tree-optimization/115694 - ICE with complex store rewrite
[official-gcc.git] / gcc / ada / checks.adb
blob504cba0b94281f2ce43b93a037d5c153195596f9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Einfo.Entities; use Einfo.Entities;
30 with Einfo.Utils; use Einfo.Utils;
31 with Elists; use Elists;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Ch11; use Exp_Ch11;
34 with Exp_Ch4; use Exp_Ch4;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Expander; use Expander;
38 with Freeze; use Freeze;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Output; use Output;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Disp; use Sem_Disp;
53 with Sem_Elab; use Sem_Elab;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Mech; use Sem_Mech;
56 with Sem_Res; use Sem_Res;
57 with Sem_Util; use Sem_Util;
58 with Sem_Warn; use Sem_Warn;
59 with Sinfo; use Sinfo;
60 with Sinfo.Nodes; use Sinfo.Nodes;
61 with Sinfo.Utils; use Sinfo.Utils;
62 with Sinput; use Sinput;
63 with Snames; use Snames;
64 with Sprint; use Sprint;
65 with Stand; use Stand;
66 with Stringt; use Stringt;
67 with Targparm; use Targparm;
68 with Tbuild; use Tbuild;
69 with Ttypes; use Ttypes;
70 with Validsw; use Validsw;
72 package body Checks is
74 -- General note: many of these routines are concerned with generating
75 -- checking code to make sure that constraint error is raised at runtime.
76 -- Clearly this code is only needed if the expander is active, since
77 -- otherwise we will not be generating code or going into the runtime
78 -- execution anyway.
80 -- We therefore disconnect most of these checks if the expander is
81 -- inactive. This has the additional benefit that we do not need to
82 -- worry about the tree being messed up by previous errors (since errors
83 -- turn off expansion anyway).
85 -- There are a few exceptions to the above rule. For instance routines
86 -- such as Apply_Scalar_Range_Check that do not insert any code can be
87 -- safely called even when the Expander is inactive (but Errors_Detected
88 -- is 0). The benefit of executing this code when expansion is off, is
89 -- the ability to emit constraint error warnings for static expressions
90 -- even when we are not generating code.
92 -- The above is modified in gnatprove mode to ensure that proper check
93 -- flags are always placed, even if expansion is off.
95 -------------------------------------
96 -- Suppression of Redundant Checks --
97 -------------------------------------
99 -- This unit implements a limited circuit for removal of redundant
100 -- checks. The processing is based on a tracing of simple sequential
101 -- flow. For any sequence of statements, we save expressions that are
102 -- marked to be checked, and then if the same expression appears later
103 -- with the same check, then under certain circumstances, the second
104 -- check can be suppressed.
106 -- Basically, we can suppress the check if we know for certain that
107 -- the previous expression has been elaborated (together with its
108 -- check), and we know that the exception frame is the same, and that
109 -- nothing has happened to change the result of the exception.
111 -- Let us examine each of these three conditions in turn to describe
112 -- how we ensure that this condition is met.
114 -- First, we need to know for certain that the previous expression has
115 -- been executed. This is done principally by the mechanism of calling
116 -- Conditional_Statements_Begin at the start of any statement sequence
117 -- and Conditional_Statements_End at the end. The End call causes all
118 -- checks remembered since the Begin call to be discarded. This does
119 -- miss a few cases, notably the case of a nested BEGIN-END block with
120 -- no exception handlers. But the important thing is to be conservative.
121 -- The other protection is that all checks are discarded if a label
122 -- is encountered, since then the assumption of sequential execution
123 -- is violated, and we don't know enough about the flow.
125 -- Second, we need to know that the exception frame is the same. We
126 -- do this by killing all remembered checks when we enter a new frame.
127 -- Again, that's over-conservative, but generally the cases we can help
128 -- with are pretty local anyway (like the body of a loop for example).
130 -- Third, we must be sure to forget any checks which are no longer valid.
131 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
132 -- used to note any changes to local variables. We only attempt to deal
133 -- with checks involving local variables, so we do not need to worry
134 -- about global variables. Second, a call to any non-global procedure
135 -- causes us to abandon all stored checks, since such a all may affect
136 -- the values of any local variables.
138 -- The following define the data structures used to deal with remembering
139 -- checks so that redundant checks can be eliminated as described above.
141 -- Right now, the only expressions that we deal with are of the form of
142 -- simple local objects (either declared locally, or IN parameters) or
143 -- such objects plus/minus a compile time known constant. We can do
144 -- more later on if it seems worthwhile, but this catches many simple
145 -- cases in practice.
147 -- The following record type reflects a single saved check. An entry
148 -- is made in the stack of saved checks if and only if the expression
149 -- has been elaborated with the indicated checks.
151 type Saved_Check is record
152 Killed : Boolean;
153 -- Set True if entry is killed by Kill_Checks
155 Entity : Entity_Id;
156 -- The entity involved in the expression that is checked
158 Offset : Uint;
159 -- A compile time value indicating the result of adding or
160 -- subtracting a compile time value. This value is to be
161 -- added to the value of the Entity. A value of zero is
162 -- used for the case of a simple entity reference.
164 Check_Type : Character;
165 -- This is set to 'R' for a range check (in which case Target_Type
166 -- is set to the target type for the range check) or to 'O' for an
167 -- overflow check (in which case Target_Type is set to Empty).
169 Target_Type : Entity_Id;
170 -- Used only if Do_Range_Check is set. Records the target type for
171 -- the check. We need this, because a check is a duplicate only if
172 -- it has the same target type (or more accurately one with a
173 -- range that is smaller or equal to the stored target type of a
174 -- saved check).
175 end record;
177 -- The following table keeps track of saved checks. Rather than use an
178 -- extensible table, we just use a table of fixed size, and we discard
179 -- any saved checks that do not fit. That's very unlikely to happen and
180 -- this is only an optimization in any case.
182 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
183 -- Array of saved checks
185 Num_Saved_Checks : Nat := 0;
186 -- Number of saved checks
188 -- The following stack keeps track of statement ranges. It is treated
189 -- as a stack. When Conditional_Statements_Begin is called, an entry
190 -- is pushed onto this stack containing the value of Num_Saved_Checks
191 -- at the time of the call. Then when Conditional_Statements_End is
192 -- called, this value is popped off and used to reset Num_Saved_Checks.
194 -- Note: again, this is a fixed length stack with a size that should
195 -- always be fine. If the value of the stack pointer goes above the
196 -- limit, then we just forget all saved checks.
198 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
199 Saved_Checks_TOS : Nat := 0;
201 -----------------------
202 -- Local Subprograms --
203 -----------------------
205 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
206 -- Used to apply arithmetic overflow checks for all cases except operators
207 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
208 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
209 -- signed integer arithmetic operator (but not an if or case expression).
210 -- It is also called for types other than signed integers.
212 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
213 -- Used to apply arithmetic overflow checks for the case where the overflow
214 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
215 -- arithmetic op (which includes the case of if and case expressions). Note
216 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
217 -- we have work to do even if overflow checking is suppressed.
219 procedure Apply_Division_Check
220 (N : Node_Id;
221 Rlo : Uint;
222 Rhi : Uint;
223 ROK : Boolean);
224 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
225 -- division checks as required if the Do_Division_Check flag is set.
226 -- Rlo and Rhi give the possible range of the right operand, these values
227 -- can be referenced and trusted only if ROK is set True.
229 procedure Apply_Float_Conversion_Check
230 (Expr : Node_Id;
231 Target_Typ : Entity_Id);
232 -- The checks on a conversion from a floating-point type to an integer
233 -- type are delicate. They have to be performed before conversion, they
234 -- have to raise an exception when the operand is a NaN, and rounding must
235 -- be taken into account to determine the safe bounds of the operand.
237 procedure Apply_Selected_Length_Checks
238 (Expr : Node_Id;
239 Target_Typ : Entity_Id;
240 Source_Typ : Entity_Id;
241 Do_Static : Boolean);
242 -- This is the subprogram that does all the work for Apply_Length_Check
243 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
244 -- described for the above routines. The Do_Static flag indicates that
245 -- only a static check is to be done.
247 procedure Compute_Range_For_Arithmetic_Op
248 (Op : Node_Kind;
249 Lo_Left : Uint;
250 Hi_Left : Uint;
251 Lo_Right : Uint;
252 Hi_Right : Uint;
253 OK : out Boolean;
254 Lo : out Uint;
255 Hi : out Uint);
256 -- Given an integer arithmetical operation Op and the range of values of
257 -- its operand(s), try to compute a conservative estimate of the possible
258 -- range of values for the result of the operation. Thus if OK is True on
259 -- return, the result is known to lie in the range Lo .. Hi (inclusive).
260 -- If OK is false, both Lo and Hi are set to No_Uint.
262 type Check_Type is new Check_Id range Access_Check .. Division_Check;
263 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
264 -- This function is used to see if an access or division by zero check is
265 -- needed. The check is to be applied to a single variable appearing in the
266 -- source, and N is the node for the reference. If N is not of this form,
267 -- True is returned with no further processing. If N is of the right form,
268 -- then further processing determines if the given Check is needed.
270 -- The particular circuit is to see if we have the case of a check that is
271 -- not needed because it appears in the right operand of a short circuited
272 -- conditional where the left operand guards the check. For example:
274 -- if Var = 0 or else Q / Var > 12 then
275 -- ...
276 -- end if;
278 -- In this example, the division check is not required. At the same time
279 -- we can issue warnings for suspicious use of non-short-circuited forms,
280 -- such as:
282 -- if Var = 0 or Q / Var > 12 then
283 -- ...
284 -- end if;
286 procedure Find_Check
287 (Expr : Node_Id;
288 Check_Type : Character;
289 Target_Type : Entity_Id;
290 Entry_OK : out Boolean;
291 Check_Num : out Nat;
292 Ent : out Entity_Id;
293 Ofs : out Uint);
294 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
295 -- to see if a check is of the form for optimization, and if so, to see
296 -- if it has already been performed. Expr is the expression to check,
297 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
298 -- Target_Type is the target type for a range check, and Empty for an
299 -- overflow check. If the entry is not of the form for optimization,
300 -- then Entry_OK is set to False, and the remaining out parameters
301 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
302 -- entity and offset from the expression. Check_Num is the number of
303 -- a matching saved entry in Saved_Checks, or zero if no such entry
304 -- is located.
306 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
307 -- If a discriminal is used in constraining a prival, Return reference
308 -- to the discriminal of the protected body (which renames the parameter
309 -- of the enclosing protected operation). This clumsy transformation is
310 -- needed because privals are created too late and their actual subtypes
311 -- are not available when analysing the bodies of the protected operations.
312 -- This function is called whenever the bound is an entity and the scope
313 -- indicates a protected operation. If the bound is an in-parameter of
314 -- a protected operation that is not a prival, the function returns the
315 -- bound itself.
316 -- To be cleaned up???
318 function Guard_Access
319 (Cond : Node_Id;
320 Loc : Source_Ptr;
321 Expr : Node_Id) return Node_Id;
322 -- In the access type case, guard the test with a test to ensure
323 -- that the access value is non-null, since the checks do not
324 -- not apply to null access values.
326 procedure Install_Static_Check
327 (R_Cno : Node_Id; Loc : Source_Ptr; Reason : RT_Exception_Code);
328 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
329 -- Constraint_Error node.
331 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
332 -- Returns True if node N is for an arithmetic operation with signed
333 -- integer operands. This includes unary and binary operators, and also
334 -- if and case expression nodes where the dependent expressions are of
335 -- a signed integer type. These are the kinds of nodes for which special
336 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
338 function Range_Or_Validity_Checks_Suppressed
339 (Expr : Node_Id) return Boolean;
340 -- Returns True if either range or validity checks or both are suppressed
341 -- for the type of the given expression, or, if the expression is the name
342 -- of an entity, if these checks are suppressed for the entity.
344 function Selected_Length_Checks
345 (Expr : Node_Id;
346 Target_Typ : Entity_Id;
347 Source_Typ : Entity_Id;
348 Warn_Node : Node_Id) return Check_Result;
349 -- Like Apply_Selected_Length_Checks, except it doesn't modify
350 -- anything, just returns a list of nodes as described in the spec of
351 -- this package for the Get_Range_Checks function.
352 -- ??? In fact it does construct the test and insert it into the tree,
353 -- and insert actions in various ways (calling Insert_Action directly
354 -- in particular) so we do not call it in GNATprove mode, contrary to
355 -- Selected_Range_Checks.
357 function Selected_Range_Checks
358 (Expr : Node_Id;
359 Target_Typ : Entity_Id;
360 Source_Typ : Entity_Id;
361 Warn_Node : Node_Id) return Check_Result;
362 -- Like Apply_Range_Check, except it does not modify anything, just
363 -- returns a list of nodes as described in the spec of this package
364 -- for the Get_Range_Checks function.
366 ------------------------------
367 -- Access_Checks_Suppressed --
368 ------------------------------
370 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
371 begin
372 if Present (E) and then Checks_May_Be_Suppressed (E) then
373 return Is_Check_Suppressed (E, Access_Check);
374 else
375 return Scope_Suppress.Suppress (Access_Check);
376 end if;
377 end Access_Checks_Suppressed;
379 -------------------------------------
380 -- Accessibility_Checks_Suppressed --
381 -------------------------------------
383 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
384 begin
385 if No_Dynamic_Accessibility_Checks_Enabled (E) then
386 return True;
388 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
389 return Is_Check_Suppressed (E, Accessibility_Check);
391 else
392 return Scope_Suppress.Suppress (Accessibility_Check);
393 end if;
394 end Accessibility_Checks_Suppressed;
396 -----------------------------
397 -- Activate_Division_Check --
398 -----------------------------
400 procedure Activate_Division_Check (N : Node_Id) is
401 begin
402 Set_Do_Division_Check (N, True);
403 Possible_Local_Raise (N, Standard_Constraint_Error);
404 end Activate_Division_Check;
406 -----------------------------
407 -- Activate_Overflow_Check --
408 -----------------------------
410 procedure Activate_Overflow_Check (N : Node_Id) is
411 Typ : constant Entity_Id := Etype (N);
413 begin
414 -- Floating-point case. If Etype is not set (this can happen when we
415 -- activate a check on a node that has not yet been analyzed), then
416 -- we assume we do not have a floating-point type (as per our spec).
418 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
420 -- Ignore call if we have no automatic overflow checks on the target
421 -- and Check_Float_Overflow mode is not set. These are the cases in
422 -- which we expect to generate infinities and NaN's with no check.
424 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
425 return;
427 -- Ignore for unary operations ("+", "-", abs) since these can never
428 -- result in overflow for floating-point cases.
430 elsif Nkind (N) in N_Unary_Op then
431 return;
433 -- Otherwise we will set the flag
435 else
436 null;
437 end if;
439 -- Discrete case
441 else
442 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
443 -- for zero-divide is a divide check, not an overflow check).
445 if Nkind (N) in N_Op_Rem | N_Op_Mod | N_Op_Plus then
446 return;
447 end if;
448 end if;
450 -- Fall through for cases where we do set the flag
452 Set_Do_Overflow_Check (N);
453 Possible_Local_Raise (N, Standard_Constraint_Error);
454 end Activate_Overflow_Check;
456 --------------------------
457 -- Activate_Range_Check --
458 --------------------------
460 procedure Activate_Range_Check (N : Node_Id) is
461 begin
462 Set_Do_Range_Check (N);
463 Possible_Local_Raise (N, Standard_Constraint_Error);
464 end Activate_Range_Check;
466 ---------------------------------
467 -- Alignment_Checks_Suppressed --
468 ---------------------------------
470 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
471 begin
472 if Present (E) and then Checks_May_Be_Suppressed (E) then
473 return Is_Check_Suppressed (E, Alignment_Check);
474 else
475 return Scope_Suppress.Suppress (Alignment_Check);
476 end if;
477 end Alignment_Checks_Suppressed;
479 ----------------------------------
480 -- Allocation_Checks_Suppressed --
481 ----------------------------------
483 -- Note: at the current time there are no calls to this function, because
484 -- the relevant check is in the run-time, so it is not a check that the
485 -- compiler can suppress anyway, but we still have to recognize the check
486 -- name Allocation_Check since it is part of the standard.
488 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
489 begin
490 if Present (E) and then Checks_May_Be_Suppressed (E) then
491 return Is_Check_Suppressed (E, Allocation_Check);
492 else
493 return Scope_Suppress.Suppress (Allocation_Check);
494 end if;
495 end Allocation_Checks_Suppressed;
497 -------------------------
498 -- Append_Range_Checks --
499 -------------------------
501 procedure Append_Range_Checks
502 (Checks : Check_Result;
503 Stmts : List_Id;
504 Suppress_Typ : Entity_Id;
505 Static_Sloc : Source_Ptr)
507 Checks_On : constant Boolean :=
508 not Index_Checks_Suppressed (Suppress_Typ)
509 or else
510 not Range_Checks_Suppressed (Suppress_Typ);
512 begin
513 -- For now we just return if Checks_On is false, however this could be
514 -- enhanced to check for an always True value in the condition and to
515 -- generate a compilation warning.
517 if not Checks_On then
518 return;
519 end if;
521 for J in 1 .. 2 loop
522 exit when No (Checks (J));
524 if Nkind (Checks (J)) = N_Raise_Constraint_Error
525 and then Present (Condition (Checks (J)))
526 then
527 Append_To (Stmts, Checks (J));
528 else
529 Append_To
530 (Stmts,
531 Make_Raise_Constraint_Error (Static_Sloc,
532 Reason => CE_Range_Check_Failed));
533 end if;
534 end loop;
535 end Append_Range_Checks;
537 ------------------------
538 -- Apply_Access_Check --
539 ------------------------
541 procedure Apply_Access_Check (N : Node_Id) is
542 P : constant Node_Id := Prefix (N);
544 begin
545 -- We do not need checks if we are not generating code (i.e. the
546 -- expander is not active). This is not just an optimization, there
547 -- are cases (e.g. with pragma Debug) where generating the checks
548 -- can cause real trouble.
550 if not Expander_Active then
551 return;
552 end if;
554 -- No check if short circuiting makes check unnecessary
556 if not Check_Needed (P, Access_Check) then
557 return;
558 end if;
560 -- No check if accessing the Offset_To_Top component of a dispatch
561 -- table. They are safe by construction.
563 if Tagged_Type_Expansion
564 and then Present (Etype (P))
565 and then Is_RTE (Etype (P), RE_Offset_To_Top_Ptr)
566 then
567 return;
568 end if;
570 -- Otherwise go ahead and install the check
572 Install_Null_Excluding_Check (P);
573 end Apply_Access_Check;
575 --------------------------------
576 -- Apply_Address_Clause_Check --
577 --------------------------------
579 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
580 pragma Assert (Nkind (N) = N_Freeze_Entity);
582 AC : constant Node_Id := Address_Clause (E);
583 Loc : constant Source_Ptr := Sloc (AC);
584 Typ : constant Entity_Id := Etype (E);
586 Expr : Node_Id;
587 -- Address expression (not necessarily the same as Aexp, for example
588 -- when Aexp is a reference to a constant, in which case Expr gets
589 -- reset to reference the value expression of the constant).
591 begin
592 -- See if alignment check needed. Note that we never need a check if the
593 -- maximum alignment is one, since the check will always succeed.
595 -- Note: we do not check for checks suppressed here, since that check
596 -- was done in Sem_Ch13 when the address clause was processed. We are
597 -- only called if checks were not suppressed. The reason for this is
598 -- that we have to delay the call to Apply_Alignment_Check till freeze
599 -- time (so that all types etc are elaborated), but we have to check
600 -- the status of check suppressing at the point of the address clause.
602 if No (AC)
603 or else not Check_Address_Alignment (AC)
604 or else Maximum_Alignment = 1
605 then
606 return;
607 end if;
609 -- Obtain expression from address clause
611 Expr := Address_Value (Expression (AC));
613 -- See if we know that Expr has an acceptable value at compile time. If
614 -- it hasn't or we don't know, we defer issuing the warning until the
615 -- end of the compilation to take into account back end annotations.
617 if Compile_Time_Known_Value (Expr)
618 and then (Known_Alignment (E) or else Known_Alignment (Typ))
619 then
620 declare
621 AL : Uint := Alignment (Typ);
623 begin
624 -- The object alignment might be more restrictive than the type
625 -- alignment.
627 if Known_Alignment (E) then
628 AL := Alignment (E);
629 end if;
631 if Expr_Value (Expr) mod AL = 0 then
632 return;
633 end if;
634 end;
636 -- If the expression has the form X'Address, then we can find out if the
637 -- object X has an alignment that is compatible with the object E. If it
638 -- hasn't or we don't know, we defer issuing the warning until the end
639 -- of the compilation to take into account back end annotations.
641 elsif Nkind (Expr) = N_Attribute_Reference
642 and then Attribute_Name (Expr) = Name_Address
643 and then
644 Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
645 then
646 return;
647 end if;
649 -- Here we do not know if the value is acceptable. Strictly we don't
650 -- have to do anything, since if the alignment is bad, we have an
651 -- erroneous program. However we are allowed to check for erroneous
652 -- conditions and we decide to do this by default if the check is not
653 -- suppressed.
655 -- However, don't do the check if elaboration code is unwanted
657 if Restriction_Active (No_Elaboration_Code) then
658 return;
660 -- Generate a check to raise PE if alignment may be inappropriate
662 else
663 -- If the original expression is a nonstatic constant, use the name
664 -- of the constant itself rather than duplicating its initialization
665 -- expression, which was extracted above.
667 -- Note: Expr is empty if the address-clause is applied to in-mode
668 -- actuals (allowed by 13.1(22)).
670 if No (Expr)
671 or else
672 (Is_Entity_Name (Expression (AC))
673 and then Ekind (Entity (Expression (AC))) = E_Constant
674 and then Nkind (Parent (Entity (Expression (AC)))) =
675 N_Object_Declaration)
676 then
677 Expr := New_Copy_Tree (Expression (AC));
678 else
679 Remove_Side_Effects (Expr);
680 end if;
682 if No (Actions (N)) then
683 Set_Actions (N, New_List);
684 end if;
686 Prepend_To (Actions (N),
687 Make_Raise_Program_Error (Loc,
688 Condition =>
689 Make_Op_Ne (Loc,
690 Left_Opnd =>
691 Make_Op_Mod (Loc,
692 Left_Opnd =>
693 Unchecked_Convert_To
694 (RTE (RE_Integer_Address), Expr),
695 Right_Opnd =>
696 Make_Attribute_Reference (Loc,
697 Prefix => New_Occurrence_Of (E, Loc),
698 Attribute_Name => Name_Alignment)),
699 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
700 Reason => PE_Misaligned_Address_Value));
702 Warning_Msg := No_Error_Msg;
703 Analyze (First (Actions (N)), Suppress => All_Checks);
705 -- If the above raise action generated a warning message (for example
706 -- from Warn_On_Non_Local_Exception mode with the active restriction
707 -- No_Exception_Propagation).
709 if Warning_Msg /= No_Error_Msg then
711 -- If the expression has a known at compile time value, then
712 -- once we know the alignment of the type, we can check if the
713 -- exception will be raised or not, and if not, we don't need
714 -- the warning so we will kill the warning later on.
716 if Compile_Time_Known_Value (Expr) then
717 Alignment_Warnings.Append
718 ((E => E,
719 A => Expr_Value (Expr),
720 P => Empty,
721 W => Warning_Msg));
723 -- Likewise if the expression is of the form X'Address
725 elsif Nkind (Expr) = N_Attribute_Reference
726 and then Attribute_Name (Expr) = Name_Address
727 then
728 Alignment_Warnings.Append
729 ((E => E,
730 A => No_Uint,
731 P => Prefix (Expr),
732 W => Warning_Msg));
734 -- Add explanation of the warning generated by the check
736 else
737 Error_Msg_N
738 ("\address value may be incompatible with alignment of "
739 & "object?.x?", AC);
740 end if;
741 end if;
743 return;
744 end if;
746 exception
748 -- If we have some missing run time component in configurable run time
749 -- mode then just skip the check (it is not required in any case).
751 when RE_Not_Available =>
752 return;
753 end Apply_Address_Clause_Check;
755 -------------------------------------
756 -- Apply_Arithmetic_Overflow_Check --
757 -------------------------------------
759 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
760 begin
761 -- Use old routine in almost all cases (the only case we are treating
762 -- specially is the case of a signed integer arithmetic op with the
763 -- overflow checking mode set to MINIMIZED or ELIMINATED).
765 if Overflow_Check_Mode = Strict
766 or else not Is_Signed_Integer_Arithmetic_Op (N)
767 then
768 Apply_Arithmetic_Overflow_Strict (N);
770 -- Otherwise use the new routine for the case of a signed integer
771 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
772 -- mode is MINIMIZED or ELIMINATED.
774 else
775 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
776 end if;
777 end Apply_Arithmetic_Overflow_Check;
779 --------------------------------------
780 -- Apply_Arithmetic_Overflow_Strict --
781 --------------------------------------
783 -- This routine is called only if the type is an integer type and an
784 -- arithmetic overflow check may be needed for op (add, subtract, or
785 -- multiply). This check is performed if Backend_Overflow_Checks_On_Target
786 -- is not enabled and Do_Overflow_Check is set. In this case we expand the
787 -- operation into a more complex sequence of tests that ensures that
788 -- overflow is properly caught.
790 -- This is used in CHECKED modes. It is identical to the code for this
791 -- cases before the big overflow earthquake, thus ensuring that in this
792 -- modes we have compatible behavior (and reliability) to what was there
793 -- before. It is also called for types other than signed integers, and if
794 -- the Do_Overflow_Check flag is off.
796 -- Note: we also call this routine if we decide in the MINIMIZED case
797 -- to give up and just generate an overflow check without any fuss.
799 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
800 Loc : constant Source_Ptr := Sloc (N);
801 Typ : constant Entity_Id := Etype (N);
802 Rtyp : constant Entity_Id := Root_Type (Typ);
804 begin
805 -- Nothing to do if Do_Overflow_Check not set or overflow checks
806 -- suppressed.
808 if not Do_Overflow_Check (N) then
809 return;
810 end if;
812 -- An interesting special case. If the arithmetic operation appears as
813 -- the operand of a type conversion:
815 -- type1 (x op y)
817 -- and all the following conditions apply:
819 -- arithmetic operation is for a signed integer type
820 -- target type type1 is a static integer subtype
821 -- range of x and y are both included in the range of type1
822 -- range of x op y is included in the range of type1
823 -- size of type1 is at least twice the result size of op
825 -- then we don't do an overflow check in any case. Instead, we transform
826 -- the operation so that we end up with:
828 -- type1 (type1 (x) op type1 (y))
830 -- This avoids intermediate overflow before the conversion. It is
831 -- explicitly permitted by RM 3.5.4(24):
833 -- For the execution of a predefined operation of a signed integer
834 -- type, the implementation need not raise Constraint_Error if the
835 -- result is outside the base range of the type, so long as the
836 -- correct result is produced.
838 -- It's hard to imagine that any programmer counts on the exception
839 -- being raised in this case, and in any case it's wrong coding to
840 -- have this expectation, given the RM permission. Furthermore, other
841 -- Ada compilers do allow such out of range results.
843 -- Note that we do this transformation even if overflow checking is
844 -- off, since this is precisely about giving the "right" result and
845 -- avoiding the need for an overflow check.
847 -- Note: this circuit is partially redundant with respect to the similar
848 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
849 -- with cases that do not come through here. We still need the following
850 -- processing even with the Exp_Ch4 code in place, since we want to be
851 -- sure not to generate the arithmetic overflow check in these cases
852 -- (Exp_Ch4 would have a hard time removing them once generated).
854 if Is_Signed_Integer_Type (Typ)
855 and then Nkind (Parent (N)) = N_Type_Conversion
856 then
857 Conversion_Optimization : declare
858 Target_Type : constant Entity_Id :=
859 Base_Type (Entity (Subtype_Mark (Parent (N))));
861 Llo, Lhi : Uint;
862 Rlo, Rhi : Uint;
863 LOK, ROK : Boolean;
865 Vlo : Uint;
866 Vhi : Uint;
867 VOK : Boolean;
869 Tlo : Uint;
870 Thi : Uint;
872 begin
873 if Is_Integer_Type (Target_Type)
874 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
875 then
876 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
877 Thi := Expr_Value (Type_High_Bound (Target_Type));
879 Determine_Range
880 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
881 Determine_Range
882 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
884 if (LOK and ROK)
885 and then Tlo <= Llo and then Lhi <= Thi
886 and then Tlo <= Rlo and then Rhi <= Thi
887 then
888 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
890 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
891 -- Rewrite the conversion operand so that the original
892 -- node is retained, in order to avoid the warning for
893 -- redundant conversions in Resolve_Type_Conversion.
895 declare
896 Op : constant Node_Id := New_Op_Node (Nkind (N), Loc);
897 begin
898 Set_Left_Opnd (Op,
899 Make_Type_Conversion (Loc,
900 Subtype_Mark =>
901 New_Occurrence_Of (Target_Type, Loc),
902 Expression => Relocate_Node (Left_Opnd (N))));
903 Set_Right_Opnd (Op,
904 Make_Type_Conversion (Loc,
905 Subtype_Mark =>
906 New_Occurrence_Of (Target_Type, Loc),
907 Expression => Relocate_Node (Right_Opnd (N))));
909 Rewrite (N, Op);
910 end;
912 Set_Etype (N, Target_Type);
914 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
915 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
917 -- Given that the target type is twice the size of the
918 -- source type, overflow is now impossible, so we can
919 -- safely kill the overflow check and return.
921 Set_Do_Overflow_Check (N, False);
922 return;
923 end if;
924 end if;
925 end if;
926 end Conversion_Optimization;
927 end if;
929 -- Now see if an overflow check is required
931 declare
932 Dsiz : constant Uint := 2 * Esize (Rtyp);
933 Opnod : Node_Id;
934 Ctyp : Entity_Id;
935 Opnd : Node_Id;
936 Cent : RE_Id;
938 begin
939 -- Skip check if back end does overflow checks, or the overflow flag
940 -- is not set anyway, or we are not doing code expansion, or the
941 -- parent node is a type conversion whose operand is an arithmetic
942 -- operation on signed integers on which the expander can promote
943 -- later the operands to type Integer (see Expand_N_Type_Conversion).
945 if Backend_Overflow_Checks_On_Target
946 or else not Do_Overflow_Check (N)
947 or else not Expander_Active
948 or else (Present (Parent (N))
949 and then Nkind (Parent (N)) = N_Type_Conversion
950 and then Integer_Promotion_Possible (Parent (N)))
951 then
952 return;
953 end if;
955 -- Otherwise, generate the full general code for front end overflow
956 -- detection, which works by doing arithmetic in a larger type:
958 -- x op y
960 -- is expanded into
962 -- Typ (Checktyp (x) op Checktyp (y));
964 -- where Typ is the type of the original expression, and Checktyp is
965 -- an integer type of sufficient length to hold the largest possible
966 -- result.
968 -- If the size of the check type exceeds the maximum integer size,
969 -- we use a different approach, expanding to:
971 -- typ (xxx_With_Ovflo_Check (Integer_NN (x), Integer_NN (y)))
973 -- where xxx is Add, Multiply or Subtract as appropriate
975 -- Find check type if one exists
977 if Dsiz <= System_Max_Integer_Size then
978 Ctyp := Integer_Type_For (Dsiz, Uns => False);
980 -- No check type exists, use runtime call
982 else
983 if System_Max_Integer_Size = 64 then
984 Ctyp := RTE (RE_Integer_64);
985 else
986 Ctyp := RTE (RE_Integer_128);
987 end if;
989 if Nkind (N) = N_Op_Add then
990 if System_Max_Integer_Size = 64 then
991 Cent := RE_Add_With_Ovflo_Check64;
992 else
993 Cent := RE_Add_With_Ovflo_Check128;
994 end if;
996 elsif Nkind (N) = N_Op_Subtract then
997 if System_Max_Integer_Size = 64 then
998 Cent := RE_Subtract_With_Ovflo_Check64;
999 else
1000 Cent := RE_Subtract_With_Ovflo_Check128;
1001 end if;
1003 else pragma Assert (Nkind (N) = N_Op_Multiply);
1004 if System_Max_Integer_Size = 64 then
1005 Cent := RE_Multiply_With_Ovflo_Check64;
1006 else
1007 Cent := RE_Multiply_With_Ovflo_Check128;
1008 end if;
1009 end if;
1011 Rewrite (N,
1012 OK_Convert_To (Typ,
1013 Make_Function_Call (Loc,
1014 Name => New_Occurrence_Of (RTE (Cent), Loc),
1015 Parameter_Associations => New_List (
1016 OK_Convert_To (Ctyp, Left_Opnd (N)),
1017 OK_Convert_To (Ctyp, Right_Opnd (N))))));
1019 Analyze_And_Resolve (N, Typ);
1020 return;
1021 end if;
1023 -- If we fall through, we have the case where we do the arithmetic
1024 -- in the next higher type and get the check by conversion. In these
1025 -- cases Ctyp is set to the type to be used as the check type.
1027 Opnod := Relocate_Node (N);
1029 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1031 Analyze (Opnd);
1032 Set_Etype (Opnd, Ctyp);
1033 Set_Analyzed (Opnd, True);
1034 Set_Left_Opnd (Opnod, Opnd);
1036 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1038 Analyze (Opnd);
1039 Set_Etype (Opnd, Ctyp);
1040 Set_Analyzed (Opnd, True);
1041 Set_Right_Opnd (Opnod, Opnd);
1043 -- The type of the operation changes to the base type of the check
1044 -- type, and we reset the overflow check indication, since clearly no
1045 -- overflow is possible now that we are using a double length type.
1046 -- We also set the Analyzed flag to avoid a recursive attempt to
1047 -- expand the node.
1049 Set_Etype (Opnod, Base_Type (Ctyp));
1050 Set_Do_Overflow_Check (Opnod, False);
1051 Set_Analyzed (Opnod, True);
1053 -- Now build the outer conversion
1055 Opnd := OK_Convert_To (Typ, Opnod);
1056 Analyze (Opnd);
1057 Set_Etype (Opnd, Typ);
1059 -- In the discrete type case, we directly generate the range check
1060 -- for the outer operand. This range check will implement the
1061 -- required overflow check.
1063 if Is_Discrete_Type (Typ) then
1064 Rewrite (N, Opnd);
1065 Generate_Range_Check
1066 (Expression (N), Typ, CE_Overflow_Check_Failed);
1068 -- For other types, we enable overflow checking on the conversion,
1069 -- after setting the node as analyzed to prevent recursive attempts
1070 -- to expand the conversion node.
1072 else
1073 Set_Analyzed (Opnd, True);
1074 Enable_Overflow_Check (Opnd);
1075 Rewrite (N, Opnd);
1076 end if;
1078 exception
1079 when RE_Not_Available =>
1080 return;
1081 end;
1082 end Apply_Arithmetic_Overflow_Strict;
1084 ----------------------------------------------------
1085 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1086 ----------------------------------------------------
1088 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1089 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1091 Loc : constant Source_Ptr := Sloc (Op);
1092 P : constant Node_Id := Parent (Op);
1094 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1095 -- Operands and results are of this type when we convert
1097 Result_Type : constant Entity_Id := Etype (Op);
1098 -- Original result type
1100 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1101 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1103 Lo, Hi : Uint;
1104 -- Ranges of values for result
1106 begin
1107 -- Nothing to do if our parent is one of the following:
1109 -- Another signed integer arithmetic op
1110 -- A membership operation
1111 -- A comparison operation
1113 -- In all these cases, we will process at the higher level (and then
1114 -- this node will be processed during the downwards recursion that
1115 -- is part of the processing in Minimize_Eliminate_Overflows).
1117 if Is_Signed_Integer_Arithmetic_Op (P)
1118 or else Nkind (P) in N_Membership_Test
1119 or else Nkind (P) in N_Op_Compare
1121 -- This is also true for an alternative in a case expression
1123 or else Nkind (P) = N_Case_Expression_Alternative
1125 -- This is also true for a range operand in a membership test
1127 or else (Nkind (P) = N_Range
1128 and then Nkind (Parent (P)) in N_Membership_Test)
1129 then
1130 -- If_Expressions and Case_Expressions are treated as arithmetic
1131 -- ops, but if they appear in an assignment or similar contexts
1132 -- there is no overflow check that starts from that parent node,
1133 -- so apply check now.
1134 -- Similarly, if these expressions are nested, we should go on.
1136 if Nkind (P) in N_If_Expression | N_Case_Expression
1137 and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1138 then
1139 null;
1140 elsif Nkind (P) in N_If_Expression | N_Case_Expression
1141 and then Nkind (Op) in N_If_Expression | N_Case_Expression
1142 then
1143 null;
1144 else
1145 return;
1146 end if;
1147 end if;
1149 -- Otherwise, we have a top level arithmetic operation node, and this
1150 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1151 -- modes. This is the case where we tell the machinery not to move into
1152 -- Bignum mode at this top level (of course the top level operation
1153 -- will still be in Bignum mode if either of its operands are of type
1154 -- Bignum).
1156 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1158 -- That call may but does not necessarily change the result type of Op.
1159 -- It is the job of this routine to undo such changes, so that at the
1160 -- top level, we have the proper type. This "undoing" is a point at
1161 -- which a final overflow check may be applied.
1163 -- If the result type was not fiddled we are all set. We go to base
1164 -- types here because things may have been rewritten to generate the
1165 -- base type of the operand types.
1167 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1168 return;
1170 -- Bignum case
1172 elsif Is_RTE (Etype (Op), RE_Bignum) then
1174 -- We need a sequence that looks like:
1176 -- Rnn : Result_Type;
1178 -- declare
1179 -- M : Mark_Id := SS_Mark;
1180 -- begin
1181 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1182 -- SS_Release (M);
1183 -- end;
1185 -- This block is inserted (using Insert_Actions), and then the node
1186 -- is replaced with a reference to Rnn.
1188 -- If our parent is a conversion node then there is no point in
1189 -- generating a conversion to Result_Type. Instead, we let the parent
1190 -- handle this. Note that this special case is not just about
1191 -- optimization. Consider
1193 -- A,B,C : Integer;
1194 -- ...
1195 -- X := Long_Long_Integer'Base (A * (B ** C));
1197 -- Now the product may fit in Long_Long_Integer but not in Integer.
1198 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1199 -- overflow exception for this intermediate value.
1201 declare
1202 Blk : constant Node_Id := Make_Bignum_Block (Loc);
1203 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1204 RHS : Node_Id;
1206 Rtype : Entity_Id;
1208 begin
1209 RHS := Convert_From_Bignum (Op);
1211 if Nkind (P) /= N_Type_Conversion then
1212 Convert_To_And_Rewrite (Result_Type, RHS);
1213 Rtype := Result_Type;
1215 -- Interesting question, do we need a check on that conversion
1216 -- operation. Answer, not if we know the result is in range.
1217 -- At the moment we are not taking advantage of this. To be
1218 -- looked at later ???
1220 else
1221 Rtype := LLIB;
1222 end if;
1224 Insert_Before
1225 (First (Statements (Handled_Statement_Sequence (Blk))),
1226 Make_Assignment_Statement (Loc,
1227 Name => New_Occurrence_Of (Rnn, Loc),
1228 Expression => RHS));
1230 Insert_Actions (Op, New_List (
1231 Make_Object_Declaration (Loc,
1232 Defining_Identifier => Rnn,
1233 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1234 Blk));
1236 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1237 Analyze_And_Resolve (Op);
1238 end;
1240 -- Here we know the result is Long_Long_Integer'Base, or that it has
1241 -- been rewritten because the parent operation is a conversion. See
1242 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1244 else
1245 pragma Assert
1246 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1248 -- All we need to do here is to convert the result to the proper
1249 -- result type. As explained above for the Bignum case, we can
1250 -- omit this if our parent is a type conversion.
1252 if Nkind (P) /= N_Type_Conversion then
1253 Convert_To_And_Rewrite (Result_Type, Op);
1254 end if;
1256 Analyze_And_Resolve (Op);
1257 end if;
1258 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1260 ----------------------------
1261 -- Apply_Constraint_Check --
1262 ----------------------------
1264 procedure Apply_Constraint_Check
1265 (N : Node_Id;
1266 Typ : Entity_Id;
1267 No_Sliding : Boolean := False)
1269 Desig_Typ : Entity_Id;
1271 begin
1272 -- No checks inside a generic (check the instantiations)
1274 if Inside_A_Generic then
1275 return;
1276 end if;
1278 -- Apply required constraint checks
1280 if Is_Scalar_Type (Typ) then
1281 Apply_Scalar_Range_Check (N, Typ);
1283 elsif Is_Array_Type (Typ) then
1285 -- A useful optimization: an aggregate with only an others clause
1286 -- always has the right bounds.
1288 if Nkind (N) = N_Aggregate
1289 and then No (Expressions (N))
1290 and then Nkind (First (Component_Associations (N))) =
1291 N_Component_Association
1292 and then Nkind
1293 (First (Choices (First (Component_Associations (N)))))
1294 = N_Others_Choice
1295 then
1296 return;
1297 end if;
1299 if Is_Constrained (Typ) then
1300 Apply_Length_Check (N, Typ);
1302 if No_Sliding then
1303 Apply_Range_Check (N, Typ);
1304 end if;
1305 else
1306 Apply_Range_Check (N, Typ);
1307 end if;
1309 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1310 and then Has_Discriminants (Base_Type (Typ))
1311 and then Is_Constrained (Typ)
1312 then
1313 Apply_Discriminant_Check (N, Typ);
1315 elsif Is_Access_Type (Typ) then
1317 Desig_Typ := Designated_Type (Typ);
1319 -- No checks necessary if expression statically null
1321 if Known_Null (N) then
1322 if Can_Never_Be_Null (Typ) then
1323 Install_Null_Excluding_Check (N);
1324 end if;
1326 -- No sliding possible on access to arrays
1328 elsif Is_Array_Type (Desig_Typ) then
1329 if Is_Constrained (Desig_Typ) then
1330 Apply_Length_Check (N, Typ);
1331 end if;
1333 Apply_Range_Check (N, Typ);
1335 -- Do not install a discriminant check for a constrained subtype
1336 -- created for an unconstrained nominal type because the subtype
1337 -- has the correct constraints by construction.
1339 elsif Has_Discriminants (Base_Type (Desig_Typ))
1340 and then Is_Constrained (Desig_Typ)
1341 and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
1342 then
1343 Apply_Discriminant_Check (N, Typ);
1344 end if;
1346 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1347 -- this check if the constraint node is illegal, as shown by having
1348 -- an error posted. This additional guard prevents cascaded errors
1349 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1351 if Can_Never_Be_Null (Typ)
1352 and then not Can_Never_Be_Null (Etype (N))
1353 and then not Error_Posted (N)
1354 then
1355 Install_Null_Excluding_Check (N);
1356 end if;
1357 end if;
1358 end Apply_Constraint_Check;
1360 ------------------------------
1361 -- Apply_Discriminant_Check --
1362 ------------------------------
1364 procedure Apply_Discriminant_Check
1365 (N : Node_Id;
1366 Typ : Entity_Id;
1367 Lhs : Node_Id := Empty)
1369 Loc : constant Source_Ptr := Sloc (N);
1370 Do_Access : constant Boolean := Is_Access_Type (Typ);
1371 S_Typ : Entity_Id := Etype (N);
1372 Cond : Node_Id;
1373 T_Typ : Entity_Id;
1375 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1376 -- A heap object with an indefinite subtype is constrained by its
1377 -- initial value, and assigning to it requires a constraint_check.
1378 -- The target may be an explicit dereference, or a renaming of one.
1380 function Is_Aliased_Unconstrained_Component return Boolean;
1381 -- It is possible for an aliased component to have a nominal
1382 -- unconstrained subtype (through instantiation). If this is a
1383 -- discriminated component assigned in the expansion of an aggregate
1384 -- in an initialization, the check must be suppressed. This unusual
1385 -- situation requires a predicate of its own.
1387 ----------------------------------
1388 -- Denotes_Explicit_Dereference --
1389 ----------------------------------
1391 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1392 begin
1393 if Is_Entity_Name (Obj) then
1394 return Present (Renamed_Object (Entity (Obj)))
1395 and then
1396 Denotes_Explicit_Dereference (Renamed_Object (Entity (Obj)));
1398 -- This routine uses the rules of the language so we need to exclude
1399 -- rewritten constructs that introduce artificial dereferences.
1401 elsif Nkind (Obj) = N_Explicit_Dereference then
1402 return not Is_Captured_Function_Call (Obj)
1403 and then not
1404 (Nkind (Parent (Obj)) = N_Object_Renaming_Declaration
1405 and then Is_Return_Object (Defining_Entity (Parent (Obj))));
1407 else
1408 return False;
1409 end if;
1410 end Denotes_Explicit_Dereference;
1412 ----------------------------------------
1413 -- Is_Aliased_Unconstrained_Component --
1414 ----------------------------------------
1416 function Is_Aliased_Unconstrained_Component return Boolean is
1417 Comp : Entity_Id;
1418 Pref : Node_Id;
1420 begin
1421 if Nkind (Lhs) /= N_Selected_Component then
1422 return False;
1423 else
1424 Comp := Entity (Selector_Name (Lhs));
1425 Pref := Prefix (Lhs);
1426 end if;
1428 if Ekind (Comp) /= E_Component
1429 or else not Is_Aliased (Comp)
1430 then
1431 return False;
1432 end if;
1434 return not Comes_From_Source (Pref)
1435 and then In_Instance
1436 and then not Is_Constrained (Etype (Comp));
1437 end Is_Aliased_Unconstrained_Component;
1439 -- Start of processing for Apply_Discriminant_Check
1441 begin
1442 if Do_Access then
1443 T_Typ := Designated_Type (Typ);
1444 else
1445 T_Typ := Typ;
1446 end if;
1448 -- If the expression is a function call that returns a limited object
1449 -- it cannot be copied. It is not clear how to perform the proper
1450 -- discriminant check in this case because the discriminant value must
1451 -- be retrieved from the constructed object itself.
1453 if Nkind (N) = N_Function_Call
1454 and then Is_Limited_Type (Typ)
1455 and then Is_Entity_Name (Name (N))
1456 and then Returns_By_Ref (Entity (Name (N)))
1457 then
1458 return;
1459 end if;
1461 -- Only apply checks when generating code and discriminant checks are
1462 -- not suppressed. In GNATprove mode, we do not apply the checks, but we
1463 -- still analyze the expression to possibly issue errors on SPARK code
1464 -- when a run-time error can be detected at compile time.
1466 if not GNATprove_Mode then
1467 if not Expander_Active
1468 or else Discriminant_Checks_Suppressed (T_Typ)
1469 then
1470 return;
1471 end if;
1472 end if;
1474 -- No discriminant checks necessary for an access when expression is
1475 -- statically Null. This is not only an optimization, it is fundamental
1476 -- because otherwise discriminant checks may be generated in init procs
1477 -- for types containing an access to a not-yet-frozen record, causing a
1478 -- deadly forward reference.
1480 -- Also, if the expression is of an access type whose designated type is
1481 -- incomplete, then the access value must be null and we suppress the
1482 -- check.
1484 if Known_Null (N) then
1485 return;
1487 elsif Is_Access_Type (S_Typ) then
1488 S_Typ := Designated_Type (S_Typ);
1490 if Ekind (S_Typ) = E_Incomplete_Type then
1491 return;
1492 end if;
1493 end if;
1495 -- If an assignment target is present, then we need to generate the
1496 -- actual subtype if the target is a parameter or aliased object with
1497 -- an unconstrained nominal subtype.
1499 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1500 -- subtype to the parameter and dereference cases, since other aliased
1501 -- objects are unconstrained (unless the nominal subtype is explicitly
1502 -- constrained).
1504 if Present (Lhs)
1505 and then (Present (Param_Entity (Lhs))
1506 or else (Ada_Version < Ada_2005
1507 and then not Is_Constrained (T_Typ)
1508 and then Is_Aliased_View (Lhs)
1509 and then not Is_Aliased_Unconstrained_Component)
1510 or else (Ada_Version >= Ada_2005
1511 and then not Is_Constrained (T_Typ)
1512 and then Denotes_Explicit_Dereference (Lhs)))
1513 then
1514 T_Typ := Get_Actual_Subtype (Lhs);
1515 end if;
1517 -- Nothing to do if the type is unconstrained (this is the case where
1518 -- the actual subtype in the RM sense of N is unconstrained and no check
1519 -- is required).
1521 if not Is_Constrained (T_Typ) then
1522 return;
1524 -- Ada 2005: nothing to do if the type is one for which there is a
1525 -- partial view that is constrained.
1527 elsif Ada_Version >= Ada_2005
1528 and then Object_Type_Has_Constrained_Partial_View
1529 (Typ => Base_Type (T_Typ),
1530 Scop => Current_Scope)
1531 then
1532 return;
1533 end if;
1535 -- Nothing to do if the type is an Unchecked_Union
1537 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1538 return;
1539 end if;
1541 -- Suppress checks if the subtypes are the same. The check must be
1542 -- preserved in an assignment to a formal, because the constraint is
1543 -- given by the actual.
1545 if Nkind (Original_Node (N)) /= N_Allocator
1546 and then (No (Lhs)
1547 or else not Is_Entity_Name (Lhs)
1548 or else No (Param_Entity (Lhs)))
1549 then
1550 if (Etype (N) = Typ
1551 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1552 and then not Is_Aliased_View (Lhs)
1553 then
1554 return;
1555 end if;
1557 -- We can also eliminate checks on allocators with a subtype mark that
1558 -- coincides with the context type. The context type may be a subtype
1559 -- without a constraint (common case, a generic actual).
1561 elsif Nkind (Original_Node (N)) = N_Allocator
1562 and then Is_Entity_Name (Expression (Original_Node (N)))
1563 then
1564 declare
1565 Alloc_Typ : constant Entity_Id :=
1566 Entity (Expression (Original_Node (N)));
1568 begin
1569 if Alloc_Typ = T_Typ
1570 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1571 and then Is_Entity_Name (
1572 Subtype_Indication (Parent (T_Typ)))
1573 and then Alloc_Typ = Base_Type (T_Typ))
1575 then
1576 return;
1577 end if;
1578 end;
1579 end if;
1581 -- See if we have a case where the types are both constrained, and all
1582 -- the constraints are constants. In this case, we can do the check
1583 -- successfully at compile time.
1585 -- We skip this check for the case where the node is rewritten as
1586 -- an allocator, because it already carries the context subtype,
1587 -- and extracting the discriminants from the aggregate is messy.
1589 if Is_Constrained (S_Typ)
1590 and then Nkind (Original_Node (N)) /= N_Allocator
1591 then
1592 declare
1593 DconT : Elmt_Id;
1594 Discr : Entity_Id;
1595 DconS : Elmt_Id;
1596 ItemS : Node_Id;
1597 ItemT : Node_Id;
1599 begin
1600 -- S_Typ may not have discriminants in the case where it is a
1601 -- private type completed by a default discriminated type. In that
1602 -- case, we need to get the constraints from the underlying type.
1603 -- If the underlying type is unconstrained (i.e. has no default
1604 -- discriminants) no check is needed.
1606 if Has_Discriminants (S_Typ) then
1607 Discr := First_Discriminant (S_Typ);
1608 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1610 else
1611 Discr := First_Discriminant (Underlying_Type (S_Typ));
1612 DconS :=
1613 First_Elmt
1614 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1616 if No (DconS) then
1617 return;
1618 end if;
1620 -- A further optimization: if T_Typ is derived from S_Typ
1621 -- without imposing a constraint, no check is needed.
1623 if Nkind (Original_Node (Parent (T_Typ))) =
1624 N_Full_Type_Declaration
1625 then
1626 declare
1627 Type_Def : constant Node_Id :=
1628 Type_Definition (Original_Node (Parent (T_Typ)));
1629 begin
1630 if Nkind (Type_Def) = N_Derived_Type_Definition
1631 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1632 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1633 then
1634 return;
1635 end if;
1636 end;
1637 end if;
1638 end if;
1640 -- Constraint may appear in full view of type
1642 if Ekind (T_Typ) = E_Private_Subtype
1643 and then Present (Full_View (T_Typ))
1644 then
1645 DconT :=
1646 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1647 else
1648 DconT :=
1649 First_Elmt (Discriminant_Constraint (T_Typ));
1650 end if;
1652 while Present (Discr) loop
1653 ItemS := Node (DconS);
1654 ItemT := Node (DconT);
1656 -- For a discriminated component type constrained by the
1657 -- current instance of an enclosing type, there is no
1658 -- applicable discriminant check.
1660 if Nkind (ItemT) = N_Attribute_Reference
1661 and then Is_Access_Type (Etype (ItemT))
1662 and then Is_Entity_Name (Prefix (ItemT))
1663 and then Is_Type (Entity (Prefix (ItemT)))
1664 then
1665 return;
1666 end if;
1668 -- If the expressions for the discriminants are identical
1669 -- and it is side-effect-free (for now just an entity),
1670 -- this may be a shared constraint, e.g. from a subtype
1671 -- without a constraint introduced as a generic actual.
1672 -- Examine other discriminants if any.
1674 if ItemS = ItemT
1675 and then Is_Entity_Name (ItemS)
1676 then
1677 null;
1679 elsif not Is_OK_Static_Expression (ItemS)
1680 or else not Is_OK_Static_Expression (ItemT)
1681 then
1682 exit;
1684 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1685 if Do_Access then -- needs run-time check.
1686 exit;
1687 else
1688 Apply_Compile_Time_Constraint_Error
1689 (N, "incorrect value for discriminant&??",
1690 CE_Discriminant_Check_Failed, Ent => Discr);
1691 return;
1692 end if;
1693 end if;
1695 Next_Elmt (DconS);
1696 Next_Elmt (DconT);
1697 Next_Discriminant (Discr);
1698 end loop;
1700 if No (Discr) then
1701 return;
1702 end if;
1703 end;
1704 end if;
1706 -- In GNATprove mode, we do not apply the checks
1708 if GNATprove_Mode then
1709 return;
1710 end if;
1712 -- Here we need a discriminant check. First build the expression
1713 -- for the comparisons of the discriminants:
1715 -- (n.disc1 /= typ.disc1) or else
1716 -- (n.disc2 /= typ.disc2) or else
1717 -- ...
1718 -- (n.discn /= typ.discn)
1720 Cond := Build_Discriminant_Checks (N, T_Typ);
1722 -- If Lhs is set and is a parameter, then the condition is guarded by:
1723 -- lhs'constrained and then (condition built above)
1725 if Present (Param_Entity (Lhs)) then
1726 Cond :=
1727 Make_And_Then (Loc,
1728 Left_Opnd =>
1729 Make_Attribute_Reference (Loc,
1730 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1731 Attribute_Name => Name_Constrained),
1732 Right_Opnd => Cond);
1733 end if;
1735 if Do_Access then
1736 Cond := Guard_Access (Cond, Loc, N);
1737 end if;
1739 Insert_Action (N,
1740 Make_Raise_Constraint_Error (Loc,
1741 Condition => Cond,
1742 Reason => CE_Discriminant_Check_Failed));
1743 end Apply_Discriminant_Check;
1745 -------------------------
1746 -- Apply_Divide_Checks --
1747 -------------------------
1749 procedure Apply_Divide_Checks (N : Node_Id) is
1750 Loc : constant Source_Ptr := Sloc (N);
1751 Typ : constant Entity_Id := Etype (N);
1752 Left : constant Node_Id := Left_Opnd (N);
1753 Right : constant Node_Id := Right_Opnd (N);
1755 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1756 -- Current overflow checking mode
1758 LLB : Uint;
1759 Llo : Uint;
1760 Lhi : Uint;
1761 LOK : Boolean;
1762 Rlo : Uint;
1763 Rhi : Uint;
1764 ROK : Boolean;
1766 pragma Warnings (Off, Lhi);
1767 -- Don't actually use this value
1769 begin
1770 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1771 -- operating on signed integer types, then the only thing this routine
1772 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1773 -- procedure will (possibly later on during recursive downward calls),
1774 -- ensure that any needed overflow/division checks are properly applied.
1776 if Mode in Minimized_Or_Eliminated
1777 and then Is_Signed_Integer_Type (Typ)
1778 then
1779 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1780 return;
1781 end if;
1783 -- Proceed here in SUPPRESSED or CHECKED modes
1785 if Expander_Active
1786 and then not Backend_Divide_Checks_On_Target
1787 and then Check_Needed (Right, Division_Check)
1788 then
1789 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1791 -- Deal with division check
1793 if Do_Division_Check (N)
1794 and then not Division_Checks_Suppressed (Typ)
1795 then
1796 Apply_Division_Check (N, Rlo, Rhi, ROK);
1797 end if;
1799 -- Deal with overflow check
1801 if Do_Overflow_Check (N)
1802 and then not Overflow_Checks_Suppressed (Etype (N))
1803 then
1804 Set_Do_Overflow_Check (N, False);
1806 -- Test for extremely annoying case of xxx'First divided by -1
1807 -- for division of signed integer types (only overflow case).
1809 if Nkind (N) = N_Op_Divide
1810 and then Is_Signed_Integer_Type (Typ)
1811 then
1812 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1813 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1815 if (not ROK or else (Rlo <= (-1) and then (-1) <= Rhi))
1816 and then
1817 (not LOK or else Llo = LLB)
1818 then
1819 -- Ensure that expressions are not evaluated twice (once
1820 -- for their runtime checks and once for their regular
1821 -- computation).
1823 Force_Evaluation (Left, Mode => Strict);
1824 Force_Evaluation (Right, Mode => Strict);
1826 Insert_Action (N,
1827 Make_Raise_Constraint_Error (Loc,
1828 Condition =>
1829 Make_And_Then (Loc,
1830 Left_Opnd =>
1831 Make_Op_Eq (Loc,
1832 Left_Opnd =>
1833 Duplicate_Subexpr_Move_Checks (Left),
1834 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1836 Right_Opnd =>
1837 Make_Op_Eq (Loc,
1838 Left_Opnd => Duplicate_Subexpr (Right),
1839 Right_Opnd => Make_Integer_Literal (Loc, -1))),
1841 Reason => CE_Overflow_Check_Failed));
1842 end if;
1843 end if;
1844 end if;
1845 end if;
1846 end Apply_Divide_Checks;
1848 --------------------------
1849 -- Apply_Division_Check --
1850 --------------------------
1852 procedure Apply_Division_Check
1853 (N : Node_Id;
1854 Rlo : Uint;
1855 Rhi : Uint;
1856 ROK : Boolean)
1858 pragma Assert (Do_Division_Check (N));
1860 Loc : constant Source_Ptr := Sloc (N);
1861 Right : constant Node_Id := Right_Opnd (N);
1862 Opnd : Node_Id;
1864 begin
1865 if Expander_Active
1866 and then not Backend_Divide_Checks_On_Target
1867 and then Check_Needed (Right, Division_Check)
1869 -- See if division by zero possible, and if so generate test. This
1870 -- part of the test is not controlled by the -gnato switch, since it
1871 -- is a Division_Check and not an Overflow_Check.
1873 and then Do_Division_Check (N)
1874 then
1875 Set_Do_Division_Check (N, False);
1877 if not ROK or else (Rlo <= 0 and then 0 <= Rhi) then
1878 if Is_Floating_Point_Type (Etype (N)) then
1879 Opnd := Make_Real_Literal (Loc, Ureal_0);
1880 else
1881 Opnd := Make_Integer_Literal (Loc, 0);
1882 end if;
1884 Insert_Action (N,
1885 Make_Raise_Constraint_Error (Loc,
1886 Condition =>
1887 Make_Op_Eq (Loc,
1888 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1889 Right_Opnd => Opnd),
1890 Reason => CE_Divide_By_Zero));
1891 end if;
1892 end if;
1893 end Apply_Division_Check;
1895 ----------------------------------
1896 -- Apply_Float_Conversion_Check --
1897 ----------------------------------
1899 -- Let F and I be the source and target types of the conversion. The RM
1900 -- specifies that a floating-point value X is rounded to the nearest
1901 -- integer, with halfway cases being rounded away from zero. The rounded
1902 -- value of X is checked against I'Range.
1904 -- The catch in the above paragraph is that there is no good way to know
1905 -- whether the round-to-integer operation resulted in overflow. A remedy is
1906 -- to perform a range check in the floating-point domain instead, however:
1908 -- (1) The bounds may not be known at compile time
1909 -- (2) The check must take into account rounding or truncation.
1910 -- (3) The range of type I may not be exactly representable in F.
1911 -- (4) For the rounding case, the end-points I'First - 0.5 and
1912 -- I'Last + 0.5 may or may not be in range, depending on the
1913 -- sign of I'First and I'Last.
1914 -- (5) X may be a NaN, which will fail any comparison
1916 -- The following steps correctly convert X with rounding:
1918 -- (1) If either I'First or I'Last is not known at compile time, use
1919 -- I'Base instead of I in the next three steps and perform a
1920 -- regular range check against I'Range after conversion.
1921 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1922 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1923 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1924 -- In other words, take one of the closest floating-point numbers
1925 -- (which is an integer value) to I'First, and see if it is in
1926 -- range or not.
1927 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1928 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1929 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1930 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1931 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1933 -- For the truncating case, replace steps (2) and (3) as follows:
1934 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1935 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1936 -- Lo_OK be True.
1937 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1938 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1939 -- Hi_OK be True.
1941 procedure Apply_Float_Conversion_Check
1942 (Expr : Node_Id;
1943 Target_Typ : Entity_Id)
1945 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1946 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1947 Loc : constant Source_Ptr := Sloc (Expr);
1948 Expr_Type : constant Entity_Id := Base_Type (Etype (Expr));
1949 Target_Base : constant Entity_Id :=
1950 Implementation_Base_Type (Target_Typ);
1952 Par : constant Node_Id := Parent (Expr);
1953 pragma Assert (Nkind (Par) = N_Type_Conversion);
1954 -- Parent of check node, must be a type conversion
1956 Truncate : constant Boolean := Float_Truncate (Par);
1957 Max_Bound : constant Uint :=
1958 UI_Expon
1959 (Machine_Radix_Value (Expr_Type),
1960 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1962 -- Largest bound, so bound plus or minus half is a machine number of F
1964 Ifirst, Ilast : Uint;
1965 -- Bounds of integer type
1967 Lo, Hi : Ureal;
1968 -- Bounds to check in floating-point domain
1970 Lo_OK, Hi_OK : Boolean;
1971 -- True iff Lo resp. Hi belongs to I'Range
1973 Lo_Chk, Hi_Chk : Node_Id;
1974 -- Expressions that are False iff check fails
1976 Reason : RT_Exception_Code;
1978 begin
1979 -- We do not need checks if we are not generating code (i.e. the full
1980 -- expander is not active). In SPARK mode, we specifically don't want
1981 -- the frontend to expand these checks, which are dealt with directly
1982 -- in the formal verification backend.
1984 if not Expander_Active then
1985 return;
1986 end if;
1988 -- Here we will generate an explicit range check, so we don't want to
1989 -- set the Do_Range check flag, since the range check is taken care of
1990 -- by the code we will generate.
1992 Set_Do_Range_Check (Expr, False);
1994 if not Compile_Time_Known_Value (LB)
1995 or not Compile_Time_Known_Value (HB)
1996 then
1997 declare
1998 -- First check that the value falls in the range of the base type,
1999 -- to prevent overflow during conversion and then perform a
2000 -- regular range check against the (dynamic) bounds.
2002 pragma Assert (Target_Base /= Target_Typ);
2004 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
2006 begin
2007 Apply_Float_Conversion_Check (Expr, Target_Base);
2008 Set_Etype (Temp, Target_Base);
2010 -- Note: Previously the declaration was inserted above the parent
2011 -- of the conversion, apparently as a small optimization for the
2012 -- subequent traversal in Insert_Actions. Unfortunately a similar
2013 -- optimization takes place in Insert_Actions, assuming that the
2014 -- insertion point must be above the expression that creates
2015 -- actions. This is not correct in the presence of conditional
2016 -- expressions, where the insertion must be in the list of actions
2017 -- attached to the current alternative.
2019 Insert_Action (Par,
2020 Make_Object_Declaration (Loc,
2021 Defining_Identifier => Temp,
2022 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2023 Expression => New_Copy_Tree (Par)),
2024 Suppress => All_Checks);
2026 Insert_Action (Par,
2027 Make_Raise_Constraint_Error (Loc,
2028 Condition =>
2029 Make_Not_In (Loc,
2030 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2031 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2032 Reason => CE_Range_Check_Failed));
2033 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2035 return;
2036 end;
2037 end if;
2039 -- Get the (static) bounds of the target type
2041 Ifirst := Expr_Value (LB);
2042 Ilast := Expr_Value (HB);
2044 -- A simple optimization: if the expression is a universal literal,
2045 -- we can do the comparison with the bounds and the conversion to
2046 -- an integer type statically. The range checks are unchanged.
2048 if Nkind (Expr) = N_Real_Literal
2049 and then Etype (Expr) = Universal_Real
2050 and then Is_Integer_Type (Target_Typ)
2051 then
2052 declare
2053 Int_Val : constant Uint := UR_To_Uint (Realval (Expr));
2055 begin
2056 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2058 -- Conversion is safe
2060 Rewrite (Parent (Expr),
2061 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2062 Analyze_And_Resolve (Parent (Expr), Target_Typ);
2063 return;
2064 end if;
2065 end;
2066 end if;
2068 -- Check against lower bound
2070 if Truncate and then Ifirst > 0 then
2071 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2072 Lo_OK := False;
2074 elsif Truncate then
2075 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2076 Lo_OK := True;
2078 elsif abs (Ifirst) < Max_Bound then
2079 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2080 Lo_OK := (Ifirst > 0);
2082 else
2083 Lo := Machine_Number (Expr_Type, UR_From_Uint (Ifirst), Expr);
2084 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2085 end if;
2087 -- Saturate the lower bound to that of the expression's type, because
2088 -- we do not want to create an out-of-range value but we still need to
2089 -- do a comparison to catch NaNs.
2091 if Lo < Expr_Value_R (Type_Low_Bound (Expr_Type)) then
2092 Lo := Expr_Value_R (Type_Low_Bound (Expr_Type));
2093 Lo_OK := True;
2094 end if;
2096 if Lo_OK then
2098 -- Lo_Chk := (X >= Lo)
2100 Lo_Chk := Make_Op_Ge (Loc,
2101 Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
2102 Right_Opnd => Make_Real_Literal (Loc, Lo));
2104 else
2105 -- Lo_Chk := (X > Lo)
2107 Lo_Chk := Make_Op_Gt (Loc,
2108 Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
2109 Right_Opnd => Make_Real_Literal (Loc, Lo));
2110 end if;
2112 -- Check against higher bound
2114 if Truncate and then Ilast < 0 then
2115 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2116 Hi_OK := False;
2118 elsif Truncate then
2119 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2120 Hi_OK := True;
2122 elsif abs (Ilast) < Max_Bound then
2123 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2124 Hi_OK := (Ilast < 0);
2125 else
2126 Hi := Machine_Number (Expr_Type, UR_From_Uint (Ilast), Expr);
2127 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2128 end if;
2130 -- Saturate the higher bound to that of the expression's type, because
2131 -- we do not want to create an out-of-range value but we still need to
2132 -- do a comparison to catch NaNs.
2134 if Hi > Expr_Value_R (Type_High_Bound (Expr_Type)) then
2135 Hi := Expr_Value_R (Type_High_Bound (Expr_Type));
2136 Hi_OK := True;
2137 end if;
2139 if Hi_OK then
2141 -- Hi_Chk := (X <= Hi)
2143 Hi_Chk := Make_Op_Le (Loc,
2144 Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
2145 Right_Opnd => Make_Real_Literal (Loc, Hi));
2147 else
2148 -- Hi_Chk := (X < Hi)
2150 Hi_Chk := Make_Op_Lt (Loc,
2151 Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
2152 Right_Opnd => Make_Real_Literal (Loc, Hi));
2153 end if;
2155 -- If the bounds of the target type are the same as those of the base
2156 -- type, the check is an overflow check as a range check is not
2157 -- performed in these cases.
2159 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2160 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2161 then
2162 Reason := CE_Overflow_Check_Failed;
2163 else
2164 Reason := CE_Range_Check_Failed;
2165 end if;
2167 -- Raise CE if either conditions does not hold
2169 Insert_Action (Expr,
2170 Make_Raise_Constraint_Error (Loc,
2171 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2172 Reason => Reason));
2173 end Apply_Float_Conversion_Check;
2175 ------------------------
2176 -- Apply_Length_Check --
2177 ------------------------
2179 procedure Apply_Length_Check
2180 (Expr : Node_Id;
2181 Target_Typ : Entity_Id;
2182 Source_Typ : Entity_Id := Empty)
2184 begin
2185 Apply_Selected_Length_Checks
2186 (Expr, Target_Typ, Source_Typ, Do_Static => False);
2187 end Apply_Length_Check;
2189 --------------------------------------
2190 -- Apply_Length_Check_On_Assignment --
2191 --------------------------------------
2193 procedure Apply_Length_Check_On_Assignment
2194 (Expr : Node_Id;
2195 Target_Typ : Entity_Id;
2196 Target : Node_Id;
2197 Source_Typ : Entity_Id := Empty)
2199 Assign : constant Node_Id := Parent (Target);
2201 begin
2202 -- Do not apply length checks if parent is still an assignment statement
2203 -- with Suppress_Assignment_Checks flag set.
2205 if Nkind (Assign) = N_Assignment_Statement
2206 and then Suppress_Assignment_Checks (Assign)
2207 then
2208 return;
2209 end if;
2211 -- No check is needed for the initialization of an object whose
2212 -- nominal subtype is unconstrained.
2214 if Is_Constr_Subt_For_U_Nominal (Target_Typ)
2215 and then Nkind (Parent (Assign)) = N_Freeze_Entity
2216 and then Is_Entity_Name (Target)
2217 and then Entity (Target) = Entity (Parent (Assign))
2218 then
2219 return;
2220 end if;
2222 Apply_Selected_Length_Checks
2223 (Expr, Target_Typ, Source_Typ, Do_Static => False);
2224 end Apply_Length_Check_On_Assignment;
2226 -------------------------------------
2227 -- Apply_Parameter_Aliasing_Checks --
2228 -------------------------------------
2230 procedure Apply_Parameter_Aliasing_Checks
2231 (Call : Node_Id;
2232 Subp : Entity_Id)
2234 Loc : constant Source_Ptr := Sloc (Call);
2236 function Parameter_Passing_Mechanism_Specified
2237 (Typ : Entity_Id)
2238 return Boolean;
2239 -- Returns True if parameter-passing mechanism is specified for type Typ
2241 function May_Cause_Aliasing
2242 (Formal_1 : Entity_Id;
2243 Formal_2 : Entity_Id) return Boolean;
2244 -- Determine whether two formal parameters can alias each other
2245 -- depending on their modes.
2247 function Original_Actual (N : Node_Id) return Node_Id;
2248 -- The expander may replace an actual with a temporary for the sake of
2249 -- side effect removal. The temporary may hide a potential aliasing as
2250 -- it does not share the address of the actual. This routine attempts
2251 -- to retrieve the original actual.
2253 procedure Overlap_Check
2254 (Actual_1 : Node_Id;
2255 Actual_2 : Node_Id;
2256 Formal_1 : Entity_Id;
2257 Formal_2 : Entity_Id;
2258 Check : in out Node_Id);
2259 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2260 -- If detailed exception messages are enabled, the check is augmented to
2261 -- provide information about the names of the corresponding formals. See
2262 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2263 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2264 -- Check contains all and-ed simple tests generated so far or remains
2265 -- unchanged in the case of detailed exception messaged.
2267 -------------------------------------------
2268 -- Parameter_Passing_Mechanism_Specified --
2269 -------------------------------------------
2271 function Parameter_Passing_Mechanism_Specified
2272 (Typ : Entity_Id)
2273 return Boolean
2275 begin
2276 return Is_Elementary_Type (Typ)
2277 or else Is_By_Reference_Type (Typ);
2278 end Parameter_Passing_Mechanism_Specified;
2280 ------------------------
2281 -- May_Cause_Aliasing --
2282 ------------------------
2284 function May_Cause_Aliasing
2285 (Formal_1 : Entity_Id;
2286 Formal_2 : Entity_Id) return Boolean
2288 begin
2289 -- The following combination cannot lead to aliasing
2291 -- Formal 1 Formal 2
2292 -- IN IN
2294 if Ekind (Formal_1) = E_In_Parameter
2295 and then
2296 Ekind (Formal_2) = E_In_Parameter
2297 then
2298 return False;
2300 -- The following combinations may lead to aliasing
2302 -- Formal 1 Formal 2
2303 -- IN OUT
2304 -- IN IN OUT
2305 -- OUT IN
2306 -- OUT IN OUT
2307 -- OUT OUT
2309 else
2310 return True;
2311 end if;
2312 end May_Cause_Aliasing;
2314 ---------------------
2315 -- Original_Actual --
2316 ---------------------
2318 function Original_Actual (N : Node_Id) return Node_Id is
2319 begin
2320 if Nkind (N) = N_Type_Conversion then
2321 return Expression (N);
2323 -- The expander created a temporary to capture the result of a type
2324 -- conversion where the expression is the real actual.
2326 elsif Nkind (N) = N_Identifier
2327 and then Present (Original_Node (N))
2328 and then Nkind (Original_Node (N)) = N_Type_Conversion
2329 then
2330 return Expression (Original_Node (N));
2331 end if;
2333 return N;
2334 end Original_Actual;
2336 -------------------
2337 -- Overlap_Check --
2338 -------------------
2340 procedure Overlap_Check
2341 (Actual_1 : Node_Id;
2342 Actual_2 : Node_Id;
2343 Formal_1 : Entity_Id;
2344 Formal_2 : Entity_Id;
2345 Check : in out Node_Id)
2347 Cond : Node_Id;
2348 Formal_Name : Bounded_String;
2350 begin
2351 -- Generate:
2352 -- Actual_1'Overlaps_Storage (Actual_2)
2354 Cond :=
2355 Make_Attribute_Reference (Loc,
2356 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2357 Attribute_Name => Name_Overlaps_Storage,
2358 Expressions =>
2359 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2361 -- Generate the following check when detailed exception messages are
2362 -- enabled:
2364 -- if Actual_1'Overlaps_Storage (Actual_2) then
2365 -- raise Program_Error with <detailed message>;
2366 -- end if;
2368 if Exception_Extra_Info then
2369 Start_String;
2371 -- Do not generate location information for internal calls
2373 if Comes_From_Source (Call) then
2374 Store_String_Chars (Build_Location_String (Loc));
2375 Store_String_Char (' ');
2376 end if;
2378 Store_String_Chars ("aliased parameters, actuals for """);
2380 Append (Formal_Name, Chars (Formal_1));
2381 Adjust_Name_Case (Formal_Name, Sloc (Formal_1));
2382 Store_String_Chars (To_String (Formal_Name));
2384 Store_String_Chars (""" and """);
2386 Formal_Name.Length := 0;
2388 Append (Formal_Name, Chars (Formal_2));
2389 Adjust_Name_Case (Formal_Name, Sloc (Formal_2));
2390 Store_String_Chars (To_String (Formal_Name));
2392 Store_String_Chars (""" overlap");
2394 Insert_Action (Call,
2395 Make_If_Statement (Loc,
2396 Condition => Cond,
2397 Then_Statements => New_List (
2398 Make_Raise_Statement (Loc,
2399 Name =>
2400 New_Occurrence_Of (Standard_Program_Error, Loc),
2401 Expression => Make_String_Literal (Loc, End_String)))));
2403 -- Create a sequence of overlapping checks by and-ing them all
2404 -- together.
2406 else
2407 if No (Check) then
2408 Check := Cond;
2409 else
2410 Check :=
2411 Make_And_Then (Loc,
2412 Left_Opnd => Check,
2413 Right_Opnd => Cond);
2414 end if;
2415 end if;
2416 end Overlap_Check;
2418 -- Local variables
2420 Actual_1 : Node_Id;
2421 Actual_2 : Node_Id;
2422 Check : Node_Id;
2423 Formal_1 : Entity_Id;
2424 Formal_2 : Entity_Id;
2425 Orig_Act_1 : Node_Id;
2426 Orig_Act_2 : Node_Id;
2428 -- Start of processing for Apply_Parameter_Aliasing_Checks
2430 begin
2431 Check := Empty;
2433 Actual_1 := First_Actual (Call);
2434 Formal_1 := First_Formal (Subp);
2435 while Present (Actual_1) and then Present (Formal_1) loop
2436 Orig_Act_1 := Original_Actual (Actual_1);
2438 if Is_Name_Reference (Orig_Act_1) then
2439 Actual_2 := Next_Actual (Actual_1);
2440 Formal_2 := Next_Formal (Formal_1);
2441 while Present (Actual_2) and then Present (Formal_2) loop
2442 Orig_Act_2 := Original_Actual (Actual_2);
2444 -- Generate the check only when the mode of the two formals may
2445 -- lead to aliasing.
2447 if Is_Name_Reference (Orig_Act_2)
2448 and then May_Cause_Aliasing (Formal_1, Formal_2)
2449 then
2451 -- The aliasing check only applies when some of the formals
2452 -- have their passing mechanism unspecified; RM 6.2 (12/3).
2454 if Parameter_Passing_Mechanism_Specified (Etype (Orig_Act_1))
2455 and then
2456 Parameter_Passing_Mechanism_Specified (Etype (Orig_Act_2))
2457 then
2458 null;
2459 else
2460 Remove_Side_Effects (Actual_1);
2461 Remove_Side_Effects (Actual_2);
2463 Overlap_Check
2464 (Actual_1 => Actual_1,
2465 Actual_2 => Actual_2,
2466 Formal_1 => Formal_1,
2467 Formal_2 => Formal_2,
2468 Check => Check);
2469 end if;
2470 end if;
2472 Next_Actual (Actual_2);
2473 Next_Formal (Formal_2);
2474 end loop;
2475 end if;
2477 Next_Actual (Actual_1);
2478 Next_Formal (Formal_1);
2479 end loop;
2481 -- Place a simple check right before the call
2483 if Present (Check) and then not Exception_Extra_Info then
2484 Insert_Action (Call,
2485 Make_Raise_Program_Error (Loc,
2486 Condition => Check,
2487 Reason => PE_Aliased_Parameters));
2488 end if;
2489 end Apply_Parameter_Aliasing_Checks;
2491 -------------------------------------
2492 -- Apply_Parameter_Validity_Checks --
2493 -------------------------------------
2495 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2496 Subp_Decl : Node_Id;
2498 procedure Add_Validity_Check
2499 (Formal : Entity_Id;
2500 Prag_Nam : Name_Id;
2501 For_Result : Boolean := False);
2502 -- Add a single 'Valid[_Scalars] check which verifies the initialization
2503 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
2504 -- Set flag For_Result when to verify the result of a function.
2506 ------------------------
2507 -- Add_Validity_Check --
2508 ------------------------
2510 procedure Add_Validity_Check
2511 (Formal : Entity_Id;
2512 Prag_Nam : Name_Id;
2513 For_Result : Boolean := False)
2515 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2516 -- Create a pre/postcondition pragma that tests expression Expr
2518 ------------------------------
2519 -- Build_Pre_Post_Condition --
2520 ------------------------------
2522 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2523 Loc : constant Source_Ptr := Sloc (Subp);
2524 Decls : List_Id;
2525 Prag : Node_Id;
2527 begin
2528 Prag :=
2529 Make_Pragma (Loc,
2530 Chars => Prag_Nam,
2531 Pragma_Argument_Associations => New_List (
2532 Make_Pragma_Argument_Association (Loc,
2533 Chars => Name_Check,
2534 Expression => Expr)));
2536 -- Add a message unless exception messages are suppressed
2538 if not Exception_Locations_Suppressed then
2539 Append_To (Pragma_Argument_Associations (Prag),
2540 Make_Pragma_Argument_Association (Loc,
2541 Chars => Name_Message,
2542 Expression =>
2543 Make_String_Literal (Loc,
2544 Strval => "failed "
2545 & Get_Name_String (Prag_Nam)
2546 & " from "
2547 & Build_Location_String (Loc))));
2548 end if;
2550 -- Insert the pragma in the tree
2552 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2553 Add_Global_Declaration (Prag);
2554 Analyze (Prag);
2556 -- PPC pragmas associated with subprogram bodies must be inserted
2557 -- in the declarative part of the body.
2559 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2560 Decls := Declarations (Subp_Decl);
2562 if No (Decls) then
2563 Decls := New_List;
2564 Set_Declarations (Subp_Decl, Decls);
2565 end if;
2567 Prepend_To (Decls, Prag);
2568 Analyze (Prag);
2570 -- For subprogram declarations insert the PPC pragma right after
2571 -- the declarative node.
2573 else
2574 Insert_After_And_Analyze (Subp_Decl, Prag);
2575 end if;
2576 end Build_Pre_Post_Condition;
2578 -- Local variables
2580 Loc : constant Source_Ptr := Sloc (Subp);
2581 Typ : constant Entity_Id := Etype (Formal);
2582 Check : Node_Id;
2583 Nam : Name_Id;
2585 -- Start of processing for Add_Validity_Check
2587 begin
2588 -- For scalars, generate 'Valid test
2590 if Is_Scalar_Type (Typ) then
2591 Nam := Name_Valid;
2593 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2595 elsif Scalar_Part_Present (Typ) then
2596 Nam := Name_Valid_Scalars;
2598 -- No test needed for other cases (no scalars to test)
2600 else
2601 return;
2602 end if;
2604 -- Step 1: Create the expression to verify the validity of the
2605 -- context.
2607 Check := New_Occurrence_Of (Formal, Loc);
2609 -- When processing a function result, use 'Result. Generate
2610 -- Context'Result
2612 if For_Result then
2613 Check :=
2614 Make_Attribute_Reference (Loc,
2615 Prefix => Check,
2616 Attribute_Name => Name_Result);
2617 end if;
2619 -- Generate:
2620 -- Context['Result]'Valid[_Scalars]
2622 Check :=
2623 Make_Attribute_Reference (Loc,
2624 Prefix => Check,
2625 Attribute_Name => Nam);
2627 -- Step 2: Create a pre or post condition pragma
2629 Build_Pre_Post_Condition (Check);
2630 end Add_Validity_Check;
2632 -- Local variables
2634 Formal : Entity_Id;
2635 Subp_Spec : Node_Id;
2637 -- Start of processing for Apply_Parameter_Validity_Checks
2639 begin
2640 -- Extract the subprogram specification and declaration nodes
2642 Subp_Spec := Parent (Subp);
2644 if No (Subp_Spec) then
2645 return;
2646 end if;
2648 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2649 Subp_Spec := Parent (Subp_Spec);
2650 end if;
2652 Subp_Decl := Parent (Subp_Spec);
2654 if not Comes_From_Source (Subp)
2656 -- Do not process formal subprograms because the corresponding actual
2657 -- will receive the proper checks when the instance is analyzed.
2659 or else Is_Formal_Subprogram (Subp)
2661 -- Do not process imported subprograms since pre and postconditions
2662 -- are never verified on routines coming from a different language.
2664 or else Is_Imported (Subp)
2665 or else Is_Intrinsic_Subprogram (Subp)
2667 -- The PPC pragmas generated by this routine do not correspond to
2668 -- source aspects, therefore they cannot be applied to abstract
2669 -- subprograms.
2671 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2673 -- Do not consider subprogram renaminds because the renamed entity
2674 -- already has the proper PPC pragmas.
2676 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2678 -- Do not process null procedures because there is no benefit of
2679 -- adding the checks to a no action routine.
2681 or else (Nkind (Subp_Spec) = N_Procedure_Specification
2682 and then Null_Present (Subp_Spec))
2683 then
2684 return;
2685 end if;
2687 -- Inspect all the formals applying aliasing and scalar initialization
2688 -- checks where applicable.
2690 Formal := First_Formal (Subp);
2691 while Present (Formal) loop
2693 -- Generate the following scalar initialization checks for each
2694 -- formal parameter:
2696 -- mode IN - Pre => Formal'Valid[_Scalars]
2697 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2698 -- mode OUT - Post => Formal'Valid[_Scalars]
2700 if Ekind (Formal) in E_In_Parameter | E_In_Out_Parameter then
2701 Add_Validity_Check (Formal, Name_Precondition, False);
2702 end if;
2704 if Ekind (Formal) in E_In_Out_Parameter | E_Out_Parameter then
2705 Add_Validity_Check (Formal, Name_Postcondition, False);
2706 end if;
2708 Next_Formal (Formal);
2709 end loop;
2711 -- Generate following scalar initialization check for function result:
2713 -- Post => Subp'Result'Valid[_Scalars]
2715 if Ekind (Subp) = E_Function then
2716 Add_Validity_Check (Subp, Name_Postcondition, True);
2717 end if;
2718 end Apply_Parameter_Validity_Checks;
2720 ---------------------------
2721 -- Apply_Predicate_Check --
2722 ---------------------------
2724 procedure Apply_Predicate_Check
2725 (N : Node_Id;
2726 Typ : Entity_Id;
2727 Deref : Boolean := False;
2728 Fun : Entity_Id := Empty)
2730 Loc : constant Source_Ptr := Sloc (N);
2731 Check_Disabled : constant Boolean :=
2732 not Predicate_Enabled (Typ)
2733 or else not Predicate_Check_In_Scope (N);
2735 Expr : Node_Id;
2736 Par : Node_Id;
2737 S : Entity_Id;
2739 begin
2740 S := Current_Scope;
2741 while Present (S) and then not Is_Subprogram (S) loop
2742 S := Scope (S);
2743 end loop;
2745 -- If the check appears within the predicate function itself, it means
2746 -- that the user specified a check whose formal is the predicated
2747 -- subtype itself, rather than some covering type. This is likely to be
2748 -- a common error, and thus deserves a warning. We want to emit this
2749 -- warning even if predicate checking is disabled (in which case the
2750 -- warning is still useful even if it is not strictly accurate).
2752 if Present (S) and then S = Predicate_Function (Typ) then
2753 Error_Msg_NE
2754 ("predicate check includes a call to& that requires a "
2755 & "predicate check??", Parent (N), Fun);
2756 Error_Msg_N
2757 ("\this will result in infinite recursion??", Parent (N));
2759 if Is_First_Subtype (Typ) then
2760 Error_Msg_NE
2761 ("\use an explicit subtype of& to carry the predicate",
2762 Parent (N), Typ);
2763 end if;
2765 if not Check_Disabled then
2766 Insert_Action (N,
2767 Make_Raise_Storage_Error (Loc,
2768 Reason => SE_Infinite_Recursion));
2769 return;
2770 end if;
2771 end if;
2773 if Check_Disabled then
2774 return;
2775 end if;
2777 -- Normal case of predicate active
2779 -- If the expression is an IN parameter, the predicate will have
2780 -- been applied at the point of call. An additional check would
2781 -- be redundant, or will lead to out-of-scope references if the
2782 -- call appears within an aspect specification for a precondition.
2784 -- However, if the reference is within the body of the subprogram
2785 -- that declares the formal, the predicate can safely be applied,
2786 -- which may be necessary for a nested call whose formal has a
2787 -- different predicate.
2789 if Is_Entity_Name (N)
2790 and then Ekind (Entity (N)) = E_In_Parameter
2791 then
2792 declare
2793 In_Body : Boolean := False;
2794 P : Node_Id := Parent (N);
2796 begin
2797 while Present (P) loop
2798 if Nkind (P) = N_Subprogram_Body
2799 and then
2800 ((Present (Corresponding_Spec (P))
2801 and then
2802 Corresponding_Spec (P) = Scope (Entity (N)))
2803 or else
2804 Defining_Unit_Name (Specification (P)) =
2805 Scope (Entity (N)))
2806 then
2807 In_Body := True;
2808 exit;
2809 end if;
2811 P := Parent (P);
2812 end loop;
2814 if not In_Body then
2815 return;
2816 end if;
2817 end;
2818 end if;
2820 -- If the type has a static predicate and the expression is known
2821 -- at compile time, see if the expression satisfies the predicate.
2823 Check_Expression_Against_Static_Predicate (N, Typ);
2825 if not Expander_Active then
2826 return;
2827 end if;
2829 Par := Parent (N);
2830 if Nkind (Par) = N_Qualified_Expression then
2831 Par := Parent (Par);
2832 end if;
2834 -- Try to avoid creating a temporary if the expression is an aggregate
2836 if Nkind (N) in N_Aggregate | N_Extension_Aggregate then
2838 -- If the expression is an aggregate in an assignment, apply the
2839 -- check to the LHS after the assignment, rather than create a
2840 -- redundant temporary. This is only necessary in rare cases
2841 -- of array types (including strings) initialized with an
2842 -- aggregate with an "others" clause, either coming from source
2843 -- or generated by an Initialize_Scalars pragma.
2845 if Nkind (Par) = N_Assignment_Statement then
2846 Insert_Action_After (Par,
2847 Make_Predicate_Check
2848 (Typ, Duplicate_Subexpr (Name (Par))));
2849 return;
2851 -- Similarly, if the expression is an aggregate in an object
2852 -- declaration, apply it to the object after the declaration.
2854 -- This is only necessary in cases of tagged extensions
2855 -- initialized with an aggregate with an "others => <>" clause,
2856 -- when the subtypes of LHS and RHS do not statically match or
2857 -- when we know the object's type will be rewritten later.
2858 -- The condition for the later is copied from the
2859 -- Analyze_Object_Declaration procedure when it actually builds the
2860 -- subtype.
2862 elsif Nkind (Par) = N_Object_Declaration then
2863 if Subtypes_Statically_Match
2864 (Etype (Defining_Identifier (Par)), Typ)
2865 and then (Nkind (N) = N_Extension_Aggregate
2866 or else (Is_Definite_Subtype (Typ)
2867 and then Build_Default_Subtype_OK (Typ)))
2868 then
2869 Insert_Action_After (Par,
2870 Make_Predicate_Check (Typ,
2871 New_Occurrence_Of (Defining_Identifier (Par), Loc)));
2872 return;
2873 end if;
2875 end if;
2876 end if;
2878 -- For an entity of the type, generate a call to the predicate
2879 -- function, unless its type is an actual subtype, which is not
2880 -- visible outside of the enclosing subprogram.
2882 if Is_Entity_Name (N) and then not Is_Actual_Subtype (Typ) then
2883 Expr := New_Occurrence_Of (Entity (N), Loc);
2885 -- If the expression is not an entity, it may have side effects
2887 else
2888 Expr := Duplicate_Subexpr (N);
2889 end if;
2891 -- Make the dereference if requested
2893 if Deref then
2894 Expr := Make_Explicit_Dereference (Loc, Prefix => Expr);
2895 end if;
2897 -- Disable checks to prevent an infinite recursion
2899 Insert_Action
2900 (N, Make_Predicate_Check (Typ, Expr), Suppress => All_Checks);
2901 end Apply_Predicate_Check;
2903 -----------------------
2904 -- Apply_Range_Check --
2905 -----------------------
2907 procedure Apply_Range_Check
2908 (Expr : Node_Id;
2909 Target_Typ : Entity_Id;
2910 Source_Typ : Entity_Id := Empty;
2911 Insert_Node : Node_Id := Empty)
2913 Checks_On : constant Boolean :=
2914 not Index_Checks_Suppressed (Target_Typ)
2915 or else
2916 not Range_Checks_Suppressed (Target_Typ);
2918 Loc : constant Source_Ptr := Sloc (Expr);
2920 Cond : Node_Id;
2921 R_Cno : Node_Id;
2922 R_Result : Check_Result;
2924 begin
2925 -- Only apply checks when generating code. In GNATprove mode, we do not
2926 -- apply the checks, but we still call Selected_Range_Checks to possibly
2927 -- issue errors on SPARK code when a run-time error can be detected at
2928 -- compile time.
2930 if not GNATprove_Mode then
2931 if not Expander_Active or not Checks_On then
2932 return;
2933 end if;
2934 end if;
2936 R_Result :=
2937 Selected_Range_Checks (Expr, Target_Typ, Source_Typ, Insert_Node);
2939 if GNATprove_Mode then
2940 return;
2941 end if;
2943 for J in 1 .. 2 loop
2944 R_Cno := R_Result (J);
2945 exit when No (R_Cno);
2947 -- The range check requires runtime evaluation. Depending on what its
2948 -- triggering condition is, the check may be converted into a compile
2949 -- time constraint check.
2951 if Nkind (R_Cno) = N_Raise_Constraint_Error
2952 and then Present (Condition (R_Cno))
2953 then
2954 Cond := Condition (R_Cno);
2956 -- Insert the range check before the related context. Note that
2957 -- this action analyses the triggering condition.
2959 if Present (Insert_Node) then
2960 Insert_Action (Insert_Node, R_Cno);
2961 else
2962 Insert_Action (Expr, R_Cno);
2963 end if;
2965 -- The triggering condition evaluates to True, the range check
2966 -- can be converted into a compile time constraint check.
2968 if Is_Entity_Name (Cond)
2969 and then Entity (Cond) = Standard_True
2970 then
2971 -- Since an N_Range is technically not an expression, we have
2972 -- to set one of the bounds to C_E and then just flag the
2973 -- N_Range. The warning message will point to the lower bound
2974 -- and complain about a range, which seems OK.
2976 if Nkind (Expr) = N_Range then
2977 Apply_Compile_Time_Constraint_Error
2978 (Low_Bound (Expr),
2979 "static range out of bounds of}??",
2980 CE_Range_Check_Failed,
2981 Ent => Target_Typ,
2982 Typ => Target_Typ);
2984 Set_Raises_Constraint_Error (Expr);
2986 else
2987 Apply_Compile_Time_Constraint_Error
2988 (Expr,
2989 "static value out of range of}??",
2990 CE_Range_Check_Failed,
2991 Ent => Target_Typ,
2992 Typ => Target_Typ);
2993 end if;
2994 end if;
2996 -- The range check raises Constraint_Error explicitly
2998 elsif Present (Insert_Node) then
2999 R_Cno :=
3000 Make_Raise_Constraint_Error (Sloc (Insert_Node),
3001 Reason => CE_Range_Check_Failed);
3003 Insert_Action (Insert_Node, R_Cno);
3005 else
3006 Install_Static_Check (R_Cno, Loc, CE_Range_Check_Failed);
3007 end if;
3008 end loop;
3009 end Apply_Range_Check;
3011 ------------------------------
3012 -- Apply_Scalar_Range_Check --
3013 ------------------------------
3015 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
3016 -- off if it is already set on.
3018 procedure Apply_Scalar_Range_Check
3019 (Expr : Node_Id;
3020 Target_Typ : Entity_Id;
3021 Source_Typ : Entity_Id := Empty;
3022 Fixed_Int : Boolean := False)
3024 Parnt : constant Node_Id := Parent (Expr);
3025 S_Typ : Entity_Id;
3026 Arr : Node_Id := Empty; -- initialize to prevent warning
3027 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
3029 Is_Subscr_Ref : Boolean;
3030 -- Set true if Expr is a subscript
3032 Is_Unconstrained_Subscr_Ref : Boolean;
3033 -- Set true if Expr is a subscript of an unconstrained array. In this
3034 -- case we do not attempt to do an analysis of the value against the
3035 -- range of the subscript, since we don't know the actual subtype.
3037 Int_Real : Boolean;
3038 -- Set to True if Expr should be regarded as a real value even though
3039 -- the type of Expr might be discrete.
3041 procedure Bad_Value (Warn : Boolean := False);
3042 -- Procedure called if value is determined to be out of range. Warn is
3043 -- True to force a warning instead of an error, even when SPARK_Mode is
3044 -- On.
3046 ---------------
3047 -- Bad_Value --
3048 ---------------
3050 procedure Bad_Value (Warn : Boolean := False) is
3051 begin
3052 Apply_Compile_Time_Constraint_Error
3053 (Expr, "value not in range of}??", CE_Range_Check_Failed,
3054 Ent => Target_Typ,
3055 Typ => Target_Typ,
3056 Warn => Warn);
3057 end Bad_Value;
3059 -- Start of processing for Apply_Scalar_Range_Check
3061 begin
3062 -- Return if check obviously not needed
3065 -- Not needed inside generic
3067 Inside_A_Generic
3069 -- Not needed if previous error
3071 or else Target_Typ = Any_Type
3072 or else Nkind (Expr) = N_Error
3074 -- Not needed for non-scalar type
3076 or else not Is_Scalar_Type (Target_Typ)
3078 -- Not needed if we know node raises CE already
3080 or else Raises_Constraint_Error (Expr)
3081 then
3082 return;
3083 end if;
3085 -- Now, see if checks are suppressed
3087 Is_Subscr_Ref :=
3088 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
3090 if Is_Subscr_Ref then
3091 Arr := Prefix (Parnt);
3092 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
3094 if Is_Access_Type (Arr_Typ) then
3095 Arr_Typ := Designated_Type (Arr_Typ);
3096 end if;
3097 end if;
3099 if not Do_Range_Check (Expr) then
3101 -- Subscript reference. Check for Index_Checks suppressed
3103 if Is_Subscr_Ref then
3105 -- Check array type and its base type
3107 if Index_Checks_Suppressed (Arr_Typ)
3108 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
3109 then
3110 return;
3112 -- Check array itself if it is an entity name
3114 elsif Is_Entity_Name (Arr)
3115 and then Index_Checks_Suppressed (Entity (Arr))
3116 then
3117 return;
3119 -- Check expression itself if it is an entity name
3121 elsif Is_Entity_Name (Expr)
3122 and then Index_Checks_Suppressed (Entity (Expr))
3123 then
3124 return;
3125 end if;
3127 -- All other cases, check for Range_Checks suppressed
3129 else
3130 -- Check target type and its base type
3132 if Range_Checks_Suppressed (Target_Typ)
3133 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
3134 then
3135 return;
3137 -- Check expression itself if it is an entity name
3139 elsif Is_Entity_Name (Expr)
3140 and then Range_Checks_Suppressed (Entity (Expr))
3141 then
3142 return;
3144 -- If Expr is part of an assignment statement, then check left
3145 -- side of assignment if it is an entity name.
3147 elsif Nkind (Parnt) = N_Assignment_Statement
3148 and then Is_Entity_Name (Name (Parnt))
3149 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
3150 then
3151 return;
3152 end if;
3153 end if;
3154 end if;
3156 -- Do not set range checks if they are killed
3158 if Nkind (Expr) = N_Unchecked_Type_Conversion
3159 and then Kill_Range_Check (Expr)
3160 then
3161 return;
3162 end if;
3164 -- Do not set range checks for any values from System.Scalar_Values
3165 -- since the whole idea of such values is to avoid checking them.
3167 if Is_Entity_Name (Expr)
3168 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
3169 then
3170 return;
3171 end if;
3173 -- Now see if we need a check
3175 if No (Source_Typ) then
3176 S_Typ := Etype (Expr);
3177 else
3178 S_Typ := Source_Typ;
3179 end if;
3181 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
3182 return;
3183 end if;
3185 Is_Unconstrained_Subscr_Ref :=
3186 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
3188 -- Special checks for floating-point type
3190 if Is_Floating_Point_Type (S_Typ) then
3192 -- Always do a range check if the source type includes infinities and
3193 -- the target type does not include infinities. We do not do this if
3194 -- range checks are killed.
3195 -- If the expression is a literal and the bounds of the type are
3196 -- static constants it may be possible to optimize the check.
3198 if Has_Infinities (S_Typ)
3199 and then not Has_Infinities (Target_Typ)
3200 then
3201 -- If the expression is a literal and the bounds of the type are
3202 -- static constants it may be possible to optimize the check.
3204 if Nkind (Expr) = N_Real_Literal then
3205 declare
3206 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
3207 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
3209 begin
3210 if Compile_Time_Known_Value (Tlo)
3211 and then Compile_Time_Known_Value (Thi)
3212 and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
3213 and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
3214 then
3215 return;
3216 else
3217 Enable_Range_Check (Expr);
3218 end if;
3219 end;
3221 else
3222 Enable_Range_Check (Expr);
3223 end if;
3224 end if;
3225 end if;
3227 -- Return if we know expression is definitely in the range of the target
3228 -- type as determined by Determine_Range_To_Discrete. Right now we only
3229 -- do this for discrete target types, i.e. neither for fixed-point nor
3230 -- for floating-point types. But the additional less precise tests below
3231 -- catch these cases.
3233 -- Note: skip this if we are given a source_typ, since the point of
3234 -- supplying a Source_Typ is to stop us looking at the expression.
3235 -- We could sharpen this test to be out parameters only ???
3237 if Is_Discrete_Type (Target_Typ)
3238 and then not Is_Unconstrained_Subscr_Ref
3239 and then No (Source_Typ)
3240 then
3241 declare
3242 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
3243 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
3245 begin
3246 if Compile_Time_Known_Value (Tlo)
3247 and then Compile_Time_Known_Value (Thi)
3248 then
3249 declare
3250 OK : Boolean := False; -- initialize to prevent warning
3251 Hiv : constant Uint := Expr_Value (Thi);
3252 Lov : constant Uint := Expr_Value (Tlo);
3253 Hi : Uint := No_Uint;
3254 Lo : Uint := No_Uint;
3256 begin
3257 -- If range is null, we for sure have a constraint error (we
3258 -- don't even need to look at the value involved, since all
3259 -- possible values will raise CE).
3261 if Lov > Hiv then
3263 -- When SPARK_Mode is On, force a warning instead of
3264 -- an error in that case, as this likely corresponds
3265 -- to deactivated code.
3267 Bad_Value (Warn => SPARK_Mode = On);
3269 return;
3270 end if;
3272 -- Otherwise determine range of value
3274 Determine_Range_To_Discrete
3275 (Expr, OK, Lo, Hi, Fixed_Int, Assume_Valid => True);
3277 if OK then
3279 -- If definitely in range, all OK
3281 if Lo >= Lov and then Hi <= Hiv then
3282 return;
3284 -- If definitely not in range, warn
3286 elsif Lov > Hi or else Hiv < Lo then
3288 -- Ignore out of range values for System.Priority in
3289 -- CodePeer mode since the actual target compiler may
3290 -- provide a wider range.
3292 if not CodePeer_Mode
3293 or else not Is_RTE (Target_Typ, RE_Priority)
3294 then
3295 Bad_Value;
3296 end if;
3298 return;
3300 -- Otherwise we don't know
3302 else
3303 null;
3304 end if;
3305 end if;
3306 end;
3307 end if;
3308 end;
3309 end if;
3311 Int_Real :=
3312 Is_Floating_Point_Type (S_Typ)
3313 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3315 -- Check if we can determine at compile time whether Expr is in the
3316 -- range of the target type. Note that if S_Typ is within the bounds
3317 -- of Target_Typ then this must be the case. This check is meaningful
3318 -- only if this is not a conversion between integer and real types,
3319 -- unless for a fixed-point type if Fixed_Int is set.
3321 if not Is_Unconstrained_Subscr_Ref
3322 and then (Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
3323 or else (Fixed_Int and then Is_Discrete_Type (Target_Typ)))
3324 and then
3325 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
3327 -- Also check if the expression itself is in the range of the
3328 -- target type if it is a known at compile time value. We skip
3329 -- this test if S_Typ is set since for OUT and IN OUT parameters
3330 -- the Expr itself is not relevant to the checking.
3332 or else
3333 (No (Source_Typ)
3334 and then Is_In_Range (Expr, Target_Typ,
3335 Assume_Valid => True,
3336 Fixed_Int => Fixed_Int,
3337 Int_Real => Int_Real)))
3338 then
3339 return;
3341 elsif Is_Out_Of_Range (Expr, Target_Typ,
3342 Assume_Valid => True,
3343 Fixed_Int => Fixed_Int,
3344 Int_Real => Int_Real)
3345 then
3346 Bad_Value;
3347 return;
3349 -- Floating-point case
3350 -- In the floating-point case, we only do range checks if the type is
3351 -- constrained. We definitely do NOT want range checks for unconstrained
3352 -- types, since we want to have infinities, except when
3353 -- Check_Float_Overflow is set.
3355 elsif Is_Floating_Point_Type (S_Typ) then
3356 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
3357 Enable_Range_Check (Expr);
3358 end if;
3360 -- For all other cases we enable a range check unconditionally
3362 else
3363 Enable_Range_Check (Expr);
3364 return;
3365 end if;
3366 end Apply_Scalar_Range_Check;
3368 ----------------------------------
3369 -- Apply_Selected_Length_Checks --
3370 ----------------------------------
3372 procedure Apply_Selected_Length_Checks
3373 (Expr : Node_Id;
3374 Target_Typ : Entity_Id;
3375 Source_Typ : Entity_Id;
3376 Do_Static : Boolean)
3378 Checks_On : constant Boolean :=
3379 not Index_Checks_Suppressed (Target_Typ)
3380 or else
3381 not Length_Checks_Suppressed (Target_Typ);
3383 Loc : constant Source_Ptr := Sloc (Expr);
3385 Cond : Node_Id;
3386 R_Cno : Node_Id;
3387 R_Result : Check_Result;
3389 begin
3390 -- Only apply checks when generating code
3392 -- Note: this means that we lose some useful warnings if the expander
3393 -- is not active.
3395 if not Expander_Active then
3396 return;
3397 end if;
3399 R_Result :=
3400 Selected_Length_Checks (Expr, Target_Typ, Source_Typ, Empty);
3402 for J in 1 .. 2 loop
3403 R_Cno := R_Result (J);
3404 exit when No (R_Cno);
3406 -- A length check may mention an Itype which is attached to a
3407 -- subsequent node. At the top level in a package this can cause
3408 -- an order-of-elaboration problem, so we make sure that the itype
3409 -- is referenced now.
3411 if Ekind (Current_Scope) = E_Package
3412 and then Is_Compilation_Unit (Current_Scope)
3413 then
3414 Ensure_Defined (Target_Typ, Expr);
3416 if Present (Source_Typ) then
3417 Ensure_Defined (Source_Typ, Expr);
3419 elsif Is_Itype (Etype (Expr)) then
3420 Ensure_Defined (Etype (Expr), Expr);
3421 end if;
3422 end if;
3424 if Nkind (R_Cno) = N_Raise_Constraint_Error
3425 and then Present (Condition (R_Cno))
3426 then
3427 Cond := Condition (R_Cno);
3429 -- Case where node does not now have a dynamic check
3431 if not Has_Dynamic_Length_Check (Expr) then
3433 -- If checks are on, just insert the check
3435 if Checks_On then
3436 Insert_Action (Expr, R_Cno);
3438 if not Do_Static then
3439 Set_Has_Dynamic_Length_Check (Expr);
3440 end if;
3442 -- If checks are off, then analyze the length check after
3443 -- temporarily attaching it to the tree in case the relevant
3444 -- condition can be evaluated at compile time. We still want a
3445 -- compile time warning in this case.
3447 else
3448 Set_Parent (R_Cno, Expr);
3449 Analyze (R_Cno);
3450 end if;
3451 end if;
3453 -- Output a warning if the condition is known to be True
3455 if Is_Entity_Name (Cond)
3456 and then Entity (Cond) = Standard_True
3457 then
3458 Apply_Compile_Time_Constraint_Error
3459 (Expr, "wrong length for array of}??",
3460 CE_Length_Check_Failed,
3461 Ent => Target_Typ,
3462 Typ => Target_Typ);
3464 -- If we were only doing a static check, or if checks are not
3465 -- on, then we want to delete the check, since it is not needed.
3466 -- We do this by replacing the if statement by a null statement
3468 elsif Do_Static or else not Checks_On then
3469 Remove_Warning_Messages (R_Cno);
3470 Rewrite (R_Cno, Make_Null_Statement (Loc));
3471 end if;
3473 else
3474 Install_Static_Check (R_Cno, Loc, CE_Length_Check_Failed);
3475 end if;
3476 end loop;
3477 end Apply_Selected_Length_Checks;
3479 -------------------------------
3480 -- Apply_Static_Length_Check --
3481 -------------------------------
3483 procedure Apply_Static_Length_Check
3484 (Expr : Node_Id;
3485 Target_Typ : Entity_Id;
3486 Source_Typ : Entity_Id := Empty)
3488 begin
3489 Apply_Selected_Length_Checks
3490 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3491 end Apply_Static_Length_Check;
3493 -------------------------------------
3494 -- Apply_Subscript_Validity_Checks --
3495 -------------------------------------
3497 procedure Apply_Subscript_Validity_Checks
3498 (Expr : Node_Id;
3499 No_Check_Needed : Dimension_Set := Empty_Dimension_Set) is
3500 Sub : Node_Id;
3502 Dimension : Pos := 1;
3503 begin
3504 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3506 -- Loop through subscripts
3508 Sub := First (Expressions (Expr));
3509 while Present (Sub) loop
3511 -- Check one subscript. Note that we do not worry about enumeration
3512 -- type with holes, since we will convert the value to a Pos value
3513 -- for the subscript, and that convert will do the necessary validity
3514 -- check.
3516 if No_Check_Needed = Empty_Dimension_Set
3517 or else not No_Check_Needed.Elements (Dimension)
3518 then
3519 Ensure_Valid (Sub, Holes_OK => True);
3520 end if;
3522 -- Move to next subscript
3524 Next (Sub);
3525 Dimension := Dimension + 1;
3526 end loop;
3527 end Apply_Subscript_Validity_Checks;
3529 ----------------------------------
3530 -- Apply_Type_Conversion_Checks --
3531 ----------------------------------
3533 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3534 Target_Type : constant Entity_Id := Etype (N);
3535 Target_Base : constant Entity_Id := Base_Type (Target_Type);
3536 Expr : constant Node_Id := Expression (N);
3538 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3539 -- Note: if Etype (Expr) is a private type without discriminants, its
3540 -- full view might have discriminants with defaults, so we need the
3541 -- full view here to retrieve the constraints.
3543 procedure Make_Discriminant_Constraint_Check
3544 (Target_Type : Entity_Id;
3545 Expr_Type : Entity_Id);
3546 -- Generate a discriminant check based on the target type and expression
3547 -- type for Expr.
3549 ----------------------------------------
3550 -- Make_Discriminant_Constraint_Check --
3551 ----------------------------------------
3553 procedure Make_Discriminant_Constraint_Check
3554 (Target_Type : Entity_Id;
3555 Expr_Type : Entity_Id)
3557 Loc : constant Source_Ptr := Sloc (N);
3558 Cond : Node_Id;
3559 Constraint : Elmt_Id;
3560 Discr_Value : Node_Id;
3561 Discr : Entity_Id;
3563 New_Constraints : constant Elist_Id := New_Elmt_List;
3564 Old_Constraints : constant Elist_Id :=
3565 Discriminant_Constraint (Expr_Type);
3567 begin
3568 -- Build an actual discriminant constraint list using the stored
3569 -- constraint, to verify that the expression of the parent type
3570 -- satisfies the constraints imposed by the (unconstrained) derived
3571 -- type. This applies to value conversions, not to view conversions
3572 -- of tagged types.
3574 Constraint := First_Elmt (Stored_Constraint (Target_Type));
3575 while Present (Constraint) loop
3576 Discr_Value := Node (Constraint);
3578 if Is_Entity_Name (Discr_Value)
3579 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3580 then
3581 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3583 if Present (Discr)
3584 and then Scope (Discr) = Base_Type (Expr_Type)
3585 then
3586 -- Parent is constrained by new discriminant. Obtain
3587 -- Value of original discriminant in expression. If the
3588 -- new discriminant has been used to constrain more than
3589 -- one of the stored discriminants, this will provide the
3590 -- required consistency check.
3592 Append_Elmt
3593 (Make_Selected_Component (Loc,
3594 Prefix =>
3595 Duplicate_Subexpr_No_Checks
3596 (Expr, Name_Req => True),
3597 Selector_Name =>
3598 Make_Identifier (Loc, Chars (Discr))),
3599 New_Constraints);
3601 else
3602 -- Discriminant of more remote ancestor ???
3604 return;
3605 end if;
3607 -- Derived type definition has an explicit value for this
3608 -- stored discriminant.
3610 else
3611 Append_Elmt
3612 (Duplicate_Subexpr_No_Checks (Discr_Value),
3613 New_Constraints);
3614 end if;
3616 Next_Elmt (Constraint);
3617 end loop;
3619 -- Use the unconstrained expression type to retrieve the
3620 -- discriminants of the parent, and apply momentarily the
3621 -- discriminant constraint synthesized above.
3623 -- Note: We use Expr_Type instead of Target_Type since the number of
3624 -- actual discriminants may be different due to the presence of
3625 -- stored discriminants and cause Build_Discriminant_Checks to fail.
3627 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3628 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3629 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3631 -- Conversion between access types requires that we check for null
3632 -- before checking discriminants.
3634 if Is_Access_Type (Etype (Expr)) then
3635 Cond := Make_And_Then (Loc,
3636 Left_Opnd =>
3637 Make_Op_Ne (Loc,
3638 Left_Opnd =>
3639 Duplicate_Subexpr_No_Checks
3640 (Expr, Name_Req => True),
3641 Right_Opnd => Make_Null (Loc)),
3642 Right_Opnd => Cond);
3643 end if;
3645 Insert_Action (N,
3646 Make_Raise_Constraint_Error (Loc,
3647 Condition => Cond,
3648 Reason => CE_Discriminant_Check_Failed));
3649 end Make_Discriminant_Constraint_Check;
3651 -- Start of processing for Apply_Type_Conversion_Checks
3653 begin
3654 if Inside_A_Generic then
3655 return;
3657 -- Skip these checks if serious errors detected, there are some nasty
3658 -- situations of incomplete trees that blow things up.
3660 elsif Serious_Errors_Detected > 0 then
3661 return;
3663 -- Never generate discriminant checks for Unchecked_Union types
3665 elsif Present (Expr_Type)
3666 and then Is_Unchecked_Union (Expr_Type)
3667 then
3668 return;
3670 -- Scalar type conversions of the form Target_Type (Expr) require a
3671 -- range check if we cannot be sure that Expr is in the base type of
3672 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3673 -- are not quite the same condition from an implementation point of
3674 -- view, but clearly the second includes the first.
3676 elsif Is_Scalar_Type (Target_Type) then
3677 declare
3678 Conv_OK : constant Boolean := Conversion_OK (N);
3679 -- If the Conversion_OK flag on the type conversion is set and no
3680 -- floating-point type is involved in the type conversion then
3681 -- fixed-point values must be read as integral values.
3683 Float_To_Int : constant Boolean :=
3684 Is_Floating_Point_Type (Expr_Type)
3685 and then Is_Integer_Type (Target_Type);
3687 begin
3688 if not Overflow_Checks_Suppressed (Target_Base)
3689 and then not Overflow_Checks_Suppressed (Target_Type)
3690 and then not
3691 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3692 and then not Float_To_Int
3693 then
3694 -- A small optimization: the attribute 'Pos applied to an
3695 -- enumeration type has a known range, even though its type is
3696 -- Universal_Integer. So in numeric conversions it is usually
3697 -- within range of the target integer type. Use the static
3698 -- bounds of the base types to check. Disable this optimization
3699 -- in case of a descendant of a generic formal discrete type,
3700 -- because we don't necessarily know the upper bound yet.
3702 if Nkind (Expr) = N_Attribute_Reference
3703 and then Attribute_Name (Expr) = Name_Pos
3704 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
3705 and then
3706 not Is_Generic_Type (Root_Type (Etype (Prefix (Expr))))
3707 and then Is_Integer_Type (Target_Type)
3708 then
3709 declare
3710 Enum_T : constant Entity_Id :=
3711 Root_Type (Etype (Prefix (Expr)));
3712 Int_T : constant Entity_Id := Base_Type (Target_Type);
3713 Last_I : constant Uint :=
3714 Intval (High_Bound (Scalar_Range (Int_T)));
3715 Last_E : Uint;
3717 begin
3718 -- Character types have no explicit literals, so we use
3719 -- the known number of characters in the type.
3721 if Root_Type (Enum_T) = Standard_Character then
3722 Last_E := UI_From_Int (255);
3724 elsif Enum_T = Standard_Wide_Character
3725 or else Enum_T = Standard_Wide_Wide_Character
3726 then
3727 Last_E := UI_From_Int (65535);
3729 else
3730 Last_E :=
3731 Enumeration_Pos
3732 (Entity (High_Bound (Scalar_Range (Enum_T))));
3733 end if;
3735 if Last_E > Last_I then
3736 Activate_Overflow_Check (N);
3737 end if;
3738 end;
3739 else
3740 Activate_Overflow_Check (N);
3741 end if;
3742 end if;
3744 if not Range_Checks_Suppressed (Target_Type)
3745 and then not Range_Checks_Suppressed (Expr_Type)
3746 then
3747 if Float_To_Int
3748 and then not GNATprove_Mode
3749 then
3750 Apply_Float_Conversion_Check (Expr, Target_Type);
3751 else
3752 -- Raw conversions involving fixed-point types are expanded
3753 -- separately and do not need a Range_Check flag yet, except
3754 -- in GNATprove_Mode where this expansion is not performed.
3755 -- This does not apply to conversion where fixed-point types
3756 -- are treated as integers, which are precisely generated by
3757 -- this expansion.
3759 if GNATprove_Mode
3760 or else Conv_OK
3761 or else (not Is_Fixed_Point_Type (Expr_Type)
3762 and then not Is_Fixed_Point_Type (Target_Type))
3763 then
3764 Apply_Scalar_Range_Check
3765 (Expr, Target_Type, Fixed_Int => Conv_OK);
3767 else
3768 Set_Do_Range_Check (Expr, False);
3769 end if;
3771 -- If the target type has predicates, we need to indicate
3772 -- the need for a check, even if Determine_Range finds that
3773 -- the value is within bounds. This may be the case e.g for
3774 -- a division with a constant denominator.
3776 if Has_Predicates (Target_Type) then
3777 Enable_Range_Check (Expr);
3778 end if;
3779 end if;
3780 end if;
3781 end;
3783 -- Generate discriminant constraint checks for access types on the
3784 -- designated target type's stored constraints.
3786 -- Do we need to generate subtype predicate checks here as well ???
3788 elsif Comes_From_Source (N)
3789 and then Ekind (Target_Type) = E_General_Access_Type
3791 -- Check that both of the designated types have known discriminants,
3792 -- and that such checks on the target type are not suppressed.
3794 and then Has_Discriminants (Directly_Designated_Type (Target_Type))
3795 and then Has_Discriminants (Directly_Designated_Type (Expr_Type))
3796 and then not Discriminant_Checks_Suppressed
3797 (Directly_Designated_Type (Target_Type))
3799 -- Verify the designated type of the target has stored constraints
3801 and then Present
3802 (Stored_Constraint (Directly_Designated_Type (Target_Type)))
3803 then
3804 Make_Discriminant_Constraint_Check
3805 (Target_Type => Directly_Designated_Type (Target_Type),
3806 Expr_Type => Directly_Designated_Type (Expr_Type));
3808 -- Create discriminant checks for the Target_Type's stored constraints
3810 elsif Comes_From_Source (N)
3811 and then not Discriminant_Checks_Suppressed (Target_Type)
3812 and then Is_Record_Type (Target_Type)
3813 and then Is_Derived_Type (Target_Type)
3814 and then not Is_Tagged_Type (Target_Type)
3815 and then not Is_Constrained (Target_Type)
3816 and then Present (Stored_Constraint (Target_Type))
3817 then
3818 Make_Discriminant_Constraint_Check (Target_Type, Expr_Type);
3820 -- For arrays, checks are set now, but conversions are applied during
3821 -- expansion, to take into accounts changes of representation. The
3822 -- checks become range checks on the base type or length checks on the
3823 -- subtype, depending on whether the target type is unconstrained or
3824 -- constrained. Note that the range check is put on the expression of a
3825 -- type conversion, while the length check is put on the type conversion
3826 -- itself.
3828 elsif Is_Array_Type (Target_Type) then
3829 if Is_Constrained (Target_Type) then
3830 Set_Do_Length_Check (N);
3831 else
3832 Set_Do_Range_Check (Expr);
3833 end if;
3834 end if;
3835 end Apply_Type_Conversion_Checks;
3837 ----------------------------------------------
3838 -- Apply_Universal_Integer_Attribute_Checks --
3839 ----------------------------------------------
3841 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3842 Loc : constant Source_Ptr := Sloc (N);
3843 Typ : constant Entity_Id := Etype (N);
3845 begin
3846 if Inside_A_Generic then
3847 return;
3849 -- Nothing to do if the result type is universal integer
3851 elsif Typ = Universal_Integer then
3852 return;
3854 -- Nothing to do if checks are suppressed
3856 elsif Range_Checks_Suppressed (Typ)
3857 and then Overflow_Checks_Suppressed (Typ)
3858 then
3859 return;
3861 -- Nothing to do if the attribute does not come from source. The
3862 -- internal attributes we generate of this type do not need checks,
3863 -- and furthermore the attempt to check them causes some circular
3864 -- elaboration orders when dealing with packed types.
3866 elsif not Comes_From_Source (N) then
3867 return;
3869 -- If the prefix is a selected component that depends on a discriminant
3870 -- the check may improperly expose a discriminant instead of using
3871 -- the bounds of the object itself. Set the type of the attribute to
3872 -- the base type of the context, so that a check will be imposed when
3873 -- needed (e.g. if the node appears as an index).
3875 elsif Nkind (Prefix (N)) = N_Selected_Component
3876 and then Ekind (Typ) = E_Signed_Integer_Subtype
3877 and then Depends_On_Discriminant (Scalar_Range (Typ))
3878 then
3879 Set_Etype (N, Base_Type (Typ));
3881 -- Otherwise, replace the attribute node with a type conversion node
3882 -- whose expression is the attribute, retyped to universal integer, and
3883 -- whose subtype mark is the target type. The call to analyze this
3884 -- conversion will set range and overflow checks as required for proper
3885 -- detection of an out of range value.
3887 else
3888 Set_Etype (N, Universal_Integer);
3889 Set_Analyzed (N, True);
3891 Rewrite (N,
3892 Make_Type_Conversion (Loc,
3893 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3894 Expression => Relocate_Node (N)));
3896 Analyze_And_Resolve (N, Typ);
3897 return;
3898 end if;
3899 end Apply_Universal_Integer_Attribute_Checks;
3901 -------------------------------------
3902 -- Atomic_Synchronization_Disabled --
3903 -------------------------------------
3905 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3906 -- using a bogus check called Atomic_Synchronization. This is to make it
3907 -- more convenient to get exactly the same semantics as [Un]Suppress.
3909 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3910 begin
3911 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3912 -- looks enabled, since it is never disabled.
3914 if Debug_Flag_Dot_E then
3915 return False;
3917 -- If debug flag d.d is set then always return True, i.e. all atomic
3918 -- sync looks disabled, since it always tests True.
3920 elsif Debug_Flag_Dot_D then
3921 return True;
3923 -- If entity present, then check result for that entity
3925 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3926 return Is_Check_Suppressed (E, Atomic_Synchronization);
3928 -- Otherwise result depends on current scope setting
3930 else
3931 return Scope_Suppress.Suppress (Atomic_Synchronization);
3932 end if;
3933 end Atomic_Synchronization_Disabled;
3935 -------------------------------
3936 -- Build_Discriminant_Checks --
3937 -------------------------------
3939 function Build_Discriminant_Checks
3940 (N : Node_Id;
3941 T_Typ : Entity_Id) return Node_Id
3943 Loc : constant Source_Ptr := Sloc (N);
3944 Cond : Node_Id;
3945 Disc : Elmt_Id;
3946 Disc_Ent : Entity_Id;
3947 Dref : Node_Id;
3948 Dval : Node_Id;
3950 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3952 function Replace_Current_Instance
3953 (N : Node_Id) return Traverse_Result;
3954 -- Replace a reference to the current instance of the type with the
3955 -- corresponding _init formal of the initialization procedure. Note:
3956 -- this function relies on us currently being within the initialization
3957 -- procedure.
3959 --------------------------------
3960 -- Aggregate_Discriminant_Val --
3961 --------------------------------
3963 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3964 Assoc : Node_Id;
3966 begin
3967 -- The aggregate has been normalized with named associations. We use
3968 -- the Chars field to locate the discriminant to take into account
3969 -- discriminants in derived types, which carry the same name as those
3970 -- in the parent.
3972 Assoc := First (Component_Associations (N));
3973 while Present (Assoc) loop
3974 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3975 return Expression (Assoc);
3976 else
3977 Next (Assoc);
3978 end if;
3979 end loop;
3981 -- Discriminant must have been found in the loop above
3983 raise Program_Error;
3984 end Aggregate_Discriminant_Val;
3986 ------------------------------
3987 -- Replace_Current_Instance --
3988 ------------------------------
3990 function Replace_Current_Instance
3991 (N : Node_Id) return Traverse_Result is
3992 begin
3993 if Is_Entity_Name (N)
3994 and then Etype (N) = Entity (N)
3995 then
3996 Rewrite (N,
3997 New_Occurrence_Of (First_Formal (Current_Subprogram), Loc));
3998 end if;
4000 return OK;
4001 end Replace_Current_Instance;
4003 procedure Search_And_Replace_Current_Instance is new
4004 Traverse_Proc (Replace_Current_Instance);
4006 -- Start of processing for Build_Discriminant_Checks
4008 begin
4009 -- Loop through discriminants evolving the condition
4011 Cond := Empty;
4012 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
4014 -- For a fully private type, use the discriminants of the parent type
4016 if Is_Private_Type (T_Typ)
4017 and then No (Full_View (T_Typ))
4018 then
4019 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
4020 else
4021 Disc_Ent := First_Discriminant (T_Typ);
4022 end if;
4024 while Present (Disc) loop
4025 Dval := Node (Disc);
4027 if Nkind (Dval) = N_Identifier
4028 and then Ekind (Entity (Dval)) = E_Discriminant
4029 then
4030 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
4031 else
4032 Dval := Duplicate_Subexpr_No_Checks (Dval);
4033 end if;
4035 -- Replace references to the current instance of the type with the
4036 -- corresponding _init formal of the initialization procedure.
4038 if Within_Init_Proc then
4039 Search_And_Replace_Current_Instance (Dval);
4040 end if;
4042 -- If we have an Unchecked_Union node, we can infer the discriminants
4043 -- of the node.
4045 if Is_Unchecked_Union (Base_Type (T_Typ)) then
4046 Dref := New_Copy (
4047 Get_Discriminant_Value (
4048 First_Discriminant (T_Typ),
4049 T_Typ,
4050 Stored_Constraint (T_Typ)));
4052 elsif Nkind (N) = N_Aggregate then
4053 Dref :=
4054 Duplicate_Subexpr_No_Checks
4055 (Aggregate_Discriminant_Val (Disc_Ent));
4057 elsif Is_Access_Type (Etype (N)) then
4058 Dref :=
4059 Make_Selected_Component (Loc,
4060 Prefix =>
4061 Make_Explicit_Dereference (Loc,
4062 Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
4063 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
4065 Set_Is_In_Discriminant_Check (Dref);
4066 else
4067 Dref :=
4068 Make_Selected_Component (Loc,
4069 Prefix =>
4070 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
4071 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
4073 Set_Is_In_Discriminant_Check (Dref);
4074 end if;
4076 Evolve_Or_Else (Cond,
4077 Make_Op_Ne (Loc,
4078 Left_Opnd => Dref,
4079 Right_Opnd => Dval));
4081 Next_Elmt (Disc);
4082 Next_Discriminant (Disc_Ent);
4083 end loop;
4085 return Cond;
4086 end Build_Discriminant_Checks;
4088 ------------------
4089 -- Check_Needed --
4090 ------------------
4092 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
4093 N : Node_Id;
4094 P : Node_Id;
4095 K : Node_Kind;
4096 L : Node_Id;
4097 R : Node_Id;
4099 function Left_Expression (Op : Node_Id) return Node_Id;
4100 -- Return the relevant expression from the left operand of the given
4101 -- short circuit form: this is LO itself, except if LO is a qualified
4102 -- expression, a type conversion, or an expression with actions, in
4103 -- which case this is Left_Expression (Expression (LO)).
4105 ---------------------
4106 -- Left_Expression --
4107 ---------------------
4109 function Left_Expression (Op : Node_Id) return Node_Id is
4110 LE : Node_Id := Left_Opnd (Op);
4111 begin
4112 while Nkind (LE) in N_Qualified_Expression
4113 | N_Type_Conversion
4114 | N_Expression_With_Actions
4115 loop
4116 LE := Expression (LE);
4117 end loop;
4119 return LE;
4120 end Left_Expression;
4122 -- Start of processing for Check_Needed
4124 begin
4125 -- Always check if not simple entity
4127 if Nkind (Nod) not in N_Has_Entity
4128 or else not Comes_From_Source (Nod)
4129 then
4130 return True;
4131 end if;
4133 -- Look up tree for short circuit
4135 N := Nod;
4136 loop
4137 P := Parent (N);
4138 K := Nkind (P);
4140 -- Done if out of subexpression (note that we allow generated stuff
4141 -- such as itype declarations in this context, to keep the loop going
4142 -- since we may well have generated such stuff in complex situations.
4143 -- Also done if no parent (probably an error condition, but no point
4144 -- in behaving nasty if we find it).
4146 if No (P)
4147 or else (K not in N_Subexpr and then Comes_From_Source (P))
4148 then
4149 return True;
4151 -- Or/Or Else case, where test is part of the right operand, or is
4152 -- part of one of the actions associated with the right operand, and
4153 -- the left operand is an equality test.
4155 elsif K = N_Op_Or then
4156 exit when N = Right_Opnd (P)
4157 and then Nkind (Left_Expression (P)) = N_Op_Eq;
4159 elsif K = N_Or_Else then
4160 exit when (N = Right_Opnd (P)
4161 or else
4162 (Is_List_Member (N)
4163 and then List_Containing (N) = Actions (P)))
4164 and then Nkind (Left_Expression (P)) = N_Op_Eq;
4166 -- Similar test for the And/And then case, where the left operand
4167 -- is an inequality test.
4169 elsif K = N_Op_And then
4170 exit when N = Right_Opnd (P)
4171 and then Nkind (Left_Expression (P)) = N_Op_Ne;
4173 elsif K = N_And_Then then
4174 exit when (N = Right_Opnd (P)
4175 or else
4176 (Is_List_Member (N)
4177 and then List_Containing (N) = Actions (P)))
4178 and then Nkind (Left_Expression (P)) = N_Op_Ne;
4179 end if;
4181 N := P;
4182 end loop;
4184 -- If we fall through the loop, then we have a conditional with an
4185 -- appropriate test as its left operand, so look further.
4187 L := Left_Expression (P);
4189 -- L is an "=" or "/=" operator: extract its operands
4191 R := Right_Opnd (L);
4192 L := Left_Opnd (L);
4194 -- Left operand of test must match original variable
4196 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
4197 return True;
4198 end if;
4200 -- Right operand of test must be key value (zero or null)
4202 case Check is
4203 when Access_Check =>
4204 if not Known_Null (R) then
4205 return True;
4206 end if;
4208 when Division_Check =>
4209 if not Compile_Time_Known_Value (R)
4210 or else Expr_Value (R) /= Uint_0
4211 then
4212 return True;
4213 end if;
4215 when others =>
4216 raise Program_Error;
4217 end case;
4219 -- Here we have the optimizable case, warn if not short-circuited
4221 if K = N_Op_And or else K = N_Op_Or then
4222 Error_Msg_Warn := SPARK_Mode /= On;
4224 case Check is
4225 when Access_Check =>
4226 if GNATprove_Mode then
4227 Error_Msg_N
4228 ("Constraint_Error might have been raised (access check)",
4229 Parent (Nod));
4230 else
4231 Error_Msg_N
4232 ("Constraint_Error may be raised (access check)??",
4233 Parent (Nod));
4234 end if;
4236 when Division_Check =>
4237 if GNATprove_Mode then
4238 Error_Msg_N
4239 ("Constraint_Error might have been raised (zero divide)",
4240 Parent (Nod));
4241 else
4242 Error_Msg_N
4243 ("Constraint_Error may be raised (zero divide)??",
4244 Parent (Nod));
4245 end if;
4247 when others =>
4248 raise Program_Error;
4249 end case;
4251 if K = N_Op_And then
4252 Error_Msg_N -- CODEFIX
4253 ("use `AND THEN` instead of AND??", P);
4254 else
4255 Error_Msg_N -- CODEFIX
4256 ("use `OR ELSE` instead of OR??", P);
4257 end if;
4259 -- If not short-circuited, we need the check
4261 return True;
4263 -- If short-circuited, we can omit the check
4265 else
4266 return False;
4267 end if;
4268 end Check_Needed;
4270 -----------------------------------
4271 -- Check_Valid_Lvalue_Subscripts --
4272 -----------------------------------
4274 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4275 begin
4276 -- Skip this if range checks are suppressed
4278 if Range_Checks_Suppressed (Etype (Expr)) then
4279 return;
4281 -- Only do this check for expressions that come from source. We assume
4282 -- that expander generated assignments explicitly include any necessary
4283 -- checks. Note that this is not just an optimization, it avoids
4284 -- infinite recursions.
4286 elsif not Comes_From_Source (Expr) then
4287 return;
4289 -- For a selected component, check the prefix
4291 elsif Nkind (Expr) = N_Selected_Component then
4292 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4293 return;
4295 -- Case of indexed component
4297 elsif Nkind (Expr) = N_Indexed_Component then
4298 Apply_Subscript_Validity_Checks (Expr);
4300 -- Prefix may itself be or contain an indexed component, and these
4301 -- subscripts need checking as well.
4303 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4304 end if;
4305 end Check_Valid_Lvalue_Subscripts;
4307 ----------------------------------
4308 -- Null_Exclusion_Static_Checks --
4309 ----------------------------------
4311 procedure Null_Exclusion_Static_Checks
4312 (N : Node_Id;
4313 Comp : Node_Id := Empty;
4314 Array_Comp : Boolean := False)
4316 Has_Null : constant Boolean := Has_Null_Exclusion (N);
4317 Kind : constant Node_Kind := Nkind (N);
4318 Error_Nod : Node_Id;
4319 Expr : Node_Id;
4320 Typ : Entity_Id;
4322 begin
4323 pragma Assert
4324 (Kind in N_Component_Declaration
4325 | N_Discriminant_Specification
4326 | N_Function_Specification
4327 | N_Object_Declaration
4328 | N_Parameter_Specification);
4330 if Kind = N_Function_Specification then
4331 Typ := Etype (Defining_Entity (N));
4332 else
4333 Typ := Etype (Defining_Identifier (N));
4334 end if;
4336 case Kind is
4337 when N_Component_Declaration =>
4338 if Present (Access_Definition (Component_Definition (N))) then
4339 Error_Nod := Component_Definition (N);
4340 else
4341 Error_Nod := Subtype_Indication (Component_Definition (N));
4342 end if;
4344 when N_Discriminant_Specification =>
4345 Error_Nod := Discriminant_Type (N);
4347 when N_Function_Specification =>
4348 Error_Nod := Result_Definition (N);
4350 when N_Object_Declaration =>
4351 Error_Nod := Object_Definition (N);
4353 when N_Parameter_Specification =>
4354 Error_Nod := Parameter_Type (N);
4356 when others =>
4357 raise Program_Error;
4358 end case;
4360 if Has_Null then
4362 -- Enforce legality rule 3.10 (13): A null exclusion can only be
4363 -- applied to an access [sub]type.
4365 if not Is_Access_Type (Typ) then
4366 Error_Msg_N
4367 ("`NOT NULL` allowed only for an access type", Error_Nod);
4369 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
4370 -- be applied to a [sub]type that does not exclude null already.
4372 elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
4373 Error_Msg_NE
4374 ("`NOT NULL` not allowed (& already excludes null)",
4375 Error_Nod, Typ);
4376 end if;
4377 end if;
4379 -- Check that null-excluding objects are always initialized, except for
4380 -- deferred constants, for which the expression will appear in the full
4381 -- declaration.
4383 if Kind = N_Object_Declaration
4384 and then No (Expression (N))
4385 and then not Constant_Present (N)
4386 and then not No_Initialization (N)
4387 then
4388 if Present (Comp) then
4390 -- Specialize the warning message to indicate that we are dealing
4391 -- with an uninitialized composite object that has a defaulted
4392 -- null-excluding component.
4394 Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4395 Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4397 Discard_Node
4398 (Compile_Time_Constraint_Error
4399 (N => N,
4400 Msg =>
4401 "(Ada 2005) null-excluding component % of object % must "
4402 & "be initialized??",
4403 Ent => Defining_Identifier (Comp)));
4405 -- This is a case of an array with null-excluding components, so
4406 -- indicate that in the warning.
4408 elsif Array_Comp then
4409 Discard_Node
4410 (Compile_Time_Constraint_Error
4411 (N => N,
4412 Msg =>
4413 "(Ada 2005) null-excluding array components must "
4414 & "be initialized??",
4415 Ent => Defining_Identifier (N)));
4417 -- Normal case of object of a null-excluding access type
4419 else
4420 -- Add an expression that assigns null. This node is needed by
4421 -- Apply_Compile_Time_Constraint_Error, which will replace this
4422 -- with a Constraint_Error node.
4424 Set_Expression (N, Make_Null (Sloc (N)));
4425 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4427 Apply_Compile_Time_Constraint_Error
4428 (N => Expression (N),
4429 Msg =>
4430 "(Ada 2005) null-excluding objects must be initialized??",
4431 Reason => CE_Null_Not_Allowed);
4432 end if;
4433 end if;
4435 -- Check that a null-excluding component, formal or object is not being
4436 -- assigned a null value. Otherwise generate a warning message and
4437 -- replace Expression (N) by an N_Constraint_Error node.
4439 if Kind /= N_Function_Specification then
4440 Expr := Expression (N);
4442 if Present (Expr) and then Known_Null (Expr) then
4443 case Kind is
4444 when N_Component_Declaration
4445 | N_Discriminant_Specification
4447 Apply_Compile_Time_Constraint_Error
4448 (N => Expr,
4449 Msg =>
4450 "(Ada 2005) NULL not allowed in null-excluding "
4451 & "components??",
4452 Reason => CE_Null_Not_Allowed);
4454 when N_Object_Declaration =>
4455 Apply_Compile_Time_Constraint_Error
4456 (N => Expr,
4457 Msg =>
4458 "(Ada 2005) NULL not allowed in null-excluding "
4459 & "objects??",
4460 Reason => CE_Null_Not_Allowed);
4462 when N_Parameter_Specification =>
4463 Apply_Compile_Time_Constraint_Error
4464 (N => Expr,
4465 Msg =>
4466 "(Ada 2005) NULL not allowed in null-excluding "
4467 & "formals??",
4468 Reason => CE_Null_Not_Allowed);
4470 when others =>
4471 null;
4472 end case;
4473 end if;
4474 end if;
4475 end Null_Exclusion_Static_Checks;
4477 -------------------------------------
4478 -- Compute_Range_For_Arithmetic_Op --
4479 -------------------------------------
4481 procedure Compute_Range_For_Arithmetic_Op
4482 (Op : Node_Kind;
4483 Lo_Left : Uint;
4484 Hi_Left : Uint;
4485 Lo_Right : Uint;
4486 Hi_Right : Uint;
4487 OK : out Boolean;
4488 Lo : out Uint;
4489 Hi : out Uint)
4491 -- Use local variables for possible adjustments
4493 Llo : Uint renames Lo_Left;
4494 Lhi : Uint renames Hi_Left;
4495 Rlo : Uint := Lo_Right;
4496 Rhi : Uint := Hi_Right;
4498 begin
4499 -- We will compute a range for the result in almost all cases
4501 OK := True;
4503 case Op is
4505 -- Absolute value
4507 when N_Op_Abs =>
4508 Lo := Uint_0;
4509 Hi := UI_Max (abs Rlo, abs Rhi);
4511 -- Addition
4513 when N_Op_Add =>
4514 Lo := Llo + Rlo;
4515 Hi := Lhi + Rhi;
4517 -- Division
4519 when N_Op_Divide =>
4521 -- If the right operand can only be zero, set 0..0
4523 if Rlo = 0 and then Rhi = 0 then
4524 Lo := Uint_0;
4525 Hi := Uint_0;
4527 -- Possible bounds of division must come from dividing end
4528 -- values of the input ranges (four possibilities), provided
4529 -- zero is not included in the possible values of the right
4530 -- operand.
4532 -- Otherwise, we just consider two intervals of values for
4533 -- the right operand: the interval of negative values (up to
4534 -- -1) and the interval of positive values (starting at 1).
4535 -- Since division by 1 is the identity, and division by -1
4536 -- is negation, we get all possible bounds of division in that
4537 -- case by considering:
4538 -- - all values from the division of end values of input
4539 -- ranges;
4540 -- - the end values of the left operand;
4541 -- - the negation of the end values of the left operand.
4543 else
4544 declare
4545 Mrk : constant Uintp.Save_Mark := Mark;
4546 -- Mark so we can release the RR and Ev values
4548 Ev1 : Uint;
4549 Ev2 : Uint;
4550 Ev3 : Uint;
4551 Ev4 : Uint;
4553 begin
4554 -- Discard extreme values of zero for the divisor, since
4555 -- they will simply result in an exception in any case.
4557 if Rlo = 0 then
4558 Rlo := Uint_1;
4559 elsif Rhi = 0 then
4560 Rhi := -Uint_1;
4561 end if;
4563 -- Compute possible bounds coming from dividing end
4564 -- values of the input ranges.
4566 Ev1 := Llo / Rlo;
4567 Ev2 := Llo / Rhi;
4568 Ev3 := Lhi / Rlo;
4569 Ev4 := Lhi / Rhi;
4571 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
4572 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
4574 -- If the right operand can be both negative or positive,
4575 -- include the end values of the left operand in the
4576 -- extreme values, as well as their negation.
4578 if Rlo < 0 and then Rhi > 0 then
4579 Ev1 := Llo;
4580 Ev2 := -Llo;
4581 Ev3 := Lhi;
4582 Ev4 := -Lhi;
4584 Lo := UI_Min (Lo,
4585 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
4586 Hi := UI_Max (Hi,
4587 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
4588 end if;
4590 -- Release the RR and Ev values
4592 Release_And_Save (Mrk, Lo, Hi);
4593 end;
4594 end if;
4596 -- Exponentiation
4598 when N_Op_Expon =>
4600 -- Discard negative values for the exponent, since they will
4601 -- simply result in an exception in any case.
4603 if Rhi < 0 then
4604 Rhi := Uint_0;
4605 elsif Rlo < 0 then
4606 Rlo := Uint_0;
4607 end if;
4609 -- Estimate number of bits in result before we go computing
4610 -- giant useless bounds. Basically the number of bits in the
4611 -- result is the number of bits in the base multiplied by the
4612 -- value of the exponent. If this is big enough that the result
4613 -- definitely won't fit in Long_Long_Integer, return immediately
4614 -- and avoid computing giant bounds.
4616 -- The comparison here is approximate, but conservative, it
4617 -- only clicks on cases that are sure to exceed the bounds.
4619 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
4620 Lo := No_Uint;
4621 Hi := No_Uint;
4622 OK := False;
4623 return;
4625 -- If right operand is zero then result is 1
4627 elsif Rhi = 0 then
4628 Lo := Uint_1;
4629 Hi := Uint_1;
4631 else
4632 -- High bound comes either from exponentiation of largest
4633 -- positive value to largest exponent value, or from
4634 -- the exponentiation of most negative value to an
4635 -- even exponent.
4637 declare
4638 Hi1, Hi2 : Uint;
4640 begin
4641 if Lhi > 0 then
4642 Hi1 := Lhi ** Rhi;
4643 else
4644 Hi1 := Uint_0;
4645 end if;
4647 if Llo < 0 then
4648 if Rhi mod 2 = 0 then
4649 Hi2 := Llo ** Rhi;
4650 else
4651 Hi2 := Llo ** (Rhi - 1);
4652 end if;
4653 else
4654 Hi2 := Uint_0;
4655 end if;
4657 Hi := UI_Max (Hi1, Hi2);
4658 end;
4660 -- Result can only be negative if base can be negative
4662 if Llo < 0 then
4663 if Rhi mod 2 = 0 then
4664 Lo := Llo ** (Rhi - 1);
4665 else
4666 Lo := Llo ** Rhi;
4667 end if;
4669 -- Otherwise low bound is minimum ** minimum
4671 else
4672 Lo := Llo ** Rlo;
4673 end if;
4674 end if;
4676 -- Negation
4678 when N_Op_Minus =>
4679 Lo := -Rhi;
4680 Hi := -Rlo;
4682 -- Mod
4684 when N_Op_Mod =>
4685 declare
4686 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
4687 -- This is the maximum absolute value of the result
4689 begin
4690 Lo := Uint_0;
4691 Hi := Uint_0;
4693 -- The result depends only on the sign and magnitude of
4694 -- the right operand, it does not depend on the sign or
4695 -- magnitude of the left operand.
4697 if Rlo < 0 then
4698 Lo := -Maxabs;
4699 end if;
4701 if Rhi > 0 then
4702 Hi := Maxabs;
4703 end if;
4704 end;
4706 -- Multiplication
4708 when N_Op_Multiply =>
4710 -- Possible bounds of multiplication must come from multiplying
4711 -- end values of the input ranges (four possibilities).
4713 declare
4714 Mrk : constant Uintp.Save_Mark := Mark;
4715 -- Mark so we can release the Ev values
4717 Ev1 : constant Uint := Llo * Rlo;
4718 Ev2 : constant Uint := Llo * Rhi;
4719 Ev3 : constant Uint := Lhi * Rlo;
4720 Ev4 : constant Uint := Lhi * Rhi;
4722 begin
4723 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
4724 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
4726 -- Release the Ev values
4728 Release_And_Save (Mrk, Lo, Hi);
4729 end;
4731 -- Plus operator (affirmation)
4733 when N_Op_Plus =>
4734 Lo := Rlo;
4735 Hi := Rhi;
4737 -- Remainder
4739 when N_Op_Rem =>
4740 declare
4741 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
4742 -- This is the maximum absolute value of the result. Note
4743 -- that the result range does not depend on the sign of the
4744 -- right operand.
4746 begin
4747 Lo := Uint_0;
4748 Hi := Uint_0;
4750 -- Case of left operand negative, which results in a range
4751 -- of -Maxabs .. 0 for those negative values. If there are
4752 -- no negative values then Lo value of result is always 0.
4754 if Llo < 0 then
4755 Lo := -Maxabs;
4756 end if;
4758 -- Case of left operand positive
4760 if Lhi > 0 then
4761 Hi := Maxabs;
4762 end if;
4763 end;
4765 -- Subtract
4767 when N_Op_Subtract =>
4768 Lo := Llo - Rhi;
4769 Hi := Lhi - Rlo;
4771 -- Nothing else should be possible
4773 when others =>
4774 raise Program_Error;
4775 end case;
4776 end Compute_Range_For_Arithmetic_Op;
4778 ----------------------------------
4779 -- Conditional_Statements_Begin --
4780 ----------------------------------
4782 procedure Conditional_Statements_Begin is
4783 begin
4784 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4786 -- If stack overflows, kill all checks, that way we know to simply reset
4787 -- the number of saved checks to zero on return. This should never occur
4788 -- in practice.
4790 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4791 Kill_All_Checks;
4793 -- In the normal case, we just make a new stack entry saving the current
4794 -- number of saved checks for a later restore.
4796 else
4797 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4799 if Debug_Flag_CC then
4800 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4801 Num_Saved_Checks);
4802 end if;
4803 end if;
4804 end Conditional_Statements_Begin;
4806 --------------------------------
4807 -- Conditional_Statements_End --
4808 --------------------------------
4810 procedure Conditional_Statements_End is
4811 begin
4812 pragma Assert (Saved_Checks_TOS > 0);
4814 -- If the saved checks stack overflowed, then we killed all checks, so
4815 -- setting the number of saved checks back to zero is correct. This
4816 -- should never occur in practice.
4818 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4819 Num_Saved_Checks := 0;
4821 -- In the normal case, restore the number of saved checks from the top
4822 -- stack entry.
4824 else
4825 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
4827 if Debug_Flag_CC then
4828 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4829 Num_Saved_Checks);
4830 end if;
4831 end if;
4833 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4834 end Conditional_Statements_End;
4836 -------------------------
4837 -- Convert_From_Bignum --
4838 -------------------------
4840 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4841 Loc : constant Source_Ptr := Sloc (N);
4843 begin
4844 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4846 -- Construct call From Bignum
4848 return
4849 Make_Function_Call (Loc,
4850 Name =>
4851 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4852 Parameter_Associations => New_List (Relocate_Node (N)));
4853 end Convert_From_Bignum;
4855 -----------------------
4856 -- Convert_To_Bignum --
4857 -----------------------
4859 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4860 Loc : constant Source_Ptr := Sloc (N);
4862 begin
4863 -- Nothing to do if Bignum already except call Relocate_Node
4865 if Is_RTE (Etype (N), RE_Bignum) then
4866 return Relocate_Node (N);
4868 -- Otherwise construct call to To_Bignum, converting the operand to the
4869 -- required Long_Long_Integer form.
4871 else
4872 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4873 return
4874 Make_Function_Call (Loc,
4875 Name =>
4876 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4877 Parameter_Associations => New_List (
4878 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4879 end if;
4880 end Convert_To_Bignum;
4882 ---------------------
4883 -- Determine_Range --
4884 ---------------------
4886 Cache_Size : constant := 2 ** 10;
4887 type Cache_Index is range 0 .. Cache_Size - 1;
4888 -- Determine size of below cache (power of 2 is more efficient)
4890 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4891 Determine_Range_Cache_O : array (Cache_Index) of Node_Id;
4892 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4893 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4894 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4895 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4896 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
4897 -- The above arrays are used to implement a small direct cache for
4898 -- Determine_Range and Determine_Range_R calls. Because of the way these
4899 -- subprograms recursively traces subexpressions, and because overflow
4900 -- checking calls the routine on the way up the tree, a quadratic behavior
4901 -- can otherwise be encountered in large expressions. The cache entry for
4902 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4903 -- by checking the actual node value stored there. The Range_Cache_O array
4904 -- records the setting of Original_Node (N) so that the cache entry does
4905 -- not become stale when the node N is rewritten. The Range_Cache_V array
4906 -- records the setting of Assume_Valid for the cache entry.
4908 procedure Determine_Range
4909 (N : Node_Id;
4910 OK : out Boolean;
4911 Lo : out Uint;
4912 Hi : out Uint;
4913 Assume_Valid : Boolean := False)
4915 Kind : constant Node_Kind := Nkind (N);
4916 -- Kind of node
4918 function Half_Address_Space return Uint;
4919 -- The size of half the total addressable memory space in storage units
4920 -- (minus one, so that the size fits in a signed integer whose size is
4921 -- System_Address_Size, which helps in various cases).
4923 ------------------------
4924 -- Half_Address_Space --
4925 ------------------------
4927 function Half_Address_Space return Uint is
4928 begin
4929 return Uint_2 ** (System_Address_Size - 1) - 1;
4930 end Half_Address_Space;
4932 -- Local variables
4934 Typ : Entity_Id := Etype (N);
4935 -- Type to use, may get reset to base type for possibly invalid entity
4937 Lo_Left : Uint := No_Uint;
4938 Hi_Left : Uint := No_Uint;
4939 -- Lo and Hi bounds of left operand
4941 Lo_Right : Uint := No_Uint;
4942 Hi_Right : Uint := No_Uint;
4943 -- Lo and Hi bounds of right (or only) operand
4945 Bound : Node_Id;
4946 -- Temp variable used to hold a bound node
4948 Hbound : Uint;
4949 -- High bound of base type of expression
4951 Lor : Uint;
4952 Hir : Uint;
4953 -- Refined values for low and high bounds, after tightening
4955 OK1 : Boolean;
4956 -- Used in lower level calls to indicate if call succeeded
4958 Cindex : Cache_Index;
4959 -- Used to search cache
4961 Btyp : Entity_Id;
4962 -- Base type
4964 -- Start of processing for Determine_Range
4966 begin
4967 -- Prevent junk warnings by initializing range variables
4969 Lo := No_Uint;
4970 Hi := No_Uint;
4971 Lor := No_Uint;
4972 Hir := No_Uint;
4974 -- For temporary constants internally generated to remove side effects
4975 -- we must use the corresponding expression to determine the range of
4976 -- the expression. But note that the expander can also generate
4977 -- constants in other cases, including deferred constants.
4979 if Is_Entity_Name (N)
4980 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4981 and then Ekind (Entity (N)) = E_Constant
4982 and then Is_Internal_Name (Chars (Entity (N)))
4983 then
4984 if Present (Expression (Parent (Entity (N)))) then
4985 Determine_Range
4986 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4988 elsif Present (Full_View (Entity (N))) then
4989 Determine_Range
4990 (Expression (Parent (Full_View (Entity (N)))),
4991 OK, Lo, Hi, Assume_Valid);
4993 else
4994 OK := False;
4995 end if;
4996 return;
4997 end if;
4999 -- If type is not defined, we can't determine its range
5001 if No (Typ)
5003 -- We don't deal with anything except discrete types
5005 or else not Is_Discrete_Type (Typ)
5007 -- Don't deal with enumerated types with non-standard representation
5009 or else (Is_Enumeration_Type (Typ)
5010 and then Present (Enum_Pos_To_Rep
5011 (Implementation_Base_Type (Typ))))
5013 -- Ignore type for which an error has been posted, since range in
5014 -- this case may well be a bogosity deriving from the error. Also
5015 -- ignore if error posted on the reference node.
5017 or else Error_Posted (N) or else Error_Posted (Typ)
5018 then
5019 OK := False;
5020 return;
5021 end if;
5023 -- For all other cases, we can determine the range
5025 OK := True;
5027 -- If value is compile time known, then the possible range is the one
5028 -- value that we know this expression definitely has.
5030 if Compile_Time_Known_Value (N) then
5031 Lo := Expr_Value (N);
5032 Hi := Lo;
5033 return;
5034 end if;
5036 -- Return if already in the cache
5038 Cindex := Cache_Index (N mod Cache_Size);
5040 if Determine_Range_Cache_N (Cindex) = N
5041 and then
5042 Determine_Range_Cache_O (Cindex) = Original_Node (N)
5043 and then
5044 Determine_Range_Cache_V (Cindex) = Assume_Valid
5045 then
5046 Lo := Determine_Range_Cache_Lo (Cindex);
5047 Hi := Determine_Range_Cache_Hi (Cindex);
5048 return;
5049 end if;
5051 -- Otherwise, start by finding the bounds of the type of the expression,
5052 -- the value cannot be outside this range (if it is, then we have an
5053 -- overflow situation, which is a separate check, we are talking here
5054 -- only about the expression value).
5056 -- First a check, never try to find the bounds of a generic type, since
5057 -- these bounds are always junk values, and it is only valid to look at
5058 -- the bounds in an instance.
5060 if Is_Generic_Type (Typ) then
5061 OK := False;
5062 return;
5063 end if;
5065 -- First step, change to use base type unless we know the value is valid
5067 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5068 or else Assume_No_Invalid_Values
5069 or else Assume_Valid
5070 then
5071 -- If this is a known valid constant with a nonstatic value, it may
5072 -- have inherited a narrower subtype from its initial value; use this
5073 -- saved subtype (see sem_ch3.adb).
5075 if Is_Entity_Name (N)
5076 and then Ekind (Entity (N)) = E_Constant
5077 and then Present (Actual_Subtype (Entity (N)))
5078 then
5079 Typ := Actual_Subtype (Entity (N));
5080 end if;
5082 else
5083 Typ := Underlying_Type (Base_Type (Typ));
5084 end if;
5086 -- Retrieve the base type. Handle the case where the base type is a
5087 -- private enumeration type.
5089 Btyp := Base_Type (Typ);
5091 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5092 Btyp := Full_View (Btyp);
5093 end if;
5095 -- We use the actual bound unless it is dynamic, in which case use the
5096 -- corresponding base type bound if possible. If we can't get a bound
5097 -- then we figure we can't determine the range (a peculiar case, that
5098 -- perhaps cannot happen, but there is no point in bombing in this
5099 -- optimization circuit).
5101 -- First the low bound
5103 Bound := Type_Low_Bound (Typ);
5105 if Compile_Time_Known_Value (Bound) then
5106 Lo := Expr_Value (Bound);
5108 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5109 Lo := Expr_Value (Type_Low_Bound (Btyp));
5111 else
5112 OK := False;
5113 return;
5114 end if;
5116 -- Now the high bound
5118 Bound := Type_High_Bound (Typ);
5120 -- We need the high bound of the base type later on, and this should
5121 -- always be compile time known. Again, it is not clear that this
5122 -- can ever be false, but no point in bombing.
5124 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5125 Hbound := Expr_Value (Type_High_Bound (Btyp));
5126 Hi := Hbound;
5128 else
5129 OK := False;
5130 return;
5131 end if;
5133 -- If we have a static subtype, then that may have a tighter bound so
5134 -- use the upper bound of the subtype instead in this case.
5136 if Compile_Time_Known_Value (Bound) then
5137 Hi := Expr_Value (Bound);
5138 end if;
5140 -- We may be able to refine this value in certain situations. If any
5141 -- refinement is possible, then Lor and Hir are set to possibly tighter
5142 -- bounds, and OK1 is set to True.
5144 case Kind is
5146 -- Unary operation case
5148 when N_Op_Abs
5149 | N_Op_Minus
5150 | N_Op_Plus
5152 Determine_Range
5153 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5155 if OK1 then
5156 Compute_Range_For_Arithmetic_Op
5157 (Kind, Lo_Left, Hi_Left, Lo_Right, Hi_Right, OK1, Lor, Hir);
5158 end if;
5160 -- Binary operation case
5162 when N_Op_Add
5163 | N_Op_Divide
5164 | N_Op_Expon
5165 | N_Op_Mod
5166 | N_Op_Multiply
5167 | N_Op_Rem
5168 | N_Op_Subtract
5170 Determine_Range
5171 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
5173 if OK1 then
5174 Determine_Range
5175 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5176 end if;
5178 if OK1 then
5179 Compute_Range_For_Arithmetic_Op
5180 (Kind, Lo_Left, Hi_Left, Lo_Right, Hi_Right, OK1, Lor, Hir);
5181 end if;
5183 -- Attribute reference cases
5185 when N_Attribute_Reference =>
5186 case Get_Attribute_Id (Attribute_Name (N)) is
5188 -- For Min/Max attributes, we can refine the range using the
5189 -- possible range of values of the attribute expressions.
5191 when Attribute_Min
5192 | Attribute_Max
5194 Determine_Range
5195 (First (Expressions (N)),
5196 OK1, Lo_Left, Hi_Left, Assume_Valid);
5198 if OK1 then
5199 Determine_Range
5200 (Next (First (Expressions (N))),
5201 OK1, Lo_Right, Hi_Right, Assume_Valid);
5202 end if;
5204 if OK1 then
5205 Lor := UI_Min (Lo_Left, Lo_Right);
5206 Hir := UI_Max (Hi_Left, Hi_Right);
5207 end if;
5209 -- For Pos/Val attributes, we can refine the range using the
5210 -- possible range of values of the attribute expression.
5212 when Attribute_Pos
5213 | Attribute_Val
5215 Determine_Range
5216 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
5218 -- For Length and Range_Length attributes, use the bounds of
5219 -- the (corresponding index) type to refine the range.
5221 when Attribute_Length
5222 | Attribute_Range_Length
5224 declare
5225 Ptyp : Entity_Id;
5226 Ityp : Entity_Id;
5228 LL, LU : Uint;
5229 UL, UU : Uint;
5231 begin
5232 Ptyp := Etype (Prefix (N));
5233 if Is_Access_Type (Ptyp) then
5234 Ptyp := Designated_Type (Ptyp);
5235 end if;
5237 -- For string literal, we know exact value
5239 if Ekind (Ptyp) = E_String_Literal_Subtype then
5240 OK := True;
5241 Lo := String_Literal_Length (Ptyp);
5242 Hi := String_Literal_Length (Ptyp);
5243 return;
5244 end if;
5246 if Is_Array_Type (Ptyp) then
5247 Ityp := Get_Index_Subtype (N);
5248 else
5249 Ityp := Ptyp;
5250 end if;
5252 -- If the (index) type is a formal type or derived from
5253 -- one, the bounds are not static.
5255 if Is_Generic_Type (Root_Type (Ityp)) then
5256 OK := False;
5257 return;
5258 end if;
5260 Determine_Range
5261 (Type_Low_Bound (Ityp), OK1, LL, LU, Assume_Valid);
5263 if OK1 then
5264 Determine_Range
5265 (Type_High_Bound (Ityp), OK1, UL, UU, Assume_Valid);
5267 if OK1 then
5268 -- The maximum value for Length is the biggest
5269 -- possible gap between the values of the bounds.
5270 -- But of course, this value cannot be negative.
5272 Hir := UI_Max (Uint_0, UU - LL + 1);
5274 -- For a constrained array, the minimum value for
5275 -- Length is taken from the actual value of the
5276 -- bounds, since the index will be exactly of this
5277 -- subtype.
5279 if Is_Constrained (Ptyp) then
5280 Lor := UI_Max (Uint_0, UL - LU + 1);
5282 -- For an unconstrained array, the minimum value
5283 -- for length is always zero.
5285 else
5286 Lor := Uint_0;
5287 end if;
5288 end if;
5289 end if;
5291 -- Small optimization: the maximum size in storage units
5292 -- an object can have with GNAT is half of the address
5293 -- space, so we can bound the length of an array declared
5294 -- in Interfaces (or its children) because its component
5295 -- size is at least the storage unit and it is meant to
5296 -- be used to interface actual array objects.
5298 if Is_Array_Type (Ptyp) then
5299 declare
5300 S : constant Entity_Id := Scope (Base_Type (Ptyp));
5301 begin
5302 if Is_RTU (S, Interfaces)
5303 or else (S /= Standard_Standard
5304 and then Is_RTU (Scope (S), Interfaces))
5305 then
5306 Hir := UI_Min (Hir, Half_Address_Space);
5307 end if;
5308 end;
5309 end if;
5310 end;
5312 -- The maximum default alignment is quite low, but GNAT accepts
5313 -- alignment clauses that are fairly large, but not as large as
5314 -- the maximum size of objects, see below.
5316 when Attribute_Alignment =>
5317 Lor := Uint_0;
5318 Hir := Half_Address_Space;
5319 OK1 := True;
5321 -- The attribute should have been folded if a component clause
5322 -- was specified, so we assume there is none.
5324 when Attribute_Bit
5325 | Attribute_First_Bit
5327 Lor := Uint_0;
5328 Hir := UI_From_Int (System_Storage_Unit - 1);
5329 OK1 := True;
5331 -- Likewise about the component clause. Note that Last_Bit
5332 -- yields -1 for a field of size 0 if First_Bit is 0.
5334 when Attribute_Last_Bit =>
5335 Lor := Uint_Minus_1;
5336 Hir := Hi;
5337 OK1 := True;
5339 -- Likewise about the component clause for Position. The
5340 -- maximum size in storage units that an object can have
5341 -- with GNAT is half of the address space.
5343 when Attribute_Max_Size_In_Storage_Elements
5344 | Attribute_Position
5346 Lor := Uint_0;
5347 Hir := Half_Address_Space;
5348 OK1 := True;
5350 -- These attributes yield a nonnegative value (we do not set
5351 -- the maximum value because it is too large to be useful).
5353 when Attribute_Bit_Position
5354 | Attribute_Component_Size
5355 | Attribute_Object_Size
5356 | Attribute_Size
5357 | Attribute_Value_Size
5359 Lor := Uint_0;
5360 Hir := Hi;
5361 OK1 := True;
5363 -- The maximum size is the sum of twice the size of the largest
5364 -- integer for every dimension, rounded up to the next multiple
5365 -- of the maximum alignment, but we add instead of rounding.
5367 when Attribute_Descriptor_Size =>
5368 declare
5369 Max_Align : constant Pos :=
5370 Maximum_Alignment * System_Storage_Unit;
5371 Max_Size : constant Uint :=
5372 2 * Esize (Universal_Integer);
5373 Ndims : constant Pos :=
5374 Number_Dimensions (Etype (Prefix (N)));
5375 begin
5376 Lor := Uint_0;
5377 Hir := Max_Size * Ndims + Max_Align;
5378 OK1 := True;
5379 end;
5381 -- No special handling for other attributes for now
5383 when others =>
5384 OK1 := False;
5386 end case;
5388 when N_Type_Conversion =>
5389 -- For a type conversion, we can try to refine the range using the
5390 -- converted value.
5392 Determine_Range_To_Discrete
5393 (Expression (N), OK1, Lor, Hir, Conversion_OK (N), Assume_Valid);
5395 -- Nothing special to do for all other expression kinds
5397 when others =>
5398 OK1 := False;
5399 Lor := No_Uint;
5400 Hir := No_Uint;
5401 end case;
5403 -- At this stage, if OK1 is true, then we know that the actual result of
5404 -- the computed expression is in the range Lor .. Hir. We can use this
5405 -- to restrict the possible range of results.
5407 if OK1 then
5409 -- If the refined value of the low bound is greater than the type
5410 -- low bound, then reset it to the more restrictive value. However,
5411 -- we do NOT do this for the case of a modular type where the
5412 -- possible upper bound on the value is above the base type high
5413 -- bound, because that means the result could wrap.
5414 -- Same applies for the lower bound if it is negative.
5416 if Is_Modular_Integer_Type (Typ) then
5417 if Lor > Lo and then Hir <= Hbound then
5418 Lo := Lor;
5419 end if;
5421 if Hir < Hi and then Lor >= Uint_0 then
5422 Hi := Hir;
5423 end if;
5425 else
5426 if Lor > Hi or else Hir < Lo then
5428 -- If the ranges are disjoint, return the computed range.
5430 -- The current range-constraining logic would require returning
5431 -- the base type's bounds. However, this would miss an
5432 -- opportunity to warn about out-of-range values for some cases
5433 -- (e.g. when type's upper bound is equal to base type upper
5434 -- bound).
5436 -- The alternative of always returning the computed values,
5437 -- even when ranges are intersecting, has unwanted effects
5438 -- (mainly useless constraint checks are inserted) in the
5439 -- Enable_Overflow_Check and Apply_Scalar_Range_Check as these
5440 -- bounds have a special interpretation.
5442 Lo := Lor;
5443 Hi := Hir;
5444 else
5446 -- If the ranges Lor .. Hir and Lo .. Hi intersect, try to
5447 -- refine the returned range.
5449 if Lor > Lo then
5450 Lo := Lor;
5451 end if;
5453 if Hir < Hi then
5454 Hi := Hir;
5455 end if;
5456 end if;
5457 end if;
5458 end if;
5460 -- Set cache entry for future call and we are all done
5462 Determine_Range_Cache_N (Cindex) := N;
5463 Determine_Range_Cache_O (Cindex) := Original_Node (N);
5464 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5465 Determine_Range_Cache_Lo (Cindex) := Lo;
5466 Determine_Range_Cache_Hi (Cindex) := Hi;
5467 return;
5469 -- If any exception occurs, it means that we have some bug in the compiler,
5470 -- possibly triggered by a previous error, or by some unforeseen peculiar
5471 -- occurrence. However, this is only an optimization attempt, so there is
5472 -- really no point in crashing the compiler. Instead we just decide, too
5473 -- bad, we can't figure out a range in this case after all.
5475 exception
5476 when others =>
5478 -- Debug flag K disables this behavior (useful for debugging)
5480 if Debug_Flag_K then
5481 raise;
5482 else
5483 OK := False;
5484 Lo := No_Uint;
5485 Hi := No_Uint;
5486 return;
5487 end if;
5488 end Determine_Range;
5490 -----------------------
5491 -- Determine_Range_R --
5492 -----------------------
5494 procedure Determine_Range_R
5495 (N : Node_Id;
5496 OK : out Boolean;
5497 Lo : out Ureal;
5498 Hi : out Ureal;
5499 Assume_Valid : Boolean := False)
5501 Typ : Entity_Id := Etype (N);
5502 -- Type to use, may get reset to base type for possibly invalid entity
5504 Lo_Left : Ureal;
5505 Hi_Left : Ureal;
5506 -- Lo and Hi bounds of left operand
5508 Lo_Right : Ureal := No_Ureal;
5509 Hi_Right : Ureal := No_Ureal;
5510 -- Lo and Hi bounds of right (or only) operand
5512 Bound : Node_Id;
5513 -- Temp variable used to hold a bound node
5515 Hbound : Ureal;
5516 -- High bound of base type of expression
5518 Lor : Ureal;
5519 Hir : Ureal;
5520 -- Refined values for low and high bounds, after tightening
5522 OK1 : Boolean;
5523 -- Used in lower level calls to indicate if call succeeded
5525 Cindex : Cache_Index;
5526 -- Used to search cache
5528 Btyp : Entity_Id;
5529 -- Base type
5531 function OK_Operands return Boolean;
5532 -- Used for binary operators. Determines the ranges of the left and
5533 -- right operands, and if they are both OK, returns True, and puts
5534 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
5536 function Round_Machine (B : Ureal) return Ureal;
5537 -- B is a real bound. Round it to the nearest machine number.
5539 -----------------
5540 -- OK_Operands --
5541 -----------------
5543 function OK_Operands return Boolean is
5544 begin
5545 Determine_Range_R
5546 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
5548 if not OK1 then
5549 return False;
5550 end if;
5552 Determine_Range_R
5553 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5554 return OK1;
5555 end OK_Operands;
5557 -------------------
5558 -- Round_Machine --
5559 -------------------
5561 function Round_Machine (B : Ureal) return Ureal is
5562 begin
5563 return Machine_Number (Typ, B, N);
5564 end Round_Machine;
5566 -- Start of processing for Determine_Range_R
5568 begin
5569 -- Prevent junk warnings by initializing range variables
5571 Lo := No_Ureal;
5572 Hi := No_Ureal;
5573 Lor := No_Ureal;
5574 Hir := No_Ureal;
5576 -- For temporary constants internally generated to remove side effects
5577 -- we must use the corresponding expression to determine the range of
5578 -- the expression. But note that the expander can also generate
5579 -- constants in other cases, including deferred constants.
5581 if Is_Entity_Name (N)
5582 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
5583 and then Ekind (Entity (N)) = E_Constant
5584 and then Is_Internal_Name (Chars (Entity (N)))
5585 then
5586 if Present (Expression (Parent (Entity (N)))) then
5587 Determine_Range_R
5588 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
5590 elsif Present (Full_View (Entity (N))) then
5591 Determine_Range_R
5592 (Expression (Parent (Full_View (Entity (N)))),
5593 OK, Lo, Hi, Assume_Valid);
5595 else
5596 OK := False;
5597 end if;
5599 return;
5600 end if;
5602 -- If type is not defined, we can't determine its range
5604 pragma Warnings (Off, "condition can only be True if invalid");
5605 -- Otherwise the compiler warns on the check of Float_Rep below, because
5606 -- there is only one value (see types.ads).
5608 if No (Typ)
5610 -- We don't deal with anything except IEEE floating-point types
5612 or else not Is_Floating_Point_Type (Typ)
5613 or else Float_Rep (Typ) /= IEEE_Binary
5615 -- Ignore type for which an error has been posted, since range in
5616 -- this case may well be a bogosity deriving from the error. Also
5617 -- ignore if error posted on the reference node.
5619 or else Error_Posted (N) or else Error_Posted (Typ)
5620 then
5621 pragma Warnings (On, "condition can only be True if invalid");
5622 OK := False;
5623 return;
5624 end if;
5626 -- For all other cases, we can determine the range
5628 OK := True;
5630 -- If value is compile time known, then the possible range is the one
5631 -- value that we know this expression definitely has.
5633 if Compile_Time_Known_Value (N) then
5634 Lo := Expr_Value_R (N);
5635 Hi := Lo;
5636 return;
5637 end if;
5639 -- Return if already in the cache
5641 Cindex := Cache_Index (N mod Cache_Size);
5643 if Determine_Range_Cache_N (Cindex) = N
5644 and then
5645 Determine_Range_Cache_O (Cindex) = Original_Node (N)
5646 and then
5647 Determine_Range_Cache_V (Cindex) = Assume_Valid
5648 then
5649 Lo := Determine_Range_Cache_Lo_R (Cindex);
5650 Hi := Determine_Range_Cache_Hi_R (Cindex);
5651 return;
5652 end if;
5654 -- Otherwise, start by finding the bounds of the type of the expression,
5655 -- the value cannot be outside this range (if it is, then we have an
5656 -- overflow situation, which is a separate check, we are talking here
5657 -- only about the expression value).
5659 -- First a check, never try to find the bounds of a generic type, since
5660 -- these bounds are always junk values, and it is only valid to look at
5661 -- the bounds in an instance.
5663 if Is_Generic_Type (Typ) then
5664 OK := False;
5665 return;
5666 end if;
5668 -- First step, change to use base type unless we know the value is valid
5670 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5671 or else Assume_No_Invalid_Values
5672 or else Assume_Valid
5673 then
5674 null;
5675 else
5676 Typ := Underlying_Type (Base_Type (Typ));
5677 end if;
5679 -- Retrieve the base type. Handle the case where the base type is a
5680 -- private type.
5682 Btyp := Base_Type (Typ);
5684 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5685 Btyp := Full_View (Btyp);
5686 end if;
5688 -- We use the actual bound unless it is dynamic, in which case use the
5689 -- corresponding base type bound if possible. If we can't get a bound
5690 -- then we figure we can't determine the range (a peculiar case, that
5691 -- perhaps cannot happen, but there is no point in bombing in this
5692 -- optimization circuit).
5694 -- First the low bound
5696 Bound := Type_Low_Bound (Typ);
5698 if Compile_Time_Known_Value (Bound) then
5699 Lo := Expr_Value_R (Bound);
5701 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5702 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5704 else
5705 OK := False;
5706 return;
5707 end if;
5709 -- Now the high bound
5711 Bound := Type_High_Bound (Typ);
5713 -- We need the high bound of the base type later on, and this should
5714 -- always be compile time known. Again, it is not clear that this
5715 -- can ever be false, but no point in bombing.
5717 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5718 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5719 Hi := Hbound;
5721 else
5722 OK := False;
5723 return;
5724 end if;
5726 -- If we have a static subtype, then that may have a tighter bound so
5727 -- use the upper bound of the subtype instead in this case.
5729 if Compile_Time_Known_Value (Bound) then
5730 Hi := Expr_Value_R (Bound);
5731 end if;
5733 -- We may be able to refine this value in certain situations. If any
5734 -- refinement is possible, then Lor and Hir are set to possibly tighter
5735 -- bounds, and OK1 is set to True.
5737 case Nkind (N) is
5739 -- For unary plus, result is limited by range of operand
5741 when N_Op_Plus =>
5742 Determine_Range_R
5743 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5745 -- For unary minus, determine range of operand, and negate it
5747 when N_Op_Minus =>
5748 Determine_Range_R
5749 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5751 if OK1 then
5752 Lor := -Hi_Right;
5753 Hir := -Lo_Right;
5754 end if;
5756 -- For binary addition, get range of each operand and do the
5757 -- addition to get the result range.
5759 when N_Op_Add =>
5760 if OK_Operands then
5761 Lor := Round_Machine (Lo_Left + Lo_Right);
5762 Hir := Round_Machine (Hi_Left + Hi_Right);
5763 end if;
5765 -- For binary subtraction, get range of each operand and do the worst
5766 -- case subtraction to get the result range.
5768 when N_Op_Subtract =>
5769 if OK_Operands then
5770 Lor := Round_Machine (Lo_Left - Hi_Right);
5771 Hir := Round_Machine (Hi_Left - Lo_Right);
5772 end if;
5774 -- For multiplication, get range of each operand and do the
5775 -- four multiplications to get the result range.
5777 when N_Op_Multiply =>
5778 if OK_Operands then
5779 declare
5780 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5781 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5782 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5783 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
5785 begin
5786 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5787 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5788 end;
5789 end if;
5791 -- For division, consider separately the cases where the right
5792 -- operand is positive or negative. Otherwise, the right operand
5793 -- can be arbitrarily close to zero, so the result is likely to
5794 -- be unbounded in one direction, do not attempt to compute it.
5796 when N_Op_Divide =>
5797 if OK_Operands then
5799 -- Right operand is positive
5801 if Lo_Right > Ureal_0 then
5803 -- If the low bound of the left operand is negative, obtain
5804 -- the overall low bound by dividing it by the smallest
5805 -- value of the right operand, and otherwise by the largest
5806 -- value of the right operand.
5808 if Lo_Left < Ureal_0 then
5809 Lor := Round_Machine (Lo_Left / Lo_Right);
5810 else
5811 Lor := Round_Machine (Lo_Left / Hi_Right);
5812 end if;
5814 -- If the high bound of the left operand is negative, obtain
5815 -- the overall high bound by dividing it by the largest
5816 -- value of the right operand, and otherwise by the
5817 -- smallest value of the right operand.
5819 if Hi_Left < Ureal_0 then
5820 Hir := Round_Machine (Hi_Left / Hi_Right);
5821 else
5822 Hir := Round_Machine (Hi_Left / Lo_Right);
5823 end if;
5825 -- Right operand is negative
5827 elsif Hi_Right < Ureal_0 then
5829 -- If the low bound of the left operand is negative, obtain
5830 -- the overall low bound by dividing it by the largest
5831 -- value of the right operand, and otherwise by the smallest
5832 -- value of the right operand.
5834 if Lo_Left < Ureal_0 then
5835 Lor := Round_Machine (Lo_Left / Hi_Right);
5836 else
5837 Lor := Round_Machine (Lo_Left / Lo_Right);
5838 end if;
5840 -- If the high bound of the left operand is negative, obtain
5841 -- the overall high bound by dividing it by the smallest
5842 -- value of the right operand, and otherwise by the
5843 -- largest value of the right operand.
5845 if Hi_Left < Ureal_0 then
5846 Hir := Round_Machine (Hi_Left / Lo_Right);
5847 else
5848 Hir := Round_Machine (Hi_Left / Hi_Right);
5849 end if;
5851 else
5852 OK1 := False;
5853 end if;
5854 end if;
5856 when N_Type_Conversion =>
5858 -- For type conversion from one floating-point type to another, we
5859 -- can refine the range using the converted value.
5861 if Is_Floating_Point_Type (Etype (Expression (N))) then
5862 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5864 -- When converting an integer to a floating-point type, determine
5865 -- the range in integer first, and then convert the bounds.
5867 elsif Is_Discrete_Type (Etype (Expression (N))) then
5868 declare
5869 Hir_Int : Uint;
5870 Lor_Int : Uint;
5872 begin
5873 Determine_Range
5874 (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
5876 if OK1 then
5877 Lor := Round_Machine (UR_From_Uint (Lor_Int));
5878 Hir := Round_Machine (UR_From_Uint (Hir_Int));
5879 end if;
5880 end;
5882 else
5883 OK1 := False;
5884 end if;
5886 -- Nothing special to do for all other expression kinds
5888 when others =>
5889 OK1 := False;
5890 Lor := No_Ureal;
5891 Hir := No_Ureal;
5892 end case;
5894 -- At this stage, if OK1 is true, then we know that the actual result of
5895 -- the computed expression is in the range Lor .. Hir. We can use this
5896 -- to restrict the possible range of results.
5898 if OK1 then
5900 -- If the refined value of the low bound is greater than the type
5901 -- low bound, then reset it to the more restrictive value.
5903 if Lor > Lo then
5904 Lo := Lor;
5905 end if;
5907 -- Similarly, if the refined value of the high bound is less than the
5908 -- value so far, then reset it to the more restrictive value.
5910 if Hir < Hi then
5911 Hi := Hir;
5912 end if;
5913 end if;
5915 -- Set cache entry for future call and we are all done
5917 Determine_Range_Cache_N (Cindex) := N;
5918 Determine_Range_Cache_O (Cindex) := Original_Node (N);
5919 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5920 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5921 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5922 return;
5924 -- If any exception occurs, it means that we have some bug in the compiler,
5925 -- possibly triggered by a previous error, or by some unforeseen peculiar
5926 -- occurrence. However, this is only an optimization attempt, so there is
5927 -- really no point in crashing the compiler. Instead we just decide, too
5928 -- bad, we can't figure out a range in this case after all.
5930 exception
5931 when others =>
5933 -- Debug flag K disables this behavior (useful for debugging)
5935 if Debug_Flag_K then
5936 raise;
5937 else
5938 OK := False;
5939 Lo := No_Ureal;
5940 Hi := No_Ureal;
5941 return;
5942 end if;
5943 end Determine_Range_R;
5945 ---------------------------------
5946 -- Determine_Range_To_Discrete --
5947 ---------------------------------
5949 procedure Determine_Range_To_Discrete
5950 (N : Node_Id;
5951 OK : out Boolean;
5952 Lo : out Uint;
5953 Hi : out Uint;
5954 Fixed_Int : Boolean := False;
5955 Assume_Valid : Boolean := False)
5957 Typ : constant Entity_Id := Etype (N);
5959 begin
5960 -- For a discrete type, simply defer to Determine_Range
5962 if Is_Discrete_Type (Typ) then
5963 Determine_Range (N, OK, Lo, Hi, Assume_Valid);
5965 -- For a fixed point type treated as an integer, we can determine the
5966 -- range using the Corresponding_Integer_Value of the bounds of the
5967 -- type or base type. This is done by the calls to Expr_Value below.
5969 elsif Is_Fixed_Point_Type (Typ) and then Fixed_Int then
5970 declare
5971 Btyp, Ftyp : Entity_Id;
5972 Bound : Node_Id;
5974 begin
5975 if Assume_Valid then
5976 Ftyp := Typ;
5977 else
5978 Ftyp := Underlying_Type (Base_Type (Typ));
5979 end if;
5981 Btyp := Base_Type (Ftyp);
5983 -- First the low bound
5985 Bound := Type_Low_Bound (Ftyp);
5987 if Compile_Time_Known_Value (Bound) then
5988 Lo := Expr_Value (Bound);
5989 else
5990 Lo := Expr_Value (Type_Low_Bound (Btyp));
5991 end if;
5993 -- Then the high bound
5995 Bound := Type_High_Bound (Ftyp);
5997 if Compile_Time_Known_Value (Bound) then
5998 Hi := Expr_Value (Bound);
5999 else
6000 Hi := Expr_Value (Type_High_Bound (Btyp));
6001 end if;
6003 OK := True;
6004 end;
6006 -- For a floating-point type, we can determine the range in real first,
6007 -- and then convert the bounds using UR_To_Uint, which correctly rounds
6008 -- away from zero when half way between two integers, as required by
6009 -- normal Ada 95 rounding semantics. But this is only possible because
6010 -- GNATprove's analysis rules out the possibility of a NaN or infinite.
6012 elsif GNATprove_Mode and then Is_Floating_Point_Type (Typ) then
6013 declare
6014 Lo_Real, Hi_Real : Ureal;
6016 begin
6017 Determine_Range_R (N, OK, Lo_Real, Hi_Real, Assume_Valid);
6019 if OK then
6020 Lo := UR_To_Uint (Lo_Real);
6021 Hi := UR_To_Uint (Hi_Real);
6022 else
6023 Lo := No_Uint;
6024 Hi := No_Uint;
6025 end if;
6026 end;
6028 else
6029 Lo := No_Uint;
6030 Hi := No_Uint;
6031 OK := False;
6032 end if;
6033 end Determine_Range_To_Discrete;
6035 ------------------------------------
6036 -- Discriminant_Checks_Suppressed --
6037 ------------------------------------
6039 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
6040 begin
6041 if Present (E) then
6042 if Is_Unchecked_Union (E) then
6043 return True;
6044 elsif Checks_May_Be_Suppressed (E) then
6045 return Is_Check_Suppressed (E, Discriminant_Check);
6046 end if;
6047 end if;
6049 return Scope_Suppress.Suppress (Discriminant_Check);
6050 end Discriminant_Checks_Suppressed;
6052 --------------------------------
6053 -- Division_Checks_Suppressed --
6054 --------------------------------
6056 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
6057 begin
6058 if Present (E) and then Checks_May_Be_Suppressed (E) then
6059 return Is_Check_Suppressed (E, Division_Check);
6060 else
6061 return Scope_Suppress.Suppress (Division_Check);
6062 end if;
6063 end Division_Checks_Suppressed;
6065 --------------------------------------
6066 -- Duplicated_Tag_Checks_Suppressed --
6067 --------------------------------------
6069 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
6070 begin
6071 if Present (E) and then Checks_May_Be_Suppressed (E) then
6072 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
6073 else
6074 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
6075 end if;
6076 end Duplicated_Tag_Checks_Suppressed;
6078 -----------------------------------
6079 -- Elaboration_Checks_Suppressed --
6080 -----------------------------------
6082 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
6083 begin
6084 -- The complication in this routine is that if we are in the dynamic
6085 -- model of elaboration, we also check All_Checks, since All_Checks
6086 -- does not set Elaboration_Check explicitly.
6088 if Present (E) then
6089 if Kill_Elaboration_Checks (E) then
6090 return True;
6092 elsif Checks_May_Be_Suppressed (E) then
6093 if Is_Check_Suppressed (E, Elaboration_Check) then
6094 return True;
6096 elsif Dynamic_Elaboration_Checks then
6097 return Is_Check_Suppressed (E, All_Checks);
6099 else
6100 return False;
6101 end if;
6102 end if;
6103 end if;
6105 if Scope_Suppress.Suppress (Elaboration_Check) then
6106 return True;
6108 elsif Dynamic_Elaboration_Checks then
6109 return Scope_Suppress.Suppress (All_Checks);
6111 else
6112 return False;
6113 end if;
6114 end Elaboration_Checks_Suppressed;
6116 ---------------------------
6117 -- Enable_Overflow_Check --
6118 ---------------------------
6120 procedure Enable_Overflow_Check (N : Node_Id) is
6121 Typ : constant Entity_Id := Base_Type (Etype (N));
6122 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
6123 Chk : Nat;
6124 OK : Boolean;
6125 Ent : Entity_Id;
6126 Ofs : Uint;
6127 Lo : Uint;
6128 Hi : Uint;
6130 Do_Ovflow_Check : Boolean;
6132 begin
6133 if Debug_Flag_CC then
6134 w ("Enable_Overflow_Check for node ", Int (N));
6135 Write_Str (" Source location = ");
6136 wl (Sloc (N));
6137 pg (Union_Id (N));
6138 end if;
6140 -- No check if overflow checks suppressed for type of node
6142 if Overflow_Checks_Suppressed (Etype (N)) then
6143 return;
6145 -- Nothing to do for unsigned integer types, which do not overflow
6147 elsif Is_Modular_Integer_Type (Typ) then
6148 return;
6149 end if;
6151 -- This is the point at which processing for STRICT mode diverges
6152 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
6153 -- probably more extreme that it needs to be, but what is going on here
6154 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
6155 -- to leave the processing for STRICT mode untouched. There were
6156 -- two reasons for this. First it avoided any incompatible change of
6157 -- behavior. Second, it guaranteed that STRICT mode continued to be
6158 -- legacy reliable.
6160 -- The big difference is that in STRICT mode there is a fair amount of
6161 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
6162 -- know that no check is needed. We skip all that in the two new modes,
6163 -- since really overflow checking happens over a whole subtree, and we
6164 -- do the corresponding optimizations later on when applying the checks.
6166 if Mode in Minimized_Or_Eliminated then
6167 if not (Overflow_Checks_Suppressed (Etype (N)))
6168 and then not (Is_Entity_Name (N)
6169 and then Overflow_Checks_Suppressed (Entity (N)))
6170 then
6171 Activate_Overflow_Check (N);
6172 end if;
6174 if Debug_Flag_CC then
6175 w ("Minimized/Eliminated mode");
6176 end if;
6178 return;
6179 end if;
6181 -- Remainder of processing is for STRICT case, and is unchanged from
6182 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
6184 -- Nothing to do if the range of the result is known OK. We skip this
6185 -- for conversions, since the caller already did the check, and in any
6186 -- case the condition for deleting the check for a type conversion is
6187 -- different.
6189 if Nkind (N) /= N_Type_Conversion then
6190 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
6192 -- Note in the test below that we assume that the range is not OK
6193 -- if a bound of the range is equal to that of the type. That's not
6194 -- quite accurate but we do this for the following reasons:
6196 -- a) The way that Determine_Range works, it will typically report
6197 -- the bounds of the value as being equal to the bounds of the
6198 -- type, because it either can't tell anything more precise, or
6199 -- does not think it is worth the effort to be more precise.
6201 -- b) It is very unusual to have a situation in which this would
6202 -- generate an unnecessary overflow check (an example would be
6203 -- a subtype with a range 0 .. Integer'Last - 1 to which the
6204 -- literal value one is added).
6206 -- c) The alternative is a lot of special casing in this routine
6207 -- which would partially duplicate Determine_Range processing.
6209 if OK then
6210 Do_Ovflow_Check := True;
6212 -- Note that the following checks are quite deliberately > and <
6213 -- rather than >= and <= as explained above.
6215 if Lo > Expr_Value (Type_Low_Bound (Typ))
6216 and then
6217 Hi < Expr_Value (Type_High_Bound (Typ))
6218 then
6219 Do_Ovflow_Check := False;
6221 -- Despite the comments above, it is worth dealing specially with
6222 -- division. The only case where integer division can overflow is
6223 -- (largest negative number) / (-1). So we will do an extra range
6224 -- analysis to see if this is possible.
6226 elsif Nkind (N) = N_Op_Divide then
6227 Determine_Range
6228 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6230 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
6231 Do_Ovflow_Check := False;
6233 else
6234 Determine_Range
6235 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6237 if OK and then (Lo > Uint_Minus_1
6238 or else
6239 Hi < Uint_Minus_1)
6240 then
6241 Do_Ovflow_Check := False;
6242 end if;
6243 end if;
6245 -- Likewise for Abs/Minus, the only case where the operation can
6246 -- overflow is when the operand is the largest negative number.
6248 elsif Nkind (N) in N_Op_Abs | N_Op_Minus then
6249 Determine_Range
6250 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6252 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
6253 Do_Ovflow_Check := False;
6254 end if;
6255 end if;
6257 -- If no overflow check required, we are done
6259 if not Do_Ovflow_Check then
6260 if Debug_Flag_CC then
6261 w ("No overflow check required");
6262 end if;
6264 return;
6265 end if;
6266 end if;
6267 end if;
6269 -- If not in optimizing mode, set flag and we are done. We are also done
6270 -- (and just set the flag) if the type is not a discrete type, since it
6271 -- is not worth the effort to eliminate checks for other than discrete
6272 -- types. In addition, we take this same path if we have stored the
6273 -- maximum number of checks possible already (a very unlikely situation,
6274 -- but we do not want to blow up).
6276 if Optimization_Level = 0
6277 or else not Is_Discrete_Type (Etype (N))
6278 or else Num_Saved_Checks = Saved_Checks'Last
6279 then
6280 Activate_Overflow_Check (N);
6282 if Debug_Flag_CC then
6283 w ("Optimization off");
6284 end if;
6286 return;
6287 end if;
6289 -- Otherwise evaluate and check the expression
6291 Find_Check
6292 (Expr => N,
6293 Check_Type => 'O',
6294 Target_Type => Empty,
6295 Entry_OK => OK,
6296 Check_Num => Chk,
6297 Ent => Ent,
6298 Ofs => Ofs);
6300 if Debug_Flag_CC then
6301 w ("Called Find_Check");
6302 w (" OK = ", OK);
6304 if OK then
6305 w (" Check_Num = ", Chk);
6306 w (" Ent = ", Int (Ent));
6307 Write_Str (" Ofs = ");
6308 pid (Ofs);
6309 end if;
6310 end if;
6312 -- If check is not of form to optimize, then set flag and we are done
6314 if not OK then
6315 Activate_Overflow_Check (N);
6316 return;
6317 end if;
6319 -- If check is already performed, then return without setting flag
6321 if Chk /= 0 then
6322 if Debug_Flag_CC then
6323 w ("Check suppressed!");
6324 end if;
6326 return;
6327 end if;
6329 -- Here we will make a new entry for the new check
6331 Activate_Overflow_Check (N);
6332 Num_Saved_Checks := Num_Saved_Checks + 1;
6333 Saved_Checks (Num_Saved_Checks) :=
6334 (Killed => False,
6335 Entity => Ent,
6336 Offset => Ofs,
6337 Check_Type => 'O',
6338 Target_Type => Empty);
6340 if Debug_Flag_CC then
6341 w ("Make new entry, check number = ", Num_Saved_Checks);
6342 w (" Entity = ", Int (Ent));
6343 Write_Str (" Offset = ");
6344 pid (Ofs);
6345 w (" Check_Type = O");
6346 w (" Target_Type = Empty");
6347 end if;
6349 -- If we get an exception, then something went wrong, probably because of
6350 -- an error in the structure of the tree due to an incorrect program. Or
6351 -- it may be a bug in the optimization circuit. In either case the safest
6352 -- thing is simply to set the check flag unconditionally.
6354 exception
6355 when others =>
6356 Activate_Overflow_Check (N);
6358 if Debug_Flag_CC then
6359 w (" exception occurred, overflow flag set");
6360 end if;
6362 return;
6363 end Enable_Overflow_Check;
6365 ------------------------
6366 -- Enable_Range_Check --
6367 ------------------------
6369 procedure Enable_Range_Check (N : Node_Id) is
6370 Chk : Nat;
6371 OK : Boolean;
6372 Ent : Entity_Id;
6373 Ofs : Uint;
6374 Ttyp : Entity_Id;
6375 P : Node_Id;
6377 begin
6378 -- Return if unchecked type conversion with range check killed. In this
6379 -- case we never set the flag (that's what Kill_Range_Check is about).
6381 if Nkind (N) = N_Unchecked_Type_Conversion
6382 and then Kill_Range_Check (N)
6383 then
6384 return;
6385 end if;
6387 -- Do not set range check flag if parent is assignment statement or
6388 -- object declaration with Suppress_Assignment_Checks flag set.
6390 if Nkind (Parent (N)) in N_Assignment_Statement | N_Object_Declaration
6391 and then Suppress_Assignment_Checks (Parent (N))
6392 then
6393 return;
6394 end if;
6396 -- Check for various cases where we should suppress the range check
6398 -- No check if range checks suppressed for type of node
6400 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
6401 return;
6403 -- No check if node is an entity name, and range checks are suppressed
6404 -- for this entity, or for the type of this entity.
6406 elsif Is_Entity_Name (N)
6407 and then (Range_Checks_Suppressed (Entity (N))
6408 or else Range_Checks_Suppressed (Etype (Entity (N))))
6409 then
6410 return;
6412 -- No checks if index of array, and index checks are suppressed for
6413 -- the array object or the type of the array.
6415 elsif Nkind (Parent (N)) = N_Indexed_Component then
6416 declare
6417 Pref : constant Node_Id := Prefix (Parent (N));
6418 begin
6419 if Is_Entity_Name (Pref)
6420 and then Index_Checks_Suppressed (Entity (Pref))
6421 then
6422 return;
6423 elsif Index_Checks_Suppressed (Etype (Pref)) then
6424 return;
6425 end if;
6426 end;
6427 end if;
6429 -- Debug trace output
6431 if Debug_Flag_CC then
6432 w ("Enable_Range_Check for node ", Int (N));
6433 Write_Str (" Source location = ");
6434 wl (Sloc (N));
6435 pg (Union_Id (N));
6436 end if;
6438 -- If not in optimizing mode, set flag and we are done. We are also done
6439 -- (and just set the flag) if the type is not a discrete type, since it
6440 -- is not worth the effort to eliminate checks for other than discrete
6441 -- types. In addition, we take this same path if we have stored the
6442 -- maximum number of checks possible already (a very unlikely situation,
6443 -- but we do not want to blow up).
6445 if Optimization_Level = 0
6446 or else No (Etype (N))
6447 or else not Is_Discrete_Type (Etype (N))
6448 or else Num_Saved_Checks = Saved_Checks'Last
6449 then
6450 Activate_Range_Check (N);
6452 if Debug_Flag_CC then
6453 w ("Optimization off");
6454 end if;
6456 return;
6457 end if;
6459 -- Otherwise find out the target type
6461 P := Parent (N);
6463 -- For assignment, use left side subtype
6465 if Nkind (P) = N_Assignment_Statement
6466 and then Expression (P) = N
6467 then
6468 Ttyp := Etype (Name (P));
6470 -- For indexed component, use subscript subtype
6472 elsif Nkind (P) = N_Indexed_Component then
6473 declare
6474 Atyp : Entity_Id;
6475 Indx : Node_Id;
6476 Subs : Node_Id;
6478 begin
6479 Atyp := Etype (Prefix (P));
6481 if Is_Access_Type (Atyp) then
6482 Atyp := Designated_Type (Atyp);
6484 -- If the prefix is an access to an unconstrained array,
6485 -- perform check unconditionally: it depends on the bounds of
6486 -- an object and we cannot currently recognize whether the test
6487 -- may be redundant.
6489 if not Is_Constrained (Atyp) then
6490 Activate_Range_Check (N);
6491 return;
6492 end if;
6494 -- Ditto if prefix is simply an unconstrained array. We used
6495 -- to think this case was OK, if the prefix was not an explicit
6496 -- dereference, but we have now seen a case where this is not
6497 -- true, so it is safer to just suppress the optimization in this
6498 -- case. The back end is getting better at eliminating redundant
6499 -- checks in any case, so the loss won't be important.
6501 elsif Is_Array_Type (Atyp)
6502 and then not Is_Constrained (Atyp)
6503 then
6504 Activate_Range_Check (N);
6505 return;
6506 end if;
6508 Indx := First_Index (Atyp);
6509 Subs := First (Expressions (P));
6510 loop
6511 if Subs = N then
6512 Ttyp := Etype (Indx);
6513 exit;
6514 end if;
6516 Next_Index (Indx);
6517 Next (Subs);
6518 end loop;
6519 end;
6521 -- For now, ignore all other cases, they are not so interesting
6523 else
6524 if Debug_Flag_CC then
6525 w (" target type not found, flag set");
6526 end if;
6528 Activate_Range_Check (N);
6529 return;
6530 end if;
6532 -- Evaluate and check the expression
6534 Find_Check
6535 (Expr => N,
6536 Check_Type => 'R',
6537 Target_Type => Ttyp,
6538 Entry_OK => OK,
6539 Check_Num => Chk,
6540 Ent => Ent,
6541 Ofs => Ofs);
6543 if Debug_Flag_CC then
6544 w ("Called Find_Check");
6545 w ("Target_Typ = ", Int (Ttyp));
6546 w (" OK = ", OK);
6548 if OK then
6549 w (" Check_Num = ", Chk);
6550 w (" Ent = ", Int (Ent));
6551 Write_Str (" Ofs = ");
6552 pid (Ofs);
6553 end if;
6554 end if;
6556 -- If check is not of form to optimize, then set flag and we are done
6558 if not OK then
6559 if Debug_Flag_CC then
6560 w (" expression not of optimizable type, flag set");
6561 end if;
6563 Activate_Range_Check (N);
6564 return;
6565 end if;
6567 -- If check is already performed, then return without setting flag
6569 if Chk /= 0 then
6570 if Debug_Flag_CC then
6571 w ("Check suppressed!");
6572 end if;
6574 return;
6575 end if;
6577 -- Here we will make a new entry for the new check
6579 Activate_Range_Check (N);
6580 Num_Saved_Checks := Num_Saved_Checks + 1;
6581 Saved_Checks (Num_Saved_Checks) :=
6582 (Killed => False,
6583 Entity => Ent,
6584 Offset => Ofs,
6585 Check_Type => 'R',
6586 Target_Type => Ttyp);
6588 if Debug_Flag_CC then
6589 w ("Make new entry, check number = ", Num_Saved_Checks);
6590 w (" Entity = ", Int (Ent));
6591 Write_Str (" Offset = ");
6592 pid (Ofs);
6593 w (" Check_Type = R");
6594 w (" Target_Type = ", Int (Ttyp));
6595 pg (Union_Id (Ttyp));
6596 end if;
6598 -- If we get an exception, then something went wrong, probably because of
6599 -- an error in the structure of the tree due to an incorrect program. Or
6600 -- it may be a bug in the optimization circuit. In either case the safest
6601 -- thing is simply to set the check flag unconditionally.
6603 exception
6604 when others =>
6605 Activate_Range_Check (N);
6607 if Debug_Flag_CC then
6608 w (" exception occurred, range flag set");
6609 end if;
6611 return;
6612 end Enable_Range_Check;
6614 ------------------
6615 -- Ensure_Valid --
6616 ------------------
6618 procedure Ensure_Valid
6619 (Expr : Node_Id;
6620 Holes_OK : Boolean := False;
6621 Related_Id : Entity_Id := Empty;
6622 Is_Low_Bound : Boolean := False;
6623 Is_High_Bound : Boolean := False)
6625 Typ : constant Entity_Id := Etype (Expr);
6627 begin
6628 -- Ignore call if we are not doing any validity checking
6630 if not Validity_Checks_On then
6631 return;
6633 -- Ignore call if range or validity checks suppressed on entity or type
6635 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
6636 return;
6638 -- No check required if expression is from the expander, we assume the
6639 -- expander will generate whatever checks are needed. Note that this is
6640 -- not just an optimization, it avoids infinite recursions.
6642 -- Unchecked conversions must be checked, unless they are initialized
6643 -- scalar values, as in a component assignment in an init proc.
6645 -- In addition, we force a check if Force_Validity_Checks is set
6647 elsif not Comes_From_Source (Expr)
6648 and then not
6649 (Nkind (Expr) = N_Identifier
6650 and then Present (Renamed_Entity_Or_Object (Entity (Expr)))
6651 and then
6652 Comes_From_Source (Renamed_Entity_Or_Object (Entity (Expr))))
6653 and then not Force_Validity_Checks
6654 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
6655 or else Kill_Range_Check (Expr))
6656 then
6657 return;
6659 -- No check required if expression is known to have valid value
6661 elsif Expr_Known_Valid (Expr) then
6662 return;
6664 -- No check needed within a generated predicate function. Validity
6665 -- of input value will have been checked earlier.
6667 elsif Ekind (Current_Scope) = E_Function
6668 and then Is_Predicate_Function (Current_Scope)
6669 then
6670 return;
6672 -- Ignore case of enumeration with holes where the flag is set not to
6673 -- worry about holes, since no special validity check is needed
6675 elsif Is_Enumeration_Type (Typ)
6676 and then Has_Non_Standard_Rep (Typ)
6677 and then Holes_OK
6678 then
6679 return;
6681 -- No check required on the left-hand side of an assignment
6683 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
6684 and then Expr = Name (Parent (Expr))
6685 then
6686 return;
6688 -- No check on a universal real constant. The context will eventually
6689 -- convert it to a machine number for some target type, or report an
6690 -- illegality.
6692 elsif Nkind (Expr) = N_Real_Literal
6693 and then Etype (Expr) = Universal_Real
6694 then
6695 return;
6697 -- If the expression denotes a component of a packed boolean array,
6698 -- no possible check applies. We ignore the old ACATS chestnuts that
6699 -- involve Boolean range True..True.
6701 -- Note: validity checks are generated for expressions that yield a
6702 -- scalar type, when it is possible to create a value that is outside of
6703 -- the type. If this is a one-bit boolean no such value exists. This is
6704 -- an optimization, and it also prevents compiler blowing up during the
6705 -- elaboration of improperly expanded packed array references.
6707 elsif Nkind (Expr) = N_Indexed_Component
6708 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
6709 and then Root_Type (Etype (Expr)) = Standard_Boolean
6710 then
6711 return;
6713 -- For an expression with actions, we want to insert the validity check
6714 -- on the final Expression.
6716 elsif Nkind (Expr) = N_Expression_With_Actions then
6717 Ensure_Valid (Expression (Expr));
6718 return;
6720 -- An annoying special case. If this is an out parameter of a scalar
6721 -- type, then the value is not going to be accessed, therefore it is
6722 -- inappropriate to do any validity check at the call site. Likewise
6723 -- if the parameter is passed by reference.
6725 else
6726 -- Only need to worry about scalar types
6728 if Is_Scalar_Type (Typ) then
6729 declare
6730 P : Node_Id;
6731 N : Node_Id;
6732 E : Entity_Id;
6733 F : Entity_Id;
6734 A : Node_Id;
6735 L : List_Id;
6737 begin
6738 -- Find actual argument (which may be a parameter association)
6739 -- and the parent of the actual argument (the call statement)
6741 N := Expr;
6742 P := Parent (Expr);
6744 if Nkind (P) = N_Parameter_Association then
6745 N := P;
6746 P := Parent (N);
6747 end if;
6749 -- If this is an indirect or dispatching call, get signature
6750 -- from the subprogram type.
6752 if Nkind (P) in N_Entry_Call_Statement
6753 | N_Function_Call
6754 | N_Procedure_Call_Statement
6755 then
6756 E := Get_Called_Entity (P);
6757 L := Parameter_Associations (P);
6759 -- Only need to worry if there are indeed actuals, and if
6760 -- this could be a subprogram call, otherwise we cannot get
6761 -- a match (either we are not an argument, or the mode of
6762 -- the formal is not OUT). This test also filters out the
6763 -- generic case.
6765 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6767 -- This is the loop through parameters, looking for an
6768 -- OUT parameter for which we are the argument.
6770 F := First_Formal (E);
6771 A := First (L);
6772 while Present (F) loop
6773 if A = N
6774 and then (Ekind (F) = E_Out_Parameter
6775 or else Mechanism (F) = By_Reference)
6776 then
6777 return;
6778 end if;
6780 Next_Formal (F);
6781 Next (A);
6782 end loop;
6783 end if;
6784 end if;
6785 end;
6786 end if;
6787 end if;
6789 -- If this is a boolean expression, only its elementary operands need
6790 -- checking: if they are valid, a boolean or short-circuit operation
6791 -- with them will be valid as well.
6793 if Base_Type (Typ) = Standard_Boolean
6794 and then
6795 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
6796 then
6797 return;
6798 end if;
6800 -- If we fall through, a validity check is required
6802 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
6804 if Is_Entity_Name (Expr)
6805 and then Safe_To_Capture_Value (Expr, Entity (Expr))
6806 then
6807 Set_Is_Known_Valid (Entity (Expr));
6808 end if;
6809 end Ensure_Valid;
6811 ----------------------
6812 -- Expr_Known_Valid --
6813 ----------------------
6815 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6816 Typ : constant Entity_Id := Etype (Expr);
6818 begin
6819 -- Non-scalar types are always considered valid, since they never give
6820 -- rise to the issues of erroneous or bounded error behavior that are
6821 -- the concern. In formal reference manual terms the notion of validity
6822 -- only applies to scalar types. Note that even when packed arrays are
6823 -- represented using modular types, they are still arrays semantically,
6824 -- so they are also always valid (in particular, the unused bits can be
6825 -- random rubbish without affecting the validity of the array value).
6827 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
6828 return True;
6830 -- If no validity checking, then everything is considered valid
6832 elsif not Validity_Checks_On then
6833 return True;
6835 -- Floating-point types are considered valid unless floating-point
6836 -- validity checks have been specifically turned on.
6838 elsif Is_Floating_Point_Type (Typ)
6839 and then not Validity_Check_Floating_Point
6840 then
6841 return True;
6843 elsif Is_Static_Expression (Expr) then
6844 return True;
6846 -- If the expression is the value of an object that is known to be
6847 -- valid, then clearly the expression value itself is valid.
6849 elsif Is_Entity_Name (Expr)
6850 and then Is_Known_Valid (Entity (Expr))
6852 -- Exclude volatile variables
6854 and then not Treat_As_Volatile (Entity (Expr))
6855 then
6856 return True;
6858 -- References to discriminants are always considered valid. The value
6859 -- of a discriminant gets checked when the object is built. Within the
6860 -- record, we consider it valid, and it is important to do so, since
6861 -- otherwise we can try to generate bogus validity checks which
6862 -- reference discriminants out of scope. Discriminants of concurrent
6863 -- types are excluded for the same reason.
6865 elsif Is_Entity_Name (Expr)
6866 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
6867 then
6868 return True;
6870 -- If the type is one for which all values are known valid, then we are
6871 -- sure that the value is valid except in the slightly odd case where
6872 -- the expression is a reference to a variable whose size has been
6873 -- explicitly set to a value greater than the object size.
6875 elsif Is_Known_Valid (Typ) then
6876 if Is_Entity_Name (Expr)
6877 and then Ekind (Entity (Expr)) = E_Variable
6878 and then Known_Esize (Entity (Expr))
6879 and then Esize (Entity (Expr)) > Esize (Typ)
6880 then
6881 return False;
6882 else
6883 return True;
6884 end if;
6886 -- Integer and character literals always have valid values, where
6887 -- appropriate these will be range checked in any case.
6889 elsif Nkind (Expr) in N_Integer_Literal | N_Character_Literal then
6890 return True;
6892 -- If we have a type conversion or a qualification of a known valid
6893 -- value, then the result will always be valid.
6895 elsif Nkind (Expr) in N_Type_Conversion | N_Qualified_Expression then
6896 return Expr_Known_Valid (Expression (Expr));
6898 -- Case of expression is a non-floating-point operator. In this case we
6899 -- can assume the result is valid the generated code for the operator
6900 -- will include whatever checks are needed (e.g. range checks) to ensure
6901 -- validity. This assumption does not hold for the floating-point case,
6902 -- since floating-point operators can generate Infinite or NaN results
6903 -- which are considered invalid.
6905 -- Historical note: in older versions, the exemption of floating-point
6906 -- types from this assumption was done only in cases where the parent
6907 -- was an assignment, function call or parameter association. Presumably
6908 -- the idea was that in other contexts, the result would be checked
6909 -- elsewhere, but this list of cases was missing tests (at least the
6910 -- N_Object_Declaration case, as shown by a reported missing validity
6911 -- check), and it is not clear why function calls but not procedure
6912 -- calls were tested for. It really seems more accurate and much
6913 -- safer to recognize that expressions which are the result of a
6914 -- floating-point operator can never be assumed to be valid.
6916 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6917 return True;
6919 -- The result of a membership test is always valid, since it is true or
6920 -- false, there are no other possibilities.
6922 elsif Nkind (Expr) in N_Membership_Test then
6923 return True;
6925 -- For all other cases, we do not know the expression is valid
6927 else
6928 return False;
6929 end if;
6930 end Expr_Known_Valid;
6932 ----------------
6933 -- Find_Check --
6934 ----------------
6936 procedure Find_Check
6937 (Expr : Node_Id;
6938 Check_Type : Character;
6939 Target_Type : Entity_Id;
6940 Entry_OK : out Boolean;
6941 Check_Num : out Nat;
6942 Ent : out Entity_Id;
6943 Ofs : out Uint)
6945 function Within_Range_Of
6946 (Target_Type : Entity_Id;
6947 Check_Type : Entity_Id) return Boolean;
6948 -- Given a requirement for checking a range against Target_Type, and
6949 -- and a range Check_Type against which a check has already been made,
6950 -- determines if the check against check type is sufficient to ensure
6951 -- that no check against Target_Type is required.
6953 ---------------------
6954 -- Within_Range_Of --
6955 ---------------------
6957 function Within_Range_Of
6958 (Target_Type : Entity_Id;
6959 Check_Type : Entity_Id) return Boolean
6961 begin
6962 if Target_Type = Check_Type then
6963 return True;
6965 else
6966 declare
6967 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
6968 Thi : constant Node_Id := Type_High_Bound (Target_Type);
6969 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
6970 Chi : constant Node_Id := Type_High_Bound (Check_Type);
6972 begin
6973 if (Tlo = Clo
6974 or else (Compile_Time_Known_Value (Tlo)
6975 and then
6976 Compile_Time_Known_Value (Clo)
6977 and then
6978 Expr_Value (Clo) >= Expr_Value (Tlo)))
6979 and then
6980 (Thi = Chi
6981 or else (Compile_Time_Known_Value (Thi)
6982 and then
6983 Compile_Time_Known_Value (Chi)
6984 and then
6985 Expr_Value (Chi) <= Expr_Value (Clo)))
6986 then
6987 return True;
6988 else
6989 return False;
6990 end if;
6991 end;
6992 end if;
6993 end Within_Range_Of;
6995 -- Start of processing for Find_Check
6997 begin
6998 -- Establish default, in case no entry is found
7000 Check_Num := 0;
7002 -- Case of expression is simple entity reference
7004 if Is_Entity_Name (Expr) then
7005 Ent := Entity (Expr);
7006 Ofs := Uint_0;
7008 -- Case of expression is entity + known constant
7010 elsif Nkind (Expr) = N_Op_Add
7011 and then Compile_Time_Known_Value (Right_Opnd (Expr))
7012 and then Is_Entity_Name (Left_Opnd (Expr))
7013 then
7014 Ent := Entity (Left_Opnd (Expr));
7015 Ofs := Expr_Value (Right_Opnd (Expr));
7017 -- Case of expression is entity - known constant
7019 elsif Nkind (Expr) = N_Op_Subtract
7020 and then Compile_Time_Known_Value (Right_Opnd (Expr))
7021 and then Is_Entity_Name (Left_Opnd (Expr))
7022 then
7023 Ent := Entity (Left_Opnd (Expr));
7024 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
7026 -- Any other expression is not of the right form
7028 else
7029 Ent := Empty;
7030 Ofs := Uint_0;
7031 Entry_OK := False;
7032 return;
7033 end if;
7035 -- Come here with expression of appropriate form, check if entity is an
7036 -- appropriate one for our purposes.
7038 if (Ekind (Ent) = E_Variable
7039 or else Is_Constant_Object (Ent))
7040 and then not Is_Library_Level_Entity (Ent)
7041 then
7042 Entry_OK := True;
7043 else
7044 Entry_OK := False;
7045 return;
7046 end if;
7048 -- See if there is matching check already
7050 for J in reverse 1 .. Num_Saved_Checks loop
7051 declare
7052 SC : Saved_Check renames Saved_Checks (J);
7053 begin
7054 if SC.Killed = False
7055 and then SC.Entity = Ent
7056 and then SC.Offset = Ofs
7057 and then SC.Check_Type = Check_Type
7058 and then Within_Range_Of (Target_Type, SC.Target_Type)
7059 then
7060 Check_Num := J;
7061 return;
7062 end if;
7063 end;
7064 end loop;
7066 -- If we fall through entry was not found
7068 return;
7069 end Find_Check;
7071 ---------------------------------
7072 -- Generate_Discriminant_Check --
7073 ---------------------------------
7075 procedure Generate_Discriminant_Check (N : Node_Id) is
7076 Loc : constant Source_Ptr := Sloc (N);
7077 Pref : constant Node_Id := Prefix (N);
7078 Sel : constant Node_Id := Selector_Name (N);
7080 Orig_Comp : constant Entity_Id :=
7081 Original_Record_Component (Entity (Sel));
7082 -- The original component to be checked
7084 Discr_Fct : constant Entity_Id :=
7085 Discriminant_Checking_Func (Orig_Comp);
7086 -- The discriminant checking function
7088 Discr : Entity_Id;
7089 -- One discriminant to be checked in the type
7091 Real_Discr : Entity_Id;
7092 -- Actual discriminant in the call
7094 Pref_Type : Entity_Id;
7095 -- Type of relevant prefix (ignoring private/access stuff)
7097 Args : List_Id;
7098 -- List of arguments for function call
7100 Formal : Entity_Id;
7101 -- Keep track of the formal corresponding to the actual we build for
7102 -- each discriminant, in order to be able to perform the necessary type
7103 -- conversions.
7105 Scomp : Node_Id;
7106 -- Selected component reference for checking function argument
7108 begin
7109 Pref_Type := Etype (Pref);
7111 -- Force evaluation of the prefix, so that it does not get evaluated
7112 -- twice (once for the check, once for the actual reference). Such a
7113 -- double evaluation is always a potential source of inefficiency, and
7114 -- is functionally incorrect in the volatile case, or when the prefix
7115 -- may have side effects. A nonvolatile entity or a component of a
7116 -- nonvolatile entity requires no evaluation.
7118 if Is_Entity_Name (Pref) then
7119 if Treat_As_Volatile (Entity (Pref)) then
7120 Force_Evaluation (Pref, Name_Req => True);
7121 end if;
7123 elsif Treat_As_Volatile (Etype (Pref)) then
7124 Force_Evaluation (Pref, Name_Req => True);
7126 elsif Nkind (Pref) = N_Selected_Component
7127 and then Is_Entity_Name (Prefix (Pref))
7128 then
7129 null;
7131 else
7132 Force_Evaluation (Pref, Name_Req => True);
7133 end if;
7135 -- For a tagged type, use the scope of the original component to
7136 -- obtain the type, because ???
7138 if Is_Tagged_Type (Scope (Orig_Comp)) then
7139 Pref_Type := Scope (Orig_Comp);
7141 -- For an untagged derived type, use the discriminants of the parent
7142 -- which have been renamed in the derivation, possibly by a one-to-many
7143 -- discriminant constraint. For untagged type, initially get the Etype
7144 -- of the prefix
7146 else
7147 if Is_Derived_Type (Pref_Type)
7148 and then Number_Discriminants (Pref_Type) /=
7149 Number_Discriminants (Etype (Base_Type (Pref_Type)))
7150 then
7151 Pref_Type := Etype (Base_Type (Pref_Type));
7152 end if;
7153 end if;
7155 -- We definitely should have a checking function, This routine should
7156 -- not be called if no discriminant checking function is present.
7158 pragma Assert (Present (Discr_Fct));
7160 -- Create the list of the actual parameters for the call. This list
7161 -- is the list of the discriminant fields of the record expression to
7162 -- be discriminant checked.
7164 Args := New_List;
7165 Formal := First_Formal (Discr_Fct);
7166 Discr := First_Discriminant (Pref_Type);
7167 while Present (Discr) loop
7169 -- If we have a corresponding discriminant field, and a parent
7170 -- subtype is present, then we want to use the corresponding
7171 -- discriminant since this is the one with the useful value.
7173 if Present (Corresponding_Discriminant (Discr))
7174 and then Ekind (Pref_Type) = E_Record_Type
7175 and then Present (Parent_Subtype (Pref_Type))
7176 then
7177 Real_Discr := Corresponding_Discriminant (Discr);
7178 else
7179 Real_Discr := Discr;
7180 end if;
7182 -- Construct the reference to the discriminant
7184 Scomp :=
7185 Make_Selected_Component (Loc,
7186 Prefix =>
7187 Unchecked_Convert_To (Pref_Type,
7188 Duplicate_Subexpr (Pref)),
7189 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
7191 -- Manually analyze and resolve this selected component. We really
7192 -- want it just as it appears above, and do not want the expander
7193 -- playing discriminal games etc with this reference. Then we append
7194 -- the argument to the list we are gathering.
7196 Set_Etype (Scomp, Etype (Real_Discr));
7197 Set_Analyzed (Scomp, True);
7198 Append_To (Args, Convert_To (Etype (Formal), Scomp));
7200 Next_Formal_With_Extras (Formal);
7201 Next_Discriminant (Discr);
7202 end loop;
7204 -- Now build and insert the call
7206 Insert_Action (N,
7207 Make_Raise_Constraint_Error (Loc,
7208 Condition =>
7209 Make_Function_Call (Loc,
7210 Name => New_Occurrence_Of (Discr_Fct, Loc),
7211 Parameter_Associations => Args),
7212 Reason => CE_Discriminant_Check_Failed));
7213 end Generate_Discriminant_Check;
7215 ---------------------------
7216 -- Generate_Index_Checks --
7217 ---------------------------
7219 procedure Generate_Index_Checks
7220 (N : Node_Id;
7221 Checks_Generated : out Dimension_Set)
7224 function Entity_Of_Prefix return Entity_Id;
7225 -- Returns the entity of the prefix of N (or Empty if not found)
7227 ----------------------
7228 -- Entity_Of_Prefix --
7229 ----------------------
7231 function Entity_Of_Prefix return Entity_Id is
7232 P : Node_Id;
7234 begin
7235 P := Prefix (N);
7236 while not Is_Entity_Name (P) loop
7237 if Nkind (P) not in N_Selected_Component | N_Indexed_Component then
7238 return Empty;
7239 end if;
7241 P := Prefix (P);
7242 end loop;
7244 return Entity (P);
7245 end Entity_Of_Prefix;
7247 -- Local variables
7249 Loc : constant Source_Ptr := Sloc (N);
7250 A : constant Node_Id := Prefix (N);
7251 A_Ent : constant Entity_Id := Entity_Of_Prefix;
7253 Expr : Node_Id;
7255 -- Start of processing for Generate_Index_Checks
7257 begin
7258 Checks_Generated.Elements := (others => False);
7260 -- Ignore call if the prefix is not an array since we have a serious
7261 -- error in the sources. Ignore it also if index checks are suppressed
7262 -- for array object or type.
7264 if not Is_Array_Type (Etype (A))
7265 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
7266 or else Index_Checks_Suppressed (Etype (A))
7267 then
7268 return;
7270 -- The indexed component we are dealing with contains 'Loop_Entry in its
7271 -- prefix. This case arises when analysis has determined that constructs
7272 -- such as
7274 -- Prefix'Loop_Entry (Expr)
7275 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
7277 -- require rewriting for error detection purposes. A side effect of this
7278 -- action is the generation of index checks that mention 'Loop_Entry.
7279 -- Delay the generation of the check until 'Loop_Entry has been properly
7280 -- expanded. This is done in Expand_Loop_Entry_Attributes.
7282 elsif Nkind (Prefix (N)) = N_Attribute_Reference
7283 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
7284 then
7285 return;
7286 end if;
7288 -- Generate a raise of constraint error with the appropriate reason and
7289 -- a condition of the form:
7291 -- Base_Type (Sub) not in Array'Range (Subscript)
7293 -- Note that the reason we generate the conversion to the base type here
7294 -- is that we definitely want the range check to take place, even if it
7295 -- looks like the subtype is OK. Optimization considerations that allow
7296 -- us to omit the check have already been taken into account in the
7297 -- setting of the Do_Range_Check flag earlier on.
7299 Expr := First (Expressions (N));
7301 -- Handle string literals
7303 if Ekind (Etype (A)) = E_String_Literal_Subtype then
7304 if Do_Range_Check (Expr) then
7305 Set_Do_Range_Check (Expr, False);
7307 -- For string literals we obtain the bounds of the string from the
7308 -- associated subtype.
7310 Insert_Action (N,
7311 Make_Raise_Constraint_Error (Loc,
7312 Condition =>
7313 Make_Not_In (Loc,
7314 Left_Opnd =>
7315 Convert_To (Base_Type (Etype (Expr)),
7316 Duplicate_Subexpr_Move_Checks (Expr)),
7317 Right_Opnd =>
7318 Make_Attribute_Reference (Loc,
7319 Prefix => New_Occurrence_Of (Etype (A), Loc),
7320 Attribute_Name => Name_Range)),
7321 Reason => CE_Index_Check_Failed));
7323 Checks_Generated.Elements (1) := True;
7324 end if;
7326 -- General case
7328 else
7329 declare
7330 A_Idx : Node_Id;
7331 A_Range : Node_Id;
7332 Ind : Pos;
7333 Num : List_Id;
7334 Range_N : Node_Id;
7335 Stmt : Node_Id;
7336 Sub : Node_Id;
7338 begin
7339 A_Idx := First_Index (Etype (A));
7340 Ind := 1;
7341 while Present (Expr) loop
7342 if Nkind (Expr) = N_Expression_With_Actions then
7343 Sub := Expression (Expr);
7344 else
7345 Sub := Expr;
7346 end if;
7348 if Do_Range_Check (Sub) then
7349 Set_Do_Range_Check (Sub, False);
7351 -- Force evaluation except for the case of a simple name of
7352 -- a nonvolatile entity.
7354 if not Is_Entity_Name (Sub)
7355 or else Treat_As_Volatile (Entity (Sub))
7356 then
7357 Force_Evaluation (Sub);
7358 end if;
7360 if Nkind (A_Idx) = N_Range then
7361 A_Range := A_Idx;
7363 elsif Nkind (A_Idx) in N_Identifier | N_Expanded_Name then
7364 A_Range := Scalar_Range (Entity (A_Idx));
7366 if Nkind (A_Range) = N_Subtype_Indication then
7367 A_Range := Range_Expression (Constraint (A_Range));
7368 end if;
7370 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
7371 A_Range := Range_Expression (Constraint (A_Idx));
7372 end if;
7374 -- For array objects with constant bounds we can generate
7375 -- the index check using the bounds of the type of the index
7377 if Present (A_Ent)
7378 and then Ekind (A_Ent) = E_Variable
7379 and then Is_Constant_Bound (Low_Bound (A_Range))
7380 and then Is_Constant_Bound (High_Bound (A_Range))
7381 then
7382 Range_N :=
7383 Make_Attribute_Reference (Loc,
7384 Prefix =>
7385 New_Occurrence_Of (Etype (A_Idx), Loc),
7386 Attribute_Name => Name_Range);
7388 -- For arrays with non-constant bounds we cannot generate
7389 -- the index check using the bounds of the type of the index
7390 -- since it may reference discriminants of some enclosing
7391 -- type. We obtain the bounds directly from the prefix
7392 -- object.
7394 else
7395 if Ind = 1 then
7396 Num := No_List;
7397 else
7398 Num := New_List (Make_Integer_Literal (Loc, Ind));
7399 end if;
7401 Range_N :=
7402 Make_Attribute_Reference (Loc,
7403 Prefix =>
7404 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
7405 Attribute_Name => Name_Range,
7406 Expressions => Num);
7407 end if;
7409 Stmt :=
7410 Make_Raise_Constraint_Error (Loc,
7411 Condition =>
7412 Make_Not_In (Loc,
7413 Left_Opnd =>
7414 Convert_To (Base_Type (Etype (Sub)),
7415 Duplicate_Subexpr_Move_Checks (Sub)),
7416 Right_Opnd => Range_N),
7417 Reason => CE_Index_Check_Failed);
7419 if Nkind (Expr) = N_Expression_With_Actions then
7420 Append_To (Actions (Expr), Stmt);
7421 Analyze (Stmt);
7422 else
7423 Insert_Action (Expr, Stmt);
7424 end if;
7426 Checks_Generated.Elements (Ind) := True;
7427 end if;
7429 Next_Index (A_Idx);
7430 Ind := Ind + 1;
7431 Next (Expr);
7432 end loop;
7433 end;
7434 end if;
7435 end Generate_Index_Checks;
7437 --------------------------
7438 -- Generate_Range_Check --
7439 --------------------------
7441 procedure Generate_Range_Check
7442 (N : Node_Id;
7443 Target_Type : Entity_Id;
7444 Reason : RT_Exception_Code)
7446 Loc : constant Source_Ptr := Sloc (N);
7447 Source_Type : constant Entity_Id := Etype (N);
7448 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
7449 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
7451 procedure Convert_And_Check_Range (Suppress : Check_Id);
7452 -- Convert N to the target base type and save the result in a temporary.
7453 -- The action is analyzed using the default checks as modified by the
7454 -- given Suppress argument. Then check the converted value against the
7455 -- range of the target subtype.
7457 function Is_Single_Attribute_Reference (N : Node_Id) return Boolean;
7458 -- Return True if N is an expression that contains a single attribute
7459 -- reference, possibly as operand among only integer literal operands.
7461 -----------------------------
7462 -- Convert_And_Check_Range --
7463 -----------------------------
7465 procedure Convert_And_Check_Range (Suppress : Check_Id) is
7466 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7467 Conv_N : Node_Id;
7469 begin
7470 -- For enumeration types with non-standard representation this is a
7471 -- direct conversion from the enumeration type to the target integer
7472 -- type, which is treated by the back end as a normal integer type
7473 -- conversion, treating the enumeration type as an integer, which is
7474 -- exactly what we want. We set Conversion_OK to make sure that the
7475 -- analyzer does not complain about what otherwise might be an
7476 -- illegal conversion.
7478 if Is_Enumeration_Type (Source_Base_Type)
7479 and then Present (Enum_Pos_To_Rep (Source_Base_Type))
7480 and then Is_Integer_Type (Target_Base_Type)
7481 then
7482 Conv_N := OK_Convert_To (Target_Base_Type, Duplicate_Subexpr (N));
7483 else
7484 Conv_N := Convert_To (Target_Base_Type, Duplicate_Subexpr (N));
7485 end if;
7487 -- We make a temporary to hold the value of the conversion to the
7488 -- target base type, and then do the test against this temporary.
7489 -- N itself is replaced by an occurrence of Tnn and followed by
7490 -- the explicit range check.
7492 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
7493 -- [constraint_error when Tnn not in Target_Type]
7494 -- Tnn
7496 Insert_Actions (N, New_List (
7497 Make_Object_Declaration (Loc,
7498 Defining_Identifier => Tnn,
7499 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
7500 Constant_Present => True,
7501 Expression => Conv_N),
7503 Make_Raise_Constraint_Error (Loc,
7504 Condition =>
7505 Make_Not_In (Loc,
7506 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7507 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
7508 Reason => Reason)),
7509 Suppress => Suppress);
7511 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7513 -- Set the type of N, because the declaration for Tnn might not
7514 -- be analyzed yet, as is the case if N appears within a record
7515 -- declaration, as a discriminant constraint or expression.
7517 Set_Etype (N, Target_Base_Type);
7518 end Convert_And_Check_Range;
7520 -------------------------------------
7521 -- Is_Single_Attribute_Reference --
7522 -------------------------------------
7524 function Is_Single_Attribute_Reference (N : Node_Id) return Boolean is
7525 begin
7526 if Nkind (N) = N_Attribute_Reference then
7527 return True;
7529 elsif Nkind (N) in N_Binary_Op then
7530 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
7531 return Is_Single_Attribute_Reference (Left_Opnd (N));
7533 elsif Nkind (Left_Opnd (N)) = N_Integer_Literal then
7534 return Is_Single_Attribute_Reference (Right_Opnd (N));
7536 else
7537 return False;
7538 end if;
7540 else
7541 return False;
7542 end if;
7543 end Is_Single_Attribute_Reference;
7545 -- Start of processing for Generate_Range_Check
7547 begin
7548 -- First special case, if the source type is already within the range
7549 -- of the target type, then no check is needed (probably we should have
7550 -- stopped Do_Range_Check from being set in the first place, but better
7551 -- late than never in preventing junk code and junk flag settings).
7553 if In_Subrange_Of (Source_Type, Target_Type)
7555 -- We do NOT apply this if the source node is a literal, since in this
7556 -- case the literal has already been labeled as having the subtype of
7557 -- the target.
7559 and then not
7560 (Nkind (N) in
7561 N_Integer_Literal | N_Real_Literal | N_Character_Literal
7562 or else
7563 (Is_Entity_Name (N)
7564 and then Ekind (Entity (N)) = E_Enumeration_Literal))
7565 then
7566 Set_Do_Range_Check (N, False);
7567 return;
7568 end if;
7570 -- Here a check is needed. If the expander is not active (which is also
7571 -- the case in GNATprove mode), then simply set the Do_Range_Check flag
7572 -- and we are done. We just want to see the range check flag set, we do
7573 -- not want to generate the explicit range check code.
7575 if not Expander_Active then
7576 Set_Do_Range_Check (N);
7577 return;
7578 end if;
7580 -- Here we will generate an explicit range check, so we don't want to
7581 -- set the Do_Range check flag, since the range check is taken care of
7582 -- by the code we will generate.
7584 Set_Do_Range_Check (N, False);
7586 -- Force evaluation of the node, so that it does not get evaluated twice
7587 -- (once for the check, once for the actual reference). Such a double
7588 -- evaluation is always a potential source of inefficiency, and is
7589 -- functionally incorrect in the volatile case.
7591 -- We skip the evaluation of attribute references because, after these
7592 -- runtime checks are generated, the expander may need to rewrite this
7593 -- node (for example, see Attribute_Max_Size_In_Storage_Elements in
7594 -- Expand_N_Attribute_Reference) and, in many cases, their return type
7595 -- is universal integer, which is a very large type for a temporary.
7597 if not Is_Single_Attribute_Reference (N)
7598 and then (not Is_Entity_Name (N)
7599 or else Treat_As_Volatile (Entity (N)))
7600 then
7601 Force_Evaluation (N, Mode => Strict);
7602 end if;
7604 -- The easiest case is when Source_Base_Type and Target_Base_Type are
7605 -- the same since in this case we can simply do a direct check of the
7606 -- value of N against the bounds of Target_Type.
7608 -- [constraint_error when N not in Target_Type]
7610 -- Note: this is by far the most common case, for example all cases of
7611 -- checks on the RHS of assignments are in this category, but not all
7612 -- cases are like this. Notably conversions can involve two types.
7614 if Source_Base_Type = Target_Base_Type then
7616 -- Insert the explicit range check. Note that we suppress checks for
7617 -- this code, since we don't want a recursive range check popping up.
7619 Insert_Action (N,
7620 Make_Raise_Constraint_Error (Loc,
7621 Condition =>
7622 Make_Not_In (Loc,
7623 Left_Opnd => Duplicate_Subexpr (N),
7624 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
7625 Reason => Reason),
7626 Suppress => All_Checks);
7628 -- Next test for the case where the target type is within the bounds
7629 -- of the base type of the source type, since in this case we can
7630 -- simply convert the bounds of the target type to this base type
7631 -- to do the test.
7633 -- [constraint_error when N not in
7634 -- Source_Base_Type (Target_Type'First)
7635 -- ..
7636 -- Source_Base_Type(Target_Type'Last))]
7638 -- The conversions will always work and need no check
7640 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
7641 -- of converting from an enumeration value to an integer type, such as
7642 -- occurs for the case of generating a range check on Enum'Val(Exp)
7643 -- (which used to be handled by gigi). This is OK, since the conversion
7644 -- itself does not require a check.
7646 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
7648 -- Insert the explicit range check. Note that we suppress checks for
7649 -- this code, since we don't want a recursive range check popping up.
7651 if Is_Discrete_Type (Source_Base_Type)
7652 and then
7653 Is_Discrete_Type (Target_Base_Type)
7654 then
7655 Insert_Action (N,
7656 Make_Raise_Constraint_Error (Loc,
7657 Condition =>
7658 Make_Not_In (Loc,
7659 Left_Opnd => Duplicate_Subexpr (N),
7661 Right_Opnd =>
7662 Make_Range (Loc,
7663 Low_Bound =>
7664 Unchecked_Convert_To (Source_Base_Type,
7665 Make_Attribute_Reference (Loc,
7666 Prefix =>
7667 New_Occurrence_Of (Target_Type, Loc),
7668 Attribute_Name => Name_First)),
7670 High_Bound =>
7671 Unchecked_Convert_To (Source_Base_Type,
7672 Make_Attribute_Reference (Loc,
7673 Prefix =>
7674 New_Occurrence_Of (Target_Type, Loc),
7675 Attribute_Name => Name_Last)))),
7676 Reason => Reason),
7677 Suppress => All_Checks);
7679 -- For conversions involving at least one type that is not discrete,
7680 -- first convert to the target base type and then generate the range
7681 -- check. This avoids problems with values that are close to a bound
7682 -- of the target type that would fail a range check when done in a
7683 -- larger source type before converting but pass if converted with
7684 -- rounding and then checked (such as in float-to-float conversions).
7686 -- Note that overflow checks are not suppressed for this code because
7687 -- we do not know whether the source type is in range of the target
7688 -- base type (unlike in the next case below).
7690 else
7691 Convert_And_Check_Range (Suppress => Range_Check);
7692 end if;
7694 -- Note that at this stage we know that the Target_Base_Type is not in
7695 -- the range of the Source_Base_Type (since even the Target_Type itself
7696 -- is not in this range). It could still be the case that Source_Type is
7697 -- in range of the target base type since we have not checked that case.
7699 -- If that is the case, we can freely convert the source to the target,
7700 -- and then test the target result against the bounds. Note that checks
7701 -- are suppressed for this code, since we don't want a recursive range
7702 -- check popping up.
7704 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
7705 Convert_And_Check_Range (Suppress => All_Checks);
7707 -- At this stage, we know that we have two scalar types, which are
7708 -- directly convertible, and where neither scalar type has a base
7709 -- range that is in the range of the other scalar type.
7711 -- The only way this can happen is with a signed and unsigned type.
7712 -- So test for these two cases:
7714 else
7715 -- Case of the source is unsigned and the target is signed
7717 if Is_Unsigned_Type (Source_Base_Type)
7718 and then not Is_Unsigned_Type (Target_Base_Type)
7719 then
7720 -- If the source is unsigned and the target is signed, then we
7721 -- know that the source is not shorter than the target (otherwise
7722 -- the source base type would be in the target base type range).
7724 -- In other words, the unsigned type is either the same size as
7725 -- the target, or it is larger. It cannot be smaller.
7727 pragma Assert
7728 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
7730 -- We only need to check the low bound if the low bound of the
7731 -- target type is non-negative. If the low bound of the target
7732 -- type is negative, then we know that we will fit fine.
7734 -- If the high bound of the target type is negative, then we
7735 -- know we have a constraint error, since we can't possibly
7736 -- have a negative source.
7738 -- With these two checks out of the way, we can do the check
7739 -- using the source type safely
7741 -- This is definitely the most annoying case.
7743 -- [constraint_error
7744 -- when (Target_Type'First >= 0
7745 -- and then
7746 -- N < Source_Base_Type (Target_Type'First))
7747 -- or else Target_Type'Last < 0
7748 -- or else N > Source_Base_Type (Target_Type'Last)];
7750 -- We turn off all checks since we know that the conversions
7751 -- will work fine, given the guards for negative values.
7753 Insert_Action (N,
7754 Make_Raise_Constraint_Error (Loc,
7755 Condition =>
7756 Make_Or_Else (Loc,
7757 Make_Or_Else (Loc,
7758 Left_Opnd =>
7759 Make_And_Then (Loc,
7760 Left_Opnd => Make_Op_Ge (Loc,
7761 Left_Opnd =>
7762 Make_Attribute_Reference (Loc,
7763 Prefix =>
7764 New_Occurrence_Of (Target_Type, Loc),
7765 Attribute_Name => Name_First),
7766 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7768 Right_Opnd =>
7769 Make_Op_Lt (Loc,
7770 Left_Opnd => Duplicate_Subexpr (N),
7771 Right_Opnd =>
7772 Convert_To (Source_Base_Type,
7773 Make_Attribute_Reference (Loc,
7774 Prefix =>
7775 New_Occurrence_Of (Target_Type, Loc),
7776 Attribute_Name => Name_First)))),
7778 Right_Opnd =>
7779 Make_Op_Lt (Loc,
7780 Left_Opnd =>
7781 Make_Attribute_Reference (Loc,
7782 Prefix => New_Occurrence_Of (Target_Type, Loc),
7783 Attribute_Name => Name_Last),
7784 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
7786 Right_Opnd =>
7787 Make_Op_Gt (Loc,
7788 Left_Opnd => Duplicate_Subexpr (N),
7789 Right_Opnd =>
7790 Convert_To (Source_Base_Type,
7791 Make_Attribute_Reference (Loc,
7792 Prefix => New_Occurrence_Of (Target_Type, Loc),
7793 Attribute_Name => Name_Last)))),
7795 Reason => Reason),
7796 Suppress => All_Checks);
7798 -- Only remaining possibility is that the source is signed and
7799 -- the target is unsigned.
7801 else
7802 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
7803 and then Is_Unsigned_Type (Target_Base_Type));
7805 -- If the source is signed and the target is unsigned, then we
7806 -- know that the target is not shorter than the source (otherwise
7807 -- the target base type would be in the source base type range).
7809 -- In other words, the unsigned type is either the same size as
7810 -- the target, or it is larger. It cannot be smaller.
7812 -- Clearly we have an error if the source value is negative since
7813 -- no unsigned type can have negative values. If the source type
7814 -- is non-negative, then the check can be done using the target
7815 -- type.
7817 -- Tnn : constant Target_Base_Type (N) := Target_Type;
7819 -- [constraint_error
7820 -- when N < 0 or else Tnn not in Target_Type];
7822 -- We turn off all checks for the conversion of N to the target
7823 -- base type, since we generate the explicit check to ensure that
7824 -- the value is non-negative
7826 declare
7827 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7829 begin
7830 Insert_Actions (N, New_List (
7831 Make_Object_Declaration (Loc,
7832 Defining_Identifier => Tnn,
7833 Object_Definition =>
7834 New_Occurrence_Of (Target_Base_Type, Loc),
7835 Constant_Present => True,
7836 Expression =>
7837 Unchecked_Convert_To
7838 (Target_Base_Type, Duplicate_Subexpr (N))),
7840 Make_Raise_Constraint_Error (Loc,
7841 Condition =>
7842 Make_Or_Else (Loc,
7843 Left_Opnd =>
7844 Make_Op_Lt (Loc,
7845 Left_Opnd => Duplicate_Subexpr (N),
7846 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7848 Right_Opnd =>
7849 Make_Not_In (Loc,
7850 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7851 Right_Opnd =>
7852 New_Occurrence_Of (Target_Type, Loc))),
7854 Reason => Reason)),
7855 Suppress => All_Checks);
7857 -- Set the Etype explicitly, because Insert_Actions may have
7858 -- placed the declaration in the freeze list for an enclosing
7859 -- construct, and thus it is not analyzed yet.
7861 Set_Etype (Tnn, Target_Base_Type);
7862 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7863 end;
7864 end if;
7865 end if;
7866 end Generate_Range_Check;
7868 ------------------
7869 -- Get_Check_Id --
7870 ------------------
7872 function Get_Check_Id (N : Name_Id) return Check_Id is
7873 begin
7874 -- For standard check name, we can do a direct computation
7876 if N in First_Check_Name .. Last_Check_Name then
7877 return Check_Id (N - (First_Check_Name - 1));
7879 -- For non-standard names added by pragma Check_Name, search table
7881 else
7882 for J in All_Checks + 1 .. Check_Names.Last loop
7883 if Check_Names.Table (J) = N then
7884 return J;
7885 end if;
7886 end loop;
7887 end if;
7889 -- No matching name found
7891 return No_Check_Id;
7892 end Get_Check_Id;
7894 ---------------------
7895 -- Get_Discriminal --
7896 ---------------------
7898 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7899 Loc : constant Source_Ptr := Sloc (E);
7900 D : Entity_Id;
7901 Sc : Entity_Id;
7903 begin
7904 -- The bound can be a bona fide parameter of a protected operation,
7905 -- rather than a prival encoded as an in-parameter.
7907 if No (Discriminal_Link (Entity (Bound))) then
7908 return Bound;
7909 end if;
7911 -- Climb the scope stack looking for an enclosing protected type. If
7912 -- we run out of scopes, return the bound itself.
7914 Sc := Scope (E);
7915 while Present (Sc) loop
7916 if Sc = Standard_Standard then
7917 return Bound;
7918 elsif Ekind (Sc) = E_Protected_Type then
7919 exit;
7920 end if;
7922 Sc := Scope (Sc);
7923 end loop;
7925 D := First_Discriminant (Sc);
7926 while Present (D) loop
7927 if Chars (D) = Chars (Bound) then
7928 return New_Occurrence_Of (Discriminal (D), Loc);
7929 end if;
7931 Next_Discriminant (D);
7932 end loop;
7934 return Bound;
7935 end Get_Discriminal;
7937 ----------------------
7938 -- Get_Range_Checks --
7939 ----------------------
7941 function Get_Range_Checks
7942 (Expr : Node_Id;
7943 Target_Typ : Entity_Id;
7944 Source_Typ : Entity_Id := Empty;
7945 Warn_Node : Node_Id := Empty) return Check_Result
7947 begin
7948 return
7949 Selected_Range_Checks (Expr, Target_Typ, Source_Typ, Warn_Node);
7950 end Get_Range_Checks;
7952 ------------------
7953 -- Guard_Access --
7954 ------------------
7956 function Guard_Access
7957 (Cond : Node_Id;
7958 Loc : Source_Ptr;
7959 Expr : Node_Id) return Node_Id
7961 begin
7962 if Nkind (Cond) = N_Or_Else then
7963 Set_Paren_Count (Cond, 1);
7964 end if;
7966 if Nkind (Expr) = N_Allocator then
7967 return Cond;
7969 else
7970 return
7971 Make_And_Then (Loc,
7972 Left_Opnd =>
7973 Make_Op_Ne (Loc,
7974 Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
7975 Right_Opnd => Make_Null (Loc)),
7976 Right_Opnd => Cond);
7977 end if;
7978 end Guard_Access;
7980 -----------------------------
7981 -- Index_Checks_Suppressed --
7982 -----------------------------
7984 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7985 begin
7986 if Present (E) and then Checks_May_Be_Suppressed (E) then
7987 return Is_Check_Suppressed (E, Index_Check);
7988 else
7989 return Scope_Suppress.Suppress (Index_Check);
7990 end if;
7991 end Index_Checks_Suppressed;
7993 ----------------
7994 -- Initialize --
7995 ----------------
7997 procedure Initialize is
7998 begin
7999 for J in Determine_Range_Cache_N'Range loop
8000 Determine_Range_Cache_N (J) := Empty;
8001 end loop;
8003 Check_Names.Init;
8005 for J in Int range 1 .. All_Checks loop
8006 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
8007 end loop;
8008 end Initialize;
8010 -------------------------
8011 -- Insert_Range_Checks --
8012 -------------------------
8014 procedure Insert_Range_Checks
8015 (Checks : Check_Result;
8016 Node : Node_Id;
8017 Suppress_Typ : Entity_Id;
8018 Static_Sloc : Source_Ptr;
8019 Do_Before : Boolean := False)
8021 Checks_On : constant Boolean :=
8022 not Index_Checks_Suppressed (Suppress_Typ)
8023 or else
8024 not Range_Checks_Suppressed (Suppress_Typ);
8026 Check_Node : Node_Id;
8028 begin
8029 -- For now we just return if Checks_On is false, however this should be
8030 -- enhanced to check for an always True value in the condition and to
8031 -- generate a compilation warning.
8033 if not Expander_Active or not Checks_On then
8034 return;
8035 end if;
8037 for J in 1 .. 2 loop
8038 exit when No (Checks (J));
8040 if Nkind (Checks (J)) = N_Raise_Constraint_Error
8041 and then Present (Condition (Checks (J)))
8042 then
8043 Check_Node := Checks (J);
8044 else
8045 Check_Node :=
8046 Make_Raise_Constraint_Error (Static_Sloc,
8047 Reason => CE_Range_Check_Failed);
8048 end if;
8050 Mark_Rewrite_Insertion (Check_Node);
8052 if Do_Before then
8053 Insert_Before_And_Analyze (Node, Check_Node);
8054 else
8055 Insert_After_And_Analyze (Node, Check_Node);
8056 end if;
8057 end loop;
8058 end Insert_Range_Checks;
8060 ------------------------
8061 -- Insert_Valid_Check --
8062 ------------------------
8064 procedure Insert_Valid_Check
8065 (Expr : Node_Id;
8066 Related_Id : Entity_Id := Empty;
8067 Is_Low_Bound : Boolean := False;
8068 Is_High_Bound : Boolean := False)
8070 Loc : constant Source_Ptr := Sloc (Expr);
8071 Typ : Entity_Id := Etype (Expr);
8072 Exp : Node_Id;
8074 begin
8075 -- Do not insert if checks off, or if not checking validity or if
8076 -- expression is known to be valid.
8078 if not Validity_Checks_On
8079 or else Range_Or_Validity_Checks_Suppressed (Expr)
8080 or else Expr_Known_Valid (Expr)
8081 then
8082 return;
8084 -- Do not insert checks within a predicate function. This will arise
8085 -- if the current unit and the predicate function are being compiled
8086 -- with validity checks enabled.
8088 elsif Present (Predicate_Function (Typ))
8089 and then Current_Scope = Predicate_Function (Typ)
8090 then
8091 return;
8093 -- If the expression is a packed component of a modular type of the
8094 -- right size, the data is always valid.
8096 elsif Nkind (Expr) = N_Selected_Component
8097 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
8098 and then Is_Modular_Integer_Type (Typ)
8099 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
8100 then
8101 return;
8103 -- Do not generate a validity check when inside a generic unit as this
8104 -- is an expansion activity.
8106 elsif Inside_A_Generic then
8107 return;
8108 end if;
8110 -- Entities declared in Lock_free protected types must be treated as
8111 -- volatile, and we must inhibit validity checks to prevent improper
8112 -- constant folding.
8114 if Is_Entity_Name (Expr)
8115 and then Is_Subprogram (Scope (Entity (Expr)))
8116 and then Present (Protected_Subprogram (Scope (Entity (Expr))))
8117 and then Uses_Lock_Free
8118 (Scope (Protected_Subprogram (Scope (Entity (Expr)))))
8119 then
8120 return;
8121 end if;
8123 -- If we have a checked conversion, then validity check applies to
8124 -- the expression inside the conversion, not the result, since if
8125 -- the expression inside is valid, then so is the conversion result.
8127 Exp := Expr;
8128 while Nkind (Exp) = N_Type_Conversion loop
8129 Exp := Expression (Exp);
8130 end loop;
8131 Typ := Etype (Exp);
8133 -- Do not generate a check for a variable which already validates the
8134 -- value of an assignable object.
8136 if Is_Validation_Variable_Reference (Exp) then
8137 return;
8138 end if;
8140 declare
8141 CE : Node_Id;
8142 PV : Node_Id;
8143 Var_Id : Entity_Id;
8145 begin
8146 -- If the expression denotes an assignable object, capture its value
8147 -- in a variable and replace the original expression by the variable.
8148 -- This approach has several effects:
8150 -- 1) The evaluation of the object results in only one read in the
8151 -- case where the object is atomic or volatile.
8153 -- Var ... := Object; -- read
8155 -- 2) The captured value is the one verified by attribute 'Valid.
8156 -- As a result the object is not evaluated again, which would
8157 -- result in an unwanted read in the case where the object is
8158 -- atomic or volatile.
8160 -- if not Var'Valid then -- OK, no read of Object
8162 -- if not Object'Valid then -- Wrong, extra read of Object
8164 -- 3) The captured value replaces the original object reference.
8165 -- As a result the object is not evaluated again, in the same
8166 -- vein as 2).
8168 -- ... Var ... -- OK, no read of Object
8170 -- ... Object ... -- Wrong, extra read of Object
8172 -- 4) The use of a variable to capture the value of the object
8173 -- allows the propagation of any changes back to the original
8174 -- object.
8176 -- procedure Call (Val : in out ...);
8178 -- Var : ... := Object; -- read Object
8179 -- if not Var'Valid then -- validity check
8180 -- Call (Var); -- modify Var
8181 -- Object := Var; -- update Object
8183 if Is_Variable (Exp) then
8184 Var_Id := Make_Temporary (Loc, 'T', Exp);
8186 -- Because we could be dealing with a transient scope which would
8187 -- cause our object declaration to remain unanalyzed we must do
8188 -- some manual decoration.
8190 Mutate_Ekind (Var_Id, E_Variable);
8191 Set_Etype (Var_Id, Typ);
8193 Insert_Action (Exp,
8194 Make_Object_Declaration (Loc,
8195 Defining_Identifier => Var_Id,
8196 Object_Definition => New_Occurrence_Of (Typ, Loc),
8197 Expression => New_Copy_Tree (Exp)),
8198 Suppress => Validity_Check);
8200 Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));
8202 Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
8204 -- Move the Do_Range_Check flag over to the new Exp so it doesn't
8205 -- get lost and doesn't leak elsewhere.
8207 if Do_Range_Check (Validated_Object (Var_Id)) then
8208 Set_Do_Range_Check (Exp);
8209 Set_Do_Range_Check (Validated_Object (Var_Id), False);
8210 end if;
8212 -- In case of a type conversion, an expansion of the expr may be
8213 -- needed (eg. fixed-point as actual).
8215 if Exp /= Expr then
8216 pragma Assert (Nkind (Expr) = N_Type_Conversion);
8217 Analyze_And_Resolve (Expr);
8218 end if;
8220 PV := New_Occurrence_Of (Var_Id, Loc);
8222 -- Otherwise the expression does not denote a variable. Force its
8223 -- evaluation by capturing its value in a constant. Generate:
8225 -- Temp : constant ... := Exp;
8227 else
8228 Force_Evaluation
8229 (Exp => Exp,
8230 Related_Id => Related_Id,
8231 Is_Low_Bound => Is_Low_Bound,
8232 Is_High_Bound => Is_High_Bound);
8234 PV := New_Copy_Tree (Exp);
8235 end if;
8237 -- A rather specialized test. If PV is an analyzed expression which
8238 -- is an indexed component of a packed array that has not been
8239 -- properly expanded, turn off its Analyzed flag to make sure it
8240 -- gets properly reexpanded. If the prefix is an access value,
8241 -- the dereference will be added later.
8243 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
8244 -- an analyze with the old parent pointer. This may point e.g. to
8245 -- a subprogram call, which deactivates this expansion.
8247 if Analyzed (PV)
8248 and then Nkind (PV) = N_Indexed_Component
8249 and then Is_Array_Type (Etype (Prefix (PV)))
8250 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
8251 then
8252 Set_Analyzed (PV, False);
8253 end if;
8255 -- Build the raise CE node to check for validity. We build a type
8256 -- qualification for the prefix, since it may not be of the form of
8257 -- a name, and we don't care in this context!
8259 CE :=
8260 Make_Raise_Constraint_Error (Loc,
8261 Condition =>
8262 Make_Op_Not (Loc,
8263 Right_Opnd =>
8264 Make_Attribute_Reference (Loc,
8265 Prefix => PV,
8266 Attribute_Name => Name_Valid)),
8267 Reason => CE_Invalid_Data);
8269 -- Insert the validity check. Note that we do this with validity
8270 -- checks turned off, to avoid recursion, we do not want validity
8271 -- checks on the validity checking code itself.
8273 Insert_Action (Expr, CE, Suppress => Validity_Check);
8275 -- If the expression is a reference to an element of a bit-packed
8276 -- array, then it is rewritten as a renaming declaration. If the
8277 -- expression is an actual in a call, it has not been expanded,
8278 -- waiting for the proper point at which to do it. The same happens
8279 -- with renamings, so that we have to force the expansion now. This
8280 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
8281 -- and exp_ch6.adb.
8283 if Is_Entity_Name (Exp)
8284 and then Nkind (Parent (Entity (Exp))) =
8285 N_Object_Renaming_Declaration
8286 then
8287 declare
8288 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
8289 begin
8290 if Nkind (Old_Exp) = N_Indexed_Component
8291 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
8292 then
8293 Expand_Packed_Element_Reference (Old_Exp);
8294 end if;
8295 end;
8296 end if;
8297 end;
8298 end Insert_Valid_Check;
8300 -------------------------------------
8301 -- Is_Signed_Integer_Arithmetic_Op --
8302 -------------------------------------
8304 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
8305 begin
8306 case Nkind (N) is
8307 when N_Op_Abs
8308 | N_Op_Add
8309 | N_Op_Divide
8310 | N_Op_Expon
8311 | N_Op_Minus
8312 | N_Op_Mod
8313 | N_Op_Multiply
8314 | N_Op_Plus
8315 | N_Op_Rem
8316 | N_Op_Subtract
8318 return Is_Signed_Integer_Type (Etype (N));
8320 when N_Case_Expression
8321 | N_If_Expression
8323 return Is_Signed_Integer_Type (Etype (N));
8325 when others =>
8326 return False;
8327 end case;
8328 end Is_Signed_Integer_Arithmetic_Op;
8330 ----------------------------------
8331 -- Install_Null_Excluding_Check --
8332 ----------------------------------
8334 procedure Install_Null_Excluding_Check (N : Node_Id) is
8335 Loc : constant Source_Ptr := Sloc (Parent (N));
8336 Typ : constant Entity_Id := Etype (N);
8338 procedure Mark_Non_Null;
8339 -- After installation of check, if the node in question is an entity
8340 -- name, then mark this entity as non-null if possible.
8342 -------------------
8343 -- Mark_Non_Null --
8344 -------------------
8346 procedure Mark_Non_Null is
8347 begin
8348 -- Only case of interest is if node N is an entity name
8350 if Is_Entity_Name (N) then
8352 -- For sure, we want to clear an indication that this is known to
8353 -- be null, since if we get past this check, it definitely is not.
8355 Set_Is_Known_Null (Entity (N), False);
8357 -- We can mark the entity as known to be non-null if it is safe to
8358 -- capture the value.
8360 if Safe_To_Capture_Value (N, Entity (N)) then
8361 Set_Is_Known_Non_Null (Entity (N));
8362 end if;
8363 end if;
8364 end Mark_Non_Null;
8366 -- Start of processing for Install_Null_Excluding_Check
8368 begin
8369 -- No need to add null-excluding checks when the tree may not be fully
8370 -- decorated.
8372 if Serious_Errors_Detected > 0 then
8373 return;
8374 end if;
8376 pragma Assert (Is_Access_Type (Typ));
8378 -- No check inside a generic, check will be emitted in instance
8380 if Inside_A_Generic then
8381 return;
8382 end if;
8384 -- No check needed if known to be non-null
8386 if Known_Non_Null (N) then
8387 return;
8388 end if;
8390 -- If known to be null, here is where we generate a compile time check
8392 if Known_Null (N) then
8394 -- Avoid generating warning message inside init procs. In SPARK mode
8395 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
8396 -- since it will be turned into an error in any case.
8398 if (not Inside_Init_Proc or else SPARK_Mode = On)
8400 -- Do not emit the warning within a conditional expression,
8401 -- where the expression might not be evaluated, and the warning
8402 -- appear as extraneous noise.
8404 and then not Within_Case_Or_If_Expression (N)
8405 then
8406 Apply_Compile_Time_Constraint_Error
8407 (N, "null value not allowed here??", CE_Access_Check_Failed);
8409 -- Remaining cases, where we silently insert the raise
8411 else
8412 Insert_Action (N,
8413 Make_Raise_Constraint_Error (Loc,
8414 Reason => CE_Access_Check_Failed));
8415 end if;
8417 Mark_Non_Null;
8418 return;
8419 end if;
8421 -- If entity is never assigned, for sure a warning is appropriate
8423 if Is_Entity_Name (N) then
8424 Check_Unset_Reference (N);
8425 end if;
8427 -- No check needed if checks are suppressed on the range. Note that we
8428 -- don't set Is_Known_Non_Null in this case (we could legitimately do
8429 -- so, since the program is erroneous, but we don't like to casually
8430 -- propagate such conclusions from erroneosity).
8432 if Access_Checks_Suppressed (Typ) then
8433 return;
8434 end if;
8436 -- No check needed for access to concurrent record types generated by
8437 -- the expander. This is not just an optimization (though it does indeed
8438 -- remove junk checks). It also avoids generation of junk warnings.
8440 if Nkind (N) in N_Has_Chars
8441 and then Chars (N) = Name_uObject
8442 and then Is_Concurrent_Record_Type
8443 (Directly_Designated_Type (Etype (N)))
8444 then
8445 return;
8446 end if;
8448 -- No check needed in interface thunks since the runtime check is
8449 -- already performed at the caller side.
8451 if Is_Thunk (Current_Scope) then
8452 return;
8453 end if;
8455 -- In GNATprove mode, we do not apply the check
8457 if GNATprove_Mode then
8458 return;
8459 end if;
8461 -- Otherwise install access check
8463 Insert_Action (N,
8464 Make_Raise_Constraint_Error (Loc,
8465 Condition =>
8466 Make_Op_Eq (Loc,
8467 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
8468 Right_Opnd => Make_Null (Loc)),
8469 Reason => CE_Access_Check_Failed));
8471 -- Mark the entity of N "non-null" except when assertions are enabled -
8472 -- since expansion becomes much more complicated (especially when it
8473 -- comes to contracts) due to the generation of wrappers and wholesale
8474 -- moving of declarations and statements which may happen.
8476 -- Additionally, it is assumed that extra checks will exist with
8477 -- assertions enabled so some potentially redundant checks are
8478 -- acceptable.
8480 if not Assertions_Enabled then
8481 Mark_Non_Null;
8482 end if;
8483 end Install_Null_Excluding_Check;
8485 -----------------------------------------
8486 -- Install_Primitive_Elaboration_Check --
8487 -----------------------------------------
8489 procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
8490 function Within_Compilation_Unit_Instance
8491 (Subp_Id : Entity_Id) return Boolean;
8492 -- Determine whether subprogram Subp_Id appears within an instance which
8493 -- acts as a compilation unit.
8495 --------------------------------------
8496 -- Within_Compilation_Unit_Instance --
8497 --------------------------------------
8499 function Within_Compilation_Unit_Instance
8500 (Subp_Id : Entity_Id) return Boolean
8502 Pack : Entity_Id;
8504 begin
8505 -- Examine the scope chain looking for a compilation-unit-level
8506 -- instance.
8508 Pack := Scope (Subp_Id);
8509 while Present (Pack) and then Pack /= Standard_Standard loop
8510 if Ekind (Pack) = E_Package
8511 and then Is_Generic_Instance (Pack)
8512 and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
8513 N_Compilation_Unit
8514 then
8515 return True;
8516 end if;
8518 Pack := Scope (Pack);
8519 end loop;
8521 return False;
8522 end Within_Compilation_Unit_Instance;
8524 -- Local declarations
8526 Context : constant Node_Id := Parent (Subp_Body);
8527 Loc : constant Source_Ptr := Sloc (Subp_Body);
8528 Subp_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Body);
8529 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
8531 Decls : List_Id;
8532 Flag_Id : Entity_Id;
8533 Set_Ins : Node_Id;
8534 Set_Stmt : Node_Id;
8535 Tag_Typ : Entity_Id;
8537 -- Start of processing for Install_Primitive_Elaboration_Check
8539 begin
8540 -- Do not generate an elaboration check in compilation modes where
8541 -- expansion is not desirable.
8543 if GNATprove_Mode then
8544 return;
8546 -- Do not generate an elaboration check if all checks have been
8547 -- suppressed.
8549 elsif Suppress_Checks then
8550 return;
8552 -- Do not generate an elaboration check if the related subprogram is
8553 -- not subject to elaboration checks.
8555 elsif Elaboration_Checks_Suppressed (Subp_Id) then
8556 return;
8558 -- Do not generate an elaboration check if such code is not desirable
8560 elsif Restriction_Active (No_Elaboration_Code) then
8561 return;
8563 -- If pragma Pure or Preelaborate applies, then these elaboration checks
8564 -- cannot fail, so do not generate them.
8566 elsif In_Preelaborated_Unit then
8567 return;
8569 -- Do not generate an elaboration check if exceptions cannot be used,
8570 -- caught, or propagated.
8572 elsif not Exceptions_OK then
8573 return;
8575 -- Do not consider subprograms that are compilation units, because they
8576 -- cannot be the target of a dispatching call.
8578 elsif Nkind (Context) = N_Compilation_Unit then
8579 return;
8581 -- Do not consider anything other than nonabstract library-level source
8582 -- primitives.
8584 elsif not
8585 (Comes_From_Source (Subp_Id)
8586 and then Is_Library_Level_Entity (Subp_Id)
8587 and then Is_Primitive (Subp_Id)
8588 and then not Is_Abstract_Subprogram (Subp_Id))
8589 then
8590 return;
8592 -- Do not consider inlined primitives, because once the body is inlined
8593 -- the reference to the elaboration flag will be out of place and will
8594 -- result in an undefined symbol.
8596 elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
8597 return;
8599 -- Do not generate a duplicate elaboration check. This happens only in
8600 -- the case of primitives completed by an expression function, as the
8601 -- corresponding body is apparently analyzed and expanded twice.
8603 elsif Analyzed (Subp_Body) then
8604 return;
8606 -- Do not consider primitives that occur within an instance that is a
8607 -- compilation unit. Such an instance defines its spec and body out of
8608 -- order (body is first) within the tree, which causes the reference to
8609 -- the elaboration flag to appear as an undefined symbol.
8611 elsif Within_Compilation_Unit_Instance (Subp_Id) then
8612 return;
8613 end if;
8615 Tag_Typ := Find_Dispatching_Type (Subp_Id);
8617 -- Only tagged primitives may be the target of a dispatching call
8619 if No (Tag_Typ) then
8620 return;
8622 -- Do not consider finalization-related primitives, because they may
8623 -- need to be called while elaboration is taking place.
8625 elsif Is_Controlled (Tag_Typ)
8626 and then (Is_Controlled_Procedure (Subp_Id, Name_Adjust)
8627 or else Is_Controlled_Procedure (Subp_Id, Name_Finalize)
8628 or else Is_Controlled_Procedure (Subp_Id, Name_Initialize))
8629 then
8630 return;
8631 end if;
8633 -- Create the declaration of the elaboration flag. The name carries a
8634 -- unique counter in case of name overloading.
8636 Flag_Id :=
8637 Make_Defining_Identifier (Loc,
8638 Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
8639 Set_Is_Frozen (Flag_Id);
8641 -- Insert the declaration of the elaboration flag in front of the
8642 -- primitive spec and analyze it in the proper context.
8644 Push_Scope (Scope (Subp_Id));
8646 -- Generate:
8647 -- E : Boolean := False;
8649 Insert_Action (Subp_Decl,
8650 Make_Object_Declaration (Loc,
8651 Defining_Identifier => Flag_Id,
8652 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
8653 Expression => New_Occurrence_Of (Standard_False, Loc)));
8654 Pop_Scope;
8656 -- Prevent the compiler from optimizing the elaboration check by killing
8657 -- the current value of the flag and the associated assignment.
8659 Set_Current_Value (Flag_Id, Empty);
8660 Set_Last_Assignment (Flag_Id, Empty);
8662 -- Add a check at the top of the body declarations to ensure that the
8663 -- elaboration flag has been set.
8665 Decls := Declarations (Subp_Body);
8667 if No (Decls) then
8668 Decls := New_List;
8669 Set_Declarations (Subp_Body, Decls);
8670 end if;
8672 -- Generate:
8673 -- if not F then
8674 -- raise Program_Error with "access before elaboration";
8675 -- end if;
8677 Prepend_To (Decls,
8678 Make_Raise_Program_Error (Loc,
8679 Condition =>
8680 Make_Op_Not (Loc,
8681 Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
8682 Reason => PE_Access_Before_Elaboration));
8684 Analyze (First (Decls));
8686 -- Set the elaboration flag once the body has been elaborated. Insert
8687 -- the statement after the subprogram stub when the primitive body is
8688 -- a subunit.
8690 if Nkind (Context) = N_Subunit then
8691 Set_Ins := Corresponding_Stub (Context);
8692 else
8693 Set_Ins := Subp_Body;
8694 end if;
8696 -- Generate:
8697 -- E := True;
8699 Set_Stmt :=
8700 Make_Assignment_Statement (Loc,
8701 Name => New_Occurrence_Of (Flag_Id, Loc),
8702 Expression => New_Occurrence_Of (Standard_True, Loc));
8704 -- Mark the assignment statement as elaboration code. This allows the
8705 -- early call region mechanism (see Sem_Elab) to properly ignore such
8706 -- assignments even though they are non-preelaborable code.
8708 Set_Is_Elaboration_Code (Set_Stmt);
8710 Insert_After_And_Analyze (Set_Ins, Set_Stmt);
8711 end Install_Primitive_Elaboration_Check;
8713 --------------------------
8714 -- Install_Static_Check --
8715 --------------------------
8717 procedure Install_Static_Check
8718 (R_Cno : Node_Id; Loc : Source_Ptr; Reason : RT_Exception_Code)
8720 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
8721 Typ : constant Entity_Id := Etype (R_Cno);
8723 begin
8724 Rewrite (R_Cno,
8725 Make_Raise_Constraint_Error (Loc,
8726 Reason => Reason));
8727 Set_Analyzed (R_Cno);
8728 Set_Etype (R_Cno, Typ);
8729 Set_Raises_Constraint_Error (R_Cno);
8730 Set_Is_Static_Expression (R_Cno, Stat);
8732 -- Now deal with possible local raise handling
8734 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
8735 end Install_Static_Check;
8737 -------------------------
8738 -- Is_Check_Suppressed --
8739 -------------------------
8741 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8742 Ptr : Suppress_Stack_Entry_Ptr;
8744 begin
8745 -- First search the local entity suppress stack. We search this from the
8746 -- top of the stack down so that we get the innermost entry that applies
8747 -- to this case if there are nested entries.
8749 Ptr := Local_Suppress_Stack_Top;
8750 while Ptr /= null loop
8751 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8752 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8753 then
8754 return Ptr.Suppress;
8755 end if;
8757 Ptr := Ptr.Prev;
8758 end loop;
8760 -- Now search the global entity suppress table for a matching entry.
8761 -- We also search this from the top down so that if there are multiple
8762 -- pragmas for the same entity, the last one applies (not clear what
8763 -- or whether the RM specifies this handling, but it seems reasonable).
8765 Ptr := Global_Suppress_Stack_Top;
8766 while Ptr /= null loop
8767 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8768 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8769 then
8770 return Ptr.Suppress;
8771 end if;
8773 Ptr := Ptr.Prev;
8774 end loop;
8776 -- If we did not find a matching entry, then use the normal scope
8777 -- suppress value after all (actually this will be the global setting
8778 -- since it clearly was not overridden at any point). For a predefined
8779 -- check, we test the specific flag. For a user defined check, we check
8780 -- the All_Checks flag. The Overflow flag requires special handling to
8781 -- deal with the General vs Assertion case.
8783 if C = Overflow_Check then
8784 return Overflow_Checks_Suppressed (Empty);
8786 elsif C in Predefined_Check_Id then
8787 return Scope_Suppress.Suppress (C);
8789 else
8790 return Scope_Suppress.Suppress (All_Checks);
8791 end if;
8792 end Is_Check_Suppressed;
8794 ---------------------
8795 -- Kill_All_Checks --
8796 ---------------------
8798 procedure Kill_All_Checks is
8799 begin
8800 if Debug_Flag_CC then
8801 w ("Kill_All_Checks");
8802 end if;
8804 -- We reset the number of saved checks to zero, and also modify all
8805 -- stack entries for statement ranges to indicate that the number of
8806 -- checks at each level is now zero.
8808 Num_Saved_Checks := 0;
8810 -- Note: the Int'Min here avoids any possibility of J being out of
8811 -- range when called from e.g. Conditional_Statements_Begin.
8813 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
8814 Saved_Checks_Stack (J) := 0;
8815 end loop;
8816 end Kill_All_Checks;
8818 -----------------
8819 -- Kill_Checks --
8820 -----------------
8822 procedure Kill_Checks (V : Entity_Id) is
8823 begin
8824 if Debug_Flag_CC then
8825 w ("Kill_Checks for entity", Int (V));
8826 end if;
8828 for J in 1 .. Num_Saved_Checks loop
8829 if Saved_Checks (J).Entity = V then
8830 if Debug_Flag_CC then
8831 w (" Checks killed for saved check ", J);
8832 end if;
8834 Saved_Checks (J).Killed := True;
8835 end if;
8836 end loop;
8837 end Kill_Checks;
8839 ------------------------------
8840 -- Length_Checks_Suppressed --
8841 ------------------------------
8843 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8844 begin
8845 if Present (E) and then Checks_May_Be_Suppressed (E) then
8846 return Is_Check_Suppressed (E, Length_Check);
8847 else
8848 return Scope_Suppress.Suppress (Length_Check);
8849 end if;
8850 end Length_Checks_Suppressed;
8852 -----------------------
8853 -- Make_Bignum_Block --
8854 -----------------------
8856 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8857 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
8858 begin
8859 return
8860 Make_Block_Statement (Loc,
8861 Declarations =>
8862 New_List (Build_SS_Mark_Call (Loc, M)),
8863 Handled_Statement_Sequence =>
8864 Make_Handled_Sequence_Of_Statements (Loc,
8865 Statements => New_List (Build_SS_Release_Call (Loc, M))));
8866 end Make_Bignum_Block;
8868 ----------------------------------
8869 -- Minimize_Eliminate_Overflows --
8870 ----------------------------------
8872 -- This is a recursive routine that is called at the top of an expression
8873 -- tree to properly process overflow checking for a whole subtree by making
8874 -- recursive calls to process operands. This processing may involve the use
8875 -- of bignum or long long integer arithmetic, which will change the types
8876 -- of operands and results. That's why we can't do this bottom up (since
8877 -- it would interfere with semantic analysis).
8879 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
8880 -- the operator expansion routines, as well as the expansion routines for
8881 -- if/case expression, do nothing (for the moment) except call the routine
8882 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8883 -- routine does nothing for non top-level nodes, so at the point where the
8884 -- call is made for the top level node, the entire expression subtree has
8885 -- not been expanded, or processed for overflow. All that has to happen as
8886 -- a result of the top level call to this routine.
8888 -- As noted above, the overflow processing works by making recursive calls
8889 -- for the operands, and figuring out what to do, based on the processing
8890 -- of these operands (e.g. if a bignum operand appears, the parent op has
8891 -- to be done in bignum mode), and the determined ranges of the operands.
8893 -- After possible rewriting of a constituent subexpression node, a call is
8894 -- made to either reexpand the node (if nothing has changed) or reanalyze
8895 -- the node (if it has been modified by the overflow check processing). The
8896 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8897 -- a recursive call into the whole overflow apparatus, an important rule
8898 -- for this call is that the overflow handling mode must be temporarily set
8899 -- to STRICT.
8901 procedure Minimize_Eliminate_Overflows
8902 (N : Node_Id;
8903 Lo : out Uint;
8904 Hi : out Uint;
8905 Top_Level : Boolean)
8907 Rtyp : constant Entity_Id := Etype (N);
8908 pragma Assert (Is_Signed_Integer_Type (Rtyp));
8909 -- Result type, must be a signed integer type
8911 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
8912 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8914 Loc : constant Source_Ptr := Sloc (N);
8916 Rlo, Rhi : Uint;
8917 -- Ranges of values for right operand (operator case)
8919 Llo : Uint := No_Uint; -- initialize to prevent warning
8920 Lhi : Uint := No_Uint; -- initialize to prevent warning
8921 -- Ranges of values for left operand (operator case)
8923 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8924 -- Operands and results are of this type when we convert
8926 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
8927 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
8928 -- Bounds of Long_Long_Integer
8930 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8931 -- Indicates binary operator case
8933 OK : Boolean;
8934 -- Used in call to Determine_Range
8936 Bignum_Operands : Boolean;
8937 -- Set True if one or more operands is already of type Bignum, meaning
8938 -- that for sure (regardless of Top_Level setting) we are committed to
8939 -- doing the operation in Bignum mode (or in the case of a case or if
8940 -- expression, converting all the dependent expressions to Bignum).
8942 Long_Long_Integer_Operands : Boolean;
8943 -- Set True if one or more operands is already of type Long_Long_Integer
8944 -- which means that if the result is known to be in the result type
8945 -- range, then we must convert such operands back to the result type.
8947 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8948 -- This is called when we have modified the node and we therefore need
8949 -- to reanalyze it. It is important that we reset the mode to STRICT for
8950 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
8951 -- we would reenter this routine recursively which would not be good.
8952 -- The argument Suppress is set True if we also want to suppress
8953 -- overflow checking for the reexpansion (this is set when we know
8954 -- overflow is not possible). Typ is the type for the reanalysis.
8956 procedure Reexpand (Suppress : Boolean := False);
8957 -- This is like Reanalyze, but does not do the Analyze step, it only
8958 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
8959 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8960 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
8961 -- Note that skipping reanalysis is not just an optimization, testing
8962 -- has showed up several complex cases in which reanalyzing an already
8963 -- analyzed node causes incorrect behavior.
8965 function In_Result_Range return Boolean;
8966 -- Returns True iff Lo .. Hi are within range of the result type
8968 procedure Max (A : in out Uint; B : Uint);
8969 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
8971 procedure Min (A : in out Uint; B : Uint);
8972 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
8974 ---------------------
8975 -- In_Result_Range --
8976 ---------------------
8978 function In_Result_Range return Boolean is
8979 begin
8980 if No (Lo) or else No (Hi) then
8981 return False;
8983 elsif Is_OK_Static_Subtype (Etype (N)) then
8984 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
8985 and then
8986 Hi <= Expr_Value (Type_High_Bound (Rtyp));
8988 else
8989 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
8990 and then
8991 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
8992 end if;
8993 end In_Result_Range;
8995 ---------
8996 -- Max --
8997 ---------
8999 procedure Max (A : in out Uint; B : Uint) is
9000 begin
9001 if No (A) or else B > A then
9002 A := B;
9003 end if;
9004 end Max;
9006 ---------
9007 -- Min --
9008 ---------
9010 procedure Min (A : in out Uint; B : Uint) is
9011 begin
9012 if No (A) or else B < A then
9013 A := B;
9014 end if;
9015 end Min;
9017 ---------------
9018 -- Reanalyze --
9019 ---------------
9021 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
9022 Svg : constant Overflow_Mode_Type :=
9023 Scope_Suppress.Overflow_Mode_General;
9024 Sva : constant Overflow_Mode_Type :=
9025 Scope_Suppress.Overflow_Mode_Assertions;
9026 Svo : constant Boolean :=
9027 Scope_Suppress.Suppress (Overflow_Check);
9029 begin
9030 Scope_Suppress.Overflow_Mode_General := Strict;
9031 Scope_Suppress.Overflow_Mode_Assertions := Strict;
9033 if Suppress then
9034 Scope_Suppress.Suppress (Overflow_Check) := True;
9035 end if;
9037 Analyze_And_Resolve (N, Typ);
9039 Scope_Suppress.Suppress (Overflow_Check) := Svo;
9040 Scope_Suppress.Overflow_Mode_General := Svg;
9041 Scope_Suppress.Overflow_Mode_Assertions := Sva;
9042 end Reanalyze;
9044 --------------
9045 -- Reexpand --
9046 --------------
9048 procedure Reexpand (Suppress : Boolean := False) is
9049 Svg : constant Overflow_Mode_Type :=
9050 Scope_Suppress.Overflow_Mode_General;
9051 Sva : constant Overflow_Mode_Type :=
9052 Scope_Suppress.Overflow_Mode_Assertions;
9053 Svo : constant Boolean :=
9054 Scope_Suppress.Suppress (Overflow_Check);
9056 begin
9057 Scope_Suppress.Overflow_Mode_General := Strict;
9058 Scope_Suppress.Overflow_Mode_Assertions := Strict;
9059 Set_Analyzed (N, False);
9061 if Suppress then
9062 Scope_Suppress.Suppress (Overflow_Check) := True;
9063 end if;
9065 Expand (N);
9067 Scope_Suppress.Suppress (Overflow_Check) := Svo;
9068 Scope_Suppress.Overflow_Mode_General := Svg;
9069 Scope_Suppress.Overflow_Mode_Assertions := Sva;
9070 end Reexpand;
9072 -- Start of processing for Minimize_Eliminate_Overflows
9074 begin
9075 -- Default initialize Lo and Hi since these are not guaranteed to be
9076 -- set otherwise.
9078 Lo := No_Uint;
9079 Hi := No_Uint;
9081 -- Case where we do not have a signed integer arithmetic operation
9083 if not Is_Signed_Integer_Arithmetic_Op (N) then
9085 -- Use the normal Determine_Range routine to get the range. We
9086 -- don't require operands to be valid, invalid values may result in
9087 -- rubbish results where the result has not been properly checked for
9088 -- overflow, that's fine.
9090 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
9092 -- If Determine_Range did not work (can this in fact happen? Not
9093 -- clear but might as well protect), use type bounds.
9095 if not OK then
9096 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
9097 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
9098 end if;
9100 -- If we don't have a binary operator, all we have to do is to set
9101 -- the Hi/Lo range, so we are done.
9103 return;
9105 -- Processing for if expression
9107 elsif Nkind (N) = N_If_Expression then
9108 declare
9109 Then_DE : constant Node_Id := Next (First (Expressions (N)));
9110 Else_DE : constant Node_Id := Next (Then_DE);
9112 begin
9113 Bignum_Operands := False;
9115 Minimize_Eliminate_Overflows
9116 (Then_DE, Lo, Hi, Top_Level => False);
9118 if No (Lo) then
9119 Bignum_Operands := True;
9120 end if;
9122 Minimize_Eliminate_Overflows
9123 (Else_DE, Rlo, Rhi, Top_Level => False);
9125 if No (Rlo) then
9126 Bignum_Operands := True;
9127 else
9128 Long_Long_Integer_Operands :=
9129 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
9131 Min (Lo, Rlo);
9132 Max (Hi, Rhi);
9133 end if;
9135 -- If at least one of our operands is now Bignum, we must rebuild
9136 -- the if expression to use Bignum operands. We will analyze the
9137 -- rebuilt if expression with overflow checks off, since once we
9138 -- are in bignum mode, we are all done with overflow checks.
9140 if Bignum_Operands then
9141 Rewrite (N,
9142 Make_If_Expression (Loc,
9143 Expressions => New_List (
9144 Remove_Head (Expressions (N)),
9145 Convert_To_Bignum (Then_DE),
9146 Convert_To_Bignum (Else_DE)),
9147 Is_Elsif => Is_Elsif (N)));
9149 Reanalyze (RTE (RE_Bignum), Suppress => True);
9151 -- If we have no Long_Long_Integer operands, then we are in result
9152 -- range, since it means that none of our operands felt the need
9153 -- to worry about overflow (otherwise it would have already been
9154 -- converted to long long integer or bignum). We reexpand to
9155 -- complete the expansion of the if expression (but we do not
9156 -- need to reanalyze).
9158 elsif not Long_Long_Integer_Operands then
9159 Set_Do_Overflow_Check (N, False);
9160 Reexpand;
9162 -- Otherwise convert us to long long integer mode. Note that we
9163 -- don't need any further overflow checking at this level.
9165 else
9166 Convert_To_And_Rewrite (LLIB, Then_DE);
9167 Convert_To_And_Rewrite (LLIB, Else_DE);
9168 Set_Etype (N, LLIB);
9170 -- Now reanalyze with overflow checks off
9172 Set_Do_Overflow_Check (N, False);
9173 Reanalyze (LLIB, Suppress => True);
9174 end if;
9175 end;
9177 return;
9179 -- Here for case expression
9181 elsif Nkind (N) = N_Case_Expression then
9182 Bignum_Operands := False;
9183 Long_Long_Integer_Operands := False;
9185 declare
9186 Alt : Node_Id;
9188 begin
9189 -- Loop through expressions applying recursive call
9191 Alt := First (Alternatives (N));
9192 while Present (Alt) loop
9193 declare
9194 Aexp : constant Node_Id := Expression (Alt);
9196 begin
9197 Minimize_Eliminate_Overflows
9198 (Aexp, Lo, Hi, Top_Level => False);
9200 if No (Lo) then
9201 Bignum_Operands := True;
9202 elsif Etype (Aexp) = LLIB then
9203 Long_Long_Integer_Operands := True;
9204 end if;
9205 end;
9207 Next (Alt);
9208 end loop;
9210 -- If we have no bignum or long long integer operands, it means
9211 -- that none of our dependent expressions could raise overflow.
9212 -- In this case, we simply return with no changes except for
9213 -- resetting the overflow flag, since we are done with overflow
9214 -- checks for this node. We will reexpand to get the needed
9215 -- expansion for the case expression, but we do not need to
9216 -- reanalyze, since nothing has changed.
9218 if not (Bignum_Operands or Long_Long_Integer_Operands) then
9219 Set_Do_Overflow_Check (N, False);
9220 Reexpand (Suppress => True);
9222 -- Otherwise we are going to rebuild the case expression using
9223 -- either bignum or long long integer operands throughout.
9225 else
9226 declare
9227 Rtype : Entity_Id := Empty;
9228 New_Alts : List_Id;
9229 New_Exp : Node_Id;
9231 begin
9232 New_Alts := New_List;
9233 Alt := First (Alternatives (N));
9234 while Present (Alt) loop
9235 if Bignum_Operands then
9236 New_Exp := Convert_To_Bignum (Expression (Alt));
9237 Rtype := RTE (RE_Bignum);
9238 else
9239 New_Exp := Convert_To (LLIB, Expression (Alt));
9240 Rtype := LLIB;
9241 end if;
9243 Append_To (New_Alts,
9244 Make_Case_Expression_Alternative (Sloc (Alt),
9245 Discrete_Choices => Discrete_Choices (Alt),
9246 Expression => New_Exp));
9248 Next (Alt);
9249 end loop;
9251 Rewrite (N,
9252 Make_Case_Expression (Loc,
9253 Expression => Expression (N),
9254 Alternatives => New_Alts));
9256 pragma Assert (Present (Rtype));
9257 Reanalyze (Rtype, Suppress => True);
9258 end;
9259 end if;
9260 end;
9262 return;
9263 end if;
9265 -- If we have an arithmetic operator we make recursive calls on the
9266 -- operands to get the ranges (and to properly process the subtree
9267 -- that lies below us).
9269 Minimize_Eliminate_Overflows
9270 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
9272 if Binary then
9273 Minimize_Eliminate_Overflows
9274 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
9275 end if;
9277 -- Record if we have Long_Long_Integer operands
9279 Long_Long_Integer_Operands :=
9280 Etype (Right_Opnd (N)) = LLIB
9281 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
9283 -- If either operand is a bignum, then result will be a bignum and we
9284 -- don't need to do any range analysis. As previously discussed we could
9285 -- do range analysis in such cases, but it could mean working with giant
9286 -- numbers at compile time for very little gain (the number of cases
9287 -- in which we could slip back from bignum mode is small).
9289 if No (Rlo) or else (Binary and then No (Llo)) then
9290 Lo := No_Uint;
9291 Hi := No_Uint;
9292 Bignum_Operands := True;
9294 -- Otherwise compute result range
9296 else
9297 Compute_Range_For_Arithmetic_Op
9298 (Nkind (N), Llo, Lhi, Rlo, Rhi, OK, Lo, Hi);
9299 Bignum_Operands := False;
9300 end if;
9302 -- Here for the case where we have not rewritten anything (no bignum
9303 -- operands or long long integer operands), and we know the result.
9304 -- If we know we are in the result range, and we do not have Bignum
9305 -- operands or Long_Long_Integer operands, we can just reexpand with
9306 -- overflow checks turned off (since we know we cannot have overflow).
9307 -- As always the reexpansion is required to complete expansion of the
9308 -- operator, but we do not need to reanalyze, and we prevent recursion
9309 -- by suppressing the check.
9311 if not (Bignum_Operands or Long_Long_Integer_Operands)
9312 and then In_Result_Range
9313 then
9314 Set_Do_Overflow_Check (N, False);
9315 Reexpand (Suppress => True);
9316 return;
9318 -- Here we know that we are not in the result range, and in the general
9319 -- case we will move into either the Bignum or Long_Long_Integer domain
9320 -- to compute the result. However, there is one exception. If we are
9321 -- at the top level, and we do not have Bignum or Long_Long_Integer
9322 -- operands, we will have to immediately convert the result back to
9323 -- the result type, so there is no point in Bignum/Long_Long_Integer
9324 -- fiddling.
9326 elsif Top_Level
9327 and then not (Bignum_Operands or Long_Long_Integer_Operands)
9329 -- One further refinement. If we are at the top level, but our parent
9330 -- is a type conversion, then go into bignum or long long integer node
9331 -- since the result will be converted to that type directly without
9332 -- going through the result type, and we may avoid an overflow. This
9333 -- is the case for example of Long_Long_Integer (A ** 4), where A is
9334 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
9335 -- but does not fit in Integer.
9337 and then Nkind (Parent (N)) /= N_Type_Conversion
9338 then
9339 -- Here keep original types, but we need to complete analysis
9341 -- One subtlety. We can't just go ahead and do an analyze operation
9342 -- here because it will cause recursion into the whole MINIMIZED/
9343 -- ELIMINATED overflow processing which is not what we want. Here
9344 -- we are at the top level, and we need a check against the result
9345 -- mode (i.e. we want to use STRICT mode). So do exactly that.
9346 -- Also, we have not modified the node, so this is a case where
9347 -- we need to reexpand, but not reanalyze.
9349 Reexpand;
9350 return;
9352 -- Cases where we do the operation in Bignum mode. This happens either
9353 -- because one of our operands is in Bignum mode already, or because
9354 -- the computed bounds are outside the bounds of Long_Long_Integer,
9355 -- which in some cases can be indicated by Hi and Lo being No_Uint.
9357 -- Note: we could do better here and in some cases switch back from
9358 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
9359 -- 0 .. 1, but the cases are rare and it is not worth the effort.
9360 -- Failing to do this switching back is only an efficiency issue.
9362 elsif No (Lo) or else Lo < LLLo or else Hi > LLHi then
9364 -- OK, we are definitely outside the range of Long_Long_Integer. The
9365 -- question is whether to move to Bignum mode, or stay in the domain
9366 -- of Long_Long_Integer, signalling that an overflow check is needed.
9368 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
9369 -- the Bignum business. In ELIMINATED mode, we will normally move
9370 -- into Bignum mode, but there is an exception if neither of our
9371 -- operands is Bignum now, and we are at the top level (Top_Level
9372 -- set True). In this case, there is no point in moving into Bignum
9373 -- mode to prevent overflow if the caller will immediately convert
9374 -- the Bignum value back to LLI with an overflow check. It's more
9375 -- efficient to stay in LLI mode with an overflow check (if needed)
9377 if Check_Mode = Minimized
9378 or else (Top_Level and not Bignum_Operands)
9379 then
9380 if Do_Overflow_Check (N) then
9381 Enable_Overflow_Check (N);
9382 end if;
9384 -- The result now has to be in Long_Long_Integer mode, so adjust
9385 -- the possible range to reflect this. Note these calls also
9386 -- change No_Uint values from the top level case to LLI bounds.
9388 Max (Lo, LLLo);
9389 Min (Hi, LLHi);
9391 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
9393 else
9394 pragma Assert (Check_Mode = Eliminated);
9396 declare
9397 Fent : Entity_Id;
9398 Args : List_Id;
9400 begin
9401 case Nkind (N) is
9402 when N_Op_Abs =>
9403 Fent := RTE (RE_Big_Abs);
9405 when N_Op_Add =>
9406 Fent := RTE (RE_Big_Add);
9408 when N_Op_Divide =>
9409 Fent := RTE (RE_Big_Div);
9411 when N_Op_Expon =>
9412 Fent := RTE (RE_Big_Exp);
9414 when N_Op_Minus =>
9415 Fent := RTE (RE_Big_Neg);
9417 when N_Op_Mod =>
9418 Fent := RTE (RE_Big_Mod);
9420 when N_Op_Multiply =>
9421 Fent := RTE (RE_Big_Mul);
9423 when N_Op_Rem =>
9424 Fent := RTE (RE_Big_Rem);
9426 when N_Op_Subtract =>
9427 Fent := RTE (RE_Big_Sub);
9429 -- Anything else is an internal error, this includes the
9430 -- N_Op_Plus case, since how can plus cause the result
9431 -- to be out of range if the operand is in range?
9433 when others =>
9434 raise Program_Error;
9435 end case;
9437 -- Construct argument list for Bignum call, converting our
9438 -- operands to Bignum form if they are not already there.
9440 Args := New_List;
9442 if Binary then
9443 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
9444 end if;
9446 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
9448 -- Now rewrite the arithmetic operator with a call to the
9449 -- corresponding bignum function.
9451 Rewrite (N,
9452 Make_Function_Call (Loc,
9453 Name => New_Occurrence_Of (Fent, Loc),
9454 Parameter_Associations => Args));
9455 Reanalyze (RTE (RE_Bignum), Suppress => True);
9457 -- Indicate result is Bignum mode
9459 Lo := No_Uint;
9460 Hi := No_Uint;
9461 return;
9462 end;
9463 end if;
9465 -- Otherwise we are in range of Long_Long_Integer, so no overflow
9466 -- check is required, at least not yet.
9468 else
9469 Set_Do_Overflow_Check (N, False);
9470 end if;
9472 -- Here we are not in Bignum territory, but we may have long long
9473 -- integer operands that need special handling. First a special check:
9474 -- If an exponentiation operator exponent is of type Long_Long_Integer,
9475 -- it means we converted it to prevent overflow, but exponentiation
9476 -- requires a Natural right operand, so convert it back to Natural.
9477 -- This conversion may raise an exception which is fine.
9479 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9480 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
9481 end if;
9483 -- Here we will do the operation in Long_Long_Integer. We do this even
9484 -- if we know an overflow check is required, better to do this in long
9485 -- long integer mode, since we are less likely to overflow.
9487 -- Convert right or only operand to Long_Long_Integer, except that
9488 -- we do not touch the exponentiation right operand.
9490 if Nkind (N) /= N_Op_Expon then
9491 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9492 end if;
9494 -- Convert left operand to Long_Long_Integer for binary case
9496 if Binary then
9497 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9498 end if;
9500 -- Reset node to unanalyzed
9502 Set_Analyzed (N, False);
9503 Set_Etype (N, Empty);
9504 Set_Entity (N, Empty);
9506 -- Now analyze this new node. This reanalysis will complete processing
9507 -- for the node. In particular we will complete the expansion of an
9508 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
9509 -- we will complete any division checks (since we have not changed the
9510 -- setting of the Do_Division_Check flag).
9512 -- We do this reanalysis in STRICT mode to avoid recursion into the
9513 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
9515 declare
9516 SG : constant Overflow_Mode_Type :=
9517 Scope_Suppress.Overflow_Mode_General;
9518 SA : constant Overflow_Mode_Type :=
9519 Scope_Suppress.Overflow_Mode_Assertions;
9521 begin
9522 Scope_Suppress.Overflow_Mode_General := Strict;
9523 Scope_Suppress.Overflow_Mode_Assertions := Strict;
9525 if not Do_Overflow_Check (N) then
9526 Reanalyze (LLIB, Suppress => True);
9527 else
9528 Reanalyze (LLIB);
9529 end if;
9531 Scope_Suppress.Overflow_Mode_General := SG;
9532 Scope_Suppress.Overflow_Mode_Assertions := SA;
9533 end;
9534 end Minimize_Eliminate_Overflows;
9536 -------------------------
9537 -- Overflow_Check_Mode --
9538 -------------------------
9540 function Overflow_Check_Mode return Overflow_Mode_Type is
9541 begin
9542 if In_Assertion_Expr = 0 then
9543 return Scope_Suppress.Overflow_Mode_General;
9544 else
9545 return Scope_Suppress.Overflow_Mode_Assertions;
9546 end if;
9547 end Overflow_Check_Mode;
9549 --------------------------------
9550 -- Overflow_Checks_Suppressed --
9551 --------------------------------
9553 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9554 begin
9555 if Present (E) and then Checks_May_Be_Suppressed (E) then
9556 return Is_Check_Suppressed (E, Overflow_Check);
9557 else
9558 return Scope_Suppress.Suppress (Overflow_Check);
9559 end if;
9560 end Overflow_Checks_Suppressed;
9562 ---------------------------------
9563 -- Predicate_Checks_Suppressed --
9564 ---------------------------------
9566 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9567 begin
9568 if Present (E) and then Checks_May_Be_Suppressed (E) then
9569 return Is_Check_Suppressed (E, Predicate_Check);
9570 else
9571 return Scope_Suppress.Suppress (Predicate_Check);
9572 end if;
9573 end Predicate_Checks_Suppressed;
9575 -----------------------------
9576 -- Range_Checks_Suppressed --
9577 -----------------------------
9579 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9580 begin
9581 if Present (E) then
9582 if Kill_Range_Checks (E) then
9583 return True;
9585 elsif Checks_May_Be_Suppressed (E) then
9586 return Is_Check_Suppressed (E, Range_Check);
9587 end if;
9588 end if;
9590 return Scope_Suppress.Suppress (Range_Check);
9591 end Range_Checks_Suppressed;
9593 -----------------------------------------
9594 -- Range_Or_Validity_Checks_Suppressed --
9595 -----------------------------------------
9597 -- Note: the coding would be simpler here if we simply made appropriate
9598 -- calls to Range/Validity_Checks_Suppressed, but that would result in
9599 -- duplicated checks which we prefer to avoid.
9601 function Range_Or_Validity_Checks_Suppressed
9602 (Expr : Node_Id) return Boolean
9604 begin
9605 -- Immediate return if scope checks suppressed for either check
9607 if Scope_Suppress.Suppress (Range_Check)
9609 Scope_Suppress.Suppress (Validity_Check)
9610 then
9611 return True;
9612 end if;
9614 -- If no expression, that's odd, decide that checks are suppressed,
9615 -- since we don't want anyone trying to do checks in this case, which
9616 -- is most likely the result of some other error.
9618 if No (Expr) then
9619 return True;
9620 end if;
9622 -- Expression is present, so perform suppress checks on type
9624 declare
9625 Typ : constant Entity_Id := Etype (Expr);
9626 begin
9627 if Checks_May_Be_Suppressed (Typ)
9628 and then (Is_Check_Suppressed (Typ, Range_Check)
9629 or else
9630 Is_Check_Suppressed (Typ, Validity_Check))
9631 then
9632 return True;
9633 end if;
9634 end;
9636 -- If expression is an entity name, perform checks on this entity
9638 if Is_Entity_Name (Expr) then
9639 declare
9640 Ent : constant Entity_Id := Entity (Expr);
9641 begin
9642 if Checks_May_Be_Suppressed (Ent) then
9643 return Is_Check_Suppressed (Ent, Range_Check)
9644 or else Is_Check_Suppressed (Ent, Validity_Check);
9645 end if;
9646 end;
9647 end if;
9649 -- If we fall through, no checks suppressed
9651 return False;
9652 end Range_Or_Validity_Checks_Suppressed;
9654 -------------------
9655 -- Remove_Checks --
9656 -------------------
9658 procedure Remove_Checks (Expr : Node_Id) is
9659 function Process (N : Node_Id) return Traverse_Result;
9660 -- Process a single node during the traversal
9662 procedure Traverse is new Traverse_Proc (Process);
9663 -- The traversal procedure itself
9665 -------------
9666 -- Process --
9667 -------------
9669 function Process (N : Node_Id) return Traverse_Result is
9670 begin
9671 if Nkind (N) not in N_Subexpr then
9672 return Skip;
9673 end if;
9675 Set_Do_Range_Check (N, False);
9677 case Nkind (N) is
9678 when N_And_Then =>
9679 Traverse (Left_Opnd (N));
9680 return Skip;
9682 when N_Attribute_Reference =>
9683 Set_Do_Overflow_Check (N, False);
9685 when N_Op =>
9686 Set_Do_Overflow_Check (N, False);
9688 case Nkind (N) is
9689 when N_Op_Divide =>
9690 Set_Do_Division_Check (N, False);
9692 when N_Op_And =>
9693 Set_Do_Length_Check (N, False);
9695 when N_Op_Mod =>
9696 Set_Do_Division_Check (N, False);
9698 when N_Op_Or =>
9699 Set_Do_Length_Check (N, False);
9701 when N_Op_Rem =>
9702 Set_Do_Division_Check (N, False);
9704 when N_Op_Xor =>
9705 Set_Do_Length_Check (N, False);
9707 when others =>
9708 null;
9709 end case;
9711 when N_Or_Else =>
9712 Traverse (Left_Opnd (N));
9713 return Skip;
9715 when N_Selected_Component =>
9716 Set_Do_Discriminant_Check (N, False);
9718 when N_Type_Conversion =>
9719 Set_Do_Length_Check (N, False);
9720 Set_Do_Overflow_Check (N, False);
9722 when others =>
9723 null;
9724 end case;
9726 return OK;
9727 end Process;
9729 -- Start of processing for Remove_Checks
9731 begin
9732 Traverse (Expr);
9733 end Remove_Checks;
9735 ----------------------------
9736 -- Selected_Length_Checks --
9737 ----------------------------
9739 function Selected_Length_Checks
9740 (Expr : Node_Id;
9741 Target_Typ : Entity_Id;
9742 Source_Typ : Entity_Id;
9743 Warn_Node : Node_Id) return Check_Result
9745 Loc : constant Source_Ptr := Sloc (Expr);
9746 S_Typ : Entity_Id;
9747 T_Typ : Entity_Id;
9748 Expr_Actual : Node_Id;
9749 Exptyp : Entity_Id;
9750 Cond : Node_Id := Empty;
9751 Do_Access : Boolean := False;
9752 Wnode : Node_Id := Warn_Node;
9753 Ret_Result : Check_Result := (Empty, Empty);
9754 Num_Checks : Natural := 0;
9756 procedure Add_Check (N : Node_Id);
9757 -- Adds the action given to Ret_Result if N is non-Empty
9759 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
9760 -- Return E'Length (Indx)
9762 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
9763 -- Return N'Length (Indx)
9765 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9766 -- True for equal literals and for nodes that denote the same constant
9767 -- entity, even if its value is not a static constant. This includes the
9768 -- case of a discriminal reference within an init proc. Removes some
9769 -- obviously superfluous checks.
9771 function Length_E_Cond
9772 (Exptyp : Entity_Id;
9773 Typ : Entity_Id;
9774 Indx : Nat) return Node_Id;
9775 -- Returns expression to compute:
9776 -- Typ'Length /= Exptyp'Length
9778 function Length_N_Cond
9779 (Exp : Node_Id;
9780 Typ : Entity_Id;
9781 Indx : Nat) return Node_Id;
9782 -- Returns expression to compute:
9783 -- Typ'Length /= Exp'Length
9785 function Length_Mismatch_Info_Message
9786 (Left_Element_Count : Unat;
9787 Right_Element_Count : Unat) return String;
9788 -- Returns a message indicating how many elements were expected
9789 -- (Left_Element_Count) and how many were found (Right_Element_Count).
9791 ---------------
9792 -- Add_Check --
9793 ---------------
9795 procedure Add_Check (N : Node_Id) is
9796 begin
9797 if Present (N) then
9799 -- We do not support inserting more than 2 checks on the same
9800 -- node. If this happens it means we have already added an
9801 -- unconditional raise, so we can skip the other checks safely
9802 -- since N will always raise an exception.
9804 if Num_Checks = 2 then
9805 return;
9806 end if;
9808 pragma Assert (Num_Checks <= 1);
9809 Num_Checks := Num_Checks + 1;
9810 Ret_Result (Num_Checks) := N;
9811 end if;
9812 end Add_Check;
9814 ------------------
9815 -- Get_E_Length --
9816 ------------------
9818 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
9819 SE : constant Entity_Id := Scope (E);
9820 N : Node_Id;
9821 E1 : Entity_Id := E;
9823 begin
9824 if Ekind (Scope (E)) = E_Record_Type
9825 and then Has_Discriminants (Scope (E))
9826 then
9827 N := Build_Discriminal_Subtype_Of_Component (E);
9829 if Present (N) then
9830 Insert_Action (Expr, N);
9831 E1 := Defining_Identifier (N);
9832 end if;
9833 end if;
9835 if Ekind (E1) = E_String_Literal_Subtype then
9836 return
9837 Make_Integer_Literal (Loc,
9838 Intval => String_Literal_Length (E1));
9840 elsif SE /= Standard_Standard
9841 and then Ekind (Scope (SE)) = E_Protected_Type
9842 and then Has_Discriminants (Scope (SE))
9843 and then Has_Completion (Scope (SE))
9844 and then not Inside_Init_Proc
9845 then
9846 -- If the type whose length is needed is a private component
9847 -- constrained by a discriminant, we must expand the 'Length
9848 -- attribute into an explicit computation, using the discriminal
9849 -- of the current protected operation. This is because the actual
9850 -- type of the prival is constructed after the protected opera-
9851 -- tion has been fully expanded.
9853 declare
9854 Indx_Type : Node_Id;
9855 Bounds : Range_Nodes;
9856 Do_Expand : Boolean := False;
9858 begin
9859 Indx_Type := First_Index (E);
9861 for J in 1 .. Indx - 1 loop
9862 Next_Index (Indx_Type);
9863 end loop;
9865 Bounds := Get_Index_Bounds (Indx_Type);
9867 if Nkind (Bounds.First) = N_Identifier
9868 and then Ekind (Entity (Bounds.First)) = E_In_Parameter
9869 then
9870 Bounds.First := Get_Discriminal (E, Bounds.First);
9871 Do_Expand := True;
9872 end if;
9874 if Nkind (Bounds.Last) = N_Identifier
9875 and then Ekind (Entity (Bounds.Last)) = E_In_Parameter
9876 then
9877 Bounds.Last := Get_Discriminal (E, Bounds.Last);
9878 Do_Expand := True;
9879 end if;
9881 if Do_Expand then
9882 if not Is_Entity_Name (Bounds.First) then
9883 Bounds.First :=
9884 Duplicate_Subexpr_No_Checks (Bounds.First);
9885 end if;
9887 if not Is_Entity_Name (Bounds.Last) then
9888 Bounds.First := Duplicate_Subexpr_No_Checks (Bounds.Last);
9889 end if;
9891 N :=
9892 Make_Op_Add (Loc,
9893 Left_Opnd =>
9894 Make_Op_Subtract (Loc,
9895 Left_Opnd => Bounds.Last,
9896 Right_Opnd => Bounds.First),
9898 Right_Opnd => Make_Integer_Literal (Loc, 1));
9899 return N;
9901 else
9902 N :=
9903 Make_Attribute_Reference (Loc,
9904 Attribute_Name => Name_Length,
9905 Prefix =>
9906 New_Occurrence_Of (E1, Loc));
9908 if Indx > 1 then
9909 Set_Expressions (N, New_List (
9910 Make_Integer_Literal (Loc, Indx)));
9911 end if;
9913 return N;
9914 end if;
9915 end;
9917 else
9918 N :=
9919 Make_Attribute_Reference (Loc,
9920 Attribute_Name => Name_Length,
9921 Prefix =>
9922 New_Occurrence_Of (E1, Loc));
9924 if Indx > 1 then
9925 Set_Expressions (N, New_List (
9926 Make_Integer_Literal (Loc, Indx)));
9927 end if;
9929 return N;
9930 end if;
9931 end Get_E_Length;
9933 ------------------
9934 -- Get_N_Length --
9935 ------------------
9937 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9938 begin
9939 return
9940 Make_Attribute_Reference (Loc,
9941 Attribute_Name => Name_Length,
9942 Prefix =>
9943 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9944 Expressions => New_List (
9945 Make_Integer_Literal (Loc, Indx)));
9946 end Get_N_Length;
9948 -------------------
9949 -- Length_E_Cond --
9950 -------------------
9952 function Length_E_Cond
9953 (Exptyp : Entity_Id;
9954 Typ : Entity_Id;
9955 Indx : Nat) return Node_Id
9957 begin
9958 return
9959 Make_Op_Ne (Loc,
9960 Left_Opnd => Get_E_Length (Typ, Indx),
9961 Right_Opnd => Get_E_Length (Exptyp, Indx));
9962 end Length_E_Cond;
9964 -------------------
9965 -- Length_N_Cond --
9966 -------------------
9968 function Length_N_Cond
9969 (Exp : Node_Id;
9970 Typ : Entity_Id;
9971 Indx : Nat) return Node_Id
9973 begin
9974 return
9975 Make_Op_Ne (Loc,
9976 Left_Opnd => Get_E_Length (Typ, Indx),
9977 Right_Opnd => Get_N_Length (Exp, Indx));
9978 end Length_N_Cond;
9980 ----------------------------------
9981 -- Length_Mismatch_Info_Message --
9982 ----------------------------------
9984 function Length_Mismatch_Info_Message
9985 (Left_Element_Count : Unat;
9986 Right_Element_Count : Unat) return String
9989 function Plural_Vs_Singular_Ending (Count : Unat) return String;
9990 -- Returns an empty string if Count is 1; otherwise returns "s"
9992 function Plural_Vs_Singular_Ending (Count : Unat) return String is
9993 begin
9994 if Count = 1 then
9995 return "";
9996 else
9997 return "s";
9998 end if;
9999 end Plural_Vs_Singular_Ending;
10001 begin
10002 return "expected "
10003 & UI_Image (Left_Element_Count, Format => Decimal)
10004 & " element"
10005 & Plural_Vs_Singular_Ending (Left_Element_Count)
10006 & "; found "
10007 & UI_Image (Right_Element_Count, Format => Decimal)
10008 & " element"
10009 & Plural_Vs_Singular_Ending (Right_Element_Count);
10010 -- "Format => Decimal" above is needed because otherwise UI_Image
10011 -- can sometimes return a hexadecimal number 16#...#, but "#" means
10012 -- something special to Errout. A previous version used the default
10013 -- Auto, which was essentially the same bug as documented here:
10014 -- https://xkcd.com/327/ .
10015 end Length_Mismatch_Info_Message;
10017 -----------------
10018 -- Same_Bounds --
10019 -----------------
10021 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
10022 begin
10023 return
10024 (Nkind (L) = N_Integer_Literal
10025 and then Nkind (R) = N_Integer_Literal
10026 and then Intval (L) = Intval (R))
10028 or else
10029 (Is_Entity_Name (L)
10030 and then Ekind (Entity (L)) = E_Constant
10031 and then ((Is_Entity_Name (R)
10032 and then Entity (L) = Entity (R))
10033 or else
10034 (Nkind (R) = N_Type_Conversion
10035 and then Is_Entity_Name (Expression (R))
10036 and then Entity (L) = Entity (Expression (R)))))
10038 or else
10039 (Is_Entity_Name (R)
10040 and then Ekind (Entity (R)) = E_Constant
10041 and then Nkind (L) = N_Type_Conversion
10042 and then Is_Entity_Name (Expression (L))
10043 and then Entity (R) = Entity (Expression (L)))
10045 or else
10046 (Is_Entity_Name (L)
10047 and then Is_Entity_Name (R)
10048 and then Entity (L) = Entity (R)
10049 and then Ekind (Entity (L)) = E_In_Parameter
10050 and then Inside_Init_Proc);
10051 end Same_Bounds;
10053 -- Start of processing for Selected_Length_Checks
10055 begin
10056 -- Checks will be applied only when generating code
10058 if not Expander_Active then
10059 return Ret_Result;
10060 end if;
10062 if Target_Typ = Any_Type
10063 or else Target_Typ = Any_Composite
10064 or else Raises_Constraint_Error (Expr)
10065 then
10066 return Ret_Result;
10067 end if;
10069 if No (Wnode) then
10070 Wnode := Expr;
10071 end if;
10073 T_Typ := Target_Typ;
10075 if No (Source_Typ) then
10076 S_Typ := Etype (Expr);
10077 else
10078 S_Typ := Source_Typ;
10079 end if;
10081 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10082 return Ret_Result;
10083 end if;
10085 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10086 S_Typ := Designated_Type (S_Typ);
10087 T_Typ := Designated_Type (T_Typ);
10088 Do_Access := True;
10090 -- A simple optimization for the null case
10092 if Known_Null (Expr) then
10093 return Ret_Result;
10094 end if;
10095 end if;
10097 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10098 if Is_Constrained (T_Typ) then
10100 -- The checking code to be generated will freeze the corresponding
10101 -- array type. However, we must freeze the type now, so that the
10102 -- freeze node does not appear within the generated if expression,
10103 -- but ahead of it.
10105 Freeze_Before (Expr, T_Typ);
10107 Expr_Actual := Get_Referenced_Object (Expr);
10108 Exptyp := Get_Actual_Subtype (Expr);
10110 if Is_Access_Type (Exptyp) then
10111 Exptyp := Designated_Type (Exptyp);
10112 end if;
10114 -- String_Literal case. This needs to be handled specially be-
10115 -- cause no index types are available for string literals. The
10116 -- condition is simply:
10118 -- T_Typ'Length = string-literal-length
10120 if Nkind (Expr_Actual) = N_String_Literal
10121 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
10122 then
10123 Cond :=
10124 Make_Op_Ne (Loc,
10125 Left_Opnd => Get_E_Length (T_Typ, 1),
10126 Right_Opnd =>
10127 Make_Integer_Literal (Loc,
10128 Intval =>
10129 String_Literal_Length (Etype (Expr_Actual))));
10131 -- General array case. Here we have a usable actual subtype for
10132 -- the expression, and the condition is built from the two types
10133 -- (Do_Length):
10135 -- T_Typ'Length /= Exptyp'Length or else
10136 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
10137 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
10138 -- ...
10140 elsif Is_Constrained (Exptyp) then
10141 declare
10142 Ndims : constant Nat := Number_Dimensions (T_Typ);
10144 L_Index : Node_Id;
10145 R_Index : Node_Id;
10146 L_Bounds : Range_Nodes;
10147 R_Bounds : Range_Nodes;
10148 L_Length : Uint;
10149 R_Length : Uint;
10150 Ref_Node : Node_Id;
10152 begin
10153 -- At the library level, we need to ensure that the type of
10154 -- the object is elaborated before the check itself is
10155 -- emitted. This is only done if the object is in the
10156 -- current compilation unit, otherwise the type is frozen
10157 -- and elaborated in its unit.
10159 if Is_Itype (Exptyp)
10160 and then
10161 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
10162 and then
10163 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
10164 and then In_Open_Scopes (Scope (Exptyp))
10165 then
10166 Ref_Node := Make_Itype_Reference (Sloc (Expr));
10167 Set_Itype (Ref_Node, Exptyp);
10168 Insert_Action (Expr, Ref_Node);
10169 end if;
10171 L_Index := First_Index (T_Typ);
10172 R_Index := First_Index (Exptyp);
10174 for Indx in 1 .. Ndims loop
10175 if not (Nkind (L_Index) = N_Raise_Constraint_Error
10176 or else
10177 Nkind (R_Index) = N_Raise_Constraint_Error)
10178 then
10179 L_Bounds := Get_Index_Bounds (L_Index);
10180 R_Bounds := Get_Index_Bounds (R_Index);
10182 -- Deal with compile time length check. Note that we
10183 -- skip this in the access case, because the access
10184 -- value may be null, so we cannot know statically.
10186 if not Do_Access
10187 and then Compile_Time_Known_Value (L_Bounds.First)
10188 and then Compile_Time_Known_Value (L_Bounds.Last)
10189 and then Compile_Time_Known_Value (R_Bounds.First)
10190 and then Compile_Time_Known_Value (R_Bounds.Last)
10191 then
10192 if Expr_Value (L_Bounds.Last) >=
10193 Expr_Value (L_Bounds.First)
10194 then
10195 L_Length := Expr_Value (L_Bounds.Last) -
10196 Expr_Value (L_Bounds.First) + 1;
10197 else
10198 L_Length := UI_From_Int (0);
10199 end if;
10201 if Expr_Value (R_Bounds.Last) >=
10202 Expr_Value (R_Bounds.First)
10203 then
10204 R_Length := Expr_Value (R_Bounds.Last) -
10205 Expr_Value (R_Bounds.First) + 1;
10206 else
10207 R_Length := UI_From_Int (0);
10208 end if;
10210 if L_Length > R_Length then
10211 Add_Check
10212 (Compile_Time_Constraint_Error
10213 (Wnode, "too few elements for}!!??", T_Typ,
10214 Extra_Msg => Length_Mismatch_Info_Message
10215 (L_Length, R_Length)));
10217 elsif L_Length < R_Length then
10218 Add_Check
10219 (Compile_Time_Constraint_Error
10220 (Wnode, "too many elements for}!!??", T_Typ,
10221 Extra_Msg => Length_Mismatch_Info_Message
10222 (L_Length, R_Length)));
10223 end if;
10225 -- The comparison for an individual index subtype
10226 -- is omitted if the corresponding index subtypes
10227 -- statically match, since the result is known to
10228 -- be true. Note that this test is worth while even
10229 -- though we do static evaluation, because non-static
10230 -- subtypes can statically match.
10232 elsif not
10233 Subtypes_Statically_Match
10234 (Etype (L_Index), Etype (R_Index))
10236 and then not
10237 (Same_Bounds (L_Bounds.First, R_Bounds.First)
10238 and then
10239 Same_Bounds (L_Bounds.Last, R_Bounds.Last))
10240 then
10241 Evolve_Or_Else
10242 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
10243 end if;
10245 Next (L_Index);
10246 Next (R_Index);
10247 end if;
10248 end loop;
10249 end;
10251 -- Handle cases where we do not get a usable actual subtype that
10252 -- is constrained. This happens for example in the function call
10253 -- and explicit dereference cases. In these cases, we have to get
10254 -- the length or range from the expression itself, making sure we
10255 -- do not evaluate it more than once.
10257 -- Here Expr is the original expression, or more properly the
10258 -- result of applying Duplicate_Expr to the original tree, forcing
10259 -- the result to be a name.
10261 else
10262 declare
10263 Ndims : constant Pos := Number_Dimensions (T_Typ);
10265 begin
10266 -- Build the condition for the explicit dereference case
10268 for Indx in 1 .. Ndims loop
10269 Evolve_Or_Else
10270 (Cond, Length_N_Cond (Expr, T_Typ, Indx));
10271 end loop;
10272 end;
10273 end if;
10274 end if;
10275 end if;
10277 -- Construct the test and insert into the tree
10279 if Present (Cond) then
10280 if Do_Access then
10281 Cond := Guard_Access (Cond, Loc, Expr);
10282 end if;
10284 Add_Check
10285 (Make_Raise_Constraint_Error (Loc,
10286 Condition => Cond,
10287 Reason => CE_Length_Check_Failed));
10288 end if;
10290 return Ret_Result;
10291 end Selected_Length_Checks;
10293 ---------------------------
10294 -- Selected_Range_Checks --
10295 ---------------------------
10297 function Selected_Range_Checks
10298 (Expr : Node_Id;
10299 Target_Typ : Entity_Id;
10300 Source_Typ : Entity_Id;
10301 Warn_Node : Node_Id) return Check_Result
10303 Loc : constant Source_Ptr := Sloc (Expr);
10304 S_Typ : Entity_Id;
10305 T_Typ : Entity_Id;
10306 Expr_Actual : Node_Id;
10307 Exptyp : Entity_Id;
10308 Cond : Node_Id := Empty;
10309 Do_Access : Boolean := False;
10310 Wnode : Node_Id := Warn_Node;
10311 Ret_Result : Check_Result := (Empty, Empty);
10312 Num_Checks : Natural := 0;
10314 procedure Add_Check (N : Node_Id);
10315 -- Adds the action given to Ret_Result if N is non-Empty
10317 function Discrete_Range_Cond
10318 (Exp : Node_Id;
10319 Typ : Entity_Id) return Node_Id;
10320 -- Returns expression to compute:
10321 -- Low_Bound (Exp) < Typ'First
10322 -- or else
10323 -- High_Bound (Exp) > Typ'Last
10325 function Discrete_Expr_Cond
10326 (Exp : Node_Id;
10327 Typ : Entity_Id) return Node_Id;
10328 -- Returns expression to compute:
10329 -- Exp < Typ'First
10330 -- or else
10331 -- Exp > Typ'Last
10333 function Get_E_First_Or_Last
10334 (Loc : Source_Ptr;
10335 E : Entity_Id;
10336 Indx : Nat;
10337 Nam : Name_Id) return Node_Id;
10338 -- Returns an attribute reference
10339 -- E'First or E'Last
10340 -- with a source location of Loc.
10342 -- Nam is Name_First or Name_Last, according to which attribute is
10343 -- desired. If Indx is non-zero, it is passed as a literal in the
10344 -- Expressions of the attribute reference (identifying the desired
10345 -- array dimension).
10347 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
10348 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
10349 -- Returns expression to compute:
10350 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
10352 function Is_Cond_Expr_Ge (N : Node_Id; V : Node_Id) return Boolean;
10353 function Is_Cond_Expr_Le (N : Node_Id; V : Node_Id) return Boolean;
10354 -- Return True if N is a conditional expression whose dependent
10355 -- expressions are all known and greater/lower than or equal to V.
10357 function Range_E_Cond
10358 (Exptyp : Entity_Id;
10359 Typ : Entity_Id;
10360 Indx : Nat)
10361 return Node_Id;
10362 -- Returns expression to compute:
10363 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
10365 function Range_Equal_E_Cond
10366 (Exptyp : Entity_Id;
10367 Typ : Entity_Id;
10368 Indx : Nat) return Node_Id;
10369 -- Returns expression to compute:
10370 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
10372 function Range_N_Cond
10373 (Exp : Node_Id;
10374 Typ : Entity_Id;
10375 Indx : Nat) return Node_Id;
10376 -- Return expression to compute:
10377 -- Exp'First < Typ'First or else Exp'Last > Typ'Last
10379 function "<" (Left, Right : Node_Id) return Boolean
10380 is (if Is_Floating_Point_Type (S_Typ)
10381 then Expr_Value_R (Left) < Expr_Value_R (Right)
10382 else Expr_Value (Left) < Expr_Value (Right));
10383 function "<=" (Left, Right : Node_Id) return Boolean
10384 is (if Is_Floating_Point_Type (S_Typ)
10385 then Expr_Value_R (Left) <= Expr_Value_R (Right)
10386 else Expr_Value (Left) <= Expr_Value (Right));
10387 -- Convenience comparison functions of integer or floating point values
10389 ---------------
10390 -- Add_Check --
10391 ---------------
10393 procedure Add_Check (N : Node_Id) is
10394 begin
10395 if Present (N) then
10397 -- We do not support inserting more than 2 checks on the same
10398 -- node. If this happens it means we have already added an
10399 -- unconditional raise, so we can skip the other checks safely
10400 -- since N will always raise an exception.
10402 if Num_Checks = 2 then
10403 return;
10404 end if;
10406 pragma Assert (Num_Checks <= 1);
10407 Num_Checks := Num_Checks + 1;
10408 Ret_Result (Num_Checks) := N;
10409 end if;
10410 end Add_Check;
10412 -------------------------
10413 -- Discrete_Expr_Cond --
10414 -------------------------
10416 function Discrete_Expr_Cond
10417 (Exp : Node_Id;
10418 Typ : Entity_Id) return Node_Id
10420 begin
10421 return
10422 Make_Or_Else (Loc,
10423 Left_Opnd =>
10424 Make_Op_Lt (Loc,
10425 Left_Opnd =>
10426 Convert_To (Base_Type (Typ),
10427 Duplicate_Subexpr_No_Checks (Exp)),
10428 Right_Opnd =>
10429 Convert_To (Base_Type (Typ),
10430 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
10432 Right_Opnd =>
10433 Make_Op_Gt (Loc,
10434 Left_Opnd =>
10435 Convert_To (Base_Type (Typ),
10436 Duplicate_Subexpr_No_Checks (Exp)),
10437 Right_Opnd =>
10438 Convert_To
10439 (Base_Type (Typ),
10440 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
10441 end Discrete_Expr_Cond;
10443 -------------------------
10444 -- Discrete_Range_Cond --
10445 -------------------------
10447 function Discrete_Range_Cond
10448 (Exp : Node_Id;
10449 Typ : Entity_Id) return Node_Id
10451 LB : Node_Id := Low_Bound (Exp);
10452 HB : Node_Id := High_Bound (Exp);
10454 Left_Opnd : Node_Id;
10455 Right_Opnd : Node_Id;
10457 begin
10458 if Nkind (LB) = N_Identifier
10459 and then Ekind (Entity (LB)) = E_Discriminant
10460 then
10461 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10462 end if;
10464 -- If the index type has a fixed lower bound, then we require an
10465 -- exact match of the range's lower bound against that fixed lower
10466 -- bound.
10468 if Is_Fixed_Lower_Bound_Index_Subtype (Typ) then
10469 Left_Opnd :=
10470 Make_Op_Ne (Loc,
10471 Left_Opnd =>
10472 Convert_To
10473 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
10475 Right_Opnd =>
10476 Convert_To
10477 (Base_Type (Typ),
10478 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
10480 -- Otherwise we do the expected less-than comparison
10482 else
10483 Left_Opnd :=
10484 Make_Op_Lt (Loc,
10485 Left_Opnd =>
10486 Convert_To
10487 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
10489 Right_Opnd =>
10490 Convert_To
10491 (Base_Type (Typ),
10492 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
10493 end if;
10495 if Nkind (HB) = N_Identifier
10496 and then Ekind (Entity (HB)) = E_Discriminant
10497 then
10498 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10499 end if;
10501 Right_Opnd :=
10502 Make_Op_Gt (Loc,
10503 Left_Opnd =>
10504 Convert_To
10505 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
10507 Right_Opnd =>
10508 Convert_To
10509 (Base_Type (Typ),
10510 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
10512 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
10513 end Discrete_Range_Cond;
10515 -------------------------
10516 -- Get_E_First_Or_Last --
10517 -------------------------
10519 function Get_E_First_Or_Last
10520 (Loc : Source_Ptr;
10521 E : Entity_Id;
10522 Indx : Nat;
10523 Nam : Name_Id) return Node_Id
10525 Exprs : List_Id;
10526 begin
10527 if Indx > 0 then
10528 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
10529 else
10530 Exprs := No_List;
10531 end if;
10533 return Make_Attribute_Reference (Loc,
10534 Prefix => New_Occurrence_Of (E, Loc),
10535 Attribute_Name => Nam,
10536 Expressions => Exprs);
10537 end Get_E_First_Or_Last;
10539 -----------------
10540 -- Get_N_First --
10541 -----------------
10543 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
10544 begin
10545 return
10546 Make_Attribute_Reference (Loc,
10547 Attribute_Name => Name_First,
10548 Prefix =>
10549 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10550 Expressions => New_List (
10551 Make_Integer_Literal (Loc, Indx)));
10552 end Get_N_First;
10554 ----------------
10555 -- Get_N_Last --
10556 ----------------
10558 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10559 begin
10560 return
10561 Make_Attribute_Reference (Loc,
10562 Attribute_Name => Name_Last,
10563 Prefix =>
10564 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10565 Expressions => New_List (
10566 Make_Integer_Literal (Loc, Indx)));
10567 end Get_N_Last;
10569 ---------------------
10570 -- Is_Cond_Expr_Ge --
10571 ---------------------
10573 function Is_Cond_Expr_Ge (N : Node_Id; V : Node_Id) return Boolean is
10574 begin
10575 -- Only if expressions are relevant for the time being
10577 if Nkind (N) = N_If_Expression then
10578 declare
10579 Cond : constant Node_Id := First (Expressions (N));
10580 Thenx : constant Node_Id := Next (Cond);
10581 Elsex : constant Node_Id := Next (Thenx);
10583 begin
10584 return Compile_Time_Known_Value (Thenx)
10585 and then V <= Thenx
10586 and then
10587 ((Compile_Time_Known_Value (Elsex) and then V <= Elsex)
10588 or else Is_Cond_Expr_Ge (Elsex, V));
10589 end;
10591 else
10592 return False;
10593 end if;
10594 end Is_Cond_Expr_Ge;
10596 ---------------------
10597 -- Is_Cond_Expr_Le --
10598 ---------------------
10600 function Is_Cond_Expr_Le (N : Node_Id; V : Node_Id) return Boolean is
10601 begin
10602 -- Only if expressions are relevant for the time being
10604 if Nkind (N) = N_If_Expression then
10605 declare
10606 Cond : constant Node_Id := First (Expressions (N));
10607 Thenx : constant Node_Id := Next (Cond);
10608 Elsex : constant Node_Id := Next (Thenx);
10610 begin
10611 return Compile_Time_Known_Value (Thenx)
10612 and then Thenx <= V
10613 and then
10614 ((Compile_Time_Known_Value (Elsex) and then Elsex <= V)
10615 or else Is_Cond_Expr_Le (Elsex, V));
10616 end;
10618 else
10619 return False;
10620 end if;
10621 end Is_Cond_Expr_Le;
10623 ------------------
10624 -- Range_E_Cond --
10625 ------------------
10627 function Range_E_Cond
10628 (Exptyp : Entity_Id;
10629 Typ : Entity_Id;
10630 Indx : Nat) return Node_Id
10632 begin
10633 return
10634 Make_Or_Else (Loc,
10635 Left_Opnd =>
10636 Make_Op_Lt (Loc,
10637 Left_Opnd =>
10638 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10639 Right_Opnd =>
10640 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10642 Right_Opnd =>
10643 Make_Op_Gt (Loc,
10644 Left_Opnd =>
10645 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10646 Right_Opnd =>
10647 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10648 end Range_E_Cond;
10650 ------------------------
10651 -- Range_Equal_E_Cond --
10652 ------------------------
10654 function Range_Equal_E_Cond
10655 (Exptyp : Entity_Id;
10656 Typ : Entity_Id;
10657 Indx : Nat) return Node_Id
10659 begin
10660 return
10661 Make_Or_Else (Loc,
10662 Left_Opnd =>
10663 Make_Op_Ne (Loc,
10664 Left_Opnd =>
10665 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10666 Right_Opnd =>
10667 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10669 Right_Opnd =>
10670 Make_Op_Ne (Loc,
10671 Left_Opnd =>
10672 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10673 Right_Opnd =>
10674 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10675 end Range_Equal_E_Cond;
10677 ------------------
10678 -- Range_N_Cond --
10679 ------------------
10681 function Range_N_Cond
10682 (Exp : Node_Id;
10683 Typ : Entity_Id;
10684 Indx : Nat) return Node_Id
10686 begin
10687 return
10688 Make_Or_Else (Loc,
10689 Left_Opnd =>
10690 Make_Op_Lt (Loc,
10691 Left_Opnd =>
10692 Get_N_First (Exp, Indx),
10693 Right_Opnd =>
10694 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10696 Right_Opnd =>
10697 Make_Op_Gt (Loc,
10698 Left_Opnd =>
10699 Get_N_Last (Exp, Indx),
10700 Right_Opnd =>
10701 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10702 end Range_N_Cond;
10704 -- Start of processing for Selected_Range_Checks
10706 begin
10707 -- Checks will be applied only when generating code. In GNATprove mode,
10708 -- we do not apply the checks, but we still call Selected_Range_Checks
10709 -- outside of generics to possibly issue errors on SPARK code when a
10710 -- run-time error can be detected at compile time.
10712 if Inside_A_Generic or (not GNATprove_Mode and not Expander_Active) then
10713 return Ret_Result;
10714 end if;
10716 if Target_Typ = Any_Type
10717 or else Target_Typ = Any_Composite
10718 or else Raises_Constraint_Error (Expr)
10719 then
10720 return Ret_Result;
10721 end if;
10723 if No (Wnode) then
10724 Wnode := Expr;
10725 end if;
10727 T_Typ := Target_Typ;
10729 if No (Source_Typ) then
10730 S_Typ := Etype (Expr);
10731 else
10732 S_Typ := Source_Typ;
10733 end if;
10735 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10736 return Ret_Result;
10737 end if;
10739 -- The order of evaluating T_Typ before S_Typ seems to be critical
10740 -- because S_Typ can be derived from Etype (Expr), if it's not passed
10741 -- in, and since Node can be an N_Range node, it might be invalid.
10742 -- Should there be an assert check somewhere for taking the Etype of
10743 -- an N_Range node ???
10745 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10746 S_Typ := Designated_Type (S_Typ);
10747 T_Typ := Designated_Type (T_Typ);
10748 Do_Access := True;
10750 -- A simple optimization for the null case
10752 if Known_Null (Expr) then
10753 return Ret_Result;
10754 end if;
10755 end if;
10757 -- For an N_Range Node, check for a null range and then if not
10758 -- null generate a range check action.
10760 if Nkind (Expr) = N_Range then
10762 -- There's no point in checking a range against itself
10764 if Expr = Scalar_Range (T_Typ) then
10765 return Ret_Result;
10766 end if;
10768 declare
10769 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
10770 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
10771 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10772 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
10774 LB : Node_Id := Low_Bound (Expr);
10775 HB : Node_Id := High_Bound (Expr);
10776 Known_LB : Boolean := False;
10777 Known_HB : Boolean := False;
10778 Check_Added : Boolean := False;
10780 Out_Of_Range_L : Boolean := False;
10781 Out_Of_Range_H : Boolean := False;
10783 begin
10784 -- Compute what is known at compile time
10786 if Known_T_LB and Known_T_HB then
10787 if Compile_Time_Known_Value (LB) then
10788 Known_LB := True;
10790 -- There's no point in checking that a bound is within its
10791 -- own range so pretend that it is known in this case. First
10792 -- deal with low bound.
10794 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10795 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10796 then
10797 LB := T_LB;
10798 Known_LB := True;
10800 -- Similarly; deal with the case where the low bound is a
10801 -- conditional expression whose result is greater than or
10802 -- equal to the target low bound.
10804 elsif Is_Cond_Expr_Ge (LB, T_LB) then
10805 LB := T_LB;
10806 Known_LB := True;
10807 end if;
10809 -- Likewise for the high bound
10811 if Compile_Time_Known_Value (HB) then
10812 Known_HB := True;
10814 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10815 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10816 then
10817 HB := T_HB;
10818 Known_HB := True;
10820 elsif Is_Cond_Expr_Le (HB, T_HB) then
10821 HB := T_HB;
10822 Known_HB := True;
10823 end if;
10824 end if;
10826 -- Check for the simple cases where we can do the check at
10827 -- compile time. This is skipped if we have an access type, since
10828 -- the access value may be null.
10830 if not Do_Access and then Not_Null_Range (LB, HB) then
10831 if Known_LB then
10832 if Known_T_LB then
10833 Out_Of_Range_L := LB < T_LB;
10834 end if;
10836 if Known_T_HB and not Out_Of_Range_L then
10837 Out_Of_Range_L := T_HB < LB;
10838 end if;
10840 if Out_Of_Range_L then
10841 if No (Warn_Node) then
10842 Add_Check
10843 (Compile_Time_Constraint_Error
10844 (Low_Bound (Expr),
10845 "static value out of range of}??", T_Typ));
10846 Check_Added := True;
10848 else
10849 Add_Check
10850 (Compile_Time_Constraint_Error
10851 (Wnode,
10852 "static range out of bounds of}??", T_Typ));
10853 Check_Added := True;
10854 end if;
10855 end if;
10856 end if;
10858 -- Flag the case of a fixed-lower-bound index where the static
10859 -- bounds are not equal.
10861 if not Check_Added
10862 and then Is_Fixed_Lower_Bound_Index_Subtype (T_Typ)
10863 and then Known_LB
10864 and then Known_T_LB
10865 and then Expr_Value (LB) /= Expr_Value (T_LB)
10866 then
10867 Add_Check
10868 (Compile_Time_Constraint_Error
10869 ((if Present (Warn_Node)
10870 then Warn_Node else Low_Bound (Expr)),
10871 "static value does not equal lower bound of}??",
10872 T_Typ));
10873 Check_Added := True;
10874 end if;
10876 if Known_HB then
10877 if Known_T_HB then
10878 Out_Of_Range_H := T_HB < HB;
10879 end if;
10881 if Known_T_LB and not Out_Of_Range_H then
10882 Out_Of_Range_H := HB < T_LB;
10883 end if;
10885 if Out_Of_Range_H then
10886 if No (Warn_Node) then
10887 Add_Check
10888 (Compile_Time_Constraint_Error
10889 (High_Bound (Expr),
10890 "static value out of range of}??", T_Typ));
10891 Check_Added := True;
10893 else
10894 Add_Check
10895 (Compile_Time_Constraint_Error
10896 (Wnode,
10897 "static range out of bounds of}??", T_Typ));
10898 Check_Added := True;
10899 end if;
10900 end if;
10901 end if;
10902 end if;
10904 -- Check for the case where not everything is static
10906 if not Check_Added
10907 and then
10908 (Do_Access
10909 or else not Known_T_LB
10910 or else not Known_LB
10911 or else not Known_T_HB
10912 or else not Known_HB)
10913 then
10914 declare
10915 LB : Node_Id := Low_Bound (Expr);
10916 HB : Node_Id := High_Bound (Expr);
10918 begin
10919 -- If either bound is a discriminant and we are within the
10920 -- record declaration, it is a use of the discriminant in a
10921 -- constraint of a component, and nothing can be checked
10922 -- here. The check will be emitted within the init proc.
10923 -- Before then, the discriminal has no real meaning.
10924 -- Similarly, if the entity is a discriminal, there is no
10925 -- check to perform yet.
10927 -- The same holds within a discriminated synchronized type,
10928 -- where the discriminant may constrain a component or an
10929 -- entry family.
10931 if Nkind (LB) = N_Identifier
10932 and then Denotes_Discriminant (LB, True)
10933 then
10934 if Current_Scope = Scope (Entity (LB))
10935 or else Is_Concurrent_Type (Current_Scope)
10936 or else Ekind (Entity (LB)) /= E_Discriminant
10937 then
10938 return Ret_Result;
10939 else
10940 LB :=
10941 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10942 end if;
10943 end if;
10945 if Nkind (HB) = N_Identifier
10946 and then Denotes_Discriminant (HB, True)
10947 then
10948 if Current_Scope = Scope (Entity (HB))
10949 or else Is_Concurrent_Type (Current_Scope)
10950 or else Ekind (Entity (HB)) /= E_Discriminant
10951 then
10952 return Ret_Result;
10953 else
10954 HB :=
10955 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10956 end if;
10957 end if;
10959 Cond := Discrete_Range_Cond (Expr, T_Typ);
10960 Set_Paren_Count (Cond, 1);
10962 Cond :=
10963 Make_And_Then (Loc,
10964 Left_Opnd =>
10965 Make_Op_Ge (Loc,
10966 Left_Opnd =>
10967 Convert_To (Base_Type (Etype (HB)),
10968 Duplicate_Subexpr_No_Checks (HB)),
10969 Right_Opnd =>
10970 Convert_To (Base_Type (Etype (LB)),
10971 Duplicate_Subexpr_No_Checks (LB))),
10972 Right_Opnd => Cond);
10973 end;
10974 end if;
10975 end;
10977 elsif Is_Scalar_Type (S_Typ) then
10979 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
10980 -- except the above simply sets a flag in the node and lets the
10981 -- check be generated based on the Etype of the expression.
10982 -- Sometimes, however we want to do a dynamic check against an
10983 -- arbitrary target type, so we do that here.
10985 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
10986 Cond := Discrete_Expr_Cond (Expr, T_Typ);
10988 -- For literals, we can tell if the constraint error will be
10989 -- raised at compile time, so we never need a dynamic check, but
10990 -- if the exception will be raised, then post the usual warning,
10991 -- and replace the literal with a raise constraint error
10992 -- expression. As usual, skip this for access types
10994 elsif Compile_Time_Known_Value (Expr) and then not Do_Access then
10995 if Is_Out_Of_Range (Expr, T_Typ) then
10997 -- Bounds of the type are static and the literal is out of
10998 -- range so output a warning message.
11000 if No (Warn_Node) then
11001 Add_Check
11002 (Compile_Time_Constraint_Error
11003 (Expr, "static value out of range of}??", T_Typ));
11005 else
11006 Add_Check
11007 (Compile_Time_Constraint_Error
11008 (Wnode, "static value out of range of}??", T_Typ));
11009 end if;
11010 else
11011 Cond := Discrete_Expr_Cond (Expr, T_Typ);
11012 end if;
11014 -- Here for the case of a non-static expression, we need a runtime
11015 -- check unless the source type range is guaranteed to be in the
11016 -- range of the target type.
11018 else
11019 if not In_Subrange_Of (S_Typ, T_Typ) then
11020 Cond := Discrete_Expr_Cond (Expr, T_Typ);
11021 end if;
11022 end if;
11023 end if;
11025 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
11026 if Is_Constrained (T_Typ) then
11027 Expr_Actual := Get_Referenced_Object (Expr);
11028 Exptyp := Get_Actual_Subtype (Expr_Actual);
11030 if Is_Access_Type (Exptyp) then
11031 Exptyp := Designated_Type (Exptyp);
11032 end if;
11034 -- String_Literal case. This needs to be handled specially be-
11035 -- cause no index types are available for string literals. The
11036 -- condition is simply:
11038 -- T_Typ'Length = string-literal-length
11040 if Nkind (Expr_Actual) = N_String_Literal then
11041 null;
11043 -- General array case. Here we have a usable actual subtype for
11044 -- the expression, and the condition is built from the two types
11046 -- T_Typ'First < Exptyp'First or else
11047 -- T_Typ'Last > Exptyp'Last or else
11048 -- T_Typ'First(1) < Exptyp'First(1) or else
11049 -- T_Typ'Last(1) > Exptyp'Last(1) or else
11050 -- ...
11052 elsif Is_Constrained (Exptyp) then
11053 declare
11054 Ndims : constant Pos := Number_Dimensions (T_Typ);
11056 L_Index : Node_Id;
11057 R_Index : Node_Id;
11059 begin
11060 L_Index := First_Index (T_Typ);
11061 R_Index := First_Index (Exptyp);
11063 for Indx in 1 .. Ndims loop
11064 if not (Nkind (L_Index) = N_Raise_Constraint_Error
11065 or else
11066 Nkind (R_Index) = N_Raise_Constraint_Error)
11067 then
11068 -- Deal with compile time length check. Note that we
11069 -- skip this in the access case, because the access
11070 -- value may be null, so we cannot know statically.
11072 if not
11073 Subtypes_Statically_Match
11074 (Etype (L_Index), Etype (R_Index))
11075 then
11076 -- If the target type is constrained then we
11077 -- have to check for exact equality of bounds
11078 -- (required for qualified expressions).
11080 if Is_Constrained (T_Typ) then
11081 Evolve_Or_Else
11082 (Cond,
11083 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
11084 else
11085 Evolve_Or_Else
11086 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
11087 end if;
11088 end if;
11090 Next (L_Index);
11091 Next (R_Index);
11092 end if;
11093 end loop;
11094 end;
11096 -- Handle cases where we do not get a usable actual subtype that
11097 -- is constrained. This happens for example in the function call
11098 -- and explicit dereference cases. In these cases, we have to get
11099 -- the length or range from the expression itself, making sure we
11100 -- do not evaluate it more than once.
11102 -- Here Expr is the original expression, or more properly the
11103 -- result of applying Duplicate_Expr to the original tree,
11104 -- forcing the result to be a name.
11106 else
11107 declare
11108 Ndims : constant Pos := Number_Dimensions (T_Typ);
11110 begin
11111 -- Build the condition for the explicit dereference case
11113 for Indx in 1 .. Ndims loop
11114 Evolve_Or_Else
11115 (Cond, Range_N_Cond (Expr, T_Typ, Indx));
11116 end loop;
11117 end;
11118 end if;
11120 -- If the context is a qualified_expression where the subtype is
11121 -- an unconstrained array subtype with fixed-lower-bound indexes,
11122 -- then consistency checks must be done between the lower bounds
11123 -- of any such indexes and the corresponding lower bounds of the
11124 -- qualified array object.
11126 elsif Is_Fixed_Lower_Bound_Array_Subtype (T_Typ)
11127 and then Nkind (Parent (Expr)) = N_Qualified_Expression
11128 and then not Do_Access
11129 then
11130 declare
11131 Ndims : constant Pos := Number_Dimensions (T_Typ);
11133 Qual_Index : Node_Id;
11134 Expr_Index : Node_Id;
11136 begin
11137 Expr_Actual := Get_Referenced_Object (Expr);
11138 Exptyp := Get_Actual_Subtype (Expr_Actual);
11140 Qual_Index := First_Index (T_Typ);
11141 Expr_Index := First_Index (Exptyp);
11143 for Indx in 1 .. Ndims loop
11144 if Nkind (Expr_Index) /= N_Raise_Constraint_Error then
11146 -- If this index of the qualifying array subtype has
11147 -- a fixed lower bound, then apply a check that the
11148 -- corresponding lower bound of the array expression
11149 -- is equal to it.
11151 if Is_Fixed_Lower_Bound_Index_Subtype (Etype (Qual_Index))
11152 then
11153 Evolve_Or_Else
11154 (Cond,
11155 Make_Op_Ne (Loc,
11156 Left_Opnd =>
11157 Get_E_First_Or_Last
11158 (Loc, Exptyp, Indx, Name_First),
11159 Right_Opnd =>
11160 New_Copy_Tree
11161 (Type_Low_Bound (Etype (Qual_Index)))));
11162 end if;
11164 Next (Qual_Index);
11165 Next (Expr_Index);
11166 end if;
11167 end loop;
11168 end;
11170 else
11171 -- For a conversion to an unconstrained array type, generate an
11172 -- Action to check that the bounds of the source value are within
11173 -- the constraints imposed by the target type (RM 4.6(38)). No
11174 -- check is needed for a conversion to an access to unconstrained
11175 -- array type, as 4.6(24.15/2) requires the designated subtypes
11176 -- of the two access types to statically match.
11178 if Nkind (Parent (Expr)) = N_Type_Conversion
11179 and then not Do_Access
11180 then
11181 declare
11182 Opnd_Index : Node_Id;
11183 Targ_Index : Node_Id;
11184 Opnd_Range : Node_Id;
11186 begin
11187 Opnd_Index := First_Index (Get_Actual_Subtype (Expr));
11188 Targ_Index := First_Index (T_Typ);
11189 while Present (Opnd_Index) loop
11191 -- If the index is a range, use its bounds. If it is an
11192 -- entity (as will be the case if it is a named subtype
11193 -- or an itype created for a slice) retrieve its range.
11195 if Is_Entity_Name (Opnd_Index)
11196 and then Is_Type (Entity (Opnd_Index))
11197 then
11198 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
11199 else
11200 Opnd_Range := Opnd_Index;
11201 end if;
11203 if Nkind (Opnd_Range) = N_Range then
11204 if Is_In_Range
11205 (Low_Bound (Opnd_Range), Etype (Targ_Index),
11206 Assume_Valid => True)
11207 and then
11208 Is_In_Range
11209 (High_Bound (Opnd_Range), Etype (Targ_Index),
11210 Assume_Valid => True)
11211 then
11212 null;
11214 -- If null range, no check needed
11216 elsif
11217 Compile_Time_Known_Value (High_Bound (Opnd_Range))
11218 and then
11219 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
11220 and then
11221 Expr_Value (High_Bound (Opnd_Range)) <
11222 Expr_Value (Low_Bound (Opnd_Range))
11223 then
11224 null;
11226 elsif Is_Out_Of_Range
11227 (Low_Bound (Opnd_Range), Etype (Targ_Index),
11228 Assume_Valid => True)
11229 or else
11230 Is_Out_Of_Range
11231 (High_Bound (Opnd_Range), Etype (Targ_Index),
11232 Assume_Valid => True)
11233 then
11234 Add_Check
11235 (Compile_Time_Constraint_Error
11236 (Wnode, "value out of range of}??", T_Typ));
11238 else
11239 Evolve_Or_Else
11240 (Cond,
11241 Discrete_Range_Cond
11242 (Opnd_Range, Etype (Targ_Index)));
11243 end if;
11244 end if;
11246 Next_Index (Opnd_Index);
11247 Next_Index (Targ_Index);
11248 end loop;
11249 end;
11250 end if;
11251 end if;
11252 end if;
11254 -- Construct the test and insert into the tree
11256 if Present (Cond) then
11257 if Do_Access then
11258 Cond := Guard_Access (Cond, Loc, Expr);
11259 end if;
11261 Add_Check
11262 (Make_Raise_Constraint_Error (Loc,
11263 Condition => Cond,
11264 Reason => CE_Range_Check_Failed));
11265 end if;
11267 return Ret_Result;
11268 end Selected_Range_Checks;
11270 -------------------------------
11271 -- Storage_Checks_Suppressed --
11272 -------------------------------
11274 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
11275 begin
11276 if Present (E) and then Checks_May_Be_Suppressed (E) then
11277 return Is_Check_Suppressed (E, Storage_Check);
11278 else
11279 return Scope_Suppress.Suppress (Storage_Check);
11280 end if;
11281 end Storage_Checks_Suppressed;
11283 ---------------------------
11284 -- Tag_Checks_Suppressed --
11285 ---------------------------
11287 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
11288 begin
11289 if Present (E)
11290 and then Checks_May_Be_Suppressed (E)
11291 then
11292 return Is_Check_Suppressed (E, Tag_Check);
11293 else
11294 return Scope_Suppress.Suppress (Tag_Check);
11295 end if;
11296 end Tag_Checks_Suppressed;
11298 ---------------------------------------
11299 -- Validate_Alignment_Check_Warnings --
11300 ---------------------------------------
11302 procedure Validate_Alignment_Check_Warnings is
11303 begin
11304 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
11305 declare
11306 AWR : Alignment_Warnings_Record
11307 renames Alignment_Warnings.Table (J);
11308 begin
11309 if Known_Alignment (AWR.E)
11310 and then ((Present (AWR.A)
11311 and then AWR.A mod Alignment (AWR.E) = 0)
11312 or else (Present (AWR.P)
11313 and then Has_Compatible_Alignment
11314 (AWR.E, AWR.P, True) =
11315 Known_Compatible))
11316 then
11317 Delete_Warning_And_Continuations (AWR.W);
11318 end if;
11319 end;
11320 end loop;
11321 end Validate_Alignment_Check_Warnings;
11323 --------------------------
11324 -- Validity_Check_Range --
11325 --------------------------
11327 procedure Validity_Check_Range
11328 (N : Node_Id;
11329 Related_Id : Entity_Id := Empty) is
11330 begin
11331 if Validity_Checks_On and Validity_Check_Operands then
11332 if Nkind (N) = N_Range then
11333 Ensure_Valid
11334 (Expr => Low_Bound (N),
11335 Related_Id => Related_Id,
11336 Is_Low_Bound => True);
11338 Ensure_Valid
11339 (Expr => High_Bound (N),
11340 Related_Id => Related_Id,
11341 Is_High_Bound => True);
11342 end if;
11343 end if;
11344 end Validity_Check_Range;
11346 end Checks;