that if a foreign convention is specified, and no specific size
115 -- is given, then the size must be at least Integer'Size.
117 procedure Freeze_Static_Object (E : Entity_Id);
118 -- If an object is frozen which has Is_Statically_Allocated set, then
119 -- all referenced types must also be marked with this flag. This routine
120 -- is in charge of meeting this requirement for the object entity E.
122 procedure Freeze_Subprogram (E : Entity_Id);
123 -- Perform freezing actions for a subprogram (create extra formals,
124 -- and set proper default mechanism values). Note that this routine
125 -- is not called for internal subprograms, for which neither of these
126 -- actions is needed (or desirable, we do not want for example to have
127 -- these extra formals present in initialization procedures, where they
128 -- would serve no purpose). In this call E is either a subprogram or
129 -- a subprogram type (i.e. an access to a subprogram).
131 function Is_Fully_Defined (T : Entity_Id) return Boolean;
132 -- True if T is not private and has no private components, or has a full
133 -- view. Used to determine whether the designated type of an access type
134 -- should be frozen when the access type is frozen. This is done when an
135 -- allocator is frozen, or an expression that may involve attributes of
136 -- the designated type. Otherwise freezing the access type does not freeze
137 -- the designated type.
139 procedure Process_Default_Expressions
140 (E : Entity_Id;
141 After : in out Node_Id);
142 -- This procedure is called for each subprogram to complete processing of
143 -- default expressions at the point where all types are known to be frozen.
144 -- The expressions must be analyzed in full, to make sure that all error
145 -- processing is done (they have only been pre-analyzed). If the expression
146 -- is not an entity or literal, its analysis may generate code which must
147 -- not be executed. In that case we build a function body to hold that
148 -- code. This wrapper function serves no other purpose (it used to be
149 -- called to evaluate the default, but now the default is inlined at each
150 -- point of call).
152 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
153 -- Typ is a record or array type that is being frozen. This routine sets
154 -- the default component alignment from the scope stack values if the
155 -- alignment is otherwise not specified.
157 procedure Check_Debug_Info_Needed (T : Entity_Id);
158 -- As each entity is frozen, this routine is called to deal with the
159 -- setting of Debug_Info_Needed for the entity. This flag is set if
160 -- the entity comes from source, or if we are in Debug_Generated_Code
161 -- mode or if the -gnatdV debug flag is set. However, it never sets
162 -- the flag if Debug_Info_Off is set. This procedure also ensures that
163 -- subsidiary entities have the flag set as required.
165 procedure Undelay_Type (T : Entity_Id);
166 -- T is a type of a component that we know to be an Itype. We don't want
167 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
168 -- Full_View or Corresponding_Record_Type.
170 procedure Warn_Overlay
171 (Expr : Node_Id;
172 Typ : Entity_Id;
173 Nam : Node_Id);
174 -- Expr is the expression for an address clause for entity Nam whose type
175 -- is Typ. If Typ has a default initialization, and there is no explicit
176 -- initialization in the source declaration, check whether the address
177 -- clause might cause overlaying of an entity, and emit a warning on the
178 -- side effect that the initialization will cause.
180 -------------------------------
181 -- Adjust_Esize_For_Alignment --
182 -------------------------------
184 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
185 Align : Uint;
187 begin
188 if Known_Esize (Typ) and then Known_Alignment (Typ) then
189 Align := Alignment_In_Bits (Typ);
191 if Align > Esize (Typ)
192 and then Align <= Standard_Long_Long_Integer_Size
193 then
194 Set_Esize (Typ, Align);
195 end if;
196 end if;
197 end Adjust_Esize_For_Alignment;
199 ------------------------------------
200 -- Build_And_Analyze_Renamed_Body --
201 ------------------------------------
203 procedure Build_And_Analyze_Renamed_Body
204 (Decl : Node_Id;
205 New_S : Entity_Id;
206 After : in out Node_Id)
208 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
209 Ent : constant Entity_Id := Defining_Entity (Decl);
210 Body_Node : Node_Id;
211 Renamed_Subp : Entity_Id;
213 begin
214 -- If the renamed subprogram is intrinsic, there is no need for a
215 -- wrapper body: we set the alias that will be called and expanded which
216 -- completes the declaration. This transformation is only legal if the
217 -- renamed entity has already been elaborated.
219 -- Note that it is legal for a renaming_as_body to rename an intrinsic
220 -- subprogram, as long as the renaming occurs before the new entity
221 -- is frozen. See RM 8.5.4 (5).
223 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
224 and then Is_Entity_Name (Name (Body_Decl))
225 then
226 Renamed_Subp := Entity (Name (Body_Decl));
227 else
228 Renamed_Subp := Empty;
229 end if;
231 if Present (Renamed_Subp)
232 and then Is_Intrinsic_Subprogram (Renamed_Subp)
233 and then
234 (not In_Same_Source_Unit (Renamed_Subp, Ent)
235 or else Sloc (Renamed_Subp) < Sloc (Ent))
237 -- We can make the renaming entity intrisic if the renamed function
238 -- has an interface name, or if it is one of the shift/rotate
239 -- operations known to the compiler.
241 and then (Present (Interface_Name (Renamed_Subp))
242 or else Chars (Renamed_Subp) = Name_Rotate_Left
243 or else Chars (Renamed_Subp) = Name_Rotate_Right
244 or else Chars (Renamed_Subp) = Name_Shift_Left
245 or else Chars (Renamed_Subp) = Name_Shift_Right
246 or else Chars (Renamed_Subp) = Name_Shift_Right_Arithmetic)
247 then
248 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
250 if Present (Alias (Renamed_Subp)) then
251 Set_Alias (Ent, Alias (Renamed_Subp));
252 else
253 Set_Alias (Ent, Renamed_Subp);
254 end if;
256 Set_Is_Intrinsic_Subprogram (Ent);
257 Set_Has_Completion (Ent);
259 else
260 Body_Node := Build_Renamed_Body (Decl, New_S);
261 Insert_After (After, Body_Node);
262 Mark_Rewrite_Insertion (Body_Node);
263 Analyze (Body_Node);
264 After := Body_Node;
265 end if;
266 end Build_And_Analyze_Renamed_Body;
268 ------------------------
269 -- Build_Renamed_Body --
270 ------------------------
272 function Build_Renamed_Body
273 (Decl : Node_Id;
274 New_S : Entity_Id) return Node_Id
276 Loc : constant Source_Ptr := Sloc (New_S);
277 -- We use for the source location of the renamed body, the location of
278 -- the spec entity. It might seem more natural to use the location of
279 -- the renaming declaration itself, but that would be wrong, since then
280 -- the body we create would look as though it was created far too late,
281 -- and this could cause problems with elaboration order analysis,
282 -- particularly in connection with instantiations.
284 N : constant Node_Id := Unit_Declaration_Node (New_S);
285 Nam : constant Node_Id := Name (N);
286 Old_S : Entity_Id;
287 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
288 Actuals : List_Id := No_List;
289 Call_Node : Node_Id;
290 Call_Name : Node_Id;
291 Body_Node : Node_Id;
292 Formal : Entity_Id;
293 O_Formal : Entity_Id;
294 Param_Spec : Node_Id;
296 Pref : Node_Id := Empty;
297 -- If the renamed entity is a primitive operation given in prefix form,
298 -- the prefix is the target object and it has to be added as the first
299 -- actual in the generated call.
301 begin
302 -- Determine the entity being renamed, which is the target of the call
303 -- statement. If the name is an explicit dereference, this is a renaming
304 -- of a subprogram type rather than a subprogram. The name itself is
305 -- fully analyzed.
307 if Nkind (Nam) = N_Selected_Component then
308 Old_S := Entity (Selector_Name (Nam));
310 elsif Nkind (Nam) = N_Explicit_Dereference then
311 Old_S := Etype (Nam);
313 elsif Nkind (Nam) = N_Indexed_Component then
314 if Is_Entity_Name (Prefix (Nam)) then
315 Old_S := Entity (Prefix (Nam));
316 else
317 Old_S := Entity (Selector_Name (Prefix (Nam)));
318 end if;
320 elsif Nkind (Nam) = N_Character_Literal then
321 Old_S := Etype (New_S);
323 else
324 Old_S := Entity (Nam);
325 end if;
327 if Is_Entity_Name (Nam) then
329 -- If the renamed entity is a predefined operator, retain full name
330 -- to ensure its visibility.
332 if Ekind (Old_S) = E_Operator
333 and then Nkind (Nam) = N_Expanded_Name
334 then
335 Call_Name := New_Copy (Name (N));
336 else
337 Call_Name := New_Reference_To (Old_S, Loc);
338 end if;
340 else
341 if Nkind (Nam) = N_Selected_Component
342 and then Present (First_Formal (Old_S))
343 and then
344 (Is_Controlling_Formal (First_Formal (Old_S))
345 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
346 then
348 -- Retrieve the target object, to be added as a first actual
349 -- in the call.
351 Call_Name := New_Occurrence_Of (Old_S, Loc);
352 Pref := Prefix (Nam);
354 else
355 Call_Name := New_Copy (Name (N));
356 end if;
358 -- Original name may have been overloaded, but is fully resolved now
360 Set_Is_Overloaded (Call_Name, False);
361 end if;
363 -- For simple renamings, subsequent calls can be expanded directly as
364 -- calls to the renamed entity. The body must be generated in any case
365 -- for calls that may appear elsewhere.
367 if Ekind_In (Old_S, E_Function, E_Procedure)
368 and then Nkind (Decl) = N_Subprogram_Declaration
369 then
370 Set_Body_To_Inline (Decl, Old_S);
371 end if;
373 -- The body generated for this renaming is an internal artifact, and
374 -- does not constitute a freeze point for the called entity.
376 Set_Must_Not_Freeze (Call_Name);
378 Formal := First_Formal (Defining_Entity (Decl));
380 if Present (Pref) then
381 declare
382 Pref_Type : constant Entity_Id := Etype (Pref);
383 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
385 begin
386 -- The controlling formal may be an access parameter, or the
387 -- actual may be an access value, so adjust accordingly.
389 if Is_Access_Type (Pref_Type)
390 and then not Is_Access_Type (Form_Type)
391 then
392 Actuals := New_List
393 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
395 elsif Is_Access_Type (Form_Type)
396 and then not Is_Access_Type (Pref)
397 then
398 Actuals := New_List
399 (Make_Attribute_Reference (Loc,
400 Attribute_Name => Name_Access,
401 Prefix => Relocate_Node (Pref)));
402 else
403 Actuals := New_List (Pref);
404 end if;
405 end;
407 elsif Present (Formal) then
408 Actuals := New_List;
410 else
411 Actuals := No_List;
412 end if;
414 if Present (Formal) then
415 while Present (Formal) loop
416 Append (New_Reference_To (Formal, Loc), Actuals);
417 Next_Formal (Formal);
418 end loop;
419 end if;
421 -- If the renamed entity is an entry, inherit its profile. For other
422 -- renamings as bodies, both profiles must be subtype conformant, so it
423 -- is not necessary to replace the profile given in the declaration.
424 -- However, default values that are aggregates are rewritten when
425 -- partially analyzed, so we recover the original aggregate to insure
426 -- that subsequent conformity checking works. Similarly, if the default
427 -- expression was constant-folded, recover the original expression.
429 Formal := First_Formal (Defining_Entity (Decl));
431 if Present (Formal) then
432 O_Formal := First_Formal (Old_S);
433 Param_Spec := First (Parameter_Specifications (Spec));
434 while Present (Formal) loop
435 if Is_Entry (Old_S) then
436 if Nkind (Parameter_Type (Param_Spec)) /=
437 N_Access_Definition
438 then
439 Set_Etype (Formal, Etype (O_Formal));
440 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
441 end if;
443 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
444 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
445 Nkind (Default_Value (O_Formal))
446 then
447 Set_Expression (Param_Spec,
448 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
449 end if;
451 Next_Formal (Formal);
452 Next_Formal (O_Formal);
453 Next (Param_Spec);
454 end loop;
455 end if;
457 -- If the renamed entity is a function, the generated body contains a
458 -- return statement. Otherwise, build a procedure call. If the entity is
459 -- an entry, subsequent analysis of the call will transform it into the
460 -- proper entry or protected operation call. If the renamed entity is
461 -- a character literal, return it directly.
463 if Ekind (Old_S) = E_Function
464 or else Ekind (Old_S) = E_Operator
465 or else (Ekind (Old_S) = E_Subprogram_Type
466 and then Etype (Old_S) /= Standard_Void_Type)
467 then
468 Call_Node :=
469 Make_Simple_Return_Statement (Loc,
470 Expression =>
471 Make_Function_Call (Loc,
472 Name => Call_Name,
473 Parameter_Associations => Actuals));
475 elsif Ekind (Old_S) = E_Enumeration_Literal then
476 Call_Node :=
477 Make_Simple_Return_Statement (Loc,
478 Expression => New_Occurrence_Of (Old_S, Loc));
480 elsif Nkind (Nam) = N_Character_Literal then
481 Call_Node :=
482 Make_Simple_Return_Statement (Loc,
483 Expression => Call_Name);
485 else
486 Call_Node :=
487 Make_Procedure_Call_Statement (Loc,
488 Name => Call_Name,
489 Parameter_Associations => Actuals);
490 end if;
492 -- Create entities for subprogram body and formals
494 Set_Defining_Unit_Name (Spec,
495 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
497 Param_Spec := First (Parameter_Specifications (Spec));
498 while Present (Param_Spec) loop
499 Set_Defining_Identifier (Param_Spec,
500 Make_Defining_Identifier (Loc,
501 Chars => Chars (Defining_Identifier (Param_Spec))));
502 Next (Param_Spec);
503 end loop;
505 Body_Node :=
506 Make_Subprogram_Body (Loc,
507 Specification => Spec,
508 Declarations => New_List,
509 Handled_Statement_Sequence =>
510 Make_Handled_Sequence_Of_Statements (Loc,
511 Statements => New_List (Call_Node)));
513 if Nkind (Decl) /= N_Subprogram_Declaration then
514 Rewrite (N,
515 Make_Subprogram_Declaration (Loc,
516 Specification => Specification (N)));
517 end if;
519 -- Link the body to the entity whose declaration it completes. If
520 -- the body is analyzed when the renamed entity is frozen, it may
521 -- be necessary to restore the proper scope (see package Exp_Ch13).
523 if Nkind (N) = N_Subprogram_Renaming_Declaration
524 and then Present (Corresponding_Spec (N))
525 then
526 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
527 else
528 Set_Corresponding_Spec (Body_Node, New_S);
529 end if;
531 return Body_Node;
532 end Build_Renamed_Body;
534 --------------------------
535 -- Check_Address_Clause --
536 --------------------------
538 procedure Check_Address_Clause (E : Entity_Id) is
539 Addr : constant Node_Id := Address_Clause (E);
540 Expr : Node_Id;
541 Decl : constant Node_Id := Declaration_Node (E);
542 Typ : constant Entity_Id := Etype (E);
544 begin
545 if Present (Addr) then
546 Expr := Expression (Addr);
548 if Needs_Constant_Address (Decl, Typ) then
549 Check_Constant_Address_Clause (Expr, E);
551 -- Has_Delayed_Freeze was set on E when the address clause was
552 -- analyzed. Reset the flag now unless freeze actions were
553 -- attached to it in the mean time.
555 if No (Freeze_Node (E)) then
556 Set_Has_Delayed_Freeze (E, False);
557 end if;
558 end if;
560 -- If Rep_Clauses are to be ignored, remove address clause from
561 -- list attached to entity, because it may be illegal for gigi,
562 -- for example by breaking order of elaboration..
564 if Ignore_Rep_Clauses then
565 declare
566 Rep : Node_Id;
568 begin
569 Rep := First_Rep_Item (E);
571 if Rep = Addr then
572 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
574 else
575 while Present (Rep)
576 and then Next_Rep_Item (Rep) /= Addr
577 loop
578 Rep := Next_Rep_Item (Rep);
579 end loop;
580 end if;
582 if Present (Rep) then
583 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
584 end if;
585 end;
587 Rewrite (Addr, Make_Null_Statement (Sloc (E)));
589 elsif not Error_Posted (Expr)
590 and then not Needs_Finalization (Typ)
591 then
592 Warn_Overlay (Expr, Typ, Name (Addr));
593 end if;
594 end if;
595 end Check_Address_Clause;
597 -----------------------------
598 -- Check_Compile_Time_Size --
599 -----------------------------
601 procedure Check_Compile_Time_Size (T : Entity_Id) is
603 procedure Set_Small_Size (T : Entity_Id; S : Uint);
604 -- Sets the compile time known size (32 bits or less) in the Esize
605 -- field, of T checking for a size clause that was given which attempts
606 -- to give a smaller size, and also checking for an alignment clause.
608 function Size_Known (T : Entity_Id) return Boolean;
609 -- Recursive function that does all the work
611 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
612 -- If T is a constrained subtype, its size is not known if any of its
613 -- discriminant constraints is not static and it is not a null record.
614 -- The test is conservative and doesn't check that the components are
615 -- in fact constrained by non-static discriminant values. Could be made
616 -- more precise ???
618 --------------------
619 -- Set_Small_Size --
620 --------------------
622 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
623 begin
624 if S > 32 then
625 return;
627 -- Don't bother if alignment clause with a value other than 1 is
628 -- present, because size may be padded up to meet back end alignment
629 -- requirements, and only the back end knows the rules!
631 elsif Known_Alignment (T) and then Alignment (T) /= 1 then
632 return;
634 -- Check for bad size clause given
636 elsif Has_Size_Clause (T) then
637 if RM_Size (T) < S then
638 Error_Msg_Uint_1 := S;
639 Error_Msg_NE
640 ("size for& too small, minimum allowed is ^",
641 Size_Clause (T), T);
643 elsif Unknown_Esize (T) then
644 Set_Esize (T, S);
645 end if;
647 -- Set sizes if not set already
649 else
650 if Unknown_Esize (T) then
651 Set_Esize (T, S);
652 end if;
654 if Unknown_RM_Size (T) then
655 Set_RM_Size (T, S);
656 end if;
657 end if;
658 end Set_Small_Size;
660 ----------------
661 -- Size_Known --
662 ----------------
664 function Size_Known (T : Entity_Id) return Boolean is
665 Index : Entity_Id;
666 Comp : Entity_Id;
667 Ctyp : Entity_Id;
668 Low : Node_Id;
669 High : Node_Id;
671 begin
672 if Size_Known_At_Compile_Time (T) then
673 return True;
675 -- Always True for scalar types. This is true even for generic formal
676 -- scalar types. We used to return False in the latter case, but the
677 -- size is known at compile time, even in the template, we just do
678 -- not know the exact size but that's not the point of this routine.
680 elsif Is_Scalar_Type (T)
681 or else Is_Task_Type (T)
682 then
683 return True;
685 -- Array types
687 elsif Is_Array_Type (T) then
689 -- String literals always have known size, and we can set it
691 if Ekind (T) = E_String_Literal_Subtype then
692 Set_Small_Size (T, Component_Size (T)
693 * String_Literal_Length (T));
694 return True;
696 -- Unconstrained types never have known at compile time size
698 elsif not Is_Constrained (T) then
699 return False;
701 -- Don't do any recursion on type with error posted, since we may
702 -- have a malformed type that leads us into a loop.
704 elsif Error_Posted (T) then
705 return False;
707 -- Otherwise if component size unknown, then array size unknown
709 elsif not Size_Known (Component_Type (T)) then
710 return False;
711 end if;
713 -- Check for all indexes static, and also compute possible size
714 -- (in case it is less than 32 and may be packable).
716 declare
717 Esiz : Uint := Component_Size (T);
718 Dim : Uint;
720 begin
721 Index := First_Index (T);
722 while Present (Index) loop
723 if Nkind (Index) = N_Range then
724 Get_Index_Bounds (Index, Low, High);
726 elsif Error_Posted (Scalar_Range (Etype (Index))) then
727 return False;
729 else
730 Low := Type_Low_Bound (Etype (Index));
731 High := Type_High_Bound (Etype (Index));
732 end if;
734 if not Compile_Time_Known_Value (Low)
735 or else not Compile_Time_Known_Value (High)
736 or else Etype (Index) = Any_Type
737 then
738 return False;
740 else
741 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
743 if Dim >= 0 then
744 Esiz := Esiz * Dim;
745 else
746 Esiz := Uint_0;
747 end if;
748 end if;
750 Next_Index (Index);
751 end loop;
753 Set_Small_Size (T, Esiz);
754 return True;
755 end;
757 -- Access types always have known at compile time sizes
759 elsif Is_Access_Type (T) then
760 return True;
762 -- For non-generic private types, go to underlying type if present
764 elsif Is_Private_Type (T)
765 and then not Is_Generic_Type (T)
766 and then Present (Underlying_Type (T))
767 then
768 -- Don't do any recursion on type with error posted, since we may
769 -- have a malformed type that leads us into a loop.
771 if Error_Posted (T) then
772 return False;
773 else
774 return Size_Known (Underlying_Type (T));
775 end if;
777 -- Record types
779 elsif Is_Record_Type (T) then
781 -- A class-wide type is never considered to have a known size
783 if Is_Class_Wide_Type (T) then
784 return False;
786 -- A subtype of a variant record must not have non-static
787 -- discriminanted components.
789 elsif T /= Base_Type (T)
790 and then not Static_Discriminated_Components (T)
791 then
792 return False;
794 -- Don't do any recursion on type with error posted, since we may
795 -- have a malformed type that leads us into a loop.
797 elsif Error_Posted (T) then
798 return False;
799 end if;
801 -- Now look at the components of the record
803 declare
804 -- The following two variables are used to keep track of the
805 -- size of packed records if we can tell the size of the packed
806 -- record in the front end. Packed_Size_Known is True if so far
807 -- we can figure out the size. It is initialized to True for a
808 -- packed record, unless the record has discriminants. The
809 -- reason we eliminate the discriminated case is that we don't
810 -- know the way the back end lays out discriminated packed
811 -- records. If Packed_Size_Known is True, then Packed_Size is
812 -- the size in bits so far.
814 Packed_Size_Known : Boolean :=
815 Is_Packed (T)
816 and then not Has_Discriminants (T);
818 Packed_Size : Uint := Uint_0;
820 begin
821 -- Test for variant part present
823 if Has_Discriminants (T)
824 and then Present (Parent (T))
825 and then Nkind (Parent (T)) = N_Full_Type_Declaration
826 and then Nkind (Type_Definition (Parent (T))) =
827 N_Record_Definition
828 and then not Null_Present (Type_Definition (Parent (T)))
829 and then Present (Variant_Part
830 (Component_List (Type_Definition (Parent (T)))))
831 then
832 -- If variant part is present, and type is unconstrained,
833 -- then we must have defaulted discriminants, or a size
834 -- clause must be present for the type, or else the size
835 -- is definitely not known at compile time.
837 if not Is_Constrained (T)
838 and then
839 No (Discriminant_Default_Value (First_Discriminant (T)))
840 and then Unknown_Esize (T)
841 then
842 return False;
843 end if;
844 end if;
846 -- Loop through components
848 Comp := First_Component_Or_Discriminant (T);
849 while Present (Comp) loop
850 Ctyp := Etype (Comp);
852 -- We do not know the packed size if there is a component
853 -- clause present (we possibly could, but this would only
854 -- help in the case of a record with partial rep clauses.
855 -- That's because in the case of full rep clauses, the
856 -- size gets figured out anyway by a different circuit).
858 if Present (Component_Clause (Comp)) then
859 Packed_Size_Known := False;
860 end if;
862 -- We need to identify a component that is an array where
863 -- the index type is an enumeration type with non-standard
864 -- representation, and some bound of the type depends on a
865 -- discriminant.
867 -- This is because gigi computes the size by doing a
868 -- substitution of the appropriate discriminant value in
869 -- the size expression for the base type, and gigi is not
870 -- clever enough to evaluate the resulting expression (which
871 -- involves a call to rep_to_pos) at compile time.
873 -- It would be nice if gigi would either recognize that
874 -- this expression can be computed at compile time, or
875 -- alternatively figured out the size from the subtype
876 -- directly, where all the information is at hand ???
878 if Is_Array_Type (Etype (Comp))
879 and then Present (Packed_Array_Type (Etype (Comp)))
880 then
881 declare
882 Ocomp : constant Entity_Id :=
883 Original_Record_Component (Comp);
884 OCtyp : constant Entity_Id := Etype (Ocomp);
885 Ind : Node_Id;
886 Indtyp : Entity_Id;
887 Lo, Hi : Node_Id;
889 begin
890 Ind := First_Index (OCtyp);
891 while Present (Ind) loop
892 Indtyp := Etype (Ind);
894 if Is_Enumeration_Type (Indtyp)
895 and then Has_Non_Standard_Rep (Indtyp)
896 then
897 Lo := Type_Low_Bound (Indtyp);
898 Hi := Type_High_Bound (Indtyp);
900 if Is_Entity_Name (Lo)
901 and then Ekind (Entity (Lo)) = E_Discriminant
902 then
903 return False;
905 elsif Is_Entity_Name (Hi)
906 and then Ekind (Entity (Hi)) = E_Discriminant
907 then
908 return False;
909 end if;
910 end if;
912 Next_Index (Ind);
913 end loop;
914 end;
915 end if;
917 -- Clearly size of record is not known if the size of one of
918 -- the components is not known.
920 if not Size_Known (Ctyp) then
921 return False;
922 end if;
924 -- Accumulate packed size if possible
926 if Packed_Size_Known then
928 -- We can only deal with elementary types, since for
929 -- non-elementary components, alignment enters into the
930 -- picture, and we don't know enough to handle proper
931 -- alignment in this context. Packed arrays count as
932 -- elementary if the representation is a modular type.
934 if Is_Elementary_Type (Ctyp)
935 or else (Is_Array_Type (Ctyp)
936 and then Present (Packed_Array_Type (Ctyp))
937 and then Is_Modular_Integer_Type
938 (Packed_Array_Type (Ctyp)))
939 then
940 -- If RM_Size is known and static, then we can keep
941 -- accumulating the packed size.
943 if Known_Static_RM_Size (Ctyp) then
945 -- A little glitch, to be removed sometime ???
946 -- gigi does not understand zero sizes yet.
948 if RM_Size (Ctyp) = Uint_0 then
949 Packed_Size_Known := False;
951 -- Normal case where we can keep accumulating the
952 -- packed array size.
954 else
955 Packed_Size := Packed_Size + RM_Size (Ctyp);
956 end if;
958 -- If we have a field whose RM_Size is not known then
959 -- we can't figure out the packed size here.
961 else
962 Packed_Size_Known := False;
963 end if;
965 -- If we have a non-elementary type we can't figure out
966 -- the packed array size (alignment issues).
968 else
969 Packed_Size_Known := False;
970 end if;
971 end if;
973 Next_Component_Or_Discriminant (Comp);
974 end loop;
976 if Packed_Size_Known then
977 Set_Small_Size (T, Packed_Size);
978 end if;
980 return True;
981 end;
983 -- All other cases, size not known at compile time
985 else
986 return False;
987 end if;
988 end Size_Known;
990 -------------------------------------
991 -- Static_Discriminated_Components --
992 -------------------------------------
994 function Static_Discriminated_Components
995 (T : Entity_Id) return Boolean
997 Constraint : Elmt_Id;
999 begin
1000 if Has_Discriminants (T)
1001 and then Present (Discriminant_Constraint (T))
1002 and then Present (First_Component (T))
1003 then
1004 Constraint := First_Elmt (Discriminant_Constraint (T));
1005 while Present (Constraint) loop
1006 if not Compile_Time_Known_Value (Node (Constraint)) then
1007 return False;
1008 end if;
1010 Next_Elmt (Constraint);
1011 end loop;
1012 end if;
1014 return True;
1015 end Static_Discriminated_Components;
1017 -- Start of processing for Check_Compile_Time_Size
1019 begin
1020 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1021 end Check_Compile_Time_Size;
1023 -----------------------------
1024 -- Check_Debug_Info_Needed --
1025 -----------------------------
1027 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1028 begin
1029 if Debug_Info_Off (T) then
1030 return;
1032 elsif Comes_From_Source (T)
1033 or else Debug_Generated_Code
1034 or else Debug_Flag_VV
1035 or else Needs_Debug_Info (T)
1036 then
1037 Set_Debug_Info_Needed (T);
1038 end if;
1039 end Check_Debug_Info_Needed;
1041 ----------------------------
1042 -- Check_Strict_Alignment --
1043 ----------------------------
1045 procedure Check_Strict_Alignment (E : Entity_Id) is
1046 Comp : Entity_Id;
1048 begin
1049 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1050 Set_Strict_Alignment (E);
1052 elsif Is_Array_Type (E) then
1053 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1055 elsif Is_Record_Type (E) then
1056 if Is_Limited_Record (E) then
1057 Set_Strict_Alignment (E);
1058 return;
1059 end if;
1061 Comp := First_Component (E);
1062 while Present (Comp) loop
1063 if not Is_Type (Comp)
1064 and then (Strict_Alignment (Etype (Comp))
1065 or else Is_Aliased (Comp))
1066 then
1067 Set_Strict_Alignment (E);
1068 return;
1069 end if;
1071 Next_Component (Comp);
1072 end loop;
1073 end if;
1074 end Check_Strict_Alignment;
1076 -------------------------
1077 -- Check_Unsigned_Type --
1078 -------------------------
1080 procedure Check_Unsigned_Type (E : Entity_Id) is
1081 Ancestor : Entity_Id;
1082 Lo_Bound : Node_Id;
1083 Btyp : Entity_Id;
1085 begin
1086 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1087 return;
1088 end if;
1090 -- Do not attempt to analyze case where range was in error
1092 if No (Scalar_Range (E))
1093 or else Error_Posted (Scalar_Range (E))
1094 then
1095 return;
1096 end if;
1098 -- The situation that is non trivial is something like
1100 -- subtype x1 is integer range -10 .. +10;
1101 -- subtype x2 is x1 range 0 .. V1;
1102 -- subtype x3 is x2 range V2 .. V3;
1103 -- subtype x4 is x3 range V4 .. V5;
1105 -- where Vn are variables. Here the base type is signed, but we still
1106 -- know that x4 is unsigned because of the lower bound of x2.
1108 -- The only way to deal with this is to look up the ancestor chain
1110 Ancestor := E;
1111 loop
1112 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1113 return;
1114 end if;
1116 Lo_Bound := Type_Low_Bound (Ancestor);
1118 if Compile_Time_Known_Value (Lo_Bound) then
1120 if Expr_Rep_Value (Lo_Bound) >= 0 then
1121 Set_Is_Unsigned_Type (E, True);
1122 end if;
1124 return;
1126 else
1127 Ancestor := Ancestor_Subtype (Ancestor);
1129 -- If no ancestor had a static lower bound, go to base type
1131 if No (Ancestor) then
1133 -- Note: the reason we still check for a compile time known
1134 -- value for the base type is that at least in the case of
1135 -- generic formals, we can have bounds that fail this test,
1136 -- and there may be other cases in error situations.
1138 Btyp := Base_Type (E);
1140 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1141 return;
1142 end if;
1144 Lo_Bound := Type_Low_Bound (Base_Type (E));
1146 if Compile_Time_Known_Value (Lo_Bound)
1147 and then Expr_Rep_Value (Lo_Bound) >= 0
1148 then
1149 Set_Is_Unsigned_Type (E, True);
1150 end if;
1152 return;
1153 end if;
1154 end if;
1155 end loop;
1156 end Check_Unsigned_Type;
1158 -------------------------
1159 -- Is_Atomic_Aggregate --
1160 -------------------------
1162 function Is_Atomic_Aggregate
1163 (E : Entity_Id;
1164 Typ : Entity_Id) return Boolean
1166 Loc : constant Source_Ptr := Sloc (E);
1167 New_N : Node_Id;
1168 Par : Node_Id;
1169 Temp : Entity_Id;
1171 begin
1172 Par := Parent (E);
1174 -- Array may be qualified, so find outer context
1176 if Nkind (Par) = N_Qualified_Expression then
1177 Par := Parent (Par);
1178 end if;
1180 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
1181 and then Comes_From_Source (Par)
1182 then
1183 Temp := Make_Temporary (Loc, 'T', E);
1184 New_N :=
1185 Make_Object_Declaration (Loc,
1186 Defining_Identifier => Temp,
1187 Object_Definition => New_Occurrence_Of (Typ, Loc),
1188 Expression => Relocate_Node (E));
1189 Insert_Before (Par, New_N);
1190 Analyze (New_N);
1192 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1193 return True;
1195 else
1196 return False;
1197 end if;
1198 end Is_Atomic_Aggregate;
1200 ----------------
1201 -- Freeze_All --
1202 ----------------
1204 -- Note: the easy coding for this procedure would be to just build a
1205 -- single list of freeze nodes and then insert them and analyze them
1206 -- all at once. This won't work, because the analysis of earlier freeze
1207 -- nodes may recursively freeze types which would otherwise appear later
1208 -- on in the freeze list. So we must analyze and expand the freeze nodes
1209 -- as they are generated.
1211 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1212 E : Entity_Id;
1213 Decl : Node_Id;
1215 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1216 -- This is the internal recursive routine that does freezing of entities
1217 -- (but NOT the analysis of default expressions, which should not be
1218 -- recursive, we don't want to analyze those till we are sure that ALL
1219 -- the types are frozen).
1221 --------------------
1222 -- Freeze_All_Ent --
1223 --------------------
1225 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1226 E : Entity_Id;
1227 Flist : List_Id;
1228 Lastn : Node_Id;
1230 procedure Process_Flist;
1231 -- If freeze nodes are present, insert and analyze, and reset cursor
1232 -- for next insertion.
1234 -------------------
1235 -- Process_Flist --
1236 -------------------
1238 procedure Process_Flist is
1239 begin
1240 if Is_Non_Empty_List (Flist) then
1241 Lastn := Next (After);
1242 Insert_List_After_And_Analyze (After, Flist);
1244 if Present (Lastn) then
1245 After := Prev (Lastn);
1246 else
1247 After := Last (List_Containing (After));
1248 end if;
1249 end if;
1250 end Process_Flist;
1252 -- Start or processing for Freeze_All_Ent
1254 begin
1255 E := From;
1256 while Present (E) loop
1258 -- If the entity is an inner package which is not a package
1259 -- renaming, then its entities must be frozen at this point. Note
1260 -- that such entities do NOT get frozen at the end of the nested
1261 -- package itself (only library packages freeze).
1263 -- Same is true for task declarations, where anonymous records
1264 -- created for entry parameters must be frozen.
1266 if Ekind (E) = E_Package
1267 and then No (Renamed_Object (E))
1268 and then not Is_Child_Unit (E)
1269 and then not Is_Frozen (E)
1270 then
1271 Push_Scope (E);
1272 Install_Visible_Declarations (E);
1273 Install_Private_Declarations (E);
1275 Freeze_All (First_Entity (E), After);
1277 End_Package_Scope (E);
1279 elsif Ekind (E) in Task_Kind
1280 and then
1281 (Nkind (Parent (E)) = N_Task_Type_Declaration
1282 or else
1283 Nkind (Parent (E)) = N_Single_Task_Declaration)
1284 then
1285 Push_Scope (E);
1286 Freeze_All (First_Entity (E), After);
1287 End_Scope;
1289 -- For a derived tagged type, we must ensure that all the
1290 -- primitive operations of the parent have been frozen, so that
1291 -- their addresses will be in the parent's dispatch table at the
1292 -- point it is inherited.
1294 elsif Ekind (E) = E_Record_Type
1295 and then Is_Tagged_Type (E)
1296 and then Is_Tagged_Type (Etype (E))
1297 and then Is_Derived_Type (E)
1298 then
1299 declare
1300 Prim_List : constant Elist_Id :=
1301 Primitive_Operations (Etype (E));
1303 Prim : Elmt_Id;
1304 Subp : Entity_Id;
1306 begin
1307 Prim := First_Elmt (Prim_List);
1308 while Present (Prim) loop
1309 Subp := Node (Prim);
1311 if Comes_From_Source (Subp)
1312 and then not Is_Frozen (Subp)
1313 then
1314 Flist := Freeze_Entity (Subp, After);
1315 Process_Flist;
1316 end if;
1318 Next_Elmt (Prim);
1319 end loop;
1320 end;
1321 end if;
1323 if not Is_Frozen (E) then
1324 Flist := Freeze_Entity (E, After);
1325 Process_Flist;
1326 end if;
1328 -- If an incomplete type is still not frozen, this may be a
1329 -- premature freezing because of a body declaration that follows.
1330 -- Indicate where the freezing took place.
1332 -- If the freezing is caused by the end of the current declarative
1333 -- part, it is a Taft Amendment type, and there is no error.
1335 if not Is_Frozen (E)
1336 and then Ekind (E) = E_Incomplete_Type
1337 then
1338 declare
1339 Bod : constant Node_Id := Next (After);
1341 begin
1342 if (Nkind_In (Bod, N_Subprogram_Body,
1343 N_Entry_Body,
1344 N_Package_Body,
1345 N_Protected_Body,
1346 N_Task_Body)
1347 or else Nkind (Bod) in N_Body_Stub)
1348 and then
1349 List_Containing (After) = List_Containing (Parent (E))
1350 then
1351 Error_Msg_Sloc := Sloc (Next (After));
1352 Error_Msg_NE
1353 ("type& is frozen# before its full declaration",
1354 Parent (E), E);
1355 end if;
1356 end;
1357 end if;
1359 Next_Entity (E);
1360 end loop;
1361 end Freeze_All_Ent;
1363 -- Start of processing for Freeze_All
1365 begin
1366 Freeze_All_Ent (From, After);
1368 -- Now that all types are frozen, we can deal with default expressions
1369 -- that require us to build a default expression functions. This is the
1370 -- point at which such functions are constructed (after all types that
1371 -- might be used in such expressions have been frozen).
1373 -- For subprograms that are renaming_as_body, we create the wrapper
1374 -- bodies as needed.
1376 -- We also add finalization chains to access types whose designated
1377 -- types are controlled. This is normally done when freezing the type,
1378 -- but this misses recursive type definitions where the later members
1379 -- of the recursion introduce controlled components.
1381 -- Loop through entities
1383 E := From;
1384 while Present (E) loop
1385 if Is_Subprogram (E) then
1387 if not Default_Expressions_Processed (E) then
1388 Process_Default_Expressions (E, After);
1389 end if;
1391 if not Has_Completion (E) then
1392 Decl := Unit_Declaration_Node (E);
1394 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1395 Build_And_Analyze_Renamed_Body (Decl, E, After);
1397 elsif Nkind (Decl) = N_Subprogram_Declaration
1398 and then Present (Corresponding_Body (Decl))
1399 and then
1400 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1401 = N_Subprogram_Renaming_Declaration
1402 then
1403 Build_And_Analyze_Renamed_Body
1404 (Decl, Corresponding_Body (Decl), After);
1405 end if;
1406 end if;
1408 elsif Ekind (E) in Task_Kind
1409 and then
1410 (Nkind (Parent (E)) = N_Task_Type_Declaration
1411 or else
1412 Nkind (Parent (E)) = N_Single_Task_Declaration)
1413 then
1414 declare
1415 Ent : Entity_Id;
1417 begin
1418 Ent := First_Entity (E);
1419 while Present (Ent) loop
1420 if Is_Entry (Ent)
1421 and then not Default_Expressions_Processed (Ent)
1422 then
1423 Process_Default_Expressions (Ent, After);
1424 end if;
1426 Next_Entity (Ent);
1427 end loop;
1428 end;
1430 elsif Is_Access_Type (E)
1431 and then Comes_From_Source (E)
1432 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1433 and then Needs_Finalization (Designated_Type (E))
1434 and then No (Associated_Final_Chain (E))
1435 then
1436 Build_Final_List (Parent (E), E);
1437 end if;
1439 Next_Entity (E);
1440 end loop;
1441 end Freeze_All;
1443 -----------------------
1444 -- Freeze_And_Append --
1445 -----------------------
1447 procedure Freeze_And_Append
1448 (Ent : Entity_Id;
1449 N : Node_Id;
1450 Result : in out List_Id)
1452 L : constant List_Id := Freeze_Entity (Ent, N);
1453 begin
1454 if Is_Non_Empty_List (L) then
1455 if Result = No_List then
1456 Result := L;
1457 else
1458 Append_List (L, Result);
1459 end if;
1460 end if;
1461 end Freeze_And_Append;
1463 -------------------
1464 -- Freeze_Before --
1465 -------------------
1467 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1468 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
1469 begin
1470 if Is_Non_Empty_List (Freeze_Nodes) then
1471 Insert_Actions (N, Freeze_Nodes);
1472 end if;
1473 end Freeze_Before;
1475 -------------------
1476 -- Freeze_Entity --
1477 -------------------
1479 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1480 Loc : constant Source_Ptr := Sloc (N);
1481 Test_E : Entity_Id := E;
1482 Comp : Entity_Id;
1483 F_Node : Node_Id;
1484 Result : List_Id;
1485 Indx : Node_Id;
1486 Formal : Entity_Id;
1487 Atype : Entity_Id;
1489 Has_Default_Initialization : Boolean := False;
1490 -- This flag gets set to true for a variable with default initialization
1492 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1493 -- Check that an Access or Unchecked_Access attribute with a prefix
1494 -- which is the current instance type can only be applied when the type
1495 -- is limited.
1497 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1498 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1499 -- integer literal without an explicit corresponding size clause. The
1500 -- caller has checked that Utype is a modular integer type.
1502 function After_Last_Declaration return Boolean;
1503 -- If Loc is a freeze_entity that appears after the last declaration
1504 -- in the scope, inhibit error messages on late completion.
1506 procedure Freeze_Record_Type (Rec : Entity_Id);
1507 -- Freeze each component, handle some representation clauses, and freeze
1508 -- primitive operations if this is a tagged type.
1510 ----------------------------
1511 -- After_Last_Declaration --
1512 ----------------------------
1514 function After_Last_Declaration return Boolean is
1515 Spec : constant Node_Id := Parent (Current_Scope);
1516 begin
1517 if Nkind (Spec) = N_Package_Specification then
1518 if Present (Private_Declarations (Spec)) then
1519 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1520 elsif Present (Visible_Declarations (Spec)) then
1521 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1522 else
1523 return False;
1524 end if;
1525 else
1526 return False;
1527 end if;
1528 end After_Last_Declaration;
1530 ----------------------------
1531 -- Check_Current_Instance --
1532 ----------------------------
1534 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1536 Rec_Type : constant Entity_Id :=
1537 Scope (Defining_Identifier (Comp_Decl));
1539 Decl : constant Node_Id := Parent (Rec_Type);
1541 function Process (N : Node_Id) return Traverse_Result;
1542 -- Process routine to apply check to given node
1544 -------------
1545 -- Process --
1546 -------------
1548 function Process (N : Node_Id) return Traverse_Result is
1549 begin
1550 case Nkind (N) is
1551 when N_Attribute_Reference =>
1552 if (Attribute_Name (N) = Name_Access
1553 or else
1554 Attribute_Name (N) = Name_Unchecked_Access)
1555 and then Is_Entity_Name (Prefix (N))
1556 and then Is_Type (Entity (Prefix (N)))
1557 and then Entity (Prefix (N)) = E
1558 then
1559 Error_Msg_N
1560 ("current instance must be a limited type", Prefix (N));
1561 return Abandon;
1562 else
1563 return OK;
1564 end if;
1566 when others => return OK;
1567 end case;
1568 end Process;
1570 procedure Traverse is new Traverse_Proc (Process);
1572 -- Start of processing for Check_Current_Instance
1574 begin
1575 -- In Ada95, the (imprecise) rule is that the current instance of a
1576 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1577 -- either a tagged type, or a limited record.
1579 if Is_Limited_Type (Rec_Type)
1580 and then (Ada_Version < Ada_2005 or else Is_Tagged_Type (Rec_Type))
1581 then
1582 return;
1584 elsif Nkind (Decl) = N_Full_Type_Declaration
1585 and then Limited_Present (Type_Definition (Decl))
1586 then
1587 return;
1589 else
1590 Traverse (Comp_Decl);
1591 end if;
1592 end Check_Current_Instance;
1594 ------------------------------
1595 -- Check_Suspicious_Modulus --
1596 ------------------------------
1598 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1599 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1601 begin
1602 if Nkind (Decl) = N_Full_Type_Declaration then
1603 declare
1604 Tdef : constant Node_Id := Type_Definition (Decl);
1605 begin
1606 if Nkind (Tdef) = N_Modular_Type_Definition then
1607 declare
1608 Modulus : constant Node_Id :=
1609 Original_Node (Expression (Tdef));
1610 begin
1611 if Nkind (Modulus) = N_Integer_Literal then
1612 declare
1613 Modv : constant Uint := Intval (Modulus);
1614 Sizv : constant Uint := RM_Size (Utype);
1616 begin
1617 -- First case, modulus and size are the same. This
1618 -- happens if you have something like mod 32, with
1619 -- an explicit size of 32, this is for sure a case
1620 -- where the warning is given, since it is seems
1621 -- very unlikely that someone would want e.g. a
1622 -- five bit type stored in 32 bits. It is much
1623 -- more likely they wanted a 32-bit type.
1625 if Modv = Sizv then
1626 null;
1628 -- Second case, the modulus is 32 or 64 and no
1629 -- size clause is present. This is a less clear
1630 -- case for giving the warning, but in the case
1631 -- of 32/64 (5-bit or 6-bit types) these seem rare
1632 -- enough that it is a likely error (and in any
1633 -- case using 2**5 or 2**6 in these cases seems
1634 -- clearer. We don't include 8 or 16 here, simply
1635 -- because in practice 3-bit and 4-bit types are
1636 -- more common and too many false positives if
1637 -- we warn in these cases.
1639 elsif not Has_Size_Clause (Utype)
1640 and then (Modv = Uint_32 or else Modv = Uint_64)
1641 then
1642 null;
1644 -- No warning needed
1646 else
1647 return;
1648 end if;
1650 -- If we fall through, give warning
1652 Error_Msg_Uint_1 := Modv;
1653 Error_Msg_N
1654 ("?2 '*'*^' may have been intended here",
1655 Modulus);
1656 end;
1657 end if;
1658 end;
1659 end if;
1660 end;
1661 end if;
1662 end Check_Suspicious_Modulus;
1664 ------------------------
1665 -- Freeze_Record_Type --
1666 ------------------------
1668 procedure Freeze_Record_Type (Rec : Entity_Id) is
1669 Comp : Entity_Id;
1670 IR : Node_Id;
1671 ADC : Node_Id;
1672 Prev : Entity_Id;
1674 Junk : Boolean;
1675 pragma Warnings (Off, Junk);
1677 Unplaced_Component : Boolean := False;
1678 -- Set True if we find at least one component with no component
1679 -- clause (used to warn about useless Pack pragmas).
1681 Placed_Component : Boolean := False;
1682 -- Set True if we find at least one component with a component
1683 -- clause (used to warn about useless Bit_Order pragmas, and also
1684 -- to detect cases where Implicit_Packing may have an effect).
1686 All_Scalar_Components : Boolean := True;
1687 -- Set False if we encounter a component of a non-scalar type
1689 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1690 Scalar_Component_Total_Esize : Uint := Uint_0;
1691 -- Accumulates total RM_Size values and total Esize values of all
1692 -- scalar components. Used for processing of Implicit_Packing.
1694 function Check_Allocator (N : Node_Id) return Node_Id;
1695 -- If N is an allocator, possibly wrapped in one or more level of
1696 -- qualified expression(s), return the inner allocator node, else
1697 -- return Empty.
1699 procedure Check_Itype (Typ : Entity_Id);
1700 -- If the component subtype is an access to a constrained subtype of
1701 -- an already frozen type, make the subtype frozen as well. It might
1702 -- otherwise be frozen in the wrong scope, and a freeze node on
1703 -- subtype has no effect. Similarly, if the component subtype is a
1704 -- regular (not protected) access to subprogram, set the anonymous
1705 -- subprogram type to frozen as well, to prevent an out-of-scope
1706 -- freeze node at some eventual point of call. Protected operations
1707 -- are handled elsewhere.
1709 ---------------------
1710 -- Check_Allocator --
1711 ---------------------
1713 function Check_Allocator (N : Node_Id) return Node_Id is
1714 Inner : Node_Id;
1715 begin
1716 Inner := N;
1717 loop
1718 if Nkind (Inner) = N_Allocator then
1719 return Inner;
1720 elsif Nkind (Inner) = N_Qualified_Expression then
1721 Inner := Expression (Inner);
1722 else
1723 return Empty;
1724 end if;
1725 end loop;
1726 end Check_Allocator;
1728 -----------------
1729 -- Check_Itype --
1730 -----------------
1732 procedure Check_Itype (Typ : Entity_Id) is
1733 Desig : constant Entity_Id := Designated_Type (Typ);
1735 begin
1736 if not Is_Frozen (Desig)
1737 and then Is_Frozen (Base_Type (Desig))
1738 then
1739 Set_Is_Frozen (Desig);
1741 -- In addition, add an Itype_Reference to ensure that the
1742 -- access subtype is elaborated early enough. This cannot be
1743 -- done if the subtype may depend on discriminants.
1745 if Ekind (Comp) = E_Component
1746 and then Is_Itype (Etype (Comp))
1747 and then not Has_Discriminants (Rec)
1748 then
1749 IR := Make_Itype_Reference (Sloc (Comp));
1750 Set_Itype (IR, Desig);
1752 if No (Result) then
1753 Result := New_List (IR);
1754 else
1755 Append (IR, Result);
1756 end if;
1757 end if;
1759 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1760 and then Convention (Desig) /= Convention_Protected
1761 then
1762 Set_Is_Frozen (Desig);
1763 end if;
1764 end Check_Itype;
1766 -- Start of processing for Freeze_Record_Type
1768 begin
1769 -- If this is a subtype of a controlled type, declared without a
1770 -- constraint, the _controller may not appear in the component list
1771 -- if the parent was not frozen at the point of subtype declaration.
1772 -- Inherit the _controller component now.
1774 if Rec /= Base_Type (Rec)
1775 and then Has_Controlled_Component (Rec)
1776 then
1777 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1778 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1779 then
1780 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1782 -- If this is an internal type without a declaration, as for
1783 -- record component, the base type may not yet be frozen, and its
1784 -- controller has not been created. Add an explicit freeze node
1785 -- for the itype, so it will be frozen after the base type. This
1786 -- freeze node is used to communicate with the expander, in order
1787 -- to create the controller for the enclosing record, and it is
1788 -- deleted afterwards (see exp_ch3). It must not be created when
1789 -- expansion is off, because it might appear in the wrong context
1790 -- for the back end.
1792 elsif Is_Itype (Rec)
1793 and then Has_Delayed_Freeze (Base_Type (Rec))
1794 and then
1795 Nkind (Associated_Node_For_Itype (Rec)) =
1796 N_Component_Declaration
1797 and then Expander_Active
1798 then
1799 Ensure_Freeze_Node (Rec);
1800 end if;
1801 end if;
1803 -- Freeze components and embedded subtypes
1805 Comp := First_Entity (Rec);
1806 Prev := Empty;
1807 while Present (Comp) loop
1809 -- First handle the component case
1811 if Ekind (Comp) = E_Component
1812 or else Ekind (Comp) = E_Discriminant
1813 then
1814 declare
1815 CC : constant Node_Id := Component_Clause (Comp);
1817 begin
1818 -- Freezing a record type freezes the type of each of its
1819 -- components. However, if the type of the component is
1820 -- part of this record, we do not want or need a separate
1821 -- Freeze_Node. Note that Is_Itype is wrong because that's
1822 -- also set in private type cases. We also can't check for
1823 -- the Scope being exactly Rec because of private types and
1824 -- record extensions.
1826 if Is_Itype (Etype (Comp))
1827 and then Is_Record_Type (Underlying_Type
1828 (Scope (Etype (Comp))))
1829 then
1830 Undelay_Type (Etype (Comp));
1831 end if;
1833 Freeze_And_Append (Etype (Comp), N, Result);
1835 -- Check for error of component clause given for variable
1836 -- sized type. We have to delay this test till this point,
1837 -- since the component type has to be frozen for us to know
1838 -- if it is variable length. We omit this test in a generic
1839 -- context, it will be applied at instantiation time.
1841 if Present (CC) then
1842 Placed_Component := True;
1844 if Inside_A_Generic then
1845 null;
1847 elsif not
1848 Size_Known_At_Compile_Time
1849 (Underlying_Type (Etype (Comp)))
1850 then
1851 Error_Msg_N
1852 ("component clause not allowed for variable " &
1853 "length component", CC);
1854 end if;
1856 else
1857 Unplaced_Component := True;
1858 end if;
1860 -- Case of component requires byte alignment
1862 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
1864 -- Set the enclosing record to also require byte align
1866 Set_Must_Be_On_Byte_Boundary (Rec);
1868 -- Check for component clause that is inconsistent with
1869 -- the required byte boundary alignment.
1871 if Present (CC)
1872 and then Normalized_First_Bit (Comp) mod
1873 System_Storage_Unit /= 0
1874 then
1875 Error_Msg_N
1876 ("component & must be byte aligned",
1877 Component_Name (Component_Clause (Comp)));
1878 end if;
1879 end if;
1880 end;
1881 end if;
1883 -- Gather data for possible Implicit_Packing later. Note that at
1884 -- this stage we might be dealing with a real component, or with
1885 -- an implicit subtype declaration.
1887 if not Is_Scalar_Type (Etype (Comp)) then
1888 All_Scalar_Components := False;
1889 else
1890 Scalar_Component_Total_RM_Size :=
1891 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1892 Scalar_Component_Total_Esize :=
1893 Scalar_Component_Total_Esize + Esize (Etype (Comp));
1894 end if;
1896 -- If the component is an Itype with Delayed_Freeze and is either
1897 -- a record or array subtype and its base type has not yet been
1898 -- frozen, we must remove this from the entity list of this record
1899 -- and put it on the entity list of the scope of its base type.
1900 -- Note that we know that this is not the type of a component
1901 -- since we cleared Has_Delayed_Freeze for it in the previous
1902 -- loop. Thus this must be the Designated_Type of an access type,
1903 -- which is the type of a component.
1905 if Is_Itype (Comp)
1906 and then Is_Type (Scope (Comp))
1907 and then Is_Composite_Type (Comp)
1908 and then Base_Type (Comp) /= Comp
1909 and then Has_Delayed_Freeze (Comp)
1910 and then not Is_Frozen (Base_Type (Comp))
1911 then
1912 declare
1913 Will_Be_Frozen : Boolean := False;
1914 S : Entity_Id;
1916 begin
1917 -- We have a pretty bad kludge here. Suppose Rec is subtype
1918 -- being defined in a subprogram that's created as part of
1919 -- the freezing of Rec'Base. In that case, we know that
1920 -- Comp'Base must have already been frozen by the time we
1921 -- get to elaborate this because Gigi doesn't elaborate any
1922 -- bodies until it has elaborated all of the declarative
1923 -- part. But Is_Frozen will not be set at this point because
1924 -- we are processing code in lexical order.
1926 -- We detect this case by going up the Scope chain of Rec
1927 -- and seeing if we have a subprogram scope before reaching
1928 -- the top of the scope chain or that of Comp'Base. If we
1929 -- do, then mark that Comp'Base will actually be frozen. If
1930 -- so, we merely undelay it.
1932 S := Scope (Rec);
1933 while Present (S) loop
1934 if Is_Subprogram (S) then
1935 Will_Be_Frozen := True;
1936 exit;
1937 elsif S = Scope (Base_Type (Comp)) then
1938 exit;
1939 end if;
1941 S := Scope (S);
1942 end loop;
1944 if Will_Be_Frozen then
1945 Undelay_Type (Comp);
1946 else
1947 if Present (Prev) then
1948 Set_Next_Entity (Prev, Next_Entity (Comp));
1949 else
1950 Set_First_Entity (Rec, Next_Entity (Comp));
1951 end if;
1953 -- Insert in entity list of scope of base type (which
1954 -- must be an enclosing scope, because still unfrozen).
1956 Append_Entity (Comp, Scope (Base_Type (Comp)));
1957 end if;
1958 end;
1960 -- If the component is an access type with an allocator as default
1961 -- value, the designated type will be frozen by the corresponding
1962 -- expression in init_proc. In order to place the freeze node for
1963 -- the designated type before that for the current record type,
1964 -- freeze it now.
1966 -- Same process if the component is an array of access types,
1967 -- initialized with an aggregate. If the designated type is
1968 -- private, it cannot contain allocators, and it is premature
1969 -- to freeze the type, so we check for this as well.
1971 elsif Is_Access_Type (Etype (Comp))
1972 and then Present (Parent (Comp))
1973 and then Present (Expression (Parent (Comp)))
1974 then
1975 declare
1976 Alloc : constant Node_Id :=
1977 Check_Allocator (Expression (Parent (Comp)));
1979 begin
1980 if Present (Alloc) then
1982 -- If component is pointer to a classwide type, freeze
1983 -- the specific type in the expression being allocated.
1984 -- The expression may be a subtype indication, in which
1985 -- case freeze the subtype mark.
1987 if Is_Class_Wide_Type
1988 (Designated_Type (Etype (Comp)))
1989 then
1990 if Is_Entity_Name (Expression (Alloc)) then
1991 Freeze_And_Append
1992 (Entity (Expression (Alloc)), N, Result);
1993 elsif
1994 Nkind (Expression (Alloc)) = N_Subtype_Indication
1995 then
1996 Freeze_And_Append
1997 (Entity (Subtype_Mark (Expression (Alloc))),
1998 N, Result);
1999 end if;
2001 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2002 Check_Itype (Etype (Comp));
2004 else
2005 Freeze_And_Append
2006 (Designated_Type (Etype (Comp)), N, Result);
2007 end if;
2008 end if;
2009 end;
2011 elsif Is_Access_Type (Etype (Comp))
2012 and then Is_Itype (Designated_Type (Etype (Comp)))
2013 then
2014 Check_Itype (Etype (Comp));
2016 elsif Is_Array_Type (Etype (Comp))
2017 and then Is_Access_Type (Component_Type (Etype (Comp)))
2018 and then Present (Parent (Comp))
2019 and then Nkind (Parent (Comp)) = N_Component_Declaration
2020 and then Present (Expression (Parent (Comp)))
2021 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2022 and then Is_Fully_Defined
2023 (Designated_Type (Component_Type (Etype (Comp))))
2024 then
2025 Freeze_And_Append
2026 (Designated_Type
2027 (Component_Type (Etype (Comp))), N, Result);
2028 end if;
2030 Prev := Comp;
2031 Next_Entity (Comp);
2032 end loop;
2034 -- Deal with pragma Bit_Order setting non-standard bit order
2036 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2037 if not Placed_Component then
2038 ADC :=
2039 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2040 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
2041 Error_Msg_N
2042 ("\?since no component clauses were specified", ADC);
2044 -- Here is where we do the processing for reversed bit order
2046 else
2047 Adjust_Record_For_Reverse_Bit_Order (Rec);
2048 end if;
2049 end if;
2051 -- Complete error checking on record representation clause (e.g.
2052 -- overlap of components). This is called after adjusting the
2053 -- record for reverse bit order.
2055 declare
2056 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
2057 begin
2058 if Present (RRC) then
2059 Check_Record_Representation_Clause (RRC);
2060 end if;
2061 end;
2063 -- Set OK_To_Reorder_Components depending on debug flags
2065 if Rec = Base_Type (Rec)
2066 and then Convention (Rec) = Convention_Ada
2067 then
2068 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2069 or else
2070 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2071 then
2072 Set_OK_To_Reorder_Components (Rec);
2073 end if;
2074 end if;
2076 -- Check for useless pragma Pack when all components placed. We only
2077 -- do this check for record types, not subtypes, since a subtype may
2078 -- have all its components placed, and it still makes perfectly good
2079 -- sense to pack other subtypes or the parent type. We do not give
2080 -- this warning if Optimize_Alignment is set to Space, since the
2081 -- pragma Pack does have an effect in this case (it always resets
2082 -- the alignment to one).
2084 if Ekind (Rec) = E_Record_Type
2085 and then Is_Packed (Rec)
2086 and then not Unplaced_Component
2087 and then Optimize_Alignment /= 'S'
2088 then
2089 -- Reset packed status. Probably not necessary, but we do it so
2090 -- that there is no chance of the back end doing something strange
2091 -- with this redundant indication of packing.
2093 Set_Is_Packed (Rec, False);
2095 -- Give warning if redundant constructs warnings on
2097 if Warn_On_Redundant_Constructs then
2098 Error_Msg_N -- CODEFIX
2099 ("?pragma Pack has no effect, no unplaced components",
2100 Get_Rep_Pragma (Rec, Name_Pack));
2101 end if;
2102 end if;
2104 -- If this is the record corresponding to a remote type, freeze the
2105 -- remote type here since that is what we are semantically freezing.
2106 -- This prevents the freeze node for that type in an inner scope.
2108 -- Also, Check for controlled components and unchecked unions.
2109 -- Finally, enforce the restriction that access attributes with a
2110 -- current instance prefix can only apply to limited types.
2112 if Ekind (Rec) = E_Record_Type then
2113 if Present (Corresponding_Remote_Type (Rec)) then
2114 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
2115 end if;
2117 Comp := First_Component (Rec);
2118 while Present (Comp) loop
2120 -- Do not set Has_Controlled_Component on a class-wide
2121 -- equivalent type. See Make_CW_Equivalent_Type.
2123 if not Is_Class_Wide_Equivalent_Type (Rec)
2124 and then (Has_Controlled_Component (Etype (Comp))
2125 or else (Chars (Comp) /= Name_uParent
2126 and then Is_Controlled (Etype (Comp)))
2127 or else (Is_Protected_Type (Etype (Comp))
2128 and then Present
2129 (Corresponding_Record_Type
2130 (Etype (Comp)))
2131 and then Has_Controlled_Component
2132 (Corresponding_Record_Type
2133 (Etype (Comp)))))
2134 then
2135 Set_Has_Controlled_Component (Rec);
2136 exit;
2137 end if;
2139 if Has_Unchecked_Union (Etype (Comp)) then
2140 Set_Has_Unchecked_Union (Rec);
2141 end if;
2143 if Has_Per_Object_Constraint (Comp) then
2145 -- Scan component declaration for likely misuses of current
2146 -- instance, either in a constraint or a default expression.
2148 Check_Current_Instance (Parent (Comp));
2149 end if;
2151 Next_Component (Comp);
2152 end loop;
2153 end if;
2155 Set_Component_Alignment_If_Not_Set (Rec);
2157 -- For first subtypes, check if there are any fixed-point fields with
2158 -- component clauses, where we must check the size. This is not done
2159 -- till the freeze point, since for fixed-point types, we do not know
2160 -- the size until the type is frozen. Similar processing applies to
2161 -- bit packed arrays.
2163 if Is_First_Subtype (Rec) then
2164 Comp := First_Component (Rec);
2165 while Present (Comp) loop
2166 if Present (Component_Clause (Comp))
2167 and then (Is_Fixed_Point_Type (Etype (Comp))
2168 or else
2169 Is_Bit_Packed_Array (Etype (Comp)))
2170 then
2171 Check_Size
2172 (Component_Name (Component_Clause (Comp)),
2173 Etype (Comp),
2174 Esize (Comp),
2175 Junk);
2176 end if;
2178 Next_Component (Comp);
2179 end loop;
2180 end if;
2182 -- Generate warning for applying C or C++ convention to a record
2183 -- with discriminants. This is suppressed for the unchecked union
2184 -- case, since the whole point in this case is interface C. We also
2185 -- do not generate this within instantiations, since we will have
2186 -- generated a message on the template.
2188 if Has_Discriminants (E)
2189 and then not Is_Unchecked_Union (E)
2190 and then (Convention (E) = Convention_C
2191 or else
2192 Convention (E) = Convention_CPP)
2193 and then Comes_From_Source (E)
2194 and then not In_Instance
2195 and then not Has_Warnings_Off (E)
2196 and then not Has_Warnings_Off (Base_Type (E))
2197 then
2198 declare
2199 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2200 A2 : Node_Id;
2202 begin
2203 if Present (Cprag) then
2204 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2206 if Convention (E) = Convention_C then
2207 Error_Msg_N
2208 ("?variant record has no direct equivalent in C", A2);
2209 else
2210 Error_Msg_N
2211 ("?variant record has no direct equivalent in C++", A2);
2212 end if;
2214 Error_Msg_NE
2215 ("\?use of convention for type& is dubious", A2, E);
2216 end if;
2217 end;
2218 end if;
2220 -- See if Size is too small as is (and implicit packing might help)
2222 if not Is_Packed (Rec)
2224 -- No implicit packing if even one component is explicitly placed
2226 and then not Placed_Component
2228 -- Must have size clause and all scalar components
2230 and then Has_Size_Clause (Rec)
2231 and then All_Scalar_Components
2233 -- Do not try implicit packing on records with discriminants, too
2234 -- complicated, especially in the variant record case.
2236 and then not Has_Discriminants (Rec)
2238 -- We can implicitly pack if the specified size of the record is
2239 -- less than the sum of the object sizes (no point in packing if
2240 -- this is not the case).
2242 and then Esize (Rec) < Scalar_Component_Total_Esize
2244 -- And the total RM size cannot be greater than the specified size
2245 -- since otherwise packing will not get us where we have to be!
2247 and then Esize (Rec) >= Scalar_Component_Total_RM_Size
2249 -- Never do implicit packing in CodePeer mode since we don't do
2250 -- any packing in this mode, since this generates over-complex
2251 -- code that confuses CodePeer, and in general, CodePeer does not
2252 -- care about the internal representation of objects.
2254 and then not CodePeer_Mode
2255 then
2256 -- If implicit packing enabled, do it
2258 if Implicit_Packing then
2259 Set_Is_Packed (Rec);
2261 -- Otherwise flag the size clause
2263 else
2264 declare
2265 Sz : constant Node_Id := Size_Clause (Rec);
2266 begin
2267 Error_Msg_NE -- CODEFIX
2268 ("size given for& too small", Sz, Rec);
2269 Error_Msg_N -- CODEFIX
2270 ("\use explicit pragma Pack "
2271 & "or use pragma Implicit_Packing", Sz);
2272 end;
2273 end if;
2274 end if;
2275 end Freeze_Record_Type;
2277 -- Start of processing for Freeze_Entity
2279 begin
2280 -- We are going to test for various reasons why this entity need not be
2281 -- frozen here, but in the case of an Itype that's defined within a
2282 -- record, that test actually applies to the record.
2284 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2285 Test_E := Scope (E);
2286 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2287 and then Is_Record_Type (Underlying_Type (Scope (E)))
2288 then
2289 Test_E := Underlying_Type (Scope (E));
2290 end if;
2292 -- Do not freeze if already frozen since we only need one freeze node
2294 if Is_Frozen (E) then
2295 return No_List;
2297 -- It is improper to freeze an external entity within a generic because
2298 -- its freeze node will appear in a non-valid context. The entity will
2299 -- be frozen in the proper scope after the current generic is analyzed.
2301 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
2302 return No_List;
2304 -- Do not freeze a global entity within an inner scope created during
2305 -- expansion. A call to subprogram E within some internal procedure
2306 -- (a stream attribute for example) might require freezing E, but the
2307 -- freeze node must appear in the same declarative part as E itself.
2308 -- The two-pass elaboration mechanism in gigi guarantees that E will
2309 -- be frozen before the inner call is elaborated. We exclude constants
2310 -- from this test, because deferred constants may be frozen early, and
2311 -- must be diagnosed (e.g. in the case of a deferred constant being used
2312 -- in a default expression). If the enclosing subprogram comes from
2313 -- source, or is a generic instance, then the freeze point is the one
2314 -- mandated by the language, and we freeze the entity. A subprogram that
2315 -- is a child unit body that acts as a spec does not have a spec that
2316 -- comes from source, but can only come from source.
2318 elsif In_Open_Scopes (Scope (Test_E))
2319 and then Scope (Test_E) /= Current_Scope
2320 and then Ekind (Test_E) /= E_Constant
2321 then
2322 declare
2323 S : Entity_Id;
2325 begin
2326 S := Current_Scope;
2327 while Present (S) loop
2328 if Is_Overloadable (S) then
2329 if Comes_From_Source (S)
2330 or else Is_Generic_Instance (S)
2331 or else Is_Child_Unit (S)
2332 then
2333 exit;
2334 else
2335 return No_List;
2336 end if;
2337 end if;
2339 S := Scope (S);
2340 end loop;
2341 end;
2343 -- Similarly, an inlined instance body may make reference to global
2344 -- entities, but these references cannot be the proper freezing point
2345 -- for them, and in the absence of inlining freezing will take place in
2346 -- their own scope. Normally instance bodies are analyzed after the
2347 -- enclosing compilation, and everything has been frozen at the proper
2348 -- place, but with front-end inlining an instance body is compiled
2349 -- before the end of the enclosing scope, and as a result out-of-order
2350 -- freezing must be prevented.
2352 elsif Front_End_Inlining
2353 and then In_Instance_Body
2354 and then Present (Scope (Test_E))
2355 then
2356 declare
2357 S : Entity_Id;
2359 begin
2360 S := Scope (Test_E);
2361 while Present (S) loop
2362 if Is_Generic_Instance (S) then
2363 exit;
2364 else
2365 S := Scope (S);
2366 end if;
2367 end loop;
2369 if No (S) then
2370 return No_List;
2371 end if;
2372 end;
2373 end if;
2375 -- Deal with delayed aspect specifications. At the point of occurrence
2376 -- of the aspect definition, we preanalyzed the argument, to capture
2377 -- the visibility at that point, but the actual analysis of the aspect
2378 -- is required to be delayed to the freeze point, so we evalute the
2379 -- pragma or attribute definition clause in the tree at this point.
2381 if Has_Delayed_Aspects (E) then
2382 declare
2383 Ritem : Node_Id;
2384 Aitem : Node_Id;
2386 begin
2387 Ritem := First_Rep_Item (E);
2388 while Present (Ritem) loop
2389 if Nkind (Ritem) = N_Aspect_Specification then
2390 Aitem := Aspect_Rep_Item (Ritem);
2391 pragma Assert (Is_Delayed_Aspect (Aitem));
2392 Set_Parent (Aitem, Ritem);
2393 Analyze (Aitem);
2394 end if;
2396 Next_Rep_Item (Ritem);
2397 end loop;
2398 end;
2399 end if;
2401 -- Here to freeze the entity
2403 Result := No_List;
2404 Set_Is_Frozen (E);
2406 -- Case of entity being frozen is other than a type
2408 if not Is_Type (E) then
2410 -- If entity is exported or imported and does not have an external
2411 -- name, now is the time to provide the appropriate default name.
2412 -- Skip this if the entity is stubbed, since we don't need a name
2413 -- for any stubbed routine. For the case on intrinsics, if no
2414 -- external name is specified, then calls will be handled in
2415 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
2416 -- external name is provided, then Expand_Intrinsic_Call leaves
2417 -- calls in place for expansion by GIGI.
2419 if (Is_Imported (E) or else Is_Exported (E))
2420 and then No (Interface_Name (E))
2421 and then Convention (E) /= Convention_Stubbed
2422 and then Convention (E) /= Convention_Intrinsic
2423 then
2424 Set_Encoded_Interface_Name
2425 (E, Get_Default_External_Name (E));
2427 -- If entity is an atomic object appearing in a declaration and
2428 -- the expression is an aggregate, assign it to a temporary to
2429 -- ensure that the actual assignment is done atomically rather
2430 -- than component-wise (the assignment to the temp may be done
2431 -- component-wise, but that is harmless).
2433 elsif Is_Atomic (E)
2434 and then Nkind (Parent (E)) = N_Object_Declaration
2435 and then Present (Expression (Parent (E)))
2436 and then Nkind (Expression (Parent (E))) = N_Aggregate
2437 and then
2438 Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
2439 then
2440 null;
2441 end if;
2443 -- For a subprogram, freeze all parameter types and also the return
2444 -- type (RM 13.14(14)). However skip this for internal subprograms.
2445 -- This is also the point where any extra formal parameters are
2446 -- created since we now know whether the subprogram will use a
2447 -- foreign convention.
2449 if Is_Subprogram (E) then
2450 if not Is_Internal (E) then
2451 declare
2452 F_Type : Entity_Id;
2453 R_Type : Entity_Id;
2454 Warn_Node : Node_Id;
2456 begin
2457 -- Loop through formals
2459 Formal := First_Formal (E);
2460 while Present (Formal) loop
2461 F_Type := Etype (Formal);
2462 Freeze_And_Append (F_Type, N, Result);
2464 if Is_Private_Type (F_Type)
2465 and then Is_Private_Type (Base_Type (F_Type))
2466 and then No (Full_View (Base_Type (F_Type)))
2467 and then not Is_Generic_Type (F_Type)
2468 and then not Is_Derived_Type (F_Type)
2469 then
2470 -- If the type of a formal is incomplete, subprogram
2471 -- is being frozen prematurely. Within an instance
2472 -- (but not within a wrapper package) this is an
2473 -- artifact of our need to regard the end of an
2474 -- instantiation as a freeze point. Otherwise it is
2475 -- a definite error.
2477 if In_Instance then
2478 Set_Is_Frozen (E, False);
2479 return No_List;
2481 elsif not After_Last_Declaration
2482 and then not Freezing_Library_Level_Tagged_Type
2483 then
2484 Error_Msg_Node_1 := F_Type;
2485 Error_Msg
2486 ("type& must be fully defined before this point",
2487 Loc);
2488 end if;
2489 end if;
2491 -- Check suspicious parameter for C function. These tests
2492 -- apply only to exported/imported subprograms.
2494 if Warn_On_Export_Import
2495 and then Comes_From_Source (E)
2496 and then (Convention (E) = Convention_C
2497 or else
2498 Convention (E) = Convention_CPP)
2499 and then (Is_Imported (E) or else Is_Exported (E))
2500 and then Convention (E) /= Convention (Formal)
2501 and then not Has_Warnings_Off (E)
2502 and then not Has_Warnings_Off (F_Type)
2503 and then not Has_Warnings_Off (Formal)
2504 then
2505 -- Qualify mention of formals with subprogram name
2507 Error_Msg_Qual_Level := 1;
2509 -- Check suspicious use of fat C pointer
2511 if Is_Access_Type (F_Type)
2512 and then Esize (F_Type) > Ttypes.System_Address_Size
2513 then
2514 Error_Msg_N
2515 ("?type of & does not correspond to C pointer!",
2516 Formal);
2518 -- Check suspicious return of boolean
2520 elsif Root_Type (F_Type) = Standard_Boolean
2521 and then Convention (F_Type) = Convention_Ada
2522 and then not Has_Warnings_Off (F_Type)
2523 and then not Has_Size_Clause (F_Type)
2524 and then VM_Target = No_VM
2525 then
2526 Error_Msg_N ("& is an 8-bit Ada Boolean?", Formal);
2527 Error_Msg_N
2528 ("\use appropriate corresponding type in C "
2529 & "(e.g. char)?", Formal);
2531 -- Check suspicious tagged type
2533 elsif (Is_Tagged_Type (F_Type)
2534 or else (Is_Access_Type (F_Type)
2535 and then
2536 Is_Tagged_Type
2537 (Designated_Type (F_Type))))
2538 and then Convention (E) = Convention_C
2539 then
2540 Error_Msg_N
2541 ("?& involves a tagged type which does not "
2542 & "correspond to any C type!", Formal);
2544 -- Check wrong convention subprogram pointer
2546 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2547 and then not Has_Foreign_Convention (F_Type)
2548 then
2549 Error_Msg_N
2550 ("?subprogram pointer & should "
2551 & "have foreign convention!", Formal);
2552 Error_Msg_Sloc := Sloc (F_Type);
2553 Error_Msg_NE
2554 ("\?add Convention pragma to declaration of &#",
2555 Formal, F_Type);
2556 end if;
2558 -- Turn off name qualification after message output
2560 Error_Msg_Qual_Level := 0;
2561 end if;
2563 -- Check for unconstrained array in exported foreign
2564 -- convention case.
2566 if Has_Foreign_Convention (E)
2567 and then not Is_Imported (E)
2568 and then Is_Array_Type (F_Type)
2569 and then not Is_Constrained (F_Type)
2570 and then Warn_On_Export_Import
2572 -- Exclude VM case, since both .NET and JVM can handle
2573 -- unconstrained arrays without a problem.
2575 and then VM_Target = No_VM
2576 then
2577 Error_Msg_Qual_Level := 1;
2579 -- If this is an inherited operation, place the
2580 -- warning on the derived type declaration, rather
2581 -- than on the original subprogram.
2583 if Nkind (Original_Node (Parent (E))) =
2584 N_Full_Type_Declaration
2585 then
2586 Warn_Node := Parent (E);
2588 if Formal = First_Formal (E) then
2589 Error_Msg_NE
2590 ("?in inherited operation&", Warn_Node, E);
2591 end if;
2592 else
2593 Warn_Node := Formal;
2594 end if;
2596 Error_Msg_NE
2597 ("?type of argument& is unconstrained array",
2598 Warn_Node, Formal);
2599 Error_Msg_NE
2600 ("?foreign caller must pass bounds explicitly",
2601 Warn_Node, Formal);
2602 Error_Msg_Qual_Level := 0;
2603 end if;
2605 if not From_With_Type (F_Type) then
2606 if Is_Access_Type (F_Type) then
2607 F_Type := Designated_Type (F_Type);
2608 end if;
2610 -- If the formal is an anonymous_access_to_subprogram
2611 -- freeze the subprogram type as well, to prevent
2612 -- scope anomalies in gigi, because there is no other
2613 -- clear point at which it could be frozen.
2615 if Is_Itype (Etype (Formal))
2616 and then Ekind (F_Type) = E_Subprogram_Type
2617 then
2618 Freeze_And_Append (F_Type, N, Result);
2619 end if;
2620 end if;
2622 Next_Formal (Formal);
2623 end loop;
2625 -- Case of function: similar checks on return type
2627 if Ekind (E) = E_Function then
2629 -- Freeze return type
2631 R_Type := Etype (E);
2632 Freeze_And_Append (R_Type, N, Result);
2634 -- Check suspicious return type for C function
2636 if Warn_On_Export_Import
2637 and then (Convention (E) = Convention_C
2638 or else
2639 Convention (E) = Convention_CPP)
2640 and then (Is_Imported (E) or else Is_Exported (E))
2641 then
2642 -- Check suspicious return of fat C pointer
2644 if Is_Access_Type (R_Type)
2645 and then Esize (R_Type) > Ttypes.System_Address_Size
2646 and then not Has_Warnings_Off (E)
2647 and then not Has_Warnings_Off (R_Type)
2648 then
2649 Error_Msg_N
2650 ("?return type of& does not "
2651 & "correspond to C pointer!", E);
2653 -- Check suspicious return of boolean
2655 elsif Root_Type (R_Type) = Standard_Boolean
2656 and then Convention (R_Type) = Convention_Ada
2657 and then VM_Target = No_VM
2658 and then not Has_Warnings_Off (E)
2659 and then not Has_Warnings_Off (R_Type)
2660 and then not Has_Size_Clause (R_Type)
2661 then
2662 declare
2663 N : constant Node_Id :=
2664 Result_Definition (Declaration_Node (E));
2665 begin
2666 Error_Msg_NE
2667 ("return type of & is an 8-bit Ada Boolean?",
2668 N, E);
2669 Error_Msg_NE
2670 ("\use appropriate corresponding type in C "
2671 & "(e.g. char)?", N, E);
2672 end;
2674 -- Check suspicious return tagged type
2676 elsif (Is_Tagged_Type (R_Type)
2677 or else (Is_Access_Type (R_Type)
2678 and then
2679 Is_Tagged_Type
2680 (Designated_Type (R_Type))))
2681 and then Convention (E) = Convention_C
2682 and then not Has_Warnings_Off (E)
2683 and then not Has_Warnings_Off (R_Type)
2684 then
2685 Error_Msg_N
2686 ("?return type of & does not "
2687 & "correspond to C type!", E);
2689 -- Check return of wrong convention subprogram pointer
2691 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2692 and then not Has_Foreign_Convention (R_Type)
2693 and then not Has_Warnings_Off (E)
2694 and then not Has_Warnings_Off (R_Type)
2695 then
2696 Error_Msg_N
2697 ("?& should return a foreign "
2698 & "convention subprogram pointer", E);
2699 Error_Msg_Sloc := Sloc (R_Type);
2700 Error_Msg_NE
2701 ("\?add Convention pragma to declaration of& #",
2702 E, R_Type);
2703 end if;
2704 end if;
2706 -- Give warning for suspicous return of a result of an
2707 -- unconstrained array type in a foreign convention
2708 -- function.
2710 if Has_Foreign_Convention (E)
2712 -- We are looking for a return of unconstrained array
2714 and then Is_Array_Type (R_Type)
2715 and then not Is_Constrained (R_Type)
2717 -- Exclude imported routines, the warning does not
2718 -- belong on the import, but on the routine definition.
2720 and then not Is_Imported (E)
2722 -- Exclude VM case, since both .NET and JVM can handle
2723 -- return of unconstrained arrays without a problem.
2725 and then VM_Target = No_VM
2727 -- Check that general warning is enabled, and that it
2728 -- is not suppressed for this particular case.
2730 and then Warn_On_Export_Import
2731 and then not Has_Warnings_Off (E)
2732 and then not Has_Warnings_Off (R_Type)
2733 then
2734 Error_Msg_N
2735 ("?foreign convention function& should not " &
2736 "return unconstrained array!", E);
2737 end if;
2738 end if;
2739 end;
2740 end if;
2742 -- Must freeze its parent first if it is a derived subprogram
2744 if Present (Alias (E)) then
2745 Freeze_And_Append (Alias (E), N, Result);
2746 end if;
2748 -- We don't freeze internal subprograms, because we don't normally
2749 -- want addition of extra formals or mechanism setting to happen
2750 -- for those. However we do pass through predefined dispatching
2751 -- cases, since extra formals may be needed in some cases, such as
2752 -- for the stream 'Input function (build-in-place formals).
2754 if not Is_Internal (E)
2755 or else Is_Predefined_Dispatching_Operation (E)
2756 then
2757 Freeze_Subprogram (E);
2758 end if;
2760 -- Here for other than a subprogram or type
2762 else
2763 -- If entity has a type, and it is not a generic unit, then
2764 -- freeze it first (RM 13.14(10)).
2766 if Present (Etype (E))
2767 and then Ekind (E) /= E_Generic_Function
2768 then
2769 Freeze_And_Append (Etype (E), N, Result);
2770 end if;
2772 -- Special processing for objects created by object declaration
2774 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2776 -- Abstract type allowed only for C++ imported variables or
2777 -- constants.
2779 -- Note: we inhibit this check for objects that do not come
2780 -- from source because there is at least one case (the
2781 -- expansion of x'class'input where x is abstract) where we
2782 -- legitimately generate an abstract object.
2784 if Is_Abstract_Type (Etype (E))
2785 and then Comes_From_Source (Parent (E))
2786 and then not (Is_Imported (E)
2787 and then Is_CPP_Class (Etype (E)))
2788 then
2789 Error_Msg_N ("type of object cannot be abstract",
2790 Object_Definition (Parent (E)));
2792 if Is_CPP_Class (Etype (E)) then
2793 Error_Msg_NE
2794 ("\} may need a cpp_constructor",
2795 Object_Definition (Parent (E)), Etype (E));
2796 end if;
2797 end if;
2799 -- For object created by object declaration, perform required
2800 -- categorization (preelaborate and pure) checks. Defer these
2801 -- checks to freeze time since pragma Import inhibits default
2802 -- initialization and thus pragma Import affects these checks.
2804 Validate_Object_Declaration (Declaration_Node (E));
2806 -- If there is an address clause, check that it is valid
2808 Check_Address_Clause (E);
2810 -- If the object needs any kind of default initialization, an
2811 -- error must be issued if No_Default_Initialization applies.
2812 -- The check doesn't apply to imported objects, which are not
2813 -- ever default initialized, and is why the check is deferred
2814 -- until freezing, at which point we know if Import applies.
2815 -- Deferred constants are also exempted from this test because
2816 -- their completion is explicit, or through an import pragma.
2818 if Ekind (E) = E_Constant
2819 and then Present (Full_View (E))
2820 then
2821 null;
2823 elsif Comes_From_Source (E)
2824 and then not Is_Imported (E)
2825 and then not Has_Init_Expression (Declaration_Node (E))
2826 and then
2827 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2828 and then not No_Initialization (Declaration_Node (E))
2829 and then not Is_Value_Type (Etype (E))
2830 and then not Suppress_Init_Proc (Etype (E)))
2831 or else
2832 (Needs_Simple_Initialization (Etype (E))
2833 and then not Is_Internal (E)))
2834 then
2835 Has_Default_Initialization := True;
2836 Check_Restriction
2837 (No_Default_Initialization, Declaration_Node (E));
2838 end if;
2840 -- Check that a Thread_Local_Storage variable does not have
2841 -- default initialization, and any explicit initialization must
2842 -- either be the null constant or a static constant.
2844 if Has_Pragma_Thread_Local_Storage (E) then
2845 declare
2846 Decl : constant Node_Id := Declaration_Node (E);
2847 begin
2848 if Has_Default_Initialization
2849 or else
2850 (Has_Init_Expression (Decl)
2851 and then
2852 (No (Expression (Decl))
2853 or else not
2854 (Is_Static_Expression (Expression (Decl))
2855 or else
2856 Nkind (Expression (Decl)) = N_Null)))
2857 then
2858 Error_Msg_NE
2859 ("Thread_Local_Storage variable& is "
2860 & "improperly initialized", Decl, E);
2861 Error_Msg_NE
2862 ("\only allowed initialization is explicit "
2863 & "NULL or static expression", Decl, E);
2864 end if;
2865 end;
2866 end if;
2868 -- For imported objects, set Is_Public unless there is also an
2869 -- address clause, which means that there is no external symbol
2870 -- needed for the Import (Is_Public may still be set for other
2871 -- unrelated reasons). Note that we delayed this processing
2872 -- till freeze time so that we can be sure not to set the flag
2873 -- if there is an address clause. If there is such a clause,
2874 -- then the only purpose of the Import pragma is to suppress
2875 -- implicit initialization.
2877 if Is_Imported (E)
2878 and then No (Address_Clause (E))
2879 then
2880 Set_Is_Public (E);
2881 end if;
2883 -- For convention C objects of an enumeration type, warn if
2884 -- the size is not integer size and no explicit size given.
2885 -- Skip warning for Boolean, and Character, assume programmer
2886 -- expects 8-bit sizes for these cases.
2888 if (Convention (E) = Convention_C
2889 or else
2890 Convention (E) = Convention_CPP)
2891 and then Is_Enumeration_Type (Etype (E))
2892 and then not Is_Character_Type (Etype (E))
2893 and then not Is_Boolean_Type (Etype (E))
2894 and then Esize (Etype (E)) < Standard_Integer_Size
2895 and then not Has_Size_Clause (E)
2896 then
2897 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2898 Error_Msg_N
2899 ("?convention C enumeration object has size less than ^",
2901 Error_Msg_N ("\?use explicit size clause to set size", E);
2902 end if;
2903 end if;
2905 -- Check that a constant which has a pragma Volatile[_Components]
2906 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
2908 -- Note: Atomic[_Components] also sets Volatile[_Components]
2910 if Ekind (E) = E_Constant
2911 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2912 and then not Is_Imported (E)
2913 then
2914 -- Make sure we actually have a pragma, and have not merely
2915 -- inherited the indication from elsewhere (e.g. an address
2916 -- clause, which is not good enough in RM terms!)
2918 if Has_Rep_Pragma (E, Name_Atomic)
2919 or else
2920 Has_Rep_Pragma (E, Name_Atomic_Components)
2921 then
2922 Error_Msg_N
2923 ("stand alone atomic constant must be " &
2924 "imported (RM C.6(13))", E);
2926 elsif Has_Rep_Pragma (E, Name_Volatile)
2927 or else
2928 Has_Rep_Pragma (E, Name_Volatile_Components)
2929 then
2930 Error_Msg_N
2931 ("stand alone volatile constant must be " &
2932 "imported (RM C.6(13))", E);
2933 end if;
2934 end if;
2936 -- Static objects require special handling
2938 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2939 and then Is_Statically_Allocated (E)
2940 then
2941 Freeze_Static_Object (E);
2942 end if;
2944 -- Remaining step is to layout objects
2946 if Ekind (E) = E_Variable
2947 or else
2948 Ekind (E) = E_Constant
2949 or else
2950 Ekind (E) = E_Loop_Parameter
2951 or else
2952 Is_Formal (E)
2953 then
2954 Layout_Object (E);
2955 end if;
2956 end if;
2958 -- Case of a type or subtype being frozen
2960 else
2961 -- We used to check here that a full type must have preelaborable
2962 -- initialization if it completes a private type specified with
2963 -- pragma Preelaborable_Intialization, but that missed cases where
2964 -- the types occur within a generic package, since the freezing
2965 -- that occurs within a containing scope generally skips traversal
2966 -- of a generic unit's declarations (those will be frozen within
2967 -- instances). This check was moved to Analyze_Package_Specification.
2969 -- The type may be defined in a generic unit. This can occur when
2970 -- freezing a generic function that returns the type (which is
2971 -- defined in a parent unit). It is clearly meaningless to freeze
2972 -- this type. However, if it is a subtype, its size may be determi-
2973 -- nable and used in subsequent checks, so might as well try to
2974 -- compute it.
2976 if Present (Scope (E))
2977 and then Is_Generic_Unit (Scope (E))
2978 then
2979 Check_Compile_Time_Size (E);
2980 return No_List;
2981 end if;
2983 -- Deal with special cases of freezing for subtype
2985 if E /= Base_Type (E) then
2987 -- Before we do anything else, a specialized test for the case of
2988 -- a size given for an array where the array needs to be packed,
2989 -- but was not so the size cannot be honored. This would of course
2990 -- be caught by the backend, and indeed we don't catch all cases.
2991 -- The point is that we can give a better error message in those
2992 -- cases that we do catch with the circuitry here. Also if pragma
2993 -- Implicit_Packing is set, this is where the packing occurs.
2995 -- The reason we do this so early is that the processing in the
2996 -- automatic packing case affects the layout of the base type, so
2997 -- it must be done before we freeze the base type.
2999 if Is_Array_Type (E) then
3000 declare
3001 Lo, Hi : Node_Id;
3002 Ctyp : constant Entity_Id := Component_Type (E);
3004 begin
3005 -- Check enabling conditions. These are straightforward
3006 -- except for the test for a limited composite type. This
3007 -- eliminates the rare case of a array of limited components
3008 -- where there are issues of whether or not we can go ahead
3009 -- and pack the array (since we can't freely pack and unpack
3010 -- arrays if they are limited).
3012 -- Note that we check the root type explicitly because the
3013 -- whole point is we are doing this test before we have had
3014 -- a chance to freeze the base type (and it is that freeze
3015 -- action that causes stuff to be inherited).
3017 if Present (Size_Clause (E))
3018 and then Known_Static_Esize (E)
3019 and then not Is_Packed (E)
3020 and then not Has_Pragma_Pack (E)
3021 and then Number_Dimensions (E) = 1
3022 and then not Has_Component_Size_Clause (E)
3023 and then Known_Static_Esize (Ctyp)
3024 and then not Is_Limited_Composite (E)
3025 and then not Is_Packed (Root_Type (E))
3026 and then not Has_Component_Size_Clause (Root_Type (E))
3027 and then not CodePeer_Mode
3028 then
3029 Get_Index_Bounds (First_Index (E), Lo, Hi);
3031 if Compile_Time_Known_Value (Lo)
3032 and then Compile_Time_Known_Value (Hi)
3033 and then Known_Static_RM_Size (Ctyp)
3034 and then RM_Size (Ctyp) < 64
3035 then
3036 declare
3037 Lov : constant Uint := Expr_Value (Lo);
3038 Hiv : constant Uint := Expr_Value (Hi);
3039 Len : constant Uint := UI_Max
3040 (Uint_0,
3041 Hiv - Lov + 1);
3042 Rsiz : constant Uint := RM_Size (Ctyp);
3043 SZ : constant Node_Id := Size_Clause (E);
3044 Btyp : constant Entity_Id := Base_Type (E);
3046 -- What we are looking for here is the situation where
3047 -- the RM_Size given would be exactly right if there
3048 -- was a pragma Pack (resulting in the component size
3049 -- being the same as the RM_Size). Furthermore, the
3050 -- component type size must be an odd size (not a
3051 -- multiple of storage unit). If the component RM size
3052 -- is an exact number of storage units that is a power
3053 -- of two, the array is not packed and has a standard
3054 -- representation.
3056 begin
3057 if RM_Size (E) = Len * Rsiz
3058 and then Rsiz mod System_Storage_Unit /= 0
3059 then
3060 -- For implicit packing mode, just set the
3061 -- component size silently.
3063 if Implicit_Packing then
3064 Set_Component_Size (Btyp, Rsiz);
3065 Set_Is_Bit_Packed_Array (Btyp);
3066 Set_Is_Packed (Btyp);
3067 Set_Has_Non_Standard_Rep (Btyp);
3069 -- Otherwise give an error message
3071 else
3072 Error_Msg_NE
3073 ("size given for& too small", SZ, E);
3074 Error_Msg_N -- CODEFIX
3075 ("\use explicit pragma Pack "
3076 & "or use pragma Implicit_Packing", SZ);
3077 end if;
3079 elsif RM_Size (E) = Len * Rsiz
3080 and then Implicit_Packing
3081 and then
3082 (Rsiz / System_Storage_Unit = 1
3083 or else Rsiz / System_Storage_Unit = 2
3084 or else Rsiz / System_Storage_Unit = 4)
3085 then
3087 -- Not a packed array, but indicate the desired
3088 -- component size, for the back-end.
3090 Set_Component_Size (Btyp, Rsiz);
3091 end if;
3092 end;
3093 end if;
3094 end if;
3095 end;
3096 end if;
3098 -- If ancestor subtype present, freeze that first. Note that this
3099 -- will also get the base type frozen.
3101 Atype := Ancestor_Subtype (E);
3103 if Present (Atype) then
3104 Freeze_And_Append (Atype, N, Result);
3106 -- Otherwise freeze the base type of the entity before freezing
3107 -- the entity itself (RM 13.14(15)).
3109 elsif E /= Base_Type (E) then
3110 Freeze_And_Append (Base_Type (E), N, Result);
3111 end if;
3113 -- For a derived type, freeze its parent type first (RM 13.14(15))
3115 elsif Is_Derived_Type (E) then
3116 Freeze_And_Append (Etype (E), N, Result);
3117 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
3118 end if;
3120 -- For array type, freeze index types and component type first
3121 -- before freezing the array (RM 13.14(15)).
3123 if Is_Array_Type (E) then
3124 declare
3125 FS : constant Entity_Id := First_Subtype (E);
3126 Ctyp : constant Entity_Id := Component_Type (E);
3127 Clause : Entity_Id;
3129 Non_Standard_Enum : Boolean := False;
3130 -- Set true if any of the index types is an enumeration type
3131 -- with a non-standard representation.
3133 begin
3134 Freeze_And_Append (Ctyp, N, Result);
3136 Indx := First_Index (E);
3137 while Present (Indx) loop
3138 Freeze_And_Append (Etype (Indx), N, Result);
3140 if Is_Enumeration_Type (Etype (Indx))
3141 and then Has_Non_Standard_Rep (Etype (Indx))
3142 then
3143 Non_Standard_Enum := True;
3144 end if;
3146 Next_Index (Indx);
3147 end loop;
3149 -- Processing that is done only for base types
3151 if Ekind (E) = E_Array_Type then
3153 -- Propagate flags for component type
3155 if Is_Controlled (Component_Type (E))
3156 or else Has_Controlled_Component (Ctyp)
3157 then
3158 Set_Has_Controlled_Component (E);
3159 end if;
3161 if Has_Unchecked_Union (Component_Type (E)) then
3162 Set_Has_Unchecked_Union (E);
3163 end if;
3165 -- If packing was requested or if the component size was set
3166 -- explicitly, then see if bit packing is required. This
3167 -- processing is only done for base types, since all the
3168 -- representation aspects involved are type-related. This
3169 -- is not just an optimization, if we start processing the
3170 -- subtypes, they interfere with the settings on the base
3171 -- type (this is because Is_Packed has a slightly different
3172 -- meaning before and after freezing).
3174 declare
3175 Csiz : Uint;
3176 Esiz : Uint;
3178 begin
3179 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3180 and then Known_Static_RM_Size (Ctyp)
3181 and then not Has_Component_Size_Clause (E)
3182 then
3183 Csiz := UI_Max (RM_Size (Ctyp), 1);
3185 elsif Known_Component_Size (E) then
3186 Csiz := Component_Size (E);
3188 elsif not Known_Static_Esize (Ctyp) then
3189 Csiz := Uint_0;
3191 else
3192 Esiz := Esize (Ctyp);
3194 -- We can set the component size if it is less than
3195 -- 16, rounding it up to the next storage unit size.
3197 if Esiz <= 8 then
3198 Csiz := Uint_8;
3199 elsif Esiz <= 16 then
3200 Csiz := Uint_16;
3201 else
3202 Csiz := Uint_0;
3203 end if;
3205 -- Set component size up to match alignment if it
3206 -- would otherwise be less than the alignment. This
3207 -- deals with cases of types whose alignment exceeds
3208 -- their size (padded types).
3210 if Csiz /= 0 then
3211 declare
3212 A : constant Uint := Alignment_In_Bits (Ctyp);
3213 begin
3214 if Csiz < A then
3215 Csiz := A;
3216 end if;
3217 end;
3218 end if;
3219 end if;
3221 -- Case of component size that may result in packing
3223 if 1 <= Csiz and then Csiz <= 64 then
3224 declare
3225 Ent : constant Entity_Id :=
3226 First_Subtype (E);
3227 Pack_Pragma : constant Node_Id :=
3228 Get_Rep_Pragma (Ent, Name_Pack);
3229 Comp_Size_C : constant Node_Id :=
3230 Get_Attribute_Definition_Clause
3231 (Ent, Attribute_Component_Size);
3232 begin
3233 -- Warn if we have pack and component size so that
3234 -- the pack is ignored.
3236 -- Note: here we must check for the presence of a
3237 -- component size before checking for a Pack pragma
3238 -- to deal with the case where the array type is a
3239 -- derived type whose parent is currently private.
3241 if Present (Comp_Size_C)
3242 and then Has_Pragma_Pack (Ent)
3243 and then Warn_On_Redundant_Constructs
3244 then
3245 Error_Msg_Sloc := Sloc (Comp_Size_C);
3246 Error_Msg_NE
3247 ("?pragma Pack for& ignored!",
3248 Pack_Pragma, Ent);
3249 Error_Msg_N
3250 ("\?explicit component size given#!",
3251 Pack_Pragma);
3252 Set_Is_Packed (Base_Type (Ent), False);
3253 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
3254 end if;
3256 -- Set component size if not already set by a
3257 -- component size clause.
3259 if not Present (Comp_Size_C) then
3260 Set_Component_Size (E, Csiz);
3261 end if;
3263 -- Check for base type of 8, 16, 32 bits, where an
3264 -- unsigned subtype has a length one less than the
3265 -- base type (e.g. Natural subtype of Integer).
3267 -- In such cases, if a component size was not set
3268 -- explicitly, then generate a warning.
3270 if Has_Pragma_Pack (E)
3271 and then not Present (Comp_Size_C)
3272 and then
3273 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3274 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3275 then
3276 Error_Msg_Uint_1 := Csiz;
3278 if Present (Pack_Pragma) then
3279 Error_Msg_N
3280 ("?pragma Pack causes component size "
3281 & "to be ^!", Pack_Pragma);
3282 Error_Msg_N
3283 ("\?use Component_Size to set "
3284 & "desired value!", Pack_Pragma);
3285 end if;
3286 end if;
3288 -- Actual packing is not needed for 8, 16, 32, 64.
3289 -- Also not needed for 24 if alignment is 1.
3291 if Csiz = 8
3292 or else Csiz = 16
3293 or else Csiz = 32
3294 or else Csiz = 64
3295 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3296 then
3297 -- Here the array was requested to be packed,
3298 -- but the packing request had no effect, so
3299 -- Is_Packed is reset.
3301 -- Note: semantically this means that we lose
3302 -- track of the fact that a derived type
3303 -- inherited a pragma Pack that was non-
3304 -- effective, but that seems fine.
3306 -- We regard a Pack pragma as a request to set
3307 -- a representation characteristic, and this
3308 -- request may be ignored.
3310 Set_Is_Packed (Base_Type (E), False);
3311 Set_Is_Bit_Packed_Array (Base_Type (E), False);
3313 if Known_Static_Esize (Component_Type (E))
3314 and then Esize (Component_Type (E)) = Csiz
3315 then
3316 Set_Has_Non_Standard_Rep
3317 (Base_Type (E), False);
3318 end if;
3320 -- In all other cases, packing is indeed needed
3322 else
3323 Set_Has_Non_Standard_Rep (Base_Type (E), True);
3324 Set_Is_Bit_Packed_Array (Base_Type (E), True);
3325 Set_Is_Packed (Base_Type (E), True);
3326 end if;
3327 end;
3328 end if;
3329 end;
3331 -- Check for Atomic_Components or Aliased with unsuitable
3332 -- packing or explicit component size clause given.
3334 if (Has_Atomic_Components (E)
3335 or else Has_Aliased_Components (E))
3336 and then (Has_Component_Size_Clause (E)
3337 or else Is_Packed (E))
3338 then
3339 Alias_Atomic_Check : declare
3341 procedure Complain_CS (T : String);
3342 -- Outputs error messages for incorrect CS clause or
3343 -- pragma Pack for aliased or atomic components (T is
3344 -- "aliased" or "atomic");
3346 -----------------
3347 -- Complain_CS --
3348 -----------------
3350 procedure Complain_CS (T : String) is
3351 begin
3352 if Has_Component_Size_Clause (E) then
3353 Clause :=
3354 Get_Attribute_Definition_Clause
3355 (FS, Attribute_Component_Size);
3357 if Known_Static_Esize (Ctyp) then
3358 Error_Msg_N
3359 ("incorrect component size for "
3360 & T & " components", Clause);
3361 Error_Msg_Uint_1 := Esize (Ctyp);
3362 Error_Msg_N
3363 ("\only allowed value is^", Clause);
3365 else
3366 Error_Msg_N
3367 ("component size cannot be given for "
3368 & T & " components", Clause);
3369 end if;
3371 else
3372 Error_Msg_N
3373 ("cannot pack " & T & " components",
3374 Get_Rep_Pragma (FS, Name_Pack));
3375 end if;
3377 return;
3378 end Complain_CS;
3380 -- Start of processing for Alias_Atomic_Check
3382 begin
3383 -- Case where component size has no effect
3385 if Known_Static_Esize (Ctyp)
3386 and then Known_Static_RM_Size (Ctyp)
3387 and then Esize (Ctyp) = RM_Size (Ctyp)
3388 and then Esize (Ctyp) mod 8 = 0
3389 then
3390 null;
3392 elsif Has_Aliased_Components (E)
3393 or else Is_Aliased (Ctyp)
3394 then
3395 Complain_CS ("aliased");
3397 elsif Has_Atomic_Components (E)
3398 or else Is_Atomic (Ctyp)
3399 then
3400 Complain_CS ("atomic");
3401 end if;
3402 end Alias_Atomic_Check;
3403 end if;
3405 -- Warn for case of atomic type
3407 Clause := Get_Rep_Pragma (FS, Name_Atomic);
3409 if Present (Clause)
3410 and then not Addressable (Component_Size (FS))
3411 then
3412 Error_Msg_NE
3413 ("non-atomic components of type& may not be "
3414 & "accessible by separate tasks?", Clause, E);
3416 if Has_Component_Size_Clause (E) then
3417 Error_Msg_Sloc :=
3418 Sloc
3419 (Get_Attribute_Definition_Clause
3420 (FS, Attribute_Component_Size));
3421 Error_Msg_N
3422 ("\because of component size clause#?",
3423 Clause);
3425 elsif Has_Pragma_Pack (E) then
3426 Error_Msg_Sloc :=
3427 Sloc (Get_Rep_Pragma (FS, Name_Pack));
3428 Error_Msg_N
3429 ("\because of pragma Pack#?", Clause);
3430 end if;
3431 end if;
3433 -- Processing that is done only for subtypes
3435 else
3436 -- Acquire alignment from base type
3438 if Unknown_Alignment (E) then
3439 Set_Alignment (E, Alignment (Base_Type (E)));
3440 Adjust_Esize_Alignment (E);
3441 end if;
3442 end if;
3444 -- For bit-packed arrays, check the size
3446 if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
3447 declare
3448 SizC : constant Node_Id := Size_Clause (E);
3450 Discard : Boolean;
3451 pragma Warnings (Off, Discard);
3453 begin
3454 -- It is not clear if it is possible to have no size
3455 -- clause at this stage, but it is not worth worrying
3456 -- about. Post error on the entity name in the size
3457 -- clause if present, else on the type entity itself.
3459 if Present (SizC) then
3460 Check_Size (Name (SizC), E, RM_Size (E), Discard);
3461 else
3462 Check_Size (E, E, RM_Size (E), Discard);
3463 end if;
3464 end;
3465 end if;
3467 -- If any of the index types was an enumeration type with
3468 -- a non-standard rep clause, then we indicate that the
3469 -- array type is always packed (even if it is not bit packed).
3471 if Non_Standard_Enum then
3472 Set_Has_Non_Standard_Rep (Base_Type (E));
3473 Set_Is_Packed (Base_Type (E));
3474 end if;
3476 Set_Component_Alignment_If_Not_Set (E);
3478 -- If the array is packed, we must create the packed array
3479 -- type to be used to actually implement the type. This is
3480 -- only needed for real array types (not for string literal
3481 -- types, since they are present only for the front end).
3483 if Is_Packed (E)
3484 and then Ekind (E) /= E_String_Literal_Subtype
3485 then
3486 Create_Packed_Array_Type (E);
3487 Freeze_And_Append (Packed_Array_Type (E), N, Result);
3489 -- Size information of packed array type is copied to the
3490 -- array type, since this is really the representation. But
3491 -- do not override explicit existing size values. If the
3492 -- ancestor subtype is constrained the packed_array_type
3493 -- will be inherited from it, but the size may have been
3494 -- provided already, and must not be overridden either.
3496 if not Has_Size_Clause (E)
3497 and then
3498 (No (Ancestor_Subtype (E))
3499 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3500 then
3501 Set_Esize (E, Esize (Packed_Array_Type (E)));
3502 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3503 end if;
3505 if not Has_Alignment_Clause (E) then
3506 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3507 end if;
3508 end if;
3510 -- For non-packed arrays set the alignment of the array to the
3511 -- alignment of the component type if it is unknown. Skip this
3512 -- in atomic case (atomic arrays may need larger alignments).
3514 if not Is_Packed (E)
3515 and then Unknown_Alignment (E)
3516 and then Known_Alignment (Ctyp)
3517 and then Known_Static_Component_Size (E)
3518 and then Known_Static_Esize (Ctyp)
3519 and then Esize (Ctyp) = Component_Size (E)
3520 and then not Is_Atomic (E)
3521 then
3522 Set_Alignment (E, Alignment (Component_Type (E)));
3523 end if;
3524 end;
3526 -- For a class-wide type, the corresponding specific type is
3527 -- frozen as well (RM 13.14(15))
3529 elsif Is_Class_Wide_Type (E) then
3530 Freeze_And_Append (Root_Type (E), N, Result);
3532 -- If the base type of the class-wide type is still incomplete,
3533 -- the class-wide remains unfrozen as well. This is legal when
3534 -- E is the formal of a primitive operation of some other type
3535 -- which is being frozen.
3537 if not Is_Frozen (Root_Type (E)) then
3538 Set_Is_Frozen (E, False);
3539 return Result;
3540 end if;
3542 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3543 -- parent of a derived type) and it is a library-level entity,
3544 -- generate an itype reference for it. Otherwise, its first
3545 -- explicit reference may be in an inner scope, which will be
3546 -- rejected by the back-end.
3548 if Is_Itype (E)
3549 and then Is_Compilation_Unit (Scope (E))
3550 then
3551 declare
3552 Ref : constant Node_Id := Make_Itype_Reference (Loc);
3554 begin
3555 Set_Itype (Ref, E);
3556 if No (Result) then
3557 Result := New_List (Ref);
3558 else
3559 Append (Ref, Result);
3560 end if;
3561 end;
3562 end if;
3564 -- The equivalent type associated with a class-wide subtype needs
3565 -- to be frozen to ensure that its layout is done.
3567 if Ekind (E) = E_Class_Wide_Subtype
3568 and then Present (Equivalent_Type (E))
3569 then
3570 Freeze_And_Append (Equivalent_Type (E), N, Result);
3571 end if;
3573 -- For a record (sub)type, freeze all the component types (RM
3574 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3575 -- Is_Record_Type, because we don't want to attempt the freeze for
3576 -- the case of a private type with record extension (we will do that
3577 -- later when the full type is frozen).
3579 elsif Ekind (E) = E_Record_Type
3580 or else Ekind (E) = E_Record_Subtype
3581 then
3582 Freeze_Record_Type (E);
3584 -- For a concurrent type, freeze corresponding record type. This
3585 -- does not correspond to any specific rule in the RM, but the
3586 -- record type is essentially part of the concurrent type.
3587 -- Freeze as well all local entities. This includes record types
3588 -- created for entry parameter blocks, and whatever local entities
3589 -- may appear in the private part.
3591 elsif Is_Concurrent_Type (E) then
3592 if Present (Corresponding_Record_Type (E)) then
3593 Freeze_And_Append
3594 (Corresponding_Record_Type (E), N, Result);
3595 end if;
3597 Comp := First_Entity (E);
3598 while Present (Comp) loop
3599 if Is_Type (Comp) then
3600 Freeze_And_Append (Comp, N, Result);
3602 elsif (Ekind (Comp)) /= E_Function then
3603 if Is_Itype (Etype (Comp))
3604 and then Underlying_Type (Scope (Etype (Comp))) = E
3605 then
3606 Undelay_Type (Etype (Comp));
3607 end if;
3609 Freeze_And_Append (Etype (Comp), N, Result);
3610 end if;
3612 Next_Entity (Comp);
3613 end loop;
3615 -- Private types are required to point to the same freeze node as
3616 -- their corresponding full views. The freeze node itself has to
3617 -- point to the partial view of the entity (because from the partial
3618 -- view, we can retrieve the full view, but not the reverse).
3619 -- However, in order to freeze correctly, we need to freeze the full
3620 -- view. If we are freezing at the end of a scope (or within the
3621 -- scope of the private type), the partial and full views will have
3622 -- been swapped, the full view appears first in the entity chain and
3623 -- the swapping mechanism ensures that the pointers are properly set
3624 -- (on scope exit).
3626 -- If we encounter the partial view before the full view (e.g. when
3627 -- freezing from another scope), we freeze the full view, and then
3628 -- set the pointers appropriately since we cannot rely on swapping to
3629 -- fix things up (subtypes in an outer scope might not get swapped).
3631 elsif Is_Incomplete_Or_Private_Type (E)
3632 and then not Is_Generic_Type (E)
3633 then
3634 -- The construction of the dispatch table associated with library
3635 -- level tagged types forces freezing of all the primitives of the
3636 -- type, which may cause premature freezing of the partial view.
3637 -- For example:
3639 -- package Pkg is
3640 -- type T is tagged private;
3641 -- type DT is new T with private;
3642 -- procedure Prim (X : in out T; Y : in out DT'class);
3643 -- private
3644 -- type T is tagged null record;
3645 -- Obj : T;
3646 -- type DT is new T with null record;
3647 -- end;
3649 -- In this case the type will be frozen later by the usual
3650 -- mechanism: an object declaration, an instantiation, or the
3651 -- end of a declarative part.
3653 if Is_Library_Level_Tagged_Type (E)
3654 and then not Present (Full_View (E))
3655 then
3656 Set_Is_Frozen (E, False);
3657 return Result;
3659 -- Case of full view present
3661 elsif Present (Full_View (E)) then
3663 -- If full view has already been frozen, then no further
3664 -- processing is required
3666 if Is_Frozen (Full_View (E)) then
3667 Set_Has_Delayed_Freeze (E, False);
3668 Set_Freeze_Node (E, Empty);
3669 Check_Debug_Info_Needed (E);
3671 -- Otherwise freeze full view and patch the pointers so that
3672 -- the freeze node will elaborate both views in the back-end.
3674 else
3675 declare
3676 Full : constant Entity_Id := Full_View (E);
3678 begin
3679 if Is_Private_Type (Full)
3680 and then Present (Underlying_Full_View (Full))
3681 then
3682 Freeze_And_Append
3683 (Underlying_Full_View (Full), N, Result);
3684 end if;
3686 Freeze_And_Append (Full, N, Result);
3688 if Has_Delayed_Freeze (E) then
3689 F_Node := Freeze_Node (Full);
3691 if Present (F_Node) then
3692 Set_Freeze_Node (E, F_Node);
3693 Set_Entity (F_Node, E);
3695 else
3696 -- {Incomplete,Private}_Subtypes with Full_Views
3697 -- constrained by discriminants.
3699 Set_Has_Delayed_Freeze (E, False);
3700 Set_Freeze_Node (E, Empty);
3701 end if;
3702 end if;
3703 end;
3705 Check_Debug_Info_Needed (E);
3706 end if;
3708 -- AI-117 requires that the convention of a partial view be the
3709 -- same as the convention of the full view. Note that this is a
3710 -- recognized breach of privacy, but it's essential for logical
3711 -- consistency of representation, and the lack of a rule in
3712 -- RM95 was an oversight.
3714 Set_Convention (E, Convention (Full_View (E)));
3716 Set_Size_Known_At_Compile_Time (E,
3717 Size_Known_At_Compile_Time (Full_View (E)));
3719 -- Size information is copied from the full view to the
3720 -- incomplete or private view for consistency.
3722 -- We skip this is the full view is not a type. This is very
3723 -- strange of course, and can only happen as a result of
3724 -- certain illegalities, such as a premature attempt to derive
3725 -- from an incomplete type.
3727 if Is_Type (Full_View (E)) then
3728 Set_Size_Info (E, Full_View (E));
3729 Set_RM_Size (E, RM_Size (Full_View (E)));
3730 end if;
3732 return Result;
3734 -- Case of no full view present. If entity is derived or subtype,
3735 -- it is safe to freeze, correctness depends on the frozen status
3736 -- of parent. Otherwise it is either premature usage, or a Taft
3737 -- amendment type, so diagnosis is at the point of use and the
3738 -- type might be frozen later.
3740 elsif E /= Base_Type (E)
3741 or else Is_Derived_Type (E)
3742 then
3743 null;
3745 else
3746 Set_Is_Frozen (E, False);
3747 return No_List;
3748 end if;
3750 -- For access subprogram, freeze types of all formals, the return
3751 -- type was already frozen, since it is the Etype of the function.
3752 -- Formal types can be tagged Taft amendment types, but otherwise
3753 -- they cannot be incomplete.
3755 elsif Ekind (E) = E_Subprogram_Type then
3756 Formal := First_Formal (E);
3757 while Present (Formal) loop
3758 if Ekind (Etype (Formal)) = E_Incomplete_Type
3759 and then No (Full_View (Etype (Formal)))
3760 and then not Is_Value_Type (Etype (Formal))
3761 then
3762 if Is_Tagged_Type (Etype (Formal)) then
3763 null;
3765 -- AI05-151: Incomplete types are allowed in access to
3766 -- subprogram specifications.
3768 elsif Ada_Version < Ada_2012 then
3769 Error_Msg_NE
3770 ("invalid use of incomplete type&", E, Etype (Formal));
3771 end if;
3772 end if;
3774 Freeze_And_Append (Etype (Formal), N, Result);
3775 Next_Formal (Formal);
3776 end loop;
3778 Freeze_Subprogram (E);
3780 -- For access to a protected subprogram, freeze the equivalent type
3781 -- (however this is not set if we are not generating code or if this
3782 -- is an anonymous type used just for resolution).
3784 elsif Is_Access_Protected_Subprogram_Type (E) then
3785 if Present (Equivalent_Type (E)) then
3786 Freeze_And_Append (Equivalent_Type (E), N, Result);
3787 end if;
3788 end if;
3790 -- Generic types are never seen by the back-end, and are also not
3791 -- processed by the expander (since the expander is turned off for
3792 -- generic processing), so we never need freeze nodes for them.
3794 if Is_Generic_Type (E) then
3795 return Result;
3796 end if;
3798 -- Some special processing for non-generic types to complete
3799 -- representation details not known till the freeze point.
3801 if Is_Fixed_Point_Type (E) then
3802 Freeze_Fixed_Point_Type (E);
3804 -- Some error checks required for ordinary fixed-point type. Defer
3805 -- these till the freeze-point since we need the small and range
3806 -- values. We only do these checks for base types
3808 if Is_Ordinary_Fixed_Point_Type (E)
3809 and then E = Base_Type (E)
3810 then
3811 if Small_Value (E) < Ureal_2_M_80 then
3812 Error_Msg_Name_1 := Name_Small;
3813 Error_Msg_N
3814 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
3816 elsif Small_Value (E) > Ureal_2_80 then
3817 Error_Msg_Name_1 := Name_Small;
3818 Error_Msg_N
3819 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
3820 end if;
3822 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3823 Error_Msg_Name_1 := Name_First;
3824 Error_Msg_N
3825 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
3826 end if;
3828 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3829 Error_Msg_Name_1 := Name_Last;
3830 Error_Msg_N
3831 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
3832 end if;
3833 end if;
3835 elsif Is_Enumeration_Type (E) then
3836 Freeze_Enumeration_Type (E);
3838 elsif Is_Integer_Type (E) then
3839 Adjust_Esize_For_Alignment (E);
3841 if Is_Modular_Integer_Type (E)
3842 and then Warn_On_Suspicious_Modulus_Value
3843 then
3844 Check_Suspicious_Modulus (E);
3845 end if;
3847 elsif Is_Access_Type (E) then
3849 -- If a pragma Default_Storage_Pool applies, and this type has no
3850 -- Storage_Pool or Storage_Size clause (which must have occurred
3851 -- before the freezing point), then use the default. This applies
3852 -- only to base types.
3854 if Present (Default_Pool)
3855 and then E = Base_Type (E)
3856 and then not Has_Storage_Size_Clause (E)
3857 and then No (Associated_Storage_Pool (E))
3858 then
3859 -- Case of pragma Default_Storage_Pool (null)
3861 if Nkind (Default_Pool) = N_Null then
3862 Set_No_Pool_Assigned (E);
3864 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
3866 else
3867 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
3868 end if;
3869 end if;
3871 -- Check restriction for standard storage pool
3873 if No (Associated_Storage_Pool (E)) then
3874 Check_Restriction (No_Standard_Storage_Pools, E);
3875 end if;
3877 -- Deal with error message for pure access type. This is not an
3878 -- error in Ada 2005 if there is no pool (see AI-366).
3880 if Is_Pure_Unit_Access_Type (E)
3881 and then (Ada_Version < Ada_2005
3882 or else not No_Pool_Assigned (E))
3883 then
3884 Error_Msg_N ("named access type not allowed in pure unit", E);
3886 if Ada_Version >= Ada_2005 then
3887 Error_Msg_N
3888 ("\would be legal if Storage_Size of 0 given?", E);
3890 elsif No_Pool_Assigned (E) then
3891 Error_Msg_N
3892 ("\would be legal in Ada 2005?", E);
3894 else
3895 Error_Msg_N
3896 ("\would be legal in Ada 2005 if "
3897 & "Storage_Size of 0 given?", E);
3898 end if;
3899 end if;
3900 end if;
3902 -- Case of composite types
3904 if Is_Composite_Type (E) then
3906 -- AI-117 requires that all new primitives of a tagged type must
3907 -- inherit the convention of the full view of the type. Inherited
3908 -- and overriding operations are defined to inherit the convention
3909 -- of their parent or overridden subprogram (also specified in
3910 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3911 -- and New_Overloaded_Entity). Here we set the convention of
3912 -- primitives that are still convention Ada, which will ensure
3913 -- that any new primitives inherit the type's convention. Class-
3914 -- wide types can have a foreign convention inherited from their
3915 -- specific type, but are excluded from this since they don't have
3916 -- any associated primitives.
3918 if Is_Tagged_Type (E)
3919 and then not Is_Class_Wide_Type (E)
3920 and then Convention (E) /= Convention_Ada
3921 then
3922 declare
3923 Prim_List : constant Elist_Id := Primitive_Operations (E);
3924 Prim : Elmt_Id;
3926 begin
3927 Prim := First_Elmt (Prim_List);
3928 while Present (Prim) loop
3929 if Convention (Node (Prim)) = Convention_Ada then
3930 Set_Convention (Node (Prim), Convention (E));
3931 end if;
3933 Next_Elmt (Prim);
3934 end loop;
3935 end;
3936 end if;
3937 end if;
3939 -- Now that all types from which E may depend are frozen, see if the
3940 -- size is known at compile time, if it must be unsigned, or if
3941 -- strict alignment is required
3943 Check_Compile_Time_Size (E);
3944 Check_Unsigned_Type (E);
3946 if Base_Type (E) = E then
3947 Check_Strict_Alignment (E);
3948 end if;
3950 -- Do not allow a size clause for a type which does not have a size
3951 -- that is known at compile time
3953 if Has_Size_Clause (E)
3954 and then not Size_Known_At_Compile_Time (E)
3955 then
3956 -- Suppress this message if errors posted on E, even if we are
3957 -- in all errors mode, since this is often a junk message
3959 if not Error_Posted (E) then
3960 Error_Msg_N
3961 ("size clause not allowed for variable length type",
3962 Size_Clause (E));
3963 end if;
3964 end if;
3966 -- Remaining process is to set/verify the representation information,
3967 -- in particular the size and alignment values. This processing is
3968 -- not required for generic types, since generic types do not play
3969 -- any part in code generation, and so the size and alignment values
3970 -- for such types are irrelevant.
3972 if Is_Generic_Type (E) then
3973 return Result;
3975 -- Otherwise we call the layout procedure
3977 else
3978 Layout_Type (E);
3979 end if;
3981 -- End of freeze processing for type entities
3982 end if;
3984 -- Here is where we logically freeze the current entity. If it has a
3985 -- freeze node, then this is the point at which the freeze node is
3986 -- linked into the result list.
3988 if Has_Delayed_Freeze (E) then
3990 -- If a freeze node is already allocated, use it, otherwise allocate
3991 -- a new one. The preallocation happens in the case of anonymous base
3992 -- types, where we preallocate so that we can set First_Subtype_Link.
3993 -- Note that we reset the Sloc to the current freeze location.
3995 if Present (Freeze_Node (E)) then
3996 F_Node := Freeze_Node (E);
3997 Set_Sloc (F_Node, Loc);
3999 else
4000 F_Node := New_Node (N_Freeze_Entity, Loc);
4001 Set_Freeze_Node (E, F_Node);
4002 Set_Access_Types_To_Process (F_Node, No_Elist);
4003 Set_TSS_Elist (F_Node, No_Elist);
4004 Set_Actions (F_Node, No_List);
4005 end if;
4007 Set_Entity (F_Node, E);
4009 if Result = No_List then
4010 Result := New_List (F_Node);
4011 else
4012 Append (F_Node, Result);
4013 end if;
4015 -- A final pass over record types with discriminants. If the type
4016 -- has an incomplete declaration, there may be constrained access
4017 -- subtypes declared elsewhere, which do not depend on the discrimi-
4018 -- nants of the type, and which are used as component types (i.e.
4019 -- the full view is a recursive type). The designated types of these
4020 -- subtypes can only be elaborated after the type itself, and they
4021 -- need an itype reference.
4023 if Ekind (E) = E_Record_Type
4024 and then Has_Discriminants (E)
4025 then
4026 declare
4027 Comp : Entity_Id;
4028 IR : Node_Id;
4029 Typ : Entity_Id;
4031 begin
4032 Comp := First_Component (E);
4033 while Present (Comp) loop
4034 Typ := Etype (Comp);
4036 if Ekind (Comp) = E_Component
4037 and then Is_Access_Type (Typ)
4038 and then Scope (Typ) /= E
4039 and then Base_Type (Designated_Type (Typ)) = E
4040 and then Is_Itype (Designated_Type (Typ))
4041 then
4042 IR := Make_Itype_Reference (Sloc (Comp));
4043 Set_Itype (IR, Designated_Type (Typ));
4044 Append (IR, Result);
4045 end if;
4047 Next_Component (Comp);
4048 end loop;
4049 end;
4050 end if;
4051 end if;
4053 -- When a type is frozen, the first subtype of the type is frozen as
4054 -- well (RM 13.14(15)). This has to be done after freezing the type,
4055 -- since obviously the first subtype depends on its own base type.
4057 if Is_Type (E) then
4058 Freeze_And_Append (First_Subtype (E), N, Result);
4060 -- If we just froze a tagged non-class wide record, then freeze the
4061 -- corresponding class-wide type. This must be done after the tagged
4062 -- type itself is frozen, because the class-wide type refers to the
4063 -- tagged type which generates the class.
4065 if Is_Tagged_Type (E)
4066 and then not Is_Class_Wide_Type (E)
4067 and then Present (Class_Wide_Type (E))
4068 then
4069 Freeze_And_Append (Class_Wide_Type (E), N, Result);
4070 end if;
4071 end if;
4073 Check_Debug_Info_Needed (E);
4075 -- Special handling for subprograms
4077 if Is_Subprogram (E) then
4079 -- If subprogram has address clause then reset Is_Public flag, since
4080 -- we do not want the backend to generate external references.
4082 if Present (Address_Clause (E))
4083 and then not Is_Library_Level_Entity (E)
4084 then
4085 Set_Is_Public (E, False);
4087 -- If no address clause and not intrinsic, then for imported
4088 -- subprogram in main unit, generate descriptor if we are in
4089 -- Propagate_Exceptions mode.
4091 elsif Propagate_Exceptions
4092 and then Is_Imported (E)
4093 and then not Is_Intrinsic_Subprogram (E)
4094 and then Convention (E) /= Convention_Stubbed
4095 then
4096 if Result = No_List then
4097 Result := Empty_List;
4098 end if;
4099 end if;
4100 end if;
4102 return Result;
4103 end Freeze_Entity;
4105 -----------------------------
4106 -- Freeze_Enumeration_Type --
4107 -----------------------------
4109 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
4110 begin
4111 -- By default, if no size clause is present, an enumeration type with
4112 -- Convention C is assumed to interface to a C enum, and has integer
4113 -- size. This applies to types. For subtypes, verify that its base
4114 -- type has no size clause either.
4116 if Has_Foreign_Convention (Typ)
4117 and then not Has_Size_Clause (Typ)
4118 and then not Has_Size_Clause (Base_Type (Typ))
4119 and then Esize (Typ) < Standard_Integer_Size
4120 then
4121 Init_Esize (Typ, Standard_Integer_Size);
4123 else
4124 -- If the enumeration type interfaces to C, and it has a size clause
4125 -- that specifies less than int size, it warrants a warning. The
4126 -- user may intend the C type to be an enum or a char, so this is
4127 -- not by itself an error that the Ada compiler can detect, but it
4128 -- it is a worth a heads-up. For Boolean and Character types we
4129 -- assume that the programmer has the proper C type in mind.
4131 if Convention (Typ) = Convention_C
4132 and then Has_Size_Clause (Typ)
4133 and then Esize (Typ) /= Esize (Standard_Integer)
4134 and then not Is_Boolean_Type (Typ)
4135 and then not Is_Character_Type (Typ)
4136 then
4137 Error_Msg_N
4138 ("C enum types have the size of a C int?", Size_Clause (Typ));
4139 end if;
4141 Adjust_Esize_For_Alignment (Typ);
4142 end if;
4143 end Freeze_Enumeration_Type;
4145 -----------------------
4146 -- Freeze_Expression --
4147 -----------------------
4149 procedure Freeze_Expression (N : Node_Id) is
4150 In_Spec_Exp : constant Boolean := In_Spec_Expression;
4151 Typ : Entity_Id;
4152 Nam : Entity_Id;
4153 Desig_Typ : Entity_Id;
4154 P : Node_Id;
4155 Parent_P : Node_Id;
4157 Freeze_Outside : Boolean := False;
4158 -- This flag is set true if the entity must be frozen outside the
4159 -- current subprogram. This happens in the case of expander generated
4160 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4161 -- not freeze all entities like other bodies, but which nevertheless
4162 -- may reference entities that have to be frozen before the body and
4163 -- obviously cannot be frozen inside the body.
4165 function In_Exp_Body (N : Node_Id) return Boolean;
4166 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
4167 -- it is the handled statement sequence of an expander-generated
4168 -- subprogram (init proc, stream subprogram, or renaming as body).
4169 -- If so, this is not a freezing context.
4171 -----------------
4172 -- In_Exp_Body --
4173 -----------------
4175 function In_Exp_Body (N : Node_Id) return Boolean is
4176 P : Node_Id;
4177 Id : Entity_Id;
4179 begin
4180 if Nkind (N) = N_Subprogram_Body then
4181 P := N;
4182 else
4183 P := Parent (N);
4184 end if;
4186 if Nkind (P) /= N_Subprogram_Body then
4187 return False;
4189 else
4190 Id := Defining_Unit_Name (Specification (P));
4192 if Nkind (Id) = N_Defining_Identifier
4193 and then (Is_Init_Proc (Id) or else
4194 Is_TSS (Id, TSS_Stream_Input) or else
4195 Is_TSS (Id, TSS_Stream_Output) or else
4196 Is_TSS (Id, TSS_Stream_Read) or else
4197 Is_TSS (Id, TSS_Stream_Write) or else
4198 Nkind (Original_Node (P)) =
4199 N_Subprogram_Renaming_Declaration)
4200 then
4201 return True;
4202 else
4203 return False;
4204 end if;
4205 end if;
4206 end In_Exp_Body;
4208 -- Start of processing for Freeze_Expression
4210 begin
4211 -- Immediate return if freezing is inhibited. This flag is set by the
4212 -- analyzer to stop freezing on generated expressions that would cause
4213 -- freezing if they were in the source program, but which are not
4214 -- supposed to freeze, since they are created.
4216 if Must_Not_Freeze (N) then
4217 return;
4218 end if;
4220 -- If expression is non-static, then it does not freeze in a default
4221 -- expression, see section "Handling of Default Expressions" in the
4222 -- spec of package Sem for further details. Note that we have to
4223 -- make sure that we actually have a real expression (if we have
4224 -- a subtype indication, we can't test Is_Static_Expression!)
4226 if In_Spec_Exp
4227 and then Nkind (N) in N_Subexpr
4228 and then not Is_Static_Expression (N)
4229 then
4230 return;
4231 end if;
4233 -- Freeze type of expression if not frozen already
4235 Typ := Empty;
4237 if Nkind (N) in N_Has_Etype then
4238 if not Is_Frozen (Etype (N)) then
4239 Typ := Etype (N);
4241 -- Base type may be an derived numeric type that is frozen at
4242 -- the point of declaration, but first_subtype is still unfrozen.
4244 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4245 Typ := First_Subtype (Etype (N));
4246 end if;
4247 end if;
4249 -- For entity name, freeze entity if not frozen already. A special
4250 -- exception occurs for an identifier that did not come from source.
4251 -- We don't let such identifiers freeze a non-internal entity, i.e.
4252 -- an entity that did come from source, since such an identifier was
4253 -- generated by the expander, and cannot have any semantic effect on
4254 -- the freezing semantics. For example, this stops the parameter of
4255 -- an initialization procedure from freezing the variable.
4257 if Is_Entity_Name (N)
4258 and then not Is_Frozen (Entity (N))
4259 and then (Nkind (N) /= N_Identifier
4260 or else Comes_From_Source (N)
4261 or else not Comes_From_Source (Entity (N)))
4262 then
4263 Nam := Entity (N);
4264 else
4265 Nam := Empty;
4266 end if;
4268 -- For an allocator freeze designated type if not frozen already
4270 -- For an aggregate whose component type is an access type, freeze the
4271 -- designated type now, so that its freeze does not appear within the
4272 -- loop that might be created in the expansion of the aggregate. If the
4273 -- designated type is a private type without full view, the expression
4274 -- cannot contain an allocator, so the type is not frozen.
4276 -- For a function, we freeze the entity when the subprogram declaration
4277 -- is frozen, but a function call may appear in an initialization proc.
4278 -- before the declaration is frozen. We need to generate the extra
4279 -- formals, if any, to ensure that the expansion of the call includes
4280 -- the proper actuals. This only applies to Ada subprograms, not to
4281 -- imported ones.
4283 Desig_Typ := Empty;
4285 case Nkind (N) is
4286 when N_Allocator =>
4287 Desig_Typ := Designated_Type (Etype (N));
4289 when N_Aggregate =>
4290 if Is_Array_Type (Etype (N))
4291 and then Is_Access_Type (Component_Type (Etype (N)))
4292 then
4293 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4294 end if;
4296 when N_Selected_Component |
4297 N_Indexed_Component |
4298 N_Slice =>
4300 if Is_Access_Type (Etype (Prefix (N))) then
4301 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4302 end if;
4304 when N_Identifier =>
4305 if Present (Nam)
4306 and then Ekind (Nam) = E_Function
4307 and then Nkind (Parent (N)) = N_Function_Call
4308 and then Convention (Nam) = Convention_Ada
4309 then
4310 Create_Extra_Formals (Nam);
4311 end if;
4313 when others =>
4314 null;
4315 end case;
4317 if Desig_Typ /= Empty
4318 and then (Is_Frozen (Desig_Typ)
4319 or else (not Is_Fully_Defined (Desig_Typ)))
4320 then
4321 Desig_Typ := Empty;
4322 end if;
4324 -- All done if nothing needs freezing
4326 if No (Typ)
4327 and then No (Nam)
4328 and then No (Desig_Typ)
4329 then
4330 return;
4331 end if;
4333 -- Loop for looking at the right place to insert the freeze nodes,
4334 -- exiting from the loop when it is appropriate to insert the freeze
4335 -- node before the current node P.
4337 -- Also checks some special exceptions to the freezing rules. These
4338 -- cases result in a direct return, bypassing the freeze action.
4340 P := N;
4341 loop
4342 Parent_P := Parent (P);
4344 -- If we don't have a parent, then we are not in a well-formed tree.
4345 -- This is an unusual case, but there are some legitimate situations
4346 -- in which this occurs, notably when the expressions in the range of
4347 -- a type declaration are resolved. We simply ignore the freeze
4348 -- request in this case. Is this right ???
4350 if No (Parent_P) then
4351 return;
4352 end if;
4354 -- See if we have got to an appropriate point in the tree
4356 case Nkind (Parent_P) is
4358 -- A special test for the exception of (RM 13.14(8)) for the case
4359 -- of per-object expressions (RM 3.8(18)) occurring in component
4360 -- definition or a discrete subtype definition. Note that we test
4361 -- for a component declaration which includes both cases we are
4362 -- interested in, and furthermore the tree does not have explicit
4363 -- nodes for either of these two constructs.
4365 when N_Component_Declaration =>
4367 -- The case we want to test for here is an identifier that is
4368 -- a per-object expression, this is either a discriminant that
4369 -- appears in a context other than the component declaration
4370 -- or it is a reference to the type of the enclosing construct.
4372 -- For either of these cases, we skip the freezing
4374 if not In_Spec_Expression
4375 and then Nkind (N) = N_Identifier
4376 and then (Present (Entity (N)))
4377 then
4378 -- We recognize the discriminant case by just looking for
4379 -- a reference to a discriminant. It can only be one for
4380 -- the enclosing construct. Skip freezing in this case.
4382 if Ekind (Entity (N)) = E_Discriminant then
4383 return;
4385 -- For the case of a reference to the enclosing record,
4386 -- (or task or protected type), we look for a type that
4387 -- matches the current scope.
4389 elsif Entity (N) = Current_Scope then
4390 return;
4391 end if;
4392 end if;
4394 -- If we have an enumeration literal that appears as the choice in
4395 -- the aggregate of an enumeration representation clause, then
4396 -- freezing does not occur (RM 13.14(10)).
4398 when N_Enumeration_Representation_Clause =>
4400 -- The case we are looking for is an enumeration literal
4402 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4403 and then Is_Enumeration_Type (Etype (N))
4404 then
4405 -- If enumeration literal appears directly as the choice,
4406 -- do not freeze (this is the normal non-overloaded case)
4408 if Nkind (Parent (N)) = N_Component_Association
4409 and then First (Choices (Parent (N))) = N
4410 then
4411 return;
4413 -- If enumeration literal appears as the name of function
4414 -- which is the choice, then also do not freeze. This
4415 -- happens in the overloaded literal case, where the
4416 -- enumeration literal is temporarily changed to a function
4417 -- call for overloading analysis purposes.
4419 elsif Nkind (Parent (N)) = N_Function_Call
4420 and then
4421 Nkind (Parent (Parent (N))) = N_Component_Association
4422 and then
4423 First (Choices (Parent (Parent (N)))) = Parent (N)
4424 then
4425 return;
4426 end if;
4427 end if;
4429 -- Normally if the parent is a handled sequence of statements,
4430 -- then the current node must be a statement, and that is an
4431 -- appropriate place to insert a freeze node.
4433 when N_Handled_Sequence_Of_Statements =>
4435 -- An exception occurs when the sequence of statements is for
4436 -- an expander generated body that did not do the usual freeze
4437 -- all operation. In this case we usually want to freeze
4438 -- outside this body, not inside it, and we skip past the
4439 -- subprogram body that we are inside.
4441 if In_Exp_Body (Parent_P) then
4443 -- However, we *do* want to freeze at this point if we have
4444 -- an entity to freeze, and that entity is declared *inside*
4445 -- the body of the expander generated procedure. This case
4446 -- is recognized by the scope of the type, which is either
4447 -- the spec for some enclosing body, or (in the case of
4448 -- init_procs, for which there are no separate specs) the
4449 -- current scope.
4451 declare
4452 Subp : constant Node_Id := Parent (Parent_P);
4453 Cspc : Entity_Id;
4455 begin
4456 if Nkind (Subp) = N_Subprogram_Body then
4457 Cspc := Corresponding_Spec (Subp);
4459 if (Present (Typ) and then Scope (Typ) = Cspc)
4460 or else
4461 (Present (Nam) and then Scope (Nam) = Cspc)
4462 then
4463 exit;
4465 elsif Present (Typ)
4466 and then Scope (Typ) = Current_Scope
4467 and then Current_Scope = Defining_Entity (Subp)
4468 then
4469 exit;
4470 end if;
4471 end if;
4472 end;
4474 -- If not that exception to the exception, then this is
4475 -- where we delay the freeze till outside the body.
4477 Parent_P := Parent (Parent_P);
4478 Freeze_Outside := True;
4480 -- Here if normal case where we are in handled statement
4481 -- sequence and want to do the insertion right there.
4483 else
4484 exit;
4485 end if;
4487 -- If parent is a body or a spec or a block, then the current node
4488 -- is a statement or declaration and we can insert the freeze node
4489 -- before it.
4491 when N_Package_Specification |
4492 N_Package_Body |
4493 N_Subprogram_Body |
4494 N_Task_Body |
4495 N_Protected_Body |
4496 N_Entry_Body |
4497 N_Block_Statement => exit;
4499 -- The expander is allowed to define types in any statements list,
4500 -- so any of the following parent nodes also mark a freezing point
4501 -- if the actual node is in a list of statements or declarations.
4503 when N_Exception_Handler |
4504 N_If_Statement |
4505 N_Elsif_Part |
4506 N_Case_Statement_Alternative |
4507 N_Compilation_Unit_Aux |
4508 N_Selective_Accept |
4509 N_Accept_Alternative |
4510 N_Delay_Alternative |
4511 N_Conditional_Entry_Call |
4512 N_Entry_Call_Alternative |
4513 N_Triggering_Alternative |
4514 N_Abortable_Part |
4515 N_And_Then |
4516 N_Or_Else |
4517 N_Freeze_Entity =>
4519 exit when Is_List_Member (P);
4521 -- Note: The N_Loop_Statement is a special case. A type that
4522 -- appears in the source can never be frozen in a loop (this
4523 -- occurs only because of a loop expanded by the expander), so we
4524 -- keep on going. Otherwise we terminate the search. Same is true
4525 -- of any entity which comes from source. (if they have predefined
4526 -- type, that type does not appear to come from source, but the
4527 -- entity should not be frozen here).
4529 when N_Loop_Statement =>
4530 exit when not Comes_From_Source (Etype (N))
4531 and then (No (Nam) or else not Comes_From_Source (Nam));
4533 -- For all other cases, keep looking at parents
4535 when others =>
4536 null;
4537 end case;
4539 -- We fall through the case if we did not yet find the proper
4540 -- place in the free for inserting the freeze node, so climb!
4542 P := Parent_P;
4543 end loop;
4545 -- If the expression appears in a record or an initialization procedure,
4546 -- the freeze nodes are collected and attached to the current scope, to
4547 -- be inserted and analyzed on exit from the scope, to insure that
4548 -- generated entities appear in the correct scope. If the expression is
4549 -- a default for a discriminant specification, the scope is still void.
4550 -- The expression can also appear in the discriminant part of a private
4551 -- or concurrent type.
4553 -- If the expression appears in a constrained subcomponent of an
4554 -- enclosing record declaration, the freeze nodes must be attached to
4555 -- the outer record type so they can eventually be placed in the
4556 -- enclosing declaration list.
4558 -- The other case requiring this special handling is if we are in a
4559 -- default expression, since in that case we are about to freeze a
4560 -- static type, and the freeze scope needs to be the outer scope, not
4561 -- the scope of the subprogram with the default parameter.
4563 -- For default expressions and other spec expressions in generic units,
4564 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4565 -- placing them at the proper place, after the generic unit.
4567 if (In_Spec_Exp and not Inside_A_Generic)
4568 or else Freeze_Outside
4569 or else (Is_Type (Current_Scope)
4570 and then (not Is_Concurrent_Type (Current_Scope)
4571 or else not Has_Completion (Current_Scope)))
4572 or else Ekind (Current_Scope) = E_Void
4573 then
4574 declare
4575 N : constant Node_Id := Current_Scope;
4576 Freeze_Nodes : List_Id := No_List;
4577 Pos : Int := Scope_Stack.Last;
4579 begin
4580 if Present (Desig_Typ) then
4581 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
4582 end if;
4584 if Present (Typ) then
4585 Freeze_And_Append (Typ, N, Freeze_Nodes);
4586 end if;
4588 if Present (Nam) then
4589 Freeze_And_Append (Nam, N, Freeze_Nodes);
4590 end if;
4592 -- The current scope may be that of a constrained component of
4593 -- an enclosing record declaration, which is above the current
4594 -- scope in the scope stack.
4595 -- If the expression is within a top-level pragma, as for a pre-
4596 -- condition on a library-level subprogram, nothing to do.
4598 if not Is_Compilation_Unit (Current_Scope)
4599 and then Is_Record_Type (Scope (Current_Scope))
4600 then
4601 Pos := Pos - 1;
4602 end if;
4604 if Is_Non_Empty_List (Freeze_Nodes) then
4605 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4606 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
4607 Freeze_Nodes;
4608 else
4609 Append_List (Freeze_Nodes,
4610 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
4611 end if;
4612 end if;
4613 end;
4615 return;
4616 end if;
4618 -- Now we have the right place to do the freezing. First, a special
4619 -- adjustment, if we are in spec-expression analysis mode, these freeze
4620 -- actions must not be thrown away (normally all inserted actions are
4621 -- thrown away in this mode. However, the freeze actions are from static
4622 -- expressions and one of the important reasons we are doing this
4623 -- special analysis is to get these freeze actions. Therefore we turn
4624 -- off the In_Spec_Expression mode to propagate these freeze actions.
4625 -- This also means they get properly analyzed and expanded.
4627 In_Spec_Expression := False;
4629 -- Freeze the designated type of an allocator (RM 13.14(13))
4631 if Present (Desig_Typ) then
4632 Freeze_Before (P, Desig_Typ);
4633 end if;
4635 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
4636 -- the enumeration representation clause exception in the loop above.
4638 if Present (Typ) then
4639 Freeze_Before (P, Typ);
4640 end if;
4642 -- Freeze name if one is present (RM 13.14(11))
4644 if Present (Nam) then
4645 Freeze_Before (P, Nam);
4646 end if;
4648 -- Restore In_Spec_Expression flag
4650 In_Spec_Expression := In_Spec_Exp;
4651 end Freeze_Expression;
4653 -----------------------------
4654 -- Freeze_Fixed_Point_Type --
4655 -----------------------------
4657 -- Certain fixed-point types and subtypes, including implicit base types
4658 -- and declared first subtypes, have not yet set up a range. This is
4659 -- because the range cannot be set until the Small and Size values are
4660 -- known, and these are not known till the type is frozen.
4662 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4663 -- whose bounds are unanalyzed real literals. This routine will recognize
4664 -- this case, and transform this range node into a properly typed range
4665 -- with properly analyzed and resolved values.
4667 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4668 Rng : constant Node_Id := Scalar_Range (Typ);
4669 Lo : constant Node_Id := Low_Bound (Rng);
4670 Hi : constant Node_Id := High_Bound (Rng);
4671 Btyp : constant Entity_Id := Base_Type (Typ);
4672 Brng : constant Node_Id := Scalar_Range (Btyp);
4673 BLo : constant Node_Id := Low_Bound (Brng);
4674 BHi : constant Node_Id := High_Bound (Brng);
4675 Small : constant Ureal := Small_Value (Typ);
4676 Loval : Ureal;
4677 Hival : Ureal;
4678 Atype : Entity_Id;
4680 Actual_Size : Nat;
4682 function Fsize (Lov, Hiv : Ureal) return Nat;
4683 -- Returns size of type with given bounds. Also leaves these
4684 -- bounds set as the current bounds of the Typ.
4686 -----------
4687 -- Fsize --
4688 -----------
4690 function Fsize (Lov, Hiv : Ureal) return Nat is
4691 begin
4692 Set_Realval (Lo, Lov);
4693 Set_Realval (Hi, Hiv);
4694 return Minimum_Size (Typ);
4695 end Fsize;
4697 -- Start of processing for Freeze_Fixed_Point_Type
4699 begin
4700 -- If Esize of a subtype has not previously been set, set it now
4702 if Unknown_Esize (Typ) then
4703 Atype := Ancestor_Subtype (Typ);
4705 if Present (Atype) then
4706 Set_Esize (Typ, Esize (Atype));
4707 else
4708 Set_Esize (Typ, Esize (Base_Type (Typ)));
4709 end if;
4710 end if;
4712 -- Immediate return if the range is already analyzed. This means that
4713 -- the range is already set, and does not need to be computed by this
4714 -- routine.
4716 if Analyzed (Rng) then
4717 return;
4718 end if;
4720 -- Immediate return if either of the bounds raises Constraint_Error
4722 if Raises_Constraint_Error (Lo)
4723 or else Raises_Constraint_Error (Hi)
4724 then
4725 return;
4726 end if;
4728 Loval := Realval (Lo);
4729 Hival := Realval (Hi);
4731 -- Ordinary fixed-point case
4733 if Is_Ordinary_Fixed_Point_Type (Typ) then
4735 -- For the ordinary fixed-point case, we are allowed to fudge the
4736 -- end-points up or down by small. Generally we prefer to fudge up,
4737 -- i.e. widen the bounds for non-model numbers so that the end points
4738 -- are included. However there are cases in which this cannot be
4739 -- done, and indeed cases in which we may need to narrow the bounds.
4740 -- The following circuit makes the decision.
4742 -- Note: our terminology here is that Incl_EP means that the bounds
4743 -- are widened by Small if necessary to include the end points, and
4744 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4745 -- end-points if this reduces the size.
4747 -- Note that in the Incl case, all we care about is including the
4748 -- end-points. In the Excl case, we want to narrow the bounds as
4749 -- much as permitted by the RM, to give the smallest possible size.
4751 Fudge : declare
4752 Loval_Incl_EP : Ureal;
4753 Hival_Incl_EP : Ureal;
4755 Loval_Excl_EP : Ureal;
4756 Hival_Excl_EP : Ureal;
4758 Size_Incl_EP : Nat;
4759 Size_Excl_EP : Nat;
4761 Model_Num : Ureal;
4762 First_Subt : Entity_Id;
4763 Actual_Lo : Ureal;
4764 Actual_Hi : Ureal;
4766 begin
4767 -- First step. Base types are required to be symmetrical. Right
4768 -- now, the base type range is a copy of the first subtype range.
4769 -- This will be corrected before we are done, but right away we
4770 -- need to deal with the case where both bounds are non-negative.
4771 -- In this case, we set the low bound to the negative of the high
4772 -- bound, to make sure that the size is computed to include the
4773 -- required sign. Note that we do not need to worry about the
4774 -- case of both bounds negative, because the sign will be dealt
4775 -- with anyway. Furthermore we can't just go making such a bound
4776 -- symmetrical, since in a twos-complement system, there is an
4777 -- extra negative value which could not be accommodated on the
4778 -- positive side.
4780 if Typ = Btyp
4781 and then not UR_Is_Negative (Loval)
4782 and then Hival > Loval
4783 then
4784 Loval := -Hival;
4785 Set_Realval (Lo, Loval);
4786 end if;
4788 -- Compute the fudged bounds. If the number is a model number,
4789 -- then we do nothing to include it, but we are allowed to backoff
4790 -- to the next adjacent model number when we exclude it. If it is
4791 -- not a model number then we straddle the two values with the
4792 -- model numbers on either side.
4794 Model_Num := UR_Trunc (Loval / Small) * Small;
4796 if Loval = Model_Num then
4797 Loval_Incl_EP := Model_Num;
4798 else
4799 Loval_Incl_EP := Model_Num - Small;
4800 end if;
4802 -- The low value excluding the end point is Small greater, but
4803 -- we do not do this exclusion if the low value is positive,
4804 -- since it can't help the size and could actually hurt by
4805 -- crossing the high bound.
4807 if UR_Is_Negative (Loval_Incl_EP) then
4808 Loval_Excl_EP := Loval_Incl_EP + Small;
4810 -- If the value went from negative to zero, then we have the
4811 -- case where Loval_Incl_EP is the model number just below
4812 -- zero, so we want to stick to the negative value for the
4813 -- base type to maintain the condition that the size will
4814 -- include signed values.
4816 if Typ = Btyp
4817 and then UR_Is_Zero (Loval_Excl_EP)
4818 then
4819 Loval_Excl_EP := Loval_Incl_EP;
4820 end if;
4822 else
4823 Loval_Excl_EP := Loval_Incl_EP;
4824 end if;
4826 -- Similar processing for upper bound and high value
4828 Model_Num := UR_Trunc (Hival / Small) * Small;
4830 if Hival = Model_Num then
4831 Hival_Incl_EP := Model_Num;
4832 else
4833 Hival_Incl_EP := Model_Num + Small;
4834 end if;
4836 if UR_Is_Positive (Hival_Incl_EP) then
4837 Hival_Excl_EP := Hival_Incl_EP - Small;
4838 else
4839 Hival_Excl_EP := Hival_Incl_EP;
4840 end if;
4842 -- One further adjustment is needed. In the case of subtypes, we
4843 -- cannot go outside the range of the base type, or we get
4844 -- peculiarities, and the base type range is already set. This
4845 -- only applies to the Incl values, since clearly the Excl values
4846 -- are already as restricted as they are allowed to be.
4848 if Typ /= Btyp then
4849 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4850 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4851 end if;
4853 -- Get size including and excluding end points
4855 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4856 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4858 -- No need to exclude end-points if it does not reduce size
4860 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4861 Loval_Excl_EP := Loval_Incl_EP;
4862 end if;
4864 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4865 Hival_Excl_EP := Hival_Incl_EP;
4866 end if;
4868 -- Now we set the actual size to be used. We want to use the
4869 -- bounds fudged up to include the end-points but only if this
4870 -- can be done without violating a specifically given size
4871 -- size clause or causing an unacceptable increase in size.
4873 -- Case of size clause given
4875 if Has_Size_Clause (Typ) then
4877 -- Use the inclusive size only if it is consistent with
4878 -- the explicitly specified size.
4880 if Size_Incl_EP <= RM_Size (Typ) then
4881 Actual_Lo := Loval_Incl_EP;
4882 Actual_Hi := Hival_Incl_EP;
4883 Actual_Size := Size_Incl_EP;
4885 -- If the inclusive size is too large, we try excluding
4886 -- the end-points (will be caught later if does not work).
4888 else
4889 Actual_Lo := Loval_Excl_EP;
4890 Actual_Hi := Hival_Excl_EP;
4891 Actual_Size := Size_Excl_EP;
4892 end if;
4894 -- Case of size clause not given
4896 else
4897 -- If we have a base type whose corresponding first subtype
4898 -- has an explicit size that is large enough to include our
4899 -- end-points, then do so. There is no point in working hard
4900 -- to get a base type whose size is smaller than the specified
4901 -- size of the first subtype.
4903 First_Subt := First_Subtype (Typ);
4905 if Has_Size_Clause (First_Subt)
4906 and then Size_Incl_EP <= Esize (First_Subt)
4907 then
4908 Actual_Size := Size_Incl_EP;
4909 Actual_Lo := Loval_Incl_EP;
4910 Actual_Hi := Hival_Incl_EP;
4912 -- If excluding the end-points makes the size smaller and
4913 -- results in a size of 8,16,32,64, then we take the smaller
4914 -- size. For the 64 case, this is compulsory. For the other
4915 -- cases, it seems reasonable. We like to include end points
4916 -- if we can, but not at the expense of moving to the next
4917 -- natural boundary of size.
4919 elsif Size_Incl_EP /= Size_Excl_EP
4920 and then Addressable (Size_Excl_EP)
4921 then
4922 Actual_Size := Size_Excl_EP;
4923 Actual_Lo := Loval_Excl_EP;
4924 Actual_Hi := Hival_Excl_EP;
4926 -- Otherwise we can definitely include the end points
4928 else
4929 Actual_Size := Size_Incl_EP;
4930 Actual_Lo := Loval_Incl_EP;
4931 Actual_Hi := Hival_Incl_EP;
4932 end if;
4934 -- One pathological case: normally we never fudge a low bound
4935 -- down, since it would seem to increase the size (if it has
4936 -- any effect), but for ranges containing single value, or no
4937 -- values, the high bound can be small too large. Consider:
4939 -- type t is delta 2.0**(-14)
4940 -- range 131072.0 .. 0;
4942 -- That lower bound is *just* outside the range of 32 bits, and
4943 -- does need fudging down in this case. Note that the bounds
4944 -- will always have crossed here, since the high bound will be
4945 -- fudged down if necessary, as in the case of:
4947 -- type t is delta 2.0**(-14)
4948 -- range 131072.0 .. 131072.0;
4950 -- So we detect the situation by looking for crossed bounds,
4951 -- and if the bounds are crossed, and the low bound is greater
4952 -- than zero, we will always back it off by small, since this
4953 -- is completely harmless.
4955 if Actual_Lo > Actual_Hi then
4956 if UR_Is_Positive (Actual_Lo) then
4957 Actual_Lo := Loval_Incl_EP - Small;
4958 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4960 -- And of course, we need to do exactly the same parallel
4961 -- fudge for flat ranges in the negative region.
4963 elsif UR_Is_Negative (Actual_Hi) then
4964 Actual_Hi := Hival_Incl_EP + Small;
4965 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4966 end if;
4967 end if;
4968 end if;
4970 Set_Realval (Lo, Actual_Lo);
4971 Set_Realval (Hi, Actual_Hi);
4972 end Fudge;
4974 -- For the decimal case, none of this fudging is required, since there
4975 -- are no end-point problems in the decimal case (the end-points are
4976 -- always included).
4978 else
4979 Actual_Size := Fsize (Loval, Hival);
4980 end if;
4982 -- At this stage, the actual size has been calculated and the proper
4983 -- required bounds are stored in the low and high bounds.
4985 if Actual_Size > 64 then
4986 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4987 Error_Msg_N
4988 ("size required (^) for type& too large, maximum allowed is 64",
4989 Typ);
4990 Actual_Size := 64;
4991 end if;
4993 -- Check size against explicit given size
4995 if Has_Size_Clause (Typ) then
4996 if Actual_Size > RM_Size (Typ) then
4997 Error_Msg_Uint_1 := RM_Size (Typ);
4998 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4999 Error_Msg_NE
5000 ("size given (^) for type& too small, minimum allowed is ^",
5001 Size_Clause (Typ), Typ);
5003 else
5004 Actual_Size := UI_To_Int (Esize (Typ));
5005 end if;
5007 -- Increase size to next natural boundary if no size clause given
5009 else
5010 if Actual_Size <= 8 then
5011 Actual_Size := 8;
5012 elsif Actual_Size <= 16 then
5013 Actual_Size := 16;
5014 elsif Actual_Size <= 32 then
5015 Actual_Size := 32;
5016 else
5017 Actual_Size := 64;
5018 end if;
5020 Init_Esize (Typ, Actual_Size);
5021 Adjust_Esize_For_Alignment (Typ);
5022 end if;
5024 -- If we have a base type, then expand the bounds so that they extend to
5025 -- the full width of the allocated size in bits, to avoid junk range
5026 -- checks on intermediate computations.
5028 if Base_Type (Typ) = Typ then
5029 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
5030 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
5031 end if;
5033 -- Final step is to reanalyze the bounds using the proper type
5034 -- and set the Corresponding_Integer_Value fields of the literals.
5036 Set_Etype (Lo, Empty);
5037 Set_Analyzed (Lo, False);
5038 Analyze (Lo);
5040 -- Resolve with universal fixed if the base type, and the base type if
5041 -- it is a subtype. Note we can't resolve the base type with itself,
5042 -- that would be a reference before definition.
5044 if Typ = Btyp then
5045 Resolve (Lo, Universal_Fixed);
5046 else
5047 Resolve (Lo, Btyp);
5048 end if;
5050 -- Set corresponding integer value for bound
5052 Set_Corresponding_Integer_Value
5053 (Lo, UR_To_Uint (Realval (Lo) / Small));
5055 -- Similar processing for high bound
5057 Set_Etype (Hi, Empty);
5058 Set_Analyzed (Hi, False);
5059 Analyze (Hi);
5061 if Typ = Btyp then
5062 Resolve (Hi, Universal_Fixed);
5063 else
5064 Resolve (Hi, Btyp);
5065 end if;
5067 Set_Corresponding_Integer_Value
5068 (Hi, UR_To_Uint (Realval (Hi) / Small));
5070 -- Set type of range to correspond to bounds
5072 Set_Etype (Rng, Etype (Lo));
5074 -- Set Esize to calculated size if not set already
5076 if Unknown_Esize (Typ) then
5077 Init_Esize (Typ, Actual_Size);
5078 end if;
5080 -- Set RM_Size if not already set. If already set, check value
5082 declare
5083 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
5085 begin
5086 if RM_Size (Typ) /= Uint_0 then
5087 if RM_Size (Typ) < Minsiz then
5088 Error_Msg_Uint_1 := RM_Size (Typ);
5089 Error_Msg_Uint_2 := Minsiz;
5090 Error_Msg_NE
5091 ("size given (^) for type& too small, minimum allowed is ^",
5092 Size_Clause (Typ), Typ);
5093 end if;
5095 else
5096 Set_RM_Size (Typ, Minsiz);
5097 end if;
5098 end;
5099 end Freeze_Fixed_Point_Type;
5101 ------------------
5102 -- Freeze_Itype --
5103 ------------------
5105 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
5106 L : List_Id;
5108 begin
5109 Set_Has_Delayed_Freeze (T);
5110 L := Freeze_Entity (T, N);
5112 if Is_Non_Empty_List (L) then
5113 Insert_Actions (N, L);
5114 end if;
5115 end Freeze_Itype;
5117 --------------------------
5118 -- Freeze_Static_Object --
5119 --------------------------
5121 procedure Freeze_Static_Object (E : Entity_Id) is
5123 Cannot_Be_Static : exception;
5124 -- Exception raised if the type of a static object cannot be made
5125 -- static. This happens if the type depends on non-global objects.
5127 procedure Ensure_Expression_Is_SA (N : Node_Id);
5128 -- Called to ensure that an expression used as part of a type definition
5129 -- is statically allocatable, which means that the expression type is
5130 -- statically allocatable, and the expression is either static, or a
5131 -- reference to a library level constant.
5133 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
5134 -- Called to mark a type as static, checking that it is possible
5135 -- to set the type as static. If it is not possible, then the
5136 -- exception Cannot_Be_Static is raised.
5138 -----------------------------
5139 -- Ensure_Expression_Is_SA --
5140 -----------------------------
5142 procedure Ensure_Expression_Is_SA (N : Node_Id) is
5143 Ent : Entity_Id;
5145 begin
5146 Ensure_Type_Is_SA (Etype (N));
5148 if Is_Static_Expression (N) then
5149 return;
5151 elsif Nkind (N) = N_Identifier then
5152 Ent := Entity (N);
5154 if Present (Ent)
5155 and then Ekind (Ent) = E_Constant
5156 and then Is_Library_Level_Entity (Ent)
5157 then
5158 return;
5159 end if;
5160 end if;
5162 raise Cannot_Be_Static;
5163 end Ensure_Expression_Is_SA;
5165 -----------------------
5166 -- Ensure_Type_Is_SA --
5167 -----------------------
5169 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5170 N : Node_Id;
5171 C : Entity_Id;
5173 begin
5174 -- If type is library level, we are all set
5176 if Is_Library_Level_Entity (Typ) then
5177 return;
5178 end if;
5180 -- We are also OK if the type already marked as statically allocated,
5181 -- which means we processed it before.
5183 if Is_Statically_Allocated (Typ) then
5184 return;
5185 end if;
5187 -- Mark type as statically allocated
5189 Set_Is_Statically_Allocated (Typ);
5191 -- Check that it is safe to statically allocate this type
5193 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5194 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5195 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5197 elsif Is_Array_Type (Typ) then
5198 N := First_Index (Typ);
5199 while Present (N) loop
5200 Ensure_Type_Is_SA (Etype (N));
5201 Next_Index (N);
5202 end loop;
5204 Ensure_Type_Is_SA (Component_Type (Typ));
5206 elsif Is_Access_Type (Typ) then
5207 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5209 declare
5210 F : Entity_Id;
5211 T : constant Entity_Id := Etype (Designated_Type (Typ));
5213 begin
5214 if T /= Standard_Void_Type then
5215 Ensure_Type_Is_SA (T);
5216 end if;
5218 F := First_Formal (Designated_Type (Typ));
5219 while Present (F) loop
5220 Ensure_Type_Is_SA (Etype (F));
5221 Next_Formal (F);
5222 end loop;
5223 end;
5225 else
5226 Ensure_Type_Is_SA (Designated_Type (Typ));
5227 end if;
5229 elsif Is_Record_Type (Typ) then
5230 C := First_Entity (Typ);
5231 while Present (C) loop
5232 if Ekind (C) = E_Discriminant
5233 or else Ekind (C) = E_Component
5234 then
5235 Ensure_Type_Is_SA (Etype (C));
5237 elsif Is_Type (C) then
5238 Ensure_Type_Is_SA (C);
5239 end if;
5241 Next_Entity (C);
5242 end loop;
5244 elsif Ekind (Typ) = E_Subprogram_Type then
5245 Ensure_Type_Is_SA (Etype (Typ));
5247 C := First_Formal (Typ);
5248 while Present (C) loop
5249 Ensure_Type_Is_SA (Etype (C));
5250 Next_Formal (C);
5251 end loop;
5253 else
5254 raise Cannot_Be_Static;
5255 end if;
5256 end Ensure_Type_Is_SA;
5258 -- Start of processing for Freeze_Static_Object
5260 begin
5261 Ensure_Type_Is_SA (Etype (E));
5263 exception
5264 when Cannot_Be_Static =>
5266 -- If the object that cannot be static is imported or exported, then
5267 -- issue an error message saying that this object cannot be imported
5268 -- or exported. If it has an address clause it is an overlay in the
5269 -- current partition and the static requirement is not relevant.
5270 -- Do not issue any error message when ignoring rep clauses.
5272 if Ignore_Rep_Clauses then
5273 null;
5275 elsif Is_Imported (E) then
5276 if No (Address_Clause (E)) then
5277 Error_Msg_N
5278 ("& cannot be imported (local type is not constant)", E);
5279 end if;
5281 -- Otherwise must be exported, something is wrong if compiler
5282 -- is marking something as statically allocated which cannot be).
5284 else pragma Assert (Is_Exported (E));
5285 Error_Msg_N
5286 ("& cannot be exported (local type is not constant)", E);
5287 end if;
5288 end Freeze_Static_Object;
5290 -----------------------
5291 -- Freeze_Subprogram --
5292 -----------------------
5294 procedure Freeze_Subprogram (E : Entity_Id) is
5295 Retype : Entity_Id;
5296 F : Entity_Id;
5298 begin
5299 -- Subprogram may not have an address clause unless it is imported
5301 if Present (Address_Clause (E)) then
5302 if not Is_Imported (E) then
5303 Error_Msg_N
5304 ("address clause can only be given " &
5305 "for imported subprogram",
5306 Name (Address_Clause (E)));
5307 end if;
5308 end if;
5310 -- Reset the Pure indication on an imported subprogram unless an
5311 -- explicit Pure_Function pragma was present. We do this because
5312 -- otherwise it is an insidious error to call a non-pure function from
5313 -- pure unit and have calls mysteriously optimized away. What happens
5314 -- here is that the Import can bypass the normal check to ensure that
5315 -- pure units call only pure subprograms.
5317 if Is_Imported (E)
5318 and then Is_Pure (E)
5319 and then not Has_Pragma_Pure_Function (E)
5320 then
5321 Set_Is_Pure (E, False);
5322 end if;
5324 -- For non-foreign convention subprograms, this is where we create
5325 -- the extra formals (for accessibility level and constrained bit
5326 -- information). We delay this till the freeze point precisely so
5327 -- that we know the convention!
5329 if not Has_Foreign_Convention (E) then
5330 Create_Extra_Formals (E);
5331 Set_Mechanisms (E);
5333 -- If this is convention Ada and a Valued_Procedure, that's odd
5335 if Ekind (E) = E_Procedure
5336 and then Is_Valued_Procedure (E)
5337 and then Convention (E) = Convention_Ada
5338 and then Warn_On_Export_Import
5339 then
5340 Error_Msg_N
5341 ("?Valued_Procedure has no effect for convention Ada", E);
5342 Set_Is_Valued_Procedure (E, False);
5343 end if;
5345 -- Case of foreign convention
5347 else
5348 Set_Mechanisms (E);
5350 -- For foreign conventions, warn about return of an
5351 -- unconstrained array.
5353 -- Note: we *do* allow a return by descriptor for the VMS case,
5354 -- though here there is probably more to be done ???
5356 if Ekind (E) = E_Function then
5357 Retype := Underlying_Type (Etype (E));
5359 -- If no return type, probably some other error, e.g. a
5360 -- missing full declaration, so ignore.
5362 if No (Retype) then
5363 null;
5365 -- If the return type is generic, we have emitted a warning
5366 -- earlier on, and there is nothing else to check here. Specific
5367 -- instantiations may lead to erroneous behavior.
5369 elsif Is_Generic_Type (Etype (E)) then
5370 null;
5372 -- Display warning if returning unconstrained array
5374 elsif Is_Array_Type (Retype)
5375 and then not Is_Constrained (Retype)
5377 -- Exclude cases where descriptor mechanism is set, since the
5378 -- VMS descriptor mechanisms allow such unconstrained returns.
5380 and then Mechanism (E) not in Descriptor_Codes
5382 -- Check appropriate warning is enabled (should we check for
5383 -- Warnings (Off) on specific entities here, probably so???)
5385 and then Warn_On_Export_Import
5387 -- Exclude the VM case, since return of unconstrained arrays
5388 -- is properly handled in both the JVM and .NET cases.
5390 and then VM_Target = No_VM
5391 then
5392 Error_Msg_N
5393 ("?foreign convention function& should not return " &
5394 "unconstrained array", E);
5395 return;
5396 end if;
5397 end if;
5399 -- If any of the formals for an exported foreign convention
5400 -- subprogram have defaults, then emit an appropriate warning since
5401 -- this is odd (default cannot be used from non-Ada code)
5403 if Is_Exported (E) then
5404 F := First_Formal (E);
5405 while Present (F) loop
5406 if Warn_On_Export_Import
5407 and then Present (Default_Value (F))
5408 then
5409 Error_Msg_N
5410 ("?parameter cannot be defaulted in non-Ada call",
5411 Default_Value (F));
5412 end if;
5414 Next_Formal (F);
5415 end loop;
5416 end if;
5417 end if;
5419 -- For VMS, descriptor mechanisms for parameters are allowed only for
5420 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5421 -- allowed for parameters of exported subprograms.
5423 if OpenVMS_On_Target then
5424 if Is_Exported (E) then
5425 F := First_Formal (E);
5426 while Present (F) loop
5427 if Mechanism (F) = By_Descriptor_NCA then
5428 Error_Msg_N
5429 ("'N'C'A' descriptor for parameter not permitted", F);
5430 Error_Msg_N
5431 ("\can only be used for imported subprogram", F);
5432 end if;
5434 Next_Formal (F);
5435 end loop;
5437 elsif not Is_Imported (E) then
5438 F := First_Formal (E);
5439 while Present (F) loop
5440 if Mechanism (F) in Descriptor_Codes then
5441 Error_Msg_N
5442 ("descriptor mechanism for parameter not permitted", F);
5443 Error_Msg_N
5444 ("\can only be used for imported/exported subprogram", F);
5445 end if;
5447 Next_Formal (F);
5448 end loop;
5449 end if;
5450 end if;
5452 -- Pragma Inline_Always is disallowed for dispatching subprograms
5453 -- because the address of such subprograms is saved in the dispatch
5454 -- table to support dispatching calls, and dispatching calls cannot
5455 -- be inlined. This is consistent with the restriction against using
5456 -- 'Access or 'Address on an Inline_Always subprogram.
5458 if Is_Dispatching_Operation (E)
5459 and then Has_Pragma_Inline_Always (E)
5460 then
5461 Error_Msg_N
5462 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5463 end if;
5465 -- Because of the implicit representation of inherited predefined
5466 -- operators in the front-end, the overriding status of the operation
5467 -- may be affected when a full view of a type is analyzed, and this is
5468 -- not captured by the analysis of the corresponding type declaration.
5469 -- Therefore the correctness of a not-overriding indicator must be
5470 -- rechecked when the subprogram is frozen.
5472 if Nkind (E) = N_Defining_Operator_Symbol
5473 and then not Error_Posted (Parent (E))
5474 then
5475 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5476 end if;
5477 end Freeze_Subprogram;
5479 ----------------------
5480 -- Is_Fully_Defined --
5481 ----------------------
5483 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5484 begin
5485 if Ekind (T) = E_Class_Wide_Type then
5486 return Is_Fully_Defined (Etype (T));
5488 elsif Is_Array_Type (T) then
5489 return Is_Fully_Defined (Component_Type (T));
5491 elsif Is_Record_Type (T)
5492 and not Is_Private_Type (T)
5493 then
5494 -- Verify that the record type has no components with private types
5495 -- without completion.
5497 declare
5498 Comp : Entity_Id;
5500 begin
5501 Comp := First_Component (T);
5502 while Present (Comp) loop
5503 if not Is_Fully_Defined (Etype (Comp)) then
5504 return False;
5505 end if;
5507 Next_Component (Comp);
5508 end loop;
5509 return True;
5510 end;
5512 -- For the designated type of an access to subprogram, all types in
5513 -- the profile must be fully defined.
5515 elsif Ekind (T) = E_Subprogram_Type then
5516 declare
5517 F : Entity_Id;
5519 begin
5520 F := First_Formal (T);
5521 while Present (F) loop
5522 if not Is_Fully_Defined (Etype (F)) then
5523 return False;
5524 end if;
5526 Next_Formal (F);
5527 end loop;
5529 return Is_Fully_Defined (Etype (T));
5530 end;
5532 else
5533 return not Is_Private_Type (T)
5534 or else Present (Full_View (Base_Type (T)));
5535 end if;
5536 end Is_Fully_Defined;
5538 ---------------------------------
5539 -- Process_Default_Expressions --
5540 ---------------------------------
5542 procedure Process_Default_Expressions
5543 (E : Entity_Id;
5544 After : in out Node_Id)
5546 Loc : constant Source_Ptr := Sloc (E);
5547 Dbody : Node_Id;
5548 Formal : Node_Id;
5549 Dcopy : Node_Id;
5550 Dnam : Entity_Id;
5552 begin
5553 Set_Default_Expressions_Processed (E);
5555 -- A subprogram instance and its associated anonymous subprogram share
5556 -- their signature. The default expression functions are defined in the
5557 -- wrapper packages for the anonymous subprogram, and should not be
5558 -- generated again for the instance.
5560 if Is_Generic_Instance (E)
5561 and then Present (Alias (E))
5562 and then Default_Expressions_Processed (Alias (E))
5563 then
5564 return;
5565 end if;
5567 Formal := First_Formal (E);
5568 while Present (Formal) loop
5569 if Present (Default_Value (Formal)) then
5571 -- We work with a copy of the default expression because we
5572 -- do not want to disturb the original, since this would mess
5573 -- up the conformance checking.
5575 Dcopy := New_Copy_Tree (Default_Value (Formal));
5577 -- The analysis of the expression may generate insert actions,
5578 -- which of course must not be executed. We wrap those actions
5579 -- in a procedure that is not called, and later on eliminated.
5580 -- The following cases have no side-effects, and are analyzed
5581 -- directly.
5583 if Nkind (Dcopy) = N_Identifier
5584 or else Nkind (Dcopy) = N_Expanded_Name
5585 or else Nkind (Dcopy) = N_Integer_Literal
5586 or else (Nkind (Dcopy) = N_Real_Literal
5587 and then not Vax_Float (Etype (Dcopy)))
5588 or else Nkind (Dcopy) = N_Character_Literal
5589 or else Nkind (Dcopy) = N_String_Literal
5590 or else Known_Null (Dcopy)
5591 or else (Nkind (Dcopy) = N_Attribute_Reference
5592 and then
5593 Attribute_Name (Dcopy) = Name_Null_Parameter)
5594 then
5596 -- If there is no default function, we must still do a full
5597 -- analyze call on the default value, to ensure that all error
5598 -- checks are performed, e.g. those associated with static
5599 -- evaluation. Note: this branch will always be taken if the
5600 -- analyzer is turned off (but we still need the error checks).
5602 -- Note: the setting of parent here is to meet the requirement
5603 -- that we can only analyze the expression while attached to
5604 -- the tree. Really the requirement is that the parent chain
5605 -- be set, we don't actually need to be in the tree.
5607 Set_Parent (Dcopy, Declaration_Node (Formal));
5608 Analyze (Dcopy);
5610 -- Default expressions are resolved with their own type if the
5611 -- context is generic, to avoid anomalies with private types.
5613 if Ekind (Scope (E)) = E_Generic_Package then
5614 Resolve (Dcopy);
5615 else
5616 Resolve (Dcopy, Etype (Formal));
5617 end if;
5619 -- If that resolved expression will raise constraint error,
5620 -- then flag the default value as raising constraint error.
5621 -- This allows a proper error message on the calls.
5623 if Raises_Constraint_Error (Dcopy) then
5624 Set_Raises_Constraint_Error (Default_Value (Formal));
5625 end if;
5627 -- If the default is a parameterless call, we use the name of
5628 -- the called function directly, and there is no body to build.
5630 elsif Nkind (Dcopy) = N_Function_Call
5631 and then No (Parameter_Associations (Dcopy))
5632 then
5633 null;
5635 -- Else construct and analyze the body of a wrapper procedure
5636 -- that contains an object declaration to hold the expression.
5637 -- Given that this is done only to complete the analysis, it
5638 -- simpler to build a procedure than a function which might
5639 -- involve secondary stack expansion.
5641 else
5642 Dnam := Make_Temporary (Loc, 'D');
5644 Dbody :=
5645 Make_Subprogram_Body (Loc,
5646 Specification =>
5647 Make_Procedure_Specification (Loc,
5648 Defining_Unit_Name => Dnam),
5650 Declarations => New_List (
5651 Make_Object_Declaration (Loc,
5652 Defining_Identifier =>
5653 Make_Defining_Identifier (Loc,
5654 New_Internal_Name ('T')),
5655 Object_Definition =>
5656 New_Occurrence_Of (Etype (Formal), Loc),
5657 Expression => New_Copy_Tree (Dcopy))),
5659 Handled_Statement_Sequence =>
5660 Make_Handled_Sequence_Of_Statements (Loc,
5661 Statements => New_List));
5663 Set_Scope (Dnam, Scope (E));
5664 Set_Assignment_OK (First (Declarations (Dbody)));
5665 Set_Is_Eliminated (Dnam);
5666 Insert_After (After, Dbody);
5667 Analyze (Dbody);
5668 After := Dbody;
5669 end if;
5670 end if;
5672 Next_Formal (Formal);
5673 end loop;
5674 end Process_Default_Expressions;
5676 ----------------------------------------
5677 -- Set_Component_Alignment_If_Not_Set --
5678 ----------------------------------------
5680 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5681 begin
5682 -- Ignore if not base type, subtypes don't need anything
5684 if Typ /= Base_Type (Typ) then
5685 return;
5686 end if;
5688 -- Do not override existing representation
5690 if Is_Packed (Typ) then
5691 return;
5693 elsif Has_Specified_Layout (Typ) then
5694 return;
5696 elsif Component_Alignment (Typ) /= Calign_Default then
5697 return;
5699 else
5700 Set_Component_Alignment
5701 (Typ, Scope_Stack.Table
5702 (Scope_Stack.Last).Component_Alignment_Default);
5703 end if;
5704 end Set_Component_Alignment_If_Not_Set;
5706 ------------------
5707 -- Undelay_Type --
5708 ------------------
5710 procedure Undelay_Type (T : Entity_Id) is
5711 begin
5712 Set_Has_Delayed_Freeze (T, False);
5713 Set_Freeze_Node (T, Empty);
5715 -- Since we don't want T to have a Freeze_Node, we don't want its
5716 -- Full_View or Corresponding_Record_Type to have one either.
5718 -- ??? Fundamentally, this whole handling is a kludge. What we really
5719 -- want is to be sure that for an Itype that's part of record R and is a
5720 -- subtype of type T, that it's frozen after the later of the freeze
5721 -- points of R and T. We have no way of doing that directly, so what we
5722 -- do is force most such Itypes to be frozen as part of freezing R via
5723 -- this procedure and only delay the ones that need to be delayed
5724 -- (mostly the designated types of access types that are defined as part
5725 -- of the record).
5727 if Is_Private_Type (T)
5728 and then Present (Full_View (T))
5729 and then Is_Itype (Full_View (T))
5730 and then Is_Record_Type (Scope (Full_View (T)))
5731 then
5732 Undelay_Type (Full_View (T));
5733 end if;
5735 if Is_Concurrent_Type (T)
5736 and then Present (Corresponding_Record_Type (T))
5737 and then Is_Itype (Corresponding_Record_Type (T))
5738 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5739 then
5740 Undelay_Type (Corresponding_Record_Type (T));
5741 end if;
5742 end Undelay_Type;
5744 ------------------
5745 -- Warn_Overlay --
5746 ------------------
5748 procedure Warn_Overlay
5749 (Expr : Node_Id;
5750 Typ : Entity_Id;
5751 Nam : Entity_Id)
5753 Ent : constant Entity_Id := Entity (Nam);
5754 -- The object to which the address clause applies
5756 Init : Node_Id;
5757 Old : Entity_Id := Empty;
5758 Decl : Node_Id;
5760 begin
5761 -- No warning if address clause overlay warnings are off
5763 if not Address_Clause_Overlay_Warnings then
5764 return;
5765 end if;
5767 -- No warning if there is an explicit initialization
5769 Init := Original_Node (Expression (Declaration_Node (Ent)));
5771 if Present (Init) and then Comes_From_Source (Init) then
5772 return;
5773 end if;
5775 -- We only give the warning for non-imported entities of a type for
5776 -- which a non-null base init proc is defined, or for objects of access
5777 -- types with implicit null initialization, or when Normalize_Scalars
5778 -- applies and the type is scalar or a string type (the latter being
5779 -- tested for because predefined String types are initialized by inline
5780 -- code rather than by an init_proc). Note that we do not give the
5781 -- warning for Initialize_Scalars, since we suppressed initialization
5782 -- in this case.
5784 if Present (Expr)
5785 and then not Is_Imported (Ent)
5786 and then (Has_Non_Null_Base_Init_Proc (Typ)
5787 or else Is_Access_Type (Typ)
5788 or else (Normalize_Scalars
5789 and then (Is_Scalar_Type (Typ)
5790 or else Is_String_Type (Typ))))
5791 then
5792 if Nkind (Expr) = N_Attribute_Reference
5793 and then Is_Entity_Name (Prefix (Expr))
5794 then
5795 Old := Entity (Prefix (Expr));
5797 elsif Is_Entity_Name (Expr)
5798 and then Ekind (Entity (Expr)) = E_Constant
5799 then
5800 Decl := Declaration_Node (Entity (Expr));
5802 if Nkind (Decl) = N_Object_Declaration
5803 and then Present (Expression (Decl))
5804 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5805 and then Is_Entity_Name (Prefix (Expression (Decl)))
5806 then
5807 Old := Entity (Prefix (Expression (Decl)));
5809 elsif Nkind (Expr) = N_Function_Call then
5810 return;
5811 end if;
5813 -- A function call (most likely to To_Address) is probably not an
5814 -- overlay, so skip warning. Ditto if the function call was inlined
5815 -- and transformed into an entity.
5817 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5818 return;
5819 end if;
5821 Decl := Next (Parent (Expr));
5823 -- If a pragma Import follows, we assume that it is for the current
5824 -- target of the address clause, and skip the warning.
5826 if Present (Decl)
5827 and then Nkind (Decl) = N_Pragma
5828 and then Pragma_Name (Decl) = Name_Import
5829 then
5830 return;
5831 end if;
5833 if Present (Old) then
5834 Error_Msg_Node_2 := Old;
5835 Error_Msg_N
5836 ("default initialization of & may modify &?",
5837 Nam);
5838 else
5839 Error_Msg_N
5840 ("default initialization of & may modify overlaid storage?",
5841 Nam);
5842 end if;
5844 -- Add friendly warning if initialization comes from a packed array
5845 -- component.
5847 if Is_Record_Type (Typ) then
5848 declare
5849 Comp : Entity_Id;
5851 begin
5852 Comp := First_Component (Typ);
5853 while Present (Comp) loop
5854 if Nkind (Parent (Comp)) = N_Component_Declaration
5855 and then Present (Expression (Parent (Comp)))
5856 then
5857 exit;
5858 elsif Is_Array_Type (Etype (Comp))
5859 and then Present (Packed_Array_Type (Etype (Comp)))
5860 then
5861 Error_Msg_NE
5862 ("\packed array component& " &
5863 "will be initialized to zero?",
5864 Nam, Comp);
5865 exit;
5866 else
5867 Next_Component (Comp);
5868 end if;
5869 end loop;
5870 end;
5871 end if;
5873 Error_Msg_N
5874 ("\use pragma Import for & to " &
5875 "suppress initialization (RM B.1(24))?",
5876 Nam);
5877 end if;
5878 end Warn_Overlay;
5880 end Freeze;