Fix xfail for 32-bit hppa*-*-* in gcc.dg/pr84877.c
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob2291fe8d3a34d6cada0a9bc8151b9e7d6669bb62
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2024 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
33 /* 128-bit floating point precision values. */
34 #ifndef RS6000_MODES_H
35 #include "config/rs6000/rs6000-modes.h"
36 #endif
38 /* Definitions for the object file format. These are set at
39 compile-time. */
41 #define OBJECT_XCOFF 1
42 #define OBJECT_ELF 2
43 #define OBJECT_MACHO 4
45 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
46 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
47 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
49 #ifndef TARGET_AIX
50 #define TARGET_AIX 0
51 #endif
53 #ifndef TARGET_AIX_OS
54 #define TARGET_AIX_OS 0
55 #endif
57 /* Turn off TOC support if pc-relative addressing is used. */
58 #define TARGET_TOC (TARGET_HAS_TOC && !TARGET_PCREL)
60 /* On 32-bit systems without a TOC or pc-relative addressing, we need to use
61 ADDIS/ADDI to load up the address of a symbol. */
62 #define TARGET_NO_TOC_OR_PCREL (!TARGET_HAS_TOC && !TARGET_PCREL)
64 /* Control whether function entry points use a "dot" symbol when
65 ABI_AIX. */
66 #define DOT_SYMBOLS 1
68 /* Default string to use for cpu if not specified. */
69 #ifndef TARGET_CPU_DEFAULT
70 #define TARGET_CPU_DEFAULT ((char *)0)
71 #endif
73 /* If configured for PPC405, support PPC405CR Erratum77. */
74 #ifdef CONFIG_PPC405CR
75 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
76 #else
77 #define PPC405_ERRATUM77 0
78 #endif
80 #ifndef SUBTARGET_DRIVER_SELF_SPECS
81 # define SUBTARGET_DRIVER_SELF_SPECS ""
82 #endif
84 /* Only for use in the testsuite: -mdejagnu-cpu=<value> filters out all
85 -mcpu= as well as -mtune= options then simply adds -mcpu=<value>,
86 while -mdejagnu-tune=<value> filters out all -mtune= options then
87 simply adds -mtune=<value>.
88 With older versions of Dejagnu the command line arguments you set in
89 RUNTESTFLAGS override those set in the testcases; with these options,
90 the testcase will always win. */
91 #define DRIVER_SELF_SPECS \
92 "%{mdejagnu-cpu=*: %<mcpu=* %<mtune=* -mcpu=%*}", \
93 "%{mdejagnu-tune=*: %<mtune=* -mtune=%*}", \
94 "%{mdejagnu-*: %<mdejagnu-*}", \
95 SUBTARGET_DRIVER_SELF_SPECS
97 #if CHECKING_P
98 #define ASM_OPT_ANY ""
99 #else
100 #define ASM_OPT_ANY " -many"
101 #endif
103 /* Common ASM definitions used by ASM_SPEC among the various targets for
104 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.cc to
105 provide the default assembler options if the user uses -mcpu=native, so if
106 you make changes here, make them also there. PR63177: Do not pass -mpower8
107 to the assembler if -mpower9-vector was also used. */
108 #define ASM_CPU_SPEC \
109 "%{mcpu=native: %(asm_cpu_native); \
110 mcpu=power10: -mpower10; \
111 mcpu=power9: -mpower9; \
112 mcpu=power8|mcpu=powerpc64le: %{mpower9-vector: -mpower9;: -mpower8}; \
113 mcpu=power7: -mpower7; \
114 mcpu=power6x: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
115 mcpu=power6: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
116 mcpu=power5+: -mpower5; \
117 mcpu=power5: -mpower5; \
118 mcpu=power4: -mpower4; \
119 mcpu=power3: -mppc64; \
120 mcpu=powerpc: -mppc; \
121 mcpu=powerpc64: -mppc64; \
122 mcpu=a2: -ma2; \
123 mcpu=cell: -mcell; \
124 mcpu=rs64: -mppc64; \
125 mcpu=401: -mppc; \
126 mcpu=403: -m403; \
127 mcpu=405: -m405; \
128 mcpu=405fp: -m405; \
129 mcpu=440: -m440; \
130 mcpu=440fp: -m440; \
131 mcpu=464: -m440; \
132 mcpu=464fp: -m440; \
133 mcpu=476: -m476; \
134 mcpu=476fp: -m476; \
135 mcpu=505: -mppc; \
136 mcpu=601: -m601; \
137 mcpu=602: -mppc; \
138 mcpu=603: -mppc; \
139 mcpu=603e: -mppc; \
140 mcpu=ec603e: -mppc; \
141 mcpu=604: -mppc; \
142 mcpu=604e: -mppc; \
143 mcpu=620: -mppc64; \
144 mcpu=630: -mppc64; \
145 mcpu=740: -mppc; \
146 mcpu=750: -mppc; \
147 mcpu=G3: -mppc; \
148 mcpu=7400: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
149 mcpu=7450: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
150 mcpu=G4: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
151 mcpu=801: -mppc; \
152 mcpu=821: -mppc; \
153 mcpu=823: -mppc; \
154 mcpu=860: -mppc; \
155 mcpu=970: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
156 mcpu=G5: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
157 mcpu=8540: -me500; \
158 mcpu=8548: -me500; \
159 mcpu=e300c2: -me300; \
160 mcpu=e300c3: -me300; \
161 mcpu=e500mc: -me500mc; \
162 mcpu=e500mc64: -me500mc64; \
163 mcpu=e5500: -me5500; \
164 mcpu=e6500: -me6500; \
165 mcpu=titan: -mtitan; \
166 !mcpu*: %{mpower9-vector: -mpower9; \
167 mpower8-vector|mcrypto|mdirect-move|mhtm: -mpower8; \
168 mvsx: -mpower7; \
169 mpowerpc64: -mppc64;: %(asm_default)}; \
170 :%eMissing -mcpu option in ASM_CPU_SPEC?\n} \
171 %{mvsx: -mvsx -maltivec; maltivec: -maltivec}" \
172 ASM_OPT_ANY
174 #define CPP_DEFAULT_SPEC ""
176 #define ASM_DEFAULT_SPEC ""
177 #define ASM_DEFAULT_EXTRA ""
179 /* This macro defines names of additional specifications to put in the specs
180 that can be used in various specifications like CC1_SPEC. Its definition
181 is an initializer with a subgrouping for each command option.
183 Each subgrouping contains a string constant, that defines the
184 specification name, and a string constant that used by the GCC driver
185 program.
187 Do not define this macro if it does not need to do anything. */
189 #define SUBTARGET_EXTRA_SPECS
191 #define EXTRA_SPECS \
192 { "cpp_default", CPP_DEFAULT_SPEC }, \
193 { "asm_cpu", ASM_CPU_SPEC }, \
194 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
195 { "asm_default", ASM_DEFAULT_SPEC ASM_DEFAULT_EXTRA }, \
196 { "cc1_cpu", CC1_CPU_SPEC }, \
197 SUBTARGET_EXTRA_SPECS
199 /* -mcpu=native handling only makes sense with compiler running on
200 an PowerPC chip. If changing this condition, also change
201 the condition in driver-rs6000.cc. */
202 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
203 /* In driver-rs6000.cc. */
204 extern const char *host_detect_local_cpu (int argc, const char **argv);
205 #define EXTRA_SPEC_FUNCTIONS \
206 { "local_cpu_detect", host_detect_local_cpu },
207 #define HAVE_LOCAL_CPU_DETECT
208 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
210 #else
211 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
212 #endif
214 #ifndef CC1_CPU_SPEC
215 #ifdef HAVE_LOCAL_CPU_DETECT
216 #define CC1_CPU_SPEC \
217 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
218 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
219 #else
220 #define CC1_CPU_SPEC ""
221 #endif
222 #endif
224 /* Architecture type. */
226 /* Define TARGET_MFCRF if the target assembler does not support the
227 optional field operand for mfcr. */
229 #ifndef HAVE_AS_MFCRF
230 #undef TARGET_MFCRF
231 #define TARGET_MFCRF 0
232 #endif
234 #ifndef TARGET_SECURE_PLT
235 #define TARGET_SECURE_PLT 0
236 #endif
238 #ifndef TARGET_CMODEL
239 #define TARGET_CMODEL CMODEL_SMALL
240 #endif
242 #define TARGET_32BIT (! TARGET_64BIT)
244 #ifndef HAVE_AS_TLS
245 #define HAVE_AS_TLS 0
246 #endif
248 #ifndef HAVE_AS_PLTSEQ
249 #define HAVE_AS_PLTSEQ 0
250 #endif
252 #ifndef TARGET_PLTSEQ
253 #define TARGET_PLTSEQ 0
254 #endif
256 #ifndef TARGET_LINK_STACK
257 #define TARGET_LINK_STACK 0
258 #endif
260 #ifndef SET_TARGET_LINK_STACK
261 #define SET_TARGET_LINK_STACK(X) do { } while (0)
262 #endif
264 #ifndef TARGET_FLOAT128_ENABLE_TYPE
265 #define TARGET_FLOAT128_ENABLE_TYPE 0
266 #endif
268 /* Return 1 for a symbol ref for a thread-local storage symbol. */
269 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
270 (SYMBOL_REF_P (RTX) && SYMBOL_REF_TLS_MODEL (RTX) != 0)
272 #ifdef IN_LIBGCC2
273 /* For libgcc2 we make sure this is a compile time constant */
274 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
275 #undef TARGET_POWERPC64
276 #define TARGET_POWERPC64 1
277 #else
278 #undef TARGET_POWERPC64
279 #define TARGET_POWERPC64 0
280 #endif
281 #else
282 /* The option machinery will define this. */
283 #endif
285 #define TARGET_DEFAULT (OPTION_MASK_MULTIPLE)
287 /* Define generic processor types based upon current deployment. */
288 #define PROCESSOR_COMMON PROCESSOR_PPC601
289 #define PROCESSOR_POWERPC PROCESSOR_PPC604
290 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
292 /* Define the default processor. This is overridden by other tm.h files. */
293 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
294 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
296 /* Specify the dialect of assembler to use. Only new mnemonics are supported
297 starting with GCC 4.8, i.e. just one dialect, but for backwards
298 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
299 defined. */
300 #define ASSEMBLER_DIALECT 1
302 /* Debug support */
303 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
304 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
305 #define MASK_DEBUG_REG 0x04 /* debug register handling */
306 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
307 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
308 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
309 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
310 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
311 | MASK_DEBUG_ARG \
312 | MASK_DEBUG_REG \
313 | MASK_DEBUG_ADDR \
314 | MASK_DEBUG_COST \
315 | MASK_DEBUG_TARGET \
316 | MASK_DEBUG_BUILTIN)
318 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
319 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
320 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
321 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
322 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
323 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
324 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
326 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
327 long double format that uses a pair of doubles, or IEEE 128-bit floating
328 point. KFmode was added as a way to represent IEEE 128-bit floating point,
329 even if the default for long double is the IBM long double format.
330 Similarly IFmode is the IBM long double format even if the default is IEEE
331 128-bit. Don't allow IFmode if -msoft-float. */
332 #define FLOAT128_IEEE_P(MODE) \
333 ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
334 && ((MODE) == TFmode || (MODE) == TCmode)) \
335 || ((MODE) == KFmode) || ((MODE) == KCmode))
337 #define FLOAT128_IBM_P(MODE) \
338 ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
339 && ((MODE) == TFmode || (MODE) == TCmode)) \
340 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
342 /* Helper macros to say whether a 128-bit floating point type can go in a
343 single vector register, or whether it needs paired scalar values. */
344 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
346 #define FLOAT128_2REG_P(MODE) \
347 (FLOAT128_IBM_P (MODE) \
348 || ((MODE) == TDmode) \
349 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
351 /* Return true for floating point that does not use a vector register. */
352 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
353 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
355 /* Describe the vector unit used for arithmetic operations. */
356 extern enum rs6000_vector rs6000_vector_unit[];
358 #define VECTOR_UNIT_NONE_P(MODE) \
359 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
361 #define VECTOR_UNIT_VSX_P(MODE) \
362 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
364 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
365 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
367 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
368 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
370 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
371 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
372 (int)VECTOR_VSX, \
373 (int)VECTOR_P8_VECTOR))
375 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
376 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
377 compatible, so allow it as well, rather than changing all of the uses of the
378 macro. */
379 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
380 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
381 (int)VECTOR_ALTIVEC, \
382 (int)VECTOR_P8_VECTOR))
384 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
385 same unit as the vector unit we are using, but we may want to migrate to
386 using VSX style loads even for types handled by altivec. */
387 extern enum rs6000_vector rs6000_vector_mem[];
389 #define VECTOR_MEM_NONE_P(MODE) \
390 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
392 #define VECTOR_MEM_VSX_P(MODE) \
393 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
395 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
396 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
398 #define VECTOR_MEM_ALTIVEC_P(MODE) \
399 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
401 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
402 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
403 (int)VECTOR_VSX, \
404 (int)VECTOR_P8_VECTOR))
406 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
407 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
408 (int)VECTOR_ALTIVEC, \
409 (int)VECTOR_P8_VECTOR))
411 /* Return the alignment of a given vector type, which is set based on the
412 vector unit use. VSX for instance can load 32 or 64 bit aligned words
413 without problems, while Altivec requires 128-bit aligned vectors. */
414 extern int rs6000_vector_align[];
416 #define VECTOR_ALIGN(MODE) \
417 ((rs6000_vector_align[(MODE)] != 0) \
418 ? rs6000_vector_align[(MODE)] \
419 : (int)GET_MODE_BITSIZE ((MODE)))
421 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
422 with scalar instructions. */
423 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
425 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
426 with the ISA 3.0 MFVSRLD instructions. */
427 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
429 /* Alignment options for fields in structures for sub-targets following
430 AIX-like ABI.
431 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
432 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
434 Override the macro definitions when compiling libobjc to avoid undefined
435 reference to rs6000_alignment_flags due to library's use of GCC alignment
436 macros which use the macros below. */
438 #ifndef IN_TARGET_LIBS
439 #define MASK_ALIGN_POWER 0x00000000
440 #define MASK_ALIGN_NATURAL 0x00000001
441 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
442 #else
443 #define TARGET_ALIGN_NATURAL 0
444 #endif
446 /* We use values 126..128 to pick the appropriate long double type (IFmode,
447 KFmode, TFmode). */
448 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
449 #define TARGET_IEEEQUAD rs6000_ieeequad
450 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
451 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
453 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
454 Enable 32-bit fcfid's on any of the switches for newer ISA machines. */
455 #define TARGET_FCFID (TARGET_POWERPC64 \
456 || TARGET_PPC_GPOPT /* 970/power4 */ \
457 || TARGET_POPCNTB /* ISA 2.02 */ \
458 || TARGET_CMPB /* ISA 2.05 */ \
459 || TARGET_POPCNTD) /* ISA 2.06 */
461 #define TARGET_FCTIDZ TARGET_FCFID
462 #define TARGET_STFIWX TARGET_PPC_GFXOPT
463 #define TARGET_LFIWAX TARGET_CMPB
464 #define TARGET_LFIWZX TARGET_POPCNTD
465 #define TARGET_FCFIDS TARGET_POPCNTD
466 #define TARGET_FCFIDU TARGET_POPCNTD
467 #define TARGET_FCFIDUS TARGET_POPCNTD
468 #define TARGET_FCTIDUZ TARGET_POPCNTD
469 #define TARGET_FCTIWUZ TARGET_POPCNTD
470 /* Only powerpc64 and powerpc476 support fctid. */
471 #define TARGET_FCTID (TARGET_POWERPC64 || rs6000_cpu == PROCESSOR_PPC476)
472 #define TARGET_CTZ TARGET_MODULO
473 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
474 #define TARGET_MADDLD TARGET_MODULO
476 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
477 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
478 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
479 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
480 && TARGET_POWERPC64)
481 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
482 && TARGET_POWERPC64)
484 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
485 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
486 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
488 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
489 in power7, so conditionalize them on p8 features. TImode syncs need quad
490 memory support. */
491 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
492 || TARGET_QUAD_MEMORY_ATOMIC \
493 || TARGET_DIRECT_MOVE)
495 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
497 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
498 to allocate the SDmode stack slot to get the value into the proper location
499 in the register. */
500 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
502 /* ISA 3.0 has new min/max functions that don't need fast math that are being
503 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
504 answers if the arguments are not in the normal range. */
505 #define TARGET_MINMAX (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
506 && (TARGET_P9_MINMAX || !flag_trapping_math))
508 /* In switching from using target_flags to using rs6000_isa_flags, the options
509 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. The MASK_<xxxx>
510 options that have not yet been replaced by their OPTION_MASK_<xxx>
511 equivalents are defined here. */
513 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
515 #ifndef IN_LIBGCC2
516 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
517 #endif
519 #ifdef TARGET_64BIT
520 #define MASK_64BIT OPTION_MASK_64BIT
521 #endif
523 #ifdef TARGET_LITTLE_ENDIAN
524 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
525 #endif
527 /* For power systems, we want to enable Altivec and VSX builtins even if the
528 user did not use -maltivec or -mvsx to allow the builtins to be used inside
529 of #pragma GCC target or the target attribute to change the code level for a
530 given system. */
532 #define TARGET_EXTRA_BUILTINS (TARGET_POWERPC64 \
533 || TARGET_PPC_GPOPT /* 970/power4 */ \
534 || TARGET_POPCNTB /* ISA 2.02 */ \
535 || TARGET_CMPB /* ISA 2.05 */ \
536 || TARGET_POPCNTD /* ISA 2.06 */ \
537 || TARGET_ALTIVEC \
538 || TARGET_VSX \
539 || TARGET_HARD_FLOAT)
541 /* E500 cores only support plain "sync", not lwsync. */
542 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
543 || rs6000_cpu == PROCESSOR_PPC8548)
546 /* Which machine supports the various reciprocal estimate instructions. */
547 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
549 #define TARGET_FRE (TARGET_HARD_FLOAT \
550 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
552 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
553 && TARGET_PPC_GFXOPT)
555 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT \
556 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
558 /* Macro to say whether we can do optimizations where we need to do parts of
559 the calculation in 64-bit GPRs and then is transfered to the vector
560 registers. */
561 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
562 && TARGET_P8_VECTOR \
563 && TARGET_POWERPC64)
565 /* Inlining allows targets to define the meanings of bits in target_info
566 field of ipa_fn_summary by itself, the used bits for rs6000 are listed
567 below. */
568 #define RS6000_FN_TARGET_INFO_HTM 1
570 /* Whether the various reciprocal divide/square root estimate instructions
571 exist, and whether we should automatically generate code for the instruction
572 by default. */
573 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
574 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
575 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
576 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
578 extern unsigned char rs6000_recip_bits[];
580 #define RS6000_RECIP_HAVE_RE_P(MODE) \
581 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
583 #define RS6000_RECIP_AUTO_RE_P(MODE) \
584 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
586 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
587 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
589 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
590 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
592 /* The default CPU for TARGET_OPTION_OVERRIDE. */
593 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
595 /* Target pragma. */
596 #define REGISTER_TARGET_PRAGMAS() do { \
597 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
598 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
599 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
600 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
601 } while (0)
603 /* Target #defines. */
604 #define TARGET_CPU_CPP_BUILTINS() \
605 rs6000_cpu_cpp_builtins (pfile)
607 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
608 we're compiling for. Some configurations may need to override it. */
609 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
610 do \
612 if (BYTES_BIG_ENDIAN) \
614 builtin_define ("__BIG_ENDIAN__"); \
615 builtin_define ("_BIG_ENDIAN"); \
616 builtin_assert ("machine=bigendian"); \
618 else \
620 builtin_define ("__LITTLE_ENDIAN__"); \
621 builtin_define ("_LITTLE_ENDIAN"); \
622 builtin_assert ("machine=littleendian"); \
625 while (0)
627 /* Target machine storage layout. */
629 /* Define this if most significant bit is lowest numbered
630 in instructions that operate on numbered bit-fields. */
631 /* That is true on RS/6000. */
632 #define BITS_BIG_ENDIAN 1
634 /* Define this if most significant byte of a word is the lowest numbered. */
635 /* That is true on RS/6000. */
636 #define BYTES_BIG_ENDIAN 1
638 /* Define this if most significant word of a multiword number is lowest
639 numbered.
641 For RS/6000 we can decide arbitrarily since there are no machine
642 instructions for them. Might as well be consistent with bits and bytes. */
643 #define WORDS_BIG_ENDIAN 1
645 /* This says that for the IBM long double the larger magnitude double
646 comes first. It's really a two element double array, and arrays
647 don't index differently between little- and big-endian. */
648 #define LONG_DOUBLE_LARGE_FIRST 1
650 #define MAX_BITS_PER_WORD 64
652 /* Width of a word, in units (bytes). */
653 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
654 #ifdef IN_LIBGCC2
655 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
656 #else
657 #define MIN_UNITS_PER_WORD 4
658 #endif
659 #define UNITS_PER_FP_WORD 8
660 #define UNITS_PER_ALTIVEC_WORD 16
661 #define UNITS_PER_VSX_WORD 16
663 /* Type used for ptrdiff_t, as a string used in a declaration. */
664 #define PTRDIFF_TYPE "int"
666 /* Type used for size_t, as a string used in a declaration. */
667 #define SIZE_TYPE "long unsigned int"
669 /* Type used for wchar_t, as a string used in a declaration. */
670 #define WCHAR_TYPE "short unsigned int"
672 /* Width of wchar_t in bits. */
673 #define WCHAR_TYPE_SIZE 16
675 /* A C expression for the size in bits of the type `short' on the
676 target machine. If you don't define this, the default is half a
677 word. (If this would be less than one storage unit, it is
678 rounded up to one unit.) */
679 #define SHORT_TYPE_SIZE 16
681 /* A C expression for the size in bits of the type `int' on the
682 target machine. If you don't define this, the default is one
683 word. */
684 #define INT_TYPE_SIZE 32
686 /* A C expression for the size in bits of the type `long' on the
687 target machine. If you don't define this, the default is one
688 word. */
689 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
691 /* A C expression for the size in bits of the type `long long' on the
692 target machine. If you don't define this, the default is two
693 words. */
694 #define LONG_LONG_TYPE_SIZE 64
696 /* A C expression for the size in bits of the type `float' on the
697 target machine. If you don't define this, the default is one
698 word. */
699 #define FLOAT_TYPE_SIZE 32
701 /* A C expression for the size in bits of the type `double' on the
702 target machine. If you don't define this, the default is two
703 words. */
704 #define DOUBLE_TYPE_SIZE 64
706 /* A C expression for the size in bits of the type `long double' on the target
707 machine. If you don't define this, the default is two words. */
708 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
710 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.cc. */
711 #define WIDEST_HARDWARE_FP_SIZE 64
713 /* Width in bits of a pointer.
714 See also the macro `Pmode' defined below. */
715 extern unsigned rs6000_pointer_size;
716 #define POINTER_SIZE rs6000_pointer_size
718 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
719 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
721 /* Boundary (in *bits*) on which stack pointer should be aligned. */
722 #define STACK_BOUNDARY \
723 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
724 ? 64 : 128)
726 /* Allocation boundary (in *bits*) for the code of a function. */
727 #define FUNCTION_BOUNDARY 32
729 /* No data type is required to be aligned rounder than this. Warning, if
730 BIGGEST_ALIGNMENT is changed, then this may be an ABI break. An example
731 of where this can break an ABI is in GLIBC's struct _Unwind_Exception. */
732 #define BIGGEST_ALIGNMENT 128
734 /* Alignment of field after `int : 0' in a structure. */
735 #define EMPTY_FIELD_BOUNDARY 32
737 /* Every structure's size must be a multiple of this. */
738 #define STRUCTURE_SIZE_BOUNDARY 8
740 /* A bit-field declared as `int' forces `int' alignment for the struct. */
741 #define PCC_BITFIELD_TYPE_MATTERS 1
743 enum data_align { align_abi, align_opt, align_both };
745 /* A C expression to compute the alignment for a variables in the
746 local store. TYPE is the data type, and ALIGN is the alignment
747 that the object would ordinarily have. */
748 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
749 rs6000_data_alignment (TYPE, ALIGN, align_both)
751 /* Make arrays of chars word-aligned for the same reasons. */
752 #define DATA_ALIGNMENT(TYPE, ALIGN) \
753 rs6000_data_alignment (TYPE, ALIGN, align_opt)
755 /* Align vectors to 128 bits. */
756 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
757 rs6000_data_alignment (TYPE, ALIGN, align_abi)
759 /* Nonzero if move instructions will actually fail to work
760 when given unaligned data. */
761 #define STRICT_ALIGNMENT 0
763 /* Standard register usage. */
765 /* Number of actual hardware registers.
766 The hardware registers are assigned numbers for the compiler
767 from 0 to just below FIRST_PSEUDO_REGISTER.
768 All registers that the compiler knows about must be given numbers,
769 even those that are not normally considered general registers.
771 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
772 a count register, a link register, and 8 condition register fields,
773 which we view here as separate registers. AltiVec adds 32 vector
774 registers and a VRsave register.
776 In addition, the difference between the frame and argument pointers is
777 a function of the number of registers saved, so we need to have a
778 register for AP that will later be eliminated in favor of SP or FP.
779 This is a normal register, but it is fixed.
781 We also create a pseudo register for float/int conversions, that will
782 really represent the memory location used. It is represented here as
783 a register, in order to work around problems in allocating stack storage
784 in inline functions.
786 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
787 pointer, which is eventually eliminated in favor of SP or FP. */
789 #define FIRST_PSEUDO_REGISTER 111
791 /* Use standard DWARF numbering for DWARF debugging information. */
792 #define DEBUGGER_REGNO(REGNO) rs6000_debugger_regno ((REGNO), 0)
794 /* Use gcc hard register numbering for eh_frame. */
795 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
797 /* Map register numbers held in the call frame info that gcc has
798 collected using DWARF_FRAME_REGNUM to those that should be output in
799 .debug_frame and .eh_frame. */
800 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
801 rs6000_debugger_regno ((REGNO), (FOR_EH) ? 2 : 1)
803 /* 1 for registers that have pervasive standard uses
804 and are not available for the register allocator.
806 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
807 as a local register; for all other OS's r2 is the TOC pointer.
809 On System V implementations, r13 is fixed and not available for use. */
811 #define FIXED_REGISTERS \
812 {/* GPRs */ \
813 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
814 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
815 /* FPRs */ \
816 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
817 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
818 /* VRs */ \
819 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
820 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
821 /* lr ctr ca ap */ \
822 0, 0, 1, 1, \
823 /* cr0..cr7 */ \
824 0, 0, 0, 0, 0, 0, 0, 0, \
825 /* vrsave vscr sfp */ \
826 1, 1, 1 \
829 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
830 the entire set of `FIXED_REGISTERS' be included.
831 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
832 This macro is optional. If not specified, it defaults to the value
833 of `CALL_USED_REGISTERS'. */
835 #define CALL_REALLY_USED_REGISTERS \
836 {/* GPRs */ \
837 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
838 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
839 /* FPRs */ \
840 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
841 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
842 /* VRs */ \
843 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
844 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
845 /* lr ctr ca ap */ \
846 1, 1, 1, 1, \
847 /* cr0..cr7 */ \
848 1, 1, 0, 0, 0, 1, 1, 1, \
849 /* vrsave vscr sfp */ \
850 0, 0, 0 \
853 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
855 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
856 #define FIRST_SAVED_FP_REGNO (14+32)
857 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
859 /* List the order in which to allocate registers. Each register must be
860 listed once, even those in FIXED_REGISTERS.
862 We allocate in the following order:
863 fp0 (not saved or used for anything)
864 fp13 - fp2 (not saved; incoming fp arg registers)
865 fp1 (not saved; return value)
866 fp31 - fp14 (saved; order given to save least number)
867 cr7, cr5 (not saved or special)
868 cr6 (not saved, but used for vector operations)
869 cr1 (not saved, but used for FP operations)
870 cr0 (not saved, but used for arithmetic operations)
871 cr4, cr3, cr2 (saved)
872 r9 (not saved; best for TImode)
873 r10, r8-r4 (not saved; highest first for less conflict with params)
874 r3 (not saved; return value register)
875 r11 (not saved; later alloc to help shrink-wrap)
876 r0 (not saved; cannot be base reg)
877 r31 - r13 (saved; order given to save least number)
878 r12 (not saved; if used for DImode or DFmode would use r13)
879 ctr (not saved; when we have the choice ctr is better)
880 lr (saved)
881 r1, r2, ap, ca (fixed)
882 v0 - v1 (not saved or used for anything)
883 v13 - v3 (not saved; incoming vector arg registers)
884 v2 (not saved; incoming vector arg reg; return value)
885 v19 - v14 (not saved or used for anything)
886 v31 - v20 (saved; order given to save least number)
887 vrsave, vscr (fixed)
888 sfp (fixed)
891 #if FIXED_R2 == 1
892 #define MAYBE_R2_AVAILABLE
893 #define MAYBE_R2_FIXED 2,
894 #else
895 #define MAYBE_R2_AVAILABLE 2,
896 #define MAYBE_R2_FIXED
897 #endif
899 #if FIXED_R13 == 1
900 #define EARLY_R12 12,
901 #define LATE_R12
902 #else
903 #define EARLY_R12
904 #define LATE_R12 12,
905 #endif
907 #define REG_ALLOC_ORDER \
908 {32, \
909 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
910 /* not use fr14 which is a saved register. */ \
911 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
912 33, \
913 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
914 50, 49, 48, 47, 46, \
915 100, 107, 105, 106, 101, 104, 103, 102, \
916 MAYBE_R2_AVAILABLE \
917 9, 10, 8, 7, 6, 5, 4, \
918 3, EARLY_R12 11, 0, \
919 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
920 18, 17, 16, 15, 14, 13, LATE_R12 \
921 97, 96, \
922 1, MAYBE_R2_FIXED 99, 98, \
923 /* AltiVec registers. */ \
924 64, 65, \
925 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, \
926 66, \
927 83, 82, 81, 80, 79, 78, \
928 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, \
929 108, 109, \
930 110 \
933 /* True if register is floating-point. */
934 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
936 /* True if register is a condition register. */
937 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
939 /* True if register is a condition register, but not cr0. */
940 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
942 /* True if register is an integer register. */
943 #define INT_REGNO_P(N) \
944 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
946 /* True if register is the CA register. */
947 #define CA_REGNO_P(N) ((N) == CA_REGNO)
949 /* True if register is an AltiVec register. */
950 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
952 /* True if register is a VSX register. */
953 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
955 /* Alternate name for any vector register supporting floating point, no matter
956 which instruction set(s) are available. */
957 #define VFLOAT_REGNO_P(N) \
958 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
960 /* Alternate name for any vector register supporting integer, no matter which
961 instruction set(s) are available. */
962 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
964 /* Alternate name for any vector register supporting logical operations, no
965 matter which instruction set(s) are available. Allow GPRs as well as the
966 vector registers. */
967 #define VLOGICAL_REGNO_P(N) \
968 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
969 || (TARGET_VSX && FP_REGNO_P (N))) \
971 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
972 enough space to account for vectors in FP regs. However, TFmode/TDmode
973 should not use VSX instructions to do a caller save. */
974 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
975 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
976 ? (MODE) \
977 : TARGET_VSX \
978 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
979 && FP_REGNO_P (REGNO) \
980 ? V2DFmode \
981 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
982 ? DFmode \
983 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
984 ? DImode \
985 : choose_hard_reg_mode ((REGNO), (NREGS), NULL))
987 #define VSX_VECTOR_MODE(MODE) \
988 ((MODE) == V4SFmode \
989 || (MODE) == V2DFmode) \
991 /* Modes that are not vectors, but require vector alignment. Treat these like
992 vectors in terms of loads and stores. */
993 #define VECTOR_ALIGNMENT_P(MODE) \
994 (FLOAT128_VECTOR_P (MODE) || (MODE) == OOmode || (MODE) == XOmode)
996 #define ALTIVEC_VECTOR_MODE(MODE) \
997 ((MODE) == V16QImode \
998 || (MODE) == V8HImode \
999 || (MODE) == V4SFmode \
1000 || (MODE) == V4SImode \
1001 || VECTOR_ALIGNMENT_P (MODE))
1003 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1004 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1005 || (MODE) == V2DImode || (MODE) == V1TImode)
1007 /* Post-reload, we can't use any new AltiVec registers, as we already
1008 emitted the vrsave mask. */
1010 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1011 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1013 /* Specify the cost of a branch insn; roughly the number of extra insns that
1014 should be added to avoid a branch.
1016 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1017 unscheduled conditional branch. */
1019 #define BRANCH_COST(speed_p, predictable_p) 3
1021 /* Override BRANCH_COST heuristic which empirically produces worse
1022 performance for removing short circuiting from the logical ops. */
1024 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1026 /* Specify the registers used for certain standard purposes.
1027 The values of these macros are register numbers. */
1029 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1030 /* #define PC_REGNUM */
1032 /* Register to use for pushing function arguments. */
1033 #define STACK_POINTER_REGNUM 1
1035 /* Base register for access to local variables of the function. */
1036 #define HARD_FRAME_POINTER_REGNUM 31
1038 /* Base register for access to local variables of the function. */
1039 #define FRAME_POINTER_REGNUM 110
1041 /* Base register for access to arguments of the function. */
1042 #define ARG_POINTER_REGNUM 99
1044 /* Place to put static chain when calling a function that requires it. */
1045 #define STATIC_CHAIN_REGNUM 11
1047 /* Base register for access to thread local storage variables. */
1048 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1051 /* Define the classes of registers for register constraints in the
1052 machine description. Also define ranges of constants.
1054 One of the classes must always be named ALL_REGS and include all hard regs.
1055 If there is more than one class, another class must be named NO_REGS
1056 and contain no registers.
1058 The name GENERAL_REGS must be the name of a class (or an alias for
1059 another name such as ALL_REGS). This is the class of registers
1060 that is allowed by "g" or "r" in a register constraint.
1061 Also, registers outside this class are allocated only when
1062 instructions express preferences for them.
1064 The classes must be numbered in nondecreasing order; that is,
1065 a larger-numbered class must never be contained completely
1066 in a smaller-numbered class.
1068 For any two classes, it is very desirable that there be another
1069 class that represents their union. */
1071 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1072 condition registers, plus three special registers, CTR, and the link
1073 register. AltiVec adds a vector register class. VSX registers overlap the
1074 FPR registers and the Altivec registers.
1076 However, r0 is special in that it cannot be used as a base register.
1077 So make a class for registers valid as base registers.
1079 Also, cr0 is the only condition code register that can be used in
1080 arithmetic insns, so make a separate class for it. */
1082 enum reg_class
1084 NO_REGS,
1085 BASE_REGS,
1086 GENERAL_REGS,
1087 FLOAT_REGS,
1088 ALTIVEC_REGS,
1089 VSX_REGS,
1090 VRSAVE_REGS,
1091 VSCR_REGS,
1092 GEN_OR_FLOAT_REGS,
1093 GEN_OR_VSX_REGS,
1094 LINK_REGS,
1095 CTR_REGS,
1096 LINK_OR_CTR_REGS,
1097 SPECIAL_REGS,
1098 SPEC_OR_GEN_REGS,
1099 CR0_REGS,
1100 CR_REGS,
1101 NON_FLOAT_REGS,
1102 CA_REGS,
1103 ALL_REGS,
1104 LIM_REG_CLASSES
1107 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1109 /* Give names of register classes as strings for dump file. */
1111 #define REG_CLASS_NAMES \
1113 "NO_REGS", \
1114 "BASE_REGS", \
1115 "GENERAL_REGS", \
1116 "FLOAT_REGS", \
1117 "ALTIVEC_REGS", \
1118 "VSX_REGS", \
1119 "VRSAVE_REGS", \
1120 "VSCR_REGS", \
1121 "GEN_OR_FLOAT_REGS", \
1122 "GEN_OR_VSX_REGS", \
1123 "LINK_REGS", \
1124 "CTR_REGS", \
1125 "LINK_OR_CTR_REGS", \
1126 "SPECIAL_REGS", \
1127 "SPEC_OR_GEN_REGS", \
1128 "CR0_REGS", \
1129 "CR_REGS", \
1130 "NON_FLOAT_REGS", \
1131 "CA_REGS", \
1132 "ALL_REGS" \
1135 /* Define which registers fit in which classes.
1136 This is an initializer for a vector of HARD_REG_SET
1137 of length N_REG_CLASSES. */
1139 #define REG_CLASS_CONTENTS \
1141 /* NO_REGS. */ \
1142 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1143 /* BASE_REGS. */ \
1144 { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 }, \
1145 /* GENERAL_REGS. */ \
1146 { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 }, \
1147 /* FLOAT_REGS. */ \
1148 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
1149 /* ALTIVEC_REGS. */ \
1150 { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 }, \
1151 /* VSX_REGS. */ \
1152 { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1153 /* VRSAVE_REGS. */ \
1154 { 0x00000000, 0x00000000, 0x00000000, 0x00001000 }, \
1155 /* VSCR_REGS. */ \
1156 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
1157 /* GEN_OR_FLOAT_REGS. */ \
1158 { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 }, \
1159 /* GEN_OR_VSX_REGS. */ \
1160 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 }, \
1161 /* LINK_REGS. */ \
1162 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, \
1163 /* CTR_REGS. */ \
1164 { 0x00000000, 0x00000000, 0x00000000, 0x00000002 }, \
1165 /* LINK_OR_CTR_REGS. */ \
1166 { 0x00000000, 0x00000000, 0x00000000, 0x00000003 }, \
1167 /* SPECIAL_REGS. */ \
1168 { 0x00000000, 0x00000000, 0x00000000, 0x00001003 }, \
1169 /* SPEC_OR_GEN_REGS. */ \
1170 { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b }, \
1171 /* CR0_REGS. */ \
1172 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, \
1173 /* CR_REGS. */ \
1174 { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 }, \
1175 /* NON_FLOAT_REGS. */ \
1176 { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb }, \
1177 /* CA_REGS. */ \
1178 { 0x00000000, 0x00000000, 0x00000000, 0x00000004 }, \
1179 /* ALL_REGS. */ \
1180 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff } \
1183 /* The same information, inverted:
1184 Return the class number of the smallest class containing
1185 reg number REGNO. This could be a conditional expression
1186 or could index an array. */
1188 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1190 #define REGNO_REG_CLASS(REGNO) \
1191 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1192 rs6000_regno_regclass[(REGNO)])
1194 /* Register classes for various constraints that are based on the target
1195 switches. */
1196 enum r6000_reg_class_enum {
1197 RS6000_CONSTRAINT_d, /* FPR registers */
1198 RS6000_CONSTRAINT_v, /* Altivec registers */
1199 RS6000_CONSTRAINT_wa, /* Any VSX register */
1200 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1201 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1202 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1203 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
1204 RS6000_CONSTRAINT_MAX
1207 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1209 /* The class value for index registers, and the one for base regs. */
1210 #define INDEX_REG_CLASS GENERAL_REGS
1211 #define BASE_REG_CLASS BASE_REGS
1213 /* Return whether a given register class can hold VSX objects. */
1214 #define VSX_REG_CLASS_P(CLASS) \
1215 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1217 /* Return whether a given register class targets general purpose registers. */
1218 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1220 /* Given an rtx X being reloaded into a reg required to be
1221 in class CLASS, return the class of reg to actually use.
1222 In general this is just CLASS; but on some machines
1223 in some cases it is preferable to use a more restrictive class.
1225 On the RS/6000, we have to return NO_REGS when we want to reload a
1226 floating-point CONST_DOUBLE to force it to be copied to memory.
1228 We also don't want to reload integer values into floating-point
1229 registers if we can at all help it. In fact, this can
1230 cause reload to die, if it tries to generate a reload of CTR
1231 into a FP register and discovers it doesn't have the memory location
1232 required.
1234 ??? Would it be a good idea to have reload do the converse, that is
1235 try to reload floating modes into FP registers if possible?
1238 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1239 rs6000_preferred_reload_class_ptr (X, CLASS)
1241 /* Return the register class of a scratch register needed to copy IN into
1242 or out of a register in CLASS in MODE. If it can be done directly,
1243 NO_REGS is returned. */
1245 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1246 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1248 /* Return the maximum number of consecutive registers
1249 needed to represent mode MODE in a register of class CLASS.
1251 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1252 a single reg is enough for two words, unless we have VSX, where the FP
1253 registers can hold 128 bits. */
1254 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1256 /* Stack layout; function entry, exit and calling. */
1258 /* Define this if pushing a word on the stack
1259 makes the stack pointer a smaller address. */
1260 #define STACK_GROWS_DOWNWARD 1
1262 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1263 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1265 /* Define this to nonzero if the nominal address of the stack frame
1266 is at the high-address end of the local variables;
1267 that is, each additional local variable allocated
1268 goes at a more negative offset in the frame.
1270 On the RS/6000, we grow upwards, from the area after the outgoing
1271 arguments. */
1272 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1273 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1275 /* Size of the fixed area on the stack */
1276 #define RS6000_SAVE_AREA \
1277 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1278 << (TARGET_64BIT ? 1 : 0))
1280 /* Stack offset for toc save slot. */
1281 #define RS6000_TOC_SAVE_SLOT \
1282 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1284 /* Align an address */
1285 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1287 /* Offset within stack frame to start allocating local variables at.
1288 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1289 first local allocated. Otherwise, it is the offset to the BEGINNING
1290 of the first local allocated.
1292 On the RS/6000, the frame pointer is the same as the stack pointer,
1293 except for dynamic allocations. So we start after the fixed area and
1294 outgoing parameter area.
1296 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1297 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1298 sizes of the fixed area and the parameter area must be a multiple of
1299 STACK_BOUNDARY. */
1301 #define RS6000_STARTING_FRAME_OFFSET \
1302 (cfun->calls_alloca \
1303 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1304 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1305 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1306 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1307 + RS6000_SAVE_AREA))
1309 /* Offset from the stack pointer register to an item dynamically
1310 allocated on the stack, e.g., by `alloca'.
1312 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1313 length of the outgoing arguments. The default is correct for most
1314 machines. See `function.cc' for details.
1316 This value must be a multiple of STACK_BOUNDARY (hard coded in
1317 `emit-rtl.cc'). */
1318 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1319 RS6000_ALIGN (crtl->outgoing_args_size.to_constant () \
1320 + STACK_POINTER_OFFSET, \
1321 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1323 /* If we generate an insn to push BYTES bytes,
1324 this says how many the stack pointer really advances by.
1325 On RS/6000, don't define this because there are no push insns. */
1326 /* #define PUSH_ROUNDING(BYTES) */
1328 /* Offset of first parameter from the argument pointer register value.
1329 On the RS/6000, we define the argument pointer to the start of the fixed
1330 area. */
1331 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1333 /* Offset from the argument pointer register value to the top of
1334 stack. This is different from FIRST_PARM_OFFSET because of the
1335 register save area. */
1336 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1338 /* Define this if stack space is still allocated for a parameter passed
1339 in a register. The value is the number of bytes allocated to this
1340 area. */
1341 #define REG_PARM_STACK_SPACE(FNDECL) \
1342 rs6000_reg_parm_stack_space ((FNDECL), false)
1344 /* Define this macro if space guaranteed when compiling a function body
1345 is different to space required when making a call, a situation that
1346 can arise with K&R style function definitions. */
1347 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1348 rs6000_reg_parm_stack_space ((FNDECL), true)
1350 /* Define this if the above stack space is to be considered part of the
1351 space allocated by the caller. */
1352 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1354 /* This is the difference between the logical top of stack and the actual sp.
1356 For the RS/6000, sp points past the fixed area. */
1357 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1359 /* Define this if the maximum size of all the outgoing args is to be
1360 accumulated and pushed during the prologue. The amount can be
1361 found in the variable crtl->outgoing_args_size. */
1362 #define ACCUMULATE_OUTGOING_ARGS 1
1364 /* Define how to find the value returned by a library function
1365 assuming the value has mode MODE. */
1367 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1369 /* DRAFT_V4_STRUCT_RET defaults off. */
1370 #define DRAFT_V4_STRUCT_RET 0
1372 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1373 #define DEFAULT_PCC_STRUCT_RETURN 0
1375 /* Mode of stack savearea.
1376 FUNCTION is VOIDmode because calling convention maintains SP.
1377 BLOCK needs Pmode for SP.
1378 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1379 #define STACK_SAVEAREA_MODE(LEVEL) \
1380 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1381 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1383 /* Minimum and maximum general purpose registers used to hold arguments. */
1384 #define GP_ARG_MIN_REG 3
1385 #define GP_ARG_MAX_REG 10
1386 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1388 /* Minimum and maximum floating point registers used to hold arguments. */
1389 #define FP_ARG_MIN_REG 33
1390 #define FP_ARG_AIX_MAX_REG 45
1391 #define FP_ARG_V4_MAX_REG 40
1392 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1393 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1394 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1396 /* Minimum and maximum AltiVec registers used to hold arguments. */
1397 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1398 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1399 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1401 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1402 #define AGGR_ARG_NUM_REG 8
1404 /* Return registers */
1405 #define GP_ARG_RETURN GP_ARG_MIN_REG
1406 #define FP_ARG_RETURN FP_ARG_MIN_REG
1407 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1408 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1409 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1410 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1411 ? (ALTIVEC_ARG_RETURN \
1412 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1413 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1415 /* Flags for the call/call_value rtl operations set up by function_arg */
1416 #define CALL_NORMAL 0x00000000 /* no special processing */
1417 /* Bits in 0x00000001 are unused. */
1418 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1419 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1420 #define CALL_LONG 0x00000008 /* always call indirect */
1421 #define CALL_LIBCALL 0x00000010 /* libcall */
1423 /* Identify PLT sequence for rs6000_pltseq_template. */
1424 enum rs6000_pltseq_enum {
1425 RS6000_PLTSEQ_TOCSAVE,
1426 RS6000_PLTSEQ_PLT16_HA,
1427 RS6000_PLTSEQ_PLT16_LO,
1428 RS6000_PLTSEQ_MTCTR,
1429 RS6000_PLTSEQ_PLT_PCREL34
1432 #define IS_V4_FP_ARGS(OP) \
1433 ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0)
1435 /* We don't have prologue and epilogue functions to save/restore
1436 everything for most ABIs. */
1437 #define WORLD_SAVE_P(INFO) 0
1439 /* 1 if N is a possible register number for a function value
1440 as seen by the caller.
1442 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1443 #define FUNCTION_VALUE_REGNO_P(N) \
1444 ((N) == GP_ARG_RETURN \
1445 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1446 && TARGET_HARD_FLOAT) \
1447 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1448 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1450 /* 1 if N is a possible register number for function argument passing.
1451 On RS/6000, these are r3-r10 and fp1-fp13.
1452 On AltiVec, v2 - v13 are used for passing vectors. */
1453 #define FUNCTION_ARG_REGNO_P(N) \
1454 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1455 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1456 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1457 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1458 && TARGET_HARD_FLOAT))
1460 /* Define a data type for recording info about an argument list
1461 during the scan of that argument list. This data type should
1462 hold all necessary information about the function itself
1463 and about the args processed so far, enough to enable macros
1464 such as FUNCTION_ARG to determine where the next arg should go.
1466 On the RS/6000, this is a structure. The first element is the number of
1467 total argument words, the second is used to store the next
1468 floating-point register number, and the third says how many more args we
1469 have prototype types for.
1471 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1472 the next available GP register, `fregno' is the next available FP
1473 register, and `words' is the number of words used on the stack.
1475 The varargs/stdarg support requires that this structure's size
1476 be a multiple of sizeof(int). */
1478 typedef struct rs6000_args
1480 int words; /* # words used for passing GP registers */
1481 int fregno; /* next available FP register */
1482 int vregno; /* next available AltiVec register */
1483 int nargs_prototype; /* # args left in the current prototype */
1484 int prototype; /* Whether a prototype was defined */
1485 int stdarg; /* Whether function is a stdarg function. */
1486 int call_cookie; /* Do special things for this call */
1487 int sysv_gregno; /* next available GP register */
1488 int intoffset; /* running offset in struct (darwin64) */
1489 int use_stack; /* any part of struct on stack (darwin64) */
1490 int floats_in_gpr; /* count of SFmode floats taking up
1491 GPR space (darwin64) */
1492 int named; /* false for varargs params */
1493 int escapes; /* if function visible outside tu */
1494 int libcall; /* If this is a compiler generated call. */
1495 } CUMULATIVE_ARGS;
1497 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1498 for a call to a function whose data type is FNTYPE.
1499 For a library call, FNTYPE is 0. */
1501 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1502 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1503 N_NAMED_ARGS, FNDECL, VOIDmode)
1505 /* Similar, but when scanning the definition of a procedure. We always
1506 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1508 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1509 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1510 1000, current_function_decl, VOIDmode)
1512 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1514 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1515 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1516 0, NULL_TREE, MODE)
1518 #define PAD_VARARGS_DOWN \
1519 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1521 /* Output assembler code to FILE to increment profiler label # LABELNO
1522 for profiling a function entry. */
1524 #define FUNCTION_PROFILER(FILE, LABELNO) \
1525 output_function_profiler ((FILE), (LABELNO));
1527 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1528 the stack pointer does not matter. No definition is equivalent to
1529 always zero.
1531 On the RS/6000, this is nonzero because we can restore the stack from
1532 its backpointer, which we maintain. */
1533 #define EXIT_IGNORE_STACK 1
1535 /* Define this macro as a C expression that is nonzero for registers
1536 that are used by the epilogue or the return' pattern. The stack
1537 and frame pointer registers are already be assumed to be used as
1538 needed. */
1540 #define EPILOGUE_USES(REGNO) \
1541 ((reload_completed && (REGNO) == LR_REGNO) \
1542 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1543 || (crtl->calls_eh_return \
1544 && TARGET_AIX \
1545 && (REGNO) == 2))
1548 /* Length in units of the trampoline for entering a nested function. */
1550 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1552 /* Definitions for __builtin_return_address and __builtin_frame_address.
1553 __builtin_return_address (0) should give link register (LR_REGNO), enable
1554 this. */
1555 /* This should be uncommented, so that the link register is used, but
1556 currently this would result in unmatched insns and spilling fixed
1557 registers so we'll leave it for another day. When these problems are
1558 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1559 (mrs) */
1560 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1562 /* Number of bytes into the frame return addresses can be found. See
1563 rs6000_stack_info in rs6000.cc for more information on how the different
1564 abi's store the return address. */
1565 #define RETURN_ADDRESS_OFFSET \
1566 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1568 /* The current return address is in the link register. The return address
1569 of anything farther back is accessed normally at an offset of 8 from the
1570 frame pointer. */
1571 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1572 (rs6000_return_addr (COUNT, FRAME))
1575 /* Definitions for register eliminations.
1577 We have two registers that can be eliminated on the RS/6000. First, the
1578 frame pointer register can often be eliminated in favor of the stack
1579 pointer register. Secondly, the argument pointer register can always be
1580 eliminated; it is replaced with either the stack or frame pointer.
1582 In addition, we use the elimination mechanism to see if r30 is needed
1583 Initially we assume that it isn't. If it is, we spill it. This is done
1584 by making it an eliminable register. We replace it with itself so that
1585 if it isn't needed, then existing uses won't be modified. */
1587 /* This is an array of structures. Each structure initializes one pair
1588 of eliminable registers. The "from" register number is given first,
1589 followed by "to". Eliminations of the same "from" register are listed
1590 in order of preference. */
1591 #define ELIMINABLE_REGS \
1592 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1593 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1594 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1595 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1596 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1597 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1599 /* Define the offset between two registers, one to be eliminated, and the other
1600 its replacement, at the start of a routine. */
1601 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1602 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1604 /* Addressing modes, and classification of registers for them. */
1606 #define HAVE_PRE_DECREMENT 1
1607 #define HAVE_PRE_INCREMENT 1
1608 #define HAVE_PRE_MODIFY_DISP 1
1609 #define HAVE_PRE_MODIFY_REG 1
1611 /* Macros to check register numbers against specific register classes. */
1613 /* These assume that REGNO is a hard or pseudo reg number.
1614 They give nonzero only if REGNO is a hard reg of the suitable class
1615 or a pseudo reg currently allocated to a suitable hard reg.
1616 Since they use reg_renumber, they are safe only once reg_renumber
1617 has been allocated, which happens in reginfo.cc during register
1618 allocation. */
1620 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1621 (HARD_REGISTER_NUM_P (REGNO) \
1622 ? (REGNO) <= 31 \
1623 || (REGNO) == ARG_POINTER_REGNUM \
1624 || (REGNO) == FRAME_POINTER_REGNUM \
1625 : (reg_renumber[REGNO] >= 0 \
1626 && (reg_renumber[REGNO] <= 31 \
1627 || reg_renumber[REGNO] == ARG_POINTER_REGNUM \
1628 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1630 #define REGNO_OK_FOR_BASE_P(REGNO) \
1631 (HARD_REGISTER_NUM_P (REGNO) \
1632 ? ((REGNO) > 0 && (REGNO) <= 31) \
1633 || (REGNO) == ARG_POINTER_REGNUM \
1634 || (REGNO) == FRAME_POINTER_REGNUM \
1635 : (reg_renumber[REGNO] > 0 \
1636 && (reg_renumber[REGNO] <= 31 \
1637 || reg_renumber[REGNO] == ARG_POINTER_REGNUM \
1638 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1640 /* Nonzero if X is a hard reg that can be used as an index
1641 or if it is a pseudo reg in the non-strict case. */
1642 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1643 ((!(STRICT) && !HARD_REGISTER_P (X)) \
1644 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1646 /* Nonzero if X is a hard reg that can be used as a base reg
1647 or if it is a pseudo reg in the non-strict case. */
1648 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1649 ((!(STRICT) && !HARD_REGISTER_P (X)) \
1650 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1653 /* Maximum number of registers that can appear in a valid memory address. */
1655 #define MAX_REGS_PER_ADDRESS 2
1657 /* Recognize any constant value that is a valid address. */
1659 #define CONSTANT_ADDRESS_P(X) \
1660 (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X) \
1661 || CONST_INT_P (X) || GET_CODE (X) == CONST \
1662 || GET_CODE (X) == HIGH)
1664 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1665 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1666 && EASY_VECTOR_15((n) >> 1) \
1667 && ((n) & 1) == 0)
1669 #define EASY_VECTOR_MSB(n,mode) \
1670 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
1671 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1674 #define FIND_BASE_TERM rs6000_find_base_term
1676 /* The register number of the register used to address a table of
1677 static data addresses in memory. In some cases this register is
1678 defined by a processor's "application binary interface" (ABI).
1679 When this macro is defined, RTL is generated for this register
1680 once, as with the stack pointer and frame pointer registers. If
1681 this macro is not defined, it is up to the machine-dependent files
1682 to allocate such a register (if necessary). */
1684 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1685 #define PIC_OFFSET_TABLE_REGNUM \
1686 (TARGET_TOC ? TOC_REGISTER \
1687 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1688 : INVALID_REGNUM)
1690 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1692 /* Define this macro if the register defined by
1693 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1694 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1696 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1698 /* A C expression that is nonzero if X is a legitimate immediate
1699 operand on the target machine when generating position independent
1700 code. You can assume that X satisfies `CONSTANT_P', so you need
1701 not check this. You can also assume FLAG_PIC is true, so you need
1702 not check it either. You need not define this macro if all
1703 constants (including `SYMBOL_REF') can be immediate operands when
1704 generating position independent code. */
1706 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1708 /* Define as C expression which evaluates to nonzero if the tablejump
1709 instruction expects the table to contain offsets from the address of the
1710 table.
1711 Do not define this if the table should contain absolute addresses. */
1712 #define CASE_VECTOR_PC_RELATIVE rs6000_relative_jumptables
1714 /* Specify the machine mode that this machine uses
1715 for the index in the tablejump instruction. */
1716 #define CASE_VECTOR_MODE (rs6000_relative_jumptables ? SImode : Pmode)
1718 /* Define this as 1 if `char' should by default be signed; else as 0. */
1719 #define DEFAULT_SIGNED_CHAR 0
1721 /* An integer expression for the size in bits of the largest integer machine
1722 mode that should actually be used. */
1724 /* Allow pairs of registers to be used, which is the intent of the default. */
1725 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1727 /* Max number of bytes we can move from memory to memory
1728 in one reasonably fast instruction. */
1729 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1730 #define MAX_MOVE_MAX 8
1731 #define MOVE_MAX_PIECES (TARGET_EFFICIENT_UNALIGNED_VSX \
1732 ? 16 : (TARGET_POWERPC64 ? 8 : 4))
1733 #define STORE_MAX_PIECES (TARGET_POWERPC64 ? 8 : 4)
1735 /* Nonzero if access to memory by bytes is no faster than for words.
1736 Also nonzero if doing byte operations (specifically shifts) in registers
1737 is undesirable. */
1738 #define SLOW_BYTE_ACCESS 1
1740 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1741 will either zero-extend or sign-extend. The value of this macro should
1742 be the code that says which one of the two operations is implicitly
1743 done, UNKNOWN if none. */
1744 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1746 /* Define if loading short immediate values into registers sign extends. */
1747 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1749 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1750 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1751 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1753 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1754 zero. The hardware instructions added in Power9 and the sequences using
1755 popcount return 32 or 64. */
1756 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1757 (TARGET_CTZ || TARGET_POPCNTD \
1758 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
1759 : ((VALUE) = -1, 2))
1761 /* Specify the machine mode that pointers have.
1762 After generation of rtl, the compiler makes no further distinction
1763 between pointers and any other objects of this machine mode. */
1764 extern scalar_int_mode rs6000_pmode;
1765 #define Pmode rs6000_pmode
1767 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1768 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1770 /* Mode of a function address in a call instruction (for indexing purposes).
1771 Doesn't matter on RS/6000. */
1772 #define FUNCTION_MODE SImode
1774 /* Define this if addresses of constant functions
1775 shouldn't be put through pseudo regs where they can be cse'd.
1776 Desirable on machines where ordinary constants are expensive
1777 but a CALL with constant address is cheap. */
1778 #define NO_FUNCTION_CSE 1
1780 /* Define this to be nonzero if shift instructions ignore all but the low-order
1781 few bits.
1783 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1784 have been dropped from the PowerPC architecture. */
1785 #define SHIFT_COUNT_TRUNCATED 0
1787 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1788 should be adjusted to reflect any required changes. This macro is used when
1789 there is some systematic length adjustment required that would be difficult
1790 to express in the length attribute.
1792 In the PowerPC, we use this to adjust the length of an instruction if one or
1793 more prefixed instructions are generated, using the attribute
1794 num_prefixed_insns. A prefixed instruction is 8 bytes instead of 4, but the
1795 hardware requires that a prefied instruciton does not cross a 64-byte
1796 boundary. This means the compiler has to assume the length of the first
1797 prefixed instruction is 12 bytes instead of 8 bytes. Since the length is
1798 already set for the non-prefixed instruction, we just need to udpate for the
1799 difference. */
1801 #define ADJUST_INSN_LENGTH(INSN,LENGTH) \
1802 (LENGTH) = rs6000_adjust_insn_length ((INSN), (LENGTH))
1804 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1805 COMPARE, return the mode to be used for the comparison. For
1806 floating-point, CCFPmode should be used. CCUNSmode should be used
1807 for unsigned comparisons. CCEQmode should be used when we are
1808 doing an inequality comparison on the result of a
1809 comparison. CCmode should be used in all other cases. */
1811 #define SELECT_CC_MODE(OP,X,Y) \
1812 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1813 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1814 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1815 ? CCEQmode : CCmode))
1817 /* Can the condition code MODE be safely reversed? This is safe in
1818 all cases on this port, because at present it doesn't use the
1819 trapping FP comparisons (fcmpo). */
1820 #define REVERSIBLE_CC_MODE(MODE) 1
1822 /* Given a condition code and a mode, return the inverse condition. */
1823 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1826 /* Target cpu costs. */
1828 struct processor_costs {
1829 const int mulsi; /* cost of SImode multiplication. */
1830 const int mulsi_const; /* cost of SImode multiplication by constant. */
1831 const int mulsi_const9; /* cost of SImode mult by short constant. */
1832 const int muldi; /* cost of DImode multiplication. */
1833 const int divsi; /* cost of SImode division. */
1834 const int divdi; /* cost of DImode division. */
1835 const int fp; /* cost of simple SFmode and DFmode insns. */
1836 const int dmul; /* cost of DFmode multiplication (and fmadd). */
1837 const int sdiv; /* cost of SFmode division (fdivs). */
1838 const int ddiv; /* cost of DFmode division (fdiv). */
1839 const int cache_line_size; /* cache line size in bytes. */
1840 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
1841 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
1842 const int simultaneous_prefetches; /* number of parallel prefetch
1843 operations. */
1844 const int sfdf_convert; /* cost of SF->DF conversion. */
1847 extern const struct processor_costs *rs6000_cost;
1849 /* Control the assembler format that we output. */
1851 /* A C string constant describing how to begin a comment in the target
1852 assembler language. The compiler assumes that the comment will end at
1853 the end of the line. */
1854 #define ASM_COMMENT_START " #"
1856 /* Flag to say the TOC is initialized */
1857 extern int toc_initialized;
1859 /* Macro to output a special constant pool entry. Go to WIN if we output
1860 it. Otherwise, it is written the usual way.
1862 On the RS/6000, toc entries are handled this way. */
1864 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1865 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1867 output_toc (FILE, X, LABELNO, MODE); \
1868 goto WIN; \
1872 #ifdef HAVE_GAS_WEAK
1873 #define RS6000_WEAK 1
1874 #else
1875 #define RS6000_WEAK 0
1876 #endif
1878 #if RS6000_WEAK
1879 /* Used in lieu of ASM_WEAKEN_LABEL. */
1880 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1881 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
1882 #endif
1884 #if HAVE_GAS_WEAKREF
1885 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
1886 do \
1888 fputs ("\t.weakref\t", (FILE)); \
1889 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1890 fputs (", ", (FILE)); \
1891 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1892 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1893 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1895 fputs ("\n\t.weakref\t.", (FILE)); \
1896 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1897 fputs (", .", (FILE)); \
1898 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1900 fputc ('\n', (FILE)); \
1901 } while (0)
1902 #endif
1904 /* This implements the `alias' attribute. */
1905 #undef ASM_OUTPUT_DEF_FROM_DECLS
1906 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
1907 do \
1909 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
1910 const char *name = IDENTIFIER_POINTER (TARGET); \
1911 if (TREE_CODE (DECL) == FUNCTION_DECL \
1912 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1914 if (TREE_PUBLIC (DECL)) \
1916 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1918 fputs ("\t.globl\t.", FILE); \
1919 RS6000_OUTPUT_BASENAME (FILE, alias); \
1920 putc ('\n', FILE); \
1923 else if (TARGET_XCOFF) \
1925 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1927 fputs ("\t.lglobl\t.", FILE); \
1928 RS6000_OUTPUT_BASENAME (FILE, alias); \
1929 putc ('\n', FILE); \
1930 fputs ("\t.lglobl\t", FILE); \
1931 RS6000_OUTPUT_BASENAME (FILE, alias); \
1932 putc ('\n', FILE); \
1935 fputs ("\t.set\t.", FILE); \
1936 RS6000_OUTPUT_BASENAME (FILE, alias); \
1937 fputs (",.", FILE); \
1938 RS6000_OUTPUT_BASENAME (FILE, name); \
1939 fputc ('\n', FILE); \
1941 ASM_OUTPUT_DEF (FILE, alias, name); \
1943 while (0)
1945 #define TARGET_ASM_FILE_START rs6000_file_start
1947 /* Output to assembler file text saying following lines
1948 may contain character constants, extra white space, comments, etc. */
1950 #define ASM_APP_ON ""
1952 /* Output to assembler file text saying following lines
1953 no longer contain unusual constructs. */
1955 #define ASM_APP_OFF ""
1957 /* How to refer to registers in assembler output.
1958 This sequence is indexed by compiler's hard-register-number (see above). */
1960 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
1962 #define REGISTER_NAMES \
1964 &rs6000_reg_names[ 0][0], /* r0 */ \
1965 &rs6000_reg_names[ 1][0], /* r1 */ \
1966 &rs6000_reg_names[ 2][0], /* r2 */ \
1967 &rs6000_reg_names[ 3][0], /* r3 */ \
1968 &rs6000_reg_names[ 4][0], /* r4 */ \
1969 &rs6000_reg_names[ 5][0], /* r5 */ \
1970 &rs6000_reg_names[ 6][0], /* r6 */ \
1971 &rs6000_reg_names[ 7][0], /* r7 */ \
1972 &rs6000_reg_names[ 8][0], /* r8 */ \
1973 &rs6000_reg_names[ 9][0], /* r9 */ \
1974 &rs6000_reg_names[10][0], /* r10 */ \
1975 &rs6000_reg_names[11][0], /* r11 */ \
1976 &rs6000_reg_names[12][0], /* r12 */ \
1977 &rs6000_reg_names[13][0], /* r13 */ \
1978 &rs6000_reg_names[14][0], /* r14 */ \
1979 &rs6000_reg_names[15][0], /* r15 */ \
1980 &rs6000_reg_names[16][0], /* r16 */ \
1981 &rs6000_reg_names[17][0], /* r17 */ \
1982 &rs6000_reg_names[18][0], /* r18 */ \
1983 &rs6000_reg_names[19][0], /* r19 */ \
1984 &rs6000_reg_names[20][0], /* r20 */ \
1985 &rs6000_reg_names[21][0], /* r21 */ \
1986 &rs6000_reg_names[22][0], /* r22 */ \
1987 &rs6000_reg_names[23][0], /* r23 */ \
1988 &rs6000_reg_names[24][0], /* r24 */ \
1989 &rs6000_reg_names[25][0], /* r25 */ \
1990 &rs6000_reg_names[26][0], /* r26 */ \
1991 &rs6000_reg_names[27][0], /* r27 */ \
1992 &rs6000_reg_names[28][0], /* r28 */ \
1993 &rs6000_reg_names[29][0], /* r29 */ \
1994 &rs6000_reg_names[30][0], /* r30 */ \
1995 &rs6000_reg_names[31][0], /* r31 */ \
1997 &rs6000_reg_names[32][0], /* fr0 */ \
1998 &rs6000_reg_names[33][0], /* fr1 */ \
1999 &rs6000_reg_names[34][0], /* fr2 */ \
2000 &rs6000_reg_names[35][0], /* fr3 */ \
2001 &rs6000_reg_names[36][0], /* fr4 */ \
2002 &rs6000_reg_names[37][0], /* fr5 */ \
2003 &rs6000_reg_names[38][0], /* fr6 */ \
2004 &rs6000_reg_names[39][0], /* fr7 */ \
2005 &rs6000_reg_names[40][0], /* fr8 */ \
2006 &rs6000_reg_names[41][0], /* fr9 */ \
2007 &rs6000_reg_names[42][0], /* fr10 */ \
2008 &rs6000_reg_names[43][0], /* fr11 */ \
2009 &rs6000_reg_names[44][0], /* fr12 */ \
2010 &rs6000_reg_names[45][0], /* fr13 */ \
2011 &rs6000_reg_names[46][0], /* fr14 */ \
2012 &rs6000_reg_names[47][0], /* fr15 */ \
2013 &rs6000_reg_names[48][0], /* fr16 */ \
2014 &rs6000_reg_names[49][0], /* fr17 */ \
2015 &rs6000_reg_names[50][0], /* fr18 */ \
2016 &rs6000_reg_names[51][0], /* fr19 */ \
2017 &rs6000_reg_names[52][0], /* fr20 */ \
2018 &rs6000_reg_names[53][0], /* fr21 */ \
2019 &rs6000_reg_names[54][0], /* fr22 */ \
2020 &rs6000_reg_names[55][0], /* fr23 */ \
2021 &rs6000_reg_names[56][0], /* fr24 */ \
2022 &rs6000_reg_names[57][0], /* fr25 */ \
2023 &rs6000_reg_names[58][0], /* fr26 */ \
2024 &rs6000_reg_names[59][0], /* fr27 */ \
2025 &rs6000_reg_names[60][0], /* fr28 */ \
2026 &rs6000_reg_names[61][0], /* fr29 */ \
2027 &rs6000_reg_names[62][0], /* fr30 */ \
2028 &rs6000_reg_names[63][0], /* fr31 */ \
2030 &rs6000_reg_names[64][0], /* vr0 */ \
2031 &rs6000_reg_names[65][0], /* vr1 */ \
2032 &rs6000_reg_names[66][0], /* vr2 */ \
2033 &rs6000_reg_names[67][0], /* vr3 */ \
2034 &rs6000_reg_names[68][0], /* vr4 */ \
2035 &rs6000_reg_names[69][0], /* vr5 */ \
2036 &rs6000_reg_names[70][0], /* vr6 */ \
2037 &rs6000_reg_names[71][0], /* vr7 */ \
2038 &rs6000_reg_names[72][0], /* vr8 */ \
2039 &rs6000_reg_names[73][0], /* vr9 */ \
2040 &rs6000_reg_names[74][0], /* vr10 */ \
2041 &rs6000_reg_names[75][0], /* vr11 */ \
2042 &rs6000_reg_names[76][0], /* vr12 */ \
2043 &rs6000_reg_names[77][0], /* vr13 */ \
2044 &rs6000_reg_names[78][0], /* vr14 */ \
2045 &rs6000_reg_names[79][0], /* vr15 */ \
2046 &rs6000_reg_names[80][0], /* vr16 */ \
2047 &rs6000_reg_names[81][0], /* vr17 */ \
2048 &rs6000_reg_names[82][0], /* vr18 */ \
2049 &rs6000_reg_names[83][0], /* vr19 */ \
2050 &rs6000_reg_names[84][0], /* vr20 */ \
2051 &rs6000_reg_names[85][0], /* vr21 */ \
2052 &rs6000_reg_names[86][0], /* vr22 */ \
2053 &rs6000_reg_names[87][0], /* vr23 */ \
2054 &rs6000_reg_names[88][0], /* vr24 */ \
2055 &rs6000_reg_names[89][0], /* vr25 */ \
2056 &rs6000_reg_names[90][0], /* vr26 */ \
2057 &rs6000_reg_names[91][0], /* vr27 */ \
2058 &rs6000_reg_names[92][0], /* vr28 */ \
2059 &rs6000_reg_names[93][0], /* vr29 */ \
2060 &rs6000_reg_names[94][0], /* vr30 */ \
2061 &rs6000_reg_names[95][0], /* vr31 */ \
2063 &rs6000_reg_names[96][0], /* lr */ \
2064 &rs6000_reg_names[97][0], /* ctr */ \
2065 &rs6000_reg_names[98][0], /* ca */ \
2066 &rs6000_reg_names[99][0], /* ap */ \
2068 &rs6000_reg_names[100][0], /* cr0 */ \
2069 &rs6000_reg_names[101][0], /* cr1 */ \
2070 &rs6000_reg_names[102][0], /* cr2 */ \
2071 &rs6000_reg_names[103][0], /* cr3 */ \
2072 &rs6000_reg_names[104][0], /* cr4 */ \
2073 &rs6000_reg_names[105][0], /* cr5 */ \
2074 &rs6000_reg_names[106][0], /* cr6 */ \
2075 &rs6000_reg_names[107][0], /* cr7 */ \
2077 &rs6000_reg_names[108][0], /* vrsave */ \
2078 &rs6000_reg_names[109][0], /* vscr */ \
2080 &rs6000_reg_names[110][0] /* sfp */ \
2083 /* Table of additional register names to use in user input. */
2085 #define ADDITIONAL_REGISTER_NAMES \
2086 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2087 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2088 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2089 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2090 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2091 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2092 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2093 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2094 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2095 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2096 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2097 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2098 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2099 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2100 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2101 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2102 {"v0", 64}, {"v1", 65}, {"v2", 66}, {"v3", 67}, \
2103 {"v4", 68}, {"v5", 69}, {"v6", 70}, {"v7", 71}, \
2104 {"v8", 72}, {"v9", 73}, {"v10", 74}, {"v11", 75}, \
2105 {"v12", 76}, {"v13", 77}, {"v14", 78}, {"v15", 79}, \
2106 {"v16", 80}, {"v17", 81}, {"v18", 82}, {"v19", 83}, \
2107 {"v20", 84}, {"v21", 85}, {"v22", 86}, {"v23", 87}, \
2108 {"v24", 88}, {"v25", 89}, {"v26", 90}, {"v27", 91}, \
2109 {"v28", 92}, {"v29", 93}, {"v30", 94}, {"v31", 95}, \
2110 {"vrsave", 108}, {"vscr", 109}, \
2111 /* no additional names for: lr, ctr, ap */ \
2112 {"cr0", 100},{"cr1", 101},{"cr2", 102},{"cr3", 103}, \
2113 {"cr4", 104},{"cr5", 105},{"cr6", 106},{"cr7", 107}, \
2114 {"cc", 100},{"sp", 1}, {"toc", 2}, \
2115 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2116 {"xer", 98}, \
2117 /* VSX registers overlaid on top of FR, Altivec registers */ \
2118 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2119 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2120 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2121 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2122 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2123 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2124 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2125 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2126 {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67}, \
2127 {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71}, \
2128 {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75}, \
2129 {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79}, \
2130 {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83}, \
2131 {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87}, \
2132 {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91}, \
2133 {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95}, \
2136 /* This is how to output an element of a case-vector that is relative. */
2138 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2139 do { char buf[100]; \
2140 fputs ("\t.long ", FILE); \
2141 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2142 assemble_name (FILE, buf); \
2143 putc ('-', FILE); \
2144 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2145 assemble_name (FILE, buf); \
2146 putc ('\n', FILE); \
2147 } while (0)
2149 /* This is how to output an element of a case-vector
2150 that is non-relative. */
2151 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2152 rs6000_output_addr_vec_elt ((FILE), (VALUE))
2154 /* This is how to output an assembler line
2155 that says to advance the location counter
2156 to a multiple of 2**LOG bytes. */
2158 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2159 if ((LOG) != 0) \
2160 fprintf (FILE, "\t.align %d\n", (LOG))
2162 /* How to align the given loop. */
2163 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2165 /* Alignment guaranteed by __builtin_malloc. */
2166 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2167 However, specifying the stronger guarantee currently leads to
2168 a regression in SPEC CPU2006 437.leslie3d. The stronger
2169 guarantee should be implemented here once that's fixed. */
2170 #define MALLOC_ABI_ALIGNMENT (64)
2172 /* Pick up the return address upon entry to a procedure. Used for
2173 dwarf2 unwind information. This also enables the table driven
2174 mechanism. */
2176 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2177 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2179 /* Describe how we implement __builtin_eh_return. */
2180 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2181 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2183 /* Print operand X (an rtx) in assembler syntax to file FILE.
2184 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2185 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2187 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2189 /* Define which CODE values are valid. */
2191 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2193 /* Print a memory address as an operand to reference that memory location. */
2195 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2197 /* For switching between functions with different target attributes. */
2198 #define SWITCHABLE_TARGET 1
2200 /* uncomment for disabling the corresponding default options */
2201 /* #define MACHINE_no_sched_interblock */
2202 /* #define MACHINE_no_sched_speculative */
2203 /* #define MACHINE_no_sched_speculative_load */
2205 /* General flags. */
2206 extern int frame_pointer_needed;
2208 enum rs6000_builtin_type_index
2210 RS6000_BTI_NOT_OPAQUE,
2211 RS6000_BTI_opaque_V4SI,
2212 RS6000_BTI_V16QI, /* __vector signed char */
2213 RS6000_BTI_V1TI,
2214 RS6000_BTI_V2DI,
2215 RS6000_BTI_V2DF,
2216 RS6000_BTI_V4HI,
2217 RS6000_BTI_V4SI,
2218 RS6000_BTI_V4SF,
2219 RS6000_BTI_V8HI,
2220 RS6000_BTI_unsigned_V16QI, /* __vector unsigned char */
2221 RS6000_BTI_unsigned_V1TI,
2222 RS6000_BTI_unsigned_V8HI,
2223 RS6000_BTI_unsigned_V4SI,
2224 RS6000_BTI_unsigned_V2DI,
2225 RS6000_BTI_bool_char, /* __bool char */
2226 RS6000_BTI_bool_short, /* __bool short */
2227 RS6000_BTI_bool_int, /* __bool int */
2228 RS6000_BTI_bool_long_long, /* __bool long long */
2229 RS6000_BTI_pixel, /* __pixel (16 bits arranged as 4
2230 channels of 1, 5, 5, and 5 bits
2231 respectively as packed with the
2232 vpkpx insn. __pixel is only
2233 meaningful as a vector type.
2234 There is no corresponding scalar
2235 __pixel data type.) */
2236 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2237 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2238 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2239 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2240 RS6000_BTI_bool_V1TI, /* __vector __bool 128-bit */
2241 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2242 RS6000_BTI_long, /* long_integer_type_node */
2243 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2244 RS6000_BTI_long_long, /* long_long_integer_type_node */
2245 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2246 RS6000_BTI_INTQI, /* (signed) intQI_type_node */
2247 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2248 RS6000_BTI_INTHI, /* intHI_type_node */
2249 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2250 RS6000_BTI_INTSI, /* intSI_type_node (signed) */
2251 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2252 RS6000_BTI_INTDI, /* intDI_type_node */
2253 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2254 RS6000_BTI_INTTI, /* intTI_type_node */
2255 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2256 RS6000_BTI_float, /* float_type_node */
2257 RS6000_BTI_double, /* double_type_node */
2258 RS6000_BTI_long_double, /* long_double_type_node */
2259 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2260 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2261 RS6000_BTI_void, /* void_type_node */
2262 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2263 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2264 RS6000_BTI_const_str, /* pointer to const char * */
2265 RS6000_BTI_vector_pair, /* unsigned 256-bit types (vector pair). */
2266 RS6000_BTI_vector_quad, /* unsigned 512-bit types (vector quad). */
2267 RS6000_BTI_const_ptr_void, /* const pointer to void */
2268 RS6000_BTI_ptr_V16QI,
2269 RS6000_BTI_ptr_V1TI,
2270 RS6000_BTI_ptr_V2DI,
2271 RS6000_BTI_ptr_V2DF,
2272 RS6000_BTI_ptr_V4SI,
2273 RS6000_BTI_ptr_V4SF,
2274 RS6000_BTI_ptr_V8HI,
2275 RS6000_BTI_ptr_unsigned_V16QI,
2276 RS6000_BTI_ptr_unsigned_V1TI,
2277 RS6000_BTI_ptr_unsigned_V8HI,
2278 RS6000_BTI_ptr_unsigned_V4SI,
2279 RS6000_BTI_ptr_unsigned_V2DI,
2280 RS6000_BTI_ptr_bool_V16QI,
2281 RS6000_BTI_ptr_bool_V8HI,
2282 RS6000_BTI_ptr_bool_V4SI,
2283 RS6000_BTI_ptr_bool_V2DI,
2284 RS6000_BTI_ptr_bool_V1TI,
2285 RS6000_BTI_ptr_pixel_V8HI,
2286 RS6000_BTI_ptr_INTQI,
2287 RS6000_BTI_ptr_UINTQI,
2288 RS6000_BTI_ptr_INTHI,
2289 RS6000_BTI_ptr_UINTHI,
2290 RS6000_BTI_ptr_INTSI,
2291 RS6000_BTI_ptr_UINTSI,
2292 RS6000_BTI_ptr_INTDI,
2293 RS6000_BTI_ptr_UINTDI,
2294 RS6000_BTI_ptr_INTTI,
2295 RS6000_BTI_ptr_UINTTI,
2296 RS6000_BTI_ptr_long_integer,
2297 RS6000_BTI_ptr_long_unsigned,
2298 RS6000_BTI_ptr_float,
2299 RS6000_BTI_ptr_double,
2300 RS6000_BTI_ptr_long_double,
2301 RS6000_BTI_ptr_dfloat64,
2302 RS6000_BTI_ptr_dfloat128,
2303 RS6000_BTI_ptr_vector_pair,
2304 RS6000_BTI_ptr_vector_quad,
2305 RS6000_BTI_ptr_long_long,
2306 RS6000_BTI_ptr_long_long_unsigned,
2307 RS6000_BTI_MAX
2311 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2312 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2313 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2314 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2315 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2316 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2317 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2318 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2319 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2320 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2321 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2322 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2323 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2324 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2325 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2326 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2327 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2328 #define bool_long_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2329 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2330 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2331 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2332 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2333 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2334 #define bool_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V1TI])
2335 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2337 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2338 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2339 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2340 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2341 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2342 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2343 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2344 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2345 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2346 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2347 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2348 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2349 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2350 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2351 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2352 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2353 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2354 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2355 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2356 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2357 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2358 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2359 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2360 #define vector_pair_type_node (rs6000_builtin_types[RS6000_BTI_vector_pair])
2361 #define vector_quad_type_node (rs6000_builtin_types[RS6000_BTI_vector_quad])
2362 #define pcvoid_type_node (rs6000_builtin_types[RS6000_BTI_const_ptr_void])
2363 #define ptr_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V16QI])
2364 #define ptr_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V1TI])
2365 #define ptr_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V2DI])
2366 #define ptr_V2DF_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V2DF])
2367 #define ptr_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V4SI])
2368 #define ptr_V4SF_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V4SF])
2369 #define ptr_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V8HI])
2370 #define ptr_unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V16QI])
2371 #define ptr_unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V1TI])
2372 #define ptr_unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V8HI])
2373 #define ptr_unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V4SI])
2374 #define ptr_unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V2DI])
2375 #define ptr_bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V16QI])
2376 #define ptr_bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V8HI])
2377 #define ptr_bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V4SI])
2378 #define ptr_bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V2DI])
2379 #define ptr_bool_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V1TI])
2380 #define ptr_pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_pixel_V8HI])
2381 #define ptr_intQI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTQI])
2382 #define ptr_uintQI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTQI])
2383 #define ptr_intHI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTHI])
2384 #define ptr_uintHI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTHI])
2385 #define ptr_intSI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTSI])
2386 #define ptr_uintSI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTSI])
2387 #define ptr_intDI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTDI])
2388 #define ptr_uintDI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTDI])
2389 #define ptr_intTI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTTI])
2390 #define ptr_uintTI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTTI])
2391 #define ptr_long_integer_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_integer])
2392 #define ptr_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_unsigned])
2393 #define ptr_float_type_node (rs6000_builtin_types[RS6000_BTI_ptr_float])
2394 #define ptr_double_type_node (rs6000_builtin_types[RS6000_BTI_ptr_double])
2395 #define ptr_long_double_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_double])
2396 #define ptr_dfloat64_type_node (rs6000_builtin_types[RS6000_BTI_ptr_dfloat64])
2397 #define ptr_dfloat128_type_node (rs6000_builtin_types[RS6000_BTI_ptr_dfloat128])
2398 #define ptr_vector_pair_type_node (rs6000_builtin_types[RS6000_BTI_ptr_vector_pair])
2399 #define ptr_vector_quad_type_node (rs6000_builtin_types[RS6000_BTI_ptr_vector_quad])
2400 #define ptr_long_long_integer_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long])
2401 #define ptr_long_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long_unsigned])
2403 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2405 #ifndef USED_FOR_TARGET
2406 extern GTY(()) tree altivec_builtin_mask_for_load;
2407 extern GTY(()) section *toc_section;
2409 /* A C structure for machine-specific, per-function data.
2410 This is added to the cfun structure. */
2411 typedef struct GTY(()) machine_function
2413 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
2414 int ra_needs_full_frame;
2415 /* Flags if __builtin_return_address (0) was used. */
2416 int ra_need_lr;
2417 /* Cache lr_save_p after expansion of builtin_eh_return. */
2418 int lr_save_state;
2419 /* Whether we need to save the TOC to the reserved stack location in the
2420 function prologue. */
2421 bool save_toc_in_prologue;
2422 /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
2423 varargs save area. */
2424 HOST_WIDE_INT varargs_save_offset;
2425 /* Alternative internal arg pointer for -fsplit-stack. */
2426 rtx split_stack_arg_pointer;
2427 bool split_stack_argp_used;
2428 /* Flag if r2 setup is needed with ELFv2 ABI. */
2429 bool r2_setup_needed;
2430 /* The number of components we use for separate shrink-wrapping. */
2431 int n_components;
2432 /* The components already handled by separate shrink-wrapping, which should
2433 not be considered by the prologue and epilogue. */
2434 bool gpr_is_wrapped_separately[32];
2435 bool fpr_is_wrapped_separately[32];
2436 bool lr_is_wrapped_separately;
2437 bool toc_is_wrapped_separately;
2438 bool mma_return_type_error;
2439 /* Indicate global entry is emitted, only useful when the function requires
2440 global entry. It helps to control the patchable area before and after
2441 local entry. */
2442 bool global_entry_emitted;
2443 } machine_function;
2444 #endif
2447 #define TARGET_SUPPORTS_WIDE_INT 1
2449 #if (GCC_VERSION >= 3000)
2450 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2451 #endif
2453 /* Whether a given VALUE is a valid 16 or 34-bit signed integer. */
2454 #define SIGNED_INTEGER_NBIT_P(VALUE, N) \
2455 IN_RANGE ((VALUE), \
2456 -(HOST_WIDE_INT_1 << ((N)-1)), \
2457 (HOST_WIDE_INT_1 << ((N)-1)) - 1)
2459 #define SIGNED_INTEGER_16BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 16)
2460 #define SIGNED_INTEGER_34BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 34)
2462 /* Like SIGNED_INTEGER_16BIT_P and SIGNED_INTEGER_34BIT_P, but with an extra
2463 argument that gives a length to validate a range of addresses, to allow for
2464 splitting insns into several insns, each of which has an offsettable
2465 address. */
2466 #define SIGNED_16BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \
2467 IN_RANGE ((VALUE), \
2468 -(HOST_WIDE_INT_1 << 15), \
2469 (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA))
2471 #define SIGNED_34BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \
2472 IN_RANGE ((VALUE), \
2473 -(HOST_WIDE_INT_1 << 33), \
2474 (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA))
2476 /* Define this if some processing needs to be done before outputting the
2477 assembler code. On the PowerPC, we remember if the current insn is a normal
2478 prefixed insn where we need to emit a 'p' before the insn. */
2479 #define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS) \
2480 do \
2482 if (TARGET_PREFIXED) \
2483 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS); \
2485 while (0)
2487 /* Do anything special before emitting an opcode. We use it to emit a 'p' for
2488 prefixed insns that is set in FINAL_PRESCAN_INSN. */
2489 #define ASM_OUTPUT_OPCODE(STREAM, OPCODE) \
2490 do \
2492 if (TARGET_PREFIXED) \
2493 rs6000_asm_output_opcode (STREAM); \
2495 while (0)
2497 /* Disable generation of scalar modulo instructions due to performance issues
2498 with certain input values. This can be removed in the future when the
2499 issues have been resolved. */
2500 #define RS6000_DISABLE_SCALAR_MODULO 1