1 /* Definition of RISC-V target for GNU compiler.
2 Copyright (C) 2011-2017 Free Software Foundation, Inc.
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "config/riscv/riscv-opts.h"
27 /* Target CPU builtins. */
28 #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
30 /* Default target_flags if no switches are specified */
32 #ifndef TARGET_DEFAULT
33 #define TARGET_DEFAULT 0
36 #ifndef RISCV_TUNE_STRING_DEFAULT
37 #define RISCV_TUNE_STRING_DEFAULT "rocket"
40 /* Support for a compile-time default CPU, et cetera. The rules are:
41 --with-arch is ignored if -march is specified.
42 --with-abi is ignored if -mabi is specified.
43 --with-tune is ignored if -mtune is specified. */
44 #define OPTION_DEFAULT_SPECS \
45 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
46 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
47 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
51 /* Make this compile time constant for libgcc2 */
52 #define TARGET_64BIT (__riscv_xlen == 64)
53 #endif /* IN_LIBGCC2 */
57 %(subtarget_asm_debugging_spec) \
58 %{" FPIE_OR_FPIC_SPEC ":-fpic} \
61 %(subtarget_asm_spec)"
63 #define TARGET_DEFAULT_CMODEL CM_MEDLOW
65 #define LOCAL_LABEL_PREFIX "."
66 #define USER_LABEL_PREFIX ""
68 /* Offsets recorded in opcodes are a multiple of this alignment factor.
69 The default for this in 64-bit mode is 8, which causes problems with
70 SFmode register saves. */
71 #define DWARF_CIE_DATA_ALIGNMENT -4
73 /* The mapping from gcc register number to DWARF 2 CFA column number. */
74 #define DWARF_FRAME_REGNUM(REGNO) \
75 (GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM)
77 /* The DWARF 2 CFA column which tracks the return address. */
78 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
79 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
81 /* Describe how we implement __builtin_eh_return. */
82 #define EH_RETURN_DATA_REGNO(N) \
83 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
85 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
87 /* Target machine storage layout */
89 #define BITS_BIG_ENDIAN 0
90 #define BYTES_BIG_ENDIAN 0
91 #define WORDS_BIG_ENDIAN 0
93 #define MAX_BITS_PER_WORD 64
95 /* Width of a word, in units (bytes). */
96 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
98 #define MIN_UNITS_PER_WORD 4
101 /* The `Q' extension is not yet supported. */
102 #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
104 /* The largest type that can be passed in floating-point registers. */
105 #define UNITS_PER_FP_ARG \
106 (riscv_abi == ABI_ILP32 || riscv_abi == ABI_LP64 ? 0 : \
107 riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F ? 4 : 8) \
109 /* Set the sizes of the core types. */
110 #define SHORT_TYPE_SIZE 16
111 #define INT_TYPE_SIZE 32
112 #define LONG_LONG_TYPE_SIZE 64
113 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
114 #define LONG_TYPE_SIZE POINTER_SIZE
116 #define FLOAT_TYPE_SIZE 32
117 #define DOUBLE_TYPE_SIZE 64
118 #define LONG_DOUBLE_TYPE_SIZE 128
120 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
121 #define PARM_BOUNDARY BITS_PER_WORD
123 /* Allocation boundary (in *bits*) for the code of a function. */
124 #define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
126 /* There is no point aligning anything to a rounder boundary than this. */
127 #define BIGGEST_ALIGNMENT 128
129 /* The user-level ISA permits unaligned accesses, but they are not required
130 of the privileged architecture. */
131 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
133 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) riscv_slow_unaligned_access
135 /* Define this if you wish to imitate the way many other C compilers
136 handle alignment of bitfields and the structures that contain
139 The behavior is that the type written for a bit-field (`int',
140 `short', or other integer type) imposes an alignment for the
141 entire structure, as if the structure really did contain an
142 ordinary field of that type. In addition, the bit-field is placed
143 within the structure so that it would fit within such a field,
144 not crossing a boundary for it.
146 Thus, on most machines, a bit-field whose type is written as `int'
147 would not cross a four-byte boundary, and would force four-byte
148 alignment for the whole structure. (The alignment used may not
149 be four bytes; it is controlled by the other alignment
152 If the macro is defined, its definition should be a C expression;
153 a nonzero value for the expression enables this behavior. */
155 #define PCC_BITFIELD_TYPE_MATTERS 1
157 /* If defined, a C expression to compute the alignment given to a
158 constant that is being placed in memory. CONSTANT is the constant
159 and ALIGN is the alignment that the object would ordinarily have.
160 The value of this macro is used instead of that alignment to align
163 If this macro is not defined, then ALIGN is used.
165 The typical use of this macro is to increase alignment for string
166 constants to be word aligned so that `strcpy' calls that copy
167 constants can be done inline. */
169 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
170 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
171 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
173 /* If defined, a C expression to compute the alignment for a static
174 variable. TYPE is the data type, and ALIGN is the alignment that
175 the object would ordinarily have. The value of this macro is used
176 instead of that alignment to align the object.
178 If this macro is not defined, then ALIGN is used.
180 One use of this macro is to increase alignment of medium-size
181 data to make it all fit in fewer cache lines. Another is to
182 cause character arrays to be word-aligned so that `strcpy' calls
183 that copy constants to character arrays can be done inline. */
185 #define DATA_ALIGNMENT(TYPE, ALIGN) \
186 ((((ALIGN) < BITS_PER_WORD) \
187 && (TREE_CODE (TYPE) == ARRAY_TYPE \
188 || TREE_CODE (TYPE) == UNION_TYPE \
189 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
191 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
192 character arrays to be word-aligned so that `strcpy' calls that copy
193 constants to character arrays can be done inline, and 'strcmp' can be
194 optimised to use word loads. */
195 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
196 DATA_ALIGNMENT (TYPE, ALIGN)
198 /* Define if operations between registers always perform the operation
199 on the full register even if a narrower mode is specified. */
200 #define WORD_REGISTER_OPERATIONS 1
202 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
203 moves. All other references are zero extended. */
204 #define LOAD_EXTEND_OP(MODE) \
205 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
207 /* Define this macro if it is advisable to hold scalars in registers
208 in a wider mode than that declared by the program. In such cases,
209 the value is constrained to be within the bounds of the declared
210 type, but kept valid in the wider mode. The signedness of the
211 extension may differ from that of the type. */
213 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
214 if (GET_MODE_CLASS (MODE) == MODE_INT \
215 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
217 if ((MODE) == SImode) \
219 (MODE) = word_mode; \
222 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
223 Extensions of pointers to word_mode must be signed. */
224 #define POINTERS_EXTEND_UNSIGNED false
226 /* When floating-point registers are wider than integer ones, moves between
227 them must go through memory. */
228 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
229 (GET_MODE_SIZE (MODE) > UNITS_PER_WORD \
230 && ((CLASS1) == FP_REGS) != ((CLASS2) == FP_REGS))
232 /* Define if loading short immediate values into registers sign extends. */
233 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
235 /* Standard register usage. */
237 /* Number of hardware registers. We have:
239 - 32 integer registers
240 - 32 floating point registers
243 - FRAME_POINTER_REGNUM */
245 #define FIRST_PSEUDO_REGISTER 66
247 /* x0, sp, gp, and tp are fixed. */
249 #define FIXED_REGISTERS \
250 { /* General registers. */ \
251 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
252 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
253 /* Floating-point registers. */ \
254 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
255 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
260 /* a0-a7, t0-a6, fa0-fa7, and ft0-ft11 are volatile across calls.
261 The call RTLs themselves clobber ra. */
263 #define CALL_USED_REGISTERS \
264 { /* General registers. */ \
265 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
266 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
267 /* Floating-point registers. */ \
268 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
269 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
274 /* Internal macros to classify an ISA register's type. */
276 #define GP_REG_FIRST 0
277 #define GP_REG_LAST 31
278 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
280 #define FP_REG_FIRST 32
281 #define FP_REG_LAST 63
282 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
284 /* The DWARF 2 CFA column which tracks the return address from a
285 signal handler context. This means that to maintain backwards
286 compatibility, no hard register can be assigned this column if it
287 would need to be handled by the DWARF unwinder. */
288 #define DWARF_ALT_FRAME_RETURN_COLUMN 64
290 #define GP_REG_P(REGNO) \
291 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
292 #define FP_REG_P(REGNO) \
293 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
295 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
297 #define HARD_REGNO_NREGS(REGNO, MODE) riscv_hard_regno_nregs (REGNO, MODE)
299 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
300 riscv_hard_regno_mode_ok_p (REGNO, MODE)
302 /* Don't allow floating-point modes to be tied, since type punning of
303 single-precision and double-precision is implementation defined. */
304 #define MODES_TIEABLE_P(MODE1, MODE2) \
305 ((MODE1) == (MODE2) \
306 || !(GET_MODE_CLASS (MODE1) == MODE_FLOAT \
307 && GET_MODE_CLASS (MODE2) == MODE_FLOAT))
309 /* Use s0 as the frame pointer if it is so requested. */
310 #define HARD_FRAME_POINTER_REGNUM 8
311 #define STACK_POINTER_REGNUM 2
312 #define THREAD_POINTER_REGNUM 4
314 /* These two registers don't really exist: they get eliminated to either
315 the stack or hard frame pointer. */
316 #define ARG_POINTER_REGNUM 64
317 #define FRAME_POINTER_REGNUM 65
319 /* Register in which static-chain is passed to a function. */
320 #define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
322 /* Registers used as temporaries in prologue/epilogue code.
324 The prologue registers mustn't conflict with any
325 incoming arguments, the static chain pointer, or the frame pointer.
326 The epilogue temporary mustn't conflict with the return registers,
327 the frame pointer, the EH stack adjustment, or the EH data registers. */
329 #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST + 1)
330 #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
332 #define MCOUNT_NAME "_mcount"
334 #define NO_PROFILE_COUNTERS 1
336 /* Emit rtl for profiling. Output assembler code to FILE
337 to call "_mcount" for profiling a function entry. */
338 #define PROFILE_HOOK(LABEL) \
341 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
342 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
343 emit_library_call (fun, LCT_NORMAL, VOIDmode, 1, ra, Pmode); \
346 /* All the work done in PROFILE_HOOK, but still required. */
347 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
349 /* Define this macro if it is as good or better to call a constant
350 function address than to call an address kept in a register. */
351 #define NO_FUNCTION_CSE 1
353 /* Define the classes of registers for register constraints in the
354 machine description. Also define ranges of constants.
356 One of the classes must always be named ALL_REGS and include all hard regs.
357 If there is more than one class, another class must be named NO_REGS
358 and contain no registers.
360 The name GENERAL_REGS must be the name of a class (or an alias for
361 another name such as ALL_REGS). This is the class of registers
362 that is allowed by "g" or "r" in a register constraint.
363 Also, registers outside this class are allocated only when
364 instructions express preferences for them.
366 The classes must be numbered in nondecreasing order; that is,
367 a larger-numbered class must never be contained completely
368 in a smaller-numbered class.
370 For any two classes, it is very desirable that there be another
371 class that represents their union. */
375 NO_REGS
, /* no registers in set */
376 SIBCALL_REGS
, /* registers used by indirect sibcalls */
377 JALR_REGS
, /* registers used by indirect calls */
378 GR_REGS
, /* integer registers */
379 FP_REGS
, /* floating-point registers */
380 FRAME_REGS
, /* arg pointer and frame pointer */
381 ALL_REGS
, /* all registers */
382 LIM_REG_CLASSES
/* max value + 1 */
385 #define N_REG_CLASSES (int) LIM_REG_CLASSES
387 #define GENERAL_REGS GR_REGS
389 /* An initializer containing the names of the register classes as C
390 string constants. These names are used in writing some of the
393 #define REG_CLASS_NAMES \
404 /* An initializer containing the contents of the register classes,
405 as integers which are bit masks. The Nth integer specifies the
406 contents of class N. The way the integer MASK is interpreted is
407 that register R is in the class if `MASK & (1 << R)' is 1.
409 When the machine has more than 32 registers, an integer does not
410 suffice. Then the integers are replaced by sub-initializers,
411 braced groupings containing several integers. Each
412 sub-initializer must be suitable as an initializer for the type
413 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
415 #define REG_CLASS_CONTENTS \
417 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
418 { 0xf00000c0, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
419 { 0xffffffc0, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
420 { 0xffffffff, 0x00000000, 0x00000000 }, /* GR_REGS */ \
421 { 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \
422 { 0x00000000, 0x00000000, 0x00000003 }, /* FRAME_REGS */ \
423 { 0xffffffff, 0xffffffff, 0x00000003 } /* ALL_REGS */ \
426 /* A C expression whose value is a register class containing hard
427 register REGNO. In general there is more that one such class;
428 choose a class which is "minimal", meaning that no smaller class
429 also contains the register. */
431 #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
433 /* A macro whose definition is the name of the class to which a
434 valid base register must belong. A base register is one used in
435 an address which is the register value plus a displacement. */
437 #define BASE_REG_CLASS GR_REGS
439 /* A macro whose definition is the name of the class to which a
440 valid index register must belong. An index register is one used
441 in an address where its value is either multiplied by a scale
442 factor or added to another register (as well as added to a
445 #define INDEX_REG_CLASS NO_REGS
447 /* We generally want to put call-clobbered registers ahead of
448 call-saved ones. (IRA expects this.) */
450 #define REG_ALLOC_ORDER \
452 /* Call-clobbered GPRs. */ \
453 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
454 /* Call-saved GPRs. */ \
455 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
456 /* GPRs that can never be exposed to the register allocator. */ \
458 /* Call-clobbered FPRs. */ \
459 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
461 /* Call-saved FPRs. */ \
462 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
463 /* None of the remaining classes have defined call-saved \
468 /* True if VALUE is a signed 12-bit number. */
470 #define SMALL_OPERAND(VALUE) \
471 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
473 /* True if VALUE can be loaded into a register using LUI. */
475 #define LUI_OPERAND(VALUE) \
476 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
477 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
479 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
480 reg_classes_intersect_p (FP_REGS, CLASS)
482 /* Stack layout; function entry, exit and calling. */
484 #define STACK_GROWS_DOWNWARD 1
486 #define FRAME_GROWS_DOWNWARD 1
488 #define STARTING_FRAME_OFFSET 0
490 #define RETURN_ADDR_RTX riscv_return_addr
492 #define ELIMINABLE_REGS \
493 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
494 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
495 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
496 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
498 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
499 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
501 /* Allocate stack space for arguments at the beginning of each function. */
502 #define ACCUMULATE_OUTGOING_ARGS 1
504 /* The argument pointer always points to the first argument. */
505 #define FIRST_PARM_OFFSET(FNDECL) 0
507 #define REG_PARM_STACK_SPACE(FNDECL) 0
509 /* Define this if it is the responsibility of the caller to
510 allocate the area reserved for arguments passed in registers.
511 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
512 of this macro is to determine whether the space is included in
513 `crtl->outgoing_args_size'. */
514 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
516 #define STACK_BOUNDARY 128
518 /* Symbolic macros for the registers used to return integer and floating
521 #define GP_RETURN GP_ARG_FIRST
522 #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
524 #define MAX_ARGS_IN_REGISTERS 8
526 /* Symbolic macros for the first/last argument registers. */
528 #define GP_ARG_FIRST (GP_REG_FIRST + 10)
529 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
530 #define GP_TEMP_FIRST (GP_REG_FIRST + 5)
531 #define FP_ARG_FIRST (FP_REG_FIRST + 10)
532 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
534 #define CALLEE_SAVED_REG_NUMBER(REGNO) \
535 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
536 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
538 #define LIBCALL_VALUE(MODE) \
539 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
541 #define FUNCTION_VALUE(VALTYPE, FUNC) \
542 riscv_function_value (VALTYPE, FUNC, VOIDmode)
544 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
546 /* 1 if N is a possible register number for function argument passing.
547 We have no FP argument registers when soft-float. When FP registers
548 are 32 bits, we can't directly reference the odd numbered ones. */
550 /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
551 #define FUNCTION_ARG_REGNO_P(N) \
552 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
553 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
556 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
557 unsigned int num_gprs
;
559 /* Number of floating-point registers used so far, likewise. */
560 unsigned int num_fprs
;
563 /* Initialize a variable CUM of type CUMULATIVE_ARGS
564 for a call to a function whose data type is FNTYPE.
565 For a library call, FNTYPE is 0. */
567 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
568 memset (&(CUM), 0, sizeof (CUM))
570 #define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_ADDR_REGNUM)
572 /* ABI requires 16-byte alignment, even on RV32. */
573 #define RISCV_STACK_ALIGN(LOC) (((LOC) + 15) & -16)
575 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
576 the stack pointer does not matter. The value is tested only in
577 functions that have frame pointers.
578 No definition is equivalent to always zero. */
580 #define EXIT_IGNORE_STACK 1
583 /* Trampolines are a block of code followed by two pointers. */
585 #define TRAMPOLINE_CODE_SIZE 16
586 #define TRAMPOLINE_SIZE \
588 ? TRAMPOLINE_CODE_SIZE \
589 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
590 #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
592 /* Addressing modes, and classification of registers for them. */
594 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
595 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
596 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
598 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
599 and check its validity for a certain class.
600 We have two alternate definitions for each of them.
601 The usual definition accepts all pseudo regs; the other rejects them all.
602 The symbol REG_OK_STRICT causes the latter definition to be used.
604 Most source files want to accept pseudo regs in the hope that
605 they will get allocated to the class that the insn wants them to be in.
606 Some source files that are used after register allocation
607 need to be strict. */
609 #ifndef REG_OK_STRICT
610 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
611 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
613 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
614 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
617 #define REG_OK_FOR_INDEX_P(X) 0
619 /* Maximum number of registers that can appear in a valid memory address. */
621 #define MAX_REGS_PER_ADDRESS 1
623 #define CONSTANT_ADDRESS_P(X) \
624 (CONSTANT_P (X) && memory_address_p (SImode, X))
626 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
627 'the start of the function that this code is output in'. */
629 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
630 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
631 asm_fprintf ((FILE), "%U%s", \
632 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
634 asm_fprintf ((FILE), "%U%s", (NAME))
636 #define JUMP_TABLES_IN_TEXT_SECTION 0
637 #define CASE_VECTOR_MODE SImode
638 #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
640 /* The load-address macro is used for PC-relative addressing of symbols
641 that bind locally. Don't use it for symbols that should be addressed
642 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
643 currently results in more opportunities for linker relaxation. */
644 #define USE_LOAD_ADDRESS_MACRO(sym) \
645 (!TARGET_EXPLICIT_RELOCS && \
647 && ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
648 || ((GET_CODE (sym) == CONST) \
649 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
650 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))) \
651 || riscv_cmodel == CM_MEDANY))
653 /* Define this as 1 if `char' should by default be signed; else as 0. */
654 #define DEFAULT_SIGNED_CHAR 0
656 #define MOVE_MAX UNITS_PER_WORD
657 #define MAX_MOVE_MAX 8
659 #define SLOW_BYTE_ACCESS 0
661 #define SHIFT_COUNT_TRUNCATED 1
663 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
665 /* Specify the machine mode that pointers have.
666 After generation of rtl, the compiler makes no further distinction
667 between pointers and any other objects of this machine mode. */
669 #define Pmode word_mode
671 /* Give call MEMs SImode since it is the "most permissive" mode
672 for both 32-bit and 64-bit targets. */
674 #define FUNCTION_MODE SImode
676 /* A C expression for the cost of a branch instruction. A value of 2
677 seems to minimize code size. */
679 #define BRANCH_COST(speed_p, predictable_p) \
680 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
682 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
684 /* Control the assembler format that we output. */
686 /* Output to assembler file text saying following lines
687 may contain character constants, extra white space, comments, etc. */
690 #define ASM_APP_ON " #APP\n"
693 /* Output to assembler file text saying following lines
694 no longer contain unusual constructs. */
697 #define ASM_APP_OFF " #NO_APP\n"
700 #define REGISTER_NAMES \
701 { "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
702 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
703 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
704 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
705 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
706 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
707 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
708 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
711 #define ADDITIONAL_REGISTER_NAMES \
713 { "x0", 0 + GP_REG_FIRST }, \
714 { "x1", 1 + GP_REG_FIRST }, \
715 { "x2", 2 + GP_REG_FIRST }, \
716 { "x3", 3 + GP_REG_FIRST }, \
717 { "x4", 4 + GP_REG_FIRST }, \
718 { "x5", 5 + GP_REG_FIRST }, \
719 { "x6", 6 + GP_REG_FIRST }, \
720 { "x7", 7 + GP_REG_FIRST }, \
721 { "x8", 8 + GP_REG_FIRST }, \
722 { "x9", 9 + GP_REG_FIRST }, \
723 { "x10", 10 + GP_REG_FIRST }, \
724 { "x11", 11 + GP_REG_FIRST }, \
725 { "x12", 12 + GP_REG_FIRST }, \
726 { "x13", 13 + GP_REG_FIRST }, \
727 { "x14", 14 + GP_REG_FIRST }, \
728 { "x15", 15 + GP_REG_FIRST }, \
729 { "x16", 16 + GP_REG_FIRST }, \
730 { "x17", 17 + GP_REG_FIRST }, \
731 { "x18", 18 + GP_REG_FIRST }, \
732 { "x19", 19 + GP_REG_FIRST }, \
733 { "x20", 20 + GP_REG_FIRST }, \
734 { "x21", 21 + GP_REG_FIRST }, \
735 { "x22", 22 + GP_REG_FIRST }, \
736 { "x23", 23 + GP_REG_FIRST }, \
737 { "x24", 24 + GP_REG_FIRST }, \
738 { "x25", 25 + GP_REG_FIRST }, \
739 { "x26", 26 + GP_REG_FIRST }, \
740 { "x27", 27 + GP_REG_FIRST }, \
741 { "x28", 28 + GP_REG_FIRST }, \
742 { "x29", 29 + GP_REG_FIRST }, \
743 { "x30", 30 + GP_REG_FIRST }, \
744 { "x31", 31 + GP_REG_FIRST }, \
745 { "f0", 0 + FP_REG_FIRST }, \
746 { "f1", 1 + FP_REG_FIRST }, \
747 { "f2", 2 + FP_REG_FIRST }, \
748 { "f3", 3 + FP_REG_FIRST }, \
749 { "f4", 4 + FP_REG_FIRST }, \
750 { "f5", 5 + FP_REG_FIRST }, \
751 { "f6", 6 + FP_REG_FIRST }, \
752 { "f7", 7 + FP_REG_FIRST }, \
753 { "f8", 8 + FP_REG_FIRST }, \
754 { "f9", 9 + FP_REG_FIRST }, \
755 { "f10", 10 + FP_REG_FIRST }, \
756 { "f11", 11 + FP_REG_FIRST }, \
757 { "f12", 12 + FP_REG_FIRST }, \
758 { "f13", 13 + FP_REG_FIRST }, \
759 { "f14", 14 + FP_REG_FIRST }, \
760 { "f15", 15 + FP_REG_FIRST }, \
761 { "f16", 16 + FP_REG_FIRST }, \
762 { "f17", 17 + FP_REG_FIRST }, \
763 { "f18", 18 + FP_REG_FIRST }, \
764 { "f19", 19 + FP_REG_FIRST }, \
765 { "f20", 20 + FP_REG_FIRST }, \
766 { "f21", 21 + FP_REG_FIRST }, \
767 { "f22", 22 + FP_REG_FIRST }, \
768 { "f23", 23 + FP_REG_FIRST }, \
769 { "f24", 24 + FP_REG_FIRST }, \
770 { "f25", 25 + FP_REG_FIRST }, \
771 { "f26", 26 + FP_REG_FIRST }, \
772 { "f27", 27 + FP_REG_FIRST }, \
773 { "f28", 28 + FP_REG_FIRST }, \
774 { "f29", 29 + FP_REG_FIRST }, \
775 { "f30", 30 + FP_REG_FIRST }, \
776 { "f31", 31 + FP_REG_FIRST }, \
779 /* Globalizing directive for a label. */
780 #define GLOBAL_ASM_OP "\t.globl\t"
782 /* This is how to store into the string LABEL
783 the symbol_ref name of an internal numbered label where
784 PREFIX is the class of label and NUM is the number within the class.
785 This is suitable for output with `assemble_name'. */
787 #undef ASM_GENERATE_INTERNAL_LABEL
788 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
789 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
791 /* This is how to output an element of a case-vector that is absolute. */
793 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
794 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
796 /* This is how to output an element of a PIC case-vector. */
798 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
799 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
800 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
802 /* This is how to output an assembler line
803 that says to advance the location counter
804 to a multiple of 2**LOG bytes. */
806 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
807 fprintf (STREAM, "\t.align\t%d\n", (LOG))
809 /* Define the strings to put out for each section in the object file. */
810 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
811 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
812 #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
813 #define BSS_SECTION_ASM_OP "\t.bss"
814 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
815 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
817 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
820 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
821 reg_names[STACK_POINTER_REGNUM], \
822 reg_names[STACK_POINTER_REGNUM], \
823 TARGET_64BIT ? "sd" : "sw", \
825 reg_names[STACK_POINTER_REGNUM]); \
829 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
832 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
833 TARGET_64BIT ? "ld" : "lw", \
835 reg_names[STACK_POINTER_REGNUM], \
836 reg_names[STACK_POINTER_REGNUM], \
837 reg_names[STACK_POINTER_REGNUM]); \
841 #define ASM_COMMENT_START "#"
844 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
847 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
849 /* If a memory-to-memory move would take MOVE_RATIO or more simple
850 move-instruction pairs, we will do a movmem or libcall instead. */
852 #define MOVE_RATIO(speed) (CLEAR_RATIO (speed) / 2)
854 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
855 of the length of a memset call, but use the default otherwise. */
857 #define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
859 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
860 optimizing for size adjust the ratio to account for the overhead of
861 loading the constant and replicating it across the word. */
863 #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
865 #ifndef USED_FOR_TARGET
866 extern const enum reg_class riscv_regno_to_class
[];
867 extern bool riscv_hard_regno_mode_ok
[][FIRST_PSEUDO_REGISTER
];
868 extern bool riscv_slow_unaligned_access
;
871 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
872 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
875 "%{march=rv32*:32}" \
876 "%{march=rv64*:64}" \
879 "%{mabi=ilp32:ilp32}" \
880 "%{mabi=ilp32f:ilp32f}" \
881 "%{mabi=ilp32d:ilp32d}" \
882 "%{mabi=lp64:lp64}" \
883 "%{mabi=lp64f:lp64f}" \
884 "%{mabi=lp64d:lp64d}" \
886 #define STARTFILE_PREFIX_SPEC \
887 "/lib" XLEN_SPEC "/" ABI_SPEC "/ " \
888 "/usr/lib" XLEN_SPEC "/" ABI_SPEC "/ " \
892 /* ISA constants needed for code generation. */
893 #define OPCODE_LW 0x2003
894 #define OPCODE_LD 0x3003
895 #define OPCODE_AUIPC 0x17
896 #define OPCODE_JALR 0x67
897 #define OPCODE_LUI 0x37
898 #define OPCODE_ADDI 0x13
904 #define IMM_REACH (1LL << IMM_BITS)
905 #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
906 #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
908 #endif /* ! GCC_RISCV_H */