doc: Remove i?86-*-linux* installation note from 2003
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blobd460eb0654486330c68e8417f81eb28f8cd935d4
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2024 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
33 /* Definitions for the object file format. These are set at
34 compile-time. */
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_MACHO 4
40 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
41 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
42 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
44 #ifndef TARGET_AIX
45 #define TARGET_AIX 0
46 #endif
48 #ifndef TARGET_AIX_OS
49 #define TARGET_AIX_OS 0
50 #endif
52 /* Turn off TOC support if pc-relative addressing is used. */
53 #define TARGET_TOC (TARGET_HAS_TOC && !TARGET_PCREL)
55 /* On 32-bit systems without a TOC or pc-relative addressing, we need to use
56 ADDIS/ADDI to load up the address of a symbol. */
57 #define TARGET_NO_TOC_OR_PCREL (!TARGET_HAS_TOC && !TARGET_PCREL)
59 /* Control whether function entry points use a "dot" symbol when
60 ABI_AIX. */
61 #define DOT_SYMBOLS 1
63 /* Default string to use for cpu if not specified. */
64 #ifndef TARGET_CPU_DEFAULT
65 #define TARGET_CPU_DEFAULT ((char *)0)
66 #endif
68 /* If configured for PPC405, support PPC405CR Erratum77. */
69 #ifdef CONFIG_PPC405CR
70 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
71 #else
72 #define PPC405_ERRATUM77 0
73 #endif
75 #ifndef SUBTARGET_DRIVER_SELF_SPECS
76 # define SUBTARGET_DRIVER_SELF_SPECS ""
77 #endif
79 /* Only for use in the testsuite: -mdejagnu-cpu=<value> filters out all
80 -mcpu= as well as -mtune= options then simply adds -mcpu=<value>,
81 while -mdejagnu-tune=<value> filters out all -mtune= options then
82 simply adds -mtune=<value>.
83 With older versions of Dejagnu the command line arguments you set in
84 RUNTESTFLAGS override those set in the testcases; with these options,
85 the testcase will always win. */
86 #define DRIVER_SELF_SPECS \
87 "%{mdejagnu-cpu=*: %<mcpu=* %<mtune=* -mcpu=%*}", \
88 "%{mdejagnu-tune=*: %<mtune=* -mtune=%*}", \
89 "%{mdejagnu-*: %<mdejagnu-*}", \
90 SUBTARGET_DRIVER_SELF_SPECS
92 #if CHECKING_P
93 #define ASM_OPT_ANY ""
94 #else
95 #define ASM_OPT_ANY " -many"
96 #endif
98 /* Common ASM definitions used by ASM_SPEC among the various targets for
99 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.cc to
100 provide the default assembler options if the user uses -mcpu=native, so if
101 you make changes here, make them also there. */
102 #define ASM_CPU_SPEC \
103 "%{mcpu=native: %(asm_cpu_native); \
104 mcpu=power11: -mpower11; \
105 mcpu=power10: -mpower10; \
106 mcpu=power9: -mpower9; \
107 mcpu=power8|mcpu=powerpc64le: -mpower8; \
108 mcpu=power7: -mpower7; \
109 mcpu=power6x: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
110 mcpu=power6: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
111 mcpu=power5+: -mpower5; \
112 mcpu=power5: -mpower5; \
113 mcpu=power4: -mpower4; \
114 mcpu=power3: -mppc64; \
115 mcpu=powerpc: -mppc; \
116 mcpu=powerpc64: -mppc64; \
117 mcpu=a2: -ma2; \
118 mcpu=cell: -mcell; \
119 mcpu=rs64: -mppc64; \
120 mcpu=401: -mppc; \
121 mcpu=403: -m403; \
122 mcpu=405: -m405; \
123 mcpu=405fp: -m405; \
124 mcpu=440: -m440; \
125 mcpu=440fp: -m440; \
126 mcpu=464: -m440; \
127 mcpu=464fp: -m440; \
128 mcpu=476: -m476; \
129 mcpu=476fp: -m476; \
130 mcpu=505: -mppc; \
131 mcpu=601: -m601; \
132 mcpu=602: -mppc; \
133 mcpu=603: -mppc; \
134 mcpu=603e: -mppc; \
135 mcpu=ec603e: -mppc; \
136 mcpu=604: -mppc; \
137 mcpu=604e: -mppc; \
138 mcpu=620: -mppc64; \
139 mcpu=630: -mppc64; \
140 mcpu=740: -mppc; \
141 mcpu=750: -mppc; \
142 mcpu=G3: -mppc; \
143 mcpu=7400: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
144 mcpu=7450: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
145 mcpu=G4: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
146 mcpu=801: -mppc; \
147 mcpu=821: -mppc; \
148 mcpu=823: -mppc; \
149 mcpu=860: -mppc; \
150 mcpu=970: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
151 mcpu=G5: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
152 mcpu=8540: -me500; \
153 mcpu=8548: -me500; \
154 mcpu=e300c2: -me300; \
155 mcpu=e300c3: -me300; \
156 mcpu=e500mc: -me500mc; \
157 mcpu=e500mc64: -me500mc64; \
158 mcpu=e5500: -me5500; \
159 mcpu=e6500: -me6500; \
160 mcpu=titan: -mtitan; \
161 !mcpu*: %{mcrypto|mdirect-move|mhtm: -mpower8; \
162 mvsx: -mpower7; \
163 mpowerpc64: -mppc64;: %(asm_default)}; \
164 :%eMissing -mcpu option in ASM_CPU_SPEC?\n} \
165 %{mvsx: -mvsx -maltivec; maltivec: -maltivec}" \
166 ASM_OPT_ANY
168 #define CPP_DEFAULT_SPEC ""
170 #define ASM_DEFAULT_SPEC ""
171 #define ASM_DEFAULT_EXTRA ""
173 /* This macro defines names of additional specifications to put in the specs
174 that can be used in various specifications like CC1_SPEC. Its definition
175 is an initializer with a subgrouping for each command option.
177 Each subgrouping contains a string constant, that defines the
178 specification name, and a string constant that used by the GCC driver
179 program.
181 Do not define this macro if it does not need to do anything. */
183 #define SUBTARGET_EXTRA_SPECS
185 #define EXTRA_SPECS \
186 { "cpp_default", CPP_DEFAULT_SPEC }, \
187 { "asm_cpu", ASM_CPU_SPEC }, \
188 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
189 { "asm_default", ASM_DEFAULT_SPEC ASM_DEFAULT_EXTRA }, \
190 { "cc1_cpu", CC1_CPU_SPEC }, \
191 SUBTARGET_EXTRA_SPECS
193 /* -mcpu=native handling only makes sense with compiler running on
194 an PowerPC chip. If changing this condition, also change
195 the condition in driver-rs6000.cc. */
196 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
197 /* In driver-rs6000.cc. */
198 extern const char *host_detect_local_cpu (int argc, const char **argv);
199 #define EXTRA_SPEC_FUNCTIONS \
200 { "local_cpu_detect", host_detect_local_cpu },
201 #define HAVE_LOCAL_CPU_DETECT
202 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
204 #else
205 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
206 #endif
208 #ifndef CC1_CPU_SPEC
209 #ifdef HAVE_LOCAL_CPU_DETECT
210 #define CC1_CPU_SPEC \
211 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
212 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
213 #else
214 #define CC1_CPU_SPEC ""
215 #endif
216 #endif
218 /* Architecture type. */
220 /* Define TARGET_MFCRF if the target assembler does not support the
221 optional field operand for mfcr. */
223 #ifndef HAVE_AS_MFCRF
224 #undef TARGET_MFCRF
225 #define TARGET_MFCRF 0
226 #endif
228 #ifndef TARGET_SECURE_PLT
229 #define TARGET_SECURE_PLT 0
230 #endif
232 #ifndef TARGET_CMODEL
233 #define TARGET_CMODEL CMODEL_SMALL
234 #endif
236 #define TARGET_32BIT (! TARGET_64BIT)
238 #ifndef HAVE_AS_TLS
239 #define HAVE_AS_TLS 0
240 #endif
242 #ifndef HAVE_AS_PLTSEQ
243 #define HAVE_AS_PLTSEQ 0
244 #endif
246 #ifndef TARGET_PLTSEQ
247 #define TARGET_PLTSEQ 0
248 #endif
250 #ifndef TARGET_LINK_STACK
251 #define TARGET_LINK_STACK 0
252 #endif
254 #ifndef SET_TARGET_LINK_STACK
255 #define SET_TARGET_LINK_STACK(X) do { } while (0)
256 #endif
258 #ifndef TARGET_FLOAT128_ENABLE_TYPE
259 #define TARGET_FLOAT128_ENABLE_TYPE 0
260 #endif
262 /* Return 1 for a symbol ref for a thread-local storage symbol. */
263 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
264 (SYMBOL_REF_P (RTX) && SYMBOL_REF_TLS_MODEL (RTX) != 0)
266 #ifdef IN_LIBGCC2
267 /* For libgcc2 we make sure this is a compile time constant */
268 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
269 #undef TARGET_POWERPC64
270 #define TARGET_POWERPC64 1
271 #else
272 #undef TARGET_POWERPC64
273 #define TARGET_POWERPC64 0
274 #endif
275 #else
276 /* The option machinery will define this. */
277 #endif
279 #define TARGET_DEFAULT (OPTION_MASK_MULTIPLE)
281 /* Define generic processor types based upon current deployment. */
282 #define PROCESSOR_COMMON PROCESSOR_PPC601
283 #define PROCESSOR_POWERPC PROCESSOR_PPC604
284 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
286 /* Define the default processor. This is overridden by other tm.h files. */
287 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
288 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
290 /* Specify the dialect of assembler to use. Only new mnemonics are supported
291 starting with GCC 4.8, i.e. just one dialect, but for backwards
292 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
293 defined. */
294 #define ASSEMBLER_DIALECT 1
296 /* Debug support */
297 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
298 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
299 #define MASK_DEBUG_REG 0x04 /* debug register handling */
300 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
301 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
302 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
303 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
304 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
305 | MASK_DEBUG_ARG \
306 | MASK_DEBUG_REG \
307 | MASK_DEBUG_ADDR \
308 | MASK_DEBUG_COST \
309 | MASK_DEBUG_TARGET \
310 | MASK_DEBUG_BUILTIN)
312 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
313 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
314 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
315 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
316 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
317 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
318 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
320 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
321 long double format that uses a pair of doubles, or IEEE 128-bit floating
322 point. KFmode was added as a way to represent IEEE 128-bit floating point,
323 even if the default for long double is the IBM long double format.
324 Similarly IFmode is the IBM long double format even if the default is IEEE
325 128-bit. Don't allow IFmode if -msoft-float. */
326 #define FLOAT128_IEEE_P(MODE) \
327 ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
328 && ((MODE) == TFmode || (MODE) == TCmode)) \
329 || ((MODE) == KFmode) || ((MODE) == KCmode))
331 #define FLOAT128_IBM_P(MODE) \
332 ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
333 && ((MODE) == TFmode || (MODE) == TCmode)) \
334 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
336 /* Helper macros to say whether a 128-bit floating point type can go in a
337 single vector register, or whether it needs paired scalar values. */
338 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
340 #define FLOAT128_2REG_P(MODE) \
341 (FLOAT128_IBM_P (MODE) \
342 || ((MODE) == TDmode) \
343 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
345 /* Return true for floating point that does not use a vector register. */
346 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
347 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
349 /* Describe the vector unit used for arithmetic operations. */
350 extern enum rs6000_vector rs6000_vector_unit[];
352 #define VECTOR_UNIT_NONE_P(MODE) \
353 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
355 #define VECTOR_UNIT_VSX_P(MODE) \
356 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
358 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
359 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
361 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
362 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
364 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
365 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
366 (int)VECTOR_VSX, \
367 (int)VECTOR_P8_VECTOR))
369 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
370 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
371 compatible, so allow it as well, rather than changing all of the uses of the
372 macro. */
373 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
374 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
375 (int)VECTOR_ALTIVEC, \
376 (int)VECTOR_P8_VECTOR))
378 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
379 same unit as the vector unit we are using, but we may want to migrate to
380 using VSX style loads even for types handled by altivec. */
381 extern enum rs6000_vector rs6000_vector_mem[];
383 #define VECTOR_MEM_NONE_P(MODE) \
384 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
386 #define VECTOR_MEM_VSX_P(MODE) \
387 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
389 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
390 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
392 #define VECTOR_MEM_ALTIVEC_P(MODE) \
393 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
395 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
396 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
397 (int)VECTOR_VSX, \
398 (int)VECTOR_P8_VECTOR))
400 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
401 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
402 (int)VECTOR_ALTIVEC, \
403 (int)VECTOR_P8_VECTOR))
405 /* Return the alignment of a given vector type, which is set based on the
406 vector unit use. VSX for instance can load 32 or 64 bit aligned words
407 without problems, while Altivec requires 128-bit aligned vectors. */
408 extern int rs6000_vector_align[];
410 #define VECTOR_ALIGN(MODE) \
411 ((rs6000_vector_align[(MODE)] != 0) \
412 ? rs6000_vector_align[(MODE)] \
413 : (int)GET_MODE_BITSIZE ((MODE)))
415 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
416 with scalar instructions. */
417 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
419 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
420 with the ISA 3.0 MFVSRLD instructions. */
421 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
423 /* Alignment options for fields in structures for sub-targets following
424 AIX-like ABI.
425 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
426 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
428 Override the macro definitions when compiling libobjc to avoid undefined
429 reference to rs6000_alignment_flags due to library's use of GCC alignment
430 macros which use the macros below. */
432 #ifndef IN_TARGET_LIBS
433 #define MASK_ALIGN_POWER 0x00000000
434 #define MASK_ALIGN_NATURAL 0x00000001
435 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
436 #else
437 #define TARGET_ALIGN_NATURAL 0
438 #endif
440 /* We use values 126..128 to pick the appropriate long double type (IFmode,
441 KFmode, TFmode). */
442 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
443 #define TARGET_IEEEQUAD rs6000_ieeequad
444 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
445 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
447 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
448 Enable 32-bit fcfid's on any of the switches for newer ISA machines. */
449 #define TARGET_FCFID (TARGET_POWERPC64 \
450 || TARGET_PPC_GPOPT /* 970/power4 */ \
451 || TARGET_POPCNTB /* ISA 2.02 */ \
452 || TARGET_CMPB /* ISA 2.05 */ \
453 || TARGET_POPCNTD) /* ISA 2.06 */
455 #define TARGET_FCTIDZ TARGET_FCFID
456 #define TARGET_STFIWX TARGET_PPC_GFXOPT
457 #define TARGET_LFIWAX TARGET_CMPB
458 #define TARGET_LFIWZX TARGET_POPCNTD
459 #define TARGET_FCFIDS TARGET_POPCNTD
460 #define TARGET_FCFIDU TARGET_POPCNTD
461 #define TARGET_FCFIDUS TARGET_POPCNTD
462 #define TARGET_FCTIDUZ TARGET_POPCNTD
463 #define TARGET_FCTIWUZ TARGET_POPCNTD
464 /* Only powerpc64 and powerpc476 support fctid. */
465 #define TARGET_FCTID (TARGET_POWERPC64 || rs6000_cpu == PROCESSOR_PPC476)
466 #define TARGET_CTZ TARGET_MODULO
467 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
468 #define TARGET_MADDLD TARGET_MODULO
470 /* TARGET_DIRECT_MOVE is redundant to TARGET_P8_VECTOR, so alias it to that. */
471 #define TARGET_DIRECT_MOVE TARGET_P8_VECTOR
472 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
473 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
474 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
475 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
476 && TARGET_POWERPC64)
477 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
478 && TARGET_POWERPC64)
480 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
481 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
482 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
484 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
485 in power7, so conditionalize them on p8 features. TImode syncs need quad
486 memory support. */
487 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
488 || TARGET_QUAD_MEMORY_ATOMIC \
489 || TARGET_POWER8)
491 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
493 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
494 to allocate the SDmode stack slot to get the value into the proper location
495 in the register. */
496 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
498 /* ISA 3.0 has new min/max functions that don't need fast math that are being
499 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
500 answers if the arguments are not in the normal range. */
501 #define TARGET_MINMAX (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
502 && (TARGET_P9_MINMAX || !flag_trapping_math))
504 /* In switching from using target_flags to using rs6000_isa_flags, the options
505 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. The MASK_<xxxx>
506 options that have not yet been replaced by their OPTION_MASK_<xxx>
507 equivalents are defined here. */
509 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
511 #ifndef IN_LIBGCC2
512 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
513 #endif
515 #ifdef TARGET_64BIT
516 #define MASK_64BIT OPTION_MASK_64BIT
517 #endif
519 #ifdef TARGET_LITTLE_ENDIAN
520 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
521 #endif
523 /* For power systems, we want to enable Altivec and VSX builtins even if the
524 user did not use -maltivec or -mvsx to allow the builtins to be used inside
525 of #pragma GCC target or the target attribute to change the code level for a
526 given system. */
528 #define TARGET_EXTRA_BUILTINS (TARGET_POWERPC64 \
529 || TARGET_PPC_GPOPT /* 970/power4 */ \
530 || TARGET_POPCNTB /* ISA 2.02 */ \
531 || TARGET_CMPB /* ISA 2.05 */ \
532 || TARGET_POPCNTD /* ISA 2.06 */ \
533 || TARGET_ALTIVEC \
534 || TARGET_VSX \
535 || TARGET_HARD_FLOAT)
537 /* E500 cores only support plain "sync", not lwsync. */
538 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
539 || rs6000_cpu == PROCESSOR_PPC8548)
542 /* Which machine supports the various reciprocal estimate instructions. */
543 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
545 #define TARGET_FRE (TARGET_HARD_FLOAT \
546 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
548 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
549 && TARGET_PPC_GFXOPT)
551 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT \
552 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
554 /* Macro to say whether we can do optimizations where we need to do parts of
555 the calculation in 64-bit GPRs and then is transfered to the vector
556 registers. */
557 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
558 && TARGET_P8_VECTOR \
559 && TARGET_POWERPC64)
561 /* Inlining allows targets to define the meanings of bits in target_info
562 field of ipa_fn_summary by itself, the used bits for rs6000 are listed
563 below. */
564 #define RS6000_FN_TARGET_INFO_HTM 1
566 /* Whether the various reciprocal divide/square root estimate instructions
567 exist, and whether we should automatically generate code for the instruction
568 by default. */
569 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
570 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
571 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
572 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
574 extern unsigned char rs6000_recip_bits[];
576 #define RS6000_RECIP_HAVE_RE_P(MODE) \
577 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
579 #define RS6000_RECIP_AUTO_RE_P(MODE) \
580 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
582 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
583 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
585 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
586 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
588 /* The default CPU for TARGET_OPTION_OVERRIDE. */
589 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
591 /* Target pragma. */
592 #define REGISTER_TARGET_PRAGMAS() do { \
593 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
594 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
595 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
596 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
597 } while (0)
599 /* Target #defines. */
600 #define TARGET_CPU_CPP_BUILTINS() \
601 rs6000_cpu_cpp_builtins (pfile)
603 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
604 we're compiling for. Some configurations may need to override it. */
605 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
606 do \
608 if (BYTES_BIG_ENDIAN) \
610 builtin_define ("__BIG_ENDIAN__"); \
611 builtin_define ("_BIG_ENDIAN"); \
612 builtin_assert ("machine=bigendian"); \
614 else \
616 builtin_define ("__LITTLE_ENDIAN__"); \
617 builtin_define ("_LITTLE_ENDIAN"); \
618 builtin_assert ("machine=littleendian"); \
621 while (0)
623 /* Target machine storage layout. */
625 /* Define this if most significant bit is lowest numbered
626 in instructions that operate on numbered bit-fields. */
627 /* That is true on RS/6000. */
628 #define BITS_BIG_ENDIAN 1
630 /* Define this if most significant byte of a word is the lowest numbered. */
631 /* That is true on RS/6000. */
632 #define BYTES_BIG_ENDIAN 1
634 /* Define this if most significant word of a multiword number is lowest
635 numbered.
637 For RS/6000 we can decide arbitrarily since there are no machine
638 instructions for them. Might as well be consistent with bits and bytes. */
639 #define WORDS_BIG_ENDIAN 1
641 /* This says that for the IBM long double the larger magnitude double
642 comes first. It's really a two element double array, and arrays
643 don't index differently between little- and big-endian. */
644 #define LONG_DOUBLE_LARGE_FIRST 1
646 #define MAX_BITS_PER_WORD 64
648 /* Width of a word, in units (bytes). */
649 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
650 #ifdef IN_LIBGCC2
651 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
652 #else
653 #define MIN_UNITS_PER_WORD 4
654 #endif
655 #define UNITS_PER_FP_WORD 8
656 #define UNITS_PER_ALTIVEC_WORD 16
657 #define UNITS_PER_VSX_WORD 16
659 /* Type used for ptrdiff_t, as a string used in a declaration. */
660 #define PTRDIFF_TYPE "int"
662 /* Type used for size_t, as a string used in a declaration. */
663 #define SIZE_TYPE "long unsigned int"
665 /* Type used for wchar_t, as a string used in a declaration. */
666 #define WCHAR_TYPE "short unsigned int"
668 /* Width of wchar_t in bits. */
669 #define WCHAR_TYPE_SIZE 16
671 /* A C expression for the size in bits of the type `short' on the
672 target machine. If you don't define this, the default is half a
673 word. (If this would be less than one storage unit, it is
674 rounded up to one unit.) */
675 #define SHORT_TYPE_SIZE 16
677 /* A C expression for the size in bits of the type `int' on the
678 target machine. If you don't define this, the default is one
679 word. */
680 #define INT_TYPE_SIZE 32
682 /* A C expression for the size in bits of the type `long' on the
683 target machine. If you don't define this, the default is one
684 word. */
685 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
687 /* A C expression for the size in bits of the type `long long' on the
688 target machine. If you don't define this, the default is two
689 words. */
690 #define LONG_LONG_TYPE_SIZE 64
692 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.cc. */
693 #define WIDEST_HARDWARE_FP_SIZE 64
695 /* Width in bits of a pointer.
696 See also the macro `Pmode' defined below. */
697 extern unsigned rs6000_pointer_size;
698 #define POINTER_SIZE rs6000_pointer_size
700 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
701 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
703 /* Boundary (in *bits*) on which stack pointer should be aligned. */
704 #define STACK_BOUNDARY \
705 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
706 ? 64 : 128)
708 /* Allocation boundary (in *bits*) for the code of a function. */
709 #define FUNCTION_BOUNDARY 32
711 /* No data type is required to be aligned rounder than this. Warning, if
712 BIGGEST_ALIGNMENT is changed, then this may be an ABI break. An example
713 of where this can break an ABI is in GLIBC's struct _Unwind_Exception. */
714 #define BIGGEST_ALIGNMENT 128
716 /* Alignment of field after `int : 0' in a structure. */
717 #define EMPTY_FIELD_BOUNDARY 32
719 /* Every structure's size must be a multiple of this. */
720 #define STRUCTURE_SIZE_BOUNDARY 8
722 /* A bit-field declared as `int' forces `int' alignment for the struct. */
723 #define PCC_BITFIELD_TYPE_MATTERS 1
725 enum data_align { align_abi, align_opt, align_both };
727 /* A C expression to compute the alignment for a variables in the
728 local store. TYPE is the data type, and ALIGN is the alignment
729 that the object would ordinarily have. */
730 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
731 rs6000_data_alignment (TYPE, ALIGN, align_both)
733 /* Make arrays of chars word-aligned for the same reasons. */
734 #define DATA_ALIGNMENT(TYPE, ALIGN) \
735 rs6000_data_alignment (TYPE, ALIGN, align_opt)
737 /* Align vectors to 128 bits. */
738 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
739 rs6000_data_alignment (TYPE, ALIGN, align_abi)
741 /* Nonzero if move instructions will actually fail to work
742 when given unaligned data. */
743 #define STRICT_ALIGNMENT 0
745 /* Standard register usage. */
747 /* Number of actual hardware registers.
748 The hardware registers are assigned numbers for the compiler
749 from 0 to just below FIRST_PSEUDO_REGISTER.
750 All registers that the compiler knows about must be given numbers,
751 even those that are not normally considered general registers.
753 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
754 a count register, a link register, and 8 condition register fields,
755 which we view here as separate registers. AltiVec adds 32 vector
756 registers and a VRsave register.
758 In addition, the difference between the frame and argument pointers is
759 a function of the number of registers saved, so we need to have a
760 register for AP that will later be eliminated in favor of SP or FP.
761 This is a normal register, but it is fixed.
763 We also create a pseudo register for float/int conversions, that will
764 really represent the memory location used. It is represented here as
765 a register, in order to work around problems in allocating stack storage
766 in inline functions.
768 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
769 pointer, which is eventually eliminated in favor of SP or FP. */
771 #define FIRST_PSEUDO_REGISTER 111
773 /* Use standard DWARF numbering for DWARF debugging information. */
774 #define DEBUGGER_REGNO(REGNO) rs6000_debugger_regno ((REGNO), 0)
776 /* Use gcc hard register numbering for eh_frame. */
777 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
779 /* Map register numbers held in the call frame info that gcc has
780 collected using DWARF_FRAME_REGNUM to those that should be output in
781 .debug_frame and .eh_frame. */
782 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
783 rs6000_debugger_regno ((REGNO), (FOR_EH) ? 2 : 1)
785 /* 1 for registers that have pervasive standard uses
786 and are not available for the register allocator.
788 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
789 as a local register; for all other OS's r2 is the TOC pointer.
791 On System V implementations, r13 is fixed and not available for use. */
793 #define FIXED_REGISTERS \
794 {/* GPRs */ \
795 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
796 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
797 /* FPRs */ \
798 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
799 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
800 /* VRs */ \
801 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
803 /* lr ctr ca ap */ \
804 0, 0, 1, 1, \
805 /* cr0..cr7 */ \
806 0, 0, 0, 0, 0, 0, 0, 0, \
807 /* vrsave vscr sfp */ \
808 1, 1, 1 \
811 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
812 the entire set of `FIXED_REGISTERS' be included.
813 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
814 This macro is optional. If not specified, it defaults to the value
815 of `CALL_USED_REGISTERS'. */
817 #define CALL_REALLY_USED_REGISTERS \
818 {/* GPRs */ \
819 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
820 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
821 /* FPRs */ \
822 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
823 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
824 /* VRs */ \
825 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
826 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
827 /* lr ctr ca ap */ \
828 1, 1, 1, 1, \
829 /* cr0..cr7 */ \
830 1, 1, 0, 0, 0, 1, 1, 1, \
831 /* vrsave vscr sfp */ \
832 0, 0, 0 \
835 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
837 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
838 #define FIRST_SAVED_FP_REGNO (14+32)
839 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
841 /* List the order in which to allocate registers. Each register must be
842 listed once, even those in FIXED_REGISTERS.
844 We allocate in the following order:
845 fp0 (not saved or used for anything)
846 fp13 - fp2 (not saved; incoming fp arg registers)
847 fp1 (not saved; return value)
848 fp31 - fp14 (saved; order given to save least number)
849 cr7, cr5 (not saved or special)
850 cr6 (not saved, but used for vector operations)
851 cr1 (not saved, but used for FP operations)
852 cr0 (not saved, but used for arithmetic operations)
853 cr4, cr3, cr2 (saved)
854 r9 (not saved; best for TImode)
855 r10, r8-r4 (not saved; highest first for less conflict with params)
856 r3 (not saved; return value register)
857 r11 (not saved; later alloc to help shrink-wrap)
858 r0 (not saved; cannot be base reg)
859 r31 - r13 (saved; order given to save least number)
860 r12 (not saved; if used for DImode or DFmode would use r13)
861 ctr (not saved; when we have the choice ctr is better)
862 lr (saved)
863 r1, r2, ap, ca (fixed)
864 v0 - v1 (not saved or used for anything)
865 v13 - v3 (not saved; incoming vector arg registers)
866 v2 (not saved; incoming vector arg reg; return value)
867 v19 - v14 (not saved or used for anything)
868 v31 - v20 (saved; order given to save least number)
869 vrsave, vscr (fixed)
870 sfp (fixed)
873 #if FIXED_R2 == 1
874 #define MAYBE_R2_AVAILABLE
875 #define MAYBE_R2_FIXED 2,
876 #else
877 #define MAYBE_R2_AVAILABLE 2,
878 #define MAYBE_R2_FIXED
879 #endif
881 #if FIXED_R13 == 1
882 #define EARLY_R12 12,
883 #define LATE_R12
884 #else
885 #define EARLY_R12
886 #define LATE_R12 12,
887 #endif
889 #define REG_ALLOC_ORDER \
890 {32, \
891 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
892 /* not use fr14 which is a saved register. */ \
893 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
894 33, \
895 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
896 50, 49, 48, 47, 46, \
897 100, 107, 105, 106, 101, 104, 103, 102, \
898 MAYBE_R2_AVAILABLE \
899 9, 10, 8, 7, 6, 5, 4, \
900 3, EARLY_R12 11, 0, \
901 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
902 18, 17, 16, 15, 14, 13, LATE_R12 \
903 97, 96, \
904 1, MAYBE_R2_FIXED 99, 98, \
905 /* AltiVec registers. */ \
906 64, 65, \
907 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, \
908 66, \
909 83, 82, 81, 80, 79, 78, \
910 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, \
911 108, 109, \
912 110 \
915 /* True if register is floating-point. */
916 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
918 /* True if register is a condition register. */
919 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
921 /* True if register is a condition register, but not cr0. */
922 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
924 /* True if register is an integer register. */
925 #define INT_REGNO_P(N) \
926 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
928 /* True if register is the CA register. */
929 #define CA_REGNO_P(N) ((N) == CA_REGNO)
931 /* True if register is an AltiVec register. */
932 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
934 /* True if register is a VSX register. */
935 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
937 /* Alternate name for any vector register supporting floating point, no matter
938 which instruction set(s) are available. */
939 #define VFLOAT_REGNO_P(N) \
940 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
942 /* Alternate name for any vector register supporting integer, no matter which
943 instruction set(s) are available. */
944 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
946 /* Alternate name for any vector register supporting logical operations, no
947 matter which instruction set(s) are available. Allow GPRs as well as the
948 vector registers. */
949 #define VLOGICAL_REGNO_P(N) \
950 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
951 || (TARGET_VSX && FP_REGNO_P (N))) \
953 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
954 enough space to account for vectors in FP regs. However, TFmode/TDmode
955 should not use VSX instructions to do a caller save. */
956 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
957 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
958 ? (MODE) \
959 : TARGET_VSX \
960 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
961 && FP_REGNO_P (REGNO) \
962 ? V2DFmode \
963 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
964 ? DFmode \
965 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
966 ? DImode \
967 : choose_hard_reg_mode ((REGNO), (NREGS), NULL))
969 #define VSX_VECTOR_MODE(MODE) \
970 ((MODE) == V4SFmode \
971 || (MODE) == V2DFmode) \
973 /* Modes that are not vectors, but require vector alignment. Treat these like
974 vectors in terms of loads and stores. */
975 #define VECTOR_ALIGNMENT_P(MODE) \
976 (FLOAT128_VECTOR_P (MODE) || (MODE) == OOmode || (MODE) == XOmode)
978 #define ALTIVEC_VECTOR_MODE(MODE) \
979 ((MODE) == V16QImode \
980 || (MODE) == V8HImode \
981 || (MODE) == V4SFmode \
982 || (MODE) == V4SImode \
983 || VECTOR_ALIGNMENT_P (MODE))
985 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
986 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
987 || (MODE) == V2DImode || (MODE) == V1TImode)
989 #define TI_OR_PTI_MODE(mode) ((mode) == TImode || (mode) == PTImode)
991 /* Post-reload, we can't use any new AltiVec registers, as we already
992 emitted the vrsave mask. */
994 #define HARD_REGNO_RENAME_OK(SRC, DST) \
995 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
997 /* Specify the cost of a branch insn; roughly the number of extra insns that
998 should be added to avoid a branch.
1000 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1001 unscheduled conditional branch. */
1003 #define BRANCH_COST(speed_p, predictable_p) 3
1005 /* Override BRANCH_COST heuristic which empirically produces worse
1006 performance for removing short circuiting from the logical ops. */
1008 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1010 /* Specify the registers used for certain standard purposes.
1011 The values of these macros are register numbers. */
1013 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1014 /* #define PC_REGNUM */
1016 /* Register to use for pushing function arguments. */
1017 #define STACK_POINTER_REGNUM 1
1019 /* Base register for access to local variables of the function. */
1020 #define HARD_FRAME_POINTER_REGNUM 31
1022 /* Base register for access to local variables of the function. */
1023 #define FRAME_POINTER_REGNUM 110
1025 /* Base register for access to arguments of the function. */
1026 #define ARG_POINTER_REGNUM 99
1028 /* Place to put static chain when calling a function that requires it. */
1029 #define STATIC_CHAIN_REGNUM 11
1031 /* Base register for access to thread local storage variables. */
1032 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1035 /* Define the classes of registers for register constraints in the
1036 machine description. Also define ranges of constants.
1038 One of the classes must always be named ALL_REGS and include all hard regs.
1039 If there is more than one class, another class must be named NO_REGS
1040 and contain no registers.
1042 The name GENERAL_REGS must be the name of a class (or an alias for
1043 another name such as ALL_REGS). This is the class of registers
1044 that is allowed by "g" or "r" in a register constraint.
1045 Also, registers outside this class are allocated only when
1046 instructions express preferences for them.
1048 The classes must be numbered in nondecreasing order; that is,
1049 a larger-numbered class must never be contained completely
1050 in a smaller-numbered class.
1052 For any two classes, it is very desirable that there be another
1053 class that represents their union. */
1055 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1056 condition registers, plus three special registers, CTR, and the link
1057 register. AltiVec adds a vector register class. VSX registers overlap the
1058 FPR registers and the Altivec registers.
1060 However, r0 is special in that it cannot be used as a base register.
1061 So make a class for registers valid as base registers.
1063 Also, cr0 is the only condition code register that can be used in
1064 arithmetic insns, so make a separate class for it. */
1066 enum reg_class
1068 NO_REGS,
1069 BASE_REGS,
1070 GENERAL_REGS,
1071 FLOAT_REGS,
1072 ALTIVEC_REGS,
1073 VSX_REGS,
1074 VRSAVE_REGS,
1075 VSCR_REGS,
1076 GEN_OR_FLOAT_REGS,
1077 GEN_OR_VSX_REGS,
1078 LINK_REGS,
1079 CTR_REGS,
1080 LINK_OR_CTR_REGS,
1081 SPECIAL_REGS,
1082 SPEC_OR_GEN_REGS,
1083 CR0_REGS,
1084 CR_REGS,
1085 NON_FLOAT_REGS,
1086 CA_REGS,
1087 ALL_REGS,
1088 LIM_REG_CLASSES
1091 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1093 /* Give names of register classes as strings for dump file. */
1095 #define REG_CLASS_NAMES \
1097 "NO_REGS", \
1098 "BASE_REGS", \
1099 "GENERAL_REGS", \
1100 "FLOAT_REGS", \
1101 "ALTIVEC_REGS", \
1102 "VSX_REGS", \
1103 "VRSAVE_REGS", \
1104 "VSCR_REGS", \
1105 "GEN_OR_FLOAT_REGS", \
1106 "GEN_OR_VSX_REGS", \
1107 "LINK_REGS", \
1108 "CTR_REGS", \
1109 "LINK_OR_CTR_REGS", \
1110 "SPECIAL_REGS", \
1111 "SPEC_OR_GEN_REGS", \
1112 "CR0_REGS", \
1113 "CR_REGS", \
1114 "NON_FLOAT_REGS", \
1115 "CA_REGS", \
1116 "ALL_REGS" \
1119 /* Define which registers fit in which classes.
1120 This is an initializer for a vector of HARD_REG_SET
1121 of length N_REG_CLASSES. */
1123 #define REG_CLASS_CONTENTS \
1125 /* NO_REGS. */ \
1126 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1127 /* BASE_REGS. */ \
1128 { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 }, \
1129 /* GENERAL_REGS. */ \
1130 { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 }, \
1131 /* FLOAT_REGS. */ \
1132 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
1133 /* ALTIVEC_REGS. */ \
1134 { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 }, \
1135 /* VSX_REGS. */ \
1136 { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1137 /* VRSAVE_REGS. */ \
1138 { 0x00000000, 0x00000000, 0x00000000, 0x00001000 }, \
1139 /* VSCR_REGS. */ \
1140 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
1141 /* GEN_OR_FLOAT_REGS. */ \
1142 { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 }, \
1143 /* GEN_OR_VSX_REGS. */ \
1144 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 }, \
1145 /* LINK_REGS. */ \
1146 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, \
1147 /* CTR_REGS. */ \
1148 { 0x00000000, 0x00000000, 0x00000000, 0x00000002 }, \
1149 /* LINK_OR_CTR_REGS. */ \
1150 { 0x00000000, 0x00000000, 0x00000000, 0x00000003 }, \
1151 /* SPECIAL_REGS. */ \
1152 { 0x00000000, 0x00000000, 0x00000000, 0x00001003 }, \
1153 /* SPEC_OR_GEN_REGS. */ \
1154 { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b }, \
1155 /* CR0_REGS. */ \
1156 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, \
1157 /* CR_REGS. */ \
1158 { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 }, \
1159 /* NON_FLOAT_REGS. */ \
1160 { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb }, \
1161 /* CA_REGS. */ \
1162 { 0x00000000, 0x00000000, 0x00000000, 0x00000004 }, \
1163 /* ALL_REGS. */ \
1164 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff } \
1167 /* The same information, inverted:
1168 Return the class number of the smallest class containing
1169 reg number REGNO. This could be a conditional expression
1170 or could index an array. */
1172 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1174 #define REGNO_REG_CLASS(REGNO) \
1175 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1176 rs6000_regno_regclass[(REGNO)])
1178 /* Register classes for various constraints that are based on the target
1179 switches. */
1180 enum r6000_reg_class_enum {
1181 RS6000_CONSTRAINT_d, /* FPR registers */
1182 RS6000_CONSTRAINT_v, /* Altivec registers */
1183 RS6000_CONSTRAINT_wa, /* Any VSX register */
1184 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1185 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1186 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1187 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
1188 RS6000_CONSTRAINT_MAX
1191 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1193 /* The class value for index registers, and the one for base regs. */
1194 #define INDEX_REG_CLASS GENERAL_REGS
1195 #define BASE_REG_CLASS BASE_REGS
1197 /* Return whether a given register class can hold VSX objects. */
1198 #define VSX_REG_CLASS_P(CLASS) \
1199 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1201 /* Return whether a given register class targets general purpose registers. */
1202 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1204 /* Given an rtx X being reloaded into a reg required to be
1205 in class CLASS, return the class of reg to actually use.
1206 In general this is just CLASS; but on some machines
1207 in some cases it is preferable to use a more restrictive class.
1209 On the RS/6000, we have to return NO_REGS when we want to reload a
1210 floating-point CONST_DOUBLE to force it to be copied to memory.
1212 We also don't want to reload integer values into floating-point
1213 registers if we can at all help it. In fact, this can
1214 cause reload to die, if it tries to generate a reload of CTR
1215 into a FP register and discovers it doesn't have the memory location
1216 required.
1218 ??? Would it be a good idea to have reload do the converse, that is
1219 try to reload floating modes into FP registers if possible?
1222 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1223 rs6000_preferred_reload_class_ptr (X, CLASS)
1225 /* Return the register class of a scratch register needed to copy IN into
1226 or out of a register in CLASS in MODE. If it can be done directly,
1227 NO_REGS is returned. */
1229 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1230 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1232 /* Return the maximum number of consecutive registers
1233 needed to represent mode MODE in a register of class CLASS.
1235 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1236 a single reg is enough for two words, unless we have VSX, where the FP
1237 registers can hold 128 bits. */
1238 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1240 /* Stack layout; function entry, exit and calling. */
1242 /* Define this if pushing a word on the stack
1243 makes the stack pointer a smaller address. */
1244 #define STACK_GROWS_DOWNWARD 1
1246 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1247 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1249 /* Define this to nonzero if the nominal address of the stack frame
1250 is at the high-address end of the local variables;
1251 that is, each additional local variable allocated
1252 goes at a more negative offset in the frame.
1254 On the RS/6000, we grow upwards, from the area after the outgoing
1255 arguments. */
1256 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1257 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1259 /* Size of the fixed area on the stack */
1260 #define RS6000_SAVE_AREA \
1261 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1262 << (TARGET_64BIT ? 1 : 0))
1264 /* Stack offset for toc save slot. */
1265 #define RS6000_TOC_SAVE_SLOT \
1266 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1268 /* Align an address */
1269 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1271 /* Offset within stack frame to start allocating local variables at.
1272 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1273 first local allocated. Otherwise, it is the offset to the BEGINNING
1274 of the first local allocated.
1276 On the RS/6000, the frame pointer is the same as the stack pointer,
1277 except for dynamic allocations. So we start after the fixed area and
1278 outgoing parameter area.
1280 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1281 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1282 sizes of the fixed area and the parameter area must be a multiple of
1283 STACK_BOUNDARY. */
1285 #define RS6000_STARTING_FRAME_OFFSET \
1286 (cfun->calls_alloca \
1287 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1288 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1289 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1290 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1291 + RS6000_SAVE_AREA))
1293 /* Offset from the stack pointer register to an item dynamically
1294 allocated on the stack, e.g., by `alloca'.
1296 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1297 length of the outgoing arguments. The default is correct for most
1298 machines. See `function.cc' for details.
1300 This value must be a multiple of STACK_BOUNDARY (hard coded in
1301 `emit-rtl.cc'). */
1302 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1303 RS6000_ALIGN (crtl->outgoing_args_size.to_constant () \
1304 + STACK_POINTER_OFFSET, \
1305 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1307 /* If we generate an insn to push BYTES bytes,
1308 this says how many the stack pointer really advances by.
1309 On RS/6000, don't define this because there are no push insns. */
1310 /* #define PUSH_ROUNDING(BYTES) */
1312 /* Offset of first parameter from the argument pointer register value.
1313 On the RS/6000, we define the argument pointer to the start of the fixed
1314 area. */
1315 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1317 /* Offset from the argument pointer register value to the top of
1318 stack. This is different from FIRST_PARM_OFFSET because of the
1319 register save area. */
1320 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1322 /* Define this if stack space is still allocated for a parameter passed
1323 in a register. The value is the number of bytes allocated to this
1324 area. */
1325 #define REG_PARM_STACK_SPACE(FNDECL) \
1326 rs6000_reg_parm_stack_space ((FNDECL), false)
1328 /* Define this macro if space guaranteed when compiling a function body
1329 is different to space required when making a call, a situation that
1330 can arise with K&R style function definitions. */
1331 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1332 rs6000_reg_parm_stack_space ((FNDECL), true)
1334 /* Define this if the above stack space is to be considered part of the
1335 space allocated by the caller. */
1336 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1338 /* This is the difference between the logical top of stack and the actual sp.
1340 For the RS/6000, sp points past the fixed area. */
1341 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1343 /* Define this if the maximum size of all the outgoing args is to be
1344 accumulated and pushed during the prologue. The amount can be
1345 found in the variable crtl->outgoing_args_size. */
1346 #define ACCUMULATE_OUTGOING_ARGS 1
1348 /* Define how to find the value returned by a library function
1349 assuming the value has mode MODE. */
1351 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1353 /* DRAFT_V4_STRUCT_RET defaults off. */
1354 #define DRAFT_V4_STRUCT_RET 0
1356 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1357 #define DEFAULT_PCC_STRUCT_RETURN 0
1359 /* Mode of stack savearea.
1360 FUNCTION is VOIDmode because calling convention maintains SP.
1361 BLOCK needs Pmode for SP.
1362 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1363 #define STACK_SAVEAREA_MODE(LEVEL) \
1364 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1365 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1367 /* Minimum and maximum general purpose registers used to hold arguments. */
1368 #define GP_ARG_MIN_REG 3
1369 #define GP_ARG_MAX_REG 10
1370 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1372 /* Minimum and maximum floating point registers used to hold arguments. */
1373 #define FP_ARG_MIN_REG 33
1374 #define FP_ARG_AIX_MAX_REG 45
1375 #define FP_ARG_V4_MAX_REG 40
1376 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1377 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1378 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1380 /* Minimum and maximum AltiVec registers used to hold arguments. */
1381 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1382 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1383 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1385 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1386 #define AGGR_ARG_NUM_REG 8
1388 /* Return registers */
1389 #define GP_ARG_RETURN GP_ARG_MIN_REG
1390 #define FP_ARG_RETURN FP_ARG_MIN_REG
1391 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1392 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1393 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1394 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1395 ? (ALTIVEC_ARG_RETURN \
1396 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1397 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1399 /* Flags for the call/call_value rtl operations set up by function_arg */
1400 #define CALL_NORMAL 0x00000000 /* no special processing */
1401 /* Bits in 0x00000001 are unused. */
1402 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1403 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1404 #define CALL_LONG 0x00000008 /* always call indirect */
1405 #define CALL_LIBCALL 0x00000010 /* libcall */
1407 /* Identify PLT sequence for rs6000_pltseq_template. */
1408 enum rs6000_pltseq_enum {
1409 RS6000_PLTSEQ_TOCSAVE,
1410 RS6000_PLTSEQ_PLT16_HA,
1411 RS6000_PLTSEQ_PLT16_LO,
1412 RS6000_PLTSEQ_MTCTR,
1413 RS6000_PLTSEQ_PLT_PCREL34
1416 #define IS_V4_FP_ARGS(OP) \
1417 ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0)
1419 /* We don't have prologue and epilogue functions to save/restore
1420 everything for most ABIs. */
1421 #define WORLD_SAVE_P(INFO) 0
1423 /* 1 if N is a possible register number for a function value
1424 as seen by the caller.
1426 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1427 #define FUNCTION_VALUE_REGNO_P(N) \
1428 ((N) == GP_ARG_RETURN \
1429 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1430 && TARGET_HARD_FLOAT) \
1431 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1432 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1434 /* 1 if N is a possible register number for function argument passing.
1435 On RS/6000, these are r3-r10 and fp1-fp13.
1436 On AltiVec, v2 - v13 are used for passing vectors. */
1437 #define FUNCTION_ARG_REGNO_P(N) \
1438 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1439 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1440 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1441 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1442 && TARGET_HARD_FLOAT))
1444 /* Define a data type for recording info about an argument list
1445 during the scan of that argument list. This data type should
1446 hold all necessary information about the function itself
1447 and about the args processed so far, enough to enable macros
1448 such as FUNCTION_ARG to determine where the next arg should go.
1450 On the RS/6000, this is a structure. The first element is the number of
1451 total argument words, the second is used to store the next
1452 floating-point register number, and the third says how many more args we
1453 have prototype types for.
1455 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1456 the next available GP register, `fregno' is the next available FP
1457 register, and `words' is the number of words used on the stack.
1459 The varargs/stdarg support requires that this structure's size
1460 be a multiple of sizeof(int). */
1462 typedef struct rs6000_args
1464 int words; /* # words used for passing GP registers */
1465 int fregno; /* next available FP register */
1466 int vregno; /* next available AltiVec register */
1467 int nargs_prototype; /* # args left in the current prototype */
1468 int prototype; /* Whether a prototype was defined */
1469 int stdarg; /* Whether function is a stdarg function. */
1470 int call_cookie; /* Do special things for this call */
1471 int sysv_gregno; /* next available GP register */
1472 int intoffset; /* running offset in struct (darwin64) */
1473 int use_stack; /* any part of struct on stack (darwin64) */
1474 int floats_in_gpr; /* count of SFmode floats taking up
1475 GPR space (darwin64) */
1476 int named; /* false for varargs params */
1477 int escapes; /* if function visible outside tu */
1478 int libcall; /* If this is a compiler generated call. */
1479 } CUMULATIVE_ARGS;
1481 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1482 for a call to a function whose data type is FNTYPE.
1483 For a library call, FNTYPE is 0. */
1485 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1486 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1487 N_NAMED_ARGS, FNDECL, VOIDmode)
1489 /* Similar, but when scanning the definition of a procedure. We always
1490 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1492 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1493 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1494 1000, current_function_decl, VOIDmode)
1496 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1498 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1499 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1500 0, NULL_TREE, MODE)
1502 #define PAD_VARARGS_DOWN \
1503 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1505 /* Output assembler code to FILE to increment profiler label # LABELNO
1506 for profiling a function entry. */
1508 #define FUNCTION_PROFILER(FILE, LABELNO) \
1509 output_function_profiler ((FILE), (LABELNO));
1511 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1512 the stack pointer does not matter. No definition is equivalent to
1513 always zero.
1515 On the RS/6000, this is nonzero because we can restore the stack from
1516 its backpointer, which we maintain. */
1517 #define EXIT_IGNORE_STACK 1
1519 /* Define this macro as a C expression that is nonzero for registers
1520 that are used by the epilogue or the return' pattern. The stack
1521 and frame pointer registers are already be assumed to be used as
1522 needed. */
1524 #define EPILOGUE_USES(REGNO) \
1525 ((reload_completed && (REGNO) == LR_REGNO) \
1526 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1527 || (crtl->calls_eh_return \
1528 && TARGET_AIX \
1529 && (REGNO) == 2))
1532 /* Length in units of the trampoline for entering a nested function. */
1534 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1536 /* Definitions for __builtin_return_address and __builtin_frame_address.
1537 __builtin_return_address (0) should give link register (LR_REGNO), enable
1538 this. */
1539 /* This should be uncommented, so that the link register is used, but
1540 currently this would result in unmatched insns and spilling fixed
1541 registers so we'll leave it for another day. When these problems are
1542 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1543 (mrs) */
1544 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1546 /* Number of bytes into the frame return addresses can be found. See
1547 rs6000_stack_info in rs6000.cc for more information on how the different
1548 abi's store the return address. */
1549 #define RETURN_ADDRESS_OFFSET \
1550 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1552 /* The current return address is in the link register. The return address
1553 of anything farther back is accessed normally at an offset of 8 from the
1554 frame pointer. */
1555 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1556 (rs6000_return_addr (COUNT, FRAME))
1559 /* Definitions for register eliminations.
1561 We have two registers that can be eliminated on the RS/6000. First, the
1562 frame pointer register can often be eliminated in favor of the stack
1563 pointer register. Secondly, the argument pointer register can always be
1564 eliminated; it is replaced with either the stack or frame pointer.
1566 In addition, we use the elimination mechanism to see if r30 is needed
1567 Initially we assume that it isn't. If it is, we spill it. This is done
1568 by making it an eliminable register. We replace it with itself so that
1569 if it isn't needed, then existing uses won't be modified. */
1571 /* This is an array of structures. Each structure initializes one pair
1572 of eliminable registers. The "from" register number is given first,
1573 followed by "to". Eliminations of the same "from" register are listed
1574 in order of preference. */
1575 #define ELIMINABLE_REGS \
1576 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1577 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1578 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1579 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1580 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1581 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1583 /* Define the offset between two registers, one to be eliminated, and the other
1584 its replacement, at the start of a routine. */
1585 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1586 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1588 /* Addressing modes, and classification of registers for them. */
1590 #define HAVE_PRE_DECREMENT 1
1591 #define HAVE_PRE_INCREMENT 1
1592 #define HAVE_PRE_MODIFY_DISP 1
1593 #define HAVE_PRE_MODIFY_REG 1
1595 /* Macros to check register numbers against specific register classes. */
1597 /* These assume that REGNO is a hard or pseudo reg number.
1598 They give nonzero only if REGNO is a hard reg of the suitable class
1599 or a pseudo reg currently allocated to a suitable hard reg.
1600 Since they use reg_renumber, they are safe only once reg_renumber
1601 has been allocated, which happens in reginfo.cc during register
1602 allocation. */
1604 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1605 (HARD_REGISTER_NUM_P (REGNO) \
1606 ? (REGNO) <= 31 \
1607 || (REGNO) == ARG_POINTER_REGNUM \
1608 || (REGNO) == FRAME_POINTER_REGNUM \
1609 : (reg_renumber[REGNO] >= 0 \
1610 && (reg_renumber[REGNO] <= 31 \
1611 || reg_renumber[REGNO] == ARG_POINTER_REGNUM \
1612 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1614 #define REGNO_OK_FOR_BASE_P(REGNO) \
1615 (HARD_REGISTER_NUM_P (REGNO) \
1616 ? ((REGNO) > 0 && (REGNO) <= 31) \
1617 || (REGNO) == ARG_POINTER_REGNUM \
1618 || (REGNO) == FRAME_POINTER_REGNUM \
1619 : (reg_renumber[REGNO] > 0 \
1620 && (reg_renumber[REGNO] <= 31 \
1621 || reg_renumber[REGNO] == ARG_POINTER_REGNUM \
1622 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1624 /* Nonzero if X is a hard reg that can be used as an index
1625 or if it is a pseudo reg in the non-strict case. */
1626 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1627 ((!(STRICT) && !HARD_REGISTER_P (X)) \
1628 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1630 /* Nonzero if X is a hard reg that can be used as a base reg
1631 or if it is a pseudo reg in the non-strict case. */
1632 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1633 ((!(STRICT) && !HARD_REGISTER_P (X)) \
1634 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1637 /* Maximum number of registers that can appear in a valid memory address. */
1639 #define MAX_REGS_PER_ADDRESS 2
1641 /* Recognize any constant value that is a valid address. */
1643 #define CONSTANT_ADDRESS_P(X) \
1644 (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X) \
1645 || CONST_INT_P (X) || GET_CODE (X) == CONST \
1646 || GET_CODE (X) == HIGH)
1648 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1649 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1650 && EASY_VECTOR_15((n) >> 1) \
1651 && ((n) & 1) == 0)
1653 #define EASY_VECTOR_MSB(n,mode) \
1654 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
1655 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1658 #define FIND_BASE_TERM rs6000_find_base_term
1660 /* The register number of the register used to address a table of
1661 static data addresses in memory. In some cases this register is
1662 defined by a processor's "application binary interface" (ABI).
1663 When this macro is defined, RTL is generated for this register
1664 once, as with the stack pointer and frame pointer registers. If
1665 this macro is not defined, it is up to the machine-dependent files
1666 to allocate such a register (if necessary). */
1668 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1669 #define PIC_OFFSET_TABLE_REGNUM \
1670 (TARGET_TOC ? TOC_REGISTER \
1671 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1672 : INVALID_REGNUM)
1674 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1676 /* Define this macro if the register defined by
1677 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1678 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1680 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1682 /* A C expression that is nonzero if X is a legitimate immediate
1683 operand on the target machine when generating position independent
1684 code. You can assume that X satisfies `CONSTANT_P', so you need
1685 not check this. You can also assume FLAG_PIC is true, so you need
1686 not check it either. You need not define this macro if all
1687 constants (including `SYMBOL_REF') can be immediate operands when
1688 generating position independent code. */
1690 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1692 /* Define as C expression which evaluates to nonzero if the tablejump
1693 instruction expects the table to contain offsets from the address of the
1694 table.
1695 Do not define this if the table should contain absolute addresses. */
1696 #define CASE_VECTOR_PC_RELATIVE rs6000_relative_jumptables
1698 /* Specify the machine mode that this machine uses
1699 for the index in the tablejump instruction. */
1700 #define CASE_VECTOR_MODE (rs6000_relative_jumptables ? SImode : Pmode)
1702 /* Define this as 1 if `char' should by default be signed; else as 0. */
1703 #define DEFAULT_SIGNED_CHAR 0
1705 /* An integer expression for the size in bits of the largest integer machine
1706 mode that should actually be used. */
1708 /* Allow pairs of registers to be used, which is the intent of the default. */
1709 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1711 /* Max number of bytes we can move from memory to memory
1712 in one reasonably fast instruction. */
1713 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1714 #define MAX_MOVE_MAX 8
1715 #define MOVE_MAX_PIECES (TARGET_EFFICIENT_UNALIGNED_VSX \
1716 ? 16 : (TARGET_POWERPC64 ? 8 : 4))
1717 #define STORE_MAX_PIECES (TARGET_POWERPC64 ? 8 : 4)
1719 /* Nonzero if access to memory by bytes is no faster than for words.
1720 Also nonzero if doing byte operations (specifically shifts) in registers
1721 is undesirable. */
1722 #define SLOW_BYTE_ACCESS 1
1724 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1725 will either zero-extend or sign-extend. The value of this macro should
1726 be the code that says which one of the two operations is implicitly
1727 done, UNKNOWN if none. */
1728 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1730 /* Define if loading short immediate values into registers sign extends. */
1731 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1733 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1734 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1735 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1737 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1738 zero. The hardware instructions added in Power9 and the sequences using
1739 popcount return 32 or 64. */
1740 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1741 (TARGET_CTZ || TARGET_POPCNTD \
1742 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
1743 : ((VALUE) = -1, 2))
1745 /* Specify the machine mode that pointers have.
1746 After generation of rtl, the compiler makes no further distinction
1747 between pointers and any other objects of this machine mode. */
1748 extern scalar_int_mode rs6000_pmode;
1749 #define Pmode rs6000_pmode
1751 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1752 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1754 /* Mode of a function address in a call instruction (for indexing purposes).
1755 Doesn't matter on RS/6000. */
1756 #define FUNCTION_MODE SImode
1758 /* Define this if addresses of constant functions
1759 shouldn't be put through pseudo regs where they can be cse'd.
1760 Desirable on machines where ordinary constants are expensive
1761 but a CALL with constant address is cheap. */
1762 #define NO_FUNCTION_CSE 1
1764 /* Define this to be nonzero if shift instructions ignore all but the low-order
1765 few bits.
1767 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1768 have been dropped from the PowerPC architecture. */
1769 #define SHIFT_COUNT_TRUNCATED 0
1771 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1772 should be adjusted to reflect any required changes. This macro is used when
1773 there is some systematic length adjustment required that would be difficult
1774 to express in the length attribute.
1776 In the PowerPC, we use this to adjust the length of an instruction if one or
1777 more prefixed instructions are generated, using the attribute
1778 num_prefixed_insns. A prefixed instruction is 8 bytes instead of 4, but the
1779 hardware requires that a prefied instruciton does not cross a 64-byte
1780 boundary. This means the compiler has to assume the length of the first
1781 prefixed instruction is 12 bytes instead of 8 bytes. Since the length is
1782 already set for the non-prefixed instruction, we just need to udpate for the
1783 difference. */
1785 #define ADJUST_INSN_LENGTH(INSN,LENGTH) \
1786 (LENGTH) = rs6000_adjust_insn_length ((INSN), (LENGTH))
1788 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1789 COMPARE, return the mode to be used for the comparison. For
1790 floating-point, CCFPmode should be used. CCUNSmode should be used
1791 for unsigned comparisons. CCEQmode should be used when we are
1792 doing an inequality comparison on the result of a
1793 comparison. CCmode should be used in all other cases. */
1795 #define SELECT_CC_MODE(OP,X,Y) \
1796 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1797 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1798 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1799 ? CCEQmode : CCmode))
1801 /* Can the condition code MODE be safely reversed? This is safe in
1802 all cases on this port, because at present it doesn't use the
1803 trapping FP comparisons (fcmpo). */
1804 #define REVERSIBLE_CC_MODE(MODE) 1
1806 /* Given a condition code and a mode, return the inverse condition. */
1807 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1810 /* Target cpu costs. */
1812 struct processor_costs {
1813 const int mulsi; /* cost of SImode multiplication. */
1814 const int mulsi_const; /* cost of SImode multiplication by constant. */
1815 const int mulsi_const9; /* cost of SImode mult by short constant. */
1816 const int muldi; /* cost of DImode multiplication. */
1817 const int divsi; /* cost of SImode division. */
1818 const int divdi; /* cost of DImode division. */
1819 const int fp; /* cost of simple SFmode and DFmode insns. */
1820 const int dmul; /* cost of DFmode multiplication (and fmadd). */
1821 const int sdiv; /* cost of SFmode division (fdivs). */
1822 const int ddiv; /* cost of DFmode division (fdiv). */
1823 const int cache_line_size; /* cache line size in bytes. */
1824 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
1825 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
1826 const int simultaneous_prefetches; /* number of parallel prefetch
1827 operations. */
1828 const int sfdf_convert; /* cost of SF->DF conversion. */
1831 extern const struct processor_costs *rs6000_cost;
1833 /* Control the assembler format that we output. */
1835 /* A C string constant describing how to begin a comment in the target
1836 assembler language. The compiler assumes that the comment will end at
1837 the end of the line. */
1838 #define ASM_COMMENT_START " #"
1840 /* Flag to say the TOC is initialized */
1841 extern int toc_initialized;
1843 /* Macro to output a special constant pool entry. Go to WIN if we output
1844 it. Otherwise, it is written the usual way.
1846 On the RS/6000, toc entries are handled this way. */
1848 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1849 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1851 output_toc (FILE, X, LABELNO, MODE); \
1852 goto WIN; \
1856 #ifdef HAVE_GAS_WEAK
1857 #define RS6000_WEAK 1
1858 #else
1859 #define RS6000_WEAK 0
1860 #endif
1862 #if RS6000_WEAK
1863 /* Used in lieu of ASM_WEAKEN_LABEL. */
1864 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1865 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
1866 #endif
1868 #if HAVE_GAS_WEAKREF
1869 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
1870 do \
1872 fputs ("\t.weakref\t", (FILE)); \
1873 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1874 fputs (", ", (FILE)); \
1875 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1876 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1877 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1879 fputs ("\n\t.weakref\t.", (FILE)); \
1880 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1881 fputs (", .", (FILE)); \
1882 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1884 fputc ('\n', (FILE)); \
1885 } while (0)
1886 #endif
1888 /* This implements the `alias' attribute. */
1889 #undef ASM_OUTPUT_DEF_FROM_DECLS
1890 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
1891 do \
1893 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
1894 const char *name = IDENTIFIER_POINTER (TARGET); \
1895 if (TREE_CODE (DECL) == FUNCTION_DECL \
1896 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1898 if (TREE_PUBLIC (DECL)) \
1900 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1902 fputs ("\t.globl\t.", FILE); \
1903 RS6000_OUTPUT_BASENAME (FILE, alias); \
1904 putc ('\n', FILE); \
1907 else if (TARGET_XCOFF) \
1909 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1911 fputs ("\t.lglobl\t.", FILE); \
1912 RS6000_OUTPUT_BASENAME (FILE, alias); \
1913 putc ('\n', FILE); \
1914 fputs ("\t.lglobl\t", FILE); \
1915 RS6000_OUTPUT_BASENAME (FILE, alias); \
1916 putc ('\n', FILE); \
1919 fputs ("\t.set\t.", FILE); \
1920 RS6000_OUTPUT_BASENAME (FILE, alias); \
1921 fputs (",.", FILE); \
1922 RS6000_OUTPUT_BASENAME (FILE, name); \
1923 fputc ('\n', FILE); \
1925 ASM_OUTPUT_DEF (FILE, alias, name); \
1927 while (0)
1929 #define TARGET_ASM_FILE_START rs6000_file_start
1931 /* Output to assembler file text saying following lines
1932 may contain character constants, extra white space, comments, etc. */
1934 #define ASM_APP_ON ""
1936 /* Output to assembler file text saying following lines
1937 no longer contain unusual constructs. */
1939 #define ASM_APP_OFF ""
1941 /* How to refer to registers in assembler output.
1942 This sequence is indexed by compiler's hard-register-number (see above). */
1944 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
1946 #define REGISTER_NAMES \
1948 &rs6000_reg_names[ 0][0], /* r0 */ \
1949 &rs6000_reg_names[ 1][0], /* r1 */ \
1950 &rs6000_reg_names[ 2][0], /* r2 */ \
1951 &rs6000_reg_names[ 3][0], /* r3 */ \
1952 &rs6000_reg_names[ 4][0], /* r4 */ \
1953 &rs6000_reg_names[ 5][0], /* r5 */ \
1954 &rs6000_reg_names[ 6][0], /* r6 */ \
1955 &rs6000_reg_names[ 7][0], /* r7 */ \
1956 &rs6000_reg_names[ 8][0], /* r8 */ \
1957 &rs6000_reg_names[ 9][0], /* r9 */ \
1958 &rs6000_reg_names[10][0], /* r10 */ \
1959 &rs6000_reg_names[11][0], /* r11 */ \
1960 &rs6000_reg_names[12][0], /* r12 */ \
1961 &rs6000_reg_names[13][0], /* r13 */ \
1962 &rs6000_reg_names[14][0], /* r14 */ \
1963 &rs6000_reg_names[15][0], /* r15 */ \
1964 &rs6000_reg_names[16][0], /* r16 */ \
1965 &rs6000_reg_names[17][0], /* r17 */ \
1966 &rs6000_reg_names[18][0], /* r18 */ \
1967 &rs6000_reg_names[19][0], /* r19 */ \
1968 &rs6000_reg_names[20][0], /* r20 */ \
1969 &rs6000_reg_names[21][0], /* r21 */ \
1970 &rs6000_reg_names[22][0], /* r22 */ \
1971 &rs6000_reg_names[23][0], /* r23 */ \
1972 &rs6000_reg_names[24][0], /* r24 */ \
1973 &rs6000_reg_names[25][0], /* r25 */ \
1974 &rs6000_reg_names[26][0], /* r26 */ \
1975 &rs6000_reg_names[27][0], /* r27 */ \
1976 &rs6000_reg_names[28][0], /* r28 */ \
1977 &rs6000_reg_names[29][0], /* r29 */ \
1978 &rs6000_reg_names[30][0], /* r30 */ \
1979 &rs6000_reg_names[31][0], /* r31 */ \
1981 &rs6000_reg_names[32][0], /* fr0 */ \
1982 &rs6000_reg_names[33][0], /* fr1 */ \
1983 &rs6000_reg_names[34][0], /* fr2 */ \
1984 &rs6000_reg_names[35][0], /* fr3 */ \
1985 &rs6000_reg_names[36][0], /* fr4 */ \
1986 &rs6000_reg_names[37][0], /* fr5 */ \
1987 &rs6000_reg_names[38][0], /* fr6 */ \
1988 &rs6000_reg_names[39][0], /* fr7 */ \
1989 &rs6000_reg_names[40][0], /* fr8 */ \
1990 &rs6000_reg_names[41][0], /* fr9 */ \
1991 &rs6000_reg_names[42][0], /* fr10 */ \
1992 &rs6000_reg_names[43][0], /* fr11 */ \
1993 &rs6000_reg_names[44][0], /* fr12 */ \
1994 &rs6000_reg_names[45][0], /* fr13 */ \
1995 &rs6000_reg_names[46][0], /* fr14 */ \
1996 &rs6000_reg_names[47][0], /* fr15 */ \
1997 &rs6000_reg_names[48][0], /* fr16 */ \
1998 &rs6000_reg_names[49][0], /* fr17 */ \
1999 &rs6000_reg_names[50][0], /* fr18 */ \
2000 &rs6000_reg_names[51][0], /* fr19 */ \
2001 &rs6000_reg_names[52][0], /* fr20 */ \
2002 &rs6000_reg_names[53][0], /* fr21 */ \
2003 &rs6000_reg_names[54][0], /* fr22 */ \
2004 &rs6000_reg_names[55][0], /* fr23 */ \
2005 &rs6000_reg_names[56][0], /* fr24 */ \
2006 &rs6000_reg_names[57][0], /* fr25 */ \
2007 &rs6000_reg_names[58][0], /* fr26 */ \
2008 &rs6000_reg_names[59][0], /* fr27 */ \
2009 &rs6000_reg_names[60][0], /* fr28 */ \
2010 &rs6000_reg_names[61][0], /* fr29 */ \
2011 &rs6000_reg_names[62][0], /* fr30 */ \
2012 &rs6000_reg_names[63][0], /* fr31 */ \
2014 &rs6000_reg_names[64][0], /* vr0 */ \
2015 &rs6000_reg_names[65][0], /* vr1 */ \
2016 &rs6000_reg_names[66][0], /* vr2 */ \
2017 &rs6000_reg_names[67][0], /* vr3 */ \
2018 &rs6000_reg_names[68][0], /* vr4 */ \
2019 &rs6000_reg_names[69][0], /* vr5 */ \
2020 &rs6000_reg_names[70][0], /* vr6 */ \
2021 &rs6000_reg_names[71][0], /* vr7 */ \
2022 &rs6000_reg_names[72][0], /* vr8 */ \
2023 &rs6000_reg_names[73][0], /* vr9 */ \
2024 &rs6000_reg_names[74][0], /* vr10 */ \
2025 &rs6000_reg_names[75][0], /* vr11 */ \
2026 &rs6000_reg_names[76][0], /* vr12 */ \
2027 &rs6000_reg_names[77][0], /* vr13 */ \
2028 &rs6000_reg_names[78][0], /* vr14 */ \
2029 &rs6000_reg_names[79][0], /* vr15 */ \
2030 &rs6000_reg_names[80][0], /* vr16 */ \
2031 &rs6000_reg_names[81][0], /* vr17 */ \
2032 &rs6000_reg_names[82][0], /* vr18 */ \
2033 &rs6000_reg_names[83][0], /* vr19 */ \
2034 &rs6000_reg_names[84][0], /* vr20 */ \
2035 &rs6000_reg_names[85][0], /* vr21 */ \
2036 &rs6000_reg_names[86][0], /* vr22 */ \
2037 &rs6000_reg_names[87][0], /* vr23 */ \
2038 &rs6000_reg_names[88][0], /* vr24 */ \
2039 &rs6000_reg_names[89][0], /* vr25 */ \
2040 &rs6000_reg_names[90][0], /* vr26 */ \
2041 &rs6000_reg_names[91][0], /* vr27 */ \
2042 &rs6000_reg_names[92][0], /* vr28 */ \
2043 &rs6000_reg_names[93][0], /* vr29 */ \
2044 &rs6000_reg_names[94][0], /* vr30 */ \
2045 &rs6000_reg_names[95][0], /* vr31 */ \
2047 &rs6000_reg_names[96][0], /* lr */ \
2048 &rs6000_reg_names[97][0], /* ctr */ \
2049 &rs6000_reg_names[98][0], /* ca */ \
2050 &rs6000_reg_names[99][0], /* ap */ \
2052 &rs6000_reg_names[100][0], /* cr0 */ \
2053 &rs6000_reg_names[101][0], /* cr1 */ \
2054 &rs6000_reg_names[102][0], /* cr2 */ \
2055 &rs6000_reg_names[103][0], /* cr3 */ \
2056 &rs6000_reg_names[104][0], /* cr4 */ \
2057 &rs6000_reg_names[105][0], /* cr5 */ \
2058 &rs6000_reg_names[106][0], /* cr6 */ \
2059 &rs6000_reg_names[107][0], /* cr7 */ \
2061 &rs6000_reg_names[108][0], /* vrsave */ \
2062 &rs6000_reg_names[109][0], /* vscr */ \
2064 &rs6000_reg_names[110][0] /* sfp */ \
2067 /* Table of additional register names to use in user input. */
2069 #define ADDITIONAL_REGISTER_NAMES \
2070 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2071 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2072 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2073 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2074 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2075 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2076 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2077 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2078 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2079 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2080 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2081 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2082 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2083 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2084 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2085 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2086 {"v0", 64}, {"v1", 65}, {"v2", 66}, {"v3", 67}, \
2087 {"v4", 68}, {"v5", 69}, {"v6", 70}, {"v7", 71}, \
2088 {"v8", 72}, {"v9", 73}, {"v10", 74}, {"v11", 75}, \
2089 {"v12", 76}, {"v13", 77}, {"v14", 78}, {"v15", 79}, \
2090 {"v16", 80}, {"v17", 81}, {"v18", 82}, {"v19", 83}, \
2091 {"v20", 84}, {"v21", 85}, {"v22", 86}, {"v23", 87}, \
2092 {"v24", 88}, {"v25", 89}, {"v26", 90}, {"v27", 91}, \
2093 {"v28", 92}, {"v29", 93}, {"v30", 94}, {"v31", 95}, \
2094 {"vrsave", 108}, {"vscr", 109}, \
2095 /* no additional names for: lr, ctr, ap */ \
2096 {"cr0", 100},{"cr1", 101},{"cr2", 102},{"cr3", 103}, \
2097 {"cr4", 104},{"cr5", 105},{"cr6", 106},{"cr7", 107}, \
2098 {"cc", 100},{"sp", 1}, {"toc", 2}, \
2099 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2100 {"xer", 98}, \
2101 /* VSX registers overlaid on top of FR, Altivec registers */ \
2102 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2103 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2104 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2105 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2106 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2107 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2108 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2109 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2110 {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67}, \
2111 {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71}, \
2112 {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75}, \
2113 {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79}, \
2114 {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83}, \
2115 {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87}, \
2116 {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91}, \
2117 {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95}, \
2120 /* This is how to output an element of a case-vector that is relative. */
2122 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2123 do { char buf[100]; \
2124 fputs ("\t.long ", FILE); \
2125 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2126 assemble_name (FILE, buf); \
2127 putc ('-', FILE); \
2128 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2129 assemble_name (FILE, buf); \
2130 putc ('\n', FILE); \
2131 } while (0)
2133 /* This is how to output an element of a case-vector
2134 that is non-relative. */
2135 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2136 rs6000_output_addr_vec_elt ((FILE), (VALUE))
2138 /* This is how to output an assembler line
2139 that says to advance the location counter
2140 to a multiple of 2**LOG bytes. */
2142 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2143 if ((LOG) != 0) \
2144 fprintf (FILE, "\t.align %d\n", (LOG))
2146 /* How to align the given loop. */
2147 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2149 /* Alignment guaranteed by __builtin_malloc. */
2150 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2151 However, specifying the stronger guarantee currently leads to
2152 a regression in SPEC CPU2006 437.leslie3d. The stronger
2153 guarantee should be implemented here once that's fixed. */
2154 #define MALLOC_ABI_ALIGNMENT (64)
2156 /* Pick up the return address upon entry to a procedure. Used for
2157 dwarf2 unwind information. This also enables the table driven
2158 mechanism. */
2160 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2161 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2163 /* Describe how we implement __builtin_eh_return. */
2164 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2165 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2167 /* Print operand X (an rtx) in assembler syntax to file FILE.
2168 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2169 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2171 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2173 /* Define which CODE values are valid. */
2175 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2177 /* Print a memory address as an operand to reference that memory location. */
2179 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2181 /* For switching between functions with different target attributes. */
2182 #define SWITCHABLE_TARGET 1
2184 /* uncomment for disabling the corresponding default options */
2185 /* #define MACHINE_no_sched_interblock */
2186 /* #define MACHINE_no_sched_speculative */
2187 /* #define MACHINE_no_sched_speculative_load */
2189 /* General flags. */
2190 extern int frame_pointer_needed;
2192 enum rs6000_builtin_type_index
2194 RS6000_BTI_NOT_OPAQUE,
2195 RS6000_BTI_opaque_V4SI,
2196 RS6000_BTI_V16QI, /* __vector signed char */
2197 RS6000_BTI_V1TI,
2198 RS6000_BTI_V2DI,
2199 RS6000_BTI_V2DF,
2200 RS6000_BTI_V4HI,
2201 RS6000_BTI_V4SI,
2202 RS6000_BTI_V4SF,
2203 RS6000_BTI_V8HI,
2204 RS6000_BTI_unsigned_V16QI, /* __vector unsigned char */
2205 RS6000_BTI_unsigned_V1TI,
2206 RS6000_BTI_unsigned_V8HI,
2207 RS6000_BTI_unsigned_V4SI,
2208 RS6000_BTI_unsigned_V2DI,
2209 RS6000_BTI_bool_char, /* __bool char */
2210 RS6000_BTI_bool_short, /* __bool short */
2211 RS6000_BTI_bool_int, /* __bool int */
2212 RS6000_BTI_bool_long_long, /* __bool long long */
2213 RS6000_BTI_pixel, /* __pixel (16 bits arranged as 4
2214 channels of 1, 5, 5, and 5 bits
2215 respectively as packed with the
2216 vpkpx insn. __pixel is only
2217 meaningful as a vector type.
2218 There is no corresponding scalar
2219 __pixel data type.) */
2220 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2221 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2222 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2223 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2224 RS6000_BTI_bool_V1TI, /* __vector __bool 128-bit */
2225 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2226 RS6000_BTI_long, /* long_integer_type_node */
2227 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2228 RS6000_BTI_long_long, /* long_long_integer_type_node */
2229 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2230 RS6000_BTI_INTQI, /* (signed) intQI_type_node */
2231 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2232 RS6000_BTI_INTHI, /* intHI_type_node */
2233 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2234 RS6000_BTI_INTSI, /* intSI_type_node (signed) */
2235 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2236 RS6000_BTI_INTDI, /* intDI_type_node */
2237 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2238 RS6000_BTI_INTTI, /* intTI_type_node */
2239 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2240 RS6000_BTI_float, /* float_type_node */
2241 RS6000_BTI_double, /* double_type_node */
2242 RS6000_BTI_long_double, /* long_double_type_node */
2243 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2244 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2245 RS6000_BTI_void, /* void_type_node */
2246 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2247 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2248 RS6000_BTI_const_str, /* pointer to const char * */
2249 RS6000_BTI_vector_pair, /* unsigned 256-bit types (vector pair). */
2250 RS6000_BTI_vector_quad, /* unsigned 512-bit types (vector quad). */
2251 RS6000_BTI_const_ptr_void, /* const pointer to void */
2252 RS6000_BTI_ptr_V16QI,
2253 RS6000_BTI_ptr_V1TI,
2254 RS6000_BTI_ptr_V2DI,
2255 RS6000_BTI_ptr_V2DF,
2256 RS6000_BTI_ptr_V4SI,
2257 RS6000_BTI_ptr_V4SF,
2258 RS6000_BTI_ptr_V8HI,
2259 RS6000_BTI_ptr_unsigned_V16QI,
2260 RS6000_BTI_ptr_unsigned_V1TI,
2261 RS6000_BTI_ptr_unsigned_V8HI,
2262 RS6000_BTI_ptr_unsigned_V4SI,
2263 RS6000_BTI_ptr_unsigned_V2DI,
2264 RS6000_BTI_ptr_bool_V16QI,
2265 RS6000_BTI_ptr_bool_V8HI,
2266 RS6000_BTI_ptr_bool_V4SI,
2267 RS6000_BTI_ptr_bool_V2DI,
2268 RS6000_BTI_ptr_bool_V1TI,
2269 RS6000_BTI_ptr_pixel_V8HI,
2270 RS6000_BTI_ptr_INTQI,
2271 RS6000_BTI_ptr_UINTQI,
2272 RS6000_BTI_ptr_INTHI,
2273 RS6000_BTI_ptr_UINTHI,
2274 RS6000_BTI_ptr_INTSI,
2275 RS6000_BTI_ptr_UINTSI,
2276 RS6000_BTI_ptr_INTDI,
2277 RS6000_BTI_ptr_UINTDI,
2278 RS6000_BTI_ptr_INTTI,
2279 RS6000_BTI_ptr_UINTTI,
2280 RS6000_BTI_ptr_long_integer,
2281 RS6000_BTI_ptr_long_unsigned,
2282 RS6000_BTI_ptr_float,
2283 RS6000_BTI_ptr_double,
2284 RS6000_BTI_ptr_long_double,
2285 RS6000_BTI_ptr_dfloat64,
2286 RS6000_BTI_ptr_dfloat128,
2287 RS6000_BTI_ptr_vector_pair,
2288 RS6000_BTI_ptr_vector_quad,
2289 RS6000_BTI_ptr_long_long,
2290 RS6000_BTI_ptr_long_long_unsigned,
2291 RS6000_BTI_MAX
2295 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2296 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2297 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2298 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2299 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2300 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2301 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2302 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2303 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2304 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2305 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2306 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2307 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2308 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2309 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2310 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2311 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2312 #define bool_long_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2313 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2314 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2315 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2316 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2317 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2318 #define bool_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V1TI])
2319 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2321 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2322 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2323 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2324 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2325 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2326 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2327 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2328 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2329 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2330 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2331 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2332 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2333 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2334 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2335 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2336 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2337 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2338 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2339 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2340 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2341 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2342 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2343 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2344 #define vector_pair_type_node (rs6000_builtin_types[RS6000_BTI_vector_pair])
2345 #define vector_quad_type_node (rs6000_builtin_types[RS6000_BTI_vector_quad])
2346 #define pcvoid_type_node (rs6000_builtin_types[RS6000_BTI_const_ptr_void])
2347 #define ptr_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V16QI])
2348 #define ptr_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V1TI])
2349 #define ptr_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V2DI])
2350 #define ptr_V2DF_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V2DF])
2351 #define ptr_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V4SI])
2352 #define ptr_V4SF_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V4SF])
2353 #define ptr_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V8HI])
2354 #define ptr_unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V16QI])
2355 #define ptr_unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V1TI])
2356 #define ptr_unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V8HI])
2357 #define ptr_unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V4SI])
2358 #define ptr_unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V2DI])
2359 #define ptr_bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V16QI])
2360 #define ptr_bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V8HI])
2361 #define ptr_bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V4SI])
2362 #define ptr_bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V2DI])
2363 #define ptr_bool_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V1TI])
2364 #define ptr_pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_pixel_V8HI])
2365 #define ptr_intQI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTQI])
2366 #define ptr_uintQI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTQI])
2367 #define ptr_intHI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTHI])
2368 #define ptr_uintHI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTHI])
2369 #define ptr_intSI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTSI])
2370 #define ptr_uintSI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTSI])
2371 #define ptr_intDI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTDI])
2372 #define ptr_uintDI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTDI])
2373 #define ptr_intTI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTTI])
2374 #define ptr_uintTI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTTI])
2375 #define ptr_long_integer_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_integer])
2376 #define ptr_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_unsigned])
2377 #define ptr_float_type_node (rs6000_builtin_types[RS6000_BTI_ptr_float])
2378 #define ptr_double_type_node (rs6000_builtin_types[RS6000_BTI_ptr_double])
2379 #define ptr_long_double_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_double])
2380 #define ptr_dfloat64_type_node (rs6000_builtin_types[RS6000_BTI_ptr_dfloat64])
2381 #define ptr_dfloat128_type_node (rs6000_builtin_types[RS6000_BTI_ptr_dfloat128])
2382 #define ptr_vector_pair_type_node (rs6000_builtin_types[RS6000_BTI_ptr_vector_pair])
2383 #define ptr_vector_quad_type_node (rs6000_builtin_types[RS6000_BTI_ptr_vector_quad])
2384 #define ptr_long_long_integer_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long])
2385 #define ptr_long_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long_unsigned])
2387 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2389 #ifndef USED_FOR_TARGET
2390 extern GTY(()) tree altivec_builtin_mask_for_load;
2391 extern GTY(()) section *toc_section;
2393 /* A C structure for machine-specific, per-function data.
2394 This is added to the cfun structure. */
2395 typedef struct GTY(()) machine_function
2397 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
2398 int ra_needs_full_frame;
2399 /* Flags if __builtin_return_address (0) was used. */
2400 int ra_need_lr;
2401 /* Cache lr_save_p after expansion of builtin_eh_return. */
2402 int lr_save_state;
2403 /* Whether we need to save the TOC to the reserved stack location in the
2404 function prologue. */
2405 bool save_toc_in_prologue;
2406 /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
2407 varargs save area. */
2408 HOST_WIDE_INT varargs_save_offset;
2409 /* Alternative internal arg pointer for -fsplit-stack. */
2410 rtx split_stack_arg_pointer;
2411 bool split_stack_argp_used;
2412 /* Flag if r2 setup is needed with ELFv2 ABI. */
2413 bool r2_setup_needed;
2414 /* The number of components we use for separate shrink-wrapping. */
2415 int n_components;
2416 /* The components already handled by separate shrink-wrapping, which should
2417 not be considered by the prologue and epilogue. */
2418 bool gpr_is_wrapped_separately[32];
2419 bool fpr_is_wrapped_separately[32];
2420 bool lr_is_wrapped_separately;
2421 bool toc_is_wrapped_separately;
2422 bool mma_return_type_error;
2423 /* Indicate global entry is emitted, only useful when the function requires
2424 global entry. It helps to control the patchable area before and after
2425 local entry. */
2426 bool global_entry_emitted;
2427 } machine_function;
2428 #endif
2431 #define TARGET_SUPPORTS_WIDE_INT 1
2433 #if (GCC_VERSION >= 3000)
2434 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2435 #endif
2437 /* Whether a given VALUE is a valid 16 or 34-bit signed integer. */
2438 #define SIGNED_INTEGER_NBIT_P(VALUE, N) \
2439 IN_RANGE ((VALUE), \
2440 -(HOST_WIDE_INT_1 << ((N)-1)), \
2441 (HOST_WIDE_INT_1 << ((N)-1)) - 1)
2443 #define SIGNED_INTEGER_16BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 16)
2444 #define SIGNED_INTEGER_34BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 34)
2446 /* Like SIGNED_INTEGER_16BIT_P and SIGNED_INTEGER_34BIT_P, but with an extra
2447 argument that gives a length to validate a range of addresses, to allow for
2448 splitting insns into several insns, each of which has an offsettable
2449 address. */
2450 #define SIGNED_16BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \
2451 IN_RANGE ((VALUE), \
2452 -(HOST_WIDE_INT_1 << 15), \
2453 (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA))
2455 #define SIGNED_34BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \
2456 IN_RANGE ((VALUE), \
2457 -(HOST_WIDE_INT_1 << 33), \
2458 (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA))
2460 /* Define this if some processing needs to be done before outputting the
2461 assembler code. On the PowerPC, we remember if the current insn is a normal
2462 prefixed insn where we need to emit a 'p' before the insn. */
2463 #define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS) \
2464 do \
2466 if (TARGET_PREFIXED) \
2467 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS); \
2469 while (0)
2471 /* Do anything special before emitting an opcode. We use it to emit a 'p' for
2472 prefixed insns that is set in FINAL_PRESCAN_INSN. */
2473 #define ASM_OUTPUT_OPCODE(STREAM, OPCODE) \
2474 do \
2476 if (TARGET_PREFIXED) \
2477 rs6000_asm_output_opcode (STREAM); \
2479 while (0)
2481 /* Disable generation of scalar modulo instructions due to performance issues
2482 with certain input values. This can be removed in the future when the
2483 issues have been resolved. */
2484 #define RS6000_DISABLE_SCALAR_MODULO 1