Merge cond-optab branch.
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blobe65bf5d95dfa04bb27170f1ad9d3a7c7dc9d492f
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 3, or (at your
12 option) any later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
19 Under Section 7 of GPL version 3, you are granted additional
20 permissions described in the GCC Runtime Library Exception, version
21 3.1, as published by the Free Software Foundation.
23 You should have received a copy of the GNU General Public License and
24 a copy of the GCC Runtime Library Exception along with this program;
25 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
26 <http://www.gnu.org/licenses/>. */
28 /* Note that some other tm.h files include this one and then override
29 many of the definitions. */
31 /* Definitions for the object file format. These are set at
32 compile-time. */
34 #define OBJECT_XCOFF 1
35 #define OBJECT_ELF 2
36 #define OBJECT_PEF 3
37 #define OBJECT_MACHO 4
39 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
40 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
41 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
42 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
44 #ifndef TARGET_AIX
45 #define TARGET_AIX 0
46 #endif
48 /* Control whether function entry points use a "dot" symbol when
49 ABI_AIX. */
50 #define DOT_SYMBOLS 1
52 /* Default string to use for cpu if not specified. */
53 #ifndef TARGET_CPU_DEFAULT
54 #define TARGET_CPU_DEFAULT ((char *)0)
55 #endif
57 /* If configured for PPC405, support PPC405CR Erratum77. */
58 #ifdef CONFIG_PPC405CR
59 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
60 #else
61 #define PPC405_ERRATUM77 0
62 #endif
64 #ifndef TARGET_PAIRED_FLOAT
65 #define TARGET_PAIRED_FLOAT 0
66 #endif
68 #ifdef HAVE_AS_POPCNTB
69 #define ASM_CPU_POWER5_SPEC "-mpower5"
70 #else
71 #define ASM_CPU_POWER5_SPEC "-mpower4"
72 #endif
74 #ifdef HAVE_AS_DFP
75 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
76 #else
77 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
78 #endif
80 #ifdef HAVE_AS_VSX
81 #define ASM_CPU_POWER7_SPEC "-mpower7"
82 #else
83 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
84 #endif
86 /* Common ASM definitions used by ASM_SPEC among the various targets
87 for handling -mcpu=xxx switches. */
88 #define ASM_CPU_SPEC \
89 "%{!mcpu*: \
90 %{mpower: %{!mpower2: -mpwr}} \
91 %{mpower2: -mpwrx} \
92 %{mpowerpc64*: -mppc64} \
93 %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
94 %{mno-power: %{!mpowerpc*: -mcom}} \
95 %{!mno-power: %{!mpower*: %(asm_default)}}} \
96 %{mcpu=common: -mcom} \
97 %{mcpu=cell: -mcell} \
98 %{mcpu=power: -mpwr} \
99 %{mcpu=power2: -mpwrx} \
100 %{mcpu=power3: -mppc64} \
101 %{mcpu=power4: -mpower4} \
102 %{mcpu=power5: %(asm_cpu_power5)} \
103 %{mcpu=power5+: %(asm_cpu_power5)} \
104 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
105 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
106 %{mcpu=power7: %(asm_cpu_power7)} \
107 %{mcpu=powerpc: -mppc} \
108 %{mcpu=rios: -mpwr} \
109 %{mcpu=rios1: -mpwr} \
110 %{mcpu=rios2: -mpwrx} \
111 %{mcpu=rsc: -mpwr} \
112 %{mcpu=rsc1: -mpwr} \
113 %{mcpu=rs64a: -mppc64} \
114 %{mcpu=401: -mppc} \
115 %{mcpu=403: -m403} \
116 %{mcpu=405: -m405} \
117 %{mcpu=405fp: -m405} \
118 %{mcpu=440: -m440} \
119 %{mcpu=440fp: -m440} \
120 %{mcpu=464: -m440} \
121 %{mcpu=464fp: -m440} \
122 %{mcpu=505: -mppc} \
123 %{mcpu=601: -m601} \
124 %{mcpu=602: -mppc} \
125 %{mcpu=603: -mppc} \
126 %{mcpu=603e: -mppc} \
127 %{mcpu=ec603e: -mppc} \
128 %{mcpu=604: -mppc} \
129 %{mcpu=604e: -mppc} \
130 %{mcpu=620: -mppc64} \
131 %{mcpu=630: -mppc64} \
132 %{mcpu=740: -mppc} \
133 %{mcpu=750: -mppc} \
134 %{mcpu=G3: -mppc} \
135 %{mcpu=7400: -mppc -maltivec} \
136 %{mcpu=7450: -mppc -maltivec} \
137 %{mcpu=G4: -mppc -maltivec} \
138 %{mcpu=801: -mppc} \
139 %{mcpu=821: -mppc} \
140 %{mcpu=823: -mppc} \
141 %{mcpu=860: -mppc} \
142 %{mcpu=970: -mpower4 -maltivec} \
143 %{mcpu=G5: -mpower4 -maltivec} \
144 %{mcpu=8540: -me500} \
145 %{mcpu=8548: -me500} \
146 %{mcpu=e300c2: -me300} \
147 %{mcpu=e300c3: -me300} \
148 %{mcpu=e500mc: -me500mc} \
149 %{maltivec: -maltivec} \
150 -many"
152 #define CPP_DEFAULT_SPEC ""
154 #define ASM_DEFAULT_SPEC ""
156 /* This macro defines names of additional specifications to put in the specs
157 that can be used in various specifications like CC1_SPEC. Its definition
158 is an initializer with a subgrouping for each command option.
160 Each subgrouping contains a string constant, that defines the
161 specification name, and a string constant that used by the GCC driver
162 program.
164 Do not define this macro if it does not need to do anything. */
166 #define SUBTARGET_EXTRA_SPECS
168 #define EXTRA_SPECS \
169 { "cpp_default", CPP_DEFAULT_SPEC }, \
170 { "asm_cpu", ASM_CPU_SPEC }, \
171 { "asm_default", ASM_DEFAULT_SPEC }, \
172 { "cc1_cpu", CC1_CPU_SPEC }, \
173 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
174 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
175 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
176 SUBTARGET_EXTRA_SPECS
178 /* -mcpu=native handling only makes sense with compiler running on
179 an PowerPC chip. If changing this condition, also change
180 the condition in driver-rs6000.c. */
181 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
182 /* In driver-rs6000.c. */
183 extern const char *host_detect_local_cpu (int argc, const char **argv);
184 #define EXTRA_SPEC_FUNCTIONS \
185 { "local_cpu_detect", host_detect_local_cpu },
186 #define HAVE_LOCAL_CPU_DETECT
187 #endif
189 #ifndef CC1_CPU_SPEC
190 #ifdef HAVE_LOCAL_CPU_DETECT
191 #define CC1_CPU_SPEC \
192 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
193 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
194 #else
195 #define CC1_CPU_SPEC ""
196 #endif
197 #endif
199 /* Architecture type. */
201 /* Define TARGET_MFCRF if the target assembler does not support the
202 optional field operand for mfcr. */
204 #ifndef HAVE_AS_MFCRF
205 #undef TARGET_MFCRF
206 #define TARGET_MFCRF 0
207 #endif
209 /* Define TARGET_POPCNTB if the target assembler does not support the
210 popcount byte instruction. */
212 #ifndef HAVE_AS_POPCNTB
213 #undef TARGET_POPCNTB
214 #define TARGET_POPCNTB 0
215 #endif
217 /* Define TARGET_FPRND if the target assembler does not support the
218 fp rounding instructions. */
220 #ifndef HAVE_AS_FPRND
221 #undef TARGET_FPRND
222 #define TARGET_FPRND 0
223 #endif
225 /* Define TARGET_CMPB if the target assembler does not support the
226 cmpb instruction. */
228 #ifndef HAVE_AS_CMPB
229 #undef TARGET_CMPB
230 #define TARGET_CMPB 0
231 #endif
233 /* Define TARGET_MFPGPR if the target assembler does not support the
234 mffpr and mftgpr instructions. */
236 #ifndef HAVE_AS_MFPGPR
237 #undef TARGET_MFPGPR
238 #define TARGET_MFPGPR 0
239 #endif
241 /* Define TARGET_DFP if the target assembler does not support decimal
242 floating point instructions. */
243 #ifndef HAVE_AS_DFP
244 #undef TARGET_DFP
245 #define TARGET_DFP 0
246 #endif
248 /* Define TARGET_TLS_MARKERS if the target assembler does not support
249 arg markers for __tls_get_addr calls. */
250 #ifndef HAVE_AS_TLS_MARKERS
251 #undef TARGET_TLS_MARKERS
252 #define TARGET_TLS_MARKERS 0
253 #else
254 #define TARGET_TLS_MARKERS tls_markers
255 #endif
257 #ifndef TARGET_SECURE_PLT
258 #define TARGET_SECURE_PLT 0
259 #endif
261 #define TARGET_32BIT (! TARGET_64BIT)
263 #ifndef HAVE_AS_TLS
264 #define HAVE_AS_TLS 0
265 #endif
267 /* Return 1 for a symbol ref for a thread-local storage symbol. */
268 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
269 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
271 #ifdef IN_LIBGCC2
272 /* For libgcc2 we make sure this is a compile time constant */
273 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
274 #undef TARGET_POWERPC64
275 #define TARGET_POWERPC64 1
276 #else
277 #undef TARGET_POWERPC64
278 #define TARGET_POWERPC64 0
279 #endif
280 #else
281 /* The option machinery will define this. */
282 #endif
284 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
286 /* Processor type. Order must match cpu attribute in MD file. */
287 enum processor_type
289 PROCESSOR_RIOS1,
290 PROCESSOR_RIOS2,
291 PROCESSOR_RS64A,
292 PROCESSOR_MPCCORE,
293 PROCESSOR_PPC403,
294 PROCESSOR_PPC405,
295 PROCESSOR_PPC440,
296 PROCESSOR_PPC601,
297 PROCESSOR_PPC603,
298 PROCESSOR_PPC604,
299 PROCESSOR_PPC604e,
300 PROCESSOR_PPC620,
301 PROCESSOR_PPC630,
302 PROCESSOR_PPC750,
303 PROCESSOR_PPC7400,
304 PROCESSOR_PPC7450,
305 PROCESSOR_PPC8540,
306 PROCESSOR_PPCE300C2,
307 PROCESSOR_PPCE300C3,
308 PROCESSOR_PPCE500MC,
309 PROCESSOR_POWER4,
310 PROCESSOR_POWER5,
311 PROCESSOR_POWER6,
312 PROCESSOR_CELL
315 /* FPU operations supported.
316 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
317 also test TARGET_HARD_FLOAT. */
318 #define TARGET_SINGLE_FLOAT 1
319 #define TARGET_DOUBLE_FLOAT 1
320 #define TARGET_SINGLE_FPU 0
321 #define TARGET_SIMPLE_FPU 0
322 #define TARGET_XILINX_FPU 0
324 extern enum processor_type rs6000_cpu;
326 /* Recast the processor type to the cpu attribute. */
327 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
329 /* Define generic processor types based upon current deployment. */
330 #define PROCESSOR_COMMON PROCESSOR_PPC601
331 #define PROCESSOR_POWER PROCESSOR_RIOS1
332 #define PROCESSOR_POWERPC PROCESSOR_PPC604
333 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
335 /* Define the default processor. This is overridden by other tm.h files. */
336 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
337 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
339 /* FP processor type. */
340 enum fpu_type_t
342 FPU_NONE, /* No FPU */
343 FPU_SF_LITE, /* Limited Single Precision FPU */
344 FPU_DF_LITE, /* Limited Double Precision FPU */
345 FPU_SF_FULL, /* Full Single Precision FPU */
346 FPU_DF_FULL /* Full Double Single Precision FPU */
349 extern enum fpu_type_t fpu_type;
351 /* Specify the dialect of assembler to use. New mnemonics is dialect one
352 and the old mnemonics are dialect zero. */
353 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
355 /* Types of costly dependences. */
356 enum rs6000_dependence_cost
358 max_dep_latency = 1000,
359 no_dep_costly,
360 all_deps_costly,
361 true_store_to_load_dep_costly,
362 store_to_load_dep_costly
365 /* Types of nop insertion schemes in sched target hook sched_finish. */
366 enum rs6000_nop_insertion
368 sched_finish_regroup_exact = 1000,
369 sched_finish_pad_groups,
370 sched_finish_none
373 /* Dispatch group termination caused by an insn. */
374 enum group_termination
376 current_group,
377 previous_group
380 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
381 struct rs6000_cpu_select
383 const char *string;
384 const char *name;
385 int set_tune_p;
386 int set_arch_p;
389 extern struct rs6000_cpu_select rs6000_select[];
391 /* Debug support */
392 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
393 extern int rs6000_debug_stack; /* debug stack applications */
394 extern int rs6000_debug_arg; /* debug argument handling */
396 #define TARGET_DEBUG_STACK rs6000_debug_stack
397 #define TARGET_DEBUG_ARG rs6000_debug_arg
399 extern const char *rs6000_traceback_name; /* Type of traceback table. */
401 /* These are separate from target_flags because we've run out of bits
402 there. */
403 extern int rs6000_long_double_type_size;
404 extern int rs6000_ieeequad;
405 extern int rs6000_altivec_abi;
406 extern int rs6000_spe_abi;
407 extern int rs6000_spe;
408 extern int rs6000_isel;
409 extern int rs6000_float_gprs;
410 extern int rs6000_alignment_flags;
411 extern const char *rs6000_sched_insert_nops_str;
412 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
413 extern int rs6000_xilinx_fpu;
415 /* Alignment options for fields in structures for sub-targets following
416 AIX-like ABI.
417 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
418 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
420 Override the macro definitions when compiling libobjc to avoid undefined
421 reference to rs6000_alignment_flags due to library's use of GCC alignment
422 macros which use the macros below. */
424 #ifndef IN_TARGET_LIBS
425 #define MASK_ALIGN_POWER 0x00000000
426 #define MASK_ALIGN_NATURAL 0x00000001
427 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
428 #else
429 #define TARGET_ALIGN_NATURAL 0
430 #endif
432 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
433 #define TARGET_IEEEQUAD rs6000_ieeequad
434 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
436 #define TARGET_SPE_ABI 0
437 #define TARGET_SPE 0
438 #define TARGET_E500 0
439 #define TARGET_ISEL rs6000_isel
440 #define TARGET_FPRS 1
441 #define TARGET_E500_SINGLE 0
442 #define TARGET_E500_DOUBLE 0
443 #define CHECK_E500_OPTIONS do { } while (0)
445 /* E500 processors only support plain "sync", not lwsync. */
446 #define TARGET_NO_LWSYNC TARGET_E500
448 /* Sometimes certain combinations of command options do not make sense
449 on a particular target machine. You can define a macro
450 `OVERRIDE_OPTIONS' to take account of this. This macro, if
451 defined, is executed once just after all the command options have
452 been parsed.
454 Do not use this macro to turn on various extra optimizations for
455 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
457 On the RS/6000 this is used to define the target cpu type. */
459 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
461 /* Define this to change the optimizations performed by default. */
462 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
464 /* Show we can debug even without a frame pointer. */
465 #define CAN_DEBUG_WITHOUT_FP
467 /* Target pragma. */
468 #define REGISTER_TARGET_PRAGMAS() do { \
469 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
470 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
471 } while (0)
473 /* Target #defines. */
474 #define TARGET_CPU_CPP_BUILTINS() \
475 rs6000_cpu_cpp_builtins (pfile)
477 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
478 we're compiling for. Some configurations may need to override it. */
479 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
480 do \
482 if (BYTES_BIG_ENDIAN) \
484 builtin_define ("__BIG_ENDIAN__"); \
485 builtin_define ("_BIG_ENDIAN"); \
486 builtin_assert ("machine=bigendian"); \
488 else \
490 builtin_define ("__LITTLE_ENDIAN__"); \
491 builtin_define ("_LITTLE_ENDIAN"); \
492 builtin_assert ("machine=littleendian"); \
495 while (0)
497 /* Target machine storage layout. */
499 /* Define this macro if it is advisable to hold scalars in registers
500 in a wider mode than that declared by the program. In such cases,
501 the value is constrained to be within the bounds of the declared
502 type, but kept valid in the wider mode. The signedness of the
503 extension may differ from that of the type. */
505 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
506 if (GET_MODE_CLASS (MODE) == MODE_INT \
507 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
508 (MODE) = TARGET_32BIT ? SImode : DImode;
510 /* Define this if most significant bit is lowest numbered
511 in instructions that operate on numbered bit-fields. */
512 /* That is true on RS/6000. */
513 #define BITS_BIG_ENDIAN 1
515 /* Define this if most significant byte of a word is the lowest numbered. */
516 /* That is true on RS/6000. */
517 #define BYTES_BIG_ENDIAN 1
519 /* Define this if most significant word of a multiword number is lowest
520 numbered.
522 For RS/6000 we can decide arbitrarily since there are no machine
523 instructions for them. Might as well be consistent with bits and bytes. */
524 #define WORDS_BIG_ENDIAN 1
526 #define MAX_BITS_PER_WORD 64
528 /* Width of a word, in units (bytes). */
529 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
530 #ifdef IN_LIBGCC2
531 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
532 #else
533 #define MIN_UNITS_PER_WORD 4
534 #endif
535 #define UNITS_PER_FP_WORD 8
536 #define UNITS_PER_ALTIVEC_WORD 16
537 #define UNITS_PER_SPE_WORD 8
538 #define UNITS_PER_PAIRED_WORD 8
540 /* Type used for ptrdiff_t, as a string used in a declaration. */
541 #define PTRDIFF_TYPE "int"
543 /* Type used for size_t, as a string used in a declaration. */
544 #define SIZE_TYPE "long unsigned int"
546 /* Type used for wchar_t, as a string used in a declaration. */
547 #define WCHAR_TYPE "short unsigned int"
549 /* Width of wchar_t in bits. */
550 #define WCHAR_TYPE_SIZE 16
552 /* A C expression for the size in bits of the type `short' on the
553 target machine. If you don't define this, the default is half a
554 word. (If this would be less than one storage unit, it is
555 rounded up to one unit.) */
556 #define SHORT_TYPE_SIZE 16
558 /* A C expression for the size in bits of the type `int' on the
559 target machine. If you don't define this, the default is one
560 word. */
561 #define INT_TYPE_SIZE 32
563 /* A C expression for the size in bits of the type `long' on the
564 target machine. If you don't define this, the default is one
565 word. */
566 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
568 /* A C expression for the size in bits of the type `long long' on the
569 target machine. If you don't define this, the default is two
570 words. */
571 #define LONG_LONG_TYPE_SIZE 64
573 /* A C expression for the size in bits of the type `float' on the
574 target machine. If you don't define this, the default is one
575 word. */
576 #define FLOAT_TYPE_SIZE 32
578 /* A C expression for the size in bits of the type `double' on the
579 target machine. If you don't define this, the default is two
580 words. */
581 #define DOUBLE_TYPE_SIZE 64
583 /* A C expression for the size in bits of the type `long double' on
584 the target machine. If you don't define this, the default is two
585 words. */
586 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
588 /* Define this to set long double type size to use in libgcc2.c, which can
589 not depend on target_flags. */
590 #ifdef __LONG_DOUBLE_128__
591 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
592 #else
593 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
594 #endif
596 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
597 #define WIDEST_HARDWARE_FP_SIZE 64
599 /* Width in bits of a pointer.
600 See also the macro `Pmode' defined below. */
601 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
603 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
604 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
606 /* Boundary (in *bits*) on which stack pointer should be aligned. */
607 #define STACK_BOUNDARY \
608 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
610 /* Allocation boundary (in *bits*) for the code of a function. */
611 #define FUNCTION_BOUNDARY 32
613 /* No data type wants to be aligned rounder than this. */
614 #define BIGGEST_ALIGNMENT 128
616 /* A C expression to compute the alignment for a variables in the
617 local store. TYPE is the data type, and ALIGN is the alignment
618 that the object would ordinarily have. */
619 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
620 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
621 (TARGET_E500_DOUBLE \
622 && TYPE_MODE (TYPE) == DFmode) ? 64 : \
623 ((TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE \
624 && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) || (TARGET_PAIRED_FLOAT \
625 && TREE_CODE (TYPE) == VECTOR_TYPE \
626 && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) ? 64 : ALIGN)
628 /* Alignment of field after `int : 0' in a structure. */
629 #define EMPTY_FIELD_BOUNDARY 32
631 /* Every structure's size must be a multiple of this. */
632 #define STRUCTURE_SIZE_BOUNDARY 8
634 /* Return 1 if a structure or array containing FIELD should be
635 accessed using `BLKMODE'.
637 For the SPE, simd types are V2SI, and gcc can be tempted to put the
638 entire thing in a DI and use subregs to access the internals.
639 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
640 back-end. Because a single GPR can hold a V2SI, but not a DI, the
641 best thing to do is set structs to BLKmode and avoid Severe Tire
642 Damage.
644 On e500 v2, DF and DI modes suffer from the same anomaly. DF can
645 fit into 1, whereas DI still needs two. */
646 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
647 ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
648 || (TARGET_E500_DOUBLE && (MODE) == DFmode))
650 /* A bit-field declared as `int' forces `int' alignment for the struct. */
651 #define PCC_BITFIELD_TYPE_MATTERS 1
653 /* Make strings word-aligned so strcpy from constants will be faster.
654 Make vector constants quadword aligned. */
655 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
656 (TREE_CODE (EXP) == STRING_CST \
657 && (STRICT_ALIGNMENT || !optimize_size) \
658 && (ALIGN) < BITS_PER_WORD \
659 ? BITS_PER_WORD \
660 : (ALIGN))
662 /* Make arrays of chars word-aligned for the same reasons.
663 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
664 64 bits. */
665 #define DATA_ALIGNMENT(TYPE, ALIGN) \
666 (TREE_CODE (TYPE) == VECTOR_TYPE ? ((TARGET_SPE_ABI \
667 || TARGET_PAIRED_FLOAT) ? 64 : 128) \
668 : (TARGET_E500_DOUBLE \
669 && TYPE_MODE (TYPE) == DFmode) ? 64 \
670 : TREE_CODE (TYPE) == ARRAY_TYPE \
671 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
672 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
674 /* Nonzero if move instructions will actually fail to work
675 when given unaligned data. */
676 #define STRICT_ALIGNMENT 0
678 /* Define this macro to be the value 1 if unaligned accesses have a cost
679 many times greater than aligned accesses, for example if they are
680 emulated in a trap handler. */
681 /* Altivec vector memory instructions simply ignore the low bits; SPE
682 vector memory instructions trap on unaligned accesses. */
683 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
684 (STRICT_ALIGNMENT \
685 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
686 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode \
687 || (MODE) == DImode) \
688 && (ALIGN) < 32) \
689 || (VECTOR_MODE_P ((MODE)) && (ALIGN) < GET_MODE_BITSIZE ((MODE))))
691 /* Standard register usage. */
693 /* Number of actual hardware registers.
694 The hardware registers are assigned numbers for the compiler
695 from 0 to just below FIRST_PSEUDO_REGISTER.
696 All registers that the compiler knows about must be given numbers,
697 even those that are not normally considered general registers.
699 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
700 an MQ register, a count register, a link register, and 8 condition
701 register fields, which we view here as separate registers. AltiVec
702 adds 32 vector registers and a VRsave register.
704 In addition, the difference between the frame and argument pointers is
705 a function of the number of registers saved, so we need to have a
706 register for AP that will later be eliminated in favor of SP or FP.
707 This is a normal register, but it is fixed.
709 We also create a pseudo register for float/int conversions, that will
710 really represent the memory location used. It is represented here as
711 a register, in order to work around problems in allocating stack storage
712 in inline functions.
714 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
715 pointer, which is eventually eliminated in favor of SP or FP. */
717 #define FIRST_PSEUDO_REGISTER 114
719 /* This must be included for pre gcc 3.0 glibc compatibility. */
720 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
722 /* Add 32 dwarf columns for synthetic SPE registers. */
723 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
725 /* The SPE has an additional 32 synthetic registers, with DWARF debug
726 info numbering for these registers starting at 1200. While eh_frame
727 register numbering need not be the same as the debug info numbering,
728 we choose to number these regs for eh_frame at 1200 too. This allows
729 future versions of the rs6000 backend to add hard registers and
730 continue to use the gcc hard register numbering for eh_frame. If the
731 extra SPE registers in eh_frame were numbered starting from the
732 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
733 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
734 avoid invalidating older SPE eh_frame info.
736 We must map them here to avoid huge unwinder tables mostly consisting
737 of unused space. */
738 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
739 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
741 /* Use standard DWARF numbering for DWARF debugging information. */
742 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
744 /* Use gcc hard register numbering for eh_frame. */
745 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
747 /* Map register numbers held in the call frame info that gcc has
748 collected using DWARF_FRAME_REGNUM to those that should be output in
749 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
750 for .eh_frame, but use the numbers mandated by the various ABIs for
751 .debug_frame. rs6000_emit_prologue has translated any combination of
752 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
753 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
754 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
755 ((FOR_EH) ? (REGNO) \
756 : (REGNO) == CR2_REGNO ? 64 \
757 : DBX_REGISTER_NUMBER (REGNO))
759 /* 1 for registers that have pervasive standard uses
760 and are not available for the register allocator.
762 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
763 as a local register; for all other OS's r2 is the TOC pointer.
765 cr5 is not supposed to be used.
767 On System V implementations, r13 is fixed and not available for use. */
769 #define FIXED_REGISTERS \
770 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
772 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
773 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
774 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
775 /* AltiVec registers. */ \
776 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
777 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
778 1, 1 \
779 , 1, 1, 1 \
782 /* 1 for registers not available across function calls.
783 These must include the FIXED_REGISTERS and also any
784 registers that can be used without being saved.
785 The latter must include the registers where values are returned
786 and the register where structure-value addresses are passed.
787 Aside from that, you can include as many other registers as you like. */
789 #define CALL_USED_REGISTERS \
790 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
791 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
792 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
793 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
794 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
795 /* AltiVec registers. */ \
796 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
797 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
798 1, 1 \
799 , 1, 1, 1 \
802 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
803 the entire set of `FIXED_REGISTERS' be included.
804 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
805 This macro is optional. If not specified, it defaults to the value
806 of `CALL_USED_REGISTERS'. */
808 #define CALL_REALLY_USED_REGISTERS \
809 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
810 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
811 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
812 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
813 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
814 /* AltiVec registers. */ \
815 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
816 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
817 0, 0 \
818 , 0, 0, 0 \
821 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
823 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
824 #define FIRST_SAVED_FP_REGNO (14+32)
825 #define FIRST_SAVED_GP_REGNO 13
827 /* List the order in which to allocate registers. Each register must be
828 listed once, even those in FIXED_REGISTERS.
830 We allocate in the following order:
831 fp0 (not saved or used for anything)
832 fp13 - fp2 (not saved; incoming fp arg registers)
833 fp1 (not saved; return value)
834 fp31 - fp14 (saved; order given to save least number)
835 cr7, cr6 (not saved or special)
836 cr1 (not saved, but used for FP operations)
837 cr0 (not saved, but used for arithmetic operations)
838 cr4, cr3, cr2 (saved)
839 r0 (not saved; cannot be base reg)
840 r9 (not saved; best for TImode)
841 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
842 r3 (not saved; return value register)
843 r31 - r13 (saved; order given to save least number)
844 r12 (not saved; if used for DImode or DFmode would use r13)
845 mq (not saved; best to use it if we can)
846 ctr (not saved; when we have the choice ctr is better)
847 lr (saved)
848 cr5, r1, r2, ap, xer (fixed)
849 v0 - v1 (not saved or used for anything)
850 v13 - v3 (not saved; incoming vector arg registers)
851 v2 (not saved; incoming vector arg reg; return value)
852 v19 - v14 (not saved or used for anything)
853 v31 - v20 (saved; order given to save least number)
854 vrsave, vscr (fixed)
855 spe_acc, spefscr (fixed)
856 sfp (fixed)
859 #if FIXED_R2 == 1
860 #define MAYBE_R2_AVAILABLE
861 #define MAYBE_R2_FIXED 2,
862 #else
863 #define MAYBE_R2_AVAILABLE 2,
864 #define MAYBE_R2_FIXED
865 #endif
867 #define REG_ALLOC_ORDER \
868 {32, \
869 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
870 33, \
871 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
872 50, 49, 48, 47, 46, \
873 75, 74, 69, 68, 72, 71, 70, \
874 0, MAYBE_R2_AVAILABLE \
875 9, 11, 10, 8, 7, 6, 5, 4, \
876 3, \
877 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
878 18, 17, 16, 15, 14, 13, 12, \
879 64, 66, 65, \
880 73, 1, MAYBE_R2_FIXED 67, 76, \
881 /* AltiVec registers. */ \
882 77, 78, \
883 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
884 79, \
885 96, 95, 94, 93, 92, 91, \
886 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
887 109, 110, \
888 111, 112, 113 \
891 /* True if register is floating-point. */
892 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
894 /* True if register is a condition register. */
895 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
897 /* True if register is a condition register, but not cr0. */
898 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
900 /* True if register is an integer register. */
901 #define INT_REGNO_P(N) \
902 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
904 /* SPE SIMD registers are just the GPRs. */
905 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
907 /* PAIRED SIMD registers are just the FPRs. */
908 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
910 /* True if register is the XER register. */
911 #define XER_REGNO_P(N) ((N) == XER_REGNO)
913 /* True if register is an AltiVec register. */
914 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
916 /* Return number of consecutive hard regs needed starting at reg REGNO
917 to hold something of mode MODE. */
919 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
921 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
922 ((TARGET_32BIT && TARGET_POWERPC64 \
923 && (GET_MODE_SIZE (MODE) > 4) \
924 && INT_REGNO_P (REGNO)) ? 1 : 0)
926 #define ALTIVEC_VECTOR_MODE(MODE) \
927 ((MODE) == V16QImode \
928 || (MODE) == V8HImode \
929 || (MODE) == V4SFmode \
930 || (MODE) == V4SImode)
932 #define SPE_VECTOR_MODE(MODE) \
933 ((MODE) == V4HImode \
934 || (MODE) == V2SFmode \
935 || (MODE) == V1DImode \
936 || (MODE) == V2SImode)
938 #define PAIRED_VECTOR_MODE(MODE) \
939 ((MODE) == V2SFmode)
941 #define UNITS_PER_SIMD_WORD(MODE) \
942 (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD \
943 : (TARGET_SPE ? UNITS_PER_SPE_WORD : (TARGET_PAIRED_FLOAT ? \
944 UNITS_PER_PAIRED_WORD : UNITS_PER_WORD)))
946 /* Value is TRUE if hard register REGNO can hold a value of
947 machine-mode MODE. */
948 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
949 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
951 /* Value is 1 if it is a good idea to tie two pseudo registers
952 when one has mode MODE1 and one has mode MODE2.
953 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
954 for any hard reg, then this must be 0 for correct output. */
955 #define MODES_TIEABLE_P(MODE1, MODE2) \
956 (SCALAR_FLOAT_MODE_P (MODE1) \
957 ? SCALAR_FLOAT_MODE_P (MODE2) \
958 : SCALAR_FLOAT_MODE_P (MODE2) \
959 ? SCALAR_FLOAT_MODE_P (MODE1) \
960 : GET_MODE_CLASS (MODE1) == MODE_CC \
961 ? GET_MODE_CLASS (MODE2) == MODE_CC \
962 : GET_MODE_CLASS (MODE2) == MODE_CC \
963 ? GET_MODE_CLASS (MODE1) == MODE_CC \
964 : SPE_VECTOR_MODE (MODE1) \
965 ? SPE_VECTOR_MODE (MODE2) \
966 : SPE_VECTOR_MODE (MODE2) \
967 ? SPE_VECTOR_MODE (MODE1) \
968 : ALTIVEC_VECTOR_MODE (MODE1) \
969 ? ALTIVEC_VECTOR_MODE (MODE2) \
970 : ALTIVEC_VECTOR_MODE (MODE2) \
971 ? ALTIVEC_VECTOR_MODE (MODE1) \
972 : 1)
974 /* Post-reload, we can't use any new AltiVec registers, as we already
975 emitted the vrsave mask. */
977 #define HARD_REGNO_RENAME_OK(SRC, DST) \
978 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
980 /* A C expression returning the cost of moving data from a register of class
981 CLASS1 to one of CLASS2. */
983 #define REGISTER_MOVE_COST rs6000_register_move_cost
985 /* A C expressions returning the cost of moving data of MODE from a register to
986 or from memory. */
988 #define MEMORY_MOVE_COST rs6000_memory_move_cost
990 /* Specify the cost of a branch insn; roughly the number of extra insns that
991 should be added to avoid a branch.
993 Set this to 3 on the RS/6000 since that is roughly the average cost of an
994 unscheduled conditional branch. */
996 #define BRANCH_COST(speed_p, predictable_p) 3
998 /* Override BRANCH_COST heuristic which empirically produces worse
999 performance for removing short circuiting from the logical ops. */
1001 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1003 /* A fixed register used at epilogue generation to address SPE registers
1004 with negative offsets. The 64-bit load/store instructions on the SPE
1005 only take positive offsets (and small ones at that), so we need to
1006 reserve a register for consing up negative offsets. */
1008 #define FIXED_SCRATCH 0
1010 /* Define this macro to change register usage conditional on target
1011 flags. */
1013 #define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
1015 /* Specify the registers used for certain standard purposes.
1016 The values of these macros are register numbers. */
1018 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1019 /* #define PC_REGNUM */
1021 /* Register to use for pushing function arguments. */
1022 #define STACK_POINTER_REGNUM 1
1024 /* Base register for access to local variables of the function. */
1025 #define HARD_FRAME_POINTER_REGNUM 31
1027 /* Base register for access to local variables of the function. */
1028 #define FRAME_POINTER_REGNUM 113
1030 /* Base register for access to arguments of the function. */
1031 #define ARG_POINTER_REGNUM 67
1033 /* Place to put static chain when calling a function that requires it. */
1034 #define STATIC_CHAIN_REGNUM 11
1037 /* Define the classes of registers for register constraints in the
1038 machine description. Also define ranges of constants.
1040 One of the classes must always be named ALL_REGS and include all hard regs.
1041 If there is more than one class, another class must be named NO_REGS
1042 and contain no registers.
1044 The name GENERAL_REGS must be the name of a class (or an alias for
1045 another name such as ALL_REGS). This is the class of registers
1046 that is allowed by "g" or "r" in a register constraint.
1047 Also, registers outside this class are allocated only when
1048 instructions express preferences for them.
1050 The classes must be numbered in nondecreasing order; that is,
1051 a larger-numbered class must never be contained completely
1052 in a smaller-numbered class.
1054 For any two classes, it is very desirable that there be another
1055 class that represents their union. */
1057 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1058 and condition registers, plus three special registers, MQ, CTR, and the
1059 link register. AltiVec adds a vector register class.
1061 However, r0 is special in that it cannot be used as a base register.
1062 So make a class for registers valid as base registers.
1064 Also, cr0 is the only condition code register that can be used in
1065 arithmetic insns, so make a separate class for it. */
1067 enum reg_class
1069 NO_REGS,
1070 BASE_REGS,
1071 GENERAL_REGS,
1072 FLOAT_REGS,
1073 ALTIVEC_REGS,
1074 VRSAVE_REGS,
1075 VSCR_REGS,
1076 SPE_ACC_REGS,
1077 SPEFSCR_REGS,
1078 NON_SPECIAL_REGS,
1079 MQ_REGS,
1080 LINK_REGS,
1081 CTR_REGS,
1082 LINK_OR_CTR_REGS,
1083 SPECIAL_REGS,
1084 SPEC_OR_GEN_REGS,
1085 CR0_REGS,
1086 CR_REGS,
1087 NON_FLOAT_REGS,
1088 XER_REGS,
1089 ALL_REGS,
1090 LIM_REG_CLASSES
1093 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1095 /* Give names of register classes as strings for dump file. */
1097 #define REG_CLASS_NAMES \
1099 "NO_REGS", \
1100 "BASE_REGS", \
1101 "GENERAL_REGS", \
1102 "FLOAT_REGS", \
1103 "ALTIVEC_REGS", \
1104 "VRSAVE_REGS", \
1105 "VSCR_REGS", \
1106 "SPE_ACC_REGS", \
1107 "SPEFSCR_REGS", \
1108 "NON_SPECIAL_REGS", \
1109 "MQ_REGS", \
1110 "LINK_REGS", \
1111 "CTR_REGS", \
1112 "LINK_OR_CTR_REGS", \
1113 "SPECIAL_REGS", \
1114 "SPEC_OR_GEN_REGS", \
1115 "CR0_REGS", \
1116 "CR_REGS", \
1117 "NON_FLOAT_REGS", \
1118 "XER_REGS", \
1119 "ALL_REGS" \
1122 /* Define which registers fit in which classes.
1123 This is an initializer for a vector of HARD_REG_SET
1124 of length N_REG_CLASSES. */
1126 #define REG_CLASS_CONTENTS \
1128 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1129 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1130 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1131 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1132 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1133 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1134 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1135 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1136 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1137 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1138 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1139 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1140 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1141 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1142 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1143 { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1144 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1145 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1146 { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */ \
1147 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1148 { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \
1151 /* The following macro defines cover classes for Integrated Register
1152 Allocator. Cover classes is a set of non-intersected register
1153 classes covering all hard registers used for register allocation
1154 purpose. Any move between two registers of a cover class should be
1155 cheaper than load or store of the registers. The macro value is
1156 array of register classes with LIM_REG_CLASSES used as the end
1157 marker. */
1159 #define IRA_COVER_CLASSES \
1161 GENERAL_REGS, SPECIAL_REGS, FLOAT_REGS, ALTIVEC_REGS, \
1162 /*VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS, \
1163 /* MQ_REGS, LINK_REGS, CTR_REGS, */ \
1164 CR_REGS, XER_REGS, LIM_REG_CLASSES \
1167 /* The same information, inverted:
1168 Return the class number of the smallest class containing
1169 reg number REGNO. This could be a conditional expression
1170 or could index an array. */
1172 #define REGNO_REG_CLASS(REGNO) \
1173 ((REGNO) == 0 ? GENERAL_REGS \
1174 : (REGNO) < 32 ? BASE_REGS \
1175 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1176 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1177 : (REGNO) == CR0_REGNO ? CR0_REGS \
1178 : CR_REGNO_P (REGNO) ? CR_REGS \
1179 : (REGNO) == MQ_REGNO ? MQ_REGS \
1180 : (REGNO) == LR_REGNO ? LINK_REGS \
1181 : (REGNO) == CTR_REGNO ? CTR_REGS \
1182 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1183 : (REGNO) == XER_REGNO ? XER_REGS \
1184 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1185 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1186 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1187 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1188 : (REGNO) == FRAME_POINTER_REGNUM ? BASE_REGS \
1189 : NO_REGS)
1191 /* The class value for index registers, and the one for base regs. */
1192 #define INDEX_REG_CLASS GENERAL_REGS
1193 #define BASE_REG_CLASS BASE_REGS
1195 /* Given an rtx X being reloaded into a reg required to be
1196 in class CLASS, return the class of reg to actually use.
1197 In general this is just CLASS; but on some machines
1198 in some cases it is preferable to use a more restrictive class.
1200 On the RS/6000, we have to return NO_REGS when we want to reload a
1201 floating-point CONST_DOUBLE to force it to be copied to memory.
1203 We also don't want to reload integer values into floating-point
1204 registers if we can at all help it. In fact, this can
1205 cause reload to die, if it tries to generate a reload of CTR
1206 into a FP register and discovers it doesn't have the memory location
1207 required.
1209 ??? Would it be a good idea to have reload do the converse, that is
1210 try to reload floating modes into FP registers if possible?
1213 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1214 ((CONSTANT_P (X) \
1215 && reg_classes_intersect_p ((CLASS), FLOAT_REGS)) \
1216 ? NO_REGS \
1217 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1218 && (CLASS) == NON_SPECIAL_REGS) \
1219 ? GENERAL_REGS \
1220 : (CLASS))
1222 /* Return the register class of a scratch register needed to copy IN into
1223 or out of a register in CLASS in MODE. If it can be done directly,
1224 NO_REGS is returned. */
1226 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1227 rs6000_secondary_reload_class (CLASS, MODE, IN)
1229 /* If we are copying between FP or AltiVec registers and anything
1230 else, we need a memory location. The exception is when we are
1231 targeting ppc64 and the move to/from fpr to gpr instructions
1232 are available.*/
1234 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1235 ((CLASS1) != (CLASS2) && (((CLASS1) == FLOAT_REGS \
1236 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1237 || ((MODE != DFmode) \
1238 && (MODE != DDmode) \
1239 && (MODE != DImode)))) \
1240 || ((CLASS2) == FLOAT_REGS \
1241 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1242 || ((MODE != DFmode) \
1243 && (MODE != DDmode) \
1244 && (MODE != DImode)))) \
1245 || (CLASS1) == ALTIVEC_REGS \
1246 || (CLASS2) == ALTIVEC_REGS))
1248 /* For cpus that cannot load/store SDmode values from the 64-bit
1249 FP registers without using a full 64-bit load/store, we need
1250 to allocate a full 64-bit stack slot for them. */
1252 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1253 rs6000_secondary_memory_needed_rtx (MODE)
1255 /* Return the maximum number of consecutive registers
1256 needed to represent mode MODE in a register of class CLASS.
1258 On RS/6000, this is the size of MODE in words,
1259 except in the FP regs, where a single reg is enough for two words. */
1260 #define CLASS_MAX_NREGS(CLASS, MODE) \
1261 (((CLASS) == FLOAT_REGS) \
1262 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1263 : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS \
1264 && (MODE) == DFmode) \
1265 ? 1 \
1266 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1268 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1270 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1271 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1272 ? ((GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8 \
1273 || TARGET_IEEEQUAD) \
1274 && reg_classes_intersect_p (FLOAT_REGS, CLASS)) \
1275 : (((TARGET_E500_DOUBLE \
1276 && ((((TO) == DFmode) + ((FROM) == DFmode)) == 1 \
1277 || (((TO) == TFmode) + ((FROM) == TFmode)) == 1 \
1278 || (((TO) == DDmode) + ((FROM) == DDmode)) == 1 \
1279 || (((TO) == TDmode) + ((FROM) == TDmode)) == 1 \
1280 || (((TO) == DImode) + ((FROM) == DImode)) == 1)) \
1281 || (TARGET_SPE \
1282 && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1)) \
1283 && reg_classes_intersect_p (GENERAL_REGS, CLASS)))
1285 /* Stack layout; function entry, exit and calling. */
1287 /* Enumeration to give which calling sequence to use. */
1288 enum rs6000_abi {
1289 ABI_NONE,
1290 ABI_AIX, /* IBM's AIX */
1291 ABI_V4, /* System V.4/eabi */
1292 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1295 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1297 /* Define this if pushing a word on the stack
1298 makes the stack pointer a smaller address. */
1299 #define STACK_GROWS_DOWNWARD
1301 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1302 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1304 /* Define this to nonzero if the nominal address of the stack frame
1305 is at the high-address end of the local variables;
1306 that is, each additional local variable allocated
1307 goes at a more negative offset in the frame.
1309 On the RS/6000, we grow upwards, from the area after the outgoing
1310 arguments. */
1311 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1313 /* Size of the outgoing register save area */
1314 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1315 || DEFAULT_ABI == ABI_DARWIN) \
1316 ? (TARGET_64BIT ? 64 : 32) \
1317 : 0)
1319 /* Size of the fixed area on the stack */
1320 #define RS6000_SAVE_AREA \
1321 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1322 << (TARGET_64BIT ? 1 : 0))
1324 /* MEM representing address to save the TOC register */
1325 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1326 plus_constant (stack_pointer_rtx, \
1327 (TARGET_32BIT ? 20 : 40)))
1329 /* Align an address */
1330 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1332 /* Offset within stack frame to start allocating local variables at.
1333 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1334 first local allocated. Otherwise, it is the offset to the BEGINNING
1335 of the first local allocated.
1337 On the RS/6000, the frame pointer is the same as the stack pointer,
1338 except for dynamic allocations. So we start after the fixed area and
1339 outgoing parameter area. */
1341 #define STARTING_FRAME_OFFSET \
1342 (FRAME_GROWS_DOWNWARD \
1343 ? 0 \
1344 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1345 TARGET_ALTIVEC ? 16 : 8) \
1346 + RS6000_SAVE_AREA))
1348 /* Offset from the stack pointer register to an item dynamically
1349 allocated on the stack, e.g., by `alloca'.
1351 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1352 length of the outgoing arguments. The default is correct for most
1353 machines. See `function.c' for details. */
1354 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1355 (RS6000_ALIGN (crtl->outgoing_args_size, \
1356 TARGET_ALTIVEC ? 16 : 8) \
1357 + (STACK_POINTER_OFFSET))
1359 /* If we generate an insn to push BYTES bytes,
1360 this says how many the stack pointer really advances by.
1361 On RS/6000, don't define this because there are no push insns. */
1362 /* #define PUSH_ROUNDING(BYTES) */
1364 /* Offset of first parameter from the argument pointer register value.
1365 On the RS/6000, we define the argument pointer to the start of the fixed
1366 area. */
1367 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1369 /* Offset from the argument pointer register value to the top of
1370 stack. This is different from FIRST_PARM_OFFSET because of the
1371 register save area. */
1372 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1374 /* Define this if stack space is still allocated for a parameter passed
1375 in a register. The value is the number of bytes allocated to this
1376 area. */
1377 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1379 /* Define this if the above stack space is to be considered part of the
1380 space allocated by the caller. */
1381 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1383 /* This is the difference between the logical top of stack and the actual sp.
1385 For the RS/6000, sp points past the fixed area. */
1386 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1388 /* Define this if the maximum size of all the outgoing args is to be
1389 accumulated and pushed during the prologue. The amount can be
1390 found in the variable crtl->outgoing_args_size. */
1391 #define ACCUMULATE_OUTGOING_ARGS 1
1393 /* Value is the number of bytes of arguments automatically
1394 popped when returning from a subroutine call.
1395 FUNDECL is the declaration node of the function (as a tree),
1396 FUNTYPE is the data type of the function (as a tree),
1397 or for a library call it is an identifier node for the subroutine name.
1398 SIZE is the number of bytes of arguments passed on the stack. */
1400 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1402 /* Define how to find the value returned by a function.
1403 VALTYPE is the data type of the value (as a tree).
1404 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1405 otherwise, FUNC is 0. */
1407 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1409 /* Define how to find the value returned by a library function
1410 assuming the value has mode MODE. */
1412 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1414 /* DRAFT_V4_STRUCT_RET defaults off. */
1415 #define DRAFT_V4_STRUCT_RET 0
1417 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1418 #define DEFAULT_PCC_STRUCT_RETURN 0
1420 /* Mode of stack savearea.
1421 FUNCTION is VOIDmode because calling convention maintains SP.
1422 BLOCK needs Pmode for SP.
1423 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1424 #define STACK_SAVEAREA_MODE(LEVEL) \
1425 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1426 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1428 /* Minimum and maximum general purpose registers used to hold arguments. */
1429 #define GP_ARG_MIN_REG 3
1430 #define GP_ARG_MAX_REG 10
1431 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1433 /* Minimum and maximum floating point registers used to hold arguments. */
1434 #define FP_ARG_MIN_REG 33
1435 #define FP_ARG_AIX_MAX_REG 45
1436 #define FP_ARG_V4_MAX_REG 40
1437 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1438 || DEFAULT_ABI == ABI_DARWIN) \
1439 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1440 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1442 /* Minimum and maximum AltiVec registers used to hold arguments. */
1443 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1444 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1445 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1447 /* Return registers */
1448 #define GP_ARG_RETURN GP_ARG_MIN_REG
1449 #define FP_ARG_RETURN FP_ARG_MIN_REG
1450 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1452 /* Flags for the call/call_value rtl operations set up by function_arg */
1453 #define CALL_NORMAL 0x00000000 /* no special processing */
1454 /* Bits in 0x00000001 are unused. */
1455 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1456 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1457 #define CALL_LONG 0x00000008 /* always call indirect */
1458 #define CALL_LIBCALL 0x00000010 /* libcall */
1460 /* We don't have prologue and epilogue functions to save/restore
1461 everything for most ABIs. */
1462 #define WORLD_SAVE_P(INFO) 0
1464 /* 1 if N is a possible register number for a function value
1465 as seen by the caller.
1467 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1468 #define FUNCTION_VALUE_REGNO_P(N) \
1469 ((N) == GP_ARG_RETURN \
1470 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1471 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1473 /* 1 if N is a possible register number for function argument passing.
1474 On RS/6000, these are r3-r10 and fp1-fp13.
1475 On AltiVec, v2 - v13 are used for passing vectors. */
1476 #define FUNCTION_ARG_REGNO_P(N) \
1477 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1478 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1479 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1480 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1481 && TARGET_HARD_FLOAT && TARGET_FPRS))
1483 /* Define a data type for recording info about an argument list
1484 during the scan of that argument list. This data type should
1485 hold all necessary information about the function itself
1486 and about the args processed so far, enough to enable macros
1487 such as FUNCTION_ARG to determine where the next arg should go.
1489 On the RS/6000, this is a structure. The first element is the number of
1490 total argument words, the second is used to store the next
1491 floating-point register number, and the third says how many more args we
1492 have prototype types for.
1494 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1495 the next available GP register, `fregno' is the next available FP
1496 register, and `words' is the number of words used on the stack.
1498 The varargs/stdarg support requires that this structure's size
1499 be a multiple of sizeof(int). */
1501 typedef struct rs6000_args
1503 int words; /* # words used for passing GP registers */
1504 int fregno; /* next available FP register */
1505 int vregno; /* next available AltiVec register */
1506 int nargs_prototype; /* # args left in the current prototype */
1507 int prototype; /* Whether a prototype was defined */
1508 int stdarg; /* Whether function is a stdarg function. */
1509 int call_cookie; /* Do special things for this call */
1510 int sysv_gregno; /* next available GP register */
1511 int intoffset; /* running offset in struct (darwin64) */
1512 int use_stack; /* any part of struct on stack (darwin64) */
1513 int named; /* false for varargs params */
1514 } CUMULATIVE_ARGS;
1516 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1517 for a call to a function whose data type is FNTYPE.
1518 For a library call, FNTYPE is 0. */
1520 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1521 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1523 /* Similar, but when scanning the definition of a procedure. We always
1524 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1526 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1527 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1529 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1531 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1532 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1534 /* Update the data in CUM to advance over an argument
1535 of mode MODE and data type TYPE.
1536 (TYPE is null for libcalls where that information may not be available.) */
1538 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1539 function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1541 /* Determine where to put an argument to a function.
1542 Value is zero to push the argument on the stack,
1543 or a hard register in which to store the argument.
1545 MODE is the argument's machine mode.
1546 TYPE is the data type of the argument (as a tree).
1547 This is null for libcalls where that information may
1548 not be available.
1549 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1550 the preceding args and about the function being called.
1551 NAMED is nonzero if this argument is a named parameter
1552 (otherwise it is an extra parameter matching an ellipsis).
1554 On RS/6000 the first eight words of non-FP are normally in registers
1555 and the rest are pushed. The first 13 FP args are in registers.
1557 If this is floating-point and no prototype is specified, we use
1558 both an FP and integer register (or possibly FP reg and stack). Library
1559 functions (when TYPE is zero) always have the proper types for args,
1560 so we can pass the FP value just in one register. emit_library_function
1561 doesn't support EXPR_LIST anyway. */
1563 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1564 function_arg (&CUM, MODE, TYPE, NAMED)
1566 /* If defined, a C expression which determines whether, and in which
1567 direction, to pad out an argument with extra space. The value
1568 should be of type `enum direction': either `upward' to pad above
1569 the argument, `downward' to pad below, or `none' to inhibit
1570 padding. */
1572 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1574 /* If defined, a C expression that gives the alignment boundary, in bits,
1575 of an argument with the specified mode and type. If it is not defined,
1576 PARM_BOUNDARY is used for all arguments. */
1578 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1579 function_arg_boundary (MODE, TYPE)
1581 #define PAD_VARARGS_DOWN \
1582 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1584 /* Output assembler code to FILE to increment profiler label # LABELNO
1585 for profiling a function entry. */
1587 #define FUNCTION_PROFILER(FILE, LABELNO) \
1588 output_function_profiler ((FILE), (LABELNO));
1590 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1591 the stack pointer does not matter. No definition is equivalent to
1592 always zero.
1594 On the RS/6000, this is nonzero because we can restore the stack from
1595 its backpointer, which we maintain. */
1596 #define EXIT_IGNORE_STACK 1
1598 /* Define this macro as a C expression that is nonzero for registers
1599 that are used by the epilogue or the return' pattern. The stack
1600 and frame pointer registers are already be assumed to be used as
1601 needed. */
1603 #define EPILOGUE_USES(REGNO) \
1604 ((reload_completed && (REGNO) == LR_REGNO) \
1605 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1606 || (crtl->calls_eh_return \
1607 && TARGET_AIX \
1608 && (REGNO) == 2))
1611 /* TRAMPOLINE_TEMPLATE deleted */
1613 /* Length in units of the trampoline for entering a nested function. */
1615 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1617 /* Emit RTL insns to initialize the variable parts of a trampoline.
1618 FNADDR is an RTX for the address of the function's pure code.
1619 CXT is an RTX for the static chain value for the function. */
1621 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1622 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1624 /* Definitions for __builtin_return_address and __builtin_frame_address.
1625 __builtin_return_address (0) should give link register (65), enable
1626 this. */
1627 /* This should be uncommented, so that the link register is used, but
1628 currently this would result in unmatched insns and spilling fixed
1629 registers so we'll leave it for another day. When these problems are
1630 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1631 (mrs) */
1632 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1634 /* Number of bytes into the frame return addresses can be found. See
1635 rs6000_stack_info in rs6000.c for more information on how the different
1636 abi's store the return address. */
1637 #define RETURN_ADDRESS_OFFSET \
1638 ((DEFAULT_ABI == ABI_AIX \
1639 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1640 (DEFAULT_ABI == ABI_V4) ? 4 : \
1641 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1643 /* The current return address is in link register (65). The return address
1644 of anything farther back is accessed normally at an offset of 8 from the
1645 frame pointer. */
1646 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1647 (rs6000_return_addr (COUNT, FRAME))
1650 /* Definitions for register eliminations.
1652 We have two registers that can be eliminated on the RS/6000. First, the
1653 frame pointer register can often be eliminated in favor of the stack
1654 pointer register. Secondly, the argument pointer register can always be
1655 eliminated; it is replaced with either the stack or frame pointer.
1657 In addition, we use the elimination mechanism to see if r30 is needed
1658 Initially we assume that it isn't. If it is, we spill it. This is done
1659 by making it an eliminable register. We replace it with itself so that
1660 if it isn't needed, then existing uses won't be modified. */
1662 /* This is an array of structures. Each structure initializes one pair
1663 of eliminable registers. The "from" register number is given first,
1664 followed by "to". Eliminations of the same "from" register are listed
1665 in order of preference. */
1666 #define ELIMINABLE_REGS \
1667 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1668 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1669 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1670 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1671 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1672 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1674 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1675 Frame pointer elimination is automatically handled.
1677 For the RS/6000, if frame pointer elimination is being done, we would like
1678 to convert ap into fp, not sp.
1680 We need r30 if -mminimal-toc was specified, and there are constant pool
1681 references. */
1683 #define CAN_ELIMINATE(FROM, TO) \
1684 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1685 ? ! frame_pointer_needed \
1686 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1687 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1688 : 1)
1690 /* Define the offset between two registers, one to be eliminated, and the other
1691 its replacement, at the start of a routine. */
1692 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1693 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1695 /* Addressing modes, and classification of registers for them. */
1697 #define HAVE_PRE_DECREMENT 1
1698 #define HAVE_PRE_INCREMENT 1
1699 #define HAVE_PRE_MODIFY_DISP 1
1700 #define HAVE_PRE_MODIFY_REG 1
1702 /* Macros to check register numbers against specific register classes. */
1704 /* These assume that REGNO is a hard or pseudo reg number.
1705 They give nonzero only if REGNO is a hard reg of the suitable class
1706 or a pseudo reg currently allocated to a suitable hard reg.
1707 Since they use reg_renumber, they are safe only once reg_renumber
1708 has been allocated, which happens in local-alloc.c. */
1710 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1711 ((REGNO) < FIRST_PSEUDO_REGISTER \
1712 ? (REGNO) <= 31 || (REGNO) == 67 \
1713 || (REGNO) == FRAME_POINTER_REGNUM \
1714 : (reg_renumber[REGNO] >= 0 \
1715 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1716 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1718 #define REGNO_OK_FOR_BASE_P(REGNO) \
1719 ((REGNO) < FIRST_PSEUDO_REGISTER \
1720 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1721 || (REGNO) == FRAME_POINTER_REGNUM \
1722 : (reg_renumber[REGNO] > 0 \
1723 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1724 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1726 /* Maximum number of registers that can appear in a valid memory address. */
1728 #define MAX_REGS_PER_ADDRESS 2
1730 /* Recognize any constant value that is a valid address. */
1732 #define CONSTANT_ADDRESS_P(X) \
1733 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1734 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1735 || GET_CODE (X) == HIGH)
1737 /* Nonzero if the constant value X is a legitimate general operand.
1738 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1740 On the RS/6000, all integer constants are acceptable, most won't be valid
1741 for particular insns, though. Only easy FP constants are
1742 acceptable. */
1744 #define LEGITIMATE_CONSTANT_P(X) \
1745 (((GET_CODE (X) != CONST_DOUBLE \
1746 && GET_CODE (X) != CONST_VECTOR) \
1747 || GET_MODE (X) == VOIDmode \
1748 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1749 || easy_fp_constant (X, GET_MODE (X)) \
1750 || easy_vector_constant (X, GET_MODE (X))) \
1751 && !rs6000_tls_referenced_p (X))
1753 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1754 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1755 && EASY_VECTOR_15((n) >> 1) \
1756 && ((n) & 1) == 0)
1758 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1759 and check its validity for a certain class.
1760 We have two alternate definitions for each of them.
1761 The usual definition accepts all pseudo regs; the other rejects
1762 them unless they have been allocated suitable hard regs.
1763 The symbol REG_OK_STRICT causes the latter definition to be used.
1765 Most source files want to accept pseudo regs in the hope that
1766 they will get allocated to the class that the insn wants them to be in.
1767 Source files for reload pass need to be strict.
1768 After reload, it makes no difference, since pseudo regs have
1769 been eliminated by then. */
1771 #ifdef REG_OK_STRICT
1772 # define REG_OK_STRICT_FLAG 1
1773 #else
1774 # define REG_OK_STRICT_FLAG 0
1775 #endif
1777 /* Nonzero if X is a hard reg that can be used as an index
1778 or if it is a pseudo reg in the non-strict case. */
1779 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1780 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1781 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1783 /* Nonzero if X is a hard reg that can be used as a base reg
1784 or if it is a pseudo reg in the non-strict case. */
1785 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1786 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1787 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1789 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1790 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
1792 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1793 that is a valid memory address for an instruction.
1794 The MODE argument is the machine mode for the MEM expression
1795 that wants to use this address.
1797 On the RS/6000, there are four valid addresses: a SYMBOL_REF that
1798 refers to a constant pool entry of an address (or the sum of it
1799 plus a constant), a short (16-bit signed) constant plus a register,
1800 the sum of two registers, or a register indirect, possibly with an
1801 auto-increment. For DFmode, DDmode and DImode with a constant plus
1802 register, we must ensure that both words are addressable or PowerPC64
1803 with offset word aligned.
1805 For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
1806 32-bit DImode, TImode), indexed addressing cannot be used because
1807 adjacent memory cells are accessed by adding word-sized offsets
1808 during assembly output. */
1810 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1811 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
1812 goto ADDR; \
1815 /* Try a machine-dependent way of reloading an illegitimate address
1816 operand. If we find one, push the reload and jump to WIN. This
1817 macro is used in only one place: `find_reloads_address' in reload.c.
1819 Implemented on rs6000 by rs6000_legitimize_reload_address.
1820 Note that (X) is evaluated twice; this is safe in current usage. */
1822 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1823 do { \
1824 int win; \
1825 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
1826 (int)(TYPE), (IND_LEVELS), &win); \
1827 if ( win ) \
1828 goto WIN; \
1829 } while (0)
1831 /* Go to LABEL if ADDR (a legitimate address expression)
1832 has an effect that depends on the machine mode it is used for. */
1834 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1835 do { \
1836 if (rs6000_mode_dependent_address (ADDR)) \
1837 goto LABEL; \
1838 } while (0)
1840 #define FIND_BASE_TERM rs6000_find_base_term
1842 /* The register number of the register used to address a table of
1843 static data addresses in memory. In some cases this register is
1844 defined by a processor's "application binary interface" (ABI).
1845 When this macro is defined, RTL is generated for this register
1846 once, as with the stack pointer and frame pointer registers. If
1847 this macro is not defined, it is up to the machine-dependent files
1848 to allocate such a register (if necessary). */
1850 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1851 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1853 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1855 /* Define this macro if the register defined by
1856 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1857 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1859 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1861 /* A C expression that is nonzero if X is a legitimate immediate
1862 operand on the target machine when generating position independent
1863 code. You can assume that X satisfies `CONSTANT_P', so you need
1864 not check this. You can also assume FLAG_PIC is true, so you need
1865 not check it either. You need not define this macro if all
1866 constants (including `SYMBOL_REF') can be immediate operands when
1867 generating position independent code. */
1869 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1871 /* Define this if some processing needs to be done immediately before
1872 emitting code for an insn. */
1874 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1875 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1877 /* Specify the machine mode that this machine uses
1878 for the index in the tablejump instruction. */
1879 #define CASE_VECTOR_MODE SImode
1881 /* Define as C expression which evaluates to nonzero if the tablejump
1882 instruction expects the table to contain offsets from the address of the
1883 table.
1884 Do not define this if the table should contain absolute addresses. */
1885 #define CASE_VECTOR_PC_RELATIVE 1
1887 /* Define this as 1 if `char' should by default be signed; else as 0. */
1888 #define DEFAULT_SIGNED_CHAR 0
1890 /* This flag, if defined, says the same insns that convert to a signed fixnum
1891 also convert validly to an unsigned one. */
1893 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1895 /* An integer expression for the size in bits of the largest integer machine
1896 mode that should actually be used. */
1898 /* Allow pairs of registers to be used, which is the intent of the default. */
1899 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1901 /* Max number of bytes we can move from memory to memory
1902 in one reasonably fast instruction. */
1903 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1904 #define MAX_MOVE_MAX 8
1906 /* Nonzero if access to memory by bytes is no faster than for words.
1907 Also nonzero if doing byte operations (specifically shifts) in registers
1908 is undesirable. */
1909 #define SLOW_BYTE_ACCESS 1
1911 /* Define if operations between registers always perform the operation
1912 on the full register even if a narrower mode is specified. */
1913 #define WORD_REGISTER_OPERATIONS
1915 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1916 will either zero-extend or sign-extend. The value of this macro should
1917 be the code that says which one of the two operations is implicitly
1918 done, UNKNOWN if none. */
1919 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1921 /* Define if loading short immediate values into registers sign extends. */
1922 #define SHORT_IMMEDIATES_SIGN_EXTEND
1924 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1925 is done just by pretending it is already truncated. */
1926 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1928 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1929 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1930 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1932 /* The CTZ patterns return -1 for input of zero. */
1933 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1935 /* Specify the machine mode that pointers have.
1936 After generation of rtl, the compiler makes no further distinction
1937 between pointers and any other objects of this machine mode. */
1938 #define Pmode (TARGET_32BIT ? SImode : DImode)
1940 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1941 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1943 /* Mode of a function address in a call instruction (for indexing purposes).
1944 Doesn't matter on RS/6000. */
1945 #define FUNCTION_MODE SImode
1947 /* Define this if addresses of constant functions
1948 shouldn't be put through pseudo regs where they can be cse'd.
1949 Desirable on machines where ordinary constants are expensive
1950 but a CALL with constant address is cheap. */
1951 #define NO_FUNCTION_CSE
1953 /* Define this to be nonzero if shift instructions ignore all but the low-order
1954 few bits.
1956 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1957 have been dropped from the PowerPC architecture. */
1959 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
1961 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1962 should be adjusted to reflect any required changes. This macro is used when
1963 there is some systematic length adjustment required that would be difficult
1964 to express in the length attribute. */
1966 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1968 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1969 COMPARE, return the mode to be used for the comparison. For
1970 floating-point, CCFPmode should be used. CCUNSmode should be used
1971 for unsigned comparisons. CCEQmode should be used when we are
1972 doing an inequality comparison on the result of a
1973 comparison. CCmode should be used in all other cases. */
1975 #define SELECT_CC_MODE(OP,X,Y) \
1976 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1977 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1978 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1979 ? CCEQmode : CCmode))
1981 /* Can the condition code MODE be safely reversed? This is safe in
1982 all cases on this port, because at present it doesn't use the
1983 trapping FP comparisons (fcmpo). */
1984 #define REVERSIBLE_CC_MODE(MODE) 1
1986 /* Given a condition code and a mode, return the inverse condition. */
1987 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1990 /* Control the assembler format that we output. */
1992 /* A C string constant describing how to begin a comment in the target
1993 assembler language. The compiler assumes that the comment will end at
1994 the end of the line. */
1995 #define ASM_COMMENT_START " #"
1997 /* Flag to say the TOC is initialized */
1998 extern int toc_initialized;
2000 /* Macro to output a special constant pool entry. Go to WIN if we output
2001 it. Otherwise, it is written the usual way.
2003 On the RS/6000, toc entries are handled this way. */
2005 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2006 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2008 output_toc (FILE, X, LABELNO, MODE); \
2009 goto WIN; \
2013 #ifdef HAVE_GAS_WEAK
2014 #define RS6000_WEAK 1
2015 #else
2016 #define RS6000_WEAK 0
2017 #endif
2019 #if RS6000_WEAK
2020 /* Used in lieu of ASM_WEAKEN_LABEL. */
2021 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2022 do \
2024 fputs ("\t.weak\t", (FILE)); \
2025 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2026 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2027 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2029 if (TARGET_XCOFF) \
2030 fputs ("[DS]", (FILE)); \
2031 fputs ("\n\t.weak\t.", (FILE)); \
2032 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2034 fputc ('\n', (FILE)); \
2035 if (VAL) \
2037 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2038 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2039 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2041 fputs ("\t.set\t.", (FILE)); \
2042 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2043 fputs (",.", (FILE)); \
2044 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2045 fputc ('\n', (FILE)); \
2049 while (0)
2050 #endif
2052 #if HAVE_GAS_WEAKREF
2053 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2054 do \
2056 fputs ("\t.weakref\t", (FILE)); \
2057 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2058 fputs (", ", (FILE)); \
2059 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2060 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2061 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2063 fputs ("\n\t.weakref\t.", (FILE)); \
2064 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2065 fputs (", .", (FILE)); \
2066 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2068 fputc ('\n', (FILE)); \
2069 } while (0)
2070 #endif
2072 /* This implements the `alias' attribute. */
2073 #undef ASM_OUTPUT_DEF_FROM_DECLS
2074 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2075 do \
2077 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2078 const char *name = IDENTIFIER_POINTER (TARGET); \
2079 if (TREE_CODE (DECL) == FUNCTION_DECL \
2080 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2082 if (TREE_PUBLIC (DECL)) \
2084 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2086 fputs ("\t.globl\t.", FILE); \
2087 RS6000_OUTPUT_BASENAME (FILE, alias); \
2088 putc ('\n', FILE); \
2091 else if (TARGET_XCOFF) \
2093 fputs ("\t.lglobl\t.", FILE); \
2094 RS6000_OUTPUT_BASENAME (FILE, alias); \
2095 putc ('\n', FILE); \
2097 fputs ("\t.set\t.", FILE); \
2098 RS6000_OUTPUT_BASENAME (FILE, alias); \
2099 fputs (",.", FILE); \
2100 RS6000_OUTPUT_BASENAME (FILE, name); \
2101 fputc ('\n', FILE); \
2103 ASM_OUTPUT_DEF (FILE, alias, name); \
2105 while (0)
2107 #define TARGET_ASM_FILE_START rs6000_file_start
2109 /* Output to assembler file text saying following lines
2110 may contain character constants, extra white space, comments, etc. */
2112 #define ASM_APP_ON ""
2114 /* Output to assembler file text saying following lines
2115 no longer contain unusual constructs. */
2117 #define ASM_APP_OFF ""
2119 /* How to refer to registers in assembler output.
2120 This sequence is indexed by compiler's hard-register-number (see above). */
2122 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2124 #define REGISTER_NAMES \
2126 &rs6000_reg_names[ 0][0], /* r0 */ \
2127 &rs6000_reg_names[ 1][0], /* r1 */ \
2128 &rs6000_reg_names[ 2][0], /* r2 */ \
2129 &rs6000_reg_names[ 3][0], /* r3 */ \
2130 &rs6000_reg_names[ 4][0], /* r4 */ \
2131 &rs6000_reg_names[ 5][0], /* r5 */ \
2132 &rs6000_reg_names[ 6][0], /* r6 */ \
2133 &rs6000_reg_names[ 7][0], /* r7 */ \
2134 &rs6000_reg_names[ 8][0], /* r8 */ \
2135 &rs6000_reg_names[ 9][0], /* r9 */ \
2136 &rs6000_reg_names[10][0], /* r10 */ \
2137 &rs6000_reg_names[11][0], /* r11 */ \
2138 &rs6000_reg_names[12][0], /* r12 */ \
2139 &rs6000_reg_names[13][0], /* r13 */ \
2140 &rs6000_reg_names[14][0], /* r14 */ \
2141 &rs6000_reg_names[15][0], /* r15 */ \
2142 &rs6000_reg_names[16][0], /* r16 */ \
2143 &rs6000_reg_names[17][0], /* r17 */ \
2144 &rs6000_reg_names[18][0], /* r18 */ \
2145 &rs6000_reg_names[19][0], /* r19 */ \
2146 &rs6000_reg_names[20][0], /* r20 */ \
2147 &rs6000_reg_names[21][0], /* r21 */ \
2148 &rs6000_reg_names[22][0], /* r22 */ \
2149 &rs6000_reg_names[23][0], /* r23 */ \
2150 &rs6000_reg_names[24][0], /* r24 */ \
2151 &rs6000_reg_names[25][0], /* r25 */ \
2152 &rs6000_reg_names[26][0], /* r26 */ \
2153 &rs6000_reg_names[27][0], /* r27 */ \
2154 &rs6000_reg_names[28][0], /* r28 */ \
2155 &rs6000_reg_names[29][0], /* r29 */ \
2156 &rs6000_reg_names[30][0], /* r30 */ \
2157 &rs6000_reg_names[31][0], /* r31 */ \
2159 &rs6000_reg_names[32][0], /* fr0 */ \
2160 &rs6000_reg_names[33][0], /* fr1 */ \
2161 &rs6000_reg_names[34][0], /* fr2 */ \
2162 &rs6000_reg_names[35][0], /* fr3 */ \
2163 &rs6000_reg_names[36][0], /* fr4 */ \
2164 &rs6000_reg_names[37][0], /* fr5 */ \
2165 &rs6000_reg_names[38][0], /* fr6 */ \
2166 &rs6000_reg_names[39][0], /* fr7 */ \
2167 &rs6000_reg_names[40][0], /* fr8 */ \
2168 &rs6000_reg_names[41][0], /* fr9 */ \
2169 &rs6000_reg_names[42][0], /* fr10 */ \
2170 &rs6000_reg_names[43][0], /* fr11 */ \
2171 &rs6000_reg_names[44][0], /* fr12 */ \
2172 &rs6000_reg_names[45][0], /* fr13 */ \
2173 &rs6000_reg_names[46][0], /* fr14 */ \
2174 &rs6000_reg_names[47][0], /* fr15 */ \
2175 &rs6000_reg_names[48][0], /* fr16 */ \
2176 &rs6000_reg_names[49][0], /* fr17 */ \
2177 &rs6000_reg_names[50][0], /* fr18 */ \
2178 &rs6000_reg_names[51][0], /* fr19 */ \
2179 &rs6000_reg_names[52][0], /* fr20 */ \
2180 &rs6000_reg_names[53][0], /* fr21 */ \
2181 &rs6000_reg_names[54][0], /* fr22 */ \
2182 &rs6000_reg_names[55][0], /* fr23 */ \
2183 &rs6000_reg_names[56][0], /* fr24 */ \
2184 &rs6000_reg_names[57][0], /* fr25 */ \
2185 &rs6000_reg_names[58][0], /* fr26 */ \
2186 &rs6000_reg_names[59][0], /* fr27 */ \
2187 &rs6000_reg_names[60][0], /* fr28 */ \
2188 &rs6000_reg_names[61][0], /* fr29 */ \
2189 &rs6000_reg_names[62][0], /* fr30 */ \
2190 &rs6000_reg_names[63][0], /* fr31 */ \
2192 &rs6000_reg_names[64][0], /* mq */ \
2193 &rs6000_reg_names[65][0], /* lr */ \
2194 &rs6000_reg_names[66][0], /* ctr */ \
2195 &rs6000_reg_names[67][0], /* ap */ \
2197 &rs6000_reg_names[68][0], /* cr0 */ \
2198 &rs6000_reg_names[69][0], /* cr1 */ \
2199 &rs6000_reg_names[70][0], /* cr2 */ \
2200 &rs6000_reg_names[71][0], /* cr3 */ \
2201 &rs6000_reg_names[72][0], /* cr4 */ \
2202 &rs6000_reg_names[73][0], /* cr5 */ \
2203 &rs6000_reg_names[74][0], /* cr6 */ \
2204 &rs6000_reg_names[75][0], /* cr7 */ \
2206 &rs6000_reg_names[76][0], /* xer */ \
2208 &rs6000_reg_names[77][0], /* v0 */ \
2209 &rs6000_reg_names[78][0], /* v1 */ \
2210 &rs6000_reg_names[79][0], /* v2 */ \
2211 &rs6000_reg_names[80][0], /* v3 */ \
2212 &rs6000_reg_names[81][0], /* v4 */ \
2213 &rs6000_reg_names[82][0], /* v5 */ \
2214 &rs6000_reg_names[83][0], /* v6 */ \
2215 &rs6000_reg_names[84][0], /* v7 */ \
2216 &rs6000_reg_names[85][0], /* v8 */ \
2217 &rs6000_reg_names[86][0], /* v9 */ \
2218 &rs6000_reg_names[87][0], /* v10 */ \
2219 &rs6000_reg_names[88][0], /* v11 */ \
2220 &rs6000_reg_names[89][0], /* v12 */ \
2221 &rs6000_reg_names[90][0], /* v13 */ \
2222 &rs6000_reg_names[91][0], /* v14 */ \
2223 &rs6000_reg_names[92][0], /* v15 */ \
2224 &rs6000_reg_names[93][0], /* v16 */ \
2225 &rs6000_reg_names[94][0], /* v17 */ \
2226 &rs6000_reg_names[95][0], /* v18 */ \
2227 &rs6000_reg_names[96][0], /* v19 */ \
2228 &rs6000_reg_names[97][0], /* v20 */ \
2229 &rs6000_reg_names[98][0], /* v21 */ \
2230 &rs6000_reg_names[99][0], /* v22 */ \
2231 &rs6000_reg_names[100][0], /* v23 */ \
2232 &rs6000_reg_names[101][0], /* v24 */ \
2233 &rs6000_reg_names[102][0], /* v25 */ \
2234 &rs6000_reg_names[103][0], /* v26 */ \
2235 &rs6000_reg_names[104][0], /* v27 */ \
2236 &rs6000_reg_names[105][0], /* v28 */ \
2237 &rs6000_reg_names[106][0], /* v29 */ \
2238 &rs6000_reg_names[107][0], /* v30 */ \
2239 &rs6000_reg_names[108][0], /* v31 */ \
2240 &rs6000_reg_names[109][0], /* vrsave */ \
2241 &rs6000_reg_names[110][0], /* vscr */ \
2242 &rs6000_reg_names[111][0], /* spe_acc */ \
2243 &rs6000_reg_names[112][0], /* spefscr */ \
2244 &rs6000_reg_names[113][0], /* sfp */ \
2247 /* Table of additional register names to use in user input. */
2249 #define ADDITIONAL_REGISTER_NAMES \
2250 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2251 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2252 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2253 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2254 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2255 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2256 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2257 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2258 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2259 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2260 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2261 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2262 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2263 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2264 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2265 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2266 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2267 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2268 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2269 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2270 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2271 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2272 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2273 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2274 {"vrsave", 109}, {"vscr", 110}, \
2275 {"spe_acc", 111}, {"spefscr", 112}, \
2276 /* no additional names for: mq, lr, ctr, ap */ \
2277 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2278 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2279 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2281 /* Text to write out after a CALL that may be replaced by glue code by
2282 the loader. This depends on the AIX version. */
2283 #define RS6000_CALL_GLUE "cror 31,31,31"
2285 /* This is how to output an element of a case-vector that is relative. */
2287 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2288 do { char buf[100]; \
2289 fputs ("\t.long ", FILE); \
2290 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2291 assemble_name (FILE, buf); \
2292 putc ('-', FILE); \
2293 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2294 assemble_name (FILE, buf); \
2295 putc ('\n', FILE); \
2296 } while (0)
2298 /* This is how to output an assembler line
2299 that says to advance the location counter
2300 to a multiple of 2**LOG bytes. */
2302 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2303 if ((LOG) != 0) \
2304 fprintf (FILE, "\t.align %d\n", (LOG))
2306 /* Pick up the return address upon entry to a procedure. Used for
2307 dwarf2 unwind information. This also enables the table driven
2308 mechanism. */
2310 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2311 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2313 /* Describe how we implement __builtin_eh_return. */
2314 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2315 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2317 /* Print operand X (an rtx) in assembler syntax to file FILE.
2318 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2319 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2321 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2323 /* Define which CODE values are valid. */
2325 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2326 ((CODE) == '.' || (CODE) == '&')
2328 /* Print a memory address as an operand to reference that memory location. */
2330 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2332 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
2333 do \
2334 if (!rs6000_output_addr_const_extra (STREAM, X)) \
2335 goto FAIL; \
2336 while (0)
2338 /* uncomment for disabling the corresponding default options */
2339 /* #define MACHINE_no_sched_interblock */
2340 /* #define MACHINE_no_sched_speculative */
2341 /* #define MACHINE_no_sched_speculative_load */
2343 /* General flags. */
2344 extern int flag_pic;
2345 extern int optimize;
2346 extern int flag_expensive_optimizations;
2347 extern int frame_pointer_needed;
2349 enum rs6000_builtins
2351 /* AltiVec builtins. */
2352 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2353 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2354 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2355 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2356 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2357 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2358 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2359 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2360 ALTIVEC_BUILTIN_VADDUBM,
2361 ALTIVEC_BUILTIN_VADDUHM,
2362 ALTIVEC_BUILTIN_VADDUWM,
2363 ALTIVEC_BUILTIN_VADDFP,
2364 ALTIVEC_BUILTIN_VADDCUW,
2365 ALTIVEC_BUILTIN_VADDUBS,
2366 ALTIVEC_BUILTIN_VADDSBS,
2367 ALTIVEC_BUILTIN_VADDUHS,
2368 ALTIVEC_BUILTIN_VADDSHS,
2369 ALTIVEC_BUILTIN_VADDUWS,
2370 ALTIVEC_BUILTIN_VADDSWS,
2371 ALTIVEC_BUILTIN_VAND,
2372 ALTIVEC_BUILTIN_VANDC,
2373 ALTIVEC_BUILTIN_VAVGUB,
2374 ALTIVEC_BUILTIN_VAVGSB,
2375 ALTIVEC_BUILTIN_VAVGUH,
2376 ALTIVEC_BUILTIN_VAVGSH,
2377 ALTIVEC_BUILTIN_VAVGUW,
2378 ALTIVEC_BUILTIN_VAVGSW,
2379 ALTIVEC_BUILTIN_VCFUX,
2380 ALTIVEC_BUILTIN_VCFSX,
2381 ALTIVEC_BUILTIN_VCTSXS,
2382 ALTIVEC_BUILTIN_VCTUXS,
2383 ALTIVEC_BUILTIN_VCMPBFP,
2384 ALTIVEC_BUILTIN_VCMPEQUB,
2385 ALTIVEC_BUILTIN_VCMPEQUH,
2386 ALTIVEC_BUILTIN_VCMPEQUW,
2387 ALTIVEC_BUILTIN_VCMPEQFP,
2388 ALTIVEC_BUILTIN_VCMPGEFP,
2389 ALTIVEC_BUILTIN_VCMPGTUB,
2390 ALTIVEC_BUILTIN_VCMPGTSB,
2391 ALTIVEC_BUILTIN_VCMPGTUH,
2392 ALTIVEC_BUILTIN_VCMPGTSH,
2393 ALTIVEC_BUILTIN_VCMPGTUW,
2394 ALTIVEC_BUILTIN_VCMPGTSW,
2395 ALTIVEC_BUILTIN_VCMPGTFP,
2396 ALTIVEC_BUILTIN_VEXPTEFP,
2397 ALTIVEC_BUILTIN_VLOGEFP,
2398 ALTIVEC_BUILTIN_VMADDFP,
2399 ALTIVEC_BUILTIN_VMAXUB,
2400 ALTIVEC_BUILTIN_VMAXSB,
2401 ALTIVEC_BUILTIN_VMAXUH,
2402 ALTIVEC_BUILTIN_VMAXSH,
2403 ALTIVEC_BUILTIN_VMAXUW,
2404 ALTIVEC_BUILTIN_VMAXSW,
2405 ALTIVEC_BUILTIN_VMAXFP,
2406 ALTIVEC_BUILTIN_VMHADDSHS,
2407 ALTIVEC_BUILTIN_VMHRADDSHS,
2408 ALTIVEC_BUILTIN_VMLADDUHM,
2409 ALTIVEC_BUILTIN_VMRGHB,
2410 ALTIVEC_BUILTIN_VMRGHH,
2411 ALTIVEC_BUILTIN_VMRGHW,
2412 ALTIVEC_BUILTIN_VMRGLB,
2413 ALTIVEC_BUILTIN_VMRGLH,
2414 ALTIVEC_BUILTIN_VMRGLW,
2415 ALTIVEC_BUILTIN_VMSUMUBM,
2416 ALTIVEC_BUILTIN_VMSUMMBM,
2417 ALTIVEC_BUILTIN_VMSUMUHM,
2418 ALTIVEC_BUILTIN_VMSUMSHM,
2419 ALTIVEC_BUILTIN_VMSUMUHS,
2420 ALTIVEC_BUILTIN_VMSUMSHS,
2421 ALTIVEC_BUILTIN_VMINUB,
2422 ALTIVEC_BUILTIN_VMINSB,
2423 ALTIVEC_BUILTIN_VMINUH,
2424 ALTIVEC_BUILTIN_VMINSH,
2425 ALTIVEC_BUILTIN_VMINUW,
2426 ALTIVEC_BUILTIN_VMINSW,
2427 ALTIVEC_BUILTIN_VMINFP,
2428 ALTIVEC_BUILTIN_VMULEUB,
2429 ALTIVEC_BUILTIN_VMULESB,
2430 ALTIVEC_BUILTIN_VMULEUH,
2431 ALTIVEC_BUILTIN_VMULESH,
2432 ALTIVEC_BUILTIN_VMULOUB,
2433 ALTIVEC_BUILTIN_VMULOSB,
2434 ALTIVEC_BUILTIN_VMULOUH,
2435 ALTIVEC_BUILTIN_VMULOSH,
2436 ALTIVEC_BUILTIN_VNMSUBFP,
2437 ALTIVEC_BUILTIN_VNOR,
2438 ALTIVEC_BUILTIN_VOR,
2439 ALTIVEC_BUILTIN_VSEL_4SI,
2440 ALTIVEC_BUILTIN_VSEL_4SF,
2441 ALTIVEC_BUILTIN_VSEL_8HI,
2442 ALTIVEC_BUILTIN_VSEL_16QI,
2443 ALTIVEC_BUILTIN_VPERM_4SI,
2444 ALTIVEC_BUILTIN_VPERM_4SF,
2445 ALTIVEC_BUILTIN_VPERM_8HI,
2446 ALTIVEC_BUILTIN_VPERM_16QI,
2447 ALTIVEC_BUILTIN_VPKUHUM,
2448 ALTIVEC_BUILTIN_VPKUWUM,
2449 ALTIVEC_BUILTIN_VPKPX,
2450 ALTIVEC_BUILTIN_VPKUHSS,
2451 ALTIVEC_BUILTIN_VPKSHSS,
2452 ALTIVEC_BUILTIN_VPKUWSS,
2453 ALTIVEC_BUILTIN_VPKSWSS,
2454 ALTIVEC_BUILTIN_VPKUHUS,
2455 ALTIVEC_BUILTIN_VPKSHUS,
2456 ALTIVEC_BUILTIN_VPKUWUS,
2457 ALTIVEC_BUILTIN_VPKSWUS,
2458 ALTIVEC_BUILTIN_VREFP,
2459 ALTIVEC_BUILTIN_VRFIM,
2460 ALTIVEC_BUILTIN_VRFIN,
2461 ALTIVEC_BUILTIN_VRFIP,
2462 ALTIVEC_BUILTIN_VRFIZ,
2463 ALTIVEC_BUILTIN_VRLB,
2464 ALTIVEC_BUILTIN_VRLH,
2465 ALTIVEC_BUILTIN_VRLW,
2466 ALTIVEC_BUILTIN_VRSQRTEFP,
2467 ALTIVEC_BUILTIN_VSLB,
2468 ALTIVEC_BUILTIN_VSLH,
2469 ALTIVEC_BUILTIN_VSLW,
2470 ALTIVEC_BUILTIN_VSL,
2471 ALTIVEC_BUILTIN_VSLO,
2472 ALTIVEC_BUILTIN_VSPLTB,
2473 ALTIVEC_BUILTIN_VSPLTH,
2474 ALTIVEC_BUILTIN_VSPLTW,
2475 ALTIVEC_BUILTIN_VSPLTISB,
2476 ALTIVEC_BUILTIN_VSPLTISH,
2477 ALTIVEC_BUILTIN_VSPLTISW,
2478 ALTIVEC_BUILTIN_VSRB,
2479 ALTIVEC_BUILTIN_VSRH,
2480 ALTIVEC_BUILTIN_VSRW,
2481 ALTIVEC_BUILTIN_VSRAB,
2482 ALTIVEC_BUILTIN_VSRAH,
2483 ALTIVEC_BUILTIN_VSRAW,
2484 ALTIVEC_BUILTIN_VSR,
2485 ALTIVEC_BUILTIN_VSRO,
2486 ALTIVEC_BUILTIN_VSUBUBM,
2487 ALTIVEC_BUILTIN_VSUBUHM,
2488 ALTIVEC_BUILTIN_VSUBUWM,
2489 ALTIVEC_BUILTIN_VSUBFP,
2490 ALTIVEC_BUILTIN_VSUBCUW,
2491 ALTIVEC_BUILTIN_VSUBUBS,
2492 ALTIVEC_BUILTIN_VSUBSBS,
2493 ALTIVEC_BUILTIN_VSUBUHS,
2494 ALTIVEC_BUILTIN_VSUBSHS,
2495 ALTIVEC_BUILTIN_VSUBUWS,
2496 ALTIVEC_BUILTIN_VSUBSWS,
2497 ALTIVEC_BUILTIN_VSUM4UBS,
2498 ALTIVEC_BUILTIN_VSUM4SBS,
2499 ALTIVEC_BUILTIN_VSUM4SHS,
2500 ALTIVEC_BUILTIN_VSUM2SWS,
2501 ALTIVEC_BUILTIN_VSUMSWS,
2502 ALTIVEC_BUILTIN_VXOR,
2503 ALTIVEC_BUILTIN_VSLDOI_16QI,
2504 ALTIVEC_BUILTIN_VSLDOI_8HI,
2505 ALTIVEC_BUILTIN_VSLDOI_4SI,
2506 ALTIVEC_BUILTIN_VSLDOI_4SF,
2507 ALTIVEC_BUILTIN_VUPKHSB,
2508 ALTIVEC_BUILTIN_VUPKHPX,
2509 ALTIVEC_BUILTIN_VUPKHSH,
2510 ALTIVEC_BUILTIN_VUPKLSB,
2511 ALTIVEC_BUILTIN_VUPKLPX,
2512 ALTIVEC_BUILTIN_VUPKLSH,
2513 ALTIVEC_BUILTIN_MTVSCR,
2514 ALTIVEC_BUILTIN_MFVSCR,
2515 ALTIVEC_BUILTIN_DSSALL,
2516 ALTIVEC_BUILTIN_DSS,
2517 ALTIVEC_BUILTIN_LVSL,
2518 ALTIVEC_BUILTIN_LVSR,
2519 ALTIVEC_BUILTIN_DSTT,
2520 ALTIVEC_BUILTIN_DSTST,
2521 ALTIVEC_BUILTIN_DSTSTT,
2522 ALTIVEC_BUILTIN_DST,
2523 ALTIVEC_BUILTIN_LVEBX,
2524 ALTIVEC_BUILTIN_LVEHX,
2525 ALTIVEC_BUILTIN_LVEWX,
2526 ALTIVEC_BUILTIN_LVXL,
2527 ALTIVEC_BUILTIN_LVX,
2528 ALTIVEC_BUILTIN_STVX,
2529 ALTIVEC_BUILTIN_LVLX,
2530 ALTIVEC_BUILTIN_LVLXL,
2531 ALTIVEC_BUILTIN_LVRX,
2532 ALTIVEC_BUILTIN_LVRXL,
2533 ALTIVEC_BUILTIN_STVEBX,
2534 ALTIVEC_BUILTIN_STVEHX,
2535 ALTIVEC_BUILTIN_STVEWX,
2536 ALTIVEC_BUILTIN_STVXL,
2537 ALTIVEC_BUILTIN_STVLX,
2538 ALTIVEC_BUILTIN_STVLXL,
2539 ALTIVEC_BUILTIN_STVRX,
2540 ALTIVEC_BUILTIN_STVRXL,
2541 ALTIVEC_BUILTIN_VCMPBFP_P,
2542 ALTIVEC_BUILTIN_VCMPEQFP_P,
2543 ALTIVEC_BUILTIN_VCMPEQUB_P,
2544 ALTIVEC_BUILTIN_VCMPEQUH_P,
2545 ALTIVEC_BUILTIN_VCMPEQUW_P,
2546 ALTIVEC_BUILTIN_VCMPGEFP_P,
2547 ALTIVEC_BUILTIN_VCMPGTFP_P,
2548 ALTIVEC_BUILTIN_VCMPGTSB_P,
2549 ALTIVEC_BUILTIN_VCMPGTSH_P,
2550 ALTIVEC_BUILTIN_VCMPGTSW_P,
2551 ALTIVEC_BUILTIN_VCMPGTUB_P,
2552 ALTIVEC_BUILTIN_VCMPGTUH_P,
2553 ALTIVEC_BUILTIN_VCMPGTUW_P,
2554 ALTIVEC_BUILTIN_ABSS_V4SI,
2555 ALTIVEC_BUILTIN_ABSS_V8HI,
2556 ALTIVEC_BUILTIN_ABSS_V16QI,
2557 ALTIVEC_BUILTIN_ABS_V4SI,
2558 ALTIVEC_BUILTIN_ABS_V4SF,
2559 ALTIVEC_BUILTIN_ABS_V8HI,
2560 ALTIVEC_BUILTIN_ABS_V16QI,
2561 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2562 ALTIVEC_BUILTIN_MASK_FOR_STORE,
2563 ALTIVEC_BUILTIN_VEC_INIT_V4SI,
2564 ALTIVEC_BUILTIN_VEC_INIT_V8HI,
2565 ALTIVEC_BUILTIN_VEC_INIT_V16QI,
2566 ALTIVEC_BUILTIN_VEC_INIT_V4SF,
2567 ALTIVEC_BUILTIN_VEC_SET_V4SI,
2568 ALTIVEC_BUILTIN_VEC_SET_V8HI,
2569 ALTIVEC_BUILTIN_VEC_SET_V16QI,
2570 ALTIVEC_BUILTIN_VEC_SET_V4SF,
2571 ALTIVEC_BUILTIN_VEC_EXT_V4SI,
2572 ALTIVEC_BUILTIN_VEC_EXT_V8HI,
2573 ALTIVEC_BUILTIN_VEC_EXT_V16QI,
2574 ALTIVEC_BUILTIN_VEC_EXT_V4SF,
2576 /* Altivec overloaded builtins. */
2577 ALTIVEC_BUILTIN_VCMPEQ_P,
2578 ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2579 ALTIVEC_BUILTIN_VCMPGT_P,
2580 ALTIVEC_BUILTIN_VCMPGE_P,
2581 ALTIVEC_BUILTIN_VEC_ABS,
2582 ALTIVEC_BUILTIN_VEC_ABSS,
2583 ALTIVEC_BUILTIN_VEC_ADD,
2584 ALTIVEC_BUILTIN_VEC_ADDC,
2585 ALTIVEC_BUILTIN_VEC_ADDS,
2586 ALTIVEC_BUILTIN_VEC_AND,
2587 ALTIVEC_BUILTIN_VEC_ANDC,
2588 ALTIVEC_BUILTIN_VEC_AVG,
2589 ALTIVEC_BUILTIN_VEC_EXTRACT,
2590 ALTIVEC_BUILTIN_VEC_CEIL,
2591 ALTIVEC_BUILTIN_VEC_CMPB,
2592 ALTIVEC_BUILTIN_VEC_CMPEQ,
2593 ALTIVEC_BUILTIN_VEC_CMPEQUB,
2594 ALTIVEC_BUILTIN_VEC_CMPEQUH,
2595 ALTIVEC_BUILTIN_VEC_CMPEQUW,
2596 ALTIVEC_BUILTIN_VEC_CMPGE,
2597 ALTIVEC_BUILTIN_VEC_CMPGT,
2598 ALTIVEC_BUILTIN_VEC_CMPLE,
2599 ALTIVEC_BUILTIN_VEC_CMPLT,
2600 ALTIVEC_BUILTIN_VEC_CTF,
2601 ALTIVEC_BUILTIN_VEC_CTS,
2602 ALTIVEC_BUILTIN_VEC_CTU,
2603 ALTIVEC_BUILTIN_VEC_DST,
2604 ALTIVEC_BUILTIN_VEC_DSTST,
2605 ALTIVEC_BUILTIN_VEC_DSTSTT,
2606 ALTIVEC_BUILTIN_VEC_DSTT,
2607 ALTIVEC_BUILTIN_VEC_EXPTE,
2608 ALTIVEC_BUILTIN_VEC_FLOOR,
2609 ALTIVEC_BUILTIN_VEC_LD,
2610 ALTIVEC_BUILTIN_VEC_LDE,
2611 ALTIVEC_BUILTIN_VEC_LDL,
2612 ALTIVEC_BUILTIN_VEC_LOGE,
2613 ALTIVEC_BUILTIN_VEC_LVEBX,
2614 ALTIVEC_BUILTIN_VEC_LVEHX,
2615 ALTIVEC_BUILTIN_VEC_LVEWX,
2616 ALTIVEC_BUILTIN_VEC_LVLX,
2617 ALTIVEC_BUILTIN_VEC_LVLXL,
2618 ALTIVEC_BUILTIN_VEC_LVRX,
2619 ALTIVEC_BUILTIN_VEC_LVRXL,
2620 ALTIVEC_BUILTIN_VEC_LVSL,
2621 ALTIVEC_BUILTIN_VEC_LVSR,
2622 ALTIVEC_BUILTIN_VEC_MADD,
2623 ALTIVEC_BUILTIN_VEC_MADDS,
2624 ALTIVEC_BUILTIN_VEC_MAX,
2625 ALTIVEC_BUILTIN_VEC_MERGEH,
2626 ALTIVEC_BUILTIN_VEC_MERGEL,
2627 ALTIVEC_BUILTIN_VEC_MIN,
2628 ALTIVEC_BUILTIN_VEC_MLADD,
2629 ALTIVEC_BUILTIN_VEC_MPERM,
2630 ALTIVEC_BUILTIN_VEC_MRADDS,
2631 ALTIVEC_BUILTIN_VEC_MRGHB,
2632 ALTIVEC_BUILTIN_VEC_MRGHH,
2633 ALTIVEC_BUILTIN_VEC_MRGHW,
2634 ALTIVEC_BUILTIN_VEC_MRGLB,
2635 ALTIVEC_BUILTIN_VEC_MRGLH,
2636 ALTIVEC_BUILTIN_VEC_MRGLW,
2637 ALTIVEC_BUILTIN_VEC_MSUM,
2638 ALTIVEC_BUILTIN_VEC_MSUMS,
2639 ALTIVEC_BUILTIN_VEC_MTVSCR,
2640 ALTIVEC_BUILTIN_VEC_MULE,
2641 ALTIVEC_BUILTIN_VEC_MULO,
2642 ALTIVEC_BUILTIN_VEC_NMSUB,
2643 ALTIVEC_BUILTIN_VEC_NOR,
2644 ALTIVEC_BUILTIN_VEC_OR,
2645 ALTIVEC_BUILTIN_VEC_PACK,
2646 ALTIVEC_BUILTIN_VEC_PACKPX,
2647 ALTIVEC_BUILTIN_VEC_PACKS,
2648 ALTIVEC_BUILTIN_VEC_PACKSU,
2649 ALTIVEC_BUILTIN_VEC_PERM,
2650 ALTIVEC_BUILTIN_VEC_RE,
2651 ALTIVEC_BUILTIN_VEC_RL,
2652 ALTIVEC_BUILTIN_VEC_ROUND,
2653 ALTIVEC_BUILTIN_VEC_RSQRTE,
2654 ALTIVEC_BUILTIN_VEC_SEL,
2655 ALTIVEC_BUILTIN_VEC_SL,
2656 ALTIVEC_BUILTIN_VEC_SLD,
2657 ALTIVEC_BUILTIN_VEC_SLL,
2658 ALTIVEC_BUILTIN_VEC_SLO,
2659 ALTIVEC_BUILTIN_VEC_SPLAT,
2660 ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2661 ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2662 ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2663 ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2664 ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2665 ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2666 ALTIVEC_BUILTIN_VEC_SPLTB,
2667 ALTIVEC_BUILTIN_VEC_SPLTH,
2668 ALTIVEC_BUILTIN_VEC_SPLTW,
2669 ALTIVEC_BUILTIN_VEC_SR,
2670 ALTIVEC_BUILTIN_VEC_SRA,
2671 ALTIVEC_BUILTIN_VEC_SRL,
2672 ALTIVEC_BUILTIN_VEC_SRO,
2673 ALTIVEC_BUILTIN_VEC_ST,
2674 ALTIVEC_BUILTIN_VEC_STE,
2675 ALTIVEC_BUILTIN_VEC_STL,
2676 ALTIVEC_BUILTIN_VEC_STVEBX,
2677 ALTIVEC_BUILTIN_VEC_STVEHX,
2678 ALTIVEC_BUILTIN_VEC_STVEWX,
2679 ALTIVEC_BUILTIN_VEC_STVLX,
2680 ALTIVEC_BUILTIN_VEC_STVLXL,
2681 ALTIVEC_BUILTIN_VEC_STVRX,
2682 ALTIVEC_BUILTIN_VEC_STVRXL,
2683 ALTIVEC_BUILTIN_VEC_SUB,
2684 ALTIVEC_BUILTIN_VEC_SUBC,
2685 ALTIVEC_BUILTIN_VEC_SUBS,
2686 ALTIVEC_BUILTIN_VEC_SUM2S,
2687 ALTIVEC_BUILTIN_VEC_SUM4S,
2688 ALTIVEC_BUILTIN_VEC_SUMS,
2689 ALTIVEC_BUILTIN_VEC_TRUNC,
2690 ALTIVEC_BUILTIN_VEC_UNPACKH,
2691 ALTIVEC_BUILTIN_VEC_UNPACKL,
2692 ALTIVEC_BUILTIN_VEC_VADDFP,
2693 ALTIVEC_BUILTIN_VEC_VADDSBS,
2694 ALTIVEC_BUILTIN_VEC_VADDSHS,
2695 ALTIVEC_BUILTIN_VEC_VADDSWS,
2696 ALTIVEC_BUILTIN_VEC_VADDUBM,
2697 ALTIVEC_BUILTIN_VEC_VADDUBS,
2698 ALTIVEC_BUILTIN_VEC_VADDUHM,
2699 ALTIVEC_BUILTIN_VEC_VADDUHS,
2700 ALTIVEC_BUILTIN_VEC_VADDUWM,
2701 ALTIVEC_BUILTIN_VEC_VADDUWS,
2702 ALTIVEC_BUILTIN_VEC_VAVGSB,
2703 ALTIVEC_BUILTIN_VEC_VAVGSH,
2704 ALTIVEC_BUILTIN_VEC_VAVGSW,
2705 ALTIVEC_BUILTIN_VEC_VAVGUB,
2706 ALTIVEC_BUILTIN_VEC_VAVGUH,
2707 ALTIVEC_BUILTIN_VEC_VAVGUW,
2708 ALTIVEC_BUILTIN_VEC_VCFSX,
2709 ALTIVEC_BUILTIN_VEC_VCFUX,
2710 ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2711 ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2712 ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2713 ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2714 ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2715 ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2716 ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2717 ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2718 ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2719 ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2720 ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2721 ALTIVEC_BUILTIN_VEC_VMAXFP,
2722 ALTIVEC_BUILTIN_VEC_VMAXSB,
2723 ALTIVEC_BUILTIN_VEC_VMAXSH,
2724 ALTIVEC_BUILTIN_VEC_VMAXSW,
2725 ALTIVEC_BUILTIN_VEC_VMAXUB,
2726 ALTIVEC_BUILTIN_VEC_VMAXUH,
2727 ALTIVEC_BUILTIN_VEC_VMAXUW,
2728 ALTIVEC_BUILTIN_VEC_VMINFP,
2729 ALTIVEC_BUILTIN_VEC_VMINSB,
2730 ALTIVEC_BUILTIN_VEC_VMINSH,
2731 ALTIVEC_BUILTIN_VEC_VMINSW,
2732 ALTIVEC_BUILTIN_VEC_VMINUB,
2733 ALTIVEC_BUILTIN_VEC_VMINUH,
2734 ALTIVEC_BUILTIN_VEC_VMINUW,
2735 ALTIVEC_BUILTIN_VEC_VMRGHB,
2736 ALTIVEC_BUILTIN_VEC_VMRGHH,
2737 ALTIVEC_BUILTIN_VEC_VMRGHW,
2738 ALTIVEC_BUILTIN_VEC_VMRGLB,
2739 ALTIVEC_BUILTIN_VEC_VMRGLH,
2740 ALTIVEC_BUILTIN_VEC_VMRGLW,
2741 ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2742 ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2743 ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2744 ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2745 ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2746 ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2747 ALTIVEC_BUILTIN_VEC_VMULESB,
2748 ALTIVEC_BUILTIN_VEC_VMULESH,
2749 ALTIVEC_BUILTIN_VEC_VMULEUB,
2750 ALTIVEC_BUILTIN_VEC_VMULEUH,
2751 ALTIVEC_BUILTIN_VEC_VMULOSB,
2752 ALTIVEC_BUILTIN_VEC_VMULOSH,
2753 ALTIVEC_BUILTIN_VEC_VMULOUB,
2754 ALTIVEC_BUILTIN_VEC_VMULOUH,
2755 ALTIVEC_BUILTIN_VEC_VPKSHSS,
2756 ALTIVEC_BUILTIN_VEC_VPKSHUS,
2757 ALTIVEC_BUILTIN_VEC_VPKSWSS,
2758 ALTIVEC_BUILTIN_VEC_VPKSWUS,
2759 ALTIVEC_BUILTIN_VEC_VPKUHUM,
2760 ALTIVEC_BUILTIN_VEC_VPKUHUS,
2761 ALTIVEC_BUILTIN_VEC_VPKUWUM,
2762 ALTIVEC_BUILTIN_VEC_VPKUWUS,
2763 ALTIVEC_BUILTIN_VEC_VRLB,
2764 ALTIVEC_BUILTIN_VEC_VRLH,
2765 ALTIVEC_BUILTIN_VEC_VRLW,
2766 ALTIVEC_BUILTIN_VEC_VSLB,
2767 ALTIVEC_BUILTIN_VEC_VSLH,
2768 ALTIVEC_BUILTIN_VEC_VSLW,
2769 ALTIVEC_BUILTIN_VEC_VSPLTB,
2770 ALTIVEC_BUILTIN_VEC_VSPLTH,
2771 ALTIVEC_BUILTIN_VEC_VSPLTW,
2772 ALTIVEC_BUILTIN_VEC_VSRAB,
2773 ALTIVEC_BUILTIN_VEC_VSRAH,
2774 ALTIVEC_BUILTIN_VEC_VSRAW,
2775 ALTIVEC_BUILTIN_VEC_VSRB,
2776 ALTIVEC_BUILTIN_VEC_VSRH,
2777 ALTIVEC_BUILTIN_VEC_VSRW,
2778 ALTIVEC_BUILTIN_VEC_VSUBFP,
2779 ALTIVEC_BUILTIN_VEC_VSUBSBS,
2780 ALTIVEC_BUILTIN_VEC_VSUBSHS,
2781 ALTIVEC_BUILTIN_VEC_VSUBSWS,
2782 ALTIVEC_BUILTIN_VEC_VSUBUBM,
2783 ALTIVEC_BUILTIN_VEC_VSUBUBS,
2784 ALTIVEC_BUILTIN_VEC_VSUBUHM,
2785 ALTIVEC_BUILTIN_VEC_VSUBUHS,
2786 ALTIVEC_BUILTIN_VEC_VSUBUWM,
2787 ALTIVEC_BUILTIN_VEC_VSUBUWS,
2788 ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2789 ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2790 ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2791 ALTIVEC_BUILTIN_VEC_VUPKHPX,
2792 ALTIVEC_BUILTIN_VEC_VUPKHSB,
2793 ALTIVEC_BUILTIN_VEC_VUPKHSH,
2794 ALTIVEC_BUILTIN_VEC_VUPKLPX,
2795 ALTIVEC_BUILTIN_VEC_VUPKLSB,
2796 ALTIVEC_BUILTIN_VEC_VUPKLSH,
2797 ALTIVEC_BUILTIN_VEC_XOR,
2798 ALTIVEC_BUILTIN_VEC_STEP,
2799 ALTIVEC_BUILTIN_VEC_PROMOTE,
2800 ALTIVEC_BUILTIN_VEC_INSERT,
2801 ALTIVEC_BUILTIN_VEC_SPLATS,
2802 ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_SPLATS,
2804 /* SPE builtins. */
2805 SPE_BUILTIN_EVADDW,
2806 SPE_BUILTIN_EVAND,
2807 SPE_BUILTIN_EVANDC,
2808 SPE_BUILTIN_EVDIVWS,
2809 SPE_BUILTIN_EVDIVWU,
2810 SPE_BUILTIN_EVEQV,
2811 SPE_BUILTIN_EVFSADD,
2812 SPE_BUILTIN_EVFSDIV,
2813 SPE_BUILTIN_EVFSMUL,
2814 SPE_BUILTIN_EVFSSUB,
2815 SPE_BUILTIN_EVLDDX,
2816 SPE_BUILTIN_EVLDHX,
2817 SPE_BUILTIN_EVLDWX,
2818 SPE_BUILTIN_EVLHHESPLATX,
2819 SPE_BUILTIN_EVLHHOSSPLATX,
2820 SPE_BUILTIN_EVLHHOUSPLATX,
2821 SPE_BUILTIN_EVLWHEX,
2822 SPE_BUILTIN_EVLWHOSX,
2823 SPE_BUILTIN_EVLWHOUX,
2824 SPE_BUILTIN_EVLWHSPLATX,
2825 SPE_BUILTIN_EVLWWSPLATX,
2826 SPE_BUILTIN_EVMERGEHI,
2827 SPE_BUILTIN_EVMERGEHILO,
2828 SPE_BUILTIN_EVMERGELO,
2829 SPE_BUILTIN_EVMERGELOHI,
2830 SPE_BUILTIN_EVMHEGSMFAA,
2831 SPE_BUILTIN_EVMHEGSMFAN,
2832 SPE_BUILTIN_EVMHEGSMIAA,
2833 SPE_BUILTIN_EVMHEGSMIAN,
2834 SPE_BUILTIN_EVMHEGUMIAA,
2835 SPE_BUILTIN_EVMHEGUMIAN,
2836 SPE_BUILTIN_EVMHESMF,
2837 SPE_BUILTIN_EVMHESMFA,
2838 SPE_BUILTIN_EVMHESMFAAW,
2839 SPE_BUILTIN_EVMHESMFANW,
2840 SPE_BUILTIN_EVMHESMI,
2841 SPE_BUILTIN_EVMHESMIA,
2842 SPE_BUILTIN_EVMHESMIAAW,
2843 SPE_BUILTIN_EVMHESMIANW,
2844 SPE_BUILTIN_EVMHESSF,
2845 SPE_BUILTIN_EVMHESSFA,
2846 SPE_BUILTIN_EVMHESSFAAW,
2847 SPE_BUILTIN_EVMHESSFANW,
2848 SPE_BUILTIN_EVMHESSIAAW,
2849 SPE_BUILTIN_EVMHESSIANW,
2850 SPE_BUILTIN_EVMHEUMI,
2851 SPE_BUILTIN_EVMHEUMIA,
2852 SPE_BUILTIN_EVMHEUMIAAW,
2853 SPE_BUILTIN_EVMHEUMIANW,
2854 SPE_BUILTIN_EVMHEUSIAAW,
2855 SPE_BUILTIN_EVMHEUSIANW,
2856 SPE_BUILTIN_EVMHOGSMFAA,
2857 SPE_BUILTIN_EVMHOGSMFAN,
2858 SPE_BUILTIN_EVMHOGSMIAA,
2859 SPE_BUILTIN_EVMHOGSMIAN,
2860 SPE_BUILTIN_EVMHOGUMIAA,
2861 SPE_BUILTIN_EVMHOGUMIAN,
2862 SPE_BUILTIN_EVMHOSMF,
2863 SPE_BUILTIN_EVMHOSMFA,
2864 SPE_BUILTIN_EVMHOSMFAAW,
2865 SPE_BUILTIN_EVMHOSMFANW,
2866 SPE_BUILTIN_EVMHOSMI,
2867 SPE_BUILTIN_EVMHOSMIA,
2868 SPE_BUILTIN_EVMHOSMIAAW,
2869 SPE_BUILTIN_EVMHOSMIANW,
2870 SPE_BUILTIN_EVMHOSSF,
2871 SPE_BUILTIN_EVMHOSSFA,
2872 SPE_BUILTIN_EVMHOSSFAAW,
2873 SPE_BUILTIN_EVMHOSSFANW,
2874 SPE_BUILTIN_EVMHOSSIAAW,
2875 SPE_BUILTIN_EVMHOSSIANW,
2876 SPE_BUILTIN_EVMHOUMI,
2877 SPE_BUILTIN_EVMHOUMIA,
2878 SPE_BUILTIN_EVMHOUMIAAW,
2879 SPE_BUILTIN_EVMHOUMIANW,
2880 SPE_BUILTIN_EVMHOUSIAAW,
2881 SPE_BUILTIN_EVMHOUSIANW,
2882 SPE_BUILTIN_EVMWHSMF,
2883 SPE_BUILTIN_EVMWHSMFA,
2884 SPE_BUILTIN_EVMWHSMI,
2885 SPE_BUILTIN_EVMWHSMIA,
2886 SPE_BUILTIN_EVMWHSSF,
2887 SPE_BUILTIN_EVMWHSSFA,
2888 SPE_BUILTIN_EVMWHUMI,
2889 SPE_BUILTIN_EVMWHUMIA,
2890 SPE_BUILTIN_EVMWLSMIAAW,
2891 SPE_BUILTIN_EVMWLSMIANW,
2892 SPE_BUILTIN_EVMWLSSIAAW,
2893 SPE_BUILTIN_EVMWLSSIANW,
2894 SPE_BUILTIN_EVMWLUMI,
2895 SPE_BUILTIN_EVMWLUMIA,
2896 SPE_BUILTIN_EVMWLUMIAAW,
2897 SPE_BUILTIN_EVMWLUMIANW,
2898 SPE_BUILTIN_EVMWLUSIAAW,
2899 SPE_BUILTIN_EVMWLUSIANW,
2900 SPE_BUILTIN_EVMWSMF,
2901 SPE_BUILTIN_EVMWSMFA,
2902 SPE_BUILTIN_EVMWSMFAA,
2903 SPE_BUILTIN_EVMWSMFAN,
2904 SPE_BUILTIN_EVMWSMI,
2905 SPE_BUILTIN_EVMWSMIA,
2906 SPE_BUILTIN_EVMWSMIAA,
2907 SPE_BUILTIN_EVMWSMIAN,
2908 SPE_BUILTIN_EVMWHSSFAA,
2909 SPE_BUILTIN_EVMWSSF,
2910 SPE_BUILTIN_EVMWSSFA,
2911 SPE_BUILTIN_EVMWSSFAA,
2912 SPE_BUILTIN_EVMWSSFAN,
2913 SPE_BUILTIN_EVMWUMI,
2914 SPE_BUILTIN_EVMWUMIA,
2915 SPE_BUILTIN_EVMWUMIAA,
2916 SPE_BUILTIN_EVMWUMIAN,
2917 SPE_BUILTIN_EVNAND,
2918 SPE_BUILTIN_EVNOR,
2919 SPE_BUILTIN_EVOR,
2920 SPE_BUILTIN_EVORC,
2921 SPE_BUILTIN_EVRLW,
2922 SPE_BUILTIN_EVSLW,
2923 SPE_BUILTIN_EVSRWS,
2924 SPE_BUILTIN_EVSRWU,
2925 SPE_BUILTIN_EVSTDDX,
2926 SPE_BUILTIN_EVSTDHX,
2927 SPE_BUILTIN_EVSTDWX,
2928 SPE_BUILTIN_EVSTWHEX,
2929 SPE_BUILTIN_EVSTWHOX,
2930 SPE_BUILTIN_EVSTWWEX,
2931 SPE_BUILTIN_EVSTWWOX,
2932 SPE_BUILTIN_EVSUBFW,
2933 SPE_BUILTIN_EVXOR,
2934 SPE_BUILTIN_EVABS,
2935 SPE_BUILTIN_EVADDSMIAAW,
2936 SPE_BUILTIN_EVADDSSIAAW,
2937 SPE_BUILTIN_EVADDUMIAAW,
2938 SPE_BUILTIN_EVADDUSIAAW,
2939 SPE_BUILTIN_EVCNTLSW,
2940 SPE_BUILTIN_EVCNTLZW,
2941 SPE_BUILTIN_EVEXTSB,
2942 SPE_BUILTIN_EVEXTSH,
2943 SPE_BUILTIN_EVFSABS,
2944 SPE_BUILTIN_EVFSCFSF,
2945 SPE_BUILTIN_EVFSCFSI,
2946 SPE_BUILTIN_EVFSCFUF,
2947 SPE_BUILTIN_EVFSCFUI,
2948 SPE_BUILTIN_EVFSCTSF,
2949 SPE_BUILTIN_EVFSCTSI,
2950 SPE_BUILTIN_EVFSCTSIZ,
2951 SPE_BUILTIN_EVFSCTUF,
2952 SPE_BUILTIN_EVFSCTUI,
2953 SPE_BUILTIN_EVFSCTUIZ,
2954 SPE_BUILTIN_EVFSNABS,
2955 SPE_BUILTIN_EVFSNEG,
2956 SPE_BUILTIN_EVMRA,
2957 SPE_BUILTIN_EVNEG,
2958 SPE_BUILTIN_EVRNDW,
2959 SPE_BUILTIN_EVSUBFSMIAAW,
2960 SPE_BUILTIN_EVSUBFSSIAAW,
2961 SPE_BUILTIN_EVSUBFUMIAAW,
2962 SPE_BUILTIN_EVSUBFUSIAAW,
2963 SPE_BUILTIN_EVADDIW,
2964 SPE_BUILTIN_EVLDD,
2965 SPE_BUILTIN_EVLDH,
2966 SPE_BUILTIN_EVLDW,
2967 SPE_BUILTIN_EVLHHESPLAT,
2968 SPE_BUILTIN_EVLHHOSSPLAT,
2969 SPE_BUILTIN_EVLHHOUSPLAT,
2970 SPE_BUILTIN_EVLWHE,
2971 SPE_BUILTIN_EVLWHOS,
2972 SPE_BUILTIN_EVLWHOU,
2973 SPE_BUILTIN_EVLWHSPLAT,
2974 SPE_BUILTIN_EVLWWSPLAT,
2975 SPE_BUILTIN_EVRLWI,
2976 SPE_BUILTIN_EVSLWI,
2977 SPE_BUILTIN_EVSRWIS,
2978 SPE_BUILTIN_EVSRWIU,
2979 SPE_BUILTIN_EVSTDD,
2980 SPE_BUILTIN_EVSTDH,
2981 SPE_BUILTIN_EVSTDW,
2982 SPE_BUILTIN_EVSTWHE,
2983 SPE_BUILTIN_EVSTWHO,
2984 SPE_BUILTIN_EVSTWWE,
2985 SPE_BUILTIN_EVSTWWO,
2986 SPE_BUILTIN_EVSUBIFW,
2988 /* Compares. */
2989 SPE_BUILTIN_EVCMPEQ,
2990 SPE_BUILTIN_EVCMPGTS,
2991 SPE_BUILTIN_EVCMPGTU,
2992 SPE_BUILTIN_EVCMPLTS,
2993 SPE_BUILTIN_EVCMPLTU,
2994 SPE_BUILTIN_EVFSCMPEQ,
2995 SPE_BUILTIN_EVFSCMPGT,
2996 SPE_BUILTIN_EVFSCMPLT,
2997 SPE_BUILTIN_EVFSTSTEQ,
2998 SPE_BUILTIN_EVFSTSTGT,
2999 SPE_BUILTIN_EVFSTSTLT,
3001 /* EVSEL compares. */
3002 SPE_BUILTIN_EVSEL_CMPEQ,
3003 SPE_BUILTIN_EVSEL_CMPGTS,
3004 SPE_BUILTIN_EVSEL_CMPGTU,
3005 SPE_BUILTIN_EVSEL_CMPLTS,
3006 SPE_BUILTIN_EVSEL_CMPLTU,
3007 SPE_BUILTIN_EVSEL_FSCMPEQ,
3008 SPE_BUILTIN_EVSEL_FSCMPGT,
3009 SPE_BUILTIN_EVSEL_FSCMPLT,
3010 SPE_BUILTIN_EVSEL_FSTSTEQ,
3011 SPE_BUILTIN_EVSEL_FSTSTGT,
3012 SPE_BUILTIN_EVSEL_FSTSTLT,
3014 SPE_BUILTIN_EVSPLATFI,
3015 SPE_BUILTIN_EVSPLATI,
3016 SPE_BUILTIN_EVMWHSSMAA,
3017 SPE_BUILTIN_EVMWHSMFAA,
3018 SPE_BUILTIN_EVMWHSMIAA,
3019 SPE_BUILTIN_EVMWHUSIAA,
3020 SPE_BUILTIN_EVMWHUMIAA,
3021 SPE_BUILTIN_EVMWHSSFAN,
3022 SPE_BUILTIN_EVMWHSSIAN,
3023 SPE_BUILTIN_EVMWHSMFAN,
3024 SPE_BUILTIN_EVMWHSMIAN,
3025 SPE_BUILTIN_EVMWHUSIAN,
3026 SPE_BUILTIN_EVMWHUMIAN,
3027 SPE_BUILTIN_EVMWHGSSFAA,
3028 SPE_BUILTIN_EVMWHGSMFAA,
3029 SPE_BUILTIN_EVMWHGSMIAA,
3030 SPE_BUILTIN_EVMWHGUMIAA,
3031 SPE_BUILTIN_EVMWHGSSFAN,
3032 SPE_BUILTIN_EVMWHGSMFAN,
3033 SPE_BUILTIN_EVMWHGSMIAN,
3034 SPE_BUILTIN_EVMWHGUMIAN,
3035 SPE_BUILTIN_MTSPEFSCR,
3036 SPE_BUILTIN_MFSPEFSCR,
3037 SPE_BUILTIN_BRINC,
3039 /* PAIRED builtins. */
3040 PAIRED_BUILTIN_DIVV2SF3,
3041 PAIRED_BUILTIN_ABSV2SF2,
3042 PAIRED_BUILTIN_NEGV2SF2,
3043 PAIRED_BUILTIN_SQRTV2SF2,
3044 PAIRED_BUILTIN_ADDV2SF3,
3045 PAIRED_BUILTIN_SUBV2SF3,
3046 PAIRED_BUILTIN_RESV2SF2,
3047 PAIRED_BUILTIN_MULV2SF3,
3048 PAIRED_BUILTIN_MSUB,
3049 PAIRED_BUILTIN_MADD,
3050 PAIRED_BUILTIN_NMSUB,
3051 PAIRED_BUILTIN_NMADD,
3052 PAIRED_BUILTIN_NABSV2SF2,
3053 PAIRED_BUILTIN_SUM0,
3054 PAIRED_BUILTIN_SUM1,
3055 PAIRED_BUILTIN_MULS0,
3056 PAIRED_BUILTIN_MULS1,
3057 PAIRED_BUILTIN_MERGE00,
3058 PAIRED_BUILTIN_MERGE01,
3059 PAIRED_BUILTIN_MERGE10,
3060 PAIRED_BUILTIN_MERGE11,
3061 PAIRED_BUILTIN_MADDS0,
3062 PAIRED_BUILTIN_MADDS1,
3063 PAIRED_BUILTIN_STX,
3064 PAIRED_BUILTIN_LX,
3065 PAIRED_BUILTIN_SELV2SF4,
3066 PAIRED_BUILTIN_CMPU0,
3067 PAIRED_BUILTIN_CMPU1,
3069 RS6000_BUILTIN_RECIP,
3070 RS6000_BUILTIN_RECIPF,
3071 RS6000_BUILTIN_RSQRTF,
3073 RS6000_BUILTIN_COUNT
3076 enum rs6000_builtin_type_index
3078 RS6000_BTI_NOT_OPAQUE,
3079 RS6000_BTI_opaque_V2SI,
3080 RS6000_BTI_opaque_V2SF,
3081 RS6000_BTI_opaque_p_V2SI,
3082 RS6000_BTI_opaque_V4SI,
3083 RS6000_BTI_V16QI,
3084 RS6000_BTI_V2SI,
3085 RS6000_BTI_V2SF,
3086 RS6000_BTI_V4HI,
3087 RS6000_BTI_V4SI,
3088 RS6000_BTI_V4SF,
3089 RS6000_BTI_V8HI,
3090 RS6000_BTI_unsigned_V16QI,
3091 RS6000_BTI_unsigned_V8HI,
3092 RS6000_BTI_unsigned_V4SI,
3093 RS6000_BTI_bool_char, /* __bool char */
3094 RS6000_BTI_bool_short, /* __bool short */
3095 RS6000_BTI_bool_int, /* __bool int */
3096 RS6000_BTI_pixel, /* __pixel */
3097 RS6000_BTI_bool_V16QI, /* __vector __bool char */
3098 RS6000_BTI_bool_V8HI, /* __vector __bool short */
3099 RS6000_BTI_bool_V4SI, /* __vector __bool int */
3100 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
3101 RS6000_BTI_long, /* long_integer_type_node */
3102 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
3103 RS6000_BTI_INTQI, /* intQI_type_node */
3104 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
3105 RS6000_BTI_INTHI, /* intHI_type_node */
3106 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
3107 RS6000_BTI_INTSI, /* intSI_type_node */
3108 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
3109 RS6000_BTI_float, /* float_type_node */
3110 RS6000_BTI_void, /* void_type_node */
3111 RS6000_BTI_MAX
3115 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
3116 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
3117 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
3118 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
3119 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
3120 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
3121 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
3122 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
3123 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
3124 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
3125 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
3126 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
3127 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
3128 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
3129 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
3130 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
3131 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
3132 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
3133 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
3134 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
3135 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
3136 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
3138 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
3139 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
3140 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
3141 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
3142 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
3143 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
3144 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
3145 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
3146 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
3147 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
3149 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
3150 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];