RISC-V: Add -malign-data= option.
[official-gcc.git] / gcc / config / riscv / riscv.h
blob5fc9be8edbf212454623b1c978fc940803f56917
1 /* Definition of RISC-V target for GNU compiler.
2 Copyright (C) 2011-2019 Free Software Foundation, Inc.
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_RISCV_H
23 #define GCC_RISCV_H
25 #include "config/riscv/riscv-opts.h"
27 /* Target CPU builtins. */
28 #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
30 /* Target CPU versions for D. */
31 #define TARGET_D_CPU_VERSIONS riscv_d_target_versions
33 /* Default target_flags if no switches are specified */
35 #ifndef TARGET_DEFAULT
36 #define TARGET_DEFAULT 0
37 #endif
39 #ifndef RISCV_TUNE_STRING_DEFAULT
40 #define RISCV_TUNE_STRING_DEFAULT "rocket"
41 #endif
43 /* Support for a compile-time default CPU, et cetera. The rules are:
44 --with-arch is ignored if -march is specified.
45 --with-abi is ignored if -mabi is specified.
46 --with-tune is ignored if -mtune is specified. */
47 #define OPTION_DEFAULT_SPECS \
48 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
49 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
50 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
52 #ifdef IN_LIBGCC2
53 #undef TARGET_64BIT
54 /* Make this compile time constant for libgcc2 */
55 #define TARGET_64BIT (__riscv_xlen == 64)
56 #endif /* IN_LIBGCC2 */
58 #undef ASM_SPEC
59 #define ASM_SPEC "\
60 %(subtarget_asm_debugging_spec) \
61 %{" FPIE_OR_FPIC_SPEC ":-fpic} \
62 %{march=*} \
63 %{mabi=*} \
64 %(subtarget_asm_spec)"
66 #define TARGET_DEFAULT_CMODEL CM_MEDLOW
68 #define LOCAL_LABEL_PREFIX "."
69 #define USER_LABEL_PREFIX ""
71 /* Offsets recorded in opcodes are a multiple of this alignment factor.
72 The default for this in 64-bit mode is 8, which causes problems with
73 SFmode register saves. */
74 #define DWARF_CIE_DATA_ALIGNMENT -4
76 /* The mapping from gcc register number to DWARF 2 CFA column number. */
77 #define DWARF_FRAME_REGNUM(REGNO) \
78 (GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM)
80 /* The DWARF 2 CFA column which tracks the return address. */
81 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
82 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
84 /* Describe how we implement __builtin_eh_return. */
85 #define EH_RETURN_DATA_REGNO(N) \
86 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
88 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
90 /* Target machine storage layout */
92 #define BITS_BIG_ENDIAN 0
93 #define BYTES_BIG_ENDIAN 0
94 #define WORDS_BIG_ENDIAN 0
96 #define MAX_BITS_PER_WORD 64
98 /* Width of a word, in units (bytes). */
99 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
100 #ifndef IN_LIBGCC2
101 #define MIN_UNITS_PER_WORD 4
102 #endif
104 /* The `Q' extension is not yet supported. */
105 #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
107 /* The largest type that can be passed in floating-point registers. */
108 #define UNITS_PER_FP_ARG \
109 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
110 || riscv_abi == ABI_LP64) \
111 ? 0 \
112 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
114 /* Set the sizes of the core types. */
115 #define SHORT_TYPE_SIZE 16
116 #define INT_TYPE_SIZE 32
117 #define LONG_LONG_TYPE_SIZE 64
118 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
119 #define LONG_TYPE_SIZE POINTER_SIZE
121 #define FLOAT_TYPE_SIZE 32
122 #define DOUBLE_TYPE_SIZE 64
123 #define LONG_DOUBLE_TYPE_SIZE 128
125 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
126 #define PARM_BOUNDARY BITS_PER_WORD
128 /* Allocation boundary (in *bits*) for the code of a function. */
129 #define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
131 /* The smallest supported stack boundary the calling convention supports. */
132 #define STACK_BOUNDARY \
133 (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD)
135 /* The ABI stack alignment. */
136 #define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128)
138 /* There is no point aligning anything to a rounder boundary than this. */
139 #define BIGGEST_ALIGNMENT 128
141 /* The user-level ISA permits unaligned accesses, but they are not required
142 of the privileged architecture. */
143 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
145 /* Define this if you wish to imitate the way many other C compilers
146 handle alignment of bitfields and the structures that contain
147 them.
149 The behavior is that the type written for a bit-field (`int',
150 `short', or other integer type) imposes an alignment for the
151 entire structure, as if the structure really did contain an
152 ordinary field of that type. In addition, the bit-field is placed
153 within the structure so that it would fit within such a field,
154 not crossing a boundary for it.
156 Thus, on most machines, a bit-field whose type is written as `int'
157 would not cross a four-byte boundary, and would force four-byte
158 alignment for the whole structure. (The alignment used may not
159 be four bytes; it is controlled by the other alignment
160 parameters.)
162 If the macro is defined, its definition should be a C expression;
163 a nonzero value for the expression enables this behavior. */
165 #define PCC_BITFIELD_TYPE_MATTERS 1
167 /* An integer expression for the size in bits of the largest integer machine
168 mode that should actually be used. We allow pairs of registers. */
169 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
171 /* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
172 #define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
173 (((COND) && ((ALIGN) < BITS_PER_WORD) \
174 && (TREE_CODE (TYPE) == ARRAY_TYPE \
175 || TREE_CODE (TYPE) == UNION_TYPE \
176 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
178 /* If defined, a C expression to compute the alignment for a static
179 variable. TYPE is the data type, and ALIGN is the alignment that
180 the object would ordinarily have. The value of this macro is used
181 instead of that alignment to align the object.
183 If this macro is not defined, then ALIGN is used.
185 One use of this macro is to increase alignment of medium-size
186 data to make it all fit in fewer cache lines. Another is to
187 cause character arrays to be word-aligned so that `strcpy' calls
188 that copy constants to character arrays can be done inline. */
190 #define DATA_ALIGNMENT(TYPE, ALIGN) \
191 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
192 TYPE, ALIGN)
194 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
195 character arrays to be word-aligned so that `strcpy' calls that copy
196 constants to character arrays can be done inline, and 'strcmp' can be
197 optimised to use word loads. */
198 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
199 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
201 /* Define if operations between registers always perform the operation
202 on the full register even if a narrower mode is specified. */
203 #define WORD_REGISTER_OPERATIONS 1
205 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
206 moves. All other references are zero extended. */
207 #define LOAD_EXTEND_OP(MODE) \
208 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
210 /* Define this macro if it is advisable to hold scalars in registers
211 in a wider mode than that declared by the program. In such cases,
212 the value is constrained to be within the bounds of the declared
213 type, but kept valid in the wider mode. The signedness of the
214 extension may differ from that of the type. */
216 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
217 if (GET_MODE_CLASS (MODE) == MODE_INT \
218 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
220 if ((MODE) == SImode) \
221 (UNSIGNEDP) = 0; \
222 (MODE) = word_mode; \
225 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
226 Extensions of pointers to word_mode must be signed. */
227 #define POINTERS_EXTEND_UNSIGNED false
229 /* Define if loading short immediate values into registers sign extends. */
230 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
232 /* Standard register usage. */
234 /* Number of hardware registers. We have:
236 - 32 integer registers
237 - 32 floating point registers
238 - 2 fake registers:
239 - ARG_POINTER_REGNUM
240 - FRAME_POINTER_REGNUM */
242 #define FIRST_PSEUDO_REGISTER 66
244 /* x0, sp, gp, and tp are fixed. */
246 #define FIXED_REGISTERS \
247 { /* General registers. */ \
248 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
249 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
250 /* Floating-point registers. */ \
251 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
252 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
253 /* Others. */ \
254 1, 1 \
257 /* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
258 The call RTLs themselves clobber ra. */
260 #define CALL_USED_REGISTERS \
261 { /* General registers. */ \
262 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
263 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
264 /* Floating-point registers. */ \
265 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
266 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
267 /* Others. */ \
268 1, 1 \
271 /* Internal macros to classify an ISA register's type. */
273 #define GP_REG_FIRST 0
274 #define GP_REG_LAST (TARGET_RVE ? 15 : 31)
275 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
277 #define FP_REG_FIRST 32
278 #define FP_REG_LAST 63
279 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
281 /* The DWARF 2 CFA column which tracks the return address from a
282 signal handler context. This means that to maintain backwards
283 compatibility, no hard register can be assigned this column if it
284 would need to be handled by the DWARF unwinder. */
285 #define DWARF_ALT_FRAME_RETURN_COLUMN 64
287 #define GP_REG_P(REGNO) \
288 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
289 #define FP_REG_P(REGNO) \
290 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
292 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
294 /* Use s0 as the frame pointer if it is so requested. */
295 #define HARD_FRAME_POINTER_REGNUM 8
296 #define STACK_POINTER_REGNUM 2
297 #define THREAD_POINTER_REGNUM 4
299 /* These two registers don't really exist: they get eliminated to either
300 the stack or hard frame pointer. */
301 #define ARG_POINTER_REGNUM 64
302 #define FRAME_POINTER_REGNUM 65
304 /* Register in which static-chain is passed to a function. */
305 #define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
307 /* Registers used as temporaries in prologue/epilogue code.
309 The prologue registers mustn't conflict with any
310 incoming arguments, the static chain pointer, or the frame pointer.
311 The epilogue temporary mustn't conflict with the return registers,
312 the frame pointer, the EH stack adjustment, or the EH data registers. */
314 #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST + 1)
315 #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
317 #define MCOUNT_NAME "_mcount"
319 #define NO_PROFILE_COUNTERS 1
321 /* Emit rtl for profiling. Output assembler code to FILE
322 to call "_mcount" for profiling a function entry. */
323 #define PROFILE_HOOK(LABEL) \
325 rtx fun, ra; \
326 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
327 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
328 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
331 /* All the work done in PROFILE_HOOK, but still required. */
332 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
334 /* Define this macro if it is as good or better to call a constant
335 function address than to call an address kept in a register. */
336 #define NO_FUNCTION_CSE 1
338 /* Define the classes of registers for register constraints in the
339 machine description. Also define ranges of constants.
341 One of the classes must always be named ALL_REGS and include all hard regs.
342 If there is more than one class, another class must be named NO_REGS
343 and contain no registers.
345 The name GENERAL_REGS must be the name of a class (or an alias for
346 another name such as ALL_REGS). This is the class of registers
347 that is allowed by "g" or "r" in a register constraint.
348 Also, registers outside this class are allocated only when
349 instructions express preferences for them.
351 The classes must be numbered in nondecreasing order; that is,
352 a larger-numbered class must never be contained completely
353 in a smaller-numbered class.
355 For any two classes, it is very desirable that there be another
356 class that represents their union. */
358 enum reg_class
360 NO_REGS, /* no registers in set */
361 SIBCALL_REGS, /* registers used by indirect sibcalls */
362 JALR_REGS, /* registers used by indirect calls */
363 GR_REGS, /* integer registers */
364 FP_REGS, /* floating-point registers */
365 FRAME_REGS, /* arg pointer and frame pointer */
366 ALL_REGS, /* all registers */
367 LIM_REG_CLASSES /* max value + 1 */
370 #define N_REG_CLASSES (int) LIM_REG_CLASSES
372 #define GENERAL_REGS GR_REGS
374 /* An initializer containing the names of the register classes as C
375 string constants. These names are used in writing some of the
376 debugging dumps. */
378 #define REG_CLASS_NAMES \
380 "NO_REGS", \
381 "SIBCALL_REGS", \
382 "JALR_REGS", \
383 "GR_REGS", \
384 "FP_REGS", \
385 "FRAME_REGS", \
386 "ALL_REGS" \
389 /* An initializer containing the contents of the register classes,
390 as integers which are bit masks. The Nth integer specifies the
391 contents of class N. The way the integer MASK is interpreted is
392 that register R is in the class if `MASK & (1 << R)' is 1.
394 When the machine has more than 32 registers, an integer does not
395 suffice. Then the integers are replaced by sub-initializers,
396 braced groupings containing several integers. Each
397 sub-initializer must be suitable as an initializer for the type
398 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
400 #define REG_CLASS_CONTENTS \
402 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
403 { 0xf00000c0, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
404 { 0xffffffc0, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
405 { 0xffffffff, 0x00000000, 0x00000000 }, /* GR_REGS */ \
406 { 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \
407 { 0x00000000, 0x00000000, 0x00000003 }, /* FRAME_REGS */ \
408 { 0xffffffff, 0xffffffff, 0x00000003 } /* ALL_REGS */ \
411 /* A C expression whose value is a register class containing hard
412 register REGNO. In general there is more that one such class;
413 choose a class which is "minimal", meaning that no smaller class
414 also contains the register. */
416 #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
418 /* A macro whose definition is the name of the class to which a
419 valid base register must belong. A base register is one used in
420 an address which is the register value plus a displacement. */
422 #define BASE_REG_CLASS GR_REGS
424 /* A macro whose definition is the name of the class to which a
425 valid index register must belong. An index register is one used
426 in an address where its value is either multiplied by a scale
427 factor or added to another register (as well as added to a
428 displacement). */
430 #define INDEX_REG_CLASS NO_REGS
432 /* We generally want to put call-clobbered registers ahead of
433 call-saved ones. (IRA expects this.) */
435 #define REG_ALLOC_ORDER \
437 /* Call-clobbered GPRs. */ \
438 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
439 /* Call-saved GPRs. */ \
440 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
441 /* GPRs that can never be exposed to the register allocator. */ \
442 0, 2, 3, 4, \
443 /* Call-clobbered FPRs. */ \
444 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
445 60, 61, 62, 63, \
446 /* Call-saved FPRs. */ \
447 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
448 /* None of the remaining classes have defined call-saved \
449 registers. */ \
450 64, 65 \
453 /* True if VALUE is a signed 12-bit number. */
455 #define SMALL_OPERAND(VALUE) \
456 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
458 /* True if VALUE can be loaded into a register using LUI. */
460 #define LUI_OPERAND(VALUE) \
461 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
462 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
464 /* Stack layout; function entry, exit and calling. */
466 #define STACK_GROWS_DOWNWARD 1
468 #define FRAME_GROWS_DOWNWARD 1
470 #define RETURN_ADDR_RTX riscv_return_addr
472 #define ELIMINABLE_REGS \
473 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
474 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
475 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
476 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
478 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
479 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
481 /* Allocate stack space for arguments at the beginning of each function. */
482 #define ACCUMULATE_OUTGOING_ARGS 1
484 /* The argument pointer always points to the first argument. */
485 #define FIRST_PARM_OFFSET(FNDECL) 0
487 #define REG_PARM_STACK_SPACE(FNDECL) 0
489 /* Define this if it is the responsibility of the caller to
490 allocate the area reserved for arguments passed in registers.
491 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
492 of this macro is to determine whether the space is included in
493 `crtl->outgoing_args_size'. */
494 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
496 #define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
498 /* Symbolic macros for the registers used to return integer and floating
499 point values. */
501 #define GP_RETURN GP_ARG_FIRST
502 #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
504 #define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8)
506 /* Symbolic macros for the first/last argument registers. */
508 #define GP_ARG_FIRST (GP_REG_FIRST + 10)
509 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
510 #define GP_TEMP_FIRST (GP_REG_FIRST + 5)
511 #define FP_ARG_FIRST (FP_REG_FIRST + 10)
512 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
514 #define CALLEE_SAVED_REG_NUMBER(REGNO) \
515 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
516 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
518 #define LIBCALL_VALUE(MODE) \
519 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
521 #define FUNCTION_VALUE(VALTYPE, FUNC) \
522 riscv_function_value (VALTYPE, FUNC, VOIDmode)
524 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
526 /* 1 if N is a possible register number for function argument passing.
527 We have no FP argument registers when soft-float. */
529 /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
530 #define FUNCTION_ARG_REGNO_P(N) \
531 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
532 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
534 typedef struct {
535 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
536 unsigned int num_gprs;
538 /* Number of floating-point registers used so far, likewise. */
539 unsigned int num_fprs;
540 } CUMULATIVE_ARGS;
542 /* Initialize a variable CUM of type CUMULATIVE_ARGS
543 for a call to a function whose data type is FNTYPE.
544 For a library call, FNTYPE is 0. */
546 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
547 memset (&(CUM), 0, sizeof (CUM))
549 #define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
551 /* Align based on stack boundary, which might have been set by the user. */
552 #define RISCV_STACK_ALIGN(LOC) \
553 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
555 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
556 the stack pointer does not matter. The value is tested only in
557 functions that have frame pointers.
558 No definition is equivalent to always zero. */
560 #define EXIT_IGNORE_STACK 1
563 /* Trampolines are a block of code followed by two pointers. */
565 #define TRAMPOLINE_CODE_SIZE 16
566 #define TRAMPOLINE_SIZE \
567 ((Pmode == SImode) \
568 ? TRAMPOLINE_CODE_SIZE \
569 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
570 #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
572 /* Addressing modes, and classification of registers for them. */
574 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
575 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
576 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
578 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
579 and check its validity for a certain class.
580 We have two alternate definitions for each of them.
581 The usual definition accepts all pseudo regs; the other rejects them all.
582 The symbol REG_OK_STRICT causes the latter definition to be used.
584 Most source files want to accept pseudo regs in the hope that
585 they will get allocated to the class that the insn wants them to be in.
586 Some source files that are used after register allocation
587 need to be strict. */
589 #ifndef REG_OK_STRICT
590 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
591 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
592 #else
593 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
594 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
595 #endif
597 #define REG_OK_FOR_INDEX_P(X) 0
599 /* Maximum number of registers that can appear in a valid memory address. */
601 #define MAX_REGS_PER_ADDRESS 1
603 #define CONSTANT_ADDRESS_P(X) \
604 (CONSTANT_P (X) && memory_address_p (SImode, X))
606 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
607 'the start of the function that this code is output in'. */
609 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
610 do { \
611 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
612 asm_fprintf ((FILE), "%U%s", \
613 XSTR (XEXP (DECL_RTL (current_function_decl), \
614 0), 0)); \
615 else \
616 asm_fprintf ((FILE), "%U%s", (NAME)); \
617 } while (0)
619 #define JUMP_TABLES_IN_TEXT_SECTION 0
620 #define CASE_VECTOR_MODE SImode
621 #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
623 /* The load-address macro is used for PC-relative addressing of symbols
624 that bind locally. Don't use it for symbols that should be addressed
625 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
626 currently results in more opportunities for linker relaxation. */
627 #define USE_LOAD_ADDRESS_MACRO(sym) \
628 (!TARGET_EXPLICIT_RELOCS && \
629 ((flag_pic \
630 && ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
631 || ((GET_CODE (sym) == CONST) \
632 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
633 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))) \
634 || riscv_cmodel == CM_MEDANY))
636 /* Define this as 1 if `char' should by default be signed; else as 0. */
637 #define DEFAULT_SIGNED_CHAR 0
639 #define MOVE_MAX UNITS_PER_WORD
640 #define MAX_MOVE_MAX 8
642 /* The SPARC port says:
643 Nonzero if access to memory by bytes is slow and undesirable.
644 For RISC chips, it means that access to memory by bytes is no
645 better than access by words when possible, so grab a whole word
646 and maybe make use of that. */
647 #define SLOW_BYTE_ACCESS 1
649 /* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
650 in the md file instead. */
651 #define SHIFT_COUNT_TRUNCATED 0
653 /* Specify the machine mode that pointers have.
654 After generation of rtl, the compiler makes no further distinction
655 between pointers and any other objects of this machine mode. */
657 #define Pmode word_mode
659 /* Give call MEMs SImode since it is the "most permissive" mode
660 for both 32-bit and 64-bit targets. */
662 #define FUNCTION_MODE SImode
664 /* A C expression for the cost of a branch instruction. A value of 2
665 seems to minimize code size. */
667 #define BRANCH_COST(speed_p, predictable_p) \
668 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
670 /* True if the target optimizes short forward branches around integer
671 arithmetic instructions into predicated operations, e.g., for
672 conditional-move operations. The macro assumes that all branch
673 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
674 support this feature. The macro further assumes that any integer
675 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
676 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
677 counterparts, including C.MV and C.LI) can be in the branch shadow. */
679 #define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7)
681 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
683 /* Control the assembler format that we output. */
685 /* Output to assembler file text saying following lines
686 may contain character constants, extra white space, comments, etc. */
688 #ifndef ASM_APP_ON
689 #define ASM_APP_ON " #APP\n"
690 #endif
692 /* Output to assembler file text saying following lines
693 no longer contain unusual constructs. */
695 #ifndef ASM_APP_OFF
696 #define ASM_APP_OFF " #NO_APP\n"
697 #endif
699 #define REGISTER_NAMES \
700 { "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
701 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
702 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
703 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
704 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
705 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
706 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
707 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
708 "arg", "frame", }
710 #define ADDITIONAL_REGISTER_NAMES \
712 { "x0", 0 + GP_REG_FIRST }, \
713 { "x1", 1 + GP_REG_FIRST }, \
714 { "x2", 2 + GP_REG_FIRST }, \
715 { "x3", 3 + GP_REG_FIRST }, \
716 { "x4", 4 + GP_REG_FIRST }, \
717 { "x5", 5 + GP_REG_FIRST }, \
718 { "x6", 6 + GP_REG_FIRST }, \
719 { "x7", 7 + GP_REG_FIRST }, \
720 { "x8", 8 + GP_REG_FIRST }, \
721 { "x9", 9 + GP_REG_FIRST }, \
722 { "x10", 10 + GP_REG_FIRST }, \
723 { "x11", 11 + GP_REG_FIRST }, \
724 { "x12", 12 + GP_REG_FIRST }, \
725 { "x13", 13 + GP_REG_FIRST }, \
726 { "x14", 14 + GP_REG_FIRST }, \
727 { "x15", 15 + GP_REG_FIRST }, \
728 { "x16", 16 + GP_REG_FIRST }, \
729 { "x17", 17 + GP_REG_FIRST }, \
730 { "x18", 18 + GP_REG_FIRST }, \
731 { "x19", 19 + GP_REG_FIRST }, \
732 { "x20", 20 + GP_REG_FIRST }, \
733 { "x21", 21 + GP_REG_FIRST }, \
734 { "x22", 22 + GP_REG_FIRST }, \
735 { "x23", 23 + GP_REG_FIRST }, \
736 { "x24", 24 + GP_REG_FIRST }, \
737 { "x25", 25 + GP_REG_FIRST }, \
738 { "x26", 26 + GP_REG_FIRST }, \
739 { "x27", 27 + GP_REG_FIRST }, \
740 { "x28", 28 + GP_REG_FIRST }, \
741 { "x29", 29 + GP_REG_FIRST }, \
742 { "x30", 30 + GP_REG_FIRST }, \
743 { "x31", 31 + GP_REG_FIRST }, \
744 { "f0", 0 + FP_REG_FIRST }, \
745 { "f1", 1 + FP_REG_FIRST }, \
746 { "f2", 2 + FP_REG_FIRST }, \
747 { "f3", 3 + FP_REG_FIRST }, \
748 { "f4", 4 + FP_REG_FIRST }, \
749 { "f5", 5 + FP_REG_FIRST }, \
750 { "f6", 6 + FP_REG_FIRST }, \
751 { "f7", 7 + FP_REG_FIRST }, \
752 { "f8", 8 + FP_REG_FIRST }, \
753 { "f9", 9 + FP_REG_FIRST }, \
754 { "f10", 10 + FP_REG_FIRST }, \
755 { "f11", 11 + FP_REG_FIRST }, \
756 { "f12", 12 + FP_REG_FIRST }, \
757 { "f13", 13 + FP_REG_FIRST }, \
758 { "f14", 14 + FP_REG_FIRST }, \
759 { "f15", 15 + FP_REG_FIRST }, \
760 { "f16", 16 + FP_REG_FIRST }, \
761 { "f17", 17 + FP_REG_FIRST }, \
762 { "f18", 18 + FP_REG_FIRST }, \
763 { "f19", 19 + FP_REG_FIRST }, \
764 { "f20", 20 + FP_REG_FIRST }, \
765 { "f21", 21 + FP_REG_FIRST }, \
766 { "f22", 22 + FP_REG_FIRST }, \
767 { "f23", 23 + FP_REG_FIRST }, \
768 { "f24", 24 + FP_REG_FIRST }, \
769 { "f25", 25 + FP_REG_FIRST }, \
770 { "f26", 26 + FP_REG_FIRST }, \
771 { "f27", 27 + FP_REG_FIRST }, \
772 { "f28", 28 + FP_REG_FIRST }, \
773 { "f29", 29 + FP_REG_FIRST }, \
774 { "f30", 30 + FP_REG_FIRST }, \
775 { "f31", 31 + FP_REG_FIRST }, \
778 /* Globalizing directive for a label. */
779 #define GLOBAL_ASM_OP "\t.globl\t"
781 /* This is how to store into the string LABEL
782 the symbol_ref name of an internal numbered label where
783 PREFIX is the class of label and NUM is the number within the class.
784 This is suitable for output with `assemble_name'. */
786 #undef ASM_GENERATE_INTERNAL_LABEL
787 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
788 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
790 /* This is how to output an element of a case-vector that is absolute. */
792 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
793 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
795 /* This is how to output an element of a PIC case-vector. */
797 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
798 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
799 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
801 /* This is how to output an assembler line
802 that says to advance the location counter
803 to a multiple of 2**LOG bytes. */
805 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
806 fprintf (STREAM, "\t.align\t%d\n", (LOG))
808 /* Define the strings to put out for each section in the object file. */
809 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
810 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
811 #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
812 #define BSS_SECTION_ASM_OP "\t.bss"
813 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
814 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
816 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
817 do \
819 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
820 reg_names[STACK_POINTER_REGNUM], \
821 reg_names[STACK_POINTER_REGNUM], \
822 TARGET_64BIT ? "sd" : "sw", \
823 reg_names[REGNO], \
824 reg_names[STACK_POINTER_REGNUM]); \
826 while (0)
828 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
829 do \
831 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
832 TARGET_64BIT ? "ld" : "lw", \
833 reg_names[REGNO], \
834 reg_names[STACK_POINTER_REGNUM], \
835 reg_names[STACK_POINTER_REGNUM], \
836 reg_names[STACK_POINTER_REGNUM]); \
838 while (0)
840 #define ASM_COMMENT_START "#"
842 #undef SIZE_TYPE
843 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
845 #undef PTRDIFF_TYPE
846 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
848 /* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
850 #define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
852 /* The maximum number of bytes that can be copied by a straight-line
853 cpymemsi implementation. */
855 #define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
857 /* If a memory-to-memory move would take MOVE_RATIO or more simple
858 move-instruction pairs, we will do a cpymem or libcall instead.
859 Do not use move_by_pieces at all when strict alignment is not
860 in effect but the target has slow unaligned accesses; in this
861 case, cpymem or libcall is more efficient. */
863 #define MOVE_RATIO(speed) \
864 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
865 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
866 CLEAR_RATIO (speed) / 2)
868 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
869 of the length of a memset call, but use the default otherwise. */
871 #define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
873 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
874 optimizing for size adjust the ratio to account for the overhead of
875 loading the constant and replicating it across the word. */
877 #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
879 #ifndef USED_FOR_TARGET
880 extern const enum reg_class riscv_regno_to_class[];
881 extern bool riscv_slow_unaligned_access_p;
882 extern unsigned riscv_stack_boundary;
883 #endif
885 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
886 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
888 #define XLEN_SPEC \
889 "%{march=rv32*:32}" \
890 "%{march=rv64*:64}" \
892 #define ABI_SPEC \
893 "%{mabi=ilp32:ilp32}" \
894 "%{mabi=ilp32e:ilp32e}" \
895 "%{mabi=ilp32f:ilp32f}" \
896 "%{mabi=ilp32d:ilp32d}" \
897 "%{mabi=lp64:lp64}" \
898 "%{mabi=lp64f:lp64f}" \
899 "%{mabi=lp64d:lp64d}" \
901 /* ISA constants needed for code generation. */
902 #define OPCODE_LW 0x2003
903 #define OPCODE_LD 0x3003
904 #define OPCODE_AUIPC 0x17
905 #define OPCODE_JALR 0x67
906 #define OPCODE_LUI 0x37
907 #define OPCODE_ADDI 0x13
908 #define SHIFT_RD 7
909 #define SHIFT_RS1 15
910 #define SHIFT_IMM 20
911 #define IMM_BITS 12
912 #define C_SxSP_BITS 6
914 #define IMM_REACH (1LL << IMM_BITS)
915 #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
916 #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
918 #define SWSP_REACH (4LL << C_SxSP_BITS)
919 #define SDSP_REACH (8LL << C_SxSP_BITS)
921 #endif /* ! GCC_RISCV_H */