PR libstdc++/87308 adjust regex used in std::any pretty printer
[official-gcc.git] / gcc / ada / checks.adb
blob89f26fa0770bb313ea4585758cfee39633aed411
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Casing; use Casing;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Eval_Fat; use Eval_Fat;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Ch2; use Exp_Ch2;
34 with Exp_Ch4; use Exp_Ch4;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Expander; use Expander;
38 with Freeze; use Freeze;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Output; use Output;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Eval; use Sem_Eval;
53 with Sem_Res; use Sem_Res;
54 with Sem_Util; use Sem_Util;
55 with Sem_Warn; use Sem_Warn;
56 with Sinfo; use Sinfo;
57 with Sinput; use Sinput;
58 with Snames; use Snames;
59 with Sprint; use Sprint;
60 with Stand; use Stand;
61 with Stringt; use Stringt;
62 with Targparm; use Targparm;
63 with Tbuild; use Tbuild;
64 with Ttypes; use Ttypes;
65 with Validsw; use Validsw;
67 package body Checks is
69 -- General note: many of these routines are concerned with generating
70 -- checking code to make sure that constraint error is raised at runtime.
71 -- Clearly this code is only needed if the expander is active, since
72 -- otherwise we will not be generating code or going into the runtime
73 -- execution anyway.
75 -- We therefore disconnect most of these checks if the expander is
76 -- inactive. This has the additional benefit that we do not need to
77 -- worry about the tree being messed up by previous errors (since errors
78 -- turn off expansion anyway).
80 -- There are a few exceptions to the above rule. For instance routines
81 -- such as Apply_Scalar_Range_Check that do not insert any code can be
82 -- safely called even when the Expander is inactive (but Errors_Detected
83 -- is 0). The benefit of executing this code when expansion is off, is
84 -- the ability to emit constraint error warning for static expressions
85 -- even when we are not generating code.
87 -- The above is modified in gnatprove mode to ensure that proper check
88 -- flags are always placed, even if expansion is off.
90 -------------------------------------
91 -- Suppression of Redundant Checks --
92 -------------------------------------
94 -- This unit implements a limited circuit for removal of redundant
95 -- checks. The processing is based on a tracing of simple sequential
96 -- flow. For any sequence of statements, we save expressions that are
97 -- marked to be checked, and then if the same expression appears later
98 -- with the same check, then under certain circumstances, the second
99 -- check can be suppressed.
101 -- Basically, we can suppress the check if we know for certain that
102 -- the previous expression has been elaborated (together with its
103 -- check), and we know that the exception frame is the same, and that
104 -- nothing has happened to change the result of the exception.
106 -- Let us examine each of these three conditions in turn to describe
107 -- how we ensure that this condition is met.
109 -- First, we need to know for certain that the previous expression has
110 -- been executed. This is done principally by the mechanism of calling
111 -- Conditional_Statements_Begin at the start of any statement sequence
112 -- and Conditional_Statements_End at the end. The End call causes all
113 -- checks remembered since the Begin call to be discarded. This does
114 -- miss a few cases, notably the case of a nested BEGIN-END block with
115 -- no exception handlers. But the important thing is to be conservative.
116 -- The other protection is that all checks are discarded if a label
117 -- is encountered, since then the assumption of sequential execution
118 -- is violated, and we don't know enough about the flow.
120 -- Second, we need to know that the exception frame is the same. We
121 -- do this by killing all remembered checks when we enter a new frame.
122 -- Again, that's over-conservative, but generally the cases we can help
123 -- with are pretty local anyway (like the body of a loop for example).
125 -- Third, we must be sure to forget any checks which are no longer valid.
126 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
127 -- used to note any changes to local variables. We only attempt to deal
128 -- with checks involving local variables, so we do not need to worry
129 -- about global variables. Second, a call to any non-global procedure
130 -- causes us to abandon all stored checks, since such a all may affect
131 -- the values of any local variables.
133 -- The following define the data structures used to deal with remembering
134 -- checks so that redundant checks can be eliminated as described above.
136 -- Right now, the only expressions that we deal with are of the form of
137 -- simple local objects (either declared locally, or IN parameters) or
138 -- such objects plus/minus a compile time known constant. We can do
139 -- more later on if it seems worthwhile, but this catches many simple
140 -- cases in practice.
142 -- The following record type reflects a single saved check. An entry
143 -- is made in the stack of saved checks if and only if the expression
144 -- has been elaborated with the indicated checks.
146 type Saved_Check is record
147 Killed : Boolean;
148 -- Set True if entry is killed by Kill_Checks
150 Entity : Entity_Id;
151 -- The entity involved in the expression that is checked
153 Offset : Uint;
154 -- A compile time value indicating the result of adding or
155 -- subtracting a compile time value. This value is to be
156 -- added to the value of the Entity. A value of zero is
157 -- used for the case of a simple entity reference.
159 Check_Type : Character;
160 -- This is set to 'R' for a range check (in which case Target_Type
161 -- is set to the target type for the range check) or to 'O' for an
162 -- overflow check (in which case Target_Type is set to Empty).
164 Target_Type : Entity_Id;
165 -- Used only if Do_Range_Check is set. Records the target type for
166 -- the check. We need this, because a check is a duplicate only if
167 -- it has the same target type (or more accurately one with a
168 -- range that is smaller or equal to the stored target type of a
169 -- saved check).
170 end record;
172 -- The following table keeps track of saved checks. Rather than use an
173 -- extensible table, we just use a table of fixed size, and we discard
174 -- any saved checks that do not fit. That's very unlikely to happen and
175 -- this is only an optimization in any case.
177 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
178 -- Array of saved checks
180 Num_Saved_Checks : Nat := 0;
181 -- Number of saved checks
183 -- The following stack keeps track of statement ranges. It is treated
184 -- as a stack. When Conditional_Statements_Begin is called, an entry
185 -- is pushed onto this stack containing the value of Num_Saved_Checks
186 -- at the time of the call. Then when Conditional_Statements_End is
187 -- called, this value is popped off and used to reset Num_Saved_Checks.
189 -- Note: again, this is a fixed length stack with a size that should
190 -- always be fine. If the value of the stack pointer goes above the
191 -- limit, then we just forget all saved checks.
193 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
194 Saved_Checks_TOS : Nat := 0;
196 -----------------------
197 -- Local Subprograms --
198 -----------------------
200 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
201 -- Used to apply arithmetic overflow checks for all cases except operators
202 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
203 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
204 -- signed integer arithmetic operator (but not an if or case expression).
205 -- It is also called for types other than signed integers.
207 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
208 -- Used to apply arithmetic overflow checks for the case where the overflow
209 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
210 -- arithmetic op (which includes the case of if and case expressions). Note
211 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
212 -- we have work to do even if overflow checking is suppressed.
214 procedure Apply_Division_Check
215 (N : Node_Id;
216 Rlo : Uint;
217 Rhi : Uint;
218 ROK : Boolean);
219 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
220 -- division checks as required if the Do_Division_Check flag is set.
221 -- Rlo and Rhi give the possible range of the right operand, these values
222 -- can be referenced and trusted only if ROK is set True.
224 procedure Apply_Float_Conversion_Check
225 (Ck_Node : Node_Id;
226 Target_Typ : Entity_Id);
227 -- The checks on a conversion from a floating-point type to an integer
228 -- type are delicate. They have to be performed before conversion, they
229 -- have to raise an exception when the operand is a NaN, and rounding must
230 -- be taken into account to determine the safe bounds of the operand.
232 procedure Apply_Selected_Length_Checks
233 (Ck_Node : Node_Id;
234 Target_Typ : Entity_Id;
235 Source_Typ : Entity_Id;
236 Do_Static : Boolean);
237 -- This is the subprogram that does all the work for Apply_Length_Check
238 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
239 -- described for the above routines. The Do_Static flag indicates that
240 -- only a static check is to be done.
242 procedure Apply_Selected_Range_Checks
243 (Ck_Node : Node_Id;
244 Target_Typ : Entity_Id;
245 Source_Typ : Entity_Id;
246 Do_Static : Boolean);
247 -- This is the subprogram that does all the work for Apply_Range_Check.
248 -- Expr, Target_Typ and Source_Typ are as described for the above
249 -- routine. The Do_Static flag indicates that only a static check is
250 -- to be done.
252 type Check_Type is new Check_Id range Access_Check .. Division_Check;
253 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
254 -- This function is used to see if an access or division by zero check is
255 -- needed. The check is to be applied to a single variable appearing in the
256 -- source, and N is the node for the reference. If N is not of this form,
257 -- True is returned with no further processing. If N is of the right form,
258 -- then further processing determines if the given Check is needed.
260 -- The particular circuit is to see if we have the case of a check that is
261 -- not needed because it appears in the right operand of a short circuited
262 -- conditional where the left operand guards the check. For example:
264 -- if Var = 0 or else Q / Var > 12 then
265 -- ...
266 -- end if;
268 -- In this example, the division check is not required. At the same time
269 -- we can issue warnings for suspicious use of non-short-circuited forms,
270 -- such as:
272 -- if Var = 0 or Q / Var > 12 then
273 -- ...
274 -- end if;
276 procedure Find_Check
277 (Expr : Node_Id;
278 Check_Type : Character;
279 Target_Type : Entity_Id;
280 Entry_OK : out Boolean;
281 Check_Num : out Nat;
282 Ent : out Entity_Id;
283 Ofs : out Uint);
284 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
285 -- to see if a check is of the form for optimization, and if so, to see
286 -- if it has already been performed. Expr is the expression to check,
287 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
288 -- Target_Type is the target type for a range check, and Empty for an
289 -- overflow check. If the entry is not of the form for optimization,
290 -- then Entry_OK is set to False, and the remaining out parameters
291 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
292 -- entity and offset from the expression. Check_Num is the number of
293 -- a matching saved entry in Saved_Checks, or zero if no such entry
294 -- is located.
296 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
297 -- If a discriminal is used in constraining a prival, Return reference
298 -- to the discriminal of the protected body (which renames the parameter
299 -- of the enclosing protected operation). This clumsy transformation is
300 -- needed because privals are created too late and their actual subtypes
301 -- are not available when analysing the bodies of the protected operations.
302 -- This function is called whenever the bound is an entity and the scope
303 -- indicates a protected operation. If the bound is an in-parameter of
304 -- a protected operation that is not a prival, the function returns the
305 -- bound itself.
306 -- To be cleaned up???
308 function Guard_Access
309 (Cond : Node_Id;
310 Loc : Source_Ptr;
311 Ck_Node : Node_Id) return Node_Id;
312 -- In the access type case, guard the test with a test to ensure
313 -- that the access value is non-null, since the checks do not
314 -- not apply to null access values.
316 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
317 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
318 -- Constraint_Error node.
320 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
321 -- Returns True if node N is for an arithmetic operation with signed
322 -- integer operands. This includes unary and binary operators, and also
323 -- if and case expression nodes where the dependent expressions are of
324 -- a signed integer type. These are the kinds of nodes for which special
325 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
327 function Range_Or_Validity_Checks_Suppressed
328 (Expr : Node_Id) return Boolean;
329 -- Returns True if either range or validity checks or both are suppressed
330 -- for the type of the given expression, or, if the expression is the name
331 -- of an entity, if these checks are suppressed for the entity.
333 function Selected_Length_Checks
334 (Ck_Node : Node_Id;
335 Target_Typ : Entity_Id;
336 Source_Typ : Entity_Id;
337 Warn_Node : Node_Id) return Check_Result;
338 -- Like Apply_Selected_Length_Checks, except it doesn't modify
339 -- anything, just returns a list of nodes as described in the spec of
340 -- this package for the Range_Check function.
341 -- ??? In fact it does construct the test and insert it into the tree,
342 -- and insert actions in various ways (calling Insert_Action directly
343 -- in particular) so we do not call it in GNATprove mode, contrary to
344 -- Selected_Range_Checks.
346 function Selected_Range_Checks
347 (Ck_Node : Node_Id;
348 Target_Typ : Entity_Id;
349 Source_Typ : Entity_Id;
350 Warn_Node : Node_Id) return Check_Result;
351 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
352 -- just returns a list of nodes as described in the spec of this package
353 -- for the Range_Check function.
355 ------------------------------
356 -- Access_Checks_Suppressed --
357 ------------------------------
359 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
360 begin
361 if Present (E) and then Checks_May_Be_Suppressed (E) then
362 return Is_Check_Suppressed (E, Access_Check);
363 else
364 return Scope_Suppress.Suppress (Access_Check);
365 end if;
366 end Access_Checks_Suppressed;
368 -------------------------------------
369 -- Accessibility_Checks_Suppressed --
370 -------------------------------------
372 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
373 begin
374 if Present (E) and then Checks_May_Be_Suppressed (E) then
375 return Is_Check_Suppressed (E, Accessibility_Check);
376 else
377 return Scope_Suppress.Suppress (Accessibility_Check);
378 end if;
379 end Accessibility_Checks_Suppressed;
381 -----------------------------
382 -- Activate_Division_Check --
383 -----------------------------
385 procedure Activate_Division_Check (N : Node_Id) is
386 begin
387 Set_Do_Division_Check (N, True);
388 Possible_Local_Raise (N, Standard_Constraint_Error);
389 end Activate_Division_Check;
391 -----------------------------
392 -- Activate_Overflow_Check --
393 -----------------------------
395 procedure Activate_Overflow_Check (N : Node_Id) is
396 Typ : constant Entity_Id := Etype (N);
398 begin
399 -- Floating-point case. If Etype is not set (this can happen when we
400 -- activate a check on a node that has not yet been analyzed), then
401 -- we assume we do not have a floating-point type (as per our spec).
403 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
405 -- Ignore call if we have no automatic overflow checks on the target
406 -- and Check_Float_Overflow mode is not set. These are the cases in
407 -- which we expect to generate infinities and NaN's with no check.
409 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
410 return;
412 -- Ignore for unary operations ("+", "-", abs) since these can never
413 -- result in overflow for floating-point cases.
415 elsif Nkind (N) in N_Unary_Op then
416 return;
418 -- Otherwise we will set the flag
420 else
421 null;
422 end if;
424 -- Discrete case
426 else
427 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
428 -- for zero-divide is a divide check, not an overflow check).
430 if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
431 return;
432 end if;
433 end if;
435 -- Fall through for cases where we do set the flag
437 Set_Do_Overflow_Check (N, True);
438 Possible_Local_Raise (N, Standard_Constraint_Error);
439 end Activate_Overflow_Check;
441 --------------------------
442 -- Activate_Range_Check --
443 --------------------------
445 procedure Activate_Range_Check (N : Node_Id) is
446 begin
447 Set_Do_Range_Check (N, True);
448 Possible_Local_Raise (N, Standard_Constraint_Error);
449 end Activate_Range_Check;
451 ---------------------------------
452 -- Alignment_Checks_Suppressed --
453 ---------------------------------
455 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
456 begin
457 if Present (E) and then Checks_May_Be_Suppressed (E) then
458 return Is_Check_Suppressed (E, Alignment_Check);
459 else
460 return Scope_Suppress.Suppress (Alignment_Check);
461 end if;
462 end Alignment_Checks_Suppressed;
464 ----------------------------------
465 -- Allocation_Checks_Suppressed --
466 ----------------------------------
468 -- Note: at the current time there are no calls to this function, because
469 -- the relevant check is in the run-time, so it is not a check that the
470 -- compiler can suppress anyway, but we still have to recognize the check
471 -- name Allocation_Check since it is part of the standard.
473 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
474 begin
475 if Present (E) and then Checks_May_Be_Suppressed (E) then
476 return Is_Check_Suppressed (E, Allocation_Check);
477 else
478 return Scope_Suppress.Suppress (Allocation_Check);
479 end if;
480 end Allocation_Checks_Suppressed;
482 -------------------------
483 -- Append_Range_Checks --
484 -------------------------
486 procedure Append_Range_Checks
487 (Checks : Check_Result;
488 Stmts : List_Id;
489 Suppress_Typ : Entity_Id;
490 Static_Sloc : Source_Ptr;
491 Flag_Node : Node_Id)
493 Checks_On : constant Boolean :=
494 not Index_Checks_Suppressed (Suppress_Typ)
495 or else
496 not Range_Checks_Suppressed (Suppress_Typ);
498 Internal_Flag_Node : constant Node_Id := Flag_Node;
499 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
501 begin
502 -- For now we just return if Checks_On is false, however this should be
503 -- enhanced to check for an always True value in the condition and to
504 -- generate a compilation warning???
506 if not Checks_On then
507 return;
508 end if;
510 for J in 1 .. 2 loop
511 exit when No (Checks (J));
513 if Nkind (Checks (J)) = N_Raise_Constraint_Error
514 and then Present (Condition (Checks (J)))
515 then
516 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
517 Append_To (Stmts, Checks (J));
518 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
519 end if;
521 else
522 Append_To
523 (Stmts,
524 Make_Raise_Constraint_Error (Internal_Static_Sloc,
525 Reason => CE_Range_Check_Failed));
526 end if;
527 end loop;
528 end Append_Range_Checks;
530 ------------------------
531 -- Apply_Access_Check --
532 ------------------------
534 procedure Apply_Access_Check (N : Node_Id) is
535 P : constant Node_Id := Prefix (N);
537 begin
538 -- We do not need checks if we are not generating code (i.e. the
539 -- expander is not active). This is not just an optimization, there
540 -- are cases (e.g. with pragma Debug) where generating the checks
541 -- can cause real trouble).
543 if not Expander_Active then
544 return;
545 end if;
547 -- No check if short circuiting makes check unnecessary
549 if not Check_Needed (P, Access_Check) then
550 return;
551 end if;
553 -- No check if accessing the Offset_To_Top component of a dispatch
554 -- table. They are safe by construction.
556 if Tagged_Type_Expansion
557 and then Present (Etype (P))
558 and then RTU_Loaded (Ada_Tags)
559 and then RTE_Available (RE_Offset_To_Top_Ptr)
560 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
561 then
562 return;
563 end if;
565 -- Otherwise go ahead and install the check
567 Install_Null_Excluding_Check (P);
568 end Apply_Access_Check;
570 -------------------------------
571 -- Apply_Accessibility_Check --
572 -------------------------------
574 procedure Apply_Accessibility_Check
575 (N : Node_Id;
576 Typ : Entity_Id;
577 Insert_Node : Node_Id)
579 Loc : constant Source_Ptr := Sloc (N);
580 Param_Ent : Entity_Id := Param_Entity (N);
581 Param_Level : Node_Id;
582 Type_Level : Node_Id;
584 begin
585 if Ada_Version >= Ada_2012
586 and then not Present (Param_Ent)
587 and then Is_Entity_Name (N)
588 and then Ekind_In (Entity (N), E_Constant, E_Variable)
589 and then Present (Effective_Extra_Accessibility (Entity (N)))
590 then
591 Param_Ent := Entity (N);
592 while Present (Renamed_Object (Param_Ent)) loop
594 -- Renamed_Object must return an Entity_Name here
595 -- because of preceding "Present (E_E_A (...))" test.
597 Param_Ent := Entity (Renamed_Object (Param_Ent));
598 end loop;
599 end if;
601 if Inside_A_Generic then
602 return;
604 -- Only apply the run-time check if the access parameter has an
605 -- associated extra access level parameter and when the level of the
606 -- type is less deep than the level of the access parameter, and
607 -- accessibility checks are not suppressed.
609 elsif Present (Param_Ent)
610 and then Present (Extra_Accessibility (Param_Ent))
611 and then UI_Gt (Object_Access_Level (N),
612 Deepest_Type_Access_Level (Typ))
613 and then not Accessibility_Checks_Suppressed (Param_Ent)
614 and then not Accessibility_Checks_Suppressed (Typ)
615 then
616 Param_Level :=
617 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
619 Type_Level :=
620 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
622 -- Raise Program_Error if the accessibility level of the access
623 -- parameter is deeper than the level of the target access type.
625 Insert_Action (Insert_Node,
626 Make_Raise_Program_Error (Loc,
627 Condition =>
628 Make_Op_Gt (Loc,
629 Left_Opnd => Param_Level,
630 Right_Opnd => Type_Level),
631 Reason => PE_Accessibility_Check_Failed));
633 Analyze_And_Resolve (N);
634 end if;
635 end Apply_Accessibility_Check;
637 --------------------------------
638 -- Apply_Address_Clause_Check --
639 --------------------------------
641 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
642 pragma Assert (Nkind (N) = N_Freeze_Entity);
644 AC : constant Node_Id := Address_Clause (E);
645 Loc : constant Source_Ptr := Sloc (AC);
646 Typ : constant Entity_Id := Etype (E);
648 Expr : Node_Id;
649 -- Address expression (not necessarily the same as Aexp, for example
650 -- when Aexp is a reference to a constant, in which case Expr gets
651 -- reset to reference the value expression of the constant).
653 begin
654 -- See if alignment check needed. Note that we never need a check if the
655 -- maximum alignment is one, since the check will always succeed.
657 -- Note: we do not check for checks suppressed here, since that check
658 -- was done in Sem_Ch13 when the address clause was processed. We are
659 -- only called if checks were not suppressed. The reason for this is
660 -- that we have to delay the call to Apply_Alignment_Check till freeze
661 -- time (so that all types etc are elaborated), but we have to check
662 -- the status of check suppressing at the point of the address clause.
664 if No (AC)
665 or else not Check_Address_Alignment (AC)
666 or else Maximum_Alignment = 1
667 then
668 return;
669 end if;
671 -- Obtain expression from address clause
673 Expr := Address_Value (Expression (AC));
675 -- See if we know that Expr has an acceptable value at compile time. If
676 -- it hasn't or we don't know, we defer issuing the warning until the
677 -- end of the compilation to take into account back end annotations.
679 if Compile_Time_Known_Value (Expr)
680 and then (Known_Alignment (E) or else Known_Alignment (Typ))
681 then
682 declare
683 AL : Uint := Alignment (Typ);
685 begin
686 -- The object alignment might be more restrictive than the type
687 -- alignment.
689 if Known_Alignment (E) then
690 AL := Alignment (E);
691 end if;
693 if Expr_Value (Expr) mod AL = 0 then
694 return;
695 end if;
696 end;
698 -- If the expression has the form X'Address, then we can find out if the
699 -- object X has an alignment that is compatible with the object E. If it
700 -- hasn't or we don't know, we defer issuing the warning until the end
701 -- of the compilation to take into account back end annotations.
703 elsif Nkind (Expr) = N_Attribute_Reference
704 and then Attribute_Name (Expr) = Name_Address
705 and then
706 Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
707 then
708 return;
709 end if;
711 -- Here we do not know if the value is acceptable. Strictly we don't
712 -- have to do anything, since if the alignment is bad, we have an
713 -- erroneous program. However we are allowed to check for erroneous
714 -- conditions and we decide to do this by default if the check is not
715 -- suppressed.
717 -- However, don't do the check if elaboration code is unwanted
719 if Restriction_Active (No_Elaboration_Code) then
720 return;
722 -- Generate a check to raise PE if alignment may be inappropriate
724 else
725 -- If the original expression is a nonstatic constant, use the name
726 -- of the constant itself rather than duplicating its initialization
727 -- expression, which was extracted above.
729 -- Note: Expr is empty if the address-clause is applied to in-mode
730 -- actuals (allowed by 13.1(22)).
732 if not Present (Expr)
733 or else
734 (Is_Entity_Name (Expression (AC))
735 and then Ekind (Entity (Expression (AC))) = E_Constant
736 and then Nkind (Parent (Entity (Expression (AC)))) =
737 N_Object_Declaration)
738 then
739 Expr := New_Copy_Tree (Expression (AC));
740 else
741 Remove_Side_Effects (Expr);
742 end if;
744 if No (Actions (N)) then
745 Set_Actions (N, New_List);
746 end if;
748 Prepend_To (Actions (N),
749 Make_Raise_Program_Error (Loc,
750 Condition =>
751 Make_Op_Ne (Loc,
752 Left_Opnd =>
753 Make_Op_Mod (Loc,
754 Left_Opnd =>
755 Unchecked_Convert_To
756 (RTE (RE_Integer_Address), Expr),
757 Right_Opnd =>
758 Make_Attribute_Reference (Loc,
759 Prefix => New_Occurrence_Of (E, Loc),
760 Attribute_Name => Name_Alignment)),
761 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
762 Reason => PE_Misaligned_Address_Value));
764 Warning_Msg := No_Error_Msg;
765 Analyze (First (Actions (N)), Suppress => All_Checks);
767 -- If the above raise action generated a warning message (for example
768 -- from Warn_On_Non_Local_Exception mode with the active restriction
769 -- No_Exception_Propagation).
771 if Warning_Msg /= No_Error_Msg then
773 -- If the expression has a known at compile time value, then
774 -- once we know the alignment of the type, we can check if the
775 -- exception will be raised or not, and if not, we don't need
776 -- the warning so we will kill the warning later on.
778 if Compile_Time_Known_Value (Expr) then
779 Alignment_Warnings.Append
780 ((E => E, A => Expr_Value (Expr), W => Warning_Msg));
782 -- Add explanation of the warning generated by the check
784 else
785 Error_Msg_N
786 ("\address value may be incompatible with alignment of "
787 & "object?X?", AC);
788 end if;
789 end if;
791 return;
792 end if;
794 exception
796 -- If we have some missing run time component in configurable run time
797 -- mode then just skip the check (it is not required in any case).
799 when RE_Not_Available =>
800 return;
801 end Apply_Address_Clause_Check;
803 -------------------------------------
804 -- Apply_Arithmetic_Overflow_Check --
805 -------------------------------------
807 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
808 begin
809 -- Use old routine in almost all cases (the only case we are treating
810 -- specially is the case of a signed integer arithmetic op with the
811 -- overflow checking mode set to MINIMIZED or ELIMINATED).
813 if Overflow_Check_Mode = Strict
814 or else not Is_Signed_Integer_Arithmetic_Op (N)
815 then
816 Apply_Arithmetic_Overflow_Strict (N);
818 -- Otherwise use the new routine for the case of a signed integer
819 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
820 -- mode is MINIMIZED or ELIMINATED.
822 else
823 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
824 end if;
825 end Apply_Arithmetic_Overflow_Check;
827 --------------------------------------
828 -- Apply_Arithmetic_Overflow_Strict --
829 --------------------------------------
831 -- This routine is called only if the type is an integer type and an
832 -- arithmetic overflow check may be needed for op (add, subtract, or
833 -- multiply). This check is performed if Backend_Overflow_Checks_On_Target
834 -- is not enabled and Do_Overflow_Check is set. In this case we expand the
835 -- operation into a more complex sequence of tests that ensures that
836 -- overflow is properly caught.
838 -- This is used in CHECKED modes. It is identical to the code for this
839 -- cases before the big overflow earthquake, thus ensuring that in this
840 -- modes we have compatible behavior (and reliability) to what was there
841 -- before. It is also called for types other than signed integers, and if
842 -- the Do_Overflow_Check flag is off.
844 -- Note: we also call this routine if we decide in the MINIMIZED case
845 -- to give up and just generate an overflow check without any fuss.
847 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
848 Loc : constant Source_Ptr := Sloc (N);
849 Typ : constant Entity_Id := Etype (N);
850 Rtyp : constant Entity_Id := Root_Type (Typ);
852 begin
853 -- Nothing to do if Do_Overflow_Check not set or overflow checks
854 -- suppressed.
856 if not Do_Overflow_Check (N) then
857 return;
858 end if;
860 -- An interesting special case. If the arithmetic operation appears as
861 -- the operand of a type conversion:
863 -- type1 (x op y)
865 -- and all the following conditions apply:
867 -- arithmetic operation is for a signed integer type
868 -- target type type1 is a static integer subtype
869 -- range of x and y are both included in the range of type1
870 -- range of x op y is included in the range of type1
871 -- size of type1 is at least twice the result size of op
873 -- then we don't do an overflow check in any case. Instead, we transform
874 -- the operation so that we end up with:
876 -- type1 (type1 (x) op type1 (y))
878 -- This avoids intermediate overflow before the conversion. It is
879 -- explicitly permitted by RM 3.5.4(24):
881 -- For the execution of a predefined operation of a signed integer
882 -- type, the implementation need not raise Constraint_Error if the
883 -- result is outside the base range of the type, so long as the
884 -- correct result is produced.
886 -- It's hard to imagine that any programmer counts on the exception
887 -- being raised in this case, and in any case it's wrong coding to
888 -- have this expectation, given the RM permission. Furthermore, other
889 -- Ada compilers do allow such out of range results.
891 -- Note that we do this transformation even if overflow checking is
892 -- off, since this is precisely about giving the "right" result and
893 -- avoiding the need for an overflow check.
895 -- Note: this circuit is partially redundant with respect to the similar
896 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
897 -- with cases that do not come through here. We still need the following
898 -- processing even with the Exp_Ch4 code in place, since we want to be
899 -- sure not to generate the arithmetic overflow check in these cases
900 -- (Exp_Ch4 would have a hard time removing them once generated).
902 if Is_Signed_Integer_Type (Typ)
903 and then Nkind (Parent (N)) = N_Type_Conversion
904 then
905 Conversion_Optimization : declare
906 Target_Type : constant Entity_Id :=
907 Base_Type (Entity (Subtype_Mark (Parent (N))));
909 Llo, Lhi : Uint;
910 Rlo, Rhi : Uint;
911 LOK, ROK : Boolean;
913 Vlo : Uint;
914 Vhi : Uint;
915 VOK : Boolean;
917 Tlo : Uint;
918 Thi : Uint;
920 begin
921 if Is_Integer_Type (Target_Type)
922 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
923 then
924 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
925 Thi := Expr_Value (Type_High_Bound (Target_Type));
927 Determine_Range
928 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
929 Determine_Range
930 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
932 if (LOK and ROK)
933 and then Tlo <= Llo and then Lhi <= Thi
934 and then Tlo <= Rlo and then Rhi <= Thi
935 then
936 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
938 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
939 Rewrite (Left_Opnd (N),
940 Make_Type_Conversion (Loc,
941 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
942 Expression => Relocate_Node (Left_Opnd (N))));
944 Rewrite (Right_Opnd (N),
945 Make_Type_Conversion (Loc,
946 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
947 Expression => Relocate_Node (Right_Opnd (N))));
949 -- Rewrite the conversion operand so that the original
950 -- node is retained, in order to avoid the warning for
951 -- redundant conversions in Resolve_Type_Conversion.
953 Rewrite (N, Relocate_Node (N));
955 Set_Etype (N, Target_Type);
957 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
958 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
960 -- Given that the target type is twice the size of the
961 -- source type, overflow is now impossible, so we can
962 -- safely kill the overflow check and return.
964 Set_Do_Overflow_Check (N, False);
965 return;
966 end if;
967 end if;
968 end if;
969 end Conversion_Optimization;
970 end if;
972 -- Now see if an overflow check is required
974 declare
975 Siz : constant Int := UI_To_Int (Esize (Rtyp));
976 Dsiz : constant Int := Siz * 2;
977 Opnod : Node_Id;
978 Ctyp : Entity_Id;
979 Opnd : Node_Id;
980 Cent : RE_Id;
982 begin
983 -- Skip check if back end does overflow checks, or the overflow flag
984 -- is not set anyway, or we are not doing code expansion, or the
985 -- parent node is a type conversion whose operand is an arithmetic
986 -- operation on signed integers on which the expander can promote
987 -- later the operands to type Integer (see Expand_N_Type_Conversion).
989 if Backend_Overflow_Checks_On_Target
990 or else not Do_Overflow_Check (N)
991 or else not Expander_Active
992 or else (Present (Parent (N))
993 and then Nkind (Parent (N)) = N_Type_Conversion
994 and then Integer_Promotion_Possible (Parent (N)))
995 then
996 return;
997 end if;
999 -- Otherwise, generate the full general code for front end overflow
1000 -- detection, which works by doing arithmetic in a larger type:
1002 -- x op y
1004 -- is expanded into
1006 -- Typ (Checktyp (x) op Checktyp (y));
1008 -- where Typ is the type of the original expression, and Checktyp is
1009 -- an integer type of sufficient length to hold the largest possible
1010 -- result.
1012 -- If the size of check type exceeds the size of Long_Long_Integer,
1013 -- we use a different approach, expanding to:
1015 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
1017 -- where xxx is Add, Multiply or Subtract as appropriate
1019 -- Find check type if one exists
1021 if Dsiz <= Standard_Integer_Size then
1022 Ctyp := Standard_Integer;
1024 elsif Dsiz <= Standard_Long_Long_Integer_Size then
1025 Ctyp := Standard_Long_Long_Integer;
1027 -- No check type exists, use runtime call
1029 else
1030 if Nkind (N) = N_Op_Add then
1031 Cent := RE_Add_With_Ovflo_Check;
1033 elsif Nkind (N) = N_Op_Multiply then
1034 Cent := RE_Multiply_With_Ovflo_Check;
1036 else
1037 pragma Assert (Nkind (N) = N_Op_Subtract);
1038 Cent := RE_Subtract_With_Ovflo_Check;
1039 end if;
1041 Rewrite (N,
1042 OK_Convert_To (Typ,
1043 Make_Function_Call (Loc,
1044 Name => New_Occurrence_Of (RTE (Cent), Loc),
1045 Parameter_Associations => New_List (
1046 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1047 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
1049 Analyze_And_Resolve (N, Typ);
1050 return;
1051 end if;
1053 -- If we fall through, we have the case where we do the arithmetic
1054 -- in the next higher type and get the check by conversion. In these
1055 -- cases Ctyp is set to the type to be used as the check type.
1057 Opnod := Relocate_Node (N);
1059 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1061 Analyze (Opnd);
1062 Set_Etype (Opnd, Ctyp);
1063 Set_Analyzed (Opnd, True);
1064 Set_Left_Opnd (Opnod, Opnd);
1066 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1068 Analyze (Opnd);
1069 Set_Etype (Opnd, Ctyp);
1070 Set_Analyzed (Opnd, True);
1071 Set_Right_Opnd (Opnod, Opnd);
1073 -- The type of the operation changes to the base type of the check
1074 -- type, and we reset the overflow check indication, since clearly no
1075 -- overflow is possible now that we are using a double length type.
1076 -- We also set the Analyzed flag to avoid a recursive attempt to
1077 -- expand the node.
1079 Set_Etype (Opnod, Base_Type (Ctyp));
1080 Set_Do_Overflow_Check (Opnod, False);
1081 Set_Analyzed (Opnod, True);
1083 -- Now build the outer conversion
1085 Opnd := OK_Convert_To (Typ, Opnod);
1086 Analyze (Opnd);
1087 Set_Etype (Opnd, Typ);
1089 -- In the discrete type case, we directly generate the range check
1090 -- for the outer operand. This range check will implement the
1091 -- required overflow check.
1093 if Is_Discrete_Type (Typ) then
1094 Rewrite (N, Opnd);
1095 Generate_Range_Check
1096 (Expression (N), Typ, CE_Overflow_Check_Failed);
1098 -- For other types, we enable overflow checking on the conversion,
1099 -- after setting the node as analyzed to prevent recursive attempts
1100 -- to expand the conversion node.
1102 else
1103 Set_Analyzed (Opnd, True);
1104 Enable_Overflow_Check (Opnd);
1105 Rewrite (N, Opnd);
1106 end if;
1108 exception
1109 when RE_Not_Available =>
1110 return;
1111 end;
1112 end Apply_Arithmetic_Overflow_Strict;
1114 ----------------------------------------------------
1115 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1116 ----------------------------------------------------
1118 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1119 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1121 Loc : constant Source_Ptr := Sloc (Op);
1122 P : constant Node_Id := Parent (Op);
1124 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1125 -- Operands and results are of this type when we convert
1127 Result_Type : constant Entity_Id := Etype (Op);
1128 -- Original result type
1130 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1131 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1133 Lo, Hi : Uint;
1134 -- Ranges of values for result
1136 begin
1137 -- Nothing to do if our parent is one of the following:
1139 -- Another signed integer arithmetic op
1140 -- A membership operation
1141 -- A comparison operation
1143 -- In all these cases, we will process at the higher level (and then
1144 -- this node will be processed during the downwards recursion that
1145 -- is part of the processing in Minimize_Eliminate_Overflows).
1147 if Is_Signed_Integer_Arithmetic_Op (P)
1148 or else Nkind (P) in N_Membership_Test
1149 or else Nkind (P) in N_Op_Compare
1151 -- This is also true for an alternative in a case expression
1153 or else Nkind (P) = N_Case_Expression_Alternative
1155 -- This is also true for a range operand in a membership test
1157 or else (Nkind (P) = N_Range
1158 and then Nkind (Parent (P)) in N_Membership_Test)
1159 then
1160 -- If_Expressions and Case_Expressions are treated as arithmetic
1161 -- ops, but if they appear in an assignment or similar contexts
1162 -- there is no overflow check that starts from that parent node,
1163 -- so apply check now.
1165 if Nkind_In (P, N_If_Expression, N_Case_Expression)
1166 and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1167 then
1168 null;
1169 else
1170 return;
1171 end if;
1172 end if;
1174 -- Otherwise, we have a top level arithmetic operation node, and this
1175 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1176 -- modes. This is the case where we tell the machinery not to move into
1177 -- Bignum mode at this top level (of course the top level operation
1178 -- will still be in Bignum mode if either of its operands are of type
1179 -- Bignum).
1181 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1183 -- That call may but does not necessarily change the result type of Op.
1184 -- It is the job of this routine to undo such changes, so that at the
1185 -- top level, we have the proper type. This "undoing" is a point at
1186 -- which a final overflow check may be applied.
1188 -- If the result type was not fiddled we are all set. We go to base
1189 -- types here because things may have been rewritten to generate the
1190 -- base type of the operand types.
1192 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1193 return;
1195 -- Bignum case
1197 elsif Is_RTE (Etype (Op), RE_Bignum) then
1199 -- We need a sequence that looks like:
1201 -- Rnn : Result_Type;
1203 -- declare
1204 -- M : Mark_Id := SS_Mark;
1205 -- begin
1206 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1207 -- SS_Release (M);
1208 -- end;
1210 -- This block is inserted (using Insert_Actions), and then the node
1211 -- is replaced with a reference to Rnn.
1213 -- If our parent is a conversion node then there is no point in
1214 -- generating a conversion to Result_Type. Instead, we let the parent
1215 -- handle this. Note that this special case is not just about
1216 -- optimization. Consider
1218 -- A,B,C : Integer;
1219 -- ...
1220 -- X := Long_Long_Integer'Base (A * (B ** C));
1222 -- Now the product may fit in Long_Long_Integer but not in Integer.
1223 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1224 -- overflow exception for this intermediate value.
1226 declare
1227 Blk : constant Node_Id := Make_Bignum_Block (Loc);
1228 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1229 RHS : Node_Id;
1231 Rtype : Entity_Id;
1233 begin
1234 RHS := Convert_From_Bignum (Op);
1236 if Nkind (P) /= N_Type_Conversion then
1237 Convert_To_And_Rewrite (Result_Type, RHS);
1238 Rtype := Result_Type;
1240 -- Interesting question, do we need a check on that conversion
1241 -- operation. Answer, not if we know the result is in range.
1242 -- At the moment we are not taking advantage of this. To be
1243 -- looked at later ???
1245 else
1246 Rtype := LLIB;
1247 end if;
1249 Insert_Before
1250 (First (Statements (Handled_Statement_Sequence (Blk))),
1251 Make_Assignment_Statement (Loc,
1252 Name => New_Occurrence_Of (Rnn, Loc),
1253 Expression => RHS));
1255 Insert_Actions (Op, New_List (
1256 Make_Object_Declaration (Loc,
1257 Defining_Identifier => Rnn,
1258 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1259 Blk));
1261 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1262 Analyze_And_Resolve (Op);
1263 end;
1265 -- Here we know the result is Long_Long_Integer'Base, or that it has
1266 -- been rewritten because the parent operation is a conversion. See
1267 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1269 else
1270 pragma Assert
1271 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1273 -- All we need to do here is to convert the result to the proper
1274 -- result type. As explained above for the Bignum case, we can
1275 -- omit this if our parent is a type conversion.
1277 if Nkind (P) /= N_Type_Conversion then
1278 Convert_To_And_Rewrite (Result_Type, Op);
1279 end if;
1281 Analyze_And_Resolve (Op);
1282 end if;
1283 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1285 ----------------------------
1286 -- Apply_Constraint_Check --
1287 ----------------------------
1289 procedure Apply_Constraint_Check
1290 (N : Node_Id;
1291 Typ : Entity_Id;
1292 No_Sliding : Boolean := False)
1294 Desig_Typ : Entity_Id;
1296 begin
1297 -- No checks inside a generic (check the instantiations)
1299 if Inside_A_Generic then
1300 return;
1301 end if;
1303 -- Apply required constraint checks
1305 if Is_Scalar_Type (Typ) then
1306 Apply_Scalar_Range_Check (N, Typ);
1308 elsif Is_Array_Type (Typ) then
1310 -- A useful optimization: an aggregate with only an others clause
1311 -- always has the right bounds.
1313 if Nkind (N) = N_Aggregate
1314 and then No (Expressions (N))
1315 and then Nkind
1316 (First (Choices (First (Component_Associations (N)))))
1317 = N_Others_Choice
1318 then
1319 return;
1320 end if;
1322 if Is_Constrained (Typ) then
1323 Apply_Length_Check (N, Typ);
1325 if No_Sliding then
1326 Apply_Range_Check (N, Typ);
1327 end if;
1328 else
1329 Apply_Range_Check (N, Typ);
1330 end if;
1332 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1333 and then Has_Discriminants (Base_Type (Typ))
1334 and then Is_Constrained (Typ)
1335 then
1336 Apply_Discriminant_Check (N, Typ);
1338 elsif Is_Access_Type (Typ) then
1340 Desig_Typ := Designated_Type (Typ);
1342 -- No checks necessary if expression statically null
1344 if Known_Null (N) then
1345 if Can_Never_Be_Null (Typ) then
1346 Install_Null_Excluding_Check (N);
1347 end if;
1349 -- No sliding possible on access to arrays
1351 elsif Is_Array_Type (Desig_Typ) then
1352 if Is_Constrained (Desig_Typ) then
1353 Apply_Length_Check (N, Typ);
1354 end if;
1356 Apply_Range_Check (N, Typ);
1358 -- Do not install a discriminant check for a constrained subtype
1359 -- created for an unconstrained nominal type because the subtype
1360 -- has the correct constraints by construction.
1362 elsif Has_Discriminants (Base_Type (Desig_Typ))
1363 and then Is_Constrained (Desig_Typ)
1364 and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
1365 then
1366 Apply_Discriminant_Check (N, Typ);
1367 end if;
1369 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1370 -- this check if the constraint node is illegal, as shown by having
1371 -- an error posted. This additional guard prevents cascaded errors
1372 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1374 if Can_Never_Be_Null (Typ)
1375 and then not Can_Never_Be_Null (Etype (N))
1376 and then not Error_Posted (N)
1377 then
1378 Install_Null_Excluding_Check (N);
1379 end if;
1380 end if;
1381 end Apply_Constraint_Check;
1383 ------------------------------
1384 -- Apply_Discriminant_Check --
1385 ------------------------------
1387 procedure Apply_Discriminant_Check
1388 (N : Node_Id;
1389 Typ : Entity_Id;
1390 Lhs : Node_Id := Empty)
1392 Loc : constant Source_Ptr := Sloc (N);
1393 Do_Access : constant Boolean := Is_Access_Type (Typ);
1394 S_Typ : Entity_Id := Etype (N);
1395 Cond : Node_Id;
1396 T_Typ : Entity_Id;
1398 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1399 -- A heap object with an indefinite subtype is constrained by its
1400 -- initial value, and assigning to it requires a constraint_check.
1401 -- The target may be an explicit dereference, or a renaming of one.
1403 function Is_Aliased_Unconstrained_Component return Boolean;
1404 -- It is possible for an aliased component to have a nominal
1405 -- unconstrained subtype (through instantiation). If this is a
1406 -- discriminated component assigned in the expansion of an aggregate
1407 -- in an initialization, the check must be suppressed. This unusual
1408 -- situation requires a predicate of its own.
1410 ----------------------------------
1411 -- Denotes_Explicit_Dereference --
1412 ----------------------------------
1414 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1415 begin
1416 return
1417 Nkind (Obj) = N_Explicit_Dereference
1418 or else
1419 (Is_Entity_Name (Obj)
1420 and then Present (Renamed_Object (Entity (Obj)))
1421 and then Nkind (Renamed_Object (Entity (Obj))) =
1422 N_Explicit_Dereference);
1423 end Denotes_Explicit_Dereference;
1425 ----------------------------------------
1426 -- Is_Aliased_Unconstrained_Component --
1427 ----------------------------------------
1429 function Is_Aliased_Unconstrained_Component return Boolean is
1430 Comp : Entity_Id;
1431 Pref : Node_Id;
1433 begin
1434 if Nkind (Lhs) /= N_Selected_Component then
1435 return False;
1436 else
1437 Comp := Entity (Selector_Name (Lhs));
1438 Pref := Prefix (Lhs);
1439 end if;
1441 if Ekind (Comp) /= E_Component
1442 or else not Is_Aliased (Comp)
1443 then
1444 return False;
1445 end if;
1447 return not Comes_From_Source (Pref)
1448 and then In_Instance
1449 and then not Is_Constrained (Etype (Comp));
1450 end Is_Aliased_Unconstrained_Component;
1452 -- Start of processing for Apply_Discriminant_Check
1454 begin
1455 if Do_Access then
1456 T_Typ := Designated_Type (Typ);
1457 else
1458 T_Typ := Typ;
1459 end if;
1461 -- If the expression is a function call that returns a limited object
1462 -- it cannot be copied. It is not clear how to perform the proper
1463 -- discriminant check in this case because the discriminant value must
1464 -- be retrieved from the constructed object itself.
1466 if Nkind (N) = N_Function_Call
1467 and then Is_Limited_Type (Typ)
1468 and then Is_Entity_Name (Name (N))
1469 and then Returns_By_Ref (Entity (Name (N)))
1470 then
1471 return;
1472 end if;
1474 -- Only apply checks when generating code and discriminant checks are
1475 -- not suppressed. In GNATprove mode, we do not apply the checks, but we
1476 -- still analyze the expression to possibly issue errors on SPARK code
1477 -- when a run-time error can be detected at compile time.
1479 if not GNATprove_Mode then
1480 if not Expander_Active
1481 or else Discriminant_Checks_Suppressed (T_Typ)
1482 then
1483 return;
1484 end if;
1485 end if;
1487 -- No discriminant checks necessary for an access when expression is
1488 -- statically Null. This is not only an optimization, it is fundamental
1489 -- because otherwise discriminant checks may be generated in init procs
1490 -- for types containing an access to a not-yet-frozen record, causing a
1491 -- deadly forward reference.
1493 -- Also, if the expression is of an access type whose designated type is
1494 -- incomplete, then the access value must be null and we suppress the
1495 -- check.
1497 if Known_Null (N) then
1498 return;
1500 elsif Is_Access_Type (S_Typ) then
1501 S_Typ := Designated_Type (S_Typ);
1503 if Ekind (S_Typ) = E_Incomplete_Type then
1504 return;
1505 end if;
1506 end if;
1508 -- If an assignment target is present, then we need to generate the
1509 -- actual subtype if the target is a parameter or aliased object with
1510 -- an unconstrained nominal subtype.
1512 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1513 -- subtype to the parameter and dereference cases, since other aliased
1514 -- objects are unconstrained (unless the nominal subtype is explicitly
1515 -- constrained).
1517 if Present (Lhs)
1518 and then (Present (Param_Entity (Lhs))
1519 or else (Ada_Version < Ada_2005
1520 and then not Is_Constrained (T_Typ)
1521 and then Is_Aliased_View (Lhs)
1522 and then not Is_Aliased_Unconstrained_Component)
1523 or else (Ada_Version >= Ada_2005
1524 and then not Is_Constrained (T_Typ)
1525 and then Denotes_Explicit_Dereference (Lhs)
1526 and then Nkind (Original_Node (Lhs)) /=
1527 N_Function_Call))
1528 then
1529 T_Typ := Get_Actual_Subtype (Lhs);
1530 end if;
1532 -- Nothing to do if the type is unconstrained (this is the case where
1533 -- the actual subtype in the RM sense of N is unconstrained and no check
1534 -- is required).
1536 if not Is_Constrained (T_Typ) then
1537 return;
1539 -- Ada 2005: nothing to do if the type is one for which there is a
1540 -- partial view that is constrained.
1542 elsif Ada_Version >= Ada_2005
1543 and then Object_Type_Has_Constrained_Partial_View
1544 (Typ => Base_Type (T_Typ),
1545 Scop => Current_Scope)
1546 then
1547 return;
1548 end if;
1550 -- Nothing to do if the type is an Unchecked_Union
1552 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1553 return;
1554 end if;
1556 -- Suppress checks if the subtypes are the same. The check must be
1557 -- preserved in an assignment to a formal, because the constraint is
1558 -- given by the actual.
1560 if Nkind (Original_Node (N)) /= N_Allocator
1561 and then (No (Lhs)
1562 or else not Is_Entity_Name (Lhs)
1563 or else No (Param_Entity (Lhs)))
1564 then
1565 if (Etype (N) = Typ
1566 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1567 and then not Is_Aliased_View (Lhs)
1568 then
1569 return;
1570 end if;
1572 -- We can also eliminate checks on allocators with a subtype mark that
1573 -- coincides with the context type. The context type may be a subtype
1574 -- without a constraint (common case, a generic actual).
1576 elsif Nkind (Original_Node (N)) = N_Allocator
1577 and then Is_Entity_Name (Expression (Original_Node (N)))
1578 then
1579 declare
1580 Alloc_Typ : constant Entity_Id :=
1581 Entity (Expression (Original_Node (N)));
1583 begin
1584 if Alloc_Typ = T_Typ
1585 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1586 and then Is_Entity_Name (
1587 Subtype_Indication (Parent (T_Typ)))
1588 and then Alloc_Typ = Base_Type (T_Typ))
1590 then
1591 return;
1592 end if;
1593 end;
1594 end if;
1596 -- See if we have a case where the types are both constrained, and all
1597 -- the constraints are constants. In this case, we can do the check
1598 -- successfully at compile time.
1600 -- We skip this check for the case where the node is rewritten as
1601 -- an allocator, because it already carries the context subtype,
1602 -- and extracting the discriminants from the aggregate is messy.
1604 if Is_Constrained (S_Typ)
1605 and then Nkind (Original_Node (N)) /= N_Allocator
1606 then
1607 declare
1608 DconT : Elmt_Id;
1609 Discr : Entity_Id;
1610 DconS : Elmt_Id;
1611 ItemS : Node_Id;
1612 ItemT : Node_Id;
1614 begin
1615 -- S_Typ may not have discriminants in the case where it is a
1616 -- private type completed by a default discriminated type. In that
1617 -- case, we need to get the constraints from the underlying type.
1618 -- If the underlying type is unconstrained (i.e. has no default
1619 -- discriminants) no check is needed.
1621 if Has_Discriminants (S_Typ) then
1622 Discr := First_Discriminant (S_Typ);
1623 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1625 else
1626 Discr := First_Discriminant (Underlying_Type (S_Typ));
1627 DconS :=
1628 First_Elmt
1629 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1631 if No (DconS) then
1632 return;
1633 end if;
1635 -- A further optimization: if T_Typ is derived from S_Typ
1636 -- without imposing a constraint, no check is needed.
1638 if Nkind (Original_Node (Parent (T_Typ))) =
1639 N_Full_Type_Declaration
1640 then
1641 declare
1642 Type_Def : constant Node_Id :=
1643 Type_Definition (Original_Node (Parent (T_Typ)));
1644 begin
1645 if Nkind (Type_Def) = N_Derived_Type_Definition
1646 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1647 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1648 then
1649 return;
1650 end if;
1651 end;
1652 end if;
1653 end if;
1655 -- Constraint may appear in full view of type
1657 if Ekind (T_Typ) = E_Private_Subtype
1658 and then Present (Full_View (T_Typ))
1659 then
1660 DconT :=
1661 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1662 else
1663 DconT :=
1664 First_Elmt (Discriminant_Constraint (T_Typ));
1665 end if;
1667 while Present (Discr) loop
1668 ItemS := Node (DconS);
1669 ItemT := Node (DconT);
1671 -- For a discriminated component type constrained by the
1672 -- current instance of an enclosing type, there is no
1673 -- applicable discriminant check.
1675 if Nkind (ItemT) = N_Attribute_Reference
1676 and then Is_Access_Type (Etype (ItemT))
1677 and then Is_Entity_Name (Prefix (ItemT))
1678 and then Is_Type (Entity (Prefix (ItemT)))
1679 then
1680 return;
1681 end if;
1683 -- If the expressions for the discriminants are identical
1684 -- and it is side-effect free (for now just an entity),
1685 -- this may be a shared constraint, e.g. from a subtype
1686 -- without a constraint introduced as a generic actual.
1687 -- Examine other discriminants if any.
1689 if ItemS = ItemT
1690 and then Is_Entity_Name (ItemS)
1691 then
1692 null;
1694 elsif not Is_OK_Static_Expression (ItemS)
1695 or else not Is_OK_Static_Expression (ItemT)
1696 then
1697 exit;
1699 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1700 if Do_Access then -- needs run-time check.
1701 exit;
1702 else
1703 Apply_Compile_Time_Constraint_Error
1704 (N, "incorrect value for discriminant&??",
1705 CE_Discriminant_Check_Failed, Ent => Discr);
1706 return;
1707 end if;
1708 end if;
1710 Next_Elmt (DconS);
1711 Next_Elmt (DconT);
1712 Next_Discriminant (Discr);
1713 end loop;
1715 if No (Discr) then
1716 return;
1717 end if;
1718 end;
1719 end if;
1721 -- In GNATprove mode, we do not apply the checks
1723 if GNATprove_Mode then
1724 return;
1725 end if;
1727 -- Here we need a discriminant check. First build the expression
1728 -- for the comparisons of the discriminants:
1730 -- (n.disc1 /= typ.disc1) or else
1731 -- (n.disc2 /= typ.disc2) or else
1732 -- ...
1733 -- (n.discn /= typ.discn)
1735 Cond := Build_Discriminant_Checks (N, T_Typ);
1737 -- If Lhs is set and is a parameter, then the condition is guarded by:
1738 -- lhs'constrained and then (condition built above)
1740 if Present (Param_Entity (Lhs)) then
1741 Cond :=
1742 Make_And_Then (Loc,
1743 Left_Opnd =>
1744 Make_Attribute_Reference (Loc,
1745 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1746 Attribute_Name => Name_Constrained),
1747 Right_Opnd => Cond);
1748 end if;
1750 if Do_Access then
1751 Cond := Guard_Access (Cond, Loc, N);
1752 end if;
1754 Insert_Action (N,
1755 Make_Raise_Constraint_Error (Loc,
1756 Condition => Cond,
1757 Reason => CE_Discriminant_Check_Failed));
1758 end Apply_Discriminant_Check;
1760 -------------------------
1761 -- Apply_Divide_Checks --
1762 -------------------------
1764 procedure Apply_Divide_Checks (N : Node_Id) is
1765 Loc : constant Source_Ptr := Sloc (N);
1766 Typ : constant Entity_Id := Etype (N);
1767 Left : constant Node_Id := Left_Opnd (N);
1768 Right : constant Node_Id := Right_Opnd (N);
1770 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1771 -- Current overflow checking mode
1773 LLB : Uint;
1774 Llo : Uint;
1775 Lhi : Uint;
1776 LOK : Boolean;
1777 Rlo : Uint;
1778 Rhi : Uint;
1779 ROK : Boolean;
1781 pragma Warnings (Off, Lhi);
1782 -- Don't actually use this value
1784 begin
1785 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1786 -- operating on signed integer types, then the only thing this routine
1787 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1788 -- procedure will (possibly later on during recursive downward calls),
1789 -- ensure that any needed overflow/division checks are properly applied.
1791 if Mode in Minimized_Or_Eliminated
1792 and then Is_Signed_Integer_Type (Typ)
1793 then
1794 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1795 return;
1796 end if;
1798 -- Proceed here in SUPPRESSED or CHECKED modes
1800 if Expander_Active
1801 and then not Backend_Divide_Checks_On_Target
1802 and then Check_Needed (Right, Division_Check)
1803 then
1804 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1806 -- Deal with division check
1808 if Do_Division_Check (N)
1809 and then not Division_Checks_Suppressed (Typ)
1810 then
1811 Apply_Division_Check (N, Rlo, Rhi, ROK);
1812 end if;
1814 -- Deal with overflow check
1816 if Do_Overflow_Check (N)
1817 and then not Overflow_Checks_Suppressed (Etype (N))
1818 then
1819 Set_Do_Overflow_Check (N, False);
1821 -- Test for extremely annoying case of xxx'First divided by -1
1822 -- for division of signed integer types (only overflow case).
1824 if Nkind (N) = N_Op_Divide
1825 and then Is_Signed_Integer_Type (Typ)
1826 then
1827 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1828 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1830 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1831 and then
1832 ((not LOK) or else (Llo = LLB))
1833 then
1834 -- Ensure that expressions are not evaluated twice (once
1835 -- for their runtime checks and once for their regular
1836 -- computation).
1838 Force_Evaluation (Left, Mode => Strict);
1839 Force_Evaluation (Right, Mode => Strict);
1841 Insert_Action (N,
1842 Make_Raise_Constraint_Error (Loc,
1843 Condition =>
1844 Make_And_Then (Loc,
1845 Left_Opnd =>
1846 Make_Op_Eq (Loc,
1847 Left_Opnd =>
1848 Duplicate_Subexpr_Move_Checks (Left),
1849 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1851 Right_Opnd =>
1852 Make_Op_Eq (Loc,
1853 Left_Opnd => Duplicate_Subexpr (Right),
1854 Right_Opnd => Make_Integer_Literal (Loc, -1))),
1856 Reason => CE_Overflow_Check_Failed));
1857 end if;
1858 end if;
1859 end if;
1860 end if;
1861 end Apply_Divide_Checks;
1863 --------------------------
1864 -- Apply_Division_Check --
1865 --------------------------
1867 procedure Apply_Division_Check
1868 (N : Node_Id;
1869 Rlo : Uint;
1870 Rhi : Uint;
1871 ROK : Boolean)
1873 pragma Assert (Do_Division_Check (N));
1875 Loc : constant Source_Ptr := Sloc (N);
1876 Right : constant Node_Id := Right_Opnd (N);
1877 Opnd : Node_Id;
1879 begin
1880 if Expander_Active
1881 and then not Backend_Divide_Checks_On_Target
1882 and then Check_Needed (Right, Division_Check)
1884 -- See if division by zero possible, and if so generate test. This
1885 -- part of the test is not controlled by the -gnato switch, since it
1886 -- is a Division_Check and not an Overflow_Check.
1888 and then Do_Division_Check (N)
1889 then
1890 Set_Do_Division_Check (N, False);
1892 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1893 if Is_Floating_Point_Type (Etype (N)) then
1894 Opnd := Make_Real_Literal (Loc, Ureal_0);
1895 else
1896 Opnd := Make_Integer_Literal (Loc, 0);
1897 end if;
1899 Insert_Action (N,
1900 Make_Raise_Constraint_Error (Loc,
1901 Condition =>
1902 Make_Op_Eq (Loc,
1903 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1904 Right_Opnd => Opnd),
1905 Reason => CE_Divide_By_Zero));
1906 end if;
1907 end if;
1908 end Apply_Division_Check;
1910 ----------------------------------
1911 -- Apply_Float_Conversion_Check --
1912 ----------------------------------
1914 -- Let F and I be the source and target types of the conversion. The RM
1915 -- specifies that a floating-point value X is rounded to the nearest
1916 -- integer, with halfway cases being rounded away from zero. The rounded
1917 -- value of X is checked against I'Range.
1919 -- The catch in the above paragraph is that there is no good way to know
1920 -- whether the round-to-integer operation resulted in overflow. A remedy is
1921 -- to perform a range check in the floating-point domain instead, however:
1923 -- (1) The bounds may not be known at compile time
1924 -- (2) The check must take into account rounding or truncation.
1925 -- (3) The range of type I may not be exactly representable in F.
1926 -- (4) For the rounding case, The end-points I'First - 0.5 and
1927 -- I'Last + 0.5 may or may not be in range, depending on the
1928 -- sign of I'First and I'Last.
1929 -- (5) X may be a NaN, which will fail any comparison
1931 -- The following steps correctly convert X with rounding:
1933 -- (1) If either I'First or I'Last is not known at compile time, use
1934 -- I'Base instead of I in the next three steps and perform a
1935 -- regular range check against I'Range after conversion.
1936 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1937 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1938 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1939 -- In other words, take one of the closest floating-point numbers
1940 -- (which is an integer value) to I'First, and see if it is in
1941 -- range or not.
1942 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1943 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1944 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1945 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1946 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1948 -- For the truncating case, replace steps (2) and (3) as follows:
1949 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1950 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1951 -- Lo_OK be True.
1952 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1953 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1954 -- Hi_OK be True.
1956 procedure Apply_Float_Conversion_Check
1957 (Ck_Node : Node_Id;
1958 Target_Typ : Entity_Id)
1960 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1961 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1962 Loc : constant Source_Ptr := Sloc (Ck_Node);
1963 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1964 Target_Base : constant Entity_Id :=
1965 Implementation_Base_Type (Target_Typ);
1967 Par : constant Node_Id := Parent (Ck_Node);
1968 pragma Assert (Nkind (Par) = N_Type_Conversion);
1969 -- Parent of check node, must be a type conversion
1971 Truncate : constant Boolean := Float_Truncate (Par);
1972 Max_Bound : constant Uint :=
1973 UI_Expon
1974 (Machine_Radix_Value (Expr_Type),
1975 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1977 -- Largest bound, so bound plus or minus half is a machine number of F
1979 Ifirst, Ilast : Uint;
1980 -- Bounds of integer type
1982 Lo, Hi : Ureal;
1983 -- Bounds to check in floating-point domain
1985 Lo_OK, Hi_OK : Boolean;
1986 -- True iff Lo resp. Hi belongs to I'Range
1988 Lo_Chk, Hi_Chk : Node_Id;
1989 -- Expressions that are False iff check fails
1991 Reason : RT_Exception_Code;
1993 begin
1994 -- We do not need checks if we are not generating code (i.e. the full
1995 -- expander is not active). In SPARK mode, we specifically don't want
1996 -- the frontend to expand these checks, which are dealt with directly
1997 -- in the formal verification backend.
1999 if not Expander_Active then
2000 return;
2001 end if;
2003 if not Compile_Time_Known_Value (LB)
2004 or not Compile_Time_Known_Value (HB)
2005 then
2006 declare
2007 -- First check that the value falls in the range of the base type,
2008 -- to prevent overflow during conversion and then perform a
2009 -- regular range check against the (dynamic) bounds.
2011 pragma Assert (Target_Base /= Target_Typ);
2013 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
2015 begin
2016 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
2017 Set_Etype (Temp, Target_Base);
2019 Insert_Action (Parent (Par),
2020 Make_Object_Declaration (Loc,
2021 Defining_Identifier => Temp,
2022 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2023 Expression => New_Copy_Tree (Par)),
2024 Suppress => All_Checks);
2026 Insert_Action (Par,
2027 Make_Raise_Constraint_Error (Loc,
2028 Condition =>
2029 Make_Not_In (Loc,
2030 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2031 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2032 Reason => CE_Range_Check_Failed));
2033 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2035 return;
2036 end;
2037 end if;
2039 -- Get the (static) bounds of the target type
2041 Ifirst := Expr_Value (LB);
2042 Ilast := Expr_Value (HB);
2044 -- A simple optimization: if the expression is a universal literal,
2045 -- we can do the comparison with the bounds and the conversion to
2046 -- an integer type statically. The range checks are unchanged.
2048 if Nkind (Ck_Node) = N_Real_Literal
2049 and then Etype (Ck_Node) = Universal_Real
2050 and then Is_Integer_Type (Target_Typ)
2051 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
2052 then
2053 declare
2054 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2056 begin
2057 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2059 -- Conversion is safe
2061 Rewrite (Parent (Ck_Node),
2062 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2063 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2064 return;
2065 end if;
2066 end;
2067 end if;
2069 -- Check against lower bound
2071 if Truncate and then Ifirst > 0 then
2072 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2073 Lo_OK := False;
2075 elsif Truncate then
2076 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2077 Lo_OK := True;
2079 elsif abs (Ifirst) < Max_Bound then
2080 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2081 Lo_OK := (Ifirst > 0);
2083 else
2084 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2085 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2086 end if;
2088 if Lo_OK then
2090 -- Lo_Chk := (X >= Lo)
2092 Lo_Chk := Make_Op_Ge (Loc,
2093 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2094 Right_Opnd => Make_Real_Literal (Loc, Lo));
2096 else
2097 -- Lo_Chk := (X > Lo)
2099 Lo_Chk := Make_Op_Gt (Loc,
2100 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2101 Right_Opnd => Make_Real_Literal (Loc, Lo));
2102 end if;
2104 -- Check against higher bound
2106 if Truncate and then Ilast < 0 then
2107 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2108 Hi_OK := False;
2110 elsif Truncate then
2111 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2112 Hi_OK := True;
2114 elsif abs (Ilast) < Max_Bound then
2115 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2116 Hi_OK := (Ilast < 0);
2117 else
2118 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2119 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2120 end if;
2122 if Hi_OK then
2124 -- Hi_Chk := (X <= Hi)
2126 Hi_Chk := Make_Op_Le (Loc,
2127 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2128 Right_Opnd => Make_Real_Literal (Loc, Hi));
2130 else
2131 -- Hi_Chk := (X < Hi)
2133 Hi_Chk := Make_Op_Lt (Loc,
2134 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2135 Right_Opnd => Make_Real_Literal (Loc, Hi));
2136 end if;
2138 -- If the bounds of the target type are the same as those of the base
2139 -- type, the check is an overflow check as a range check is not
2140 -- performed in these cases.
2142 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2143 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2144 then
2145 Reason := CE_Overflow_Check_Failed;
2146 else
2147 Reason := CE_Range_Check_Failed;
2148 end if;
2150 -- Raise CE if either conditions does not hold
2152 Insert_Action (Ck_Node,
2153 Make_Raise_Constraint_Error (Loc,
2154 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2155 Reason => Reason));
2156 end Apply_Float_Conversion_Check;
2158 ------------------------
2159 -- Apply_Length_Check --
2160 ------------------------
2162 procedure Apply_Length_Check
2163 (Ck_Node : Node_Id;
2164 Target_Typ : Entity_Id;
2165 Source_Typ : Entity_Id := Empty)
2167 begin
2168 Apply_Selected_Length_Checks
2169 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2170 end Apply_Length_Check;
2172 -------------------------------------
2173 -- Apply_Parameter_Aliasing_Checks --
2174 -------------------------------------
2176 procedure Apply_Parameter_Aliasing_Checks
2177 (Call : Node_Id;
2178 Subp : Entity_Id)
2180 Loc : constant Source_Ptr := Sloc (Call);
2182 function May_Cause_Aliasing
2183 (Formal_1 : Entity_Id;
2184 Formal_2 : Entity_Id) return Boolean;
2185 -- Determine whether two formal parameters can alias each other
2186 -- depending on their modes.
2188 function Original_Actual (N : Node_Id) return Node_Id;
2189 -- The expander may replace an actual with a temporary for the sake of
2190 -- side effect removal. The temporary may hide a potential aliasing as
2191 -- it does not share the address of the actual. This routine attempts
2192 -- to retrieve the original actual.
2194 procedure Overlap_Check
2195 (Actual_1 : Node_Id;
2196 Actual_2 : Node_Id;
2197 Formal_1 : Entity_Id;
2198 Formal_2 : Entity_Id;
2199 Check : in out Node_Id);
2200 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2201 -- If detailed exception messages are enabled, the check is augmented to
2202 -- provide information about the names of the corresponding formals. See
2203 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2204 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2205 -- Check contains all and-ed simple tests generated so far or remains
2206 -- unchanged in the case of detailed exception messaged.
2208 ------------------------
2209 -- May_Cause_Aliasing --
2210 ------------------------
2212 function May_Cause_Aliasing
2213 (Formal_1 : Entity_Id;
2214 Formal_2 : Entity_Id) return Boolean
2216 begin
2217 -- The following combination cannot lead to aliasing
2219 -- Formal 1 Formal 2
2220 -- IN IN
2222 if Ekind (Formal_1) = E_In_Parameter
2223 and then
2224 Ekind (Formal_2) = E_In_Parameter
2225 then
2226 return False;
2228 -- The following combinations may lead to aliasing
2230 -- Formal 1 Formal 2
2231 -- IN OUT
2232 -- IN IN OUT
2233 -- OUT IN
2234 -- OUT IN OUT
2235 -- OUT OUT
2237 else
2238 return True;
2239 end if;
2240 end May_Cause_Aliasing;
2242 ---------------------
2243 -- Original_Actual --
2244 ---------------------
2246 function Original_Actual (N : Node_Id) return Node_Id is
2247 begin
2248 if Nkind (N) = N_Type_Conversion then
2249 return Expression (N);
2251 -- The expander created a temporary to capture the result of a type
2252 -- conversion where the expression is the real actual.
2254 elsif Nkind (N) = N_Identifier
2255 and then Present (Original_Node (N))
2256 and then Nkind (Original_Node (N)) = N_Type_Conversion
2257 then
2258 return Expression (Original_Node (N));
2259 end if;
2261 return N;
2262 end Original_Actual;
2264 -------------------
2265 -- Overlap_Check --
2266 -------------------
2268 procedure Overlap_Check
2269 (Actual_1 : Node_Id;
2270 Actual_2 : Node_Id;
2271 Formal_1 : Entity_Id;
2272 Formal_2 : Entity_Id;
2273 Check : in out Node_Id)
2275 Cond : Node_Id;
2276 ID_Casing : constant Casing_Type :=
2277 Identifier_Casing (Source_Index (Current_Sem_Unit));
2279 begin
2280 -- Generate:
2281 -- Actual_1'Overlaps_Storage (Actual_2)
2283 Cond :=
2284 Make_Attribute_Reference (Loc,
2285 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2286 Attribute_Name => Name_Overlaps_Storage,
2287 Expressions =>
2288 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2290 -- Generate the following check when detailed exception messages are
2291 -- enabled:
2293 -- if Actual_1'Overlaps_Storage (Actual_2) then
2294 -- raise Program_Error with <detailed message>;
2295 -- end if;
2297 if Exception_Extra_Info then
2298 Start_String;
2300 -- Do not generate location information for internal calls
2302 if Comes_From_Source (Call) then
2303 Store_String_Chars (Build_Location_String (Loc));
2304 Store_String_Char (' ');
2305 end if;
2307 Store_String_Chars ("aliased parameters, actuals for """);
2309 Get_Name_String (Chars (Formal_1));
2310 Set_Casing (ID_Casing);
2311 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2313 Store_String_Chars (""" and """);
2315 Get_Name_String (Chars (Formal_2));
2316 Set_Casing (ID_Casing);
2317 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2319 Store_String_Chars (""" overlap");
2321 Insert_Action (Call,
2322 Make_If_Statement (Loc,
2323 Condition => Cond,
2324 Then_Statements => New_List (
2325 Make_Raise_Statement (Loc,
2326 Name =>
2327 New_Occurrence_Of (Standard_Program_Error, Loc),
2328 Expression => Make_String_Literal (Loc, End_String)))));
2330 -- Create a sequence of overlapping checks by and-ing them all
2331 -- together.
2333 else
2334 if No (Check) then
2335 Check := Cond;
2336 else
2337 Check :=
2338 Make_And_Then (Loc,
2339 Left_Opnd => Check,
2340 Right_Opnd => Cond);
2341 end if;
2342 end if;
2343 end Overlap_Check;
2345 -- Local variables
2347 Actual_1 : Node_Id;
2348 Actual_2 : Node_Id;
2349 Check : Node_Id;
2350 Formal_1 : Entity_Id;
2351 Formal_2 : Entity_Id;
2352 Orig_Act_1 : Node_Id;
2353 Orig_Act_2 : Node_Id;
2355 -- Start of processing for Apply_Parameter_Aliasing_Checks
2357 begin
2358 Check := Empty;
2360 Actual_1 := First_Actual (Call);
2361 Formal_1 := First_Formal (Subp);
2362 while Present (Actual_1) and then Present (Formal_1) loop
2363 Orig_Act_1 := Original_Actual (Actual_1);
2365 -- Ensure that the actual is an object that is not passed by value.
2366 -- Elementary types are always passed by value, therefore actuals of
2367 -- such types cannot lead to aliasing. An aggregate is an object in
2368 -- Ada 2012, but an actual that is an aggregate cannot overlap with
2369 -- another actual. A type that is By_Reference (such as an array of
2370 -- controlled types) is not subject to the check because any update
2371 -- will be done in place and a subsequent read will always see the
2372 -- correct value, see RM 6.2 (12/3).
2374 if Nkind (Orig_Act_1) = N_Aggregate
2375 or else (Nkind (Orig_Act_1) = N_Qualified_Expression
2376 and then Nkind (Expression (Orig_Act_1)) = N_Aggregate)
2377 then
2378 null;
2380 elsif Is_Object_Reference (Orig_Act_1)
2381 and then not Is_Elementary_Type (Etype (Orig_Act_1))
2382 and then not Is_By_Reference_Type (Etype (Orig_Act_1))
2383 then
2384 Actual_2 := Next_Actual (Actual_1);
2385 Formal_2 := Next_Formal (Formal_1);
2386 while Present (Actual_2) and then Present (Formal_2) loop
2387 Orig_Act_2 := Original_Actual (Actual_2);
2389 -- The other actual we are testing against must also denote
2390 -- a non pass-by-value object. Generate the check only when
2391 -- the mode of the two formals may lead to aliasing.
2393 if Is_Object_Reference (Orig_Act_2)
2394 and then not Is_Elementary_Type (Etype (Orig_Act_2))
2395 and then May_Cause_Aliasing (Formal_1, Formal_2)
2396 then
2397 Remove_Side_Effects (Actual_1);
2398 Remove_Side_Effects (Actual_2);
2400 Overlap_Check
2401 (Actual_1 => Actual_1,
2402 Actual_2 => Actual_2,
2403 Formal_1 => Formal_1,
2404 Formal_2 => Formal_2,
2405 Check => Check);
2406 end if;
2408 Next_Actual (Actual_2);
2409 Next_Formal (Formal_2);
2410 end loop;
2411 end if;
2413 Next_Actual (Actual_1);
2414 Next_Formal (Formal_1);
2415 end loop;
2417 -- Place a simple check right before the call
2419 if Present (Check) and then not Exception_Extra_Info then
2420 Insert_Action (Call,
2421 Make_Raise_Program_Error (Loc,
2422 Condition => Check,
2423 Reason => PE_Aliased_Parameters));
2424 end if;
2425 end Apply_Parameter_Aliasing_Checks;
2427 -------------------------------------
2428 -- Apply_Parameter_Validity_Checks --
2429 -------------------------------------
2431 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2432 Subp_Decl : Node_Id;
2434 procedure Add_Validity_Check
2435 (Formal : Entity_Id;
2436 Prag_Nam : Name_Id;
2437 For_Result : Boolean := False);
2438 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2439 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
2440 -- Set flag For_Result when to verify the result of a function.
2442 ------------------------
2443 -- Add_Validity_Check --
2444 ------------------------
2446 procedure Add_Validity_Check
2447 (Formal : Entity_Id;
2448 Prag_Nam : Name_Id;
2449 For_Result : Boolean := False)
2451 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2452 -- Create a pre/postcondition pragma that tests expression Expr
2454 ------------------------------
2455 -- Build_Pre_Post_Condition --
2456 ------------------------------
2458 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2459 Loc : constant Source_Ptr := Sloc (Subp);
2460 Decls : List_Id;
2461 Prag : Node_Id;
2463 begin
2464 Prag :=
2465 Make_Pragma (Loc,
2466 Chars => Prag_Nam,
2467 Pragma_Argument_Associations => New_List (
2468 Make_Pragma_Argument_Association (Loc,
2469 Chars => Name_Check,
2470 Expression => Expr)));
2472 -- Add a message unless exception messages are suppressed
2474 if not Exception_Locations_Suppressed then
2475 Append_To (Pragma_Argument_Associations (Prag),
2476 Make_Pragma_Argument_Association (Loc,
2477 Chars => Name_Message,
2478 Expression =>
2479 Make_String_Literal (Loc,
2480 Strval => "failed "
2481 & Get_Name_String (Prag_Nam)
2482 & " from "
2483 & Build_Location_String (Loc))));
2484 end if;
2486 -- Insert the pragma in the tree
2488 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2489 Add_Global_Declaration (Prag);
2490 Analyze (Prag);
2492 -- PPC pragmas associated with subprogram bodies must be inserted
2493 -- in the declarative part of the body.
2495 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2496 Decls := Declarations (Subp_Decl);
2498 if No (Decls) then
2499 Decls := New_List;
2500 Set_Declarations (Subp_Decl, Decls);
2501 end if;
2503 Prepend_To (Decls, Prag);
2504 Analyze (Prag);
2506 -- For subprogram declarations insert the PPC pragma right after
2507 -- the declarative node.
2509 else
2510 Insert_After_And_Analyze (Subp_Decl, Prag);
2511 end if;
2512 end Build_Pre_Post_Condition;
2514 -- Local variables
2516 Loc : constant Source_Ptr := Sloc (Subp);
2517 Typ : constant Entity_Id := Etype (Formal);
2518 Check : Node_Id;
2519 Nam : Name_Id;
2521 -- Start of processing for Add_Validity_Check
2523 begin
2524 -- For scalars, generate 'Valid test
2526 if Is_Scalar_Type (Typ) then
2527 Nam := Name_Valid;
2529 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2531 elsif Scalar_Part_Present (Typ) then
2532 Nam := Name_Valid_Scalars;
2534 -- No test needed for other cases (no scalars to test)
2536 else
2537 return;
2538 end if;
2540 -- Step 1: Create the expression to verify the validity of the
2541 -- context.
2543 Check := New_Occurrence_Of (Formal, Loc);
2545 -- When processing a function result, use 'Result. Generate
2546 -- Context'Result
2548 if For_Result then
2549 Check :=
2550 Make_Attribute_Reference (Loc,
2551 Prefix => Check,
2552 Attribute_Name => Name_Result);
2553 end if;
2555 -- Generate:
2556 -- Context['Result]'Valid[_Scalars]
2558 Check :=
2559 Make_Attribute_Reference (Loc,
2560 Prefix => Check,
2561 Attribute_Name => Nam);
2563 -- Step 2: Create a pre or post condition pragma
2565 Build_Pre_Post_Condition (Check);
2566 end Add_Validity_Check;
2568 -- Local variables
2570 Formal : Entity_Id;
2571 Subp_Spec : Node_Id;
2573 -- Start of processing for Apply_Parameter_Validity_Checks
2575 begin
2576 -- Extract the subprogram specification and declaration nodes
2578 Subp_Spec := Parent (Subp);
2580 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2581 Subp_Spec := Parent (Subp_Spec);
2582 end if;
2584 Subp_Decl := Parent (Subp_Spec);
2586 if not Comes_From_Source (Subp)
2588 -- Do not process formal subprograms because the corresponding actual
2589 -- will receive the proper checks when the instance is analyzed.
2591 or else Is_Formal_Subprogram (Subp)
2593 -- Do not process imported subprograms since pre and postconditions
2594 -- are never verified on routines coming from a different language.
2596 or else Is_Imported (Subp)
2597 or else Is_Intrinsic_Subprogram (Subp)
2599 -- The PPC pragmas generated by this routine do not correspond to
2600 -- source aspects, therefore they cannot be applied to abstract
2601 -- subprograms.
2603 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2605 -- Do not consider subprogram renaminds because the renamed entity
2606 -- already has the proper PPC pragmas.
2608 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2610 -- Do not process null procedures because there is no benefit of
2611 -- adding the checks to a no action routine.
2613 or else (Nkind (Subp_Spec) = N_Procedure_Specification
2614 and then Null_Present (Subp_Spec))
2615 then
2616 return;
2617 end if;
2619 -- Inspect all the formals applying aliasing and scalar initialization
2620 -- checks where applicable.
2622 Formal := First_Formal (Subp);
2623 while Present (Formal) loop
2625 -- Generate the following scalar initialization checks for each
2626 -- formal parameter:
2628 -- mode IN - Pre => Formal'Valid[_Scalars]
2629 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2630 -- mode OUT - Post => Formal'Valid[_Scalars]
2632 if Check_Validity_Of_Parameters then
2633 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2634 Add_Validity_Check (Formal, Name_Precondition, False);
2635 end if;
2637 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2638 Add_Validity_Check (Formal, Name_Postcondition, False);
2639 end if;
2640 end if;
2642 Next_Formal (Formal);
2643 end loop;
2645 -- Generate following scalar initialization check for function result:
2647 -- Post => Subp'Result'Valid[_Scalars]
2649 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
2650 Add_Validity_Check (Subp, Name_Postcondition, True);
2651 end if;
2652 end Apply_Parameter_Validity_Checks;
2654 ---------------------------
2655 -- Apply_Predicate_Check --
2656 ---------------------------
2658 procedure Apply_Predicate_Check
2659 (N : Node_Id;
2660 Typ : Entity_Id;
2661 Fun : Entity_Id := Empty)
2663 S : Entity_Id;
2665 begin
2666 if Predicate_Checks_Suppressed (Empty) then
2667 return;
2669 elsif Predicates_Ignored (Typ) then
2670 return;
2672 elsif Present (Predicate_Function (Typ)) then
2673 S := Current_Scope;
2674 while Present (S) and then not Is_Subprogram (S) loop
2675 S := Scope (S);
2676 end loop;
2678 -- A predicate check does not apply within internally generated
2679 -- subprograms, such as TSS functions.
2681 if Within_Internal_Subprogram then
2682 return;
2684 -- If the check appears within the predicate function itself, it
2685 -- means that the user specified a check whose formal is the
2686 -- predicated subtype itself, rather than some covering type. This
2687 -- is likely to be a common error, and thus deserves a warning.
2689 elsif Present (S) and then S = Predicate_Function (Typ) then
2690 Error_Msg_NE
2691 ("predicate check includes a call to& that requires a "
2692 & "predicate check??", Parent (N), Fun);
2693 Error_Msg_N
2694 ("\this will result in infinite recursion??", Parent (N));
2696 if Is_First_Subtype (Typ) then
2697 Error_Msg_NE
2698 ("\use an explicit subtype of& to carry the predicate",
2699 Parent (N), Typ);
2700 end if;
2702 Insert_Action (N,
2703 Make_Raise_Storage_Error (Sloc (N),
2704 Reason => SE_Infinite_Recursion));
2706 -- Here for normal case of predicate active
2708 else
2709 -- If the type has a static predicate and the expression is known
2710 -- at compile time, see if the expression satisfies the predicate.
2712 Check_Expression_Against_Static_Predicate (N, Typ);
2714 if not Expander_Active then
2715 return;
2716 end if;
2718 -- For an entity of the type, generate a call to the predicate
2719 -- function, unless its type is an actual subtype, which is not
2720 -- visible outside of the enclosing subprogram.
2722 if Is_Entity_Name (N)
2723 and then not Is_Actual_Subtype (Typ)
2724 then
2725 Insert_Action (N,
2726 Make_Predicate_Check
2727 (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2729 -- If the expression is not an entity it may have side effects,
2730 -- and the following call will create an object declaration for
2731 -- it. We disable checks during its analysis, to prevent an
2732 -- infinite recursion.
2734 -- If the prefix is an aggregate in an assignment, apply the
2735 -- check to the LHS after assignment, rather than create a
2736 -- redundant temporary. This is only necessary in rare cases
2737 -- of array types (including strings) initialized with an
2738 -- aggregate with an "others" clause, either coming from source
2739 -- or generated by an Initialize_Scalars pragma.
2741 elsif Nkind (N) = N_Aggregate
2742 and then Nkind (Parent (N)) = N_Assignment_Statement
2743 then
2744 Insert_Action_After (Parent (N),
2745 Make_Predicate_Check
2746 (Typ, Duplicate_Subexpr (Name (Parent (N)))));
2748 else
2749 Insert_Action (N,
2750 Make_Predicate_Check
2751 (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
2752 end if;
2753 end if;
2754 end if;
2755 end Apply_Predicate_Check;
2757 -----------------------
2758 -- Apply_Range_Check --
2759 -----------------------
2761 procedure Apply_Range_Check
2762 (Ck_Node : Node_Id;
2763 Target_Typ : Entity_Id;
2764 Source_Typ : Entity_Id := Empty)
2766 begin
2767 Apply_Selected_Range_Checks
2768 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2769 end Apply_Range_Check;
2771 ------------------------------
2772 -- Apply_Scalar_Range_Check --
2773 ------------------------------
2775 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2776 -- off if it is already set on.
2778 procedure Apply_Scalar_Range_Check
2779 (Expr : Node_Id;
2780 Target_Typ : Entity_Id;
2781 Source_Typ : Entity_Id := Empty;
2782 Fixed_Int : Boolean := False)
2784 Parnt : constant Node_Id := Parent (Expr);
2785 S_Typ : Entity_Id;
2786 Arr : Node_Id := Empty; -- initialize to prevent warning
2787 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
2789 Is_Subscr_Ref : Boolean;
2790 -- Set true if Expr is a subscript
2792 Is_Unconstrained_Subscr_Ref : Boolean;
2793 -- Set true if Expr is a subscript of an unconstrained array. In this
2794 -- case we do not attempt to do an analysis of the value against the
2795 -- range of the subscript, since we don't know the actual subtype.
2797 Int_Real : Boolean;
2798 -- Set to True if Expr should be regarded as a real value even though
2799 -- the type of Expr might be discrete.
2801 procedure Bad_Value (Warn : Boolean := False);
2802 -- Procedure called if value is determined to be out of range. Warn is
2803 -- True to force a warning instead of an error, even when SPARK_Mode is
2804 -- On.
2806 ---------------
2807 -- Bad_Value --
2808 ---------------
2810 procedure Bad_Value (Warn : Boolean := False) is
2811 begin
2812 Apply_Compile_Time_Constraint_Error
2813 (Expr, "value not in range of}??", CE_Range_Check_Failed,
2814 Ent => Target_Typ,
2815 Typ => Target_Typ,
2816 Warn => Warn);
2817 end Bad_Value;
2819 -- Start of processing for Apply_Scalar_Range_Check
2821 begin
2822 -- Return if check obviously not needed
2825 -- Not needed inside generic
2827 Inside_A_Generic
2829 -- Not needed if previous error
2831 or else Target_Typ = Any_Type
2832 or else Nkind (Expr) = N_Error
2834 -- Not needed for non-scalar type
2836 or else not Is_Scalar_Type (Target_Typ)
2838 -- Not needed if we know node raises CE already
2840 or else Raises_Constraint_Error (Expr)
2841 then
2842 return;
2843 end if;
2845 -- Now, see if checks are suppressed
2847 Is_Subscr_Ref :=
2848 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2850 if Is_Subscr_Ref then
2851 Arr := Prefix (Parnt);
2852 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
2854 if Is_Access_Type (Arr_Typ) then
2855 Arr_Typ := Designated_Type (Arr_Typ);
2856 end if;
2857 end if;
2859 if not Do_Range_Check (Expr) then
2861 -- Subscript reference. Check for Index_Checks suppressed
2863 if Is_Subscr_Ref then
2865 -- Check array type and its base type
2867 if Index_Checks_Suppressed (Arr_Typ)
2868 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
2869 then
2870 return;
2872 -- Check array itself if it is an entity name
2874 elsif Is_Entity_Name (Arr)
2875 and then Index_Checks_Suppressed (Entity (Arr))
2876 then
2877 return;
2879 -- Check expression itself if it is an entity name
2881 elsif Is_Entity_Name (Expr)
2882 and then Index_Checks_Suppressed (Entity (Expr))
2883 then
2884 return;
2885 end if;
2887 -- All other cases, check for Range_Checks suppressed
2889 else
2890 -- Check target type and its base type
2892 if Range_Checks_Suppressed (Target_Typ)
2893 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
2894 then
2895 return;
2897 -- Check expression itself if it is an entity name
2899 elsif Is_Entity_Name (Expr)
2900 and then Range_Checks_Suppressed (Entity (Expr))
2901 then
2902 return;
2904 -- If Expr is part of an assignment statement, then check left
2905 -- side of assignment if it is an entity name.
2907 elsif Nkind (Parnt) = N_Assignment_Statement
2908 and then Is_Entity_Name (Name (Parnt))
2909 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
2910 then
2911 return;
2912 end if;
2913 end if;
2914 end if;
2916 -- Do not set range checks if they are killed
2918 if Nkind (Expr) = N_Unchecked_Type_Conversion
2919 and then Kill_Range_Check (Expr)
2920 then
2921 return;
2922 end if;
2924 -- Do not set range checks for any values from System.Scalar_Values
2925 -- since the whole idea of such values is to avoid checking them.
2927 if Is_Entity_Name (Expr)
2928 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2929 then
2930 return;
2931 end if;
2933 -- Now see if we need a check
2935 if No (Source_Typ) then
2936 S_Typ := Etype (Expr);
2937 else
2938 S_Typ := Source_Typ;
2939 end if;
2941 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2942 return;
2943 end if;
2945 Is_Unconstrained_Subscr_Ref :=
2946 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2948 -- Special checks for floating-point type
2950 if Is_Floating_Point_Type (S_Typ) then
2952 -- Always do a range check if the source type includes infinities and
2953 -- the target type does not include infinities. We do not do this if
2954 -- range checks are killed.
2955 -- If the expression is a literal and the bounds of the type are
2956 -- static constants it may be possible to optimize the check.
2958 if Has_Infinities (S_Typ)
2959 and then not Has_Infinities (Target_Typ)
2960 then
2961 -- If the expression is a literal and the bounds of the type are
2962 -- static constants it may be possible to optimize the check.
2964 if Nkind (Expr) = N_Real_Literal then
2965 declare
2966 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2967 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2969 begin
2970 if Compile_Time_Known_Value (Tlo)
2971 and then Compile_Time_Known_Value (Thi)
2972 and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
2973 and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
2974 then
2975 return;
2976 else
2977 Enable_Range_Check (Expr);
2978 end if;
2979 end;
2981 else
2982 Enable_Range_Check (Expr);
2983 end if;
2984 end if;
2985 end if;
2987 -- Return if we know expression is definitely in the range of the target
2988 -- type as determined by Determine_Range. Right now we only do this for
2989 -- discrete types, and not fixed-point or floating-point types.
2991 -- The additional less-precise tests below catch these cases
2993 -- In GNATprove_Mode, also deal with the case of a conversion from
2994 -- floating-point to integer. It is only possible because analysis
2995 -- in GNATprove rules out the possibility of a NaN or infinite value.
2997 -- Note: skip this if we are given a source_typ, since the point of
2998 -- supplying a Source_Typ is to stop us looking at the expression.
2999 -- We could sharpen this test to be out parameters only ???
3001 if Is_Discrete_Type (Target_Typ)
3002 and then (Is_Discrete_Type (Etype (Expr))
3003 or else (GNATprove_Mode
3004 and then Is_Floating_Point_Type (Etype (Expr))))
3005 and then not Is_Unconstrained_Subscr_Ref
3006 and then No (Source_Typ)
3007 then
3008 declare
3009 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
3010 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
3012 begin
3013 if Compile_Time_Known_Value (Tlo)
3014 and then Compile_Time_Known_Value (Thi)
3015 then
3016 declare
3017 OK : Boolean := False; -- initialize to prevent warning
3018 Hiv : constant Uint := Expr_Value (Thi);
3019 Lov : constant Uint := Expr_Value (Tlo);
3020 Hi : Uint := No_Uint;
3021 Lo : Uint := No_Uint;
3023 begin
3024 -- If range is null, we for sure have a constraint error (we
3025 -- don't even need to look at the value involved, since all
3026 -- possible values will raise CE).
3028 if Lov > Hiv then
3030 -- When SPARK_Mode is On, force a warning instead of
3031 -- an error in that case, as this likely corresponds
3032 -- to deactivated code.
3034 Bad_Value (Warn => SPARK_Mode = On);
3036 -- In GNATprove mode, we enable the range check so that
3037 -- GNATprove will issue a message if it cannot be proved.
3039 if GNATprove_Mode then
3040 Enable_Range_Check (Expr);
3041 end if;
3043 return;
3044 end if;
3046 -- Otherwise determine range of value
3048 if Is_Discrete_Type (Etype (Expr)) then
3049 Determine_Range
3050 (Expr, OK, Lo, Hi, Assume_Valid => True);
3052 -- When converting a float to an integer type, determine the
3053 -- range in real first, and then convert the bounds using
3054 -- UR_To_Uint which correctly rounds away from zero when
3055 -- half way between two integers, as required by normal
3056 -- Ada 95 rounding semantics. It is only possible because
3057 -- analysis in GNATprove rules out the possibility of a NaN
3058 -- or infinite value.
3060 elsif GNATprove_Mode
3061 and then Is_Floating_Point_Type (Etype (Expr))
3062 then
3063 declare
3064 Hir : Ureal;
3065 Lor : Ureal;
3067 begin
3068 Determine_Range_R
3069 (Expr, OK, Lor, Hir, Assume_Valid => True);
3071 if OK then
3072 Lo := UR_To_Uint (Lor);
3073 Hi := UR_To_Uint (Hir);
3074 end if;
3075 end;
3076 end if;
3078 if OK then
3080 -- If definitely in range, all OK
3082 if Lo >= Lov and then Hi <= Hiv then
3083 return;
3085 -- If definitely not in range, warn
3087 elsif Lov > Hi or else Hiv < Lo then
3089 -- Ignore out of range values for System.Priority in
3090 -- CodePeer mode since the actual target compiler may
3091 -- provide a wider range.
3093 if not CodePeer_Mode
3094 or else Target_Typ /= RTE (RE_Priority)
3095 then
3096 Bad_Value;
3097 end if;
3099 return;
3101 -- Otherwise we don't know
3103 else
3104 null;
3105 end if;
3106 end if;
3107 end;
3108 end if;
3109 end;
3110 end if;
3112 Int_Real :=
3113 Is_Floating_Point_Type (S_Typ)
3114 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3116 -- Check if we can determine at compile time whether Expr is in the
3117 -- range of the target type. Note that if S_Typ is within the bounds
3118 -- of Target_Typ then this must be the case. This check is meaningful
3119 -- only if this is not a conversion between integer and real types.
3121 if not Is_Unconstrained_Subscr_Ref
3122 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
3123 and then
3124 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
3126 -- Also check if the expression itself is in the range of the
3127 -- target type if it is a known at compile time value. We skip
3128 -- this test if S_Typ is set since for OUT and IN OUT parameters
3129 -- the Expr itself is not relevant to the checking.
3131 or else
3132 (No (Source_Typ)
3133 and then Is_In_Range (Expr, Target_Typ,
3134 Assume_Valid => True,
3135 Fixed_Int => Fixed_Int,
3136 Int_Real => Int_Real)))
3137 then
3138 return;
3140 elsif Is_Out_Of_Range (Expr, Target_Typ,
3141 Assume_Valid => True,
3142 Fixed_Int => Fixed_Int,
3143 Int_Real => Int_Real)
3144 then
3145 Bad_Value;
3146 return;
3148 -- Floating-point case
3149 -- In the floating-point case, we only do range checks if the type is
3150 -- constrained. We definitely do NOT want range checks for unconstrained
3151 -- types, since we want to have infinities, except when
3152 -- Check_Float_Overflow is set.
3154 elsif Is_Floating_Point_Type (S_Typ) then
3155 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
3156 Enable_Range_Check (Expr);
3157 end if;
3159 -- For all other cases we enable a range check unconditionally
3161 else
3162 Enable_Range_Check (Expr);
3163 return;
3164 end if;
3165 end Apply_Scalar_Range_Check;
3167 ----------------------------------
3168 -- Apply_Selected_Length_Checks --
3169 ----------------------------------
3171 procedure Apply_Selected_Length_Checks
3172 (Ck_Node : Node_Id;
3173 Target_Typ : Entity_Id;
3174 Source_Typ : Entity_Id;
3175 Do_Static : Boolean)
3177 Checks_On : constant Boolean :=
3178 not Index_Checks_Suppressed (Target_Typ)
3179 or else
3180 not Length_Checks_Suppressed (Target_Typ);
3182 Loc : constant Source_Ptr := Sloc (Ck_Node);
3184 Cond : Node_Id;
3185 R_Cno : Node_Id;
3186 R_Result : Check_Result;
3188 begin
3189 -- Only apply checks when generating code
3191 -- Note: this means that we lose some useful warnings if the expander
3192 -- is not active.
3194 if not Expander_Active then
3195 return;
3196 end if;
3198 R_Result :=
3199 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3201 for J in 1 .. 2 loop
3202 R_Cno := R_Result (J);
3203 exit when No (R_Cno);
3205 -- A length check may mention an Itype which is attached to a
3206 -- subsequent node. At the top level in a package this can cause
3207 -- an order-of-elaboration problem, so we make sure that the itype
3208 -- is referenced now.
3210 if Ekind (Current_Scope) = E_Package
3211 and then Is_Compilation_Unit (Current_Scope)
3212 then
3213 Ensure_Defined (Target_Typ, Ck_Node);
3215 if Present (Source_Typ) then
3216 Ensure_Defined (Source_Typ, Ck_Node);
3218 elsif Is_Itype (Etype (Ck_Node)) then
3219 Ensure_Defined (Etype (Ck_Node), Ck_Node);
3220 end if;
3221 end if;
3223 -- If the item is a conditional raise of constraint error, then have
3224 -- a look at what check is being performed and ???
3226 if Nkind (R_Cno) = N_Raise_Constraint_Error
3227 and then Present (Condition (R_Cno))
3228 then
3229 Cond := Condition (R_Cno);
3231 -- Case where node does not now have a dynamic check
3233 if not Has_Dynamic_Length_Check (Ck_Node) then
3235 -- If checks are on, just insert the check
3237 if Checks_On then
3238 Insert_Action (Ck_Node, R_Cno);
3240 if not Do_Static then
3241 Set_Has_Dynamic_Length_Check (Ck_Node);
3242 end if;
3244 -- If checks are off, then analyze the length check after
3245 -- temporarily attaching it to the tree in case the relevant
3246 -- condition can be evaluated at compile time. We still want a
3247 -- compile time warning in this case.
3249 else
3250 Set_Parent (R_Cno, Ck_Node);
3251 Analyze (R_Cno);
3252 end if;
3253 end if;
3255 -- Output a warning if the condition is known to be True
3257 if Is_Entity_Name (Cond)
3258 and then Entity (Cond) = Standard_True
3259 then
3260 Apply_Compile_Time_Constraint_Error
3261 (Ck_Node, "wrong length for array of}??",
3262 CE_Length_Check_Failed,
3263 Ent => Target_Typ,
3264 Typ => Target_Typ);
3266 -- If we were only doing a static check, or if checks are not
3267 -- on, then we want to delete the check, since it is not needed.
3268 -- We do this by replacing the if statement by a null statement
3270 elsif Do_Static or else not Checks_On then
3271 Remove_Warning_Messages (R_Cno);
3272 Rewrite (R_Cno, Make_Null_Statement (Loc));
3273 end if;
3275 else
3276 Install_Static_Check (R_Cno, Loc);
3277 end if;
3278 end loop;
3279 end Apply_Selected_Length_Checks;
3281 ---------------------------------
3282 -- Apply_Selected_Range_Checks --
3283 ---------------------------------
3285 procedure Apply_Selected_Range_Checks
3286 (Ck_Node : Node_Id;
3287 Target_Typ : Entity_Id;
3288 Source_Typ : Entity_Id;
3289 Do_Static : Boolean)
3291 Checks_On : constant Boolean :=
3292 not Index_Checks_Suppressed (Target_Typ)
3293 or else
3294 not Range_Checks_Suppressed (Target_Typ);
3296 Loc : constant Source_Ptr := Sloc (Ck_Node);
3298 Cond : Node_Id;
3299 R_Cno : Node_Id;
3300 R_Result : Check_Result;
3302 begin
3303 -- Only apply checks when generating code. In GNATprove mode, we do not
3304 -- apply the checks, but we still call Selected_Range_Checks to possibly
3305 -- issue errors on SPARK code when a run-time error can be detected at
3306 -- compile time.
3308 if not GNATprove_Mode then
3309 if not Expander_Active or not Checks_On then
3310 return;
3311 end if;
3312 end if;
3314 R_Result :=
3315 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3317 if GNATprove_Mode then
3318 return;
3319 end if;
3321 for J in 1 .. 2 loop
3322 R_Cno := R_Result (J);
3323 exit when No (R_Cno);
3325 -- The range check requires runtime evaluation. Depending on what its
3326 -- triggering condition is, the check may be converted into a compile
3327 -- time constraint check.
3329 if Nkind (R_Cno) = N_Raise_Constraint_Error
3330 and then Present (Condition (R_Cno))
3331 then
3332 Cond := Condition (R_Cno);
3334 -- Insert the range check before the related context. Note that
3335 -- this action analyses the triggering condition.
3337 Insert_Action (Ck_Node, R_Cno);
3339 -- This old code doesn't make sense, why is the context flagged as
3340 -- requiring dynamic range checks now in the middle of generating
3341 -- them ???
3343 if not Do_Static then
3344 Set_Has_Dynamic_Range_Check (Ck_Node);
3345 end if;
3347 -- The triggering condition evaluates to True, the range check
3348 -- can be converted into a compile time constraint check.
3350 if Is_Entity_Name (Cond)
3351 and then Entity (Cond) = Standard_True
3352 then
3353 -- Since an N_Range is technically not an expression, we have
3354 -- to set one of the bounds to C_E and then just flag the
3355 -- N_Range. The warning message will point to the lower bound
3356 -- and complain about a range, which seems OK.
3358 if Nkind (Ck_Node) = N_Range then
3359 Apply_Compile_Time_Constraint_Error
3360 (Low_Bound (Ck_Node),
3361 "static range out of bounds of}??",
3362 CE_Range_Check_Failed,
3363 Ent => Target_Typ,
3364 Typ => Target_Typ);
3366 Set_Raises_Constraint_Error (Ck_Node);
3368 else
3369 Apply_Compile_Time_Constraint_Error
3370 (Ck_Node,
3371 "static value out of range of}??",
3372 CE_Range_Check_Failed,
3373 Ent => Target_Typ,
3374 Typ => Target_Typ);
3375 end if;
3377 -- If we were only doing a static check, or if checks are not
3378 -- on, then we want to delete the check, since it is not needed.
3379 -- We do this by replacing the if statement by a null statement
3381 elsif Do_Static then
3382 Remove_Warning_Messages (R_Cno);
3383 Rewrite (R_Cno, Make_Null_Statement (Loc));
3384 end if;
3386 -- The range check raises Constraint_Error explicitly
3388 else
3389 Install_Static_Check (R_Cno, Loc);
3390 end if;
3391 end loop;
3392 end Apply_Selected_Range_Checks;
3394 -------------------------------
3395 -- Apply_Static_Length_Check --
3396 -------------------------------
3398 procedure Apply_Static_Length_Check
3399 (Expr : Node_Id;
3400 Target_Typ : Entity_Id;
3401 Source_Typ : Entity_Id := Empty)
3403 begin
3404 Apply_Selected_Length_Checks
3405 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3406 end Apply_Static_Length_Check;
3408 -------------------------------------
3409 -- Apply_Subscript_Validity_Checks --
3410 -------------------------------------
3412 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3413 Sub : Node_Id;
3415 begin
3416 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3418 -- Loop through subscripts
3420 Sub := First (Expressions (Expr));
3421 while Present (Sub) loop
3423 -- Check one subscript. Note that we do not worry about enumeration
3424 -- type with holes, since we will convert the value to a Pos value
3425 -- for the subscript, and that convert will do the necessary validity
3426 -- check.
3428 Ensure_Valid (Sub, Holes_OK => True);
3430 -- Move to next subscript
3432 Sub := Next (Sub);
3433 end loop;
3434 end Apply_Subscript_Validity_Checks;
3436 ----------------------------------
3437 -- Apply_Type_Conversion_Checks --
3438 ----------------------------------
3440 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3441 Target_Type : constant Entity_Id := Etype (N);
3442 Target_Base : constant Entity_Id := Base_Type (Target_Type);
3443 Expr : constant Node_Id := Expression (N);
3445 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3446 -- Note: if Etype (Expr) is a private type without discriminants, its
3447 -- full view might have discriminants with defaults, so we need the
3448 -- full view here to retrieve the constraints.
3450 begin
3451 if Inside_A_Generic then
3452 return;
3454 -- Skip these checks if serious errors detected, there are some nasty
3455 -- situations of incomplete trees that blow things up.
3457 elsif Serious_Errors_Detected > 0 then
3458 return;
3460 -- Never generate discriminant checks for Unchecked_Union types
3462 elsif Present (Expr_Type)
3463 and then Is_Unchecked_Union (Expr_Type)
3464 then
3465 return;
3467 -- Scalar type conversions of the form Target_Type (Expr) require a
3468 -- range check if we cannot be sure that Expr is in the base type of
3469 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3470 -- are not quite the same condition from an implementation point of
3471 -- view, but clearly the second includes the first.
3473 elsif Is_Scalar_Type (Target_Type) then
3474 declare
3475 Conv_OK : constant Boolean := Conversion_OK (N);
3476 -- If the Conversion_OK flag on the type conversion is set and no
3477 -- floating-point type is involved in the type conversion then
3478 -- fixed-point values must be read as integral values.
3480 Float_To_Int : constant Boolean :=
3481 Is_Floating_Point_Type (Expr_Type)
3482 and then Is_Integer_Type (Target_Type);
3484 begin
3485 if not Overflow_Checks_Suppressed (Target_Base)
3486 and then not Overflow_Checks_Suppressed (Target_Type)
3487 and then not
3488 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3489 and then not Float_To_Int
3490 then
3491 -- A small optimization: the attribute 'Pos applied to an
3492 -- enumeration type has a known range, even though its type is
3493 -- Universal_Integer. So in numeric conversions it is usually
3494 -- within range of the target integer type. Use the static
3495 -- bounds of the base types to check. Disable this optimization
3496 -- in case of a generic formal discrete type, because we don't
3497 -- necessarily know the upper bound yet.
3499 if Nkind (Expr) = N_Attribute_Reference
3500 and then Attribute_Name (Expr) = Name_Pos
3501 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
3502 and then not Is_Generic_Type (Etype (Prefix (Expr)))
3503 and then Is_Integer_Type (Target_Type)
3504 then
3505 declare
3506 Enum_T : constant Entity_Id :=
3507 Root_Type (Etype (Prefix (Expr)));
3508 Int_T : constant Entity_Id := Base_Type (Target_Type);
3509 Last_I : constant Uint :=
3510 Intval (High_Bound (Scalar_Range (Int_T)));
3511 Last_E : Uint;
3513 begin
3514 -- Character types have no explicit literals, so we use
3515 -- the known number of characters in the type.
3517 if Root_Type (Enum_T) = Standard_Character then
3518 Last_E := UI_From_Int (255);
3520 elsif Enum_T = Standard_Wide_Character
3521 or else Enum_T = Standard_Wide_Wide_Character
3522 then
3523 Last_E := UI_From_Int (65535);
3525 else
3526 Last_E :=
3527 Enumeration_Pos
3528 (Entity (High_Bound (Scalar_Range (Enum_T))));
3529 end if;
3531 if Last_E <= Last_I then
3532 null;
3534 else
3535 Activate_Overflow_Check (N);
3536 end if;
3537 end;
3539 else
3540 Activate_Overflow_Check (N);
3541 end if;
3542 end if;
3544 if not Range_Checks_Suppressed (Target_Type)
3545 and then not Range_Checks_Suppressed (Expr_Type)
3546 then
3547 if Float_To_Int
3548 and then not GNATprove_Mode
3549 then
3550 Apply_Float_Conversion_Check (Expr, Target_Type);
3552 else
3553 -- Conversions involving fixed-point types are expanded
3554 -- separately, and do not need a Range_Check flag, except
3555 -- in GNATprove_Mode, where the explicit constraint check
3556 -- will not be generated.
3558 if GNATprove_Mode
3559 or else not Is_Fixed_Point_Type (Expr_Type)
3560 then
3561 Apply_Scalar_Range_Check
3562 (Expr, Target_Type, Fixed_Int => Conv_OK);
3564 else
3565 Set_Do_Range_Check (Expression (N), False);
3566 end if;
3568 -- If the target type has predicates, we need to indicate
3569 -- the need for a check, even if Determine_Range finds that
3570 -- the value is within bounds. This may be the case e.g for
3571 -- a division with a constant denominator.
3573 if Has_Predicates (Target_Type) then
3574 Enable_Range_Check (Expr);
3575 end if;
3576 end if;
3577 end if;
3578 end;
3580 elsif Comes_From_Source (N)
3581 and then not Discriminant_Checks_Suppressed (Target_Type)
3582 and then Is_Record_Type (Target_Type)
3583 and then Is_Derived_Type (Target_Type)
3584 and then not Is_Tagged_Type (Target_Type)
3585 and then not Is_Constrained (Target_Type)
3586 and then Present (Stored_Constraint (Target_Type))
3587 then
3588 -- An unconstrained derived type may have inherited discriminant.
3589 -- Build an actual discriminant constraint list using the stored
3590 -- constraint, to verify that the expression of the parent type
3591 -- satisfies the constraints imposed by the (unconstrained) derived
3592 -- type. This applies to value conversions, not to view conversions
3593 -- of tagged types.
3595 declare
3596 Loc : constant Source_Ptr := Sloc (N);
3597 Cond : Node_Id;
3598 Constraint : Elmt_Id;
3599 Discr_Value : Node_Id;
3600 Discr : Entity_Id;
3602 New_Constraints : constant Elist_Id := New_Elmt_List;
3603 Old_Constraints : constant Elist_Id :=
3604 Discriminant_Constraint (Expr_Type);
3606 begin
3607 Constraint := First_Elmt (Stored_Constraint (Target_Type));
3608 while Present (Constraint) loop
3609 Discr_Value := Node (Constraint);
3611 if Is_Entity_Name (Discr_Value)
3612 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3613 then
3614 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3616 if Present (Discr)
3617 and then Scope (Discr) = Base_Type (Expr_Type)
3618 then
3619 -- Parent is constrained by new discriminant. Obtain
3620 -- Value of original discriminant in expression. If the
3621 -- new discriminant has been used to constrain more than
3622 -- one of the stored discriminants, this will provide the
3623 -- required consistency check.
3625 Append_Elmt
3626 (Make_Selected_Component (Loc,
3627 Prefix =>
3628 Duplicate_Subexpr_No_Checks
3629 (Expr, Name_Req => True),
3630 Selector_Name =>
3631 Make_Identifier (Loc, Chars (Discr))),
3632 New_Constraints);
3634 else
3635 -- Discriminant of more remote ancestor ???
3637 return;
3638 end if;
3640 -- Derived type definition has an explicit value for this
3641 -- stored discriminant.
3643 else
3644 Append_Elmt
3645 (Duplicate_Subexpr_No_Checks (Discr_Value),
3646 New_Constraints);
3647 end if;
3649 Next_Elmt (Constraint);
3650 end loop;
3652 -- Use the unconstrained expression type to retrieve the
3653 -- discriminants of the parent, and apply momentarily the
3654 -- discriminant constraint synthesized above.
3656 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3657 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3658 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3660 Insert_Action (N,
3661 Make_Raise_Constraint_Error (Loc,
3662 Condition => Cond,
3663 Reason => CE_Discriminant_Check_Failed));
3664 end;
3666 -- For arrays, checks are set now, but conversions are applied during
3667 -- expansion, to take into accounts changes of representation. The
3668 -- checks become range checks on the base type or length checks on the
3669 -- subtype, depending on whether the target type is unconstrained or
3670 -- constrained. Note that the range check is put on the expression of a
3671 -- type conversion, while the length check is put on the type conversion
3672 -- itself.
3674 elsif Is_Array_Type (Target_Type) then
3675 if Is_Constrained (Target_Type) then
3676 Set_Do_Length_Check (N);
3677 else
3678 Set_Do_Range_Check (Expr);
3679 end if;
3680 end if;
3681 end Apply_Type_Conversion_Checks;
3683 ----------------------------------------------
3684 -- Apply_Universal_Integer_Attribute_Checks --
3685 ----------------------------------------------
3687 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3688 Loc : constant Source_Ptr := Sloc (N);
3689 Typ : constant Entity_Id := Etype (N);
3691 begin
3692 if Inside_A_Generic then
3693 return;
3695 -- Nothing to do if checks are suppressed
3697 elsif Range_Checks_Suppressed (Typ)
3698 and then Overflow_Checks_Suppressed (Typ)
3699 then
3700 return;
3702 -- Nothing to do if the attribute does not come from source. The
3703 -- internal attributes we generate of this type do not need checks,
3704 -- and furthermore the attempt to check them causes some circular
3705 -- elaboration orders when dealing with packed types.
3707 elsif not Comes_From_Source (N) then
3708 return;
3710 -- If the prefix is a selected component that depends on a discriminant
3711 -- the check may improperly expose a discriminant instead of using
3712 -- the bounds of the object itself. Set the type of the attribute to
3713 -- the base type of the context, so that a check will be imposed when
3714 -- needed (e.g. if the node appears as an index).
3716 elsif Nkind (Prefix (N)) = N_Selected_Component
3717 and then Ekind (Typ) = E_Signed_Integer_Subtype
3718 and then Depends_On_Discriminant (Scalar_Range (Typ))
3719 then
3720 Set_Etype (N, Base_Type (Typ));
3722 -- Otherwise, replace the attribute node with a type conversion node
3723 -- whose expression is the attribute, retyped to universal integer, and
3724 -- whose subtype mark is the target type. The call to analyze this
3725 -- conversion will set range and overflow checks as required for proper
3726 -- detection of an out of range value.
3728 else
3729 Set_Etype (N, Universal_Integer);
3730 Set_Analyzed (N, True);
3732 Rewrite (N,
3733 Make_Type_Conversion (Loc,
3734 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3735 Expression => Relocate_Node (N)));
3737 Analyze_And_Resolve (N, Typ);
3738 return;
3739 end if;
3740 end Apply_Universal_Integer_Attribute_Checks;
3742 -------------------------------------
3743 -- Atomic_Synchronization_Disabled --
3744 -------------------------------------
3746 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3747 -- using a bogus check called Atomic_Synchronization. This is to make it
3748 -- more convenient to get exactly the same semantics as [Un]Suppress.
3750 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3751 begin
3752 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3753 -- looks enabled, since it is never disabled.
3755 if Debug_Flag_Dot_E then
3756 return False;
3758 -- If debug flag d.d is set then always return True, i.e. all atomic
3759 -- sync looks disabled, since it always tests True.
3761 elsif Debug_Flag_Dot_D then
3762 return True;
3764 -- If entity present, then check result for that entity
3766 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3767 return Is_Check_Suppressed (E, Atomic_Synchronization);
3769 -- Otherwise result depends on current scope setting
3771 else
3772 return Scope_Suppress.Suppress (Atomic_Synchronization);
3773 end if;
3774 end Atomic_Synchronization_Disabled;
3776 -------------------------------
3777 -- Build_Discriminant_Checks --
3778 -------------------------------
3780 function Build_Discriminant_Checks
3781 (N : Node_Id;
3782 T_Typ : Entity_Id) return Node_Id
3784 Loc : constant Source_Ptr := Sloc (N);
3785 Cond : Node_Id;
3786 Disc : Elmt_Id;
3787 Disc_Ent : Entity_Id;
3788 Dref : Node_Id;
3789 Dval : Node_Id;
3791 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3793 --------------------------------
3794 -- Aggregate_Discriminant_Val --
3795 --------------------------------
3797 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3798 Assoc : Node_Id;
3800 begin
3801 -- The aggregate has been normalized with named associations. We use
3802 -- the Chars field to locate the discriminant to take into account
3803 -- discriminants in derived types, which carry the same name as those
3804 -- in the parent.
3806 Assoc := First (Component_Associations (N));
3807 while Present (Assoc) loop
3808 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3809 return Expression (Assoc);
3810 else
3811 Next (Assoc);
3812 end if;
3813 end loop;
3815 -- Discriminant must have been found in the loop above
3817 raise Program_Error;
3818 end Aggregate_Discriminant_Val;
3820 -- Start of processing for Build_Discriminant_Checks
3822 begin
3823 -- Loop through discriminants evolving the condition
3825 Cond := Empty;
3826 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3828 -- For a fully private type, use the discriminants of the parent type
3830 if Is_Private_Type (T_Typ)
3831 and then No (Full_View (T_Typ))
3832 then
3833 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3834 else
3835 Disc_Ent := First_Discriminant (T_Typ);
3836 end if;
3838 while Present (Disc) loop
3839 Dval := Node (Disc);
3841 if Nkind (Dval) = N_Identifier
3842 and then Ekind (Entity (Dval)) = E_Discriminant
3843 then
3844 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3845 else
3846 Dval := Duplicate_Subexpr_No_Checks (Dval);
3847 end if;
3849 -- If we have an Unchecked_Union node, we can infer the discriminants
3850 -- of the node.
3852 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3853 Dref := New_Copy (
3854 Get_Discriminant_Value (
3855 First_Discriminant (T_Typ),
3856 T_Typ,
3857 Stored_Constraint (T_Typ)));
3859 elsif Nkind (N) = N_Aggregate then
3860 Dref :=
3861 Duplicate_Subexpr_No_Checks
3862 (Aggregate_Discriminant_Val (Disc_Ent));
3864 else
3865 Dref :=
3866 Make_Selected_Component (Loc,
3867 Prefix =>
3868 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
3869 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
3871 Set_Is_In_Discriminant_Check (Dref);
3872 end if;
3874 Evolve_Or_Else (Cond,
3875 Make_Op_Ne (Loc,
3876 Left_Opnd => Dref,
3877 Right_Opnd => Dval));
3879 Next_Elmt (Disc);
3880 Next_Discriminant (Disc_Ent);
3881 end loop;
3883 return Cond;
3884 end Build_Discriminant_Checks;
3886 ------------------
3887 -- Check_Needed --
3888 ------------------
3890 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3891 N : Node_Id;
3892 P : Node_Id;
3893 K : Node_Kind;
3894 L : Node_Id;
3895 R : Node_Id;
3897 function Left_Expression (Op : Node_Id) return Node_Id;
3898 -- Return the relevant expression from the left operand of the given
3899 -- short circuit form: this is LO itself, except if LO is a qualified
3900 -- expression, a type conversion, or an expression with actions, in
3901 -- which case this is Left_Expression (Expression (LO)).
3903 ---------------------
3904 -- Left_Expression --
3905 ---------------------
3907 function Left_Expression (Op : Node_Id) return Node_Id is
3908 LE : Node_Id := Left_Opnd (Op);
3909 begin
3910 while Nkind_In (LE, N_Qualified_Expression,
3911 N_Type_Conversion,
3912 N_Expression_With_Actions)
3913 loop
3914 LE := Expression (LE);
3915 end loop;
3917 return LE;
3918 end Left_Expression;
3920 -- Start of processing for Check_Needed
3922 begin
3923 -- Always check if not simple entity
3925 if Nkind (Nod) not in N_Has_Entity
3926 or else not Comes_From_Source (Nod)
3927 then
3928 return True;
3929 end if;
3931 -- Look up tree for short circuit
3933 N := Nod;
3934 loop
3935 P := Parent (N);
3936 K := Nkind (P);
3938 -- Done if out of subexpression (note that we allow generated stuff
3939 -- such as itype declarations in this context, to keep the loop going
3940 -- since we may well have generated such stuff in complex situations.
3941 -- Also done if no parent (probably an error condition, but no point
3942 -- in behaving nasty if we find it).
3944 if No (P)
3945 or else (K not in N_Subexpr and then Comes_From_Source (P))
3946 then
3947 return True;
3949 -- Or/Or Else case, where test is part of the right operand, or is
3950 -- part of one of the actions associated with the right operand, and
3951 -- the left operand is an equality test.
3953 elsif K = N_Op_Or then
3954 exit when N = Right_Opnd (P)
3955 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3957 elsif K = N_Or_Else then
3958 exit when (N = Right_Opnd (P)
3959 or else
3960 (Is_List_Member (N)
3961 and then List_Containing (N) = Actions (P)))
3962 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3964 -- Similar test for the And/And then case, where the left operand
3965 -- is an inequality test.
3967 elsif K = N_Op_And then
3968 exit when N = Right_Opnd (P)
3969 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3971 elsif K = N_And_Then then
3972 exit when (N = Right_Opnd (P)
3973 or else
3974 (Is_List_Member (N)
3975 and then List_Containing (N) = Actions (P)))
3976 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3977 end if;
3979 N := P;
3980 end loop;
3982 -- If we fall through the loop, then we have a conditional with an
3983 -- appropriate test as its left operand, so look further.
3985 L := Left_Expression (P);
3987 -- L is an "=" or "/=" operator: extract its operands
3989 R := Right_Opnd (L);
3990 L := Left_Opnd (L);
3992 -- Left operand of test must match original variable
3994 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
3995 return True;
3996 end if;
3998 -- Right operand of test must be key value (zero or null)
4000 case Check is
4001 when Access_Check =>
4002 if not Known_Null (R) then
4003 return True;
4004 end if;
4006 when Division_Check =>
4007 if not Compile_Time_Known_Value (R)
4008 or else Expr_Value (R) /= Uint_0
4009 then
4010 return True;
4011 end if;
4013 when others =>
4014 raise Program_Error;
4015 end case;
4017 -- Here we have the optimizable case, warn if not short-circuited
4019 if K = N_Op_And or else K = N_Op_Or then
4020 Error_Msg_Warn := SPARK_Mode /= On;
4022 case Check is
4023 when Access_Check =>
4024 if GNATprove_Mode then
4025 Error_Msg_N
4026 ("Constraint_Error might have been raised (access check)",
4027 Parent (Nod));
4028 else
4029 Error_Msg_N
4030 ("Constraint_Error may be raised (access check)??",
4031 Parent (Nod));
4032 end if;
4034 when Division_Check =>
4035 if GNATprove_Mode then
4036 Error_Msg_N
4037 ("Constraint_Error might have been raised (zero divide)",
4038 Parent (Nod));
4039 else
4040 Error_Msg_N
4041 ("Constraint_Error may be raised (zero divide)??",
4042 Parent (Nod));
4043 end if;
4045 when others =>
4046 raise Program_Error;
4047 end case;
4049 if K = N_Op_And then
4050 Error_Msg_N -- CODEFIX
4051 ("use `AND THEN` instead of AND??", P);
4052 else
4053 Error_Msg_N -- CODEFIX
4054 ("use `OR ELSE` instead of OR??", P);
4055 end if;
4057 -- If not short-circuited, we need the check
4059 return True;
4061 -- If short-circuited, we can omit the check
4063 else
4064 return False;
4065 end if;
4066 end Check_Needed;
4068 -----------------------------------
4069 -- Check_Valid_Lvalue_Subscripts --
4070 -----------------------------------
4072 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4073 begin
4074 -- Skip this if range checks are suppressed
4076 if Range_Checks_Suppressed (Etype (Expr)) then
4077 return;
4079 -- Only do this check for expressions that come from source. We assume
4080 -- that expander generated assignments explicitly include any necessary
4081 -- checks. Note that this is not just an optimization, it avoids
4082 -- infinite recursions.
4084 elsif not Comes_From_Source (Expr) then
4085 return;
4087 -- For a selected component, check the prefix
4089 elsif Nkind (Expr) = N_Selected_Component then
4090 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4091 return;
4093 -- Case of indexed component
4095 elsif Nkind (Expr) = N_Indexed_Component then
4096 Apply_Subscript_Validity_Checks (Expr);
4098 -- Prefix may itself be or contain an indexed component, and these
4099 -- subscripts need checking as well.
4101 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4102 end if;
4103 end Check_Valid_Lvalue_Subscripts;
4105 ----------------------------------
4106 -- Null_Exclusion_Static_Checks --
4107 ----------------------------------
4109 procedure Null_Exclusion_Static_Checks
4110 (N : Node_Id;
4111 Comp : Node_Id := Empty;
4112 Array_Comp : Boolean := False)
4114 Has_Null : constant Boolean := Has_Null_Exclusion (N);
4115 Kind : constant Node_Kind := Nkind (N);
4116 Error_Nod : Node_Id;
4117 Expr : Node_Id;
4118 Typ : Entity_Id;
4120 begin
4121 pragma Assert
4122 (Nkind_In (Kind, N_Component_Declaration,
4123 N_Discriminant_Specification,
4124 N_Function_Specification,
4125 N_Object_Declaration,
4126 N_Parameter_Specification));
4128 if Kind = N_Function_Specification then
4129 Typ := Etype (Defining_Entity (N));
4130 else
4131 Typ := Etype (Defining_Identifier (N));
4132 end if;
4134 case Kind is
4135 when N_Component_Declaration =>
4136 if Present (Access_Definition (Component_Definition (N))) then
4137 Error_Nod := Component_Definition (N);
4138 else
4139 Error_Nod := Subtype_Indication (Component_Definition (N));
4140 end if;
4142 when N_Discriminant_Specification =>
4143 Error_Nod := Discriminant_Type (N);
4145 when N_Function_Specification =>
4146 Error_Nod := Result_Definition (N);
4148 when N_Object_Declaration =>
4149 Error_Nod := Object_Definition (N);
4151 when N_Parameter_Specification =>
4152 Error_Nod := Parameter_Type (N);
4154 when others =>
4155 raise Program_Error;
4156 end case;
4158 if Has_Null then
4160 -- Enforce legality rule 3.10 (13): A null exclusion can only be
4161 -- applied to an access [sub]type.
4163 if not Is_Access_Type (Typ) then
4164 Error_Msg_N
4165 ("`NOT NULL` allowed only for an access type", Error_Nod);
4167 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
4168 -- be applied to a [sub]type that does not exclude null already.
4170 elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
4171 Error_Msg_NE
4172 ("`NOT NULL` not allowed (& already excludes null)",
4173 Error_Nod, Typ);
4174 end if;
4175 end if;
4177 -- Check that null-excluding objects are always initialized, except for
4178 -- deferred constants, for which the expression will appear in the full
4179 -- declaration.
4181 if Kind = N_Object_Declaration
4182 and then No (Expression (N))
4183 and then not Constant_Present (N)
4184 and then not No_Initialization (N)
4185 then
4186 if Present (Comp) then
4188 -- Specialize the warning message to indicate that we are dealing
4189 -- with an uninitialized composite object that has a defaulted
4190 -- null-excluding component.
4192 Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4193 Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4195 Discard_Node
4196 (Compile_Time_Constraint_Error
4197 (N => N,
4198 Msg =>
4199 "(Ada 2005) null-excluding component % of object % must "
4200 & "be initialized??",
4201 Ent => Defining_Identifier (Comp)));
4203 -- This is a case of an array with null-excluding components, so
4204 -- indicate that in the warning.
4206 elsif Array_Comp then
4207 Discard_Node
4208 (Compile_Time_Constraint_Error
4209 (N => N,
4210 Msg =>
4211 "(Ada 2005) null-excluding array components must "
4212 & "be initialized??",
4213 Ent => Defining_Identifier (N)));
4215 -- Normal case of object of a null-excluding access type
4217 else
4218 -- Add an expression that assigns null. This node is needed by
4219 -- Apply_Compile_Time_Constraint_Error, which will replace this
4220 -- with a Constraint_Error node.
4222 Set_Expression (N, Make_Null (Sloc (N)));
4223 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4225 Apply_Compile_Time_Constraint_Error
4226 (N => Expression (N),
4227 Msg =>
4228 "(Ada 2005) null-excluding objects must be initialized??",
4229 Reason => CE_Null_Not_Allowed);
4230 end if;
4231 end if;
4233 -- Check that a null-excluding component, formal or object is not being
4234 -- assigned a null value. Otherwise generate a warning message and
4235 -- replace Expression (N) by an N_Constraint_Error node.
4237 if Kind /= N_Function_Specification then
4238 Expr := Expression (N);
4240 if Present (Expr) and then Known_Null (Expr) then
4241 case Kind is
4242 when N_Component_Declaration
4243 | N_Discriminant_Specification
4245 Apply_Compile_Time_Constraint_Error
4246 (N => Expr,
4247 Msg =>
4248 "(Ada 2005) null not allowed in null-excluding "
4249 & "components??",
4250 Reason => CE_Null_Not_Allowed);
4252 when N_Object_Declaration =>
4253 Apply_Compile_Time_Constraint_Error
4254 (N => Expr,
4255 Msg =>
4256 "(Ada 2005) null not allowed in null-excluding "
4257 & "objects??",
4258 Reason => CE_Null_Not_Allowed);
4260 when N_Parameter_Specification =>
4261 Apply_Compile_Time_Constraint_Error
4262 (N => Expr,
4263 Msg =>
4264 "(Ada 2005) null not allowed in null-excluding "
4265 & "formals??",
4266 Reason => CE_Null_Not_Allowed);
4268 when others =>
4269 null;
4270 end case;
4271 end if;
4272 end if;
4273 end Null_Exclusion_Static_Checks;
4275 ----------------------------------
4276 -- Conditional_Statements_Begin --
4277 ----------------------------------
4279 procedure Conditional_Statements_Begin is
4280 begin
4281 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4283 -- If stack overflows, kill all checks, that way we know to simply reset
4284 -- the number of saved checks to zero on return. This should never occur
4285 -- in practice.
4287 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4288 Kill_All_Checks;
4290 -- In the normal case, we just make a new stack entry saving the current
4291 -- number of saved checks for a later restore.
4293 else
4294 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4296 if Debug_Flag_CC then
4297 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4298 Num_Saved_Checks);
4299 end if;
4300 end if;
4301 end Conditional_Statements_Begin;
4303 --------------------------------
4304 -- Conditional_Statements_End --
4305 --------------------------------
4307 procedure Conditional_Statements_End is
4308 begin
4309 pragma Assert (Saved_Checks_TOS > 0);
4311 -- If the saved checks stack overflowed, then we killed all checks, so
4312 -- setting the number of saved checks back to zero is correct. This
4313 -- should never occur in practice.
4315 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4316 Num_Saved_Checks := 0;
4318 -- In the normal case, restore the number of saved checks from the top
4319 -- stack entry.
4321 else
4322 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
4324 if Debug_Flag_CC then
4325 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4326 Num_Saved_Checks);
4327 end if;
4328 end if;
4330 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4331 end Conditional_Statements_End;
4333 -------------------------
4334 -- Convert_From_Bignum --
4335 -------------------------
4337 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4338 Loc : constant Source_Ptr := Sloc (N);
4340 begin
4341 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4343 -- Construct call From Bignum
4345 return
4346 Make_Function_Call (Loc,
4347 Name =>
4348 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4349 Parameter_Associations => New_List (Relocate_Node (N)));
4350 end Convert_From_Bignum;
4352 -----------------------
4353 -- Convert_To_Bignum --
4354 -----------------------
4356 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4357 Loc : constant Source_Ptr := Sloc (N);
4359 begin
4360 -- Nothing to do if Bignum already except call Relocate_Node
4362 if Is_RTE (Etype (N), RE_Bignum) then
4363 return Relocate_Node (N);
4365 -- Otherwise construct call to To_Bignum, converting the operand to the
4366 -- required Long_Long_Integer form.
4368 else
4369 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4370 return
4371 Make_Function_Call (Loc,
4372 Name =>
4373 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4374 Parameter_Associations => New_List (
4375 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4376 end if;
4377 end Convert_To_Bignum;
4379 ---------------------
4380 -- Determine_Range --
4381 ---------------------
4383 Cache_Size : constant := 2 ** 10;
4384 type Cache_Index is range 0 .. Cache_Size - 1;
4385 -- Determine size of below cache (power of 2 is more efficient)
4387 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4388 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4389 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4390 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4391 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4392 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
4393 -- The above arrays are used to implement a small direct cache for
4394 -- Determine_Range and Determine_Range_R calls. Because of the way these
4395 -- subprograms recursively traces subexpressions, and because overflow
4396 -- checking calls the routine on the way up the tree, a quadratic behavior
4397 -- can otherwise be encountered in large expressions. The cache entry for
4398 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4399 -- by checking the actual node value stored there. The Range_Cache_V array
4400 -- records the setting of Assume_Valid for the cache entry.
4402 procedure Determine_Range
4403 (N : Node_Id;
4404 OK : out Boolean;
4405 Lo : out Uint;
4406 Hi : out Uint;
4407 Assume_Valid : Boolean := False)
4409 Typ : Entity_Id := Etype (N);
4410 -- Type to use, may get reset to base type for possibly invalid entity
4412 Lo_Left : Uint;
4413 Hi_Left : Uint;
4414 -- Lo and Hi bounds of left operand
4416 Lo_Right : Uint := No_Uint;
4417 Hi_Right : Uint := No_Uint;
4418 -- Lo and Hi bounds of right (or only) operand
4420 Bound : Node_Id;
4421 -- Temp variable used to hold a bound node
4423 Hbound : Uint;
4424 -- High bound of base type of expression
4426 Lor : Uint;
4427 Hir : Uint;
4428 -- Refined values for low and high bounds, after tightening
4430 OK1 : Boolean;
4431 -- Used in lower level calls to indicate if call succeeded
4433 Cindex : Cache_Index;
4434 -- Used to search cache
4436 Btyp : Entity_Id;
4437 -- Base type
4439 function OK_Operands return Boolean;
4440 -- Used for binary operators. Determines the ranges of the left and
4441 -- right operands, and if they are both OK, returns True, and puts
4442 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4444 -----------------
4445 -- OK_Operands --
4446 -----------------
4448 function OK_Operands return Boolean is
4449 begin
4450 Determine_Range
4451 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4453 if not OK1 then
4454 return False;
4455 end if;
4457 Determine_Range
4458 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4459 return OK1;
4460 end OK_Operands;
4462 -- Start of processing for Determine_Range
4464 begin
4465 -- Prevent junk warnings by initializing range variables
4467 Lo := No_Uint;
4468 Hi := No_Uint;
4469 Lor := No_Uint;
4470 Hir := No_Uint;
4472 -- For temporary constants internally generated to remove side effects
4473 -- we must use the corresponding expression to determine the range of
4474 -- the expression. But note that the expander can also generate
4475 -- constants in other cases, including deferred constants.
4477 if Is_Entity_Name (N)
4478 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4479 and then Ekind (Entity (N)) = E_Constant
4480 and then Is_Internal_Name (Chars (Entity (N)))
4481 then
4482 if Present (Expression (Parent (Entity (N)))) then
4483 Determine_Range
4484 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4486 elsif Present (Full_View (Entity (N))) then
4487 Determine_Range
4488 (Expression (Parent (Full_View (Entity (N)))),
4489 OK, Lo, Hi, Assume_Valid);
4491 else
4492 OK := False;
4493 end if;
4494 return;
4495 end if;
4497 -- If type is not defined, we can't determine its range
4499 if No (Typ)
4501 -- We don't deal with anything except discrete types
4503 or else not Is_Discrete_Type (Typ)
4505 -- Don't deal with enumerated types with non-standard representation
4507 or else (Is_Enumeration_Type (Typ)
4508 and then Present (Enum_Pos_To_Rep (Base_Type (Typ))))
4510 -- Ignore type for which an error has been posted, since range in
4511 -- this case may well be a bogosity deriving from the error. Also
4512 -- ignore if error posted on the reference node.
4514 or else Error_Posted (N) or else Error_Posted (Typ)
4515 then
4516 OK := False;
4517 return;
4518 end if;
4520 -- For all other cases, we can determine the range
4522 OK := True;
4524 -- If value is compile time known, then the possible range is the one
4525 -- value that we know this expression definitely has.
4527 if Compile_Time_Known_Value (N) then
4528 Lo := Expr_Value (N);
4529 Hi := Lo;
4530 return;
4531 end if;
4533 -- Return if already in the cache
4535 Cindex := Cache_Index (N mod Cache_Size);
4537 if Determine_Range_Cache_N (Cindex) = N
4538 and then
4539 Determine_Range_Cache_V (Cindex) = Assume_Valid
4540 then
4541 Lo := Determine_Range_Cache_Lo (Cindex);
4542 Hi := Determine_Range_Cache_Hi (Cindex);
4543 return;
4544 end if;
4546 -- Otherwise, start by finding the bounds of the type of the expression,
4547 -- the value cannot be outside this range (if it is, then we have an
4548 -- overflow situation, which is a separate check, we are talking here
4549 -- only about the expression value).
4551 -- First a check, never try to find the bounds of a generic type, since
4552 -- these bounds are always junk values, and it is only valid to look at
4553 -- the bounds in an instance.
4555 if Is_Generic_Type (Typ) then
4556 OK := False;
4557 return;
4558 end if;
4560 -- First step, change to use base type unless we know the value is valid
4562 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4563 or else Assume_No_Invalid_Values
4564 or else Assume_Valid
4565 then
4566 -- If this is a known valid constant with a nonstatic value, it may
4567 -- have inherited a narrower subtype from its initial value; use this
4568 -- saved subtype (see sem_ch3.adb).
4570 if Is_Entity_Name (N)
4571 and then Ekind (Entity (N)) = E_Constant
4572 and then Present (Actual_Subtype (Entity (N)))
4573 then
4574 Typ := Actual_Subtype (Entity (N));
4575 end if;
4577 null;
4578 else
4579 Typ := Underlying_Type (Base_Type (Typ));
4580 end if;
4582 -- Retrieve the base type. Handle the case where the base type is a
4583 -- private enumeration type.
4585 Btyp := Base_Type (Typ);
4587 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4588 Btyp := Full_View (Btyp);
4589 end if;
4591 -- We use the actual bound unless it is dynamic, in which case use the
4592 -- corresponding base type bound if possible. If we can't get a bound
4593 -- then we figure we can't determine the range (a peculiar case, that
4594 -- perhaps cannot happen, but there is no point in bombing in this
4595 -- optimization circuit.
4597 -- First the low bound
4599 Bound := Type_Low_Bound (Typ);
4601 if Compile_Time_Known_Value (Bound) then
4602 Lo := Expr_Value (Bound);
4604 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4605 Lo := Expr_Value (Type_Low_Bound (Btyp));
4607 else
4608 OK := False;
4609 return;
4610 end if;
4612 -- Now the high bound
4614 Bound := Type_High_Bound (Typ);
4616 -- We need the high bound of the base type later on, and this should
4617 -- always be compile time known. Again, it is not clear that this
4618 -- can ever be false, but no point in bombing.
4620 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4621 Hbound := Expr_Value (Type_High_Bound (Btyp));
4622 Hi := Hbound;
4624 else
4625 OK := False;
4626 return;
4627 end if;
4629 -- If we have a static subtype, then that may have a tighter bound so
4630 -- use the upper bound of the subtype instead in this case.
4632 if Compile_Time_Known_Value (Bound) then
4633 Hi := Expr_Value (Bound);
4634 end if;
4636 -- We may be able to refine this value in certain situations. If any
4637 -- refinement is possible, then Lor and Hir are set to possibly tighter
4638 -- bounds, and OK1 is set to True.
4640 case Nkind (N) is
4642 -- For unary plus, result is limited by range of operand
4644 when N_Op_Plus =>
4645 Determine_Range
4646 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4648 -- For unary minus, determine range of operand, and negate it
4650 when N_Op_Minus =>
4651 Determine_Range
4652 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4654 if OK1 then
4655 Lor := -Hi_Right;
4656 Hir := -Lo_Right;
4657 end if;
4659 -- For binary addition, get range of each operand and do the
4660 -- addition to get the result range.
4662 when N_Op_Add =>
4663 if OK_Operands then
4664 Lor := Lo_Left + Lo_Right;
4665 Hir := Hi_Left + Hi_Right;
4666 end if;
4668 -- Division is tricky. The only case we consider is where the right
4669 -- operand is a positive constant, and in this case we simply divide
4670 -- the bounds of the left operand
4672 when N_Op_Divide =>
4673 if OK_Operands then
4674 if Lo_Right = Hi_Right
4675 and then Lo_Right > 0
4676 then
4677 Lor := Lo_Left / Lo_Right;
4678 Hir := Hi_Left / Lo_Right;
4679 else
4680 OK1 := False;
4681 end if;
4682 end if;
4684 -- For binary subtraction, get range of each operand and do the worst
4685 -- case subtraction to get the result range.
4687 when N_Op_Subtract =>
4688 if OK_Operands then
4689 Lor := Lo_Left - Hi_Right;
4690 Hir := Hi_Left - Lo_Right;
4691 end if;
4693 -- For MOD, if right operand is a positive constant, then result must
4694 -- be in the allowable range of mod results.
4696 when N_Op_Mod =>
4697 if OK_Operands then
4698 if Lo_Right = Hi_Right
4699 and then Lo_Right /= 0
4700 then
4701 if Lo_Right > 0 then
4702 Lor := Uint_0;
4703 Hir := Lo_Right - 1;
4705 else -- Lo_Right < 0
4706 Lor := Lo_Right + 1;
4707 Hir := Uint_0;
4708 end if;
4710 else
4711 OK1 := False;
4712 end if;
4713 end if;
4715 -- For REM, if right operand is a positive constant, then result must
4716 -- be in the allowable range of mod results.
4718 when N_Op_Rem =>
4719 if OK_Operands then
4720 if Lo_Right = Hi_Right and then Lo_Right /= 0 then
4721 declare
4722 Dval : constant Uint := (abs Lo_Right) - 1;
4724 begin
4725 -- The sign of the result depends on the sign of the
4726 -- dividend (but not on the sign of the divisor, hence
4727 -- the abs operation above).
4729 if Lo_Left < 0 then
4730 Lor := -Dval;
4731 else
4732 Lor := Uint_0;
4733 end if;
4735 if Hi_Left < 0 then
4736 Hir := Uint_0;
4737 else
4738 Hir := Dval;
4739 end if;
4740 end;
4742 else
4743 OK1 := False;
4744 end if;
4745 end if;
4747 -- Attribute reference cases
4749 when N_Attribute_Reference =>
4750 case Attribute_Name (N) is
4752 -- For Pos/Val attributes, we can refine the range using the
4753 -- possible range of values of the attribute expression.
4755 when Name_Pos
4756 | Name_Val
4758 Determine_Range
4759 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
4761 -- For Length attribute, use the bounds of the corresponding
4762 -- index type to refine the range.
4764 when Name_Length =>
4765 declare
4766 Atyp : Entity_Id := Etype (Prefix (N));
4767 Inum : Nat;
4768 Indx : Node_Id;
4770 LL, LU : Uint;
4771 UL, UU : Uint;
4773 begin
4774 if Is_Access_Type (Atyp) then
4775 Atyp := Designated_Type (Atyp);
4776 end if;
4778 -- For string literal, we know exact value
4780 if Ekind (Atyp) = E_String_Literal_Subtype then
4781 OK := True;
4782 Lo := String_Literal_Length (Atyp);
4783 Hi := String_Literal_Length (Atyp);
4784 return;
4785 end if;
4787 -- Otherwise check for expression given
4789 if No (Expressions (N)) then
4790 Inum := 1;
4791 else
4792 Inum :=
4793 UI_To_Int (Expr_Value (First (Expressions (N))));
4794 end if;
4796 Indx := First_Index (Atyp);
4797 for J in 2 .. Inum loop
4798 Indx := Next_Index (Indx);
4799 end loop;
4801 -- If the index type is a formal type or derived from
4802 -- one, the bounds are not static.
4804 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4805 OK := False;
4806 return;
4807 end if;
4809 Determine_Range
4810 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4811 Assume_Valid);
4813 if OK1 then
4814 Determine_Range
4815 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4816 Assume_Valid);
4818 if OK1 then
4820 -- The maximum value for Length is the biggest
4821 -- possible gap between the values of the bounds.
4822 -- But of course, this value cannot be negative.
4824 Hir := UI_Max (Uint_0, UU - LL + 1);
4826 -- For constrained arrays, the minimum value for
4827 -- Length is taken from the actual value of the
4828 -- bounds, since the index will be exactly of this
4829 -- subtype.
4831 if Is_Constrained (Atyp) then
4832 Lor := UI_Max (Uint_0, UL - LU + 1);
4834 -- For an unconstrained array, the minimum value
4835 -- for length is always zero.
4837 else
4838 Lor := Uint_0;
4839 end if;
4840 end if;
4841 end if;
4842 end;
4844 -- No special handling for other attributes
4845 -- Probably more opportunities exist here???
4847 when others =>
4848 OK1 := False;
4850 end case;
4852 when N_Type_Conversion =>
4854 -- For type conversion from one discrete type to another, we can
4855 -- refine the range using the converted value.
4857 if Is_Discrete_Type (Etype (Expression (N))) then
4858 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4860 -- When converting a float to an integer type, determine the range
4861 -- in real first, and then convert the bounds using UR_To_Uint
4862 -- which correctly rounds away from zero when half way between two
4863 -- integers, as required by normal Ada 95 rounding semantics. It
4864 -- is only possible because analysis in GNATprove rules out the
4865 -- possibility of a NaN or infinite value.
4867 elsif GNATprove_Mode
4868 and then Is_Floating_Point_Type (Etype (Expression (N)))
4869 then
4870 declare
4871 Lor_Real, Hir_Real : Ureal;
4872 begin
4873 Determine_Range_R (Expression (N), OK1, Lor_Real, Hir_Real,
4874 Assume_Valid);
4876 if OK1 then
4877 Lor := UR_To_Uint (Lor_Real);
4878 Hir := UR_To_Uint (Hir_Real);
4879 end if;
4880 end;
4882 else
4883 OK1 := False;
4884 end if;
4886 -- Nothing special to do for all other expression kinds
4888 when others =>
4889 OK1 := False;
4890 Lor := No_Uint;
4891 Hir := No_Uint;
4892 end case;
4894 -- At this stage, if OK1 is true, then we know that the actual result of
4895 -- the computed expression is in the range Lor .. Hir. We can use this
4896 -- to restrict the possible range of results.
4898 if OK1 then
4900 -- If the refined value of the low bound is greater than the type
4901 -- low bound, then reset it to the more restrictive value. However,
4902 -- we do NOT do this for the case of a modular type where the
4903 -- possible upper bound on the value is above the base type high
4904 -- bound, because that means the result could wrap.
4906 if Lor > Lo
4907 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
4908 then
4909 Lo := Lor;
4910 end if;
4912 -- Similarly, if the refined value of the high bound is less than the
4913 -- value so far, then reset it to the more restrictive value. Again,
4914 -- we do not do this if the refined low bound is negative for a
4915 -- modular type, since this would wrap.
4917 if Hir < Hi
4918 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
4919 then
4920 Hi := Hir;
4921 end if;
4922 end if;
4924 -- Set cache entry for future call and we are all done
4926 Determine_Range_Cache_N (Cindex) := N;
4927 Determine_Range_Cache_V (Cindex) := Assume_Valid;
4928 Determine_Range_Cache_Lo (Cindex) := Lo;
4929 Determine_Range_Cache_Hi (Cindex) := Hi;
4930 return;
4932 -- If any exception occurs, it means that we have some bug in the compiler,
4933 -- possibly triggered by a previous error, or by some unforeseen peculiar
4934 -- occurrence. However, this is only an optimization attempt, so there is
4935 -- really no point in crashing the compiler. Instead we just decide, too
4936 -- bad, we can't figure out a range in this case after all.
4938 exception
4939 when others =>
4941 -- Debug flag K disables this behavior (useful for debugging)
4943 if Debug_Flag_K then
4944 raise;
4945 else
4946 OK := False;
4947 Lo := No_Uint;
4948 Hi := No_Uint;
4949 return;
4950 end if;
4951 end Determine_Range;
4953 -----------------------
4954 -- Determine_Range_R --
4955 -----------------------
4957 procedure Determine_Range_R
4958 (N : Node_Id;
4959 OK : out Boolean;
4960 Lo : out Ureal;
4961 Hi : out Ureal;
4962 Assume_Valid : Boolean := False)
4964 Typ : Entity_Id := Etype (N);
4965 -- Type to use, may get reset to base type for possibly invalid entity
4967 Lo_Left : Ureal;
4968 Hi_Left : Ureal;
4969 -- Lo and Hi bounds of left operand
4971 Lo_Right : Ureal := No_Ureal;
4972 Hi_Right : Ureal := No_Ureal;
4973 -- Lo and Hi bounds of right (or only) operand
4975 Bound : Node_Id;
4976 -- Temp variable used to hold a bound node
4978 Hbound : Ureal;
4979 -- High bound of base type of expression
4981 Lor : Ureal;
4982 Hir : Ureal;
4983 -- Refined values for low and high bounds, after tightening
4985 OK1 : Boolean;
4986 -- Used in lower level calls to indicate if call succeeded
4988 Cindex : Cache_Index;
4989 -- Used to search cache
4991 Btyp : Entity_Id;
4992 -- Base type
4994 function OK_Operands return Boolean;
4995 -- Used for binary operators. Determines the ranges of the left and
4996 -- right operands, and if they are both OK, returns True, and puts
4997 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4999 function Round_Machine (B : Ureal) return Ureal;
5000 -- B is a real bound. Round it using mode Round_Even.
5002 -----------------
5003 -- OK_Operands --
5004 -----------------
5006 function OK_Operands return Boolean is
5007 begin
5008 Determine_Range_R
5009 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
5011 if not OK1 then
5012 return False;
5013 end if;
5015 Determine_Range_R
5016 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5017 return OK1;
5018 end OK_Operands;
5020 -------------------
5021 -- Round_Machine --
5022 -------------------
5024 function Round_Machine (B : Ureal) return Ureal is
5025 begin
5026 return Machine (Typ, B, Round_Even, N);
5027 end Round_Machine;
5029 -- Start of processing for Determine_Range_R
5031 begin
5032 -- Prevent junk warnings by initializing range variables
5034 Lo := No_Ureal;
5035 Hi := No_Ureal;
5036 Lor := No_Ureal;
5037 Hir := No_Ureal;
5039 -- For temporary constants internally generated to remove side effects
5040 -- we must use the corresponding expression to determine the range of
5041 -- the expression. But note that the expander can also generate
5042 -- constants in other cases, including deferred constants.
5044 if Is_Entity_Name (N)
5045 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
5046 and then Ekind (Entity (N)) = E_Constant
5047 and then Is_Internal_Name (Chars (Entity (N)))
5048 then
5049 if Present (Expression (Parent (Entity (N)))) then
5050 Determine_Range_R
5051 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
5053 elsif Present (Full_View (Entity (N))) then
5054 Determine_Range_R
5055 (Expression (Parent (Full_View (Entity (N)))),
5056 OK, Lo, Hi, Assume_Valid);
5058 else
5059 OK := False;
5060 end if;
5062 return;
5063 end if;
5065 -- If type is not defined, we can't determine its range
5067 if No (Typ)
5069 -- We don't deal with anything except IEEE floating-point types
5071 or else not Is_Floating_Point_Type (Typ)
5072 or else Float_Rep (Typ) /= IEEE_Binary
5074 -- Ignore type for which an error has been posted, since range in
5075 -- this case may well be a bogosity deriving from the error. Also
5076 -- ignore if error posted on the reference node.
5078 or else Error_Posted (N) or else Error_Posted (Typ)
5079 then
5080 OK := False;
5081 return;
5082 end if;
5084 -- For all other cases, we can determine the range
5086 OK := True;
5088 -- If value is compile time known, then the possible range is the one
5089 -- value that we know this expression definitely has.
5091 if Compile_Time_Known_Value (N) then
5092 Lo := Expr_Value_R (N);
5093 Hi := Lo;
5094 return;
5095 end if;
5097 -- Return if already in the cache
5099 Cindex := Cache_Index (N mod Cache_Size);
5101 if Determine_Range_Cache_N (Cindex) = N
5102 and then
5103 Determine_Range_Cache_V (Cindex) = Assume_Valid
5104 then
5105 Lo := Determine_Range_Cache_Lo_R (Cindex);
5106 Hi := Determine_Range_Cache_Hi_R (Cindex);
5107 return;
5108 end if;
5110 -- Otherwise, start by finding the bounds of the type of the expression,
5111 -- the value cannot be outside this range (if it is, then we have an
5112 -- overflow situation, which is a separate check, we are talking here
5113 -- only about the expression value).
5115 -- First a check, never try to find the bounds of a generic type, since
5116 -- these bounds are always junk values, and it is only valid to look at
5117 -- the bounds in an instance.
5119 if Is_Generic_Type (Typ) then
5120 OK := False;
5121 return;
5122 end if;
5124 -- First step, change to use base type unless we know the value is valid
5126 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5127 or else Assume_No_Invalid_Values
5128 or else Assume_Valid
5129 then
5130 null;
5131 else
5132 Typ := Underlying_Type (Base_Type (Typ));
5133 end if;
5135 -- Retrieve the base type. Handle the case where the base type is a
5136 -- private type.
5138 Btyp := Base_Type (Typ);
5140 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5141 Btyp := Full_View (Btyp);
5142 end if;
5144 -- We use the actual bound unless it is dynamic, in which case use the
5145 -- corresponding base type bound if possible. If we can't get a bound
5146 -- then we figure we can't determine the range (a peculiar case, that
5147 -- perhaps cannot happen, but there is no point in bombing in this
5148 -- optimization circuit).
5150 -- First the low bound
5152 Bound := Type_Low_Bound (Typ);
5154 if Compile_Time_Known_Value (Bound) then
5155 Lo := Expr_Value_R (Bound);
5157 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5158 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5160 else
5161 OK := False;
5162 return;
5163 end if;
5165 -- Now the high bound
5167 Bound := Type_High_Bound (Typ);
5169 -- We need the high bound of the base type later on, and this should
5170 -- always be compile time known. Again, it is not clear that this
5171 -- can ever be false, but no point in bombing.
5173 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5174 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5175 Hi := Hbound;
5177 else
5178 OK := False;
5179 return;
5180 end if;
5182 -- If we have a static subtype, then that may have a tighter bound so
5183 -- use the upper bound of the subtype instead in this case.
5185 if Compile_Time_Known_Value (Bound) then
5186 Hi := Expr_Value_R (Bound);
5187 end if;
5189 -- We may be able to refine this value in certain situations. If any
5190 -- refinement is possible, then Lor and Hir are set to possibly tighter
5191 -- bounds, and OK1 is set to True.
5193 case Nkind (N) is
5195 -- For unary plus, result is limited by range of operand
5197 when N_Op_Plus =>
5198 Determine_Range_R
5199 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5201 -- For unary minus, determine range of operand, and negate it
5203 when N_Op_Minus =>
5204 Determine_Range_R
5205 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5207 if OK1 then
5208 Lor := -Hi_Right;
5209 Hir := -Lo_Right;
5210 end if;
5212 -- For binary addition, get range of each operand and do the
5213 -- addition to get the result range.
5215 when N_Op_Add =>
5216 if OK_Operands then
5217 Lor := Round_Machine (Lo_Left + Lo_Right);
5218 Hir := Round_Machine (Hi_Left + Hi_Right);
5219 end if;
5221 -- For binary subtraction, get range of each operand and do the worst
5222 -- case subtraction to get the result range.
5224 when N_Op_Subtract =>
5225 if OK_Operands then
5226 Lor := Round_Machine (Lo_Left - Hi_Right);
5227 Hir := Round_Machine (Hi_Left - Lo_Right);
5228 end if;
5230 -- For multiplication, get range of each operand and do the
5231 -- four multiplications to get the result range.
5233 when N_Op_Multiply =>
5234 if OK_Operands then
5235 declare
5236 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5237 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5238 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5239 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
5241 begin
5242 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5243 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5244 end;
5245 end if;
5247 -- For division, consider separately the cases where the right
5248 -- operand is positive or negative. Otherwise, the right operand
5249 -- can be arbitrarily close to zero, so the result is likely to
5250 -- be unbounded in one direction, do not attempt to compute it.
5252 when N_Op_Divide =>
5253 if OK_Operands then
5255 -- Right operand is positive
5257 if Lo_Right > Ureal_0 then
5259 -- If the low bound of the left operand is negative, obtain
5260 -- the overall low bound by dividing it by the smallest
5261 -- value of the right operand, and otherwise by the largest
5262 -- value of the right operand.
5264 if Lo_Left < Ureal_0 then
5265 Lor := Round_Machine (Lo_Left / Lo_Right);
5266 else
5267 Lor := Round_Machine (Lo_Left / Hi_Right);
5268 end if;
5270 -- If the high bound of the left operand is negative, obtain
5271 -- the overall high bound by dividing it by the largest
5272 -- value of the right operand, and otherwise by the
5273 -- smallest value of the right operand.
5275 if Hi_Left < Ureal_0 then
5276 Hir := Round_Machine (Hi_Left / Hi_Right);
5277 else
5278 Hir := Round_Machine (Hi_Left / Lo_Right);
5279 end if;
5281 -- Right operand is negative
5283 elsif Hi_Right < Ureal_0 then
5285 -- If the low bound of the left operand is negative, obtain
5286 -- the overall low bound by dividing it by the largest
5287 -- value of the right operand, and otherwise by the smallest
5288 -- value of the right operand.
5290 if Lo_Left < Ureal_0 then
5291 Lor := Round_Machine (Lo_Left / Hi_Right);
5292 else
5293 Lor := Round_Machine (Lo_Left / Lo_Right);
5294 end if;
5296 -- If the high bound of the left operand is negative, obtain
5297 -- the overall high bound by dividing it by the smallest
5298 -- value of the right operand, and otherwise by the
5299 -- largest value of the right operand.
5301 if Hi_Left < Ureal_0 then
5302 Hir := Round_Machine (Hi_Left / Lo_Right);
5303 else
5304 Hir := Round_Machine (Hi_Left / Hi_Right);
5305 end if;
5307 else
5308 OK1 := False;
5309 end if;
5310 end if;
5312 when N_Type_Conversion =>
5314 -- For type conversion from one floating-point type to another, we
5315 -- can refine the range using the converted value.
5317 if Is_Floating_Point_Type (Etype (Expression (N))) then
5318 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5320 -- When converting an integer to a floating-point type, determine
5321 -- the range in integer first, and then convert the bounds.
5323 elsif Is_Discrete_Type (Etype (Expression (N))) then
5324 declare
5325 Hir_Int : Uint;
5326 Lor_Int : Uint;
5328 begin
5329 Determine_Range
5330 (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
5332 if OK1 then
5333 Lor := Round_Machine (UR_From_Uint (Lor_Int));
5334 Hir := Round_Machine (UR_From_Uint (Hir_Int));
5335 end if;
5336 end;
5338 else
5339 OK1 := False;
5340 end if;
5342 -- Nothing special to do for all other expression kinds
5344 when others =>
5345 OK1 := False;
5346 Lor := No_Ureal;
5347 Hir := No_Ureal;
5348 end case;
5350 -- At this stage, if OK1 is true, then we know that the actual result of
5351 -- the computed expression is in the range Lor .. Hir. We can use this
5352 -- to restrict the possible range of results.
5354 if OK1 then
5356 -- If the refined value of the low bound is greater than the type
5357 -- low bound, then reset it to the more restrictive value.
5359 if Lor > Lo then
5360 Lo := Lor;
5361 end if;
5363 -- Similarly, if the refined value of the high bound is less than the
5364 -- value so far, then reset it to the more restrictive value.
5366 if Hir < Hi then
5367 Hi := Hir;
5368 end if;
5369 end if;
5371 -- Set cache entry for future call and we are all done
5373 Determine_Range_Cache_N (Cindex) := N;
5374 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5375 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5376 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5377 return;
5379 -- If any exception occurs, it means that we have some bug in the compiler,
5380 -- possibly triggered by a previous error, or by some unforeseen peculiar
5381 -- occurrence. However, this is only an optimization attempt, so there is
5382 -- really no point in crashing the compiler. Instead we just decide, too
5383 -- bad, we can't figure out a range in this case after all.
5385 exception
5386 when others =>
5388 -- Debug flag K disables this behavior (useful for debugging)
5390 if Debug_Flag_K then
5391 raise;
5392 else
5393 OK := False;
5394 Lo := No_Ureal;
5395 Hi := No_Ureal;
5396 return;
5397 end if;
5398 end Determine_Range_R;
5400 ------------------------------------
5401 -- Discriminant_Checks_Suppressed --
5402 ------------------------------------
5404 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5405 begin
5406 if Present (E) then
5407 if Is_Unchecked_Union (E) then
5408 return True;
5409 elsif Checks_May_Be_Suppressed (E) then
5410 return Is_Check_Suppressed (E, Discriminant_Check);
5411 end if;
5412 end if;
5414 return Scope_Suppress.Suppress (Discriminant_Check);
5415 end Discriminant_Checks_Suppressed;
5417 --------------------------------
5418 -- Division_Checks_Suppressed --
5419 --------------------------------
5421 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5422 begin
5423 if Present (E) and then Checks_May_Be_Suppressed (E) then
5424 return Is_Check_Suppressed (E, Division_Check);
5425 else
5426 return Scope_Suppress.Suppress (Division_Check);
5427 end if;
5428 end Division_Checks_Suppressed;
5430 --------------------------------------
5431 -- Duplicated_Tag_Checks_Suppressed --
5432 --------------------------------------
5434 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5435 begin
5436 if Present (E) and then Checks_May_Be_Suppressed (E) then
5437 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5438 else
5439 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5440 end if;
5441 end Duplicated_Tag_Checks_Suppressed;
5443 -----------------------------------
5444 -- Elaboration_Checks_Suppressed --
5445 -----------------------------------
5447 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5448 begin
5449 -- The complication in this routine is that if we are in the dynamic
5450 -- model of elaboration, we also check All_Checks, since All_Checks
5451 -- does not set Elaboration_Check explicitly.
5453 if Present (E) then
5454 if Kill_Elaboration_Checks (E) then
5455 return True;
5457 elsif Checks_May_Be_Suppressed (E) then
5458 if Is_Check_Suppressed (E, Elaboration_Check) then
5459 return True;
5461 elsif Dynamic_Elaboration_Checks then
5462 return Is_Check_Suppressed (E, All_Checks);
5464 else
5465 return False;
5466 end if;
5467 end if;
5468 end if;
5470 if Scope_Suppress.Suppress (Elaboration_Check) then
5471 return True;
5473 elsif Dynamic_Elaboration_Checks then
5474 return Scope_Suppress.Suppress (All_Checks);
5476 else
5477 return False;
5478 end if;
5479 end Elaboration_Checks_Suppressed;
5481 ---------------------------
5482 -- Enable_Overflow_Check --
5483 ---------------------------
5485 procedure Enable_Overflow_Check (N : Node_Id) is
5486 Typ : constant Entity_Id := Base_Type (Etype (N));
5487 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
5488 Chk : Nat;
5489 OK : Boolean;
5490 Ent : Entity_Id;
5491 Ofs : Uint;
5492 Lo : Uint;
5493 Hi : Uint;
5495 Do_Ovflow_Check : Boolean;
5497 begin
5498 if Debug_Flag_CC then
5499 w ("Enable_Overflow_Check for node ", Int (N));
5500 Write_Str (" Source location = ");
5501 wl (Sloc (N));
5502 pg (Union_Id (N));
5503 end if;
5505 -- No check if overflow checks suppressed for type of node
5507 if Overflow_Checks_Suppressed (Etype (N)) then
5508 return;
5510 -- Nothing to do for unsigned integer types, which do not overflow
5512 elsif Is_Modular_Integer_Type (Typ) then
5513 return;
5514 end if;
5516 -- This is the point at which processing for STRICT mode diverges
5517 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5518 -- probably more extreme that it needs to be, but what is going on here
5519 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
5520 -- to leave the processing for STRICT mode untouched. There were
5521 -- two reasons for this. First it avoided any incompatible change of
5522 -- behavior. Second, it guaranteed that STRICT mode continued to be
5523 -- legacy reliable.
5525 -- The big difference is that in STRICT mode there is a fair amount of
5526 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5527 -- know that no check is needed. We skip all that in the two new modes,
5528 -- since really overflow checking happens over a whole subtree, and we
5529 -- do the corresponding optimizations later on when applying the checks.
5531 if Mode in Minimized_Or_Eliminated then
5532 if not (Overflow_Checks_Suppressed (Etype (N)))
5533 and then not (Is_Entity_Name (N)
5534 and then Overflow_Checks_Suppressed (Entity (N)))
5535 then
5536 Activate_Overflow_Check (N);
5537 end if;
5539 if Debug_Flag_CC then
5540 w ("Minimized/Eliminated mode");
5541 end if;
5543 return;
5544 end if;
5546 -- Remainder of processing is for STRICT case, and is unchanged from
5547 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
5549 -- Nothing to do if the range of the result is known OK. We skip this
5550 -- for conversions, since the caller already did the check, and in any
5551 -- case the condition for deleting the check for a type conversion is
5552 -- different.
5554 if Nkind (N) /= N_Type_Conversion then
5555 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
5557 -- Note in the test below that we assume that the range is not OK
5558 -- if a bound of the range is equal to that of the type. That's not
5559 -- quite accurate but we do this for the following reasons:
5561 -- a) The way that Determine_Range works, it will typically report
5562 -- the bounds of the value as being equal to the bounds of the
5563 -- type, because it either can't tell anything more precise, or
5564 -- does not think it is worth the effort to be more precise.
5566 -- b) It is very unusual to have a situation in which this would
5567 -- generate an unnecessary overflow check (an example would be
5568 -- a subtype with a range 0 .. Integer'Last - 1 to which the
5569 -- literal value one is added).
5571 -- c) The alternative is a lot of special casing in this routine
5572 -- which would partially duplicate Determine_Range processing.
5574 if OK then
5575 Do_Ovflow_Check := True;
5577 -- Note that the following checks are quite deliberately > and <
5578 -- rather than >= and <= as explained above.
5580 if Lo > Expr_Value (Type_Low_Bound (Typ))
5581 and then
5582 Hi < Expr_Value (Type_High_Bound (Typ))
5583 then
5584 Do_Ovflow_Check := False;
5586 -- Despite the comments above, it is worth dealing specially with
5587 -- division specially. The only case where integer division can
5588 -- overflow is (largest negative number) / (-1). So we will do
5589 -- an extra range analysis to see if this is possible.
5591 elsif Nkind (N) = N_Op_Divide then
5592 Determine_Range
5593 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5595 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5596 Do_Ovflow_Check := False;
5598 else
5599 Determine_Range
5600 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5602 if OK and then (Lo > Uint_Minus_1
5603 or else
5604 Hi < Uint_Minus_1)
5605 then
5606 Do_Ovflow_Check := False;
5607 end if;
5608 end if;
5609 end if;
5611 -- If no overflow check required, we are done
5613 if not Do_Ovflow_Check then
5614 if Debug_Flag_CC then
5615 w ("No overflow check required");
5616 end if;
5618 return;
5619 end if;
5620 end if;
5621 end if;
5623 -- If not in optimizing mode, set flag and we are done. We are also done
5624 -- (and just set the flag) if the type is not a discrete type, since it
5625 -- is not worth the effort to eliminate checks for other than discrete
5626 -- types. In addition, we take this same path if we have stored the
5627 -- maximum number of checks possible already (a very unlikely situation,
5628 -- but we do not want to blow up).
5630 if Optimization_Level = 0
5631 or else not Is_Discrete_Type (Etype (N))
5632 or else Num_Saved_Checks = Saved_Checks'Last
5633 then
5634 Activate_Overflow_Check (N);
5636 if Debug_Flag_CC then
5637 w ("Optimization off");
5638 end if;
5640 return;
5641 end if;
5643 -- Otherwise evaluate and check the expression
5645 Find_Check
5646 (Expr => N,
5647 Check_Type => 'O',
5648 Target_Type => Empty,
5649 Entry_OK => OK,
5650 Check_Num => Chk,
5651 Ent => Ent,
5652 Ofs => Ofs);
5654 if Debug_Flag_CC then
5655 w ("Called Find_Check");
5656 w (" OK = ", OK);
5658 if OK then
5659 w (" Check_Num = ", Chk);
5660 w (" Ent = ", Int (Ent));
5661 Write_Str (" Ofs = ");
5662 pid (Ofs);
5663 end if;
5664 end if;
5666 -- If check is not of form to optimize, then set flag and we are done
5668 if not OK then
5669 Activate_Overflow_Check (N);
5670 return;
5671 end if;
5673 -- If check is already performed, then return without setting flag
5675 if Chk /= 0 then
5676 if Debug_Flag_CC then
5677 w ("Check suppressed!");
5678 end if;
5680 return;
5681 end if;
5683 -- Here we will make a new entry for the new check
5685 Activate_Overflow_Check (N);
5686 Num_Saved_Checks := Num_Saved_Checks + 1;
5687 Saved_Checks (Num_Saved_Checks) :=
5688 (Killed => False,
5689 Entity => Ent,
5690 Offset => Ofs,
5691 Check_Type => 'O',
5692 Target_Type => Empty);
5694 if Debug_Flag_CC then
5695 w ("Make new entry, check number = ", Num_Saved_Checks);
5696 w (" Entity = ", Int (Ent));
5697 Write_Str (" Offset = ");
5698 pid (Ofs);
5699 w (" Check_Type = O");
5700 w (" Target_Type = Empty");
5701 end if;
5703 -- If we get an exception, then something went wrong, probably because of
5704 -- an error in the structure of the tree due to an incorrect program. Or
5705 -- it may be a bug in the optimization circuit. In either case the safest
5706 -- thing is simply to set the check flag unconditionally.
5708 exception
5709 when others =>
5710 Activate_Overflow_Check (N);
5712 if Debug_Flag_CC then
5713 w (" exception occurred, overflow flag set");
5714 end if;
5716 return;
5717 end Enable_Overflow_Check;
5719 ------------------------
5720 -- Enable_Range_Check --
5721 ------------------------
5723 procedure Enable_Range_Check (N : Node_Id) is
5724 Chk : Nat;
5725 OK : Boolean;
5726 Ent : Entity_Id;
5727 Ofs : Uint;
5728 Ttyp : Entity_Id;
5729 P : Node_Id;
5731 begin
5732 -- Return if unchecked type conversion with range check killed. In this
5733 -- case we never set the flag (that's what Kill_Range_Check is about).
5735 if Nkind (N) = N_Unchecked_Type_Conversion
5736 and then Kill_Range_Check (N)
5737 then
5738 return;
5739 end if;
5741 -- Do not set range check flag if parent is assignment statement or
5742 -- object declaration with Suppress_Assignment_Checks flag set
5744 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5745 and then Suppress_Assignment_Checks (Parent (N))
5746 then
5747 return;
5748 end if;
5750 -- Check for various cases where we should suppress the range check
5752 -- No check if range checks suppressed for type of node
5754 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
5755 return;
5757 -- No check if node is an entity name, and range checks are suppressed
5758 -- for this entity, or for the type of this entity.
5760 elsif Is_Entity_Name (N)
5761 and then (Range_Checks_Suppressed (Entity (N))
5762 or else Range_Checks_Suppressed (Etype (Entity (N))))
5763 then
5764 return;
5766 -- No checks if index of array, and index checks are suppressed for
5767 -- the array object or the type of the array.
5769 elsif Nkind (Parent (N)) = N_Indexed_Component then
5770 declare
5771 Pref : constant Node_Id := Prefix (Parent (N));
5772 begin
5773 if Is_Entity_Name (Pref)
5774 and then Index_Checks_Suppressed (Entity (Pref))
5775 then
5776 return;
5777 elsif Index_Checks_Suppressed (Etype (Pref)) then
5778 return;
5779 end if;
5780 end;
5781 end if;
5783 -- Debug trace output
5785 if Debug_Flag_CC then
5786 w ("Enable_Range_Check for node ", Int (N));
5787 Write_Str (" Source location = ");
5788 wl (Sloc (N));
5789 pg (Union_Id (N));
5790 end if;
5792 -- If not in optimizing mode, set flag and we are done. We are also done
5793 -- (and just set the flag) if the type is not a discrete type, since it
5794 -- is not worth the effort to eliminate checks for other than discrete
5795 -- types. In addition, we take this same path if we have stored the
5796 -- maximum number of checks possible already (a very unlikely situation,
5797 -- but we do not want to blow up).
5799 if Optimization_Level = 0
5800 or else No (Etype (N))
5801 or else not Is_Discrete_Type (Etype (N))
5802 or else Num_Saved_Checks = Saved_Checks'Last
5803 then
5804 Activate_Range_Check (N);
5806 if Debug_Flag_CC then
5807 w ("Optimization off");
5808 end if;
5810 return;
5811 end if;
5813 -- Otherwise find out the target type
5815 P := Parent (N);
5817 -- For assignment, use left side subtype
5819 if Nkind (P) = N_Assignment_Statement
5820 and then Expression (P) = N
5821 then
5822 Ttyp := Etype (Name (P));
5824 -- For indexed component, use subscript subtype
5826 elsif Nkind (P) = N_Indexed_Component then
5827 declare
5828 Atyp : Entity_Id;
5829 Indx : Node_Id;
5830 Subs : Node_Id;
5832 begin
5833 Atyp := Etype (Prefix (P));
5835 if Is_Access_Type (Atyp) then
5836 Atyp := Designated_Type (Atyp);
5838 -- If the prefix is an access to an unconstrained array,
5839 -- perform check unconditionally: it depends on the bounds of
5840 -- an object and we cannot currently recognize whether the test
5841 -- may be redundant.
5843 if not Is_Constrained (Atyp) then
5844 Activate_Range_Check (N);
5845 return;
5846 end if;
5848 -- Ditto if prefix is simply an unconstrained array. We used
5849 -- to think this case was OK, if the prefix was not an explicit
5850 -- dereference, but we have now seen a case where this is not
5851 -- true, so it is safer to just suppress the optimization in this
5852 -- case. The back end is getting better at eliminating redundant
5853 -- checks in any case, so the loss won't be important.
5855 elsif Is_Array_Type (Atyp)
5856 and then not Is_Constrained (Atyp)
5857 then
5858 Activate_Range_Check (N);
5859 return;
5860 end if;
5862 Indx := First_Index (Atyp);
5863 Subs := First (Expressions (P));
5864 loop
5865 if Subs = N then
5866 Ttyp := Etype (Indx);
5867 exit;
5868 end if;
5870 Next_Index (Indx);
5871 Next (Subs);
5872 end loop;
5873 end;
5875 -- For now, ignore all other cases, they are not so interesting
5877 else
5878 if Debug_Flag_CC then
5879 w (" target type not found, flag set");
5880 end if;
5882 Activate_Range_Check (N);
5883 return;
5884 end if;
5886 -- Evaluate and check the expression
5888 Find_Check
5889 (Expr => N,
5890 Check_Type => 'R',
5891 Target_Type => Ttyp,
5892 Entry_OK => OK,
5893 Check_Num => Chk,
5894 Ent => Ent,
5895 Ofs => Ofs);
5897 if Debug_Flag_CC then
5898 w ("Called Find_Check");
5899 w ("Target_Typ = ", Int (Ttyp));
5900 w (" OK = ", OK);
5902 if OK then
5903 w (" Check_Num = ", Chk);
5904 w (" Ent = ", Int (Ent));
5905 Write_Str (" Ofs = ");
5906 pid (Ofs);
5907 end if;
5908 end if;
5910 -- If check is not of form to optimize, then set flag and we are done
5912 if not OK then
5913 if Debug_Flag_CC then
5914 w (" expression not of optimizable type, flag set");
5915 end if;
5917 Activate_Range_Check (N);
5918 return;
5919 end if;
5921 -- If check is already performed, then return without setting flag
5923 if Chk /= 0 then
5924 if Debug_Flag_CC then
5925 w ("Check suppressed!");
5926 end if;
5928 return;
5929 end if;
5931 -- Here we will make a new entry for the new check
5933 Activate_Range_Check (N);
5934 Num_Saved_Checks := Num_Saved_Checks + 1;
5935 Saved_Checks (Num_Saved_Checks) :=
5936 (Killed => False,
5937 Entity => Ent,
5938 Offset => Ofs,
5939 Check_Type => 'R',
5940 Target_Type => Ttyp);
5942 if Debug_Flag_CC then
5943 w ("Make new entry, check number = ", Num_Saved_Checks);
5944 w (" Entity = ", Int (Ent));
5945 Write_Str (" Offset = ");
5946 pid (Ofs);
5947 w (" Check_Type = R");
5948 w (" Target_Type = ", Int (Ttyp));
5949 pg (Union_Id (Ttyp));
5950 end if;
5952 -- If we get an exception, then something went wrong, probably because of
5953 -- an error in the structure of the tree due to an incorrect program. Or
5954 -- it may be a bug in the optimization circuit. In either case the safest
5955 -- thing is simply to set the check flag unconditionally.
5957 exception
5958 when others =>
5959 Activate_Range_Check (N);
5961 if Debug_Flag_CC then
5962 w (" exception occurred, range flag set");
5963 end if;
5965 return;
5966 end Enable_Range_Check;
5968 ------------------
5969 -- Ensure_Valid --
5970 ------------------
5972 procedure Ensure_Valid
5973 (Expr : Node_Id;
5974 Holes_OK : Boolean := False;
5975 Related_Id : Entity_Id := Empty;
5976 Is_Low_Bound : Boolean := False;
5977 Is_High_Bound : Boolean := False)
5979 Typ : constant Entity_Id := Etype (Expr);
5981 begin
5982 -- Ignore call if we are not doing any validity checking
5984 if not Validity_Checks_On then
5985 return;
5987 -- Ignore call if range or validity checks suppressed on entity or type
5989 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
5990 return;
5992 -- No check required if expression is from the expander, we assume the
5993 -- expander will generate whatever checks are needed. Note that this is
5994 -- not just an optimization, it avoids infinite recursions.
5996 -- Unchecked conversions must be checked, unless they are initialized
5997 -- scalar values, as in a component assignment in an init proc.
5999 -- In addition, we force a check if Force_Validity_Checks is set
6001 elsif not Comes_From_Source (Expr)
6002 and then not
6003 (Nkind (Expr) = N_Identifier
6004 and then Present (Renamed_Object (Entity (Expr)))
6005 and then Comes_From_Source (Renamed_Object (Entity (Expr))))
6006 and then not Force_Validity_Checks
6007 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
6008 or else Kill_Range_Check (Expr))
6009 then
6010 return;
6012 -- No check required if expression is known to have valid value
6014 elsif Expr_Known_Valid (Expr) then
6015 return;
6017 -- No check needed within a generated predicate function. Validity
6018 -- of input value will have been checked earlier.
6020 elsif Ekind (Current_Scope) = E_Function
6021 and then Is_Predicate_Function (Current_Scope)
6022 then
6023 return;
6025 -- Ignore case of enumeration with holes where the flag is set not to
6026 -- worry about holes, since no special validity check is needed
6028 elsif Is_Enumeration_Type (Typ)
6029 and then Has_Non_Standard_Rep (Typ)
6030 and then Holes_OK
6031 then
6032 return;
6034 -- No check required on the left-hand side of an assignment
6036 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
6037 and then Expr = Name (Parent (Expr))
6038 then
6039 return;
6041 -- No check on a universal real constant. The context will eventually
6042 -- convert it to a machine number for some target type, or report an
6043 -- illegality.
6045 elsif Nkind (Expr) = N_Real_Literal
6046 and then Etype (Expr) = Universal_Real
6047 then
6048 return;
6050 -- If the expression denotes a component of a packed boolean array,
6051 -- no possible check applies. We ignore the old ACATS chestnuts that
6052 -- involve Boolean range True..True.
6054 -- Note: validity checks are generated for expressions that yield a
6055 -- scalar type, when it is possible to create a value that is outside of
6056 -- the type. If this is a one-bit boolean no such value exists. This is
6057 -- an optimization, and it also prevents compiler blowing up during the
6058 -- elaboration of improperly expanded packed array references.
6060 elsif Nkind (Expr) = N_Indexed_Component
6061 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
6062 and then Root_Type (Etype (Expr)) = Standard_Boolean
6063 then
6064 return;
6066 -- For an expression with actions, we want to insert the validity check
6067 -- on the final Expression.
6069 elsif Nkind (Expr) = N_Expression_With_Actions then
6070 Ensure_Valid (Expression (Expr));
6071 return;
6073 -- An annoying special case. If this is an out parameter of a scalar
6074 -- type, then the value is not going to be accessed, therefore it is
6075 -- inappropriate to do any validity check at the call site.
6077 else
6078 -- Only need to worry about scalar types
6080 if Is_Scalar_Type (Typ) then
6081 declare
6082 P : Node_Id;
6083 N : Node_Id;
6084 E : Entity_Id;
6085 F : Entity_Id;
6086 A : Node_Id;
6087 L : List_Id;
6089 begin
6090 -- Find actual argument (which may be a parameter association)
6091 -- and the parent of the actual argument (the call statement)
6093 N := Expr;
6094 P := Parent (Expr);
6096 if Nkind (P) = N_Parameter_Association then
6097 N := P;
6098 P := Parent (N);
6099 end if;
6101 -- Only need to worry if we are argument of a procedure call
6102 -- since functions don't have out parameters. If this is an
6103 -- indirect or dispatching call, get signature from the
6104 -- subprogram type.
6106 if Nkind (P) = N_Procedure_Call_Statement then
6107 L := Parameter_Associations (P);
6109 if Is_Entity_Name (Name (P)) then
6110 E := Entity (Name (P));
6111 else
6112 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
6113 E := Etype (Name (P));
6114 end if;
6116 -- Only need to worry if there are indeed actuals, and if
6117 -- this could be a procedure call, otherwise we cannot get a
6118 -- match (either we are not an argument, or the mode of the
6119 -- formal is not OUT). This test also filters out the
6120 -- generic case.
6122 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6124 -- This is the loop through parameters, looking for an
6125 -- OUT parameter for which we are the argument.
6127 F := First_Formal (E);
6128 A := First (L);
6129 while Present (F) loop
6130 if Ekind (F) = E_Out_Parameter and then A = N then
6131 return;
6132 end if;
6134 Next_Formal (F);
6135 Next (A);
6136 end loop;
6137 end if;
6138 end if;
6139 end;
6140 end if;
6141 end if;
6143 -- If this is a boolean expression, only its elementary operands need
6144 -- checking: if they are valid, a boolean or short-circuit operation
6145 -- with them will be valid as well.
6147 if Base_Type (Typ) = Standard_Boolean
6148 and then
6149 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
6150 then
6151 return;
6152 end if;
6154 -- If we fall through, a validity check is required
6156 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
6158 if Is_Entity_Name (Expr)
6159 and then Safe_To_Capture_Value (Expr, Entity (Expr))
6160 then
6161 Set_Is_Known_Valid (Entity (Expr));
6162 end if;
6163 end Ensure_Valid;
6165 ----------------------
6166 -- Expr_Known_Valid --
6167 ----------------------
6169 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6170 Typ : constant Entity_Id := Etype (Expr);
6172 begin
6173 -- Non-scalar types are always considered valid, since they never give
6174 -- rise to the issues of erroneous or bounded error behavior that are
6175 -- the concern. In formal reference manual terms the notion of validity
6176 -- only applies to scalar types. Note that even when packed arrays are
6177 -- represented using modular types, they are still arrays semantically,
6178 -- so they are also always valid (in particular, the unused bits can be
6179 -- random rubbish without affecting the validity of the array value).
6181 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
6182 return True;
6184 -- If no validity checking, then everything is considered valid
6186 elsif not Validity_Checks_On then
6187 return True;
6189 -- Floating-point types are considered valid unless floating-point
6190 -- validity checks have been specifically turned on.
6192 elsif Is_Floating_Point_Type (Typ)
6193 and then not Validity_Check_Floating_Point
6194 then
6195 return True;
6197 -- If the expression is the value of an object that is known to be
6198 -- valid, then clearly the expression value itself is valid.
6200 elsif Is_Entity_Name (Expr)
6201 and then Is_Known_Valid (Entity (Expr))
6203 -- Exclude volatile variables
6205 and then not Treat_As_Volatile (Entity (Expr))
6206 then
6207 return True;
6209 -- References to discriminants are always considered valid. The value
6210 -- of a discriminant gets checked when the object is built. Within the
6211 -- record, we consider it valid, and it is important to do so, since
6212 -- otherwise we can try to generate bogus validity checks which
6213 -- reference discriminants out of scope. Discriminants of concurrent
6214 -- types are excluded for the same reason.
6216 elsif Is_Entity_Name (Expr)
6217 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
6218 then
6219 return True;
6221 -- If the type is one for which all values are known valid, then we are
6222 -- sure that the value is valid except in the slightly odd case where
6223 -- the expression is a reference to a variable whose size has been
6224 -- explicitly set to a value greater than the object size.
6226 elsif Is_Known_Valid (Typ) then
6227 if Is_Entity_Name (Expr)
6228 and then Ekind (Entity (Expr)) = E_Variable
6229 and then Esize (Entity (Expr)) > Esize (Typ)
6230 then
6231 return False;
6232 else
6233 return True;
6234 end if;
6236 -- Integer and character literals always have valid values, where
6237 -- appropriate these will be range checked in any case.
6239 elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
6240 return True;
6242 -- If we have a type conversion or a qualification of a known valid
6243 -- value, then the result will always be valid.
6245 elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
6246 return Expr_Known_Valid (Expression (Expr));
6248 -- Case of expression is a non-floating-point operator. In this case we
6249 -- can assume the result is valid the generated code for the operator
6250 -- will include whatever checks are needed (e.g. range checks) to ensure
6251 -- validity. This assumption does not hold for the floating-point case,
6252 -- since floating-point operators can generate Infinite or NaN results
6253 -- which are considered invalid.
6255 -- Historical note: in older versions, the exemption of floating-point
6256 -- types from this assumption was done only in cases where the parent
6257 -- was an assignment, function call or parameter association. Presumably
6258 -- the idea was that in other contexts, the result would be checked
6259 -- elsewhere, but this list of cases was missing tests (at least the
6260 -- N_Object_Declaration case, as shown by a reported missing validity
6261 -- check), and it is not clear why function calls but not procedure
6262 -- calls were tested for. It really seems more accurate and much
6263 -- safer to recognize that expressions which are the result of a
6264 -- floating-point operator can never be assumed to be valid.
6266 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6267 return True;
6269 -- The result of a membership test is always valid, since it is true or
6270 -- false, there are no other possibilities.
6272 elsif Nkind (Expr) in N_Membership_Test then
6273 return True;
6275 -- For all other cases, we do not know the expression is valid
6277 else
6278 return False;
6279 end if;
6280 end Expr_Known_Valid;
6282 ----------------
6283 -- Find_Check --
6284 ----------------
6286 procedure Find_Check
6287 (Expr : Node_Id;
6288 Check_Type : Character;
6289 Target_Type : Entity_Id;
6290 Entry_OK : out Boolean;
6291 Check_Num : out Nat;
6292 Ent : out Entity_Id;
6293 Ofs : out Uint)
6295 function Within_Range_Of
6296 (Target_Type : Entity_Id;
6297 Check_Type : Entity_Id) return Boolean;
6298 -- Given a requirement for checking a range against Target_Type, and
6299 -- and a range Check_Type against which a check has already been made,
6300 -- determines if the check against check type is sufficient to ensure
6301 -- that no check against Target_Type is required.
6303 ---------------------
6304 -- Within_Range_Of --
6305 ---------------------
6307 function Within_Range_Of
6308 (Target_Type : Entity_Id;
6309 Check_Type : Entity_Id) return Boolean
6311 begin
6312 if Target_Type = Check_Type then
6313 return True;
6315 else
6316 declare
6317 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
6318 Thi : constant Node_Id := Type_High_Bound (Target_Type);
6319 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
6320 Chi : constant Node_Id := Type_High_Bound (Check_Type);
6322 begin
6323 if (Tlo = Clo
6324 or else (Compile_Time_Known_Value (Tlo)
6325 and then
6326 Compile_Time_Known_Value (Clo)
6327 and then
6328 Expr_Value (Clo) >= Expr_Value (Tlo)))
6329 and then
6330 (Thi = Chi
6331 or else (Compile_Time_Known_Value (Thi)
6332 and then
6333 Compile_Time_Known_Value (Chi)
6334 and then
6335 Expr_Value (Chi) <= Expr_Value (Clo)))
6336 then
6337 return True;
6338 else
6339 return False;
6340 end if;
6341 end;
6342 end if;
6343 end Within_Range_Of;
6345 -- Start of processing for Find_Check
6347 begin
6348 -- Establish default, in case no entry is found
6350 Check_Num := 0;
6352 -- Case of expression is simple entity reference
6354 if Is_Entity_Name (Expr) then
6355 Ent := Entity (Expr);
6356 Ofs := Uint_0;
6358 -- Case of expression is entity + known constant
6360 elsif Nkind (Expr) = N_Op_Add
6361 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6362 and then Is_Entity_Name (Left_Opnd (Expr))
6363 then
6364 Ent := Entity (Left_Opnd (Expr));
6365 Ofs := Expr_Value (Right_Opnd (Expr));
6367 -- Case of expression is entity - known constant
6369 elsif Nkind (Expr) = N_Op_Subtract
6370 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6371 and then Is_Entity_Name (Left_Opnd (Expr))
6372 then
6373 Ent := Entity (Left_Opnd (Expr));
6374 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6376 -- Any other expression is not of the right form
6378 else
6379 Ent := Empty;
6380 Ofs := Uint_0;
6381 Entry_OK := False;
6382 return;
6383 end if;
6385 -- Come here with expression of appropriate form, check if entity is an
6386 -- appropriate one for our purposes.
6388 if (Ekind (Ent) = E_Variable
6389 or else Is_Constant_Object (Ent))
6390 and then not Is_Library_Level_Entity (Ent)
6391 then
6392 Entry_OK := True;
6393 else
6394 Entry_OK := False;
6395 return;
6396 end if;
6398 -- See if there is matching check already
6400 for J in reverse 1 .. Num_Saved_Checks loop
6401 declare
6402 SC : Saved_Check renames Saved_Checks (J);
6403 begin
6404 if SC.Killed = False
6405 and then SC.Entity = Ent
6406 and then SC.Offset = Ofs
6407 and then SC.Check_Type = Check_Type
6408 and then Within_Range_Of (Target_Type, SC.Target_Type)
6409 then
6410 Check_Num := J;
6411 return;
6412 end if;
6413 end;
6414 end loop;
6416 -- If we fall through entry was not found
6418 return;
6419 end Find_Check;
6421 ---------------------------------
6422 -- Generate_Discriminant_Check --
6423 ---------------------------------
6425 -- Note: the code for this procedure is derived from the
6426 -- Emit_Discriminant_Check Routine in trans.c.
6428 procedure Generate_Discriminant_Check (N : Node_Id) is
6429 Loc : constant Source_Ptr := Sloc (N);
6430 Pref : constant Node_Id := Prefix (N);
6431 Sel : constant Node_Id := Selector_Name (N);
6433 Orig_Comp : constant Entity_Id :=
6434 Original_Record_Component (Entity (Sel));
6435 -- The original component to be checked
6437 Discr_Fct : constant Entity_Id :=
6438 Discriminant_Checking_Func (Orig_Comp);
6439 -- The discriminant checking function
6441 Discr : Entity_Id;
6442 -- One discriminant to be checked in the type
6444 Real_Discr : Entity_Id;
6445 -- Actual discriminant in the call
6447 Pref_Type : Entity_Id;
6448 -- Type of relevant prefix (ignoring private/access stuff)
6450 Args : List_Id;
6451 -- List of arguments for function call
6453 Formal : Entity_Id;
6454 -- Keep track of the formal corresponding to the actual we build for
6455 -- each discriminant, in order to be able to perform the necessary type
6456 -- conversions.
6458 Scomp : Node_Id;
6459 -- Selected component reference for checking function argument
6461 begin
6462 Pref_Type := Etype (Pref);
6464 -- Force evaluation of the prefix, so that it does not get evaluated
6465 -- twice (once for the check, once for the actual reference). Such a
6466 -- double evaluation is always a potential source of inefficiency, and
6467 -- is functionally incorrect in the volatile case, or when the prefix
6468 -- may have side effects. A nonvolatile entity or a component of a
6469 -- nonvolatile entity requires no evaluation.
6471 if Is_Entity_Name (Pref) then
6472 if Treat_As_Volatile (Entity (Pref)) then
6473 Force_Evaluation (Pref, Name_Req => True);
6474 end if;
6476 elsif Treat_As_Volatile (Etype (Pref)) then
6477 Force_Evaluation (Pref, Name_Req => True);
6479 elsif Nkind (Pref) = N_Selected_Component
6480 and then Is_Entity_Name (Prefix (Pref))
6481 then
6482 null;
6484 else
6485 Force_Evaluation (Pref, Name_Req => True);
6486 end if;
6488 -- For a tagged type, use the scope of the original component to
6489 -- obtain the type, because ???
6491 if Is_Tagged_Type (Scope (Orig_Comp)) then
6492 Pref_Type := Scope (Orig_Comp);
6494 -- For an untagged derived type, use the discriminants of the parent
6495 -- which have been renamed in the derivation, possibly by a one-to-many
6496 -- discriminant constraint. For untagged type, initially get the Etype
6497 -- of the prefix
6499 else
6500 if Is_Derived_Type (Pref_Type)
6501 and then Number_Discriminants (Pref_Type) /=
6502 Number_Discriminants (Etype (Base_Type (Pref_Type)))
6503 then
6504 Pref_Type := Etype (Base_Type (Pref_Type));
6505 end if;
6506 end if;
6508 -- We definitely should have a checking function, This routine should
6509 -- not be called if no discriminant checking function is present.
6511 pragma Assert (Present (Discr_Fct));
6513 -- Create the list of the actual parameters for the call. This list
6514 -- is the list of the discriminant fields of the record expression to
6515 -- be discriminant checked.
6517 Args := New_List;
6518 Formal := First_Formal (Discr_Fct);
6519 Discr := First_Discriminant (Pref_Type);
6520 while Present (Discr) loop
6522 -- If we have a corresponding discriminant field, and a parent
6523 -- subtype is present, then we want to use the corresponding
6524 -- discriminant since this is the one with the useful value.
6526 if Present (Corresponding_Discriminant (Discr))
6527 and then Ekind (Pref_Type) = E_Record_Type
6528 and then Present (Parent_Subtype (Pref_Type))
6529 then
6530 Real_Discr := Corresponding_Discriminant (Discr);
6531 else
6532 Real_Discr := Discr;
6533 end if;
6535 -- Construct the reference to the discriminant
6537 Scomp :=
6538 Make_Selected_Component (Loc,
6539 Prefix =>
6540 Unchecked_Convert_To (Pref_Type,
6541 Duplicate_Subexpr (Pref)),
6542 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6544 -- Manually analyze and resolve this selected component. We really
6545 -- want it just as it appears above, and do not want the expander
6546 -- playing discriminal games etc with this reference. Then we append
6547 -- the argument to the list we are gathering.
6549 Set_Etype (Scomp, Etype (Real_Discr));
6550 Set_Analyzed (Scomp, True);
6551 Append_To (Args, Convert_To (Etype (Formal), Scomp));
6553 Next_Formal_With_Extras (Formal);
6554 Next_Discriminant (Discr);
6555 end loop;
6557 -- Now build and insert the call
6559 Insert_Action (N,
6560 Make_Raise_Constraint_Error (Loc,
6561 Condition =>
6562 Make_Function_Call (Loc,
6563 Name => New_Occurrence_Of (Discr_Fct, Loc),
6564 Parameter_Associations => Args),
6565 Reason => CE_Discriminant_Check_Failed));
6566 end Generate_Discriminant_Check;
6568 ---------------------------
6569 -- Generate_Index_Checks --
6570 ---------------------------
6572 procedure Generate_Index_Checks (N : Node_Id) is
6574 function Entity_Of_Prefix return Entity_Id;
6575 -- Returns the entity of the prefix of N (or Empty if not found)
6577 ----------------------
6578 -- Entity_Of_Prefix --
6579 ----------------------
6581 function Entity_Of_Prefix return Entity_Id is
6582 P : Node_Id;
6584 begin
6585 P := Prefix (N);
6586 while not Is_Entity_Name (P) loop
6587 if not Nkind_In (P, N_Selected_Component,
6588 N_Indexed_Component)
6589 then
6590 return Empty;
6591 end if;
6593 P := Prefix (P);
6594 end loop;
6596 return Entity (P);
6597 end Entity_Of_Prefix;
6599 -- Local variables
6601 Loc : constant Source_Ptr := Sloc (N);
6602 A : constant Node_Id := Prefix (N);
6603 A_Ent : constant Entity_Id := Entity_Of_Prefix;
6604 Sub : Node_Id;
6606 -- Start of processing for Generate_Index_Checks
6608 begin
6609 -- Ignore call if the prefix is not an array since we have a serious
6610 -- error in the sources. Ignore it also if index checks are suppressed
6611 -- for array object or type.
6613 if not Is_Array_Type (Etype (A))
6614 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
6615 or else Index_Checks_Suppressed (Etype (A))
6616 then
6617 return;
6619 -- The indexed component we are dealing with contains 'Loop_Entry in its
6620 -- prefix. This case arises when analysis has determined that constructs
6621 -- such as
6623 -- Prefix'Loop_Entry (Expr)
6624 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6626 -- require rewriting for error detection purposes. A side effect of this
6627 -- action is the generation of index checks that mention 'Loop_Entry.
6628 -- Delay the generation of the check until 'Loop_Entry has been properly
6629 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6631 elsif Nkind (Prefix (N)) = N_Attribute_Reference
6632 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6633 then
6634 return;
6635 end if;
6637 -- Generate a raise of constraint error with the appropriate reason and
6638 -- a condition of the form:
6640 -- Base_Type (Sub) not in Array'Range (Subscript)
6642 -- Note that the reason we generate the conversion to the base type here
6643 -- is that we definitely want the range check to take place, even if it
6644 -- looks like the subtype is OK. Optimization considerations that allow
6645 -- us to omit the check have already been taken into account in the
6646 -- setting of the Do_Range_Check flag earlier on.
6648 Sub := First (Expressions (N));
6650 -- Handle string literals
6652 if Ekind (Etype (A)) = E_String_Literal_Subtype then
6653 if Do_Range_Check (Sub) then
6654 Set_Do_Range_Check (Sub, False);
6656 -- For string literals we obtain the bounds of the string from the
6657 -- associated subtype.
6659 Insert_Action (N,
6660 Make_Raise_Constraint_Error (Loc,
6661 Condition =>
6662 Make_Not_In (Loc,
6663 Left_Opnd =>
6664 Convert_To (Base_Type (Etype (Sub)),
6665 Duplicate_Subexpr_Move_Checks (Sub)),
6666 Right_Opnd =>
6667 Make_Attribute_Reference (Loc,
6668 Prefix => New_Occurrence_Of (Etype (A), Loc),
6669 Attribute_Name => Name_Range)),
6670 Reason => CE_Index_Check_Failed));
6671 end if;
6673 -- General case
6675 else
6676 declare
6677 A_Idx : Node_Id := Empty;
6678 A_Range : Node_Id;
6679 Ind : Nat;
6680 Num : List_Id;
6681 Range_N : Node_Id;
6683 begin
6684 A_Idx := First_Index (Etype (A));
6685 Ind := 1;
6686 while Present (Sub) loop
6687 if Do_Range_Check (Sub) then
6688 Set_Do_Range_Check (Sub, False);
6690 -- Force evaluation except for the case of a simple name of
6691 -- a nonvolatile entity.
6693 if not Is_Entity_Name (Sub)
6694 or else Treat_As_Volatile (Entity (Sub))
6695 then
6696 Force_Evaluation (Sub);
6697 end if;
6699 if Nkind (A_Idx) = N_Range then
6700 A_Range := A_Idx;
6702 elsif Nkind (A_Idx) = N_Identifier
6703 or else Nkind (A_Idx) = N_Expanded_Name
6704 then
6705 A_Range := Scalar_Range (Entity (A_Idx));
6707 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6708 A_Range := Range_Expression (Constraint (A_Idx));
6709 end if;
6711 -- For array objects with constant bounds we can generate
6712 -- the index check using the bounds of the type of the index
6714 if Present (A_Ent)
6715 and then Ekind (A_Ent) = E_Variable
6716 and then Is_Constant_Bound (Low_Bound (A_Range))
6717 and then Is_Constant_Bound (High_Bound (A_Range))
6718 then
6719 Range_N :=
6720 Make_Attribute_Reference (Loc,
6721 Prefix =>
6722 New_Occurrence_Of (Etype (A_Idx), Loc),
6723 Attribute_Name => Name_Range);
6725 -- For arrays with non-constant bounds we cannot generate
6726 -- the index check using the bounds of the type of the index
6727 -- since it may reference discriminants of some enclosing
6728 -- type. We obtain the bounds directly from the prefix
6729 -- object.
6731 else
6732 if Ind = 1 then
6733 Num := No_List;
6734 else
6735 Num := New_List (Make_Integer_Literal (Loc, Ind));
6736 end if;
6738 Range_N :=
6739 Make_Attribute_Reference (Loc,
6740 Prefix =>
6741 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6742 Attribute_Name => Name_Range,
6743 Expressions => Num);
6744 end if;
6746 Insert_Action (N,
6747 Make_Raise_Constraint_Error (Loc,
6748 Condition =>
6749 Make_Not_In (Loc,
6750 Left_Opnd =>
6751 Convert_To (Base_Type (Etype (Sub)),
6752 Duplicate_Subexpr_Move_Checks (Sub)),
6753 Right_Opnd => Range_N),
6754 Reason => CE_Index_Check_Failed));
6755 end if;
6757 A_Idx := Next_Index (A_Idx);
6758 Ind := Ind + 1;
6759 Next (Sub);
6760 end loop;
6761 end;
6762 end if;
6763 end Generate_Index_Checks;
6765 --------------------------
6766 -- Generate_Range_Check --
6767 --------------------------
6769 procedure Generate_Range_Check
6770 (N : Node_Id;
6771 Target_Type : Entity_Id;
6772 Reason : RT_Exception_Code)
6774 Loc : constant Source_Ptr := Sloc (N);
6775 Source_Type : constant Entity_Id := Etype (N);
6776 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
6777 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
6779 procedure Convert_And_Check_Range;
6780 -- Convert the conversion operand to the target base type and save in
6781 -- a temporary. Then check the converted value against the range of the
6782 -- target subtype.
6784 -----------------------------
6785 -- Convert_And_Check_Range --
6786 -----------------------------
6788 procedure Convert_And_Check_Range is
6789 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6790 Conv_Node : Node_Id;
6792 begin
6793 -- For enumeration types with non-standard representation this is a
6794 -- direct conversion from the enumeration type to the target integer
6795 -- type, which is treated by the back end as a normal integer type
6796 -- conversion, treating the enumeration type as an integer, which is
6797 -- exactly what we want. We set Conversion_OK to make sure that the
6798 -- analyzer does not complain about what otherwise might be an
6799 -- illegal conversion.
6801 if Is_Enumeration_Type (Source_Base_Type)
6802 and then Present (Enum_Pos_To_Rep (Source_Base_Type))
6803 and then Is_Integer_Type (Target_Base_Type)
6804 then
6805 Conv_Node :=
6806 OK_Convert_To
6807 (Typ => Target_Base_Type,
6808 Expr => Duplicate_Subexpr (N));
6810 -- Common case
6812 else
6813 Conv_Node :=
6814 Make_Type_Conversion (Loc,
6815 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
6816 Expression => Duplicate_Subexpr (N));
6817 end if;
6819 -- We make a temporary to hold the value of the converted value
6820 -- (converted to the base type), and then do the test against this
6821 -- temporary. The conversion itself is replaced by an occurrence of
6822 -- Tnn and followed by the explicit range check. Note that checks
6823 -- are suppressed for this code, since we don't want a recursive
6824 -- range check popping up.
6826 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6827 -- [constraint_error when Tnn not in Target_Type]
6829 Insert_Actions (N, New_List (
6830 Make_Object_Declaration (Loc,
6831 Defining_Identifier => Tnn,
6832 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
6833 Constant_Present => True,
6834 Expression => Conv_Node),
6836 Make_Raise_Constraint_Error (Loc,
6837 Condition =>
6838 Make_Not_In (Loc,
6839 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6840 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6841 Reason => Reason)),
6842 Suppress => All_Checks);
6844 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6846 -- Set the type of N, because the declaration for Tnn might not
6847 -- be analyzed yet, as is the case if N appears within a record
6848 -- declaration, as a discriminant constraint or expression.
6850 Set_Etype (N, Target_Base_Type);
6851 end Convert_And_Check_Range;
6853 -- Start of processing for Generate_Range_Check
6855 begin
6856 -- First special case, if the source type is already within the range
6857 -- of the target type, then no check is needed (probably we should have
6858 -- stopped Do_Range_Check from being set in the first place, but better
6859 -- late than never in preventing junk code and junk flag settings.
6861 if In_Subrange_Of (Source_Type, Target_Type)
6863 -- We do NOT apply this if the source node is a literal, since in this
6864 -- case the literal has already been labeled as having the subtype of
6865 -- the target.
6867 and then not
6868 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
6869 or else
6870 (Is_Entity_Name (N)
6871 and then Ekind (Entity (N)) = E_Enumeration_Literal))
6872 then
6873 Set_Do_Range_Check (N, False);
6874 return;
6875 end if;
6877 -- Here a check is needed. If the expander is not active, or if we are
6878 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6879 -- are done. In both these cases, we just want to see the range check
6880 -- flag set, we do not want to generate the explicit range check code.
6882 if GNATprove_Mode or else not Expander_Active then
6883 Set_Do_Range_Check (N, True);
6884 return;
6885 end if;
6887 -- Here we will generate an explicit range check, so we don't want to
6888 -- set the Do_Range check flag, since the range check is taken care of
6889 -- by the code we will generate.
6891 Set_Do_Range_Check (N, False);
6893 -- Force evaluation of the node, so that it does not get evaluated twice
6894 -- (once for the check, once for the actual reference). Such a double
6895 -- evaluation is always a potential source of inefficiency, and is
6896 -- functionally incorrect in the volatile case.
6898 -- We skip the evaluation of attribute references because, after these
6899 -- runtime checks are generated, the expander may need to rewrite this
6900 -- node (for example, see Attribute_Max_Size_In_Storage_Elements in
6901 -- Expand_N_Attribute_Reference).
6903 if Nkind (N) /= N_Attribute_Reference
6904 and then (not Is_Entity_Name (N)
6905 or else Treat_As_Volatile (Entity (N)))
6906 then
6907 Force_Evaluation (N, Mode => Strict);
6908 end if;
6910 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6911 -- the same since in this case we can simply do a direct check of the
6912 -- value of N against the bounds of Target_Type.
6914 -- [constraint_error when N not in Target_Type]
6916 -- Note: this is by far the most common case, for example all cases of
6917 -- checks on the RHS of assignments are in this category, but not all
6918 -- cases are like this. Notably conversions can involve two types.
6920 if Source_Base_Type = Target_Base_Type then
6922 -- Insert the explicit range check. Note that we suppress checks for
6923 -- this code, since we don't want a recursive range check popping up.
6925 Insert_Action (N,
6926 Make_Raise_Constraint_Error (Loc,
6927 Condition =>
6928 Make_Not_In (Loc,
6929 Left_Opnd => Duplicate_Subexpr (N),
6930 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6931 Reason => Reason),
6932 Suppress => All_Checks);
6934 -- Next test for the case where the target type is within the bounds
6935 -- of the base type of the source type, since in this case we can
6936 -- simply convert these bounds to the base type of T to do the test.
6938 -- [constraint_error when N not in
6939 -- Source_Base_Type (Target_Type'First)
6940 -- ..
6941 -- Source_Base_Type(Target_Type'Last))]
6943 -- The conversions will always work and need no check
6945 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6946 -- of converting from an enumeration value to an integer type, such as
6947 -- occurs for the case of generating a range check on Enum'Val(Exp)
6948 -- (which used to be handled by gigi). This is OK, since the conversion
6949 -- itself does not require a check.
6951 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
6953 -- Insert the explicit range check. Note that we suppress checks for
6954 -- this code, since we don't want a recursive range check popping up.
6956 if Is_Discrete_Type (Source_Base_Type)
6957 and then
6958 Is_Discrete_Type (Target_Base_Type)
6959 then
6960 Insert_Action (N,
6961 Make_Raise_Constraint_Error (Loc,
6962 Condition =>
6963 Make_Not_In (Loc,
6964 Left_Opnd => Duplicate_Subexpr (N),
6966 Right_Opnd =>
6967 Make_Range (Loc,
6968 Low_Bound =>
6969 Unchecked_Convert_To (Source_Base_Type,
6970 Make_Attribute_Reference (Loc,
6971 Prefix =>
6972 New_Occurrence_Of (Target_Type, Loc),
6973 Attribute_Name => Name_First)),
6975 High_Bound =>
6976 Unchecked_Convert_To (Source_Base_Type,
6977 Make_Attribute_Reference (Loc,
6978 Prefix =>
6979 New_Occurrence_Of (Target_Type, Loc),
6980 Attribute_Name => Name_Last)))),
6981 Reason => Reason),
6982 Suppress => All_Checks);
6984 -- For conversions involving at least one type that is not discrete,
6985 -- first convert to target type and then generate the range check.
6986 -- This avoids problems with values that are close to a bound of the
6987 -- target type that would fail a range check when done in a larger
6988 -- source type before converting but would pass if converted with
6989 -- rounding and then checked (such as in float-to-float conversions).
6991 else
6992 Convert_And_Check_Range;
6993 end if;
6995 -- Note that at this stage we now that the Target_Base_Type is not in
6996 -- the range of the Source_Base_Type (since even the Target_Type itself
6997 -- is not in this range). It could still be the case that Source_Type is
6998 -- in range of the target base type since we have not checked that case.
7000 -- If that is the case, we can freely convert the source to the target,
7001 -- and then test the target result against the bounds.
7003 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
7004 Convert_And_Check_Range;
7006 -- At this stage, we know that we have two scalar types, which are
7007 -- directly convertible, and where neither scalar type has a base
7008 -- range that is in the range of the other scalar type.
7010 -- The only way this can happen is with a signed and unsigned type.
7011 -- So test for these two cases:
7013 else
7014 -- Case of the source is unsigned and the target is signed
7016 if Is_Unsigned_Type (Source_Base_Type)
7017 and then not Is_Unsigned_Type (Target_Base_Type)
7018 then
7019 -- If the source is unsigned and the target is signed, then we
7020 -- know that the source is not shorter than the target (otherwise
7021 -- the source base type would be in the target base type range).
7023 -- In other words, the unsigned type is either the same size as
7024 -- the target, or it is larger. It cannot be smaller.
7026 pragma Assert
7027 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
7029 -- We only need to check the low bound if the low bound of the
7030 -- target type is non-negative. If the low bound of the target
7031 -- type is negative, then we know that we will fit fine.
7033 -- If the high bound of the target type is negative, then we
7034 -- know we have a constraint error, since we can't possibly
7035 -- have a negative source.
7037 -- With these two checks out of the way, we can do the check
7038 -- using the source type safely
7040 -- This is definitely the most annoying case.
7042 -- [constraint_error
7043 -- when (Target_Type'First >= 0
7044 -- and then
7045 -- N < Source_Base_Type (Target_Type'First))
7046 -- or else Target_Type'Last < 0
7047 -- or else N > Source_Base_Type (Target_Type'Last)];
7049 -- We turn off all checks since we know that the conversions
7050 -- will work fine, given the guards for negative values.
7052 Insert_Action (N,
7053 Make_Raise_Constraint_Error (Loc,
7054 Condition =>
7055 Make_Or_Else (Loc,
7056 Make_Or_Else (Loc,
7057 Left_Opnd =>
7058 Make_And_Then (Loc,
7059 Left_Opnd => Make_Op_Ge (Loc,
7060 Left_Opnd =>
7061 Make_Attribute_Reference (Loc,
7062 Prefix =>
7063 New_Occurrence_Of (Target_Type, Loc),
7064 Attribute_Name => Name_First),
7065 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7067 Right_Opnd =>
7068 Make_Op_Lt (Loc,
7069 Left_Opnd => Duplicate_Subexpr (N),
7070 Right_Opnd =>
7071 Convert_To (Source_Base_Type,
7072 Make_Attribute_Reference (Loc,
7073 Prefix =>
7074 New_Occurrence_Of (Target_Type, Loc),
7075 Attribute_Name => Name_First)))),
7077 Right_Opnd =>
7078 Make_Op_Lt (Loc,
7079 Left_Opnd =>
7080 Make_Attribute_Reference (Loc,
7081 Prefix => New_Occurrence_Of (Target_Type, Loc),
7082 Attribute_Name => Name_Last),
7083 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
7085 Right_Opnd =>
7086 Make_Op_Gt (Loc,
7087 Left_Opnd => Duplicate_Subexpr (N),
7088 Right_Opnd =>
7089 Convert_To (Source_Base_Type,
7090 Make_Attribute_Reference (Loc,
7091 Prefix => New_Occurrence_Of (Target_Type, Loc),
7092 Attribute_Name => Name_Last)))),
7094 Reason => Reason),
7095 Suppress => All_Checks);
7097 -- Only remaining possibility is that the source is signed and
7098 -- the target is unsigned.
7100 else
7101 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
7102 and then Is_Unsigned_Type (Target_Base_Type));
7104 -- If the source is signed and the target is unsigned, then we
7105 -- know that the target is not shorter than the source (otherwise
7106 -- the target base type would be in the source base type range).
7108 -- In other words, the unsigned type is either the same size as
7109 -- the target, or it is larger. It cannot be smaller.
7111 -- Clearly we have an error if the source value is negative since
7112 -- no unsigned type can have negative values. If the source type
7113 -- is non-negative, then the check can be done using the target
7114 -- type.
7116 -- Tnn : constant Target_Base_Type (N) := Target_Type;
7118 -- [constraint_error
7119 -- when N < 0 or else Tnn not in Target_Type];
7121 -- We turn off all checks for the conversion of N to the target
7122 -- base type, since we generate the explicit check to ensure that
7123 -- the value is non-negative
7125 declare
7126 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7128 begin
7129 Insert_Actions (N, New_List (
7130 Make_Object_Declaration (Loc,
7131 Defining_Identifier => Tnn,
7132 Object_Definition =>
7133 New_Occurrence_Of (Target_Base_Type, Loc),
7134 Constant_Present => True,
7135 Expression =>
7136 Make_Unchecked_Type_Conversion (Loc,
7137 Subtype_Mark =>
7138 New_Occurrence_Of (Target_Base_Type, Loc),
7139 Expression => Duplicate_Subexpr (N))),
7141 Make_Raise_Constraint_Error (Loc,
7142 Condition =>
7143 Make_Or_Else (Loc,
7144 Left_Opnd =>
7145 Make_Op_Lt (Loc,
7146 Left_Opnd => Duplicate_Subexpr (N),
7147 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7149 Right_Opnd =>
7150 Make_Not_In (Loc,
7151 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7152 Right_Opnd =>
7153 New_Occurrence_Of (Target_Type, Loc))),
7155 Reason => Reason)),
7156 Suppress => All_Checks);
7158 -- Set the Etype explicitly, because Insert_Actions may have
7159 -- placed the declaration in the freeze list for an enclosing
7160 -- construct, and thus it is not analyzed yet.
7162 Set_Etype (Tnn, Target_Base_Type);
7163 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7164 end;
7165 end if;
7166 end if;
7167 end Generate_Range_Check;
7169 ------------------
7170 -- Get_Check_Id --
7171 ------------------
7173 function Get_Check_Id (N : Name_Id) return Check_Id is
7174 begin
7175 -- For standard check name, we can do a direct computation
7177 if N in First_Check_Name .. Last_Check_Name then
7178 return Check_Id (N - (First_Check_Name - 1));
7180 -- For non-standard names added by pragma Check_Name, search table
7182 else
7183 for J in All_Checks + 1 .. Check_Names.Last loop
7184 if Check_Names.Table (J) = N then
7185 return J;
7186 end if;
7187 end loop;
7188 end if;
7190 -- No matching name found
7192 return No_Check_Id;
7193 end Get_Check_Id;
7195 ---------------------
7196 -- Get_Discriminal --
7197 ---------------------
7199 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7200 Loc : constant Source_Ptr := Sloc (E);
7201 D : Entity_Id;
7202 Sc : Entity_Id;
7204 begin
7205 -- The bound can be a bona fide parameter of a protected operation,
7206 -- rather than a prival encoded as an in-parameter.
7208 if No (Discriminal_Link (Entity (Bound))) then
7209 return Bound;
7210 end if;
7212 -- Climb the scope stack looking for an enclosing protected type. If
7213 -- we run out of scopes, return the bound itself.
7215 Sc := Scope (E);
7216 while Present (Sc) loop
7217 if Sc = Standard_Standard then
7218 return Bound;
7219 elsif Ekind (Sc) = E_Protected_Type then
7220 exit;
7221 end if;
7223 Sc := Scope (Sc);
7224 end loop;
7226 D := First_Discriminant (Sc);
7227 while Present (D) loop
7228 if Chars (D) = Chars (Bound) then
7229 return New_Occurrence_Of (Discriminal (D), Loc);
7230 end if;
7232 Next_Discriminant (D);
7233 end loop;
7235 return Bound;
7236 end Get_Discriminal;
7238 ----------------------
7239 -- Get_Range_Checks --
7240 ----------------------
7242 function Get_Range_Checks
7243 (Ck_Node : Node_Id;
7244 Target_Typ : Entity_Id;
7245 Source_Typ : Entity_Id := Empty;
7246 Warn_Node : Node_Id := Empty) return Check_Result
7248 begin
7249 return
7250 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
7251 end Get_Range_Checks;
7253 ------------------
7254 -- Guard_Access --
7255 ------------------
7257 function Guard_Access
7258 (Cond : Node_Id;
7259 Loc : Source_Ptr;
7260 Ck_Node : Node_Id) return Node_Id
7262 begin
7263 if Nkind (Cond) = N_Or_Else then
7264 Set_Paren_Count (Cond, 1);
7265 end if;
7267 if Nkind (Ck_Node) = N_Allocator then
7268 return Cond;
7270 else
7271 return
7272 Make_And_Then (Loc,
7273 Left_Opnd =>
7274 Make_Op_Ne (Loc,
7275 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
7276 Right_Opnd => Make_Null (Loc)),
7277 Right_Opnd => Cond);
7278 end if;
7279 end Guard_Access;
7281 -----------------------------
7282 -- Index_Checks_Suppressed --
7283 -----------------------------
7285 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7286 begin
7287 if Present (E) and then Checks_May_Be_Suppressed (E) then
7288 return Is_Check_Suppressed (E, Index_Check);
7289 else
7290 return Scope_Suppress.Suppress (Index_Check);
7291 end if;
7292 end Index_Checks_Suppressed;
7294 ----------------
7295 -- Initialize --
7296 ----------------
7298 procedure Initialize is
7299 begin
7300 for J in Determine_Range_Cache_N'Range loop
7301 Determine_Range_Cache_N (J) := Empty;
7302 end loop;
7304 Check_Names.Init;
7306 for J in Int range 1 .. All_Checks loop
7307 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
7308 end loop;
7309 end Initialize;
7311 -------------------------
7312 -- Insert_Range_Checks --
7313 -------------------------
7315 procedure Insert_Range_Checks
7316 (Checks : Check_Result;
7317 Node : Node_Id;
7318 Suppress_Typ : Entity_Id;
7319 Static_Sloc : Source_Ptr := No_Location;
7320 Flag_Node : Node_Id := Empty;
7321 Do_Before : Boolean := False)
7323 Checks_On : constant Boolean :=
7324 not Index_Checks_Suppressed (Suppress_Typ)
7325 or else
7326 not Range_Checks_Suppressed (Suppress_Typ);
7328 Check_Node : Node_Id;
7329 Internal_Flag_Node : Node_Id := Flag_Node;
7330 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
7332 begin
7333 -- For now we just return if Checks_On is false, however this should be
7334 -- enhanced to check for an always True value in the condition and to
7335 -- generate a compilation warning???
7337 if not Expander_Active or not Checks_On then
7338 return;
7339 end if;
7341 if Static_Sloc = No_Location then
7342 Internal_Static_Sloc := Sloc (Node);
7343 end if;
7345 if No (Flag_Node) then
7346 Internal_Flag_Node := Node;
7347 end if;
7349 for J in 1 .. 2 loop
7350 exit when No (Checks (J));
7352 if Nkind (Checks (J)) = N_Raise_Constraint_Error
7353 and then Present (Condition (Checks (J)))
7354 then
7355 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
7356 Check_Node := Checks (J);
7357 Mark_Rewrite_Insertion (Check_Node);
7359 if Do_Before then
7360 Insert_Before_And_Analyze (Node, Check_Node);
7361 else
7362 Insert_After_And_Analyze (Node, Check_Node);
7363 end if;
7365 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
7366 end if;
7368 else
7369 Check_Node :=
7370 Make_Raise_Constraint_Error (Internal_Static_Sloc,
7371 Reason => CE_Range_Check_Failed);
7372 Mark_Rewrite_Insertion (Check_Node);
7374 if Do_Before then
7375 Insert_Before_And_Analyze (Node, Check_Node);
7376 else
7377 Insert_After_And_Analyze (Node, Check_Node);
7378 end if;
7379 end if;
7380 end loop;
7381 end Insert_Range_Checks;
7383 ------------------------
7384 -- Insert_Valid_Check --
7385 ------------------------
7387 procedure Insert_Valid_Check
7388 (Expr : Node_Id;
7389 Related_Id : Entity_Id := Empty;
7390 Is_Low_Bound : Boolean := False;
7391 Is_High_Bound : Boolean := False)
7393 Loc : constant Source_Ptr := Sloc (Expr);
7394 Typ : constant Entity_Id := Etype (Expr);
7395 Exp : Node_Id;
7397 begin
7398 -- Do not insert if checks off, or if not checking validity or if
7399 -- expression is known to be valid.
7401 if not Validity_Checks_On
7402 or else Range_Or_Validity_Checks_Suppressed (Expr)
7403 or else Expr_Known_Valid (Expr)
7404 then
7405 return;
7407 -- Do not insert checks within a predicate function. This will arise
7408 -- if the current unit and the predicate function are being compiled
7409 -- with validity checks enabled.
7411 elsif Present (Predicate_Function (Typ))
7412 and then Current_Scope = Predicate_Function (Typ)
7413 then
7414 return;
7416 -- If the expression is a packed component of a modular type of the
7417 -- right size, the data is always valid.
7419 elsif Nkind (Expr) = N_Selected_Component
7420 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
7421 and then Is_Modular_Integer_Type (Typ)
7422 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
7423 then
7424 return;
7426 -- Do not generate a validity check when inside a generic unit as this
7427 -- is an expansion activity.
7429 elsif Inside_A_Generic then
7430 return;
7431 end if;
7433 -- If we have a checked conversion, then validity check applies to
7434 -- the expression inside the conversion, not the result, since if
7435 -- the expression inside is valid, then so is the conversion result.
7437 Exp := Expr;
7438 while Nkind (Exp) = N_Type_Conversion loop
7439 Exp := Expression (Exp);
7440 end loop;
7442 -- Do not generate a check for a variable which already validates the
7443 -- value of an assignable object.
7445 if Is_Validation_Variable_Reference (Exp) then
7446 return;
7447 end if;
7449 declare
7450 CE : Node_Id;
7451 PV : Node_Id;
7452 Var_Id : Entity_Id;
7454 begin
7455 -- If the expression denotes an assignable object, capture its value
7456 -- in a variable and replace the original expression by the variable.
7457 -- This approach has several effects:
7459 -- 1) The evaluation of the object results in only one read in the
7460 -- case where the object is atomic or volatile.
7462 -- Var ... := Object; -- read
7464 -- 2) The captured value is the one verified by attribute 'Valid.
7465 -- As a result the object is not evaluated again, which would
7466 -- result in an unwanted read in the case where the object is
7467 -- atomic or volatile.
7469 -- if not Var'Valid then -- OK, no read of Object
7471 -- if not Object'Valid then -- Wrong, extra read of Object
7473 -- 3) The captured value replaces the original object reference.
7474 -- As a result the object is not evaluated again, in the same
7475 -- vein as 2).
7477 -- ... Var ... -- OK, no read of Object
7479 -- ... Object ... -- Wrong, extra read of Object
7481 -- 4) The use of a variable to capture the value of the object
7482 -- allows the propagation of any changes back to the original
7483 -- object.
7485 -- procedure Call (Val : in out ...);
7487 -- Var : ... := Object; -- read Object
7488 -- if not Var'Valid then -- validity check
7489 -- Call (Var); -- modify Var
7490 -- Object := Var; -- update Object
7492 if Is_Variable (Exp) then
7493 Var_Id := Make_Temporary (Loc, 'T', Exp);
7495 -- Because we could be dealing with a transient scope which would
7496 -- cause our object declaration to remain unanalyzed we must do
7497 -- some manual decoration.
7499 Set_Ekind (Var_Id, E_Variable);
7500 Set_Etype (Var_Id, Typ);
7502 Insert_Action (Exp,
7503 Make_Object_Declaration (Loc,
7504 Defining_Identifier => Var_Id,
7505 Object_Definition => New_Occurrence_Of (Typ, Loc),
7506 Expression => New_Copy_Tree (Exp)),
7507 Suppress => Validity_Check);
7509 Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));
7510 Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
7511 PV := New_Occurrence_Of (Var_Id, Loc);
7513 -- Copy the Do_Range_Check flag over to the new Exp, so it doesn't
7514 -- get lost. Floating point types are handled elsewhere.
7516 if not Is_Floating_Point_Type (Typ) then
7517 Set_Do_Range_Check (Exp, Do_Range_Check (Original_Node (Exp)));
7518 end if;
7520 -- Otherwise the expression does not denote a variable. Force its
7521 -- evaluation by capturing its value in a constant. Generate:
7523 -- Temp : constant ... := Exp;
7525 else
7526 Force_Evaluation
7527 (Exp => Exp,
7528 Related_Id => Related_Id,
7529 Is_Low_Bound => Is_Low_Bound,
7530 Is_High_Bound => Is_High_Bound);
7532 PV := New_Copy_Tree (Exp);
7533 end if;
7535 -- A rather specialized test. If PV is an analyzed expression which
7536 -- is an indexed component of a packed array that has not been
7537 -- properly expanded, turn off its Analyzed flag to make sure it
7538 -- gets properly reexpanded. If the prefix is an access value,
7539 -- the dereference will be added later.
7541 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7542 -- an analyze with the old parent pointer. This may point e.g. to
7543 -- a subprogram call, which deactivates this expansion.
7545 if Analyzed (PV)
7546 and then Nkind (PV) = N_Indexed_Component
7547 and then Is_Array_Type (Etype (Prefix (PV)))
7548 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
7549 then
7550 Set_Analyzed (PV, False);
7551 end if;
7553 -- Build the raise CE node to check for validity. We build a type
7554 -- qualification for the prefix, since it may not be of the form of
7555 -- a name, and we don't care in this context!
7557 CE :=
7558 Make_Raise_Constraint_Error (Loc,
7559 Condition =>
7560 Make_Op_Not (Loc,
7561 Right_Opnd =>
7562 Make_Attribute_Reference (Loc,
7563 Prefix => PV,
7564 Attribute_Name => Name_Valid)),
7565 Reason => CE_Invalid_Data);
7567 -- Insert the validity check. Note that we do this with validity
7568 -- checks turned off, to avoid recursion, we do not want validity
7569 -- checks on the validity checking code itself.
7571 Insert_Action (Expr, CE, Suppress => Validity_Check);
7573 -- If the expression is a reference to an element of a bit-packed
7574 -- array, then it is rewritten as a renaming declaration. If the
7575 -- expression is an actual in a call, it has not been expanded,
7576 -- waiting for the proper point at which to do it. The same happens
7577 -- with renamings, so that we have to force the expansion now. This
7578 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7579 -- and exp_ch6.adb.
7581 if Is_Entity_Name (Exp)
7582 and then Nkind (Parent (Entity (Exp))) =
7583 N_Object_Renaming_Declaration
7584 then
7585 declare
7586 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7587 begin
7588 if Nkind (Old_Exp) = N_Indexed_Component
7589 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7590 then
7591 Expand_Packed_Element_Reference (Old_Exp);
7592 end if;
7593 end;
7594 end if;
7595 end;
7596 end Insert_Valid_Check;
7598 -------------------------------------
7599 -- Is_Signed_Integer_Arithmetic_Op --
7600 -------------------------------------
7602 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7603 begin
7604 case Nkind (N) is
7605 when N_Op_Abs
7606 | N_Op_Add
7607 | N_Op_Divide
7608 | N_Op_Expon
7609 | N_Op_Minus
7610 | N_Op_Mod
7611 | N_Op_Multiply
7612 | N_Op_Plus
7613 | N_Op_Rem
7614 | N_Op_Subtract
7616 return Is_Signed_Integer_Type (Etype (N));
7618 when N_Case_Expression
7619 | N_If_Expression
7621 return Is_Signed_Integer_Type (Etype (N));
7623 when others =>
7624 return False;
7625 end case;
7626 end Is_Signed_Integer_Arithmetic_Op;
7628 ----------------------------------
7629 -- Install_Null_Excluding_Check --
7630 ----------------------------------
7632 procedure Install_Null_Excluding_Check (N : Node_Id) is
7633 Loc : constant Source_Ptr := Sloc (Parent (N));
7634 Typ : constant Entity_Id := Etype (N);
7636 function Safe_To_Capture_In_Parameter_Value return Boolean;
7637 -- Determines if it is safe to capture Known_Non_Null status for an
7638 -- the entity referenced by node N. The caller ensures that N is indeed
7639 -- an entity name. It is safe to capture the non-null status for an IN
7640 -- parameter when the reference occurs within a declaration that is sure
7641 -- to be executed as part of the declarative region.
7643 procedure Mark_Non_Null;
7644 -- After installation of check, if the node in question is an entity
7645 -- name, then mark this entity as non-null if possible.
7647 function Safe_To_Capture_In_Parameter_Value return Boolean is
7648 E : constant Entity_Id := Entity (N);
7649 S : constant Entity_Id := Current_Scope;
7650 S_Par : Node_Id;
7652 begin
7653 if Ekind (E) /= E_In_Parameter then
7654 return False;
7655 end if;
7657 -- Two initial context checks. We must be inside a subprogram body
7658 -- with declarations and reference must not appear in nested scopes.
7660 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7661 or else Scope (E) /= S
7662 then
7663 return False;
7664 end if;
7666 S_Par := Parent (Parent (S));
7668 if Nkind (S_Par) /= N_Subprogram_Body
7669 or else No (Declarations (S_Par))
7670 then
7671 return False;
7672 end if;
7674 declare
7675 N_Decl : Node_Id;
7676 P : Node_Id;
7678 begin
7679 -- Retrieve the declaration node of N (if any). Note that N
7680 -- may be a part of a complex initialization expression.
7682 P := Parent (N);
7683 N_Decl := Empty;
7684 while Present (P) loop
7686 -- If we have a short circuit form, and we are within the right
7687 -- hand expression, we return false, since the right hand side
7688 -- is not guaranteed to be elaborated.
7690 if Nkind (P) in N_Short_Circuit
7691 and then N = Right_Opnd (P)
7692 then
7693 return False;
7694 end if;
7696 -- Similarly, if we are in an if expression and not part of the
7697 -- condition, then we return False, since neither the THEN or
7698 -- ELSE dependent expressions will always be elaborated.
7700 if Nkind (P) = N_If_Expression
7701 and then N /= First (Expressions (P))
7702 then
7703 return False;
7704 end if;
7706 -- If within a case expression, and not part of the expression,
7707 -- then return False, since a particular dependent expression
7708 -- may not always be elaborated
7710 if Nkind (P) = N_Case_Expression
7711 and then N /= Expression (P)
7712 then
7713 return False;
7714 end if;
7716 -- While traversing the parent chain, if node N belongs to a
7717 -- statement, then it may never appear in a declarative region.
7719 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7720 or else Nkind (P) = N_Procedure_Call_Statement
7721 then
7722 return False;
7723 end if;
7725 -- If we are at a declaration, record it and exit
7727 if Nkind (P) in N_Declaration
7728 and then Nkind (P) not in N_Subprogram_Specification
7729 then
7730 N_Decl := P;
7731 exit;
7732 end if;
7734 P := Parent (P);
7735 end loop;
7737 if No (N_Decl) then
7738 return False;
7739 end if;
7741 return List_Containing (N_Decl) = Declarations (S_Par);
7742 end;
7743 end Safe_To_Capture_In_Parameter_Value;
7745 -------------------
7746 -- Mark_Non_Null --
7747 -------------------
7749 procedure Mark_Non_Null is
7750 begin
7751 -- Only case of interest is if node N is an entity name
7753 if Is_Entity_Name (N) then
7755 -- For sure, we want to clear an indication that this is known to
7756 -- be null, since if we get past this check, it definitely is not.
7758 Set_Is_Known_Null (Entity (N), False);
7760 -- We can mark the entity as known to be non-null if either it is
7761 -- safe to capture the value, or in the case of an IN parameter,
7762 -- which is a constant, if the check we just installed is in the
7763 -- declarative region of the subprogram body. In this latter case,
7764 -- a check is decisive for the rest of the body if the expression
7765 -- is sure to be elaborated, since we know we have to elaborate
7766 -- all declarations before executing the body.
7768 -- Couldn't this always be part of Safe_To_Capture_Value ???
7770 if Safe_To_Capture_Value (N, Entity (N))
7771 or else Safe_To_Capture_In_Parameter_Value
7772 then
7773 Set_Is_Known_Non_Null (Entity (N));
7774 end if;
7775 end if;
7776 end Mark_Non_Null;
7778 -- Start of processing for Install_Null_Excluding_Check
7780 begin
7781 -- No need to add null-excluding checks when the tree may not be fully
7782 -- decorated.
7784 if Serious_Errors_Detected > 0 then
7785 return;
7786 end if;
7788 pragma Assert (Is_Access_Type (Typ));
7790 -- No check inside a generic, check will be emitted in instance
7792 if Inside_A_Generic then
7793 return;
7794 end if;
7796 -- No check needed if known to be non-null
7798 if Known_Non_Null (N) then
7799 return;
7800 end if;
7802 -- If known to be null, here is where we generate a compile time check
7804 if Known_Null (N) then
7806 -- Avoid generating warning message inside init procs. In SPARK mode
7807 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
7808 -- since it will be turned into an error in any case.
7810 if (not Inside_Init_Proc or else SPARK_Mode = On)
7812 -- Do not emit the warning within a conditional expression,
7813 -- where the expression might not be evaluated, and the warning
7814 -- appear as extraneous noise.
7816 and then not Within_Case_Or_If_Expression (N)
7817 then
7818 Apply_Compile_Time_Constraint_Error
7819 (N, "null value not allowed here??", CE_Access_Check_Failed);
7821 -- Remaining cases, where we silently insert the raise
7823 else
7824 Insert_Action (N,
7825 Make_Raise_Constraint_Error (Loc,
7826 Reason => CE_Access_Check_Failed));
7827 end if;
7829 Mark_Non_Null;
7830 return;
7831 end if;
7833 -- If entity is never assigned, for sure a warning is appropriate
7835 if Is_Entity_Name (N) then
7836 Check_Unset_Reference (N);
7837 end if;
7839 -- No check needed if checks are suppressed on the range. Note that we
7840 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7841 -- so, since the program is erroneous, but we don't like to casually
7842 -- propagate such conclusions from erroneosity).
7844 if Access_Checks_Suppressed (Typ) then
7845 return;
7846 end if;
7848 -- No check needed for access to concurrent record types generated by
7849 -- the expander. This is not just an optimization (though it does indeed
7850 -- remove junk checks). It also avoids generation of junk warnings.
7852 if Nkind (N) in N_Has_Chars
7853 and then Chars (N) = Name_uObject
7854 and then Is_Concurrent_Record_Type
7855 (Directly_Designated_Type (Etype (N)))
7856 then
7857 return;
7858 end if;
7860 -- No check needed in interface thunks since the runtime check is
7861 -- already performed at the caller side.
7863 if Is_Thunk (Current_Scope) then
7864 return;
7865 end if;
7867 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7868 -- the expander within exception handlers, since we know that the value
7869 -- can never be null.
7871 -- Is this really the right way to do this? Normally we generate such
7872 -- code in the expander with checks off, and that's how we suppress this
7873 -- kind of junk check ???
7875 if Nkind (N) = N_Function_Call
7876 and then Nkind (Name (N)) = N_Explicit_Dereference
7877 and then Nkind (Prefix (Name (N))) = N_Identifier
7878 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7879 then
7880 return;
7881 end if;
7883 -- Otherwise install access check
7885 Insert_Action (N,
7886 Make_Raise_Constraint_Error (Loc,
7887 Condition =>
7888 Make_Op_Eq (Loc,
7889 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
7890 Right_Opnd => Make_Null (Loc)),
7891 Reason => CE_Access_Check_Failed));
7893 Mark_Non_Null;
7894 end Install_Null_Excluding_Check;
7896 -----------------------------------------
7897 -- Install_Primitive_Elaboration_Check --
7898 -----------------------------------------
7900 procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
7901 function Within_Compilation_Unit_Instance
7902 (Subp_Id : Entity_Id) return Boolean;
7903 -- Determine whether subprogram Subp_Id appears within an instance which
7904 -- acts as a compilation unit.
7906 --------------------------------------
7907 -- Within_Compilation_Unit_Instance --
7908 --------------------------------------
7910 function Within_Compilation_Unit_Instance
7911 (Subp_Id : Entity_Id) return Boolean
7913 Pack : Entity_Id;
7915 begin
7916 -- Examine the scope chain looking for a compilation-unit-level
7917 -- instance.
7919 Pack := Scope (Subp_Id);
7920 while Present (Pack) and then Pack /= Standard_Standard loop
7921 if Ekind (Pack) = E_Package
7922 and then Is_Generic_Instance (Pack)
7923 and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
7924 N_Compilation_Unit
7925 then
7926 return True;
7927 end if;
7929 Pack := Scope (Pack);
7930 end loop;
7932 return False;
7933 end Within_Compilation_Unit_Instance;
7935 -- Local declarations
7937 Context : constant Node_Id := Parent (Subp_Body);
7938 Loc : constant Source_Ptr := Sloc (Subp_Body);
7939 Subp_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Body);
7940 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
7942 Decls : List_Id;
7943 Flag_Id : Entity_Id;
7944 Set_Ins : Node_Id;
7945 Set_Stmt : Node_Id;
7946 Tag_Typ : Entity_Id;
7948 -- Start of processing for Install_Primitive_Elaboration_Check
7950 begin
7951 -- Do not generate an elaboration check in compilation modes where
7952 -- expansion is not desirable.
7954 if ASIS_Mode or GNATprove_Mode then
7955 return;
7957 -- Do not generate an elaboration check if all checks have been
7958 -- suppressed.
7960 elsif Suppress_Checks then
7961 return;
7963 -- Do not generate an elaboration check if the related subprogram is
7964 -- not subjected to accessibility checks.
7966 elsif Elaboration_Checks_Suppressed (Subp_Id) then
7967 return;
7969 -- Do not generate an elaboration check if such code is not desirable
7971 elsif Restriction_Active (No_Elaboration_Code) then
7972 return;
7974 -- Do not generate an elaboration check if exceptions cannot be used,
7975 -- caught, or propagated.
7977 elsif not Exceptions_OK then
7978 return;
7980 -- Do not consider subprograms which act as compilation units, because
7981 -- they cannot be the target of a dispatching call.
7983 elsif Nkind (Context) = N_Compilation_Unit then
7984 return;
7986 -- Do not consider anything other than nonabstract library-level source
7987 -- primitives.
7989 elsif not
7990 (Comes_From_Source (Subp_Id)
7991 and then Is_Library_Level_Entity (Subp_Id)
7992 and then Is_Primitive (Subp_Id)
7993 and then not Is_Abstract_Subprogram (Subp_Id))
7994 then
7995 return;
7997 -- Do not consider inlined primitives, because once the body is inlined
7998 -- the reference to the elaboration flag will be out of place and will
7999 -- result in an undefined symbol.
8001 elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
8002 return;
8004 -- Do not generate a duplicate elaboration check. This happens only in
8005 -- the case of primitives completed by an expression function, as the
8006 -- corresponding body is apparently analyzed and expanded twice.
8008 elsif Analyzed (Subp_Body) then
8009 return;
8011 -- Do not consider primitives which occur within an instance that acts
8012 -- as a compilation unit. Such an instance defines its spec and body out
8013 -- of order (body is first) within the tree, which causes the reference
8014 -- to the elaboration flag to appear as an undefined symbol.
8016 elsif Within_Compilation_Unit_Instance (Subp_Id) then
8017 return;
8018 end if;
8020 Tag_Typ := Find_Dispatching_Type (Subp_Id);
8022 -- Only tagged primitives may be the target of a dispatching call
8024 if No (Tag_Typ) then
8025 return;
8027 -- Do not consider finalization-related primitives, because they may
8028 -- need to be called while elaboration is taking place.
8030 elsif Is_Controlled (Tag_Typ)
8031 and then Nam_In (Chars (Subp_Id), Name_Adjust,
8032 Name_Finalize,
8033 Name_Initialize)
8034 then
8035 return;
8036 end if;
8038 -- Create the declaration of the elaboration flag. The name carries a
8039 -- unique counter in case of name overloading.
8041 Flag_Id :=
8042 Make_Defining_Identifier (Loc,
8043 Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
8044 Set_Is_Frozen (Flag_Id);
8046 -- Insert the declaration of the elaboration flag in front of the
8047 -- primitive spec and analyze it in the proper context.
8049 Push_Scope (Scope (Subp_Id));
8051 -- Generate:
8052 -- E : Boolean := False;
8054 Insert_Action (Subp_Decl,
8055 Make_Object_Declaration (Loc,
8056 Defining_Identifier => Flag_Id,
8057 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
8058 Expression => New_Occurrence_Of (Standard_False, Loc)));
8059 Pop_Scope;
8061 -- Prevent the compiler from optimizing the elaboration check by killing
8062 -- the current value of the flag and the associated assignment.
8064 Set_Current_Value (Flag_Id, Empty);
8065 Set_Last_Assignment (Flag_Id, Empty);
8067 -- Add a check at the top of the body declarations to ensure that the
8068 -- elaboration flag has been set.
8070 Decls := Declarations (Subp_Body);
8072 if No (Decls) then
8073 Decls := New_List;
8074 Set_Declarations (Subp_Body, Decls);
8075 end if;
8077 -- Generate:
8078 -- if not F then
8079 -- raise Program_Error with "access before elaboration";
8080 -- end if;
8082 Prepend_To (Decls,
8083 Make_Raise_Program_Error (Loc,
8084 Condition =>
8085 Make_Op_Not (Loc,
8086 Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
8087 Reason => PE_Access_Before_Elaboration));
8089 Analyze (First (Decls));
8091 -- Set the elaboration flag once the body has been elaborated. Insert
8092 -- the statement after the subprogram stub when the primitive body is
8093 -- a subunit.
8095 if Nkind (Context) = N_Subunit then
8096 Set_Ins := Corresponding_Stub (Context);
8097 else
8098 Set_Ins := Subp_Body;
8099 end if;
8101 -- Generate:
8102 -- E := True;
8104 Set_Stmt :=
8105 Make_Assignment_Statement (Loc,
8106 Name => New_Occurrence_Of (Flag_Id, Loc),
8107 Expression => New_Occurrence_Of (Standard_True, Loc));
8109 -- Mark the assignment statement as elaboration code. This allows the
8110 -- early call region mechanism (see Sem_Elab) to properly ignore such
8111 -- assignments even though they are non-preelaborable code.
8113 Set_Is_Elaboration_Code (Set_Stmt);
8115 Insert_After_And_Analyze (Set_Ins, Set_Stmt);
8116 end Install_Primitive_Elaboration_Check;
8118 --------------------------
8119 -- Install_Static_Check --
8120 --------------------------
8122 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
8123 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
8124 Typ : constant Entity_Id := Etype (R_Cno);
8126 begin
8127 Rewrite (R_Cno,
8128 Make_Raise_Constraint_Error (Loc,
8129 Reason => CE_Range_Check_Failed));
8130 Set_Analyzed (R_Cno);
8131 Set_Etype (R_Cno, Typ);
8132 Set_Raises_Constraint_Error (R_Cno);
8133 Set_Is_Static_Expression (R_Cno, Stat);
8135 -- Now deal with possible local raise handling
8137 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
8138 end Install_Static_Check;
8140 -------------------------
8141 -- Is_Check_Suppressed --
8142 -------------------------
8144 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8145 Ptr : Suppress_Stack_Entry_Ptr;
8147 begin
8148 -- First search the local entity suppress stack. We search this from the
8149 -- top of the stack down so that we get the innermost entry that applies
8150 -- to this case if there are nested entries.
8152 Ptr := Local_Suppress_Stack_Top;
8153 while Ptr /= null loop
8154 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8155 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8156 then
8157 return Ptr.Suppress;
8158 end if;
8160 Ptr := Ptr.Prev;
8161 end loop;
8163 -- Now search the global entity suppress table for a matching entry.
8164 -- We also search this from the top down so that if there are multiple
8165 -- pragmas for the same entity, the last one applies (not clear what
8166 -- or whether the RM specifies this handling, but it seems reasonable).
8168 Ptr := Global_Suppress_Stack_Top;
8169 while Ptr /= null loop
8170 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8171 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8172 then
8173 return Ptr.Suppress;
8174 end if;
8176 Ptr := Ptr.Prev;
8177 end loop;
8179 -- If we did not find a matching entry, then use the normal scope
8180 -- suppress value after all (actually this will be the global setting
8181 -- since it clearly was not overridden at any point). For a predefined
8182 -- check, we test the specific flag. For a user defined check, we check
8183 -- the All_Checks flag. The Overflow flag requires special handling to
8184 -- deal with the General vs Assertion case.
8186 if C = Overflow_Check then
8187 return Overflow_Checks_Suppressed (Empty);
8189 elsif C in Predefined_Check_Id then
8190 return Scope_Suppress.Suppress (C);
8192 else
8193 return Scope_Suppress.Suppress (All_Checks);
8194 end if;
8195 end Is_Check_Suppressed;
8197 ---------------------
8198 -- Kill_All_Checks --
8199 ---------------------
8201 procedure Kill_All_Checks is
8202 begin
8203 if Debug_Flag_CC then
8204 w ("Kill_All_Checks");
8205 end if;
8207 -- We reset the number of saved checks to zero, and also modify all
8208 -- stack entries for statement ranges to indicate that the number of
8209 -- checks at each level is now zero.
8211 Num_Saved_Checks := 0;
8213 -- Note: the Int'Min here avoids any possibility of J being out of
8214 -- range when called from e.g. Conditional_Statements_Begin.
8216 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
8217 Saved_Checks_Stack (J) := 0;
8218 end loop;
8219 end Kill_All_Checks;
8221 -----------------
8222 -- Kill_Checks --
8223 -----------------
8225 procedure Kill_Checks (V : Entity_Id) is
8226 begin
8227 if Debug_Flag_CC then
8228 w ("Kill_Checks for entity", Int (V));
8229 end if;
8231 for J in 1 .. Num_Saved_Checks loop
8232 if Saved_Checks (J).Entity = V then
8233 if Debug_Flag_CC then
8234 w (" Checks killed for saved check ", J);
8235 end if;
8237 Saved_Checks (J).Killed := True;
8238 end if;
8239 end loop;
8240 end Kill_Checks;
8242 ------------------------------
8243 -- Length_Checks_Suppressed --
8244 ------------------------------
8246 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8247 begin
8248 if Present (E) and then Checks_May_Be_Suppressed (E) then
8249 return Is_Check_Suppressed (E, Length_Check);
8250 else
8251 return Scope_Suppress.Suppress (Length_Check);
8252 end if;
8253 end Length_Checks_Suppressed;
8255 -----------------------
8256 -- Make_Bignum_Block --
8257 -----------------------
8259 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8260 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
8261 begin
8262 return
8263 Make_Block_Statement (Loc,
8264 Declarations =>
8265 New_List (Build_SS_Mark_Call (Loc, M)),
8266 Handled_Statement_Sequence =>
8267 Make_Handled_Sequence_Of_Statements (Loc,
8268 Statements => New_List (Build_SS_Release_Call (Loc, M))));
8269 end Make_Bignum_Block;
8271 ----------------------------------
8272 -- Minimize_Eliminate_Overflows --
8273 ----------------------------------
8275 -- This is a recursive routine that is called at the top of an expression
8276 -- tree to properly process overflow checking for a whole subtree by making
8277 -- recursive calls to process operands. This processing may involve the use
8278 -- of bignum or long long integer arithmetic, which will change the types
8279 -- of operands and results. That's why we can't do this bottom up (since
8280 -- it would interfere with semantic analysis).
8282 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
8283 -- the operator expansion routines, as well as the expansion routines for
8284 -- if/case expression, do nothing (for the moment) except call the routine
8285 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8286 -- routine does nothing for non top-level nodes, so at the point where the
8287 -- call is made for the top level node, the entire expression subtree has
8288 -- not been expanded, or processed for overflow. All that has to happen as
8289 -- a result of the top level call to this routine.
8291 -- As noted above, the overflow processing works by making recursive calls
8292 -- for the operands, and figuring out what to do, based on the processing
8293 -- of these operands (e.g. if a bignum operand appears, the parent op has
8294 -- to be done in bignum mode), and the determined ranges of the operands.
8296 -- After possible rewriting of a constituent subexpression node, a call is
8297 -- made to either reexpand the node (if nothing has changed) or reanalyze
8298 -- the node (if it has been modified by the overflow check processing). The
8299 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8300 -- a recursive call into the whole overflow apparatus, an important rule
8301 -- for this call is that the overflow handling mode must be temporarily set
8302 -- to STRICT.
8304 procedure Minimize_Eliminate_Overflows
8305 (N : Node_Id;
8306 Lo : out Uint;
8307 Hi : out Uint;
8308 Top_Level : Boolean)
8310 Rtyp : constant Entity_Id := Etype (N);
8311 pragma Assert (Is_Signed_Integer_Type (Rtyp));
8312 -- Result type, must be a signed integer type
8314 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
8315 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8317 Loc : constant Source_Ptr := Sloc (N);
8319 Rlo, Rhi : Uint;
8320 -- Ranges of values for right operand (operator case)
8322 Llo : Uint := No_Uint; -- initialize to prevent warning
8323 Lhi : Uint := No_Uint; -- initialize to prevent warning
8324 -- Ranges of values for left operand (operator case)
8326 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8327 -- Operands and results are of this type when we convert
8329 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
8330 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
8331 -- Bounds of Long_Long_Integer
8333 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8334 -- Indicates binary operator case
8336 OK : Boolean;
8337 -- Used in call to Determine_Range
8339 Bignum_Operands : Boolean;
8340 -- Set True if one or more operands is already of type Bignum, meaning
8341 -- that for sure (regardless of Top_Level setting) we are committed to
8342 -- doing the operation in Bignum mode (or in the case of a case or if
8343 -- expression, converting all the dependent expressions to Bignum).
8345 Long_Long_Integer_Operands : Boolean;
8346 -- Set True if one or more operands is already of type Long_Long_Integer
8347 -- which means that if the result is known to be in the result type
8348 -- range, then we must convert such operands back to the result type.
8350 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8351 -- This is called when we have modified the node and we therefore need
8352 -- to reanalyze it. It is important that we reset the mode to STRICT for
8353 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
8354 -- we would reenter this routine recursively which would not be good.
8355 -- The argument Suppress is set True if we also want to suppress
8356 -- overflow checking for the reexpansion (this is set when we know
8357 -- overflow is not possible). Typ is the type for the reanalysis.
8359 procedure Reexpand (Suppress : Boolean := False);
8360 -- This is like Reanalyze, but does not do the Analyze step, it only
8361 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
8362 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8363 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
8364 -- Note that skipping reanalysis is not just an optimization, testing
8365 -- has showed up several complex cases in which reanalyzing an already
8366 -- analyzed node causes incorrect behavior.
8368 function In_Result_Range return Boolean;
8369 -- Returns True iff Lo .. Hi are within range of the result type
8371 procedure Max (A : in out Uint; B : Uint);
8372 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
8374 procedure Min (A : in out Uint; B : Uint);
8375 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
8377 ---------------------
8378 -- In_Result_Range --
8379 ---------------------
8381 function In_Result_Range return Boolean is
8382 begin
8383 if Lo = No_Uint or else Hi = No_Uint then
8384 return False;
8386 elsif Is_OK_Static_Subtype (Etype (N)) then
8387 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
8388 and then
8389 Hi <= Expr_Value (Type_High_Bound (Rtyp));
8391 else
8392 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
8393 and then
8394 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
8395 end if;
8396 end In_Result_Range;
8398 ---------
8399 -- Max --
8400 ---------
8402 procedure Max (A : in out Uint; B : Uint) is
8403 begin
8404 if A = No_Uint or else B > A then
8405 A := B;
8406 end if;
8407 end Max;
8409 ---------
8410 -- Min --
8411 ---------
8413 procedure Min (A : in out Uint; B : Uint) is
8414 begin
8415 if A = No_Uint or else B < A then
8416 A := B;
8417 end if;
8418 end Min;
8420 ---------------
8421 -- Reanalyze --
8422 ---------------
8424 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
8425 Svg : constant Overflow_Mode_Type :=
8426 Scope_Suppress.Overflow_Mode_General;
8427 Sva : constant Overflow_Mode_Type :=
8428 Scope_Suppress.Overflow_Mode_Assertions;
8429 Svo : constant Boolean :=
8430 Scope_Suppress.Suppress (Overflow_Check);
8432 begin
8433 Scope_Suppress.Overflow_Mode_General := Strict;
8434 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8436 if Suppress then
8437 Scope_Suppress.Suppress (Overflow_Check) := True;
8438 end if;
8440 Analyze_And_Resolve (N, Typ);
8442 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8443 Scope_Suppress.Overflow_Mode_General := Svg;
8444 Scope_Suppress.Overflow_Mode_Assertions := Sva;
8445 end Reanalyze;
8447 --------------
8448 -- Reexpand --
8449 --------------
8451 procedure Reexpand (Suppress : Boolean := False) is
8452 Svg : constant Overflow_Mode_Type :=
8453 Scope_Suppress.Overflow_Mode_General;
8454 Sva : constant Overflow_Mode_Type :=
8455 Scope_Suppress.Overflow_Mode_Assertions;
8456 Svo : constant Boolean :=
8457 Scope_Suppress.Suppress (Overflow_Check);
8459 begin
8460 Scope_Suppress.Overflow_Mode_General := Strict;
8461 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8462 Set_Analyzed (N, False);
8464 if Suppress then
8465 Scope_Suppress.Suppress (Overflow_Check) := True;
8466 end if;
8468 Expand (N);
8470 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8471 Scope_Suppress.Overflow_Mode_General := Svg;
8472 Scope_Suppress.Overflow_Mode_Assertions := Sva;
8473 end Reexpand;
8475 -- Start of processing for Minimize_Eliminate_Overflows
8477 begin
8478 -- Default initialize Lo and Hi since these are not guaranteed to be
8479 -- set otherwise.
8481 Lo := No_Uint;
8482 Hi := No_Uint;
8484 -- Case where we do not have a signed integer arithmetic operation
8486 if not Is_Signed_Integer_Arithmetic_Op (N) then
8488 -- Use the normal Determine_Range routine to get the range. We
8489 -- don't require operands to be valid, invalid values may result in
8490 -- rubbish results where the result has not been properly checked for
8491 -- overflow, that's fine.
8493 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
8495 -- If Determine_Range did not work (can this in fact happen? Not
8496 -- clear but might as well protect), use type bounds.
8498 if not OK then
8499 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
8500 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
8501 end if;
8503 -- If we don't have a binary operator, all we have to do is to set
8504 -- the Hi/Lo range, so we are done.
8506 return;
8508 -- Processing for if expression
8510 elsif Nkind (N) = N_If_Expression then
8511 declare
8512 Then_DE : constant Node_Id := Next (First (Expressions (N)));
8513 Else_DE : constant Node_Id := Next (Then_DE);
8515 begin
8516 Bignum_Operands := False;
8518 Minimize_Eliminate_Overflows
8519 (Then_DE, Lo, Hi, Top_Level => False);
8521 if Lo = No_Uint then
8522 Bignum_Operands := True;
8523 end if;
8525 Minimize_Eliminate_Overflows
8526 (Else_DE, Rlo, Rhi, Top_Level => False);
8528 if Rlo = No_Uint then
8529 Bignum_Operands := True;
8530 else
8531 Long_Long_Integer_Operands :=
8532 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
8534 Min (Lo, Rlo);
8535 Max (Hi, Rhi);
8536 end if;
8538 -- If at least one of our operands is now Bignum, we must rebuild
8539 -- the if expression to use Bignum operands. We will analyze the
8540 -- rebuilt if expression with overflow checks off, since once we
8541 -- are in bignum mode, we are all done with overflow checks.
8543 if Bignum_Operands then
8544 Rewrite (N,
8545 Make_If_Expression (Loc,
8546 Expressions => New_List (
8547 Remove_Head (Expressions (N)),
8548 Convert_To_Bignum (Then_DE),
8549 Convert_To_Bignum (Else_DE)),
8550 Is_Elsif => Is_Elsif (N)));
8552 Reanalyze (RTE (RE_Bignum), Suppress => True);
8554 -- If we have no Long_Long_Integer operands, then we are in result
8555 -- range, since it means that none of our operands felt the need
8556 -- to worry about overflow (otherwise it would have already been
8557 -- converted to long long integer or bignum). We reexpand to
8558 -- complete the expansion of the if expression (but we do not
8559 -- need to reanalyze).
8561 elsif not Long_Long_Integer_Operands then
8562 Set_Do_Overflow_Check (N, False);
8563 Reexpand;
8565 -- Otherwise convert us to long long integer mode. Note that we
8566 -- don't need any further overflow checking at this level.
8568 else
8569 Convert_To_And_Rewrite (LLIB, Then_DE);
8570 Convert_To_And_Rewrite (LLIB, Else_DE);
8571 Set_Etype (N, LLIB);
8573 -- Now reanalyze with overflow checks off
8575 Set_Do_Overflow_Check (N, False);
8576 Reanalyze (LLIB, Suppress => True);
8577 end if;
8578 end;
8580 return;
8582 -- Here for case expression
8584 elsif Nkind (N) = N_Case_Expression then
8585 Bignum_Operands := False;
8586 Long_Long_Integer_Operands := False;
8588 declare
8589 Alt : Node_Id;
8591 begin
8592 -- Loop through expressions applying recursive call
8594 Alt := First (Alternatives (N));
8595 while Present (Alt) loop
8596 declare
8597 Aexp : constant Node_Id := Expression (Alt);
8599 begin
8600 Minimize_Eliminate_Overflows
8601 (Aexp, Lo, Hi, Top_Level => False);
8603 if Lo = No_Uint then
8604 Bignum_Operands := True;
8605 elsif Etype (Aexp) = LLIB then
8606 Long_Long_Integer_Operands := True;
8607 end if;
8608 end;
8610 Next (Alt);
8611 end loop;
8613 -- If we have no bignum or long long integer operands, it means
8614 -- that none of our dependent expressions could raise overflow.
8615 -- In this case, we simply return with no changes except for
8616 -- resetting the overflow flag, since we are done with overflow
8617 -- checks for this node. We will reexpand to get the needed
8618 -- expansion for the case expression, but we do not need to
8619 -- reanalyze, since nothing has changed.
8621 if not (Bignum_Operands or Long_Long_Integer_Operands) then
8622 Set_Do_Overflow_Check (N, False);
8623 Reexpand (Suppress => True);
8625 -- Otherwise we are going to rebuild the case expression using
8626 -- either bignum or long long integer operands throughout.
8628 else
8629 declare
8630 Rtype : Entity_Id;
8631 pragma Warnings (Off, Rtype);
8632 New_Alts : List_Id;
8633 New_Exp : Node_Id;
8635 begin
8636 New_Alts := New_List;
8637 Alt := First (Alternatives (N));
8638 while Present (Alt) loop
8639 if Bignum_Operands then
8640 New_Exp := Convert_To_Bignum (Expression (Alt));
8641 Rtype := RTE (RE_Bignum);
8642 else
8643 New_Exp := Convert_To (LLIB, Expression (Alt));
8644 Rtype := LLIB;
8645 end if;
8647 Append_To (New_Alts,
8648 Make_Case_Expression_Alternative (Sloc (Alt),
8649 Actions => No_List,
8650 Discrete_Choices => Discrete_Choices (Alt),
8651 Expression => New_Exp));
8653 Next (Alt);
8654 end loop;
8656 Rewrite (N,
8657 Make_Case_Expression (Loc,
8658 Expression => Expression (N),
8659 Alternatives => New_Alts));
8661 Reanalyze (Rtype, Suppress => True);
8662 end;
8663 end if;
8664 end;
8666 return;
8667 end if;
8669 -- If we have an arithmetic operator we make recursive calls on the
8670 -- operands to get the ranges (and to properly process the subtree
8671 -- that lies below us).
8673 Minimize_Eliminate_Overflows
8674 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
8676 if Binary then
8677 Minimize_Eliminate_Overflows
8678 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
8679 end if;
8681 -- Record if we have Long_Long_Integer operands
8683 Long_Long_Integer_Operands :=
8684 Etype (Right_Opnd (N)) = LLIB
8685 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
8687 -- If either operand is a bignum, then result will be a bignum and we
8688 -- don't need to do any range analysis. As previously discussed we could
8689 -- do range analysis in such cases, but it could mean working with giant
8690 -- numbers at compile time for very little gain (the number of cases
8691 -- in which we could slip back from bignum mode is small).
8693 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
8694 Lo := No_Uint;
8695 Hi := No_Uint;
8696 Bignum_Operands := True;
8698 -- Otherwise compute result range
8700 else
8701 Bignum_Operands := False;
8703 case Nkind (N) is
8705 -- Absolute value
8707 when N_Op_Abs =>
8708 Lo := Uint_0;
8709 Hi := UI_Max (abs Rlo, abs Rhi);
8711 -- Addition
8713 when N_Op_Add =>
8714 Lo := Llo + Rlo;
8715 Hi := Lhi + Rhi;
8717 -- Division
8719 when N_Op_Divide =>
8721 -- If the right operand can only be zero, set 0..0
8723 if Rlo = 0 and then Rhi = 0 then
8724 Lo := Uint_0;
8725 Hi := Uint_0;
8727 -- Possible bounds of division must come from dividing end
8728 -- values of the input ranges (four possibilities), provided
8729 -- zero is not included in the possible values of the right
8730 -- operand.
8732 -- Otherwise, we just consider two intervals of values for
8733 -- the right operand: the interval of negative values (up to
8734 -- -1) and the interval of positive values (starting at 1).
8735 -- Since division by 1 is the identity, and division by -1
8736 -- is negation, we get all possible bounds of division in that
8737 -- case by considering:
8738 -- - all values from the division of end values of input
8739 -- ranges;
8740 -- - the end values of the left operand;
8741 -- - the negation of the end values of the left operand.
8743 else
8744 declare
8745 Mrk : constant Uintp.Save_Mark := Mark;
8746 -- Mark so we can release the RR and Ev values
8748 Ev1 : Uint;
8749 Ev2 : Uint;
8750 Ev3 : Uint;
8751 Ev4 : Uint;
8753 begin
8754 -- Discard extreme values of zero for the divisor, since
8755 -- they will simply result in an exception in any case.
8757 if Rlo = 0 then
8758 Rlo := Uint_1;
8759 elsif Rhi = 0 then
8760 Rhi := -Uint_1;
8761 end if;
8763 -- Compute possible bounds coming from dividing end
8764 -- values of the input ranges.
8766 Ev1 := Llo / Rlo;
8767 Ev2 := Llo / Rhi;
8768 Ev3 := Lhi / Rlo;
8769 Ev4 := Lhi / Rhi;
8771 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8772 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8774 -- If the right operand can be both negative or positive,
8775 -- include the end values of the left operand in the
8776 -- extreme values, as well as their negation.
8778 if Rlo < 0 and then Rhi > 0 then
8779 Ev1 := Llo;
8780 Ev2 := -Llo;
8781 Ev3 := Lhi;
8782 Ev4 := -Lhi;
8784 Min (Lo,
8785 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8786 Max (Hi,
8787 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
8788 end if;
8790 -- Release the RR and Ev values
8792 Release_And_Save (Mrk, Lo, Hi);
8793 end;
8794 end if;
8796 -- Exponentiation
8798 when N_Op_Expon =>
8800 -- Discard negative values for the exponent, since they will
8801 -- simply result in an exception in any case.
8803 if Rhi < 0 then
8804 Rhi := Uint_0;
8805 elsif Rlo < 0 then
8806 Rlo := Uint_0;
8807 end if;
8809 -- Estimate number of bits in result before we go computing
8810 -- giant useless bounds. Basically the number of bits in the
8811 -- result is the number of bits in the base multiplied by the
8812 -- value of the exponent. If this is big enough that the result
8813 -- definitely won't fit in Long_Long_Integer, switch to bignum
8814 -- mode immediately, and avoid computing giant bounds.
8816 -- The comparison here is approximate, but conservative, it
8817 -- only clicks on cases that are sure to exceed the bounds.
8819 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8820 Lo := No_Uint;
8821 Hi := No_Uint;
8823 -- If right operand is zero then result is 1
8825 elsif Rhi = 0 then
8826 Lo := Uint_1;
8827 Hi := Uint_1;
8829 else
8830 -- High bound comes either from exponentiation of largest
8831 -- positive value to largest exponent value, or from
8832 -- the exponentiation of most negative value to an
8833 -- even exponent.
8835 declare
8836 Hi1, Hi2 : Uint;
8838 begin
8839 if Lhi > 0 then
8840 Hi1 := Lhi ** Rhi;
8841 else
8842 Hi1 := Uint_0;
8843 end if;
8845 if Llo < 0 then
8846 if Rhi mod 2 = 0 then
8847 Hi2 := Llo ** Rhi;
8848 else
8849 Hi2 := Llo ** (Rhi - 1);
8850 end if;
8851 else
8852 Hi2 := Uint_0;
8853 end if;
8855 Hi := UI_Max (Hi1, Hi2);
8856 end;
8858 -- Result can only be negative if base can be negative
8860 if Llo < 0 then
8861 if Rhi mod 2 = 0 then
8862 Lo := Llo ** (Rhi - 1);
8863 else
8864 Lo := Llo ** Rhi;
8865 end if;
8867 -- Otherwise low bound is minimum ** minimum
8869 else
8870 Lo := Llo ** Rlo;
8871 end if;
8872 end if;
8874 -- Negation
8876 when N_Op_Minus =>
8877 Lo := -Rhi;
8878 Hi := -Rlo;
8880 -- Mod
8882 when N_Op_Mod =>
8883 declare
8884 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8885 -- This is the maximum absolute value of the result
8887 begin
8888 Lo := Uint_0;
8889 Hi := Uint_0;
8891 -- The result depends only on the sign and magnitude of
8892 -- the right operand, it does not depend on the sign or
8893 -- magnitude of the left operand.
8895 if Rlo < 0 then
8896 Lo := -Maxabs;
8897 end if;
8899 if Rhi > 0 then
8900 Hi := Maxabs;
8901 end if;
8902 end;
8904 -- Multiplication
8906 when N_Op_Multiply =>
8908 -- Possible bounds of multiplication must come from multiplying
8909 -- end values of the input ranges (four possibilities).
8911 declare
8912 Mrk : constant Uintp.Save_Mark := Mark;
8913 -- Mark so we can release the Ev values
8915 Ev1 : constant Uint := Llo * Rlo;
8916 Ev2 : constant Uint := Llo * Rhi;
8917 Ev3 : constant Uint := Lhi * Rlo;
8918 Ev4 : constant Uint := Lhi * Rhi;
8920 begin
8921 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8922 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8924 -- Release the Ev values
8926 Release_And_Save (Mrk, Lo, Hi);
8927 end;
8929 -- Plus operator (affirmation)
8931 when N_Op_Plus =>
8932 Lo := Rlo;
8933 Hi := Rhi;
8935 -- Remainder
8937 when N_Op_Rem =>
8938 declare
8939 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8940 -- This is the maximum absolute value of the result. Note
8941 -- that the result range does not depend on the sign of the
8942 -- right operand.
8944 begin
8945 Lo := Uint_0;
8946 Hi := Uint_0;
8948 -- Case of left operand negative, which results in a range
8949 -- of -Maxabs .. 0 for those negative values. If there are
8950 -- no negative values then Lo value of result is always 0.
8952 if Llo < 0 then
8953 Lo := -Maxabs;
8954 end if;
8956 -- Case of left operand positive
8958 if Lhi > 0 then
8959 Hi := Maxabs;
8960 end if;
8961 end;
8963 -- Subtract
8965 when N_Op_Subtract =>
8966 Lo := Llo - Rhi;
8967 Hi := Lhi - Rlo;
8969 -- Nothing else should be possible
8971 when others =>
8972 raise Program_Error;
8973 end case;
8974 end if;
8976 -- Here for the case where we have not rewritten anything (no bignum
8977 -- operands or long long integer operands), and we know the result.
8978 -- If we know we are in the result range, and we do not have Bignum
8979 -- operands or Long_Long_Integer operands, we can just reexpand with
8980 -- overflow checks turned off (since we know we cannot have overflow).
8981 -- As always the reexpansion is required to complete expansion of the
8982 -- operator, but we do not need to reanalyze, and we prevent recursion
8983 -- by suppressing the check.
8985 if not (Bignum_Operands or Long_Long_Integer_Operands)
8986 and then In_Result_Range
8987 then
8988 Set_Do_Overflow_Check (N, False);
8989 Reexpand (Suppress => True);
8990 return;
8992 -- Here we know that we are not in the result range, and in the general
8993 -- case we will move into either the Bignum or Long_Long_Integer domain
8994 -- to compute the result. However, there is one exception. If we are
8995 -- at the top level, and we do not have Bignum or Long_Long_Integer
8996 -- operands, we will have to immediately convert the result back to
8997 -- the result type, so there is no point in Bignum/Long_Long_Integer
8998 -- fiddling.
9000 elsif Top_Level
9001 and then not (Bignum_Operands or Long_Long_Integer_Operands)
9003 -- One further refinement. If we are at the top level, but our parent
9004 -- is a type conversion, then go into bignum or long long integer node
9005 -- since the result will be converted to that type directly without
9006 -- going through the result type, and we may avoid an overflow. This
9007 -- is the case for example of Long_Long_Integer (A ** 4), where A is
9008 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
9009 -- but does not fit in Integer.
9011 and then Nkind (Parent (N)) /= N_Type_Conversion
9012 then
9013 -- Here keep original types, but we need to complete analysis
9015 -- One subtlety. We can't just go ahead and do an analyze operation
9016 -- here because it will cause recursion into the whole MINIMIZED/
9017 -- ELIMINATED overflow processing which is not what we want. Here
9018 -- we are at the top level, and we need a check against the result
9019 -- mode (i.e. we want to use STRICT mode). So do exactly that.
9020 -- Also, we have not modified the node, so this is a case where
9021 -- we need to reexpand, but not reanalyze.
9023 Reexpand;
9024 return;
9026 -- Cases where we do the operation in Bignum mode. This happens either
9027 -- because one of our operands is in Bignum mode already, or because
9028 -- the computed bounds are outside the bounds of Long_Long_Integer,
9029 -- which in some cases can be indicated by Hi and Lo being No_Uint.
9031 -- Note: we could do better here and in some cases switch back from
9032 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
9033 -- 0 .. 1, but the cases are rare and it is not worth the effort.
9034 -- Failing to do this switching back is only an efficiency issue.
9036 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
9038 -- OK, we are definitely outside the range of Long_Long_Integer. The
9039 -- question is whether to move to Bignum mode, or stay in the domain
9040 -- of Long_Long_Integer, signalling that an overflow check is needed.
9042 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
9043 -- the Bignum business. In ELIMINATED mode, we will normally move
9044 -- into Bignum mode, but there is an exception if neither of our
9045 -- operands is Bignum now, and we are at the top level (Top_Level
9046 -- set True). In this case, there is no point in moving into Bignum
9047 -- mode to prevent overflow if the caller will immediately convert
9048 -- the Bignum value back to LLI with an overflow check. It's more
9049 -- efficient to stay in LLI mode with an overflow check (if needed)
9051 if Check_Mode = Minimized
9052 or else (Top_Level and not Bignum_Operands)
9053 then
9054 if Do_Overflow_Check (N) then
9055 Enable_Overflow_Check (N);
9056 end if;
9058 -- The result now has to be in Long_Long_Integer mode, so adjust
9059 -- the possible range to reflect this. Note these calls also
9060 -- change No_Uint values from the top level case to LLI bounds.
9062 Max (Lo, LLLo);
9063 Min (Hi, LLHi);
9065 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
9067 else
9068 pragma Assert (Check_Mode = Eliminated);
9070 declare
9071 Fent : Entity_Id;
9072 Args : List_Id;
9074 begin
9075 case Nkind (N) is
9076 when N_Op_Abs =>
9077 Fent := RTE (RE_Big_Abs);
9079 when N_Op_Add =>
9080 Fent := RTE (RE_Big_Add);
9082 when N_Op_Divide =>
9083 Fent := RTE (RE_Big_Div);
9085 when N_Op_Expon =>
9086 Fent := RTE (RE_Big_Exp);
9088 when N_Op_Minus =>
9089 Fent := RTE (RE_Big_Neg);
9091 when N_Op_Mod =>
9092 Fent := RTE (RE_Big_Mod);
9094 when N_Op_Multiply =>
9095 Fent := RTE (RE_Big_Mul);
9097 when N_Op_Rem =>
9098 Fent := RTE (RE_Big_Rem);
9100 when N_Op_Subtract =>
9101 Fent := RTE (RE_Big_Sub);
9103 -- Anything else is an internal error, this includes the
9104 -- N_Op_Plus case, since how can plus cause the result
9105 -- to be out of range if the operand is in range?
9107 when others =>
9108 raise Program_Error;
9109 end case;
9111 -- Construct argument list for Bignum call, converting our
9112 -- operands to Bignum form if they are not already there.
9114 Args := New_List;
9116 if Binary then
9117 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
9118 end if;
9120 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
9122 -- Now rewrite the arithmetic operator with a call to the
9123 -- corresponding bignum function.
9125 Rewrite (N,
9126 Make_Function_Call (Loc,
9127 Name => New_Occurrence_Of (Fent, Loc),
9128 Parameter_Associations => Args));
9129 Reanalyze (RTE (RE_Bignum), Suppress => True);
9131 -- Indicate result is Bignum mode
9133 Lo := No_Uint;
9134 Hi := No_Uint;
9135 return;
9136 end;
9137 end if;
9139 -- Otherwise we are in range of Long_Long_Integer, so no overflow
9140 -- check is required, at least not yet.
9142 else
9143 Set_Do_Overflow_Check (N, False);
9144 end if;
9146 -- Here we are not in Bignum territory, but we may have long long
9147 -- integer operands that need special handling. First a special check:
9148 -- If an exponentiation operator exponent is of type Long_Long_Integer,
9149 -- it means we converted it to prevent overflow, but exponentiation
9150 -- requires a Natural right operand, so convert it back to Natural.
9151 -- This conversion may raise an exception which is fine.
9153 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9154 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
9155 end if;
9157 -- Here we will do the operation in Long_Long_Integer. We do this even
9158 -- if we know an overflow check is required, better to do this in long
9159 -- long integer mode, since we are less likely to overflow.
9161 -- Convert right or only operand to Long_Long_Integer, except that
9162 -- we do not touch the exponentiation right operand.
9164 if Nkind (N) /= N_Op_Expon then
9165 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9166 end if;
9168 -- Convert left operand to Long_Long_Integer for binary case
9170 if Binary then
9171 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9172 end if;
9174 -- Reset node to unanalyzed
9176 Set_Analyzed (N, False);
9177 Set_Etype (N, Empty);
9178 Set_Entity (N, Empty);
9180 -- Now analyze this new node. This reanalysis will complete processing
9181 -- for the node. In particular we will complete the expansion of an
9182 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
9183 -- we will complete any division checks (since we have not changed the
9184 -- setting of the Do_Division_Check flag).
9186 -- We do this reanalysis in STRICT mode to avoid recursion into the
9187 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
9189 declare
9190 SG : constant Overflow_Mode_Type :=
9191 Scope_Suppress.Overflow_Mode_General;
9192 SA : constant Overflow_Mode_Type :=
9193 Scope_Suppress.Overflow_Mode_Assertions;
9195 begin
9196 Scope_Suppress.Overflow_Mode_General := Strict;
9197 Scope_Suppress.Overflow_Mode_Assertions := Strict;
9199 if not Do_Overflow_Check (N) then
9200 Reanalyze (LLIB, Suppress => True);
9201 else
9202 Reanalyze (LLIB);
9203 end if;
9205 Scope_Suppress.Overflow_Mode_General := SG;
9206 Scope_Suppress.Overflow_Mode_Assertions := SA;
9207 end;
9208 end Minimize_Eliminate_Overflows;
9210 -------------------------
9211 -- Overflow_Check_Mode --
9212 -------------------------
9214 function Overflow_Check_Mode return Overflow_Mode_Type is
9215 begin
9216 if In_Assertion_Expr = 0 then
9217 return Scope_Suppress.Overflow_Mode_General;
9218 else
9219 return Scope_Suppress.Overflow_Mode_Assertions;
9220 end if;
9221 end Overflow_Check_Mode;
9223 --------------------------------
9224 -- Overflow_Checks_Suppressed --
9225 --------------------------------
9227 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9228 begin
9229 if Present (E) and then Checks_May_Be_Suppressed (E) then
9230 return Is_Check_Suppressed (E, Overflow_Check);
9231 else
9232 return Scope_Suppress.Suppress (Overflow_Check);
9233 end if;
9234 end Overflow_Checks_Suppressed;
9236 ---------------------------------
9237 -- Predicate_Checks_Suppressed --
9238 ---------------------------------
9240 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9241 begin
9242 if Present (E) and then Checks_May_Be_Suppressed (E) then
9243 return Is_Check_Suppressed (E, Predicate_Check);
9244 else
9245 return Scope_Suppress.Suppress (Predicate_Check);
9246 end if;
9247 end Predicate_Checks_Suppressed;
9249 -----------------------------
9250 -- Range_Checks_Suppressed --
9251 -----------------------------
9253 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9254 begin
9255 if Present (E) then
9256 if Kill_Range_Checks (E) then
9257 return True;
9259 elsif Checks_May_Be_Suppressed (E) then
9260 return Is_Check_Suppressed (E, Range_Check);
9261 end if;
9262 end if;
9264 return Scope_Suppress.Suppress (Range_Check);
9265 end Range_Checks_Suppressed;
9267 -----------------------------------------
9268 -- Range_Or_Validity_Checks_Suppressed --
9269 -----------------------------------------
9271 -- Note: the coding would be simpler here if we simply made appropriate
9272 -- calls to Range/Validity_Checks_Suppressed, but that would result in
9273 -- duplicated checks which we prefer to avoid.
9275 function Range_Or_Validity_Checks_Suppressed
9276 (Expr : Node_Id) return Boolean
9278 begin
9279 -- Immediate return if scope checks suppressed for either check
9281 if Scope_Suppress.Suppress (Range_Check)
9283 Scope_Suppress.Suppress (Validity_Check)
9284 then
9285 return True;
9286 end if;
9288 -- If no expression, that's odd, decide that checks are suppressed,
9289 -- since we don't want anyone trying to do checks in this case, which
9290 -- is most likely the result of some other error.
9292 if No (Expr) then
9293 return True;
9294 end if;
9296 -- Expression is present, so perform suppress checks on type
9298 declare
9299 Typ : constant Entity_Id := Etype (Expr);
9300 begin
9301 if Checks_May_Be_Suppressed (Typ)
9302 and then (Is_Check_Suppressed (Typ, Range_Check)
9303 or else
9304 Is_Check_Suppressed (Typ, Validity_Check))
9305 then
9306 return True;
9307 end if;
9308 end;
9310 -- If expression is an entity name, perform checks on this entity
9312 if Is_Entity_Name (Expr) then
9313 declare
9314 Ent : constant Entity_Id := Entity (Expr);
9315 begin
9316 if Checks_May_Be_Suppressed (Ent) then
9317 return Is_Check_Suppressed (Ent, Range_Check)
9318 or else Is_Check_Suppressed (Ent, Validity_Check);
9319 end if;
9320 end;
9321 end if;
9323 -- If we fall through, no checks suppressed
9325 return False;
9326 end Range_Or_Validity_Checks_Suppressed;
9328 -------------------
9329 -- Remove_Checks --
9330 -------------------
9332 procedure Remove_Checks (Expr : Node_Id) is
9333 function Process (N : Node_Id) return Traverse_Result;
9334 -- Process a single node during the traversal
9336 procedure Traverse is new Traverse_Proc (Process);
9337 -- The traversal procedure itself
9339 -------------
9340 -- Process --
9341 -------------
9343 function Process (N : Node_Id) return Traverse_Result is
9344 begin
9345 if Nkind (N) not in N_Subexpr then
9346 return Skip;
9347 end if;
9349 Set_Do_Range_Check (N, False);
9351 case Nkind (N) is
9352 when N_And_Then =>
9353 Traverse (Left_Opnd (N));
9354 return Skip;
9356 when N_Attribute_Reference =>
9357 Set_Do_Overflow_Check (N, False);
9359 when N_Function_Call =>
9360 Set_Do_Tag_Check (N, False);
9362 when N_Op =>
9363 Set_Do_Overflow_Check (N, False);
9365 case Nkind (N) is
9366 when N_Op_Divide =>
9367 Set_Do_Division_Check (N, False);
9369 when N_Op_And =>
9370 Set_Do_Length_Check (N, False);
9372 when N_Op_Mod =>
9373 Set_Do_Division_Check (N, False);
9375 when N_Op_Or =>
9376 Set_Do_Length_Check (N, False);
9378 when N_Op_Rem =>
9379 Set_Do_Division_Check (N, False);
9381 when N_Op_Xor =>
9382 Set_Do_Length_Check (N, False);
9384 when others =>
9385 null;
9386 end case;
9388 when N_Or_Else =>
9389 Traverse (Left_Opnd (N));
9390 return Skip;
9392 when N_Selected_Component =>
9393 Set_Do_Discriminant_Check (N, False);
9395 when N_Type_Conversion =>
9396 Set_Do_Length_Check (N, False);
9397 Set_Do_Tag_Check (N, False);
9398 Set_Do_Overflow_Check (N, False);
9400 when others =>
9401 null;
9402 end case;
9404 return OK;
9405 end Process;
9407 -- Start of processing for Remove_Checks
9409 begin
9410 Traverse (Expr);
9411 end Remove_Checks;
9413 ----------------------------
9414 -- Selected_Length_Checks --
9415 ----------------------------
9417 function Selected_Length_Checks
9418 (Ck_Node : Node_Id;
9419 Target_Typ : Entity_Id;
9420 Source_Typ : Entity_Id;
9421 Warn_Node : Node_Id) return Check_Result
9423 Loc : constant Source_Ptr := Sloc (Ck_Node);
9424 S_Typ : Entity_Id;
9425 T_Typ : Entity_Id;
9426 Expr_Actual : Node_Id;
9427 Exptyp : Entity_Id;
9428 Cond : Node_Id := Empty;
9429 Do_Access : Boolean := False;
9430 Wnode : Node_Id := Warn_Node;
9431 Ret_Result : Check_Result := (Empty, Empty);
9432 Num_Checks : Natural := 0;
9434 procedure Add_Check (N : Node_Id);
9435 -- Adds the action given to Ret_Result if N is non-Empty
9437 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
9438 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
9439 -- Comments required ???
9441 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9442 -- True for equal literals and for nodes that denote the same constant
9443 -- entity, even if its value is not a static constant. This includes the
9444 -- case of a discriminal reference within an init proc. Removes some
9445 -- obviously superfluous checks.
9447 function Length_E_Cond
9448 (Exptyp : Entity_Id;
9449 Typ : Entity_Id;
9450 Indx : Nat) return Node_Id;
9451 -- Returns expression to compute:
9452 -- Typ'Length /= Exptyp'Length
9454 function Length_N_Cond
9455 (Expr : Node_Id;
9456 Typ : Entity_Id;
9457 Indx : Nat) return Node_Id;
9458 -- Returns expression to compute:
9459 -- Typ'Length /= Expr'Length
9461 ---------------
9462 -- Add_Check --
9463 ---------------
9465 procedure Add_Check (N : Node_Id) is
9466 begin
9467 if Present (N) then
9469 -- For now, ignore attempt to place more than two checks ???
9470 -- This is really worrisome, are we really discarding checks ???
9472 if Num_Checks = 2 then
9473 return;
9474 end if;
9476 pragma Assert (Num_Checks <= 1);
9477 Num_Checks := Num_Checks + 1;
9478 Ret_Result (Num_Checks) := N;
9479 end if;
9480 end Add_Check;
9482 ------------------
9483 -- Get_E_Length --
9484 ------------------
9486 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
9487 SE : constant Entity_Id := Scope (E);
9488 N : Node_Id;
9489 E1 : Entity_Id := E;
9491 begin
9492 if Ekind (Scope (E)) = E_Record_Type
9493 and then Has_Discriminants (Scope (E))
9494 then
9495 N := Build_Discriminal_Subtype_Of_Component (E);
9497 if Present (N) then
9498 Insert_Action (Ck_Node, N);
9499 E1 := Defining_Identifier (N);
9500 end if;
9501 end if;
9503 if Ekind (E1) = E_String_Literal_Subtype then
9504 return
9505 Make_Integer_Literal (Loc,
9506 Intval => String_Literal_Length (E1));
9508 elsif SE /= Standard_Standard
9509 and then Ekind (Scope (SE)) = E_Protected_Type
9510 and then Has_Discriminants (Scope (SE))
9511 and then Has_Completion (Scope (SE))
9512 and then not Inside_Init_Proc
9513 then
9514 -- If the type whose length is needed is a private component
9515 -- constrained by a discriminant, we must expand the 'Length
9516 -- attribute into an explicit computation, using the discriminal
9517 -- of the current protected operation. This is because the actual
9518 -- type of the prival is constructed after the protected opera-
9519 -- tion has been fully expanded.
9521 declare
9522 Indx_Type : Node_Id;
9523 Lo : Node_Id;
9524 Hi : Node_Id;
9525 Do_Expand : Boolean := False;
9527 begin
9528 Indx_Type := First_Index (E);
9530 for J in 1 .. Indx - 1 loop
9531 Next_Index (Indx_Type);
9532 end loop;
9534 Get_Index_Bounds (Indx_Type, Lo, Hi);
9536 if Nkind (Lo) = N_Identifier
9537 and then Ekind (Entity (Lo)) = E_In_Parameter
9538 then
9539 Lo := Get_Discriminal (E, Lo);
9540 Do_Expand := True;
9541 end if;
9543 if Nkind (Hi) = N_Identifier
9544 and then Ekind (Entity (Hi)) = E_In_Parameter
9545 then
9546 Hi := Get_Discriminal (E, Hi);
9547 Do_Expand := True;
9548 end if;
9550 if Do_Expand then
9551 if not Is_Entity_Name (Lo) then
9552 Lo := Duplicate_Subexpr_No_Checks (Lo);
9553 end if;
9555 if not Is_Entity_Name (Hi) then
9556 Lo := Duplicate_Subexpr_No_Checks (Hi);
9557 end if;
9559 N :=
9560 Make_Op_Add (Loc,
9561 Left_Opnd =>
9562 Make_Op_Subtract (Loc,
9563 Left_Opnd => Hi,
9564 Right_Opnd => Lo),
9566 Right_Opnd => Make_Integer_Literal (Loc, 1));
9567 return N;
9569 else
9570 N :=
9571 Make_Attribute_Reference (Loc,
9572 Attribute_Name => Name_Length,
9573 Prefix =>
9574 New_Occurrence_Of (E1, Loc));
9576 if Indx > 1 then
9577 Set_Expressions (N, New_List (
9578 Make_Integer_Literal (Loc, Indx)));
9579 end if;
9581 return N;
9582 end if;
9583 end;
9585 else
9586 N :=
9587 Make_Attribute_Reference (Loc,
9588 Attribute_Name => Name_Length,
9589 Prefix =>
9590 New_Occurrence_Of (E1, Loc));
9592 if Indx > 1 then
9593 Set_Expressions (N, New_List (
9594 Make_Integer_Literal (Loc, Indx)));
9595 end if;
9597 return N;
9598 end if;
9599 end Get_E_Length;
9601 ------------------
9602 -- Get_N_Length --
9603 ------------------
9605 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9606 begin
9607 return
9608 Make_Attribute_Reference (Loc,
9609 Attribute_Name => Name_Length,
9610 Prefix =>
9611 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9612 Expressions => New_List (
9613 Make_Integer_Literal (Loc, Indx)));
9614 end Get_N_Length;
9616 -------------------
9617 -- Length_E_Cond --
9618 -------------------
9620 function Length_E_Cond
9621 (Exptyp : Entity_Id;
9622 Typ : Entity_Id;
9623 Indx : Nat) return Node_Id
9625 begin
9626 return
9627 Make_Op_Ne (Loc,
9628 Left_Opnd => Get_E_Length (Typ, Indx),
9629 Right_Opnd => Get_E_Length (Exptyp, Indx));
9630 end Length_E_Cond;
9632 -------------------
9633 -- Length_N_Cond --
9634 -------------------
9636 function Length_N_Cond
9637 (Expr : Node_Id;
9638 Typ : Entity_Id;
9639 Indx : Nat) return Node_Id
9641 begin
9642 return
9643 Make_Op_Ne (Loc,
9644 Left_Opnd => Get_E_Length (Typ, Indx),
9645 Right_Opnd => Get_N_Length (Expr, Indx));
9646 end Length_N_Cond;
9648 -----------------
9649 -- Same_Bounds --
9650 -----------------
9652 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
9653 begin
9654 return
9655 (Nkind (L) = N_Integer_Literal
9656 and then Nkind (R) = N_Integer_Literal
9657 and then Intval (L) = Intval (R))
9659 or else
9660 (Is_Entity_Name (L)
9661 and then Ekind (Entity (L)) = E_Constant
9662 and then ((Is_Entity_Name (R)
9663 and then Entity (L) = Entity (R))
9664 or else
9665 (Nkind (R) = N_Type_Conversion
9666 and then Is_Entity_Name (Expression (R))
9667 and then Entity (L) = Entity (Expression (R)))))
9669 or else
9670 (Is_Entity_Name (R)
9671 and then Ekind (Entity (R)) = E_Constant
9672 and then Nkind (L) = N_Type_Conversion
9673 and then Is_Entity_Name (Expression (L))
9674 and then Entity (R) = Entity (Expression (L)))
9676 or else
9677 (Is_Entity_Name (L)
9678 and then Is_Entity_Name (R)
9679 and then Entity (L) = Entity (R)
9680 and then Ekind (Entity (L)) = E_In_Parameter
9681 and then Inside_Init_Proc);
9682 end Same_Bounds;
9684 -- Start of processing for Selected_Length_Checks
9686 begin
9687 -- Checks will be applied only when generating code
9689 if not Expander_Active then
9690 return Ret_Result;
9691 end if;
9693 if Target_Typ = Any_Type
9694 or else Target_Typ = Any_Composite
9695 or else Raises_Constraint_Error (Ck_Node)
9696 then
9697 return Ret_Result;
9698 end if;
9700 if No (Wnode) then
9701 Wnode := Ck_Node;
9702 end if;
9704 T_Typ := Target_Typ;
9706 if No (Source_Typ) then
9707 S_Typ := Etype (Ck_Node);
9708 else
9709 S_Typ := Source_Typ;
9710 end if;
9712 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9713 return Ret_Result;
9714 end if;
9716 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9717 S_Typ := Designated_Type (S_Typ);
9718 T_Typ := Designated_Type (T_Typ);
9719 Do_Access := True;
9721 -- A simple optimization for the null case
9723 if Known_Null (Ck_Node) then
9724 return Ret_Result;
9725 end if;
9726 end if;
9728 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9729 if Is_Constrained (T_Typ) then
9731 -- The checking code to be generated will freeze the corresponding
9732 -- array type. However, we must freeze the type now, so that the
9733 -- freeze node does not appear within the generated if expression,
9734 -- but ahead of it.
9736 Freeze_Before (Ck_Node, T_Typ);
9738 Expr_Actual := Get_Referenced_Object (Ck_Node);
9739 Exptyp := Get_Actual_Subtype (Ck_Node);
9741 if Is_Access_Type (Exptyp) then
9742 Exptyp := Designated_Type (Exptyp);
9743 end if;
9745 -- String_Literal case. This needs to be handled specially be-
9746 -- cause no index types are available for string literals. The
9747 -- condition is simply:
9749 -- T_Typ'Length = string-literal-length
9751 if Nkind (Expr_Actual) = N_String_Literal
9752 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9753 then
9754 Cond :=
9755 Make_Op_Ne (Loc,
9756 Left_Opnd => Get_E_Length (T_Typ, 1),
9757 Right_Opnd =>
9758 Make_Integer_Literal (Loc,
9759 Intval =>
9760 String_Literal_Length (Etype (Expr_Actual))));
9762 -- General array case. Here we have a usable actual subtype for
9763 -- the expression, and the condition is built from the two types
9764 -- (Do_Length):
9766 -- T_Typ'Length /= Exptyp'Length or else
9767 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9768 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9769 -- ...
9771 elsif Is_Constrained (Exptyp) then
9772 declare
9773 Ndims : constant Nat := Number_Dimensions (T_Typ);
9775 L_Index : Node_Id;
9776 R_Index : Node_Id;
9777 L_Low : Node_Id;
9778 L_High : Node_Id;
9779 R_Low : Node_Id;
9780 R_High : Node_Id;
9781 L_Length : Uint;
9782 R_Length : Uint;
9783 Ref_Node : Node_Id;
9785 begin
9786 -- At the library level, we need to ensure that the type of
9787 -- the object is elaborated before the check itself is
9788 -- emitted. This is only done if the object is in the
9789 -- current compilation unit, otherwise the type is frozen
9790 -- and elaborated in its unit.
9792 if Is_Itype (Exptyp)
9793 and then
9794 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9795 and then
9796 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
9797 and then In_Open_Scopes (Scope (Exptyp))
9798 then
9799 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9800 Set_Itype (Ref_Node, Exptyp);
9801 Insert_Action (Ck_Node, Ref_Node);
9802 end if;
9804 L_Index := First_Index (T_Typ);
9805 R_Index := First_Index (Exptyp);
9807 for Indx in 1 .. Ndims loop
9808 if not (Nkind (L_Index) = N_Raise_Constraint_Error
9809 or else
9810 Nkind (R_Index) = N_Raise_Constraint_Error)
9811 then
9812 Get_Index_Bounds (L_Index, L_Low, L_High);
9813 Get_Index_Bounds (R_Index, R_Low, R_High);
9815 -- Deal with compile time length check. Note that we
9816 -- skip this in the access case, because the access
9817 -- value may be null, so we cannot know statically.
9819 if not Do_Access
9820 and then Compile_Time_Known_Value (L_Low)
9821 and then Compile_Time_Known_Value (L_High)
9822 and then Compile_Time_Known_Value (R_Low)
9823 and then Compile_Time_Known_Value (R_High)
9824 then
9825 if Expr_Value (L_High) >= Expr_Value (L_Low) then
9826 L_Length := Expr_Value (L_High) -
9827 Expr_Value (L_Low) + 1;
9828 else
9829 L_Length := UI_From_Int (0);
9830 end if;
9832 if Expr_Value (R_High) >= Expr_Value (R_Low) then
9833 R_Length := Expr_Value (R_High) -
9834 Expr_Value (R_Low) + 1;
9835 else
9836 R_Length := UI_From_Int (0);
9837 end if;
9839 if L_Length > R_Length then
9840 Add_Check
9841 (Compile_Time_Constraint_Error
9842 (Wnode, "too few elements for}??", T_Typ));
9844 elsif L_Length < R_Length then
9845 Add_Check
9846 (Compile_Time_Constraint_Error
9847 (Wnode, "too many elements for}??", T_Typ));
9848 end if;
9850 -- The comparison for an individual index subtype
9851 -- is omitted if the corresponding index subtypes
9852 -- statically match, since the result is known to
9853 -- be true. Note that this test is worth while even
9854 -- though we do static evaluation, because non-static
9855 -- subtypes can statically match.
9857 elsif not
9858 Subtypes_Statically_Match
9859 (Etype (L_Index), Etype (R_Index))
9861 and then not
9862 (Same_Bounds (L_Low, R_Low)
9863 and then Same_Bounds (L_High, R_High))
9864 then
9865 Evolve_Or_Else
9866 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
9867 end if;
9869 Next (L_Index);
9870 Next (R_Index);
9871 end if;
9872 end loop;
9873 end;
9875 -- Handle cases where we do not get a usable actual subtype that
9876 -- is constrained. This happens for example in the function call
9877 -- and explicit dereference cases. In these cases, we have to get
9878 -- the length or range from the expression itself, making sure we
9879 -- do not evaluate it more than once.
9881 -- Here Ck_Node is the original expression, or more properly the
9882 -- result of applying Duplicate_Expr to the original tree, forcing
9883 -- the result to be a name.
9885 else
9886 declare
9887 Ndims : constant Nat := Number_Dimensions (T_Typ);
9889 begin
9890 -- Build the condition for the explicit dereference case
9892 for Indx in 1 .. Ndims loop
9893 Evolve_Or_Else
9894 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
9895 end loop;
9896 end;
9897 end if;
9898 end if;
9899 end if;
9901 -- Construct the test and insert into the tree
9903 if Present (Cond) then
9904 if Do_Access then
9905 Cond := Guard_Access (Cond, Loc, Ck_Node);
9906 end if;
9908 Add_Check
9909 (Make_Raise_Constraint_Error (Loc,
9910 Condition => Cond,
9911 Reason => CE_Length_Check_Failed));
9912 end if;
9914 return Ret_Result;
9915 end Selected_Length_Checks;
9917 ---------------------------
9918 -- Selected_Range_Checks --
9919 ---------------------------
9921 function Selected_Range_Checks
9922 (Ck_Node : Node_Id;
9923 Target_Typ : Entity_Id;
9924 Source_Typ : Entity_Id;
9925 Warn_Node : Node_Id) return Check_Result
9927 Loc : constant Source_Ptr := Sloc (Ck_Node);
9928 S_Typ : Entity_Id;
9929 T_Typ : Entity_Id;
9930 Expr_Actual : Node_Id;
9931 Exptyp : Entity_Id;
9932 Cond : Node_Id := Empty;
9933 Do_Access : Boolean := False;
9934 Wnode : Node_Id := Warn_Node;
9935 Ret_Result : Check_Result := (Empty, Empty);
9936 Num_Checks : Natural := 0;
9938 procedure Add_Check (N : Node_Id);
9939 -- Adds the action given to Ret_Result if N is non-Empty
9941 function Discrete_Range_Cond
9942 (Expr : Node_Id;
9943 Typ : Entity_Id) return Node_Id;
9944 -- Returns expression to compute:
9945 -- Low_Bound (Expr) < Typ'First
9946 -- or else
9947 -- High_Bound (Expr) > Typ'Last
9949 function Discrete_Expr_Cond
9950 (Expr : Node_Id;
9951 Typ : Entity_Id) return Node_Id;
9952 -- Returns expression to compute:
9953 -- Expr < Typ'First
9954 -- or else
9955 -- Expr > Typ'Last
9957 function Get_E_First_Or_Last
9958 (Loc : Source_Ptr;
9959 E : Entity_Id;
9960 Indx : Nat;
9961 Nam : Name_Id) return Node_Id;
9962 -- Returns an attribute reference
9963 -- E'First or E'Last
9964 -- with a source location of Loc.
9966 -- Nam is Name_First or Name_Last, according to which attribute is
9967 -- desired. If Indx is non-zero, it is passed as a literal in the
9968 -- Expressions of the attribute reference (identifying the desired
9969 -- array dimension).
9971 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
9972 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
9973 -- Returns expression to compute:
9974 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
9976 function Range_E_Cond
9977 (Exptyp : Entity_Id;
9978 Typ : Entity_Id;
9979 Indx : Nat)
9980 return Node_Id;
9981 -- Returns expression to compute:
9982 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9984 function Range_Equal_E_Cond
9985 (Exptyp : Entity_Id;
9986 Typ : Entity_Id;
9987 Indx : Nat) return Node_Id;
9988 -- Returns expression to compute:
9989 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9991 function Range_N_Cond
9992 (Expr : Node_Id;
9993 Typ : Entity_Id;
9994 Indx : Nat) return Node_Id;
9995 -- Return expression to compute:
9996 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9998 ---------------
9999 -- Add_Check --
10000 ---------------
10002 procedure Add_Check (N : Node_Id) is
10003 begin
10004 if Present (N) then
10006 -- For now, ignore attempt to place more than 2 checks ???
10008 if Num_Checks = 2 then
10009 return;
10010 end if;
10012 pragma Assert (Num_Checks <= 1);
10013 Num_Checks := Num_Checks + 1;
10014 Ret_Result (Num_Checks) := N;
10015 end if;
10016 end Add_Check;
10018 -------------------------
10019 -- Discrete_Expr_Cond --
10020 -------------------------
10022 function Discrete_Expr_Cond
10023 (Expr : Node_Id;
10024 Typ : Entity_Id) return Node_Id
10026 begin
10027 return
10028 Make_Or_Else (Loc,
10029 Left_Opnd =>
10030 Make_Op_Lt (Loc,
10031 Left_Opnd =>
10032 Convert_To (Base_Type (Typ),
10033 Duplicate_Subexpr_No_Checks (Expr)),
10034 Right_Opnd =>
10035 Convert_To (Base_Type (Typ),
10036 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
10038 Right_Opnd =>
10039 Make_Op_Gt (Loc,
10040 Left_Opnd =>
10041 Convert_To (Base_Type (Typ),
10042 Duplicate_Subexpr_No_Checks (Expr)),
10043 Right_Opnd =>
10044 Convert_To
10045 (Base_Type (Typ),
10046 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
10047 end Discrete_Expr_Cond;
10049 -------------------------
10050 -- Discrete_Range_Cond --
10051 -------------------------
10053 function Discrete_Range_Cond
10054 (Expr : Node_Id;
10055 Typ : Entity_Id) return Node_Id
10057 LB : Node_Id := Low_Bound (Expr);
10058 HB : Node_Id := High_Bound (Expr);
10060 Left_Opnd : Node_Id;
10061 Right_Opnd : Node_Id;
10063 begin
10064 if Nkind (LB) = N_Identifier
10065 and then Ekind (Entity (LB)) = E_Discriminant
10066 then
10067 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10068 end if;
10070 Left_Opnd :=
10071 Make_Op_Lt (Loc,
10072 Left_Opnd =>
10073 Convert_To
10074 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
10076 Right_Opnd =>
10077 Convert_To
10078 (Base_Type (Typ),
10079 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
10081 if Nkind (HB) = N_Identifier
10082 and then Ekind (Entity (HB)) = E_Discriminant
10083 then
10084 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10085 end if;
10087 Right_Opnd :=
10088 Make_Op_Gt (Loc,
10089 Left_Opnd =>
10090 Convert_To
10091 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
10093 Right_Opnd =>
10094 Convert_To
10095 (Base_Type (Typ),
10096 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
10098 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
10099 end Discrete_Range_Cond;
10101 -------------------------
10102 -- Get_E_First_Or_Last --
10103 -------------------------
10105 function Get_E_First_Or_Last
10106 (Loc : Source_Ptr;
10107 E : Entity_Id;
10108 Indx : Nat;
10109 Nam : Name_Id) return Node_Id
10111 Exprs : List_Id;
10112 begin
10113 if Indx > 0 then
10114 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
10115 else
10116 Exprs := No_List;
10117 end if;
10119 return Make_Attribute_Reference (Loc,
10120 Prefix => New_Occurrence_Of (E, Loc),
10121 Attribute_Name => Nam,
10122 Expressions => Exprs);
10123 end Get_E_First_Or_Last;
10125 -----------------
10126 -- Get_N_First --
10127 -----------------
10129 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
10130 begin
10131 return
10132 Make_Attribute_Reference (Loc,
10133 Attribute_Name => Name_First,
10134 Prefix =>
10135 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10136 Expressions => New_List (
10137 Make_Integer_Literal (Loc, Indx)));
10138 end Get_N_First;
10140 ----------------
10141 -- Get_N_Last --
10142 ----------------
10144 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10145 begin
10146 return
10147 Make_Attribute_Reference (Loc,
10148 Attribute_Name => Name_Last,
10149 Prefix =>
10150 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10151 Expressions => New_List (
10152 Make_Integer_Literal (Loc, Indx)));
10153 end Get_N_Last;
10155 ------------------
10156 -- Range_E_Cond --
10157 ------------------
10159 function Range_E_Cond
10160 (Exptyp : Entity_Id;
10161 Typ : Entity_Id;
10162 Indx : Nat) return Node_Id
10164 begin
10165 return
10166 Make_Or_Else (Loc,
10167 Left_Opnd =>
10168 Make_Op_Lt (Loc,
10169 Left_Opnd =>
10170 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10171 Right_Opnd =>
10172 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10174 Right_Opnd =>
10175 Make_Op_Gt (Loc,
10176 Left_Opnd =>
10177 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10178 Right_Opnd =>
10179 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10180 end Range_E_Cond;
10182 ------------------------
10183 -- Range_Equal_E_Cond --
10184 ------------------------
10186 function Range_Equal_E_Cond
10187 (Exptyp : Entity_Id;
10188 Typ : Entity_Id;
10189 Indx : Nat) return Node_Id
10191 begin
10192 return
10193 Make_Or_Else (Loc,
10194 Left_Opnd =>
10195 Make_Op_Ne (Loc,
10196 Left_Opnd =>
10197 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10198 Right_Opnd =>
10199 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10201 Right_Opnd =>
10202 Make_Op_Ne (Loc,
10203 Left_Opnd =>
10204 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10205 Right_Opnd =>
10206 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10207 end Range_Equal_E_Cond;
10209 ------------------
10210 -- Range_N_Cond --
10211 ------------------
10213 function Range_N_Cond
10214 (Expr : Node_Id;
10215 Typ : Entity_Id;
10216 Indx : Nat) return Node_Id
10218 begin
10219 return
10220 Make_Or_Else (Loc,
10221 Left_Opnd =>
10222 Make_Op_Lt (Loc,
10223 Left_Opnd =>
10224 Get_N_First (Expr, Indx),
10225 Right_Opnd =>
10226 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10228 Right_Opnd =>
10229 Make_Op_Gt (Loc,
10230 Left_Opnd =>
10231 Get_N_Last (Expr, Indx),
10232 Right_Opnd =>
10233 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10234 end Range_N_Cond;
10236 -- Start of processing for Selected_Range_Checks
10238 begin
10239 -- Checks will be applied only when generating code. In GNATprove mode,
10240 -- we do not apply the checks, but we still call Selected_Range_Checks
10241 -- to possibly issue errors on SPARK code when a run-time error can be
10242 -- detected at compile time.
10244 if not Expander_Active and not GNATprove_Mode then
10245 return Ret_Result;
10246 end if;
10248 if Target_Typ = Any_Type
10249 or else Target_Typ = Any_Composite
10250 or else Raises_Constraint_Error (Ck_Node)
10251 then
10252 return Ret_Result;
10253 end if;
10255 if No (Wnode) then
10256 Wnode := Ck_Node;
10257 end if;
10259 T_Typ := Target_Typ;
10261 if No (Source_Typ) then
10262 S_Typ := Etype (Ck_Node);
10263 else
10264 S_Typ := Source_Typ;
10265 end if;
10267 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10268 return Ret_Result;
10269 end if;
10271 -- The order of evaluating T_Typ before S_Typ seems to be critical
10272 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
10273 -- in, and since Node can be an N_Range node, it might be invalid.
10274 -- Should there be an assert check somewhere for taking the Etype of
10275 -- an N_Range node ???
10277 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10278 S_Typ := Designated_Type (S_Typ);
10279 T_Typ := Designated_Type (T_Typ);
10280 Do_Access := True;
10282 -- A simple optimization for the null case
10284 if Known_Null (Ck_Node) then
10285 return Ret_Result;
10286 end if;
10287 end if;
10289 -- For an N_Range Node, check for a null range and then if not
10290 -- null generate a range check action.
10292 if Nkind (Ck_Node) = N_Range then
10294 -- There's no point in checking a range against itself
10296 if Ck_Node = Scalar_Range (T_Typ) then
10297 return Ret_Result;
10298 end if;
10300 declare
10301 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
10302 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
10303 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10304 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
10306 LB : Node_Id := Low_Bound (Ck_Node);
10307 HB : Node_Id := High_Bound (Ck_Node);
10308 Known_LB : Boolean := False;
10309 Known_HB : Boolean := False;
10311 Null_Range : Boolean;
10312 Out_Of_Range_L : Boolean;
10313 Out_Of_Range_H : Boolean;
10315 begin
10316 -- Compute what is known at compile time
10318 if Known_T_LB and Known_T_HB then
10319 if Compile_Time_Known_Value (LB) then
10320 Known_LB := True;
10322 -- There's no point in checking that a bound is within its
10323 -- own range so pretend that it is known in this case. First
10324 -- deal with low bound.
10326 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10327 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10328 then
10329 LB := T_LB;
10330 Known_LB := True;
10331 end if;
10333 -- Likewise for the high bound
10335 if Compile_Time_Known_Value (HB) then
10336 Known_HB := True;
10338 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10339 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10340 then
10341 HB := T_HB;
10342 Known_HB := True;
10343 end if;
10344 end if;
10346 -- Check for case where everything is static and we can do the
10347 -- check at compile time. This is skipped if we have an access
10348 -- type, since the access value may be null.
10350 -- ??? This code can be improved since you only need to know that
10351 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
10352 -- compile time to emit pertinent messages.
10354 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
10355 and not Do_Access
10356 then
10357 -- Floating-point case
10359 if Is_Floating_Point_Type (S_Typ) then
10360 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
10361 Out_Of_Range_L :=
10362 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
10363 or else
10364 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
10366 Out_Of_Range_H :=
10367 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
10368 or else
10369 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
10371 -- Fixed or discrete type case
10373 else
10374 Null_Range := Expr_Value (HB) < Expr_Value (LB);
10375 Out_Of_Range_L :=
10376 (Expr_Value (LB) < Expr_Value (T_LB))
10377 or else
10378 (Expr_Value (LB) > Expr_Value (T_HB));
10380 Out_Of_Range_H :=
10381 (Expr_Value (HB) > Expr_Value (T_HB))
10382 or else
10383 (Expr_Value (HB) < Expr_Value (T_LB));
10384 end if;
10386 if not Null_Range then
10387 if Out_Of_Range_L then
10388 if No (Warn_Node) then
10389 Add_Check
10390 (Compile_Time_Constraint_Error
10391 (Low_Bound (Ck_Node),
10392 "static value out of range of}??", T_Typ));
10394 else
10395 Add_Check
10396 (Compile_Time_Constraint_Error
10397 (Wnode,
10398 "static range out of bounds of}??", T_Typ));
10399 end if;
10400 end if;
10402 if Out_Of_Range_H then
10403 if No (Warn_Node) then
10404 Add_Check
10405 (Compile_Time_Constraint_Error
10406 (High_Bound (Ck_Node),
10407 "static value out of range of}??", T_Typ));
10409 else
10410 Add_Check
10411 (Compile_Time_Constraint_Error
10412 (Wnode,
10413 "static range out of bounds of}??", T_Typ));
10414 end if;
10415 end if;
10416 end if;
10418 else
10419 declare
10420 LB : Node_Id := Low_Bound (Ck_Node);
10421 HB : Node_Id := High_Bound (Ck_Node);
10423 begin
10424 -- If either bound is a discriminant and we are within the
10425 -- record declaration, it is a use of the discriminant in a
10426 -- constraint of a component, and nothing can be checked
10427 -- here. The check will be emitted within the init proc.
10428 -- Before then, the discriminal has no real meaning.
10429 -- Similarly, if the entity is a discriminal, there is no
10430 -- check to perform yet.
10432 -- The same holds within a discriminated synchronized type,
10433 -- where the discriminant may constrain a component or an
10434 -- entry family.
10436 if Nkind (LB) = N_Identifier
10437 and then Denotes_Discriminant (LB, True)
10438 then
10439 if Current_Scope = Scope (Entity (LB))
10440 or else Is_Concurrent_Type (Current_Scope)
10441 or else Ekind (Entity (LB)) /= E_Discriminant
10442 then
10443 return Ret_Result;
10444 else
10445 LB :=
10446 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10447 end if;
10448 end if;
10450 if Nkind (HB) = N_Identifier
10451 and then Denotes_Discriminant (HB, True)
10452 then
10453 if Current_Scope = Scope (Entity (HB))
10454 or else Is_Concurrent_Type (Current_Scope)
10455 or else Ekind (Entity (HB)) /= E_Discriminant
10456 then
10457 return Ret_Result;
10458 else
10459 HB :=
10460 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10461 end if;
10462 end if;
10464 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
10465 Set_Paren_Count (Cond, 1);
10467 Cond :=
10468 Make_And_Then (Loc,
10469 Left_Opnd =>
10470 Make_Op_Ge (Loc,
10471 Left_Opnd =>
10472 Convert_To (Base_Type (Etype (HB)),
10473 Duplicate_Subexpr_No_Checks (HB)),
10474 Right_Opnd =>
10475 Convert_To (Base_Type (Etype (LB)),
10476 Duplicate_Subexpr_No_Checks (LB))),
10477 Right_Opnd => Cond);
10478 end;
10479 end if;
10480 end;
10482 elsif Is_Scalar_Type (S_Typ) then
10484 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
10485 -- except the above simply sets a flag in the node and lets
10486 -- gigi generate the check base on the Etype of the expression.
10487 -- Sometimes, however we want to do a dynamic check against an
10488 -- arbitrary target type, so we do that here.
10490 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
10491 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10493 -- For literals, we can tell if the constraint error will be
10494 -- raised at compile time, so we never need a dynamic check, but
10495 -- if the exception will be raised, then post the usual warning,
10496 -- and replace the literal with a raise constraint error
10497 -- expression. As usual, skip this for access types
10499 elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
10500 declare
10501 LB : constant Node_Id := Type_Low_Bound (T_Typ);
10502 UB : constant Node_Id := Type_High_Bound (T_Typ);
10504 Out_Of_Range : Boolean;
10505 Static_Bounds : constant Boolean :=
10506 Compile_Time_Known_Value (LB)
10507 and Compile_Time_Known_Value (UB);
10509 begin
10510 -- Following range tests should use Sem_Eval routine ???
10512 if Static_Bounds then
10513 if Is_Floating_Point_Type (S_Typ) then
10514 Out_Of_Range :=
10515 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
10516 or else
10517 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
10519 -- Fixed or discrete type
10521 else
10522 Out_Of_Range :=
10523 Expr_Value (Ck_Node) < Expr_Value (LB)
10524 or else
10525 Expr_Value (Ck_Node) > Expr_Value (UB);
10526 end if;
10528 -- Bounds of the type are static and the literal is out of
10529 -- range so output a warning message.
10531 if Out_Of_Range then
10532 if No (Warn_Node) then
10533 Add_Check
10534 (Compile_Time_Constraint_Error
10535 (Ck_Node,
10536 "static value out of range of}??", T_Typ));
10538 else
10539 Add_Check
10540 (Compile_Time_Constraint_Error
10541 (Wnode,
10542 "static value out of range of}??", T_Typ));
10543 end if;
10544 end if;
10546 else
10547 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10548 end if;
10549 end;
10551 -- Here for the case of a non-static expression, we need a runtime
10552 -- check unless the source type range is guaranteed to be in the
10553 -- range of the target type.
10555 else
10556 if not In_Subrange_Of (S_Typ, T_Typ) then
10557 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10558 end if;
10559 end if;
10560 end if;
10562 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10563 if Is_Constrained (T_Typ) then
10565 Expr_Actual := Get_Referenced_Object (Ck_Node);
10566 Exptyp := Get_Actual_Subtype (Expr_Actual);
10568 if Is_Access_Type (Exptyp) then
10569 Exptyp := Designated_Type (Exptyp);
10570 end if;
10572 -- String_Literal case. This needs to be handled specially be-
10573 -- cause no index types are available for string literals. The
10574 -- condition is simply:
10576 -- T_Typ'Length = string-literal-length
10578 if Nkind (Expr_Actual) = N_String_Literal then
10579 null;
10581 -- General array case. Here we have a usable actual subtype for
10582 -- the expression, and the condition is built from the two types
10584 -- T_Typ'First < Exptyp'First or else
10585 -- T_Typ'Last > Exptyp'Last or else
10586 -- T_Typ'First(1) < Exptyp'First(1) or else
10587 -- T_Typ'Last(1) > Exptyp'Last(1) or else
10588 -- ...
10590 elsif Is_Constrained (Exptyp) then
10591 declare
10592 Ndims : constant Nat := Number_Dimensions (T_Typ);
10594 L_Index : Node_Id;
10595 R_Index : Node_Id;
10597 begin
10598 L_Index := First_Index (T_Typ);
10599 R_Index := First_Index (Exptyp);
10601 for Indx in 1 .. Ndims loop
10602 if not (Nkind (L_Index) = N_Raise_Constraint_Error
10603 or else
10604 Nkind (R_Index) = N_Raise_Constraint_Error)
10605 then
10606 -- Deal with compile time length check. Note that we
10607 -- skip this in the access case, because the access
10608 -- value may be null, so we cannot know statically.
10610 if not
10611 Subtypes_Statically_Match
10612 (Etype (L_Index), Etype (R_Index))
10613 then
10614 -- If the target type is constrained then we
10615 -- have to check for exact equality of bounds
10616 -- (required for qualified expressions).
10618 if Is_Constrained (T_Typ) then
10619 Evolve_Or_Else
10620 (Cond,
10621 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
10622 else
10623 Evolve_Or_Else
10624 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
10625 end if;
10626 end if;
10628 Next (L_Index);
10629 Next (R_Index);
10630 end if;
10631 end loop;
10632 end;
10634 -- Handle cases where we do not get a usable actual subtype that
10635 -- is constrained. This happens for example in the function call
10636 -- and explicit dereference cases. In these cases, we have to get
10637 -- the length or range from the expression itself, making sure we
10638 -- do not evaluate it more than once.
10640 -- Here Ck_Node is the original expression, or more properly the
10641 -- result of applying Duplicate_Expr to the original tree,
10642 -- forcing the result to be a name.
10644 else
10645 declare
10646 Ndims : constant Nat := Number_Dimensions (T_Typ);
10648 begin
10649 -- Build the condition for the explicit dereference case
10651 for Indx in 1 .. Ndims loop
10652 Evolve_Or_Else
10653 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
10654 end loop;
10655 end;
10656 end if;
10658 else
10659 -- For a conversion to an unconstrained array type, generate an
10660 -- Action to check that the bounds of the source value are within
10661 -- the constraints imposed by the target type (RM 4.6(38)). No
10662 -- check is needed for a conversion to an access to unconstrained
10663 -- array type, as 4.6(24.15/2) requires the designated subtypes
10664 -- of the two access types to statically match.
10666 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
10667 and then not Do_Access
10668 then
10669 declare
10670 Opnd_Index : Node_Id;
10671 Targ_Index : Node_Id;
10672 Opnd_Range : Node_Id;
10674 begin
10675 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
10676 Targ_Index := First_Index (T_Typ);
10677 while Present (Opnd_Index) loop
10679 -- If the index is a range, use its bounds. If it is an
10680 -- entity (as will be the case if it is a named subtype
10681 -- or an itype created for a slice) retrieve its range.
10683 if Is_Entity_Name (Opnd_Index)
10684 and then Is_Type (Entity (Opnd_Index))
10685 then
10686 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
10687 else
10688 Opnd_Range := Opnd_Index;
10689 end if;
10691 if Nkind (Opnd_Range) = N_Range then
10692 if Is_In_Range
10693 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10694 Assume_Valid => True)
10695 and then
10696 Is_In_Range
10697 (High_Bound (Opnd_Range), Etype (Targ_Index),
10698 Assume_Valid => True)
10699 then
10700 null;
10702 -- If null range, no check needed
10704 elsif
10705 Compile_Time_Known_Value (High_Bound (Opnd_Range))
10706 and then
10707 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
10708 and then
10709 Expr_Value (High_Bound (Opnd_Range)) <
10710 Expr_Value (Low_Bound (Opnd_Range))
10711 then
10712 null;
10714 elsif Is_Out_Of_Range
10715 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10716 Assume_Valid => True)
10717 or else
10718 Is_Out_Of_Range
10719 (High_Bound (Opnd_Range), Etype (Targ_Index),
10720 Assume_Valid => True)
10721 then
10722 Add_Check
10723 (Compile_Time_Constraint_Error
10724 (Wnode, "value out of range of}??", T_Typ));
10726 else
10727 Evolve_Or_Else
10728 (Cond,
10729 Discrete_Range_Cond
10730 (Opnd_Range, Etype (Targ_Index)));
10731 end if;
10732 end if;
10734 Next_Index (Opnd_Index);
10735 Next_Index (Targ_Index);
10736 end loop;
10737 end;
10738 end if;
10739 end if;
10740 end if;
10742 -- Construct the test and insert into the tree
10744 if Present (Cond) then
10745 if Do_Access then
10746 Cond := Guard_Access (Cond, Loc, Ck_Node);
10747 end if;
10749 Add_Check
10750 (Make_Raise_Constraint_Error (Loc,
10751 Condition => Cond,
10752 Reason => CE_Range_Check_Failed));
10753 end if;
10755 return Ret_Result;
10756 end Selected_Range_Checks;
10758 -------------------------------
10759 -- Storage_Checks_Suppressed --
10760 -------------------------------
10762 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10763 begin
10764 if Present (E) and then Checks_May_Be_Suppressed (E) then
10765 return Is_Check_Suppressed (E, Storage_Check);
10766 else
10767 return Scope_Suppress.Suppress (Storage_Check);
10768 end if;
10769 end Storage_Checks_Suppressed;
10771 ---------------------------
10772 -- Tag_Checks_Suppressed --
10773 ---------------------------
10775 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10776 begin
10777 if Present (E)
10778 and then Checks_May_Be_Suppressed (E)
10779 then
10780 return Is_Check_Suppressed (E, Tag_Check);
10781 else
10782 return Scope_Suppress.Suppress (Tag_Check);
10783 end if;
10784 end Tag_Checks_Suppressed;
10786 ---------------------------------------
10787 -- Validate_Alignment_Check_Warnings --
10788 ---------------------------------------
10790 procedure Validate_Alignment_Check_Warnings is
10791 begin
10792 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10793 declare
10794 AWR : Alignment_Warnings_Record
10795 renames Alignment_Warnings.Table (J);
10796 begin
10797 if Known_Alignment (AWR.E)
10798 and then AWR.A mod Alignment (AWR.E) = 0
10799 then
10800 Delete_Warning_And_Continuations (AWR.W);
10801 end if;
10802 end;
10803 end loop;
10804 end Validate_Alignment_Check_Warnings;
10806 --------------------------
10807 -- Validity_Check_Range --
10808 --------------------------
10810 procedure Validity_Check_Range
10811 (N : Node_Id;
10812 Related_Id : Entity_Id := Empty)
10814 begin
10815 if Validity_Checks_On and Validity_Check_Operands then
10816 if Nkind (N) = N_Range then
10817 Ensure_Valid
10818 (Expr => Low_Bound (N),
10819 Related_Id => Related_Id,
10820 Is_Low_Bound => True);
10822 Ensure_Valid
10823 (Expr => High_Bound (N),
10824 Related_Id => Related_Id,
10825 Is_High_Bound => True);
10826 end if;
10827 end if;
10828 end Validity_Check_Range;
10830 --------------------------------
10831 -- Validity_Checks_Suppressed --
10832 --------------------------------
10834 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10835 begin
10836 if Present (E) and then Checks_May_Be_Suppressed (E) then
10837 return Is_Check_Suppressed (E, Validity_Check);
10838 else
10839 return Scope_Suppress.Suppress (Validity_Check);
10840 end if;
10841 end Validity_Checks_Suppressed;
10843 end Checks;