1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Contracts
; use Contracts
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Elists
; use Elists
;
33 with Exp_Aggr
; use Exp_Aggr
;
34 with Exp_Atag
; use Exp_Atag
;
35 with Exp_Ch2
; use Exp_Ch2
;
36 with Exp_Ch3
; use Exp_Ch3
;
37 with Exp_Ch7
; use Exp_Ch7
;
38 with Exp_Ch9
; use Exp_Ch9
;
39 with Exp_Dbug
; use Exp_Dbug
;
40 with Exp_Disp
; use Exp_Disp
;
41 with Exp_Dist
; use Exp_Dist
;
42 with Exp_Intr
; use Exp_Intr
;
43 with Exp_Pakd
; use Exp_Pakd
;
44 with Exp_Tss
; use Exp_Tss
;
45 with Exp_Util
; use Exp_Util
;
46 with Freeze
; use Freeze
;
47 with Ghost
; use Ghost
;
48 with Inline
; use Inline
;
50 with Namet
; use Namet
;
51 with Nlists
; use Nlists
;
52 with Nmake
; use Nmake
;
54 with Restrict
; use Restrict
;
55 with Rident
; use Rident
;
56 with Rtsfind
; use Rtsfind
;
58 with Sem_Aux
; use Sem_Aux
;
59 with Sem_Ch6
; use Sem_Ch6
;
60 with Sem_Ch8
; use Sem_Ch8
;
61 with Sem_Ch12
; use Sem_Ch12
;
62 with Sem_Ch13
; use Sem_Ch13
;
63 with Sem_Dim
; use Sem_Dim
;
64 with Sem_Disp
; use Sem_Disp
;
65 with Sem_Dist
; use Sem_Dist
;
66 with Sem_Eval
; use Sem_Eval
;
67 with Sem_Mech
; use Sem_Mech
;
68 with Sem_Res
; use Sem_Res
;
69 with Sem_SCIL
; use Sem_SCIL
;
70 with Sem_Util
; use Sem_Util
;
71 with Sinfo
; use Sinfo
;
72 with Snames
; use Snames
;
73 with Stand
; use Stand
;
74 with Targparm
; use Targparm
;
75 with Tbuild
; use Tbuild
;
76 with Uintp
; use Uintp
;
77 with Validsw
; use Validsw
;
79 package body Exp_Ch6
is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call
: Node_Id
;
87 Function_Id
: Entity_Id
;
88 Return_Object
: Node_Id
;
89 Is_Access
: Boolean := False);
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
99 (Function_Call
: Node_Id
;
100 Function_Id
: Entity_Id
;
101 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
102 Alloc_Form_Exp
: Node_Id
:= Empty
;
103 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
112 (Func_Call
: Node_Id
;
114 Ptr_Typ
: Entity_Id
:= Empty
;
115 Master_Exp
: Node_Id
:= Empty
);
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call
: Node_Id
;
124 Function_Id
: Entity_Id
;
125 Master_Actual
: Node_Id
;
126 Chain
: Node_Id
:= Empty
);
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
133 -- access type. If the function call is the initialization expression for a
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
140 procedure Check_Overriding_Operation
(Subp
: Entity_Id
);
141 -- Subp is a dispatching operation. Check whether it may override an
142 -- inherited private operation, in which case its DT entry is that of
143 -- the hidden operation, not the one it may have received earlier.
144 -- This must be done before emitting the code to set the corresponding
145 -- DT to the address of the subprogram. The actual placement of Subp in
146 -- the proper place in the list of primitive operations is done in
147 -- Declare_Inherited_Private_Subprograms, which also has to deal with
148 -- implicit operations. This duplication is unavoidable for now???
150 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
);
151 -- This procedure is called only if the subprogram body N, whose spec
152 -- has the given entity Spec, contains a parameterless recursive call.
153 -- It attempts to generate runtime code to detect if this a case of
154 -- infinite recursion.
156 -- The body is scanned to determine dependencies. If the only external
157 -- dependencies are on a small set of scalar variables, then the values
158 -- of these variables are captured on entry to the subprogram, and if
159 -- the values are not changed for the call, we know immediately that
160 -- we have an infinite recursion.
162 procedure Expand_Actuals
(N
: in out Node_Id
; Subp
: Entity_Id
);
163 -- For each actual of an in-out or out parameter which is a numeric
164 -- (view) conversion of the form T (A), where A denotes a variable,
165 -- we insert the declaration:
167 -- Temp : T[ := T (A)];
169 -- prior to the call. Then we replace the actual with a reference to Temp,
170 -- and append the assignment:
172 -- A := TypeA (Temp);
174 -- after the call. Here TypeA is the actual type of variable A. For out
175 -- parameters, the initial declaration has no expression. If A is not an
176 -- entity name, we generate instead:
178 -- Var : TypeA renames A;
179 -- Temp : T := Var; -- omitting expression for out parameter.
181 -- Var := TypeA (Temp);
183 -- For other in-out parameters, we emit the required constraint checks
184 -- before and/or after the call.
186 -- For all parameter modes, actuals that denote components and slices of
187 -- packed arrays are expanded into suitable temporaries.
189 -- For non-scalar objects that are possibly unaligned, add call by copy
190 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
192 -- For OUT and IN OUT parameters, add predicate checks after the call
193 -- based on the predicates of the actual type.
195 -- The parameter N is IN OUT because in some cases, the expansion code
196 -- rewrites the call as an expression actions with the call inside. In
197 -- this case N is reset to point to the inside call so that the caller
198 -- can continue processing of this call.
200 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
);
201 -- N is a function call which returns a controlled object. Transform the
202 -- call into a temporary which retrieves the returned object from the
203 -- secondary stack using 'reference.
205 procedure Expand_Non_Function_Return
(N
: Node_Id
);
206 -- Expand a simple return statement found in a procedure body, entry body,
207 -- accept statement, or an extended return statement. Note that all non-
208 -- function returns are simple return statements.
210 function Expand_Protected_Object_Reference
212 Scop
: Entity_Id
) return Node_Id
;
214 procedure Expand_Protected_Subprogram_Call
218 -- A call to a protected subprogram within the protected object may appear
219 -- as a regular call. The list of actuals must be expanded to contain a
220 -- reference to the object itself, and the call becomes a call to the
221 -- corresponding protected subprogram.
223 function Has_Unconstrained_Access_Discriminants
224 (Subtyp
: Entity_Id
) return Boolean;
225 -- Returns True if the given subtype is unconstrained and has one
226 -- or more access discriminants.
228 procedure Expand_Simple_Function_Return
(N
: Node_Id
);
229 -- Expand simple return from function. In the case where we are returning
230 -- from a function body this is called by Expand_N_Simple_Return_Statement.
232 procedure Rewrite_Function_Call_For_C
(N
: Node_Id
);
233 -- When generating C code, replace a call to a function that returns an
234 -- array into the generated procedure with an additional out parameter.
236 procedure Set_Enclosing_Sec_Stack_Return
(N
: Node_Id
);
237 -- N is a return statement for a function that returns its result on the
238 -- secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
239 -- function and all blocks and loops that the return statement is jumping
240 -- out of. This ensures that the secondary stack is not released; otherwise
241 -- the function result would be reclaimed before returning to the caller.
243 ----------------------------------------------
244 -- Add_Access_Actual_To_Build_In_Place_Call --
245 ----------------------------------------------
247 procedure Add_Access_Actual_To_Build_In_Place_Call
248 (Function_Call
: Node_Id
;
249 Function_Id
: Entity_Id
;
250 Return_Object
: Node_Id
;
251 Is_Access
: Boolean := False)
253 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
254 Obj_Address
: Node_Id
;
255 Obj_Acc_Formal
: Entity_Id
;
258 -- Locate the implicit access parameter in the called function
260 Obj_Acc_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
);
262 -- If no return object is provided, then pass null
264 if not Present
(Return_Object
) then
265 Obj_Address
:= Make_Null
(Loc
);
266 Set_Parent
(Obj_Address
, Function_Call
);
268 -- If Return_Object is already an expression of an access type, then use
269 -- it directly, since it must be an access value denoting the return
270 -- object, and couldn't possibly be the return object itself.
273 Obj_Address
:= Return_Object
;
274 Set_Parent
(Obj_Address
, Function_Call
);
276 -- Apply Unrestricted_Access to caller's return object
280 Make_Attribute_Reference
(Loc
,
281 Prefix
=> Return_Object
,
282 Attribute_Name
=> Name_Unrestricted_Access
);
284 Set_Parent
(Return_Object
, Obj_Address
);
285 Set_Parent
(Obj_Address
, Function_Call
);
288 Analyze_And_Resolve
(Obj_Address
, Etype
(Obj_Acc_Formal
));
290 -- Build the parameter association for the new actual and add it to the
291 -- end of the function's actuals.
293 Add_Extra_Actual_To_Call
(Function_Call
, Obj_Acc_Formal
, Obj_Address
);
294 end Add_Access_Actual_To_Build_In_Place_Call
;
296 ------------------------------------------------------
297 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
298 ------------------------------------------------------
300 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
301 (Function_Call
: Node_Id
;
302 Function_Id
: Entity_Id
;
303 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
304 Alloc_Form_Exp
: Node_Id
:= Empty
;
305 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
))
307 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
308 Alloc_Form_Actual
: Node_Id
;
309 Alloc_Form_Formal
: Node_Id
;
310 Pool_Formal
: Node_Id
;
313 -- The allocation form generally doesn't need to be passed in the case
314 -- of a constrained result subtype, since normally the caller performs
315 -- the allocation in that case. However this formal is still needed in
316 -- the case where the function has a tagged result, because generally
317 -- such functions can be called in a dispatching context and such calls
318 -- must be handled like calls to class-wide functions.
320 if Is_Constrained
(Underlying_Type
(Etype
(Function_Id
)))
321 and then not Is_Tagged_Type
(Underlying_Type
(Etype
(Function_Id
)))
326 -- Locate the implicit allocation form parameter in the called function.
327 -- Maybe it would be better for each implicit formal of a build-in-place
328 -- function to have a flag or a Uint attribute to identify it. ???
330 Alloc_Form_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Alloc_Form
);
332 if Present
(Alloc_Form_Exp
) then
333 pragma Assert
(Alloc_Form
= Unspecified
);
335 Alloc_Form_Actual
:= Alloc_Form_Exp
;
338 pragma Assert
(Alloc_Form
/= Unspecified
);
341 Make_Integer_Literal
(Loc
,
342 Intval
=> UI_From_Int
(BIP_Allocation_Form
'Pos (Alloc_Form
)));
345 Analyze_And_Resolve
(Alloc_Form_Actual
, Etype
(Alloc_Form_Formal
));
347 -- Build the parameter association for the new actual and add it to the
348 -- end of the function's actuals.
350 Add_Extra_Actual_To_Call
351 (Function_Call
, Alloc_Form_Formal
, Alloc_Form_Actual
);
353 -- Pass the Storage_Pool parameter. This parameter is omitted on
354 -- ZFP as those targets do not support pools.
356 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
357 Pool_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Storage_Pool
);
358 Analyze_And_Resolve
(Pool_Actual
, Etype
(Pool_Formal
));
359 Add_Extra_Actual_To_Call
360 (Function_Call
, Pool_Formal
, Pool_Actual
);
362 end Add_Unconstrained_Actuals_To_Build_In_Place_Call
;
364 -----------------------------------------------------------
365 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
366 -----------------------------------------------------------
368 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
369 (Func_Call
: Node_Id
;
371 Ptr_Typ
: Entity_Id
:= Empty
;
372 Master_Exp
: Node_Id
:= Empty
)
375 if not Needs_BIP_Finalization_Master
(Func_Id
) then
380 Formal
: constant Entity_Id
:=
381 Build_In_Place_Formal
(Func_Id
, BIP_Finalization_Master
);
382 Loc
: constant Source_Ptr
:= Sloc
(Func_Call
);
385 Desig_Typ
: Entity_Id
;
388 -- If there is a finalization master actual, such as the implicit
389 -- finalization master of an enclosing build-in-place function,
390 -- then this must be added as an extra actual of the call.
392 if Present
(Master_Exp
) then
393 Actual
:= Master_Exp
;
395 -- Case where the context does not require an actual master
397 elsif No
(Ptr_Typ
) then
398 Actual
:= Make_Null
(Loc
);
401 Desig_Typ
:= Directly_Designated_Type
(Ptr_Typ
);
403 -- Check for a library-level access type whose designated type has
404 -- supressed finalization. Such an access types lack a master.
405 -- Pass a null actual to the callee in order to signal a missing
408 if Is_Library_Level_Entity
(Ptr_Typ
)
409 and then Finalize_Storage_Only
(Desig_Typ
)
411 Actual
:= Make_Null
(Loc
);
413 -- Types in need of finalization actions
415 elsif Needs_Finalization
(Desig_Typ
) then
417 -- The general mechanism of creating finalization masters for
418 -- anonymous access types is disabled by default, otherwise
419 -- finalization masters will pop all over the place. Such types
420 -- use context-specific masters.
422 if Ekind
(Ptr_Typ
) = E_Anonymous_Access_Type
423 and then No
(Finalization_Master
(Ptr_Typ
))
425 Build_Anonymous_Master
(Ptr_Typ
);
428 -- Access-to-controlled types should always have a master
430 pragma Assert
(Present
(Finalization_Master
(Ptr_Typ
)));
433 Make_Attribute_Reference
(Loc
,
435 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
436 Attribute_Name
=> Name_Unrestricted_Access
);
441 Actual
:= Make_Null
(Loc
);
445 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
447 -- Build the parameter association for the new actual and add it to
448 -- the end of the function's actuals.
450 Add_Extra_Actual_To_Call
(Func_Call
, Formal
, Actual
);
452 end Add_Finalization_Master_Actual_To_Build_In_Place_Call
;
454 ------------------------------
455 -- Add_Extra_Actual_To_Call --
456 ------------------------------
458 procedure Add_Extra_Actual_To_Call
459 (Subprogram_Call
: Node_Id
;
460 Extra_Formal
: Entity_Id
;
461 Extra_Actual
: Node_Id
)
463 Loc
: constant Source_Ptr
:= Sloc
(Subprogram_Call
);
464 Param_Assoc
: Node_Id
;
468 Make_Parameter_Association
(Loc
,
469 Selector_Name
=> New_Occurrence_Of
(Extra_Formal
, Loc
),
470 Explicit_Actual_Parameter
=> Extra_Actual
);
472 Set_Parent
(Param_Assoc
, Subprogram_Call
);
473 Set_Parent
(Extra_Actual
, Param_Assoc
);
475 if Present
(Parameter_Associations
(Subprogram_Call
)) then
476 if Nkind
(Last
(Parameter_Associations
(Subprogram_Call
))) =
477 N_Parameter_Association
480 -- Find last named actual, and append
485 L
:= First_Actual
(Subprogram_Call
);
486 while Present
(L
) loop
487 if No
(Next_Actual
(L
)) then
488 Set_Next_Named_Actual
(Parent
(L
), Extra_Actual
);
496 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
499 Append
(Param_Assoc
, To
=> Parameter_Associations
(Subprogram_Call
));
502 Set_Parameter_Associations
(Subprogram_Call
, New_List
(Param_Assoc
));
503 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
505 end Add_Extra_Actual_To_Call
;
507 ---------------------------------------------
508 -- Add_Task_Actuals_To_Build_In_Place_Call --
509 ---------------------------------------------
511 procedure Add_Task_Actuals_To_Build_In_Place_Call
512 (Function_Call
: Node_Id
;
513 Function_Id
: Entity_Id
;
514 Master_Actual
: Node_Id
;
515 Chain
: Node_Id
:= Empty
)
517 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
518 Result_Subt
: constant Entity_Id
:=
519 Available_View
(Etype
(Function_Id
));
521 Chain_Actual
: Node_Id
;
522 Chain_Formal
: Node_Id
;
523 Master_Formal
: Node_Id
;
526 -- No such extra parameters are needed if there are no tasks
528 if not Has_Task
(Result_Subt
) then
532 Actual
:= Master_Actual
;
534 -- Use a dummy _master actual in case of No_Task_Hierarchy
536 if Restriction_Active
(No_Task_Hierarchy
) then
537 Actual
:= New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
);
539 -- In the case where we use the master associated with an access type,
540 -- the actual is an entity and requires an explicit reference.
542 elsif Nkind
(Actual
) = N_Defining_Identifier
then
543 Actual
:= New_Occurrence_Of
(Actual
, Loc
);
546 -- Locate the implicit master parameter in the called function
548 Master_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Task_Master
);
549 Analyze_And_Resolve
(Actual
, Etype
(Master_Formal
));
551 -- Build the parameter association for the new actual and add it to the
552 -- end of the function's actuals.
554 Add_Extra_Actual_To_Call
(Function_Call
, Master_Formal
, Actual
);
556 -- Locate the implicit activation chain parameter in the called function
559 Build_In_Place_Formal
(Function_Id
, BIP_Activation_Chain
);
561 -- Create the actual which is a pointer to the current activation chain
565 Make_Attribute_Reference
(Loc
,
566 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
567 Attribute_Name
=> Name_Unrestricted_Access
);
569 -- Allocator case; make a reference to the Chain passed in by the caller
573 Make_Attribute_Reference
(Loc
,
574 Prefix
=> New_Occurrence_Of
(Chain
, Loc
),
575 Attribute_Name
=> Name_Unrestricted_Access
);
578 Analyze_And_Resolve
(Chain_Actual
, Etype
(Chain_Formal
));
580 -- Build the parameter association for the new actual and add it to the
581 -- end of the function's actuals.
583 Add_Extra_Actual_To_Call
(Function_Call
, Chain_Formal
, Chain_Actual
);
584 end Add_Task_Actuals_To_Build_In_Place_Call
;
586 -----------------------
587 -- BIP_Formal_Suffix --
588 -----------------------
590 function BIP_Formal_Suffix
(Kind
: BIP_Formal_Kind
) return String is
593 when BIP_Alloc_Form
=>
595 when BIP_Storage_Pool
=>
596 return "BIPstoragepool";
597 when BIP_Finalization_Master
=>
598 return "BIPfinalizationmaster";
599 when BIP_Task_Master
=>
600 return "BIPtaskmaster";
601 when BIP_Activation_Chain
=>
602 return "BIPactivationchain";
603 when BIP_Object_Access
=>
606 end BIP_Formal_Suffix
;
608 ---------------------------
609 -- Build_In_Place_Formal --
610 ---------------------------
612 function Build_In_Place_Formal
614 Kind
: BIP_Formal_Kind
) return Entity_Id
616 Formal_Name
: constant Name_Id
:=
618 (Chars
(Func
), BIP_Formal_Suffix
(Kind
));
619 Extra_Formal
: Entity_Id
:= Extra_Formals
(Func
);
622 -- Maybe it would be better for each implicit formal of a build-in-place
623 -- function to have a flag or a Uint attribute to identify it. ???
625 -- The return type in the function declaration may have been a limited
626 -- view, and the extra formals for the function were not generated at
627 -- that point. At the point of call the full view must be available and
628 -- the extra formals can be created.
630 if No
(Extra_Formal
) then
631 Create_Extra_Formals
(Func
);
632 Extra_Formal
:= Extra_Formals
(Func
);
636 pragma Assert
(Present
(Extra_Formal
));
637 exit when Chars
(Extra_Formal
) = Formal_Name
;
639 Next_Formal_With_Extras
(Extra_Formal
);
643 end Build_In_Place_Formal
;
645 -------------------------------
646 -- Build_Procedure_Body_Form --
647 -------------------------------
649 function Build_Procedure_Body_Form
650 (Func_Id
: Entity_Id
;
651 Func_Body
: Node_Id
) return Node_Id
653 Loc
: constant Source_Ptr
:= Sloc
(Func_Body
);
655 Proc_Decl
: constant Node_Id
:=
656 Next
(Unit_Declaration_Node
(Func_Id
));
657 -- It is assumed that the next node following the declaration of the
658 -- corresponding subprogram spec is the declaration of the procedure
661 Proc_Id
: constant Entity_Id
:= Defining_Entity
(Proc_Decl
);
663 procedure Replace_Returns
(Param_Id
: Entity_Id
; Stmts
: List_Id
);
664 -- Replace each return statement found in the list Stmts with an
665 -- assignment of the return expression to parameter Param_Id.
667 ---------------------
668 -- Replace_Returns --
669 ---------------------
671 procedure Replace_Returns
(Param_Id
: Entity_Id
; Stmts
: List_Id
) is
675 Stmt
:= First
(Stmts
);
676 while Present
(Stmt
) loop
677 if Nkind
(Stmt
) = N_Block_Statement
then
678 Replace_Returns
(Param_Id
, Statements
(Stmt
));
680 elsif Nkind
(Stmt
) = N_Case_Statement
then
684 Alt
:= First
(Alternatives
(Stmt
));
685 while Present
(Alt
) loop
686 Replace_Returns
(Param_Id
, Statements
(Alt
));
691 elsif Nkind
(Stmt
) = N_Extended_Return_Statement
then
693 Ret_Obj
: constant Entity_Id
:=
695 (First
(Return_Object_Declarations
(Stmt
)));
696 Assign
: constant Node_Id
:=
697 Make_Assignment_Statement
(Sloc
(Stmt
),
699 New_Occurrence_Of
(Param_Id
, Loc
),
701 New_Occurrence_Of
(Ret_Obj
, Sloc
(Stmt
)));
705 -- The extended return may just contain the declaration
707 if Present
(Handled_Statement_Sequence
(Stmt
)) then
708 Stmts
:= Statements
(Handled_Statement_Sequence
(Stmt
));
713 Set_Assignment_OK
(Name
(Assign
));
716 Make_Block_Statement
(Sloc
(Stmt
),
718 Return_Object_Declarations
(Stmt
),
719 Handled_Statement_Sequence
=>
720 Make_Handled_Sequence_Of_Statements
(Loc
,
721 Statements
=> Stmts
)));
723 Replace_Returns
(Param_Id
, Stmts
);
725 Append_To
(Stmts
, Assign
);
726 Append_To
(Stmts
, Make_Simple_Return_Statement
(Loc
));
729 elsif Nkind
(Stmt
) = N_If_Statement
then
730 Replace_Returns
(Param_Id
, Then_Statements
(Stmt
));
731 Replace_Returns
(Param_Id
, Else_Statements
(Stmt
));
736 Part
:= First
(Elsif_Parts
(Stmt
));
737 while Present
(Part
) loop
738 Replace_Returns
(Param_Id
, Then_Statements
(Part
));
743 elsif Nkind
(Stmt
) = N_Loop_Statement
then
744 Replace_Returns
(Param_Id
, Statements
(Stmt
));
746 elsif Nkind
(Stmt
) = N_Simple_Return_Statement
then
753 Make_Assignment_Statement
(Sloc
(Stmt
),
754 Name
=> New_Occurrence_Of
(Param_Id
, Loc
),
755 Expression
=> Relocate_Node
(Expression
(Stmt
))));
757 Insert_After
(Stmt
, Make_Simple_Return_Statement
(Loc
));
759 -- Skip the added return
773 -- Start of processing for Build_Procedure_Body_Form
776 -- This routine replaces the original function body:
778 -- function F (...) return Array_Typ is
784 -- with the following:
786 -- procedure P (..., Result : out Array_Typ) is
789 -- Result := Something;
793 Statements
(Handled_Statement_Sequence
(Func_Body
));
794 Replace_Returns
(Last_Entity
(Proc_Id
), Stmts
);
797 Make_Subprogram_Body
(Loc
,
799 Copy_Subprogram_Spec
(Specification
(Proc_Decl
)),
800 Declarations
=> Declarations
(Func_Body
),
801 Handled_Statement_Sequence
=>
802 Make_Handled_Sequence_Of_Statements
(Loc
,
803 Statements
=> Stmts
));
805 -- If the function is a generic instance, so is the new procedure.
806 -- Set flag accordingly so that the proper renaming declarations are
809 Set_Is_Generic_Instance
(Proc_Id
, Is_Generic_Instance
(Func_Id
));
811 end Build_Procedure_Body_Form
;
813 --------------------------------
814 -- Check_Overriding_Operation --
815 --------------------------------
817 procedure Check_Overriding_Operation
(Subp
: Entity_Id
) is
818 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
819 Op_List
: constant Elist_Id
:= Primitive_Operations
(Typ
);
825 if Is_Derived_Type
(Typ
)
826 and then not Is_Private_Type
(Typ
)
827 and then In_Open_Scopes
(Scope
(Etype
(Typ
)))
828 and then Is_Base_Type
(Typ
)
830 -- Subp overrides an inherited private operation if there is an
831 -- inherited operation with a different name than Subp (see
832 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
833 -- same name as Subp.
835 Op_Elmt
:= First_Elmt
(Op_List
);
836 while Present
(Op_Elmt
) loop
837 Prim_Op
:= Node
(Op_Elmt
);
838 Par_Op
:= Alias
(Prim_Op
);
841 and then not Comes_From_Source
(Prim_Op
)
842 and then Chars
(Prim_Op
) /= Chars
(Par_Op
)
843 and then Chars
(Par_Op
) = Chars
(Subp
)
844 and then Is_Hidden
(Par_Op
)
845 and then Type_Conformant
(Prim_Op
, Subp
)
847 Set_DT_Position_Value
(Subp
, DT_Position
(Prim_Op
));
853 end Check_Overriding_Operation
;
855 -------------------------------
856 -- Detect_Infinite_Recursion --
857 -------------------------------
859 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
) is
860 Loc
: constant Source_Ptr
:= Sloc
(N
);
862 Var_List
: constant Elist_Id
:= New_Elmt_List
;
863 -- List of globals referenced by body of procedure
865 Call_List
: constant Elist_Id
:= New_Elmt_List
;
866 -- List of recursive calls in body of procedure
868 Shad_List
: constant Elist_Id
:= New_Elmt_List
;
869 -- List of entity id's for entities created to capture the value of
870 -- referenced globals on entry to the procedure.
872 Scop
: constant Uint
:= Scope_Depth
(Spec
);
873 -- This is used to record the scope depth of the current procedure, so
874 -- that we can identify global references.
876 Max_Vars
: constant := 4;
877 -- Do not test more than four global variables
879 Count_Vars
: Natural := 0;
880 -- Count variables found so far
892 function Process
(Nod
: Node_Id
) return Traverse_Result
;
893 -- Function to traverse the subprogram body (using Traverse_Func)
899 function Process
(Nod
: Node_Id
) return Traverse_Result
is
903 if Nkind
(Nod
) = N_Procedure_Call_Statement
then
905 -- Case of one of the detected recursive calls
907 if Is_Entity_Name
(Name
(Nod
))
908 and then Has_Recursive_Call
(Entity
(Name
(Nod
)))
909 and then Entity
(Name
(Nod
)) = Spec
911 Append_Elmt
(Nod
, Call_List
);
914 -- Any other procedure call may have side effects
920 -- A call to a pure function can always be ignored
922 elsif Nkind
(Nod
) = N_Function_Call
923 and then Is_Entity_Name
(Name
(Nod
))
924 and then Is_Pure
(Entity
(Name
(Nod
)))
928 -- Case of an identifier reference
930 elsif Nkind
(Nod
) = N_Identifier
then
933 -- If no entity, then ignore the reference
935 -- Not clear why this can happen. To investigate, remove this
936 -- test and look at the crash that occurs here in 3401-004 ???
941 -- Ignore entities with no Scope, again not clear how this
942 -- can happen, to investigate, look at 4108-008 ???
944 elsif No
(Scope
(Ent
)) then
947 -- Ignore the reference if not to a more global object
949 elsif Scope_Depth
(Scope
(Ent
)) >= Scop
then
952 -- References to types, exceptions and constants are always OK
955 or else Ekind
(Ent
) = E_Exception
956 or else Ekind
(Ent
) = E_Constant
960 -- If other than a non-volatile scalar variable, we have some
961 -- kind of global reference (e.g. to a function) that we cannot
962 -- deal with so we forget the attempt.
964 elsif Ekind
(Ent
) /= E_Variable
965 or else not Is_Scalar_Type
(Etype
(Ent
))
966 or else Treat_As_Volatile
(Ent
)
970 -- Otherwise we have a reference to a global scalar
973 -- Loop through global entities already detected
975 Elm
:= First_Elmt
(Var_List
);
977 -- If not detected before, record this new global reference
980 Count_Vars
:= Count_Vars
+ 1;
982 if Count_Vars
<= Max_Vars
then
983 Append_Elmt
(Entity
(Nod
), Var_List
);
990 -- If recorded before, ignore
992 elsif Node
(Elm
) = Entity
(Nod
) then
995 -- Otherwise keep looking
1005 -- For all other node kinds, recursively visit syntactic children
1012 function Traverse_Body
is new Traverse_Func
(Process
);
1014 -- Start of processing for Detect_Infinite_Recursion
1017 -- Do not attempt detection in No_Implicit_Conditional mode, since we
1018 -- won't be able to generate the code to handle the recursion in any
1021 if Restriction_Active
(No_Implicit_Conditionals
) then
1025 -- Otherwise do traversal and quit if we get abandon signal
1027 if Traverse_Body
(N
) = Abandon
then
1030 -- We must have a call, since Has_Recursive_Call was set. If not just
1031 -- ignore (this is only an error check, so if we have a funny situation,
1032 -- due to bugs or errors, we do not want to bomb).
1034 elsif Is_Empty_Elmt_List
(Call_List
) then
1038 -- Here is the case where we detect recursion at compile time
1040 -- Push our current scope for analyzing the declarations and code that
1041 -- we will insert for the checking.
1045 -- This loop builds temporary variables for each of the referenced
1046 -- globals, so that at the end of the loop the list Shad_List contains
1047 -- these temporaries in one-to-one correspondence with the elements in
1051 Elm
:= First_Elmt
(Var_List
);
1052 while Present
(Elm
) loop
1054 Ent
:= Make_Temporary
(Loc
, 'S');
1055 Append_Elmt
(Ent
, Shad_List
);
1057 -- Insert a declaration for this temporary at the start of the
1058 -- declarations for the procedure. The temporaries are declared as
1059 -- constant objects initialized to the current values of the
1060 -- corresponding temporaries.
1063 Make_Object_Declaration
(Loc
,
1064 Defining_Identifier
=> Ent
,
1065 Object_Definition
=> New_Occurrence_Of
(Etype
(Var
), Loc
),
1066 Constant_Present
=> True,
1067 Expression
=> New_Occurrence_Of
(Var
, Loc
));
1070 Prepend
(Decl
, Declarations
(N
));
1072 Insert_After
(Last
, Decl
);
1080 -- Loop through calls
1082 Call
:= First_Elmt
(Call_List
);
1083 while Present
(Call
) loop
1085 -- Build a predicate expression of the form
1088 -- and then global1 = temp1
1089 -- and then global2 = temp2
1092 -- This predicate determines if any of the global values
1093 -- referenced by the procedure have changed since the
1094 -- current call, if not an infinite recursion is assured.
1096 Test
:= New_Occurrence_Of
(Standard_True
, Loc
);
1098 Elm1
:= First_Elmt
(Var_List
);
1099 Elm2
:= First_Elmt
(Shad_List
);
1100 while Present
(Elm1
) loop
1106 Left_Opnd
=> New_Occurrence_Of
(Node
(Elm1
), Loc
),
1107 Right_Opnd
=> New_Occurrence_Of
(Node
(Elm2
), Loc
)));
1113 -- Now we replace the call with the sequence
1115 -- if no-changes (see above) then
1116 -- raise Storage_Error;
1121 Rewrite
(Node
(Call
),
1122 Make_If_Statement
(Loc
,
1124 Then_Statements
=> New_List
(
1125 Make_Raise_Storage_Error
(Loc
,
1126 Reason
=> SE_Infinite_Recursion
)),
1128 Else_Statements
=> New_List
(
1129 Relocate_Node
(Node
(Call
)))));
1131 Analyze
(Node
(Call
));
1136 -- Remove temporary scope stack entry used for analysis
1139 end Detect_Infinite_Recursion
;
1141 --------------------
1142 -- Expand_Actuals --
1143 --------------------
1145 procedure Expand_Actuals
(N
: in out Node_Id
; Subp
: Entity_Id
) is
1146 Loc
: constant Source_Ptr
:= Sloc
(N
);
1150 Post_Call
: List_Id
;
1151 E_Actual
: Entity_Id
;
1152 E_Formal
: Entity_Id
;
1154 procedure Add_Call_By_Copy_Code
;
1155 -- For cases where the parameter must be passed by copy, this routine
1156 -- generates a temporary variable into which the actual is copied and
1157 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1158 -- an assignment is also generated to copy the result back. The call
1159 -- also takes care of any constraint checks required for the type
1160 -- conversion case (on both the way in and the way out).
1162 procedure Add_Simple_Call_By_Copy_Code
;
1163 -- This is similar to the above, but is used in cases where we know
1164 -- that all that is needed is to simply create a temporary and copy
1165 -- the value in and out of the temporary.
1167 procedure Check_Fortran_Logical
;
1168 -- A value of type Logical that is passed through a formal parameter
1169 -- must be normalized because .TRUE. usually does not have the same
1170 -- representation as True. We assume that .FALSE. = False = 0.
1171 -- What about functions that return a logical type ???
1173 function Is_Legal_Copy
return Boolean;
1174 -- Check that an actual can be copied before generating the temporary
1175 -- to be used in the call. If the actual is of a by_reference type then
1176 -- the program is illegal (this can only happen in the presence of
1177 -- rep. clauses that force an incorrect alignment). If the formal is
1178 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1179 -- the effect that this might lead to unaligned arguments.
1181 function Make_Var
(Actual
: Node_Id
) return Entity_Id
;
1182 -- Returns an entity that refers to the given actual parameter, Actual
1183 -- (not including any type conversion). If Actual is an entity name,
1184 -- then this entity is returned unchanged, otherwise a renaming is
1185 -- created to provide an entity for the actual.
1187 procedure Reset_Packed_Prefix
;
1188 -- The expansion of a packed array component reference is delayed in
1189 -- the context of a call. Now we need to complete the expansion, so we
1190 -- unmark the analyzed bits in all prefixes.
1192 ---------------------------
1193 -- Add_Call_By_Copy_Code --
1194 ---------------------------
1196 procedure Add_Call_By_Copy_Code
is
1199 F_Typ
: Entity_Id
:= Etype
(Formal
);
1207 if not Is_Legal_Copy
then
1211 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1213 -- Handle formals whose type comes from the limited view
1215 if From_Limited_With
(F_Typ
)
1216 and then Has_Non_Limited_View
(F_Typ
)
1218 F_Typ
:= Non_Limited_View
(F_Typ
);
1221 -- Use formal type for temp, unless formal type is an unconstrained
1222 -- array, in which case we don't have to worry about bounds checks,
1223 -- and we use the actual type, since that has appropriate bounds.
1225 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1226 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1228 Indic
:= New_Occurrence_Of
(F_Typ
, Loc
);
1231 if Nkind
(Actual
) = N_Type_Conversion
then
1232 V_Typ
:= Etype
(Expression
(Actual
));
1234 -- If the formal is an (in-)out parameter, capture the name
1235 -- of the variable in order to build the post-call assignment.
1237 Var
:= Make_Var
(Expression
(Actual
));
1239 Crep
:= not Same_Representation
1240 (F_Typ
, Etype
(Expression
(Actual
)));
1243 V_Typ
:= Etype
(Actual
);
1244 Var
:= Make_Var
(Actual
);
1248 -- Setup initialization for case of in out parameter, or an out
1249 -- parameter where the formal is an unconstrained array (in the
1250 -- latter case, we have to pass in an object with bounds).
1252 -- If this is an out parameter, the initial copy is wasteful, so as
1253 -- an optimization for the one-dimensional case we extract the
1254 -- bounds of the actual and build an uninitialized temporary of the
1257 if Ekind
(Formal
) = E_In_Out_Parameter
1258 or else (Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
))
1260 if Nkind
(Actual
) = N_Type_Conversion
then
1261 if Conversion_OK
(Actual
) then
1262 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1264 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1267 elsif Ekind
(Formal
) = E_Out_Parameter
1268 and then Is_Array_Type
(F_Typ
)
1269 and then Number_Dimensions
(F_Typ
) = 1
1270 and then not Has_Non_Null_Base_Init_Proc
(F_Typ
)
1272 -- Actual is a one-dimensional array or slice, and the type
1273 -- requires no initialization. Create a temporary of the
1274 -- right size, but do not copy actual into it (optimization).
1278 Make_Subtype_Indication
(Loc
,
1279 Subtype_Mark
=> New_Occurrence_Of
(F_Typ
, Loc
),
1281 Make_Index_Or_Discriminant_Constraint
(Loc
,
1282 Constraints
=> New_List
(
1285 Make_Attribute_Reference
(Loc
,
1286 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1287 Attribute_Name
=> Name_First
),
1289 Make_Attribute_Reference
(Loc
,
1290 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1291 Attribute_Name
=> Name_Last
)))));
1294 Init
:= New_Occurrence_Of
(Var
, Loc
);
1297 -- An initialization is created for packed conversions as
1298 -- actuals for out parameters to enable Make_Object_Declaration
1299 -- to determine the proper subtype for N_Node. Note that this
1300 -- is wasteful because the extra copying on the call side is
1301 -- not required for such out parameters. ???
1303 elsif Ekind
(Formal
) = E_Out_Parameter
1304 and then Nkind
(Actual
) = N_Type_Conversion
1305 and then (Is_Bit_Packed_Array
(F_Typ
)
1307 Is_Bit_Packed_Array
(Etype
(Expression
(Actual
))))
1309 if Conversion_OK
(Actual
) then
1310 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1312 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1315 elsif Ekind
(Formal
) = E_In_Parameter
then
1317 -- Handle the case in which the actual is a type conversion
1319 if Nkind
(Actual
) = N_Type_Conversion
then
1320 if Conversion_OK
(Actual
) then
1321 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1323 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1326 Init
:= New_Occurrence_Of
(Var
, Loc
);
1334 Make_Object_Declaration
(Loc
,
1335 Defining_Identifier
=> Temp
,
1336 Object_Definition
=> Indic
,
1337 Expression
=> Init
);
1338 Set_Assignment_OK
(N_Node
);
1339 Insert_Action
(N
, N_Node
);
1341 -- Now, normally the deal here is that we use the defining
1342 -- identifier created by that object declaration. There is
1343 -- one exception to this. In the change of representation case
1344 -- the above declaration will end up looking like:
1346 -- temp : type := identifier;
1348 -- And in this case we might as well use the identifier directly
1349 -- and eliminate the temporary. Note that the analysis of the
1350 -- declaration was not a waste of time in that case, since it is
1351 -- what generated the necessary change of representation code. If
1352 -- the change of representation introduced additional code, as in
1353 -- a fixed-integer conversion, the expression is not an identifier
1354 -- and must be kept.
1357 and then Present
(Expression
(N_Node
))
1358 and then Is_Entity_Name
(Expression
(N_Node
))
1360 Temp
:= Entity
(Expression
(N_Node
));
1361 Rewrite
(N_Node
, Make_Null_Statement
(Loc
));
1364 -- For IN parameter, all we do is to replace the actual
1366 if Ekind
(Formal
) = E_In_Parameter
then
1367 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1370 -- Processing for OUT or IN OUT parameter
1373 -- Kill current value indications for the temporary variable we
1374 -- created, since we just passed it as an OUT parameter.
1376 Kill_Current_Values
(Temp
);
1377 Set_Is_Known_Valid
(Temp
, False);
1379 -- If type conversion, use reverse conversion on exit
1381 if Nkind
(Actual
) = N_Type_Conversion
then
1382 if Conversion_OK
(Actual
) then
1383 Expr
:= OK_Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1385 Expr
:= Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1388 Expr
:= New_Occurrence_Of
(Temp
, Loc
);
1391 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1394 -- If the actual is a conversion of a packed reference, it may
1395 -- already have been expanded by Remove_Side_Effects, and the
1396 -- resulting variable is a temporary which does not designate
1397 -- the proper out-parameter, which may not be addressable. In
1398 -- that case, generate an assignment to the original expression
1399 -- (before expansion of the packed reference) so that the proper
1400 -- expansion of assignment to a packed component can take place.
1407 if Is_Renaming_Of_Object
(Var
)
1408 and then Nkind
(Renamed_Object
(Var
)) = N_Selected_Component
1409 and then Nkind
(Original_Node
(Prefix
(Renamed_Object
(Var
))))
1410 = N_Indexed_Component
1412 Has_Non_Standard_Rep
(Etype
(Prefix
(Renamed_Object
(Var
))))
1414 Obj
:= Renamed_Object
(Var
);
1416 Make_Selected_Component
(Loc
,
1418 New_Copy_Tree
(Original_Node
(Prefix
(Obj
))),
1419 Selector_Name
=> New_Copy
(Selector_Name
(Obj
)));
1420 Reset_Analyzed_Flags
(Lhs
);
1423 Lhs
:= New_Occurrence_Of
(Var
, Loc
);
1426 Set_Assignment_OK
(Lhs
);
1428 if Is_Access_Type
(E_Formal
)
1429 and then Is_Entity_Name
(Lhs
)
1431 Present
(Effective_Extra_Accessibility
(Entity
(Lhs
)))
1433 -- Copyback target is an Ada 2012 stand-alone object of an
1434 -- anonymous access type.
1436 pragma Assert
(Ada_Version
>= Ada_2012
);
1438 if Type_Access_Level
(E_Formal
) >
1439 Object_Access_Level
(Lhs
)
1441 Append_To
(Post_Call
,
1442 Make_Raise_Program_Error
(Loc
,
1443 Reason
=> PE_Accessibility_Check_Failed
));
1446 Append_To
(Post_Call
,
1447 Make_Assignment_Statement
(Loc
,
1449 Expression
=> Expr
));
1451 -- We would like to somehow suppress generation of the
1452 -- extra_accessibility assignment generated by the expansion
1453 -- of the above assignment statement. It's not a correctness
1454 -- issue because the following assignment renders it dead,
1455 -- but generating back-to-back assignments to the same
1456 -- target is undesirable. ???
1458 Append_To
(Post_Call
,
1459 Make_Assignment_Statement
(Loc
,
1460 Name
=> New_Occurrence_Of
(
1461 Effective_Extra_Accessibility
(Entity
(Lhs
)), Loc
),
1462 Expression
=> Make_Integer_Literal
(Loc
,
1463 Type_Access_Level
(E_Formal
))));
1466 Append_To
(Post_Call
,
1467 Make_Assignment_Statement
(Loc
,
1469 Expression
=> Expr
));
1473 end Add_Call_By_Copy_Code
;
1475 ----------------------------------
1476 -- Add_Simple_Call_By_Copy_Code --
1477 ----------------------------------
1479 procedure Add_Simple_Call_By_Copy_Code
is
1481 F_Typ
: Entity_Id
:= Etype
(Formal
);
1490 if not Is_Legal_Copy
then
1494 -- Handle formals whose type comes from the limited view
1496 if From_Limited_With
(F_Typ
)
1497 and then Has_Non_Limited_View
(F_Typ
)
1499 F_Typ
:= Non_Limited_View
(F_Typ
);
1502 -- Use formal type for temp, unless formal type is an unconstrained
1503 -- array, in which case we don't have to worry about bounds checks,
1504 -- and we use the actual type, since that has appropriate bounds.
1506 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1507 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1509 Indic
:= New_Occurrence_Of
(F_Typ
, Loc
);
1512 -- Prepare to generate code
1514 Reset_Packed_Prefix
;
1516 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1517 Incod
:= Relocate_Node
(Actual
);
1518 Outcod
:= New_Copy_Tree
(Incod
);
1520 -- Generate declaration of temporary variable, initializing it
1521 -- with the input parameter unless we have an OUT formal or
1522 -- this is an initialization call.
1524 -- If the formal is an out parameter with discriminants, the
1525 -- discriminants must be captured even if the rest of the object
1526 -- is in principle uninitialized, because the discriminants may
1527 -- be read by the called subprogram.
1529 if Ekind
(Formal
) = E_Out_Parameter
then
1532 if Has_Discriminants
(F_Typ
) then
1533 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1536 elsif Inside_Init_Proc
then
1538 -- Could use a comment here to match comment below ???
1540 if Nkind
(Actual
) /= N_Selected_Component
1542 not Has_Discriminant_Dependent_Constraint
1543 (Entity
(Selector_Name
(Actual
)))
1547 -- Otherwise, keep the component in order to generate the proper
1548 -- actual subtype, that depends on enclosing discriminants.
1556 Make_Object_Declaration
(Loc
,
1557 Defining_Identifier
=> Temp
,
1558 Object_Definition
=> Indic
,
1559 Expression
=> Incod
);
1564 -- If the call is to initialize a component of a composite type,
1565 -- and the component does not depend on discriminants, use the
1566 -- actual type of the component. This is required in case the
1567 -- component is constrained, because in general the formal of the
1568 -- initialization procedure will be unconstrained. Note that if
1569 -- the component being initialized is constrained by an enclosing
1570 -- discriminant, the presence of the initialization in the
1571 -- declaration will generate an expression for the actual subtype.
1573 Set_No_Initialization
(Decl
);
1574 Set_Object_Definition
(Decl
,
1575 New_Occurrence_Of
(Etype
(Actual
), Loc
));
1578 Insert_Action
(N
, Decl
);
1580 -- The actual is simply a reference to the temporary
1582 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1584 -- Generate copy out if OUT or IN OUT parameter
1586 if Ekind
(Formal
) /= E_In_Parameter
then
1588 Rhs
:= New_Occurrence_Of
(Temp
, Loc
);
1590 -- Deal with conversion
1592 if Nkind
(Lhs
) = N_Type_Conversion
then
1593 Lhs
:= Expression
(Lhs
);
1594 Rhs
:= Convert_To
(Etype
(Actual
), Rhs
);
1597 Append_To
(Post_Call
,
1598 Make_Assignment_Statement
(Loc
,
1600 Expression
=> Rhs
));
1601 Set_Assignment_OK
(Name
(Last
(Post_Call
)));
1603 end Add_Simple_Call_By_Copy_Code
;
1605 ---------------------------
1606 -- Check_Fortran_Logical --
1607 ---------------------------
1609 procedure Check_Fortran_Logical
is
1610 Logical
: constant Entity_Id
:= Etype
(Formal
);
1613 -- Note: this is very incomplete, e.g. it does not handle arrays
1614 -- of logical values. This is really not the right approach at all???)
1617 if Convention
(Subp
) = Convention_Fortran
1618 and then Root_Type
(Etype
(Formal
)) = Standard_Boolean
1619 and then Ekind
(Formal
) /= E_In_Parameter
1621 Var
:= Make_Var
(Actual
);
1622 Append_To
(Post_Call
,
1623 Make_Assignment_Statement
(Loc
,
1624 Name
=> New_Occurrence_Of
(Var
, Loc
),
1626 Unchecked_Convert_To
(
1629 Left_Opnd
=> New_Occurrence_Of
(Var
, Loc
),
1631 Unchecked_Convert_To
(
1633 New_Occurrence_Of
(Standard_False
, Loc
))))));
1635 end Check_Fortran_Logical
;
1641 function Is_Legal_Copy
return Boolean is
1643 -- An attempt to copy a value of such a type can only occur if
1644 -- representation clauses give the actual a misaligned address.
1646 if Is_By_Reference_Type
(Etype
(Formal
)) then
1648 -- If the front-end does not perform full type layout, the actual
1649 -- may in fact be properly aligned but there is not enough front-
1650 -- end information to determine this. In that case gigi will emit
1651 -- an error if a copy is not legal, or generate the proper code.
1652 -- For other backends we report the error now.
1654 -- Seems wrong to be issuing an error in the expander, since it
1655 -- will be missed in -gnatc mode ???
1657 if Frontend_Layout_On_Target
then
1659 ("misaligned actual cannot be passed by reference", Actual
);
1664 -- For users of Starlet, we assume that the specification of by-
1665 -- reference mechanism is mandatory. This may lead to unaligned
1666 -- objects but at least for DEC legacy code it is known to work.
1667 -- The warning will alert users of this code that a problem may
1670 elsif Mechanism
(Formal
) = By_Reference
1671 and then Is_Valued_Procedure
(Scope
(Formal
))
1674 ("by_reference actual may be misaligned??", Actual
);
1686 function Make_Var
(Actual
: Node_Id
) return Entity_Id
is
1690 if Is_Entity_Name
(Actual
) then
1691 return Entity
(Actual
);
1694 Var
:= Make_Temporary
(Loc
, 'T', Actual
);
1697 Make_Object_Renaming_Declaration
(Loc
,
1698 Defining_Identifier
=> Var
,
1700 New_Occurrence_Of
(Etype
(Actual
), Loc
),
1701 Name
=> Relocate_Node
(Actual
));
1703 Insert_Action
(N
, N_Node
);
1708 -------------------------
1709 -- Reset_Packed_Prefix --
1710 -------------------------
1712 procedure Reset_Packed_Prefix
is
1713 Pfx
: Node_Id
:= Actual
;
1716 Set_Analyzed
(Pfx
, False);
1718 not Nkind_In
(Pfx
, N_Selected_Component
, N_Indexed_Component
);
1719 Pfx
:= Prefix
(Pfx
);
1721 end Reset_Packed_Prefix
;
1723 -- Start of processing for Expand_Actuals
1726 Post_Call
:= New_List
;
1728 Formal
:= First_Formal
(Subp
);
1729 Actual
:= First_Actual
(N
);
1730 while Present
(Formal
) loop
1731 E_Formal
:= Etype
(Formal
);
1732 E_Actual
:= Etype
(Actual
);
1734 -- Handle formals whose type comes from the limited view
1736 if From_Limited_With
(E_Formal
)
1737 and then Has_Non_Limited_View
(E_Formal
)
1739 E_Formal
:= Non_Limited_View
(E_Formal
);
1742 if Is_Scalar_Type
(E_Formal
)
1743 or else Nkind
(Actual
) = N_Slice
1745 Check_Fortran_Logical
;
1749 elsif Ekind
(Formal
) /= E_Out_Parameter
then
1751 -- The unusual case of the current instance of a protected type
1752 -- requires special handling. This can only occur in the context
1753 -- of a call within the body of a protected operation.
1755 if Is_Entity_Name
(Actual
)
1756 and then Ekind
(Entity
(Actual
)) = E_Protected_Type
1757 and then In_Open_Scopes
(Entity
(Actual
))
1759 if Scope
(Subp
) /= Entity
(Actual
) then
1761 ("operation outside protected type may not "
1762 & "call back its protected operations??", Actual
);
1766 Expand_Protected_Object_Reference
(N
, Entity
(Actual
)));
1769 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1770 -- build-in-place function, then a temporary return object needs
1771 -- to be created and access to it must be passed to the function.
1772 -- Currently we limit such functions to those with inherently
1773 -- limited result subtypes, but eventually we plan to expand the
1774 -- functions that are treated as build-in-place to include other
1775 -- composite result types.
1777 if Is_Build_In_Place_Function_Call
(Actual
) then
1778 Make_Build_In_Place_Call_In_Anonymous_Context
(Actual
);
1781 Apply_Constraint_Check
(Actual
, E_Formal
);
1783 -- Out parameter case. No constraint checks on access type
1786 elsif Is_Access_Type
(E_Formal
) then
1791 elsif Has_Discriminants
(Base_Type
(E_Formal
))
1792 or else Has_Non_Null_Base_Init_Proc
(E_Formal
)
1794 Apply_Constraint_Check
(Actual
, E_Formal
);
1799 Apply_Constraint_Check
(Actual
, Base_Type
(E_Formal
));
1802 -- Processing for IN-OUT and OUT parameters
1804 if Ekind
(Formal
) /= E_In_Parameter
then
1806 -- For type conversions of arrays, apply length/range checks
1808 if Is_Array_Type
(E_Formal
)
1809 and then Nkind
(Actual
) = N_Type_Conversion
1811 if Is_Constrained
(E_Formal
) then
1812 Apply_Length_Check
(Expression
(Actual
), E_Formal
);
1814 Apply_Range_Check
(Expression
(Actual
), E_Formal
);
1818 -- If argument is a type conversion for a type that is passed
1819 -- by copy, then we must pass the parameter by copy.
1821 if Nkind
(Actual
) = N_Type_Conversion
1823 (Is_Numeric_Type
(E_Formal
)
1824 or else Is_Access_Type
(E_Formal
)
1825 or else Is_Enumeration_Type
(E_Formal
)
1826 or else Is_Bit_Packed_Array
(Etype
(Formal
))
1827 or else Is_Bit_Packed_Array
(Etype
(Expression
(Actual
)))
1829 -- Also pass by copy if change of representation
1831 or else not Same_Representation
1833 Etype
(Expression
(Actual
))))
1835 Add_Call_By_Copy_Code
;
1837 -- References to components of bit-packed arrays are expanded
1838 -- at this point, rather than at the point of analysis of the
1839 -- actuals, to handle the expansion of the assignment to
1840 -- [in] out parameters.
1842 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
1843 Add_Simple_Call_By_Copy_Code
;
1845 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1846 -- because the back-end cannot cope with such objects. In other
1847 -- cases where alignment forces a copy, the back-end generates
1848 -- it properly. It should not be generated unconditionally in the
1849 -- front-end because it does not know precisely the alignment
1850 -- requirements of the target, and makes too conservative an
1851 -- estimate, leading to superfluous copies or spurious errors
1852 -- on by-reference parameters.
1854 elsif Nkind
(Actual
) = N_Selected_Component
1856 Component_May_Be_Bit_Aligned
(Entity
(Selector_Name
(Actual
)))
1857 and then not Represented_As_Scalar
(Etype
(Formal
))
1859 Add_Simple_Call_By_Copy_Code
;
1861 -- References to slices of bit-packed arrays are expanded
1863 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
1864 Add_Call_By_Copy_Code
;
1866 -- References to possibly unaligned slices of arrays are expanded
1868 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
1869 Add_Call_By_Copy_Code
;
1871 -- Deal with access types where the actual subtype and the
1872 -- formal subtype are not the same, requiring a check.
1874 -- It is necessary to exclude tagged types because of "downward
1875 -- conversion" errors.
1877 elsif Is_Access_Type
(E_Formal
)
1878 and then not Same_Type
(E_Formal
, E_Actual
)
1879 and then not Is_Tagged_Type
(Designated_Type
(E_Formal
))
1881 Add_Call_By_Copy_Code
;
1883 -- If the actual is not a scalar and is marked for volatile
1884 -- treatment, whereas the formal is not volatile, then pass
1885 -- by copy unless it is a by-reference type.
1887 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1888 -- because this is the enforcement of a language rule that applies
1889 -- only to "real" volatile variables, not e.g. to the address
1890 -- clause overlay case.
1892 elsif Is_Entity_Name
(Actual
)
1893 and then Is_Volatile
(Entity
(Actual
))
1894 and then not Is_By_Reference_Type
(E_Actual
)
1895 and then not Is_Scalar_Type
(Etype
(Entity
(Actual
)))
1896 and then not Is_Volatile
(E_Formal
)
1898 Add_Call_By_Copy_Code
;
1900 elsif Nkind
(Actual
) = N_Indexed_Component
1901 and then Is_Entity_Name
(Prefix
(Actual
))
1902 and then Has_Volatile_Components
(Entity
(Prefix
(Actual
)))
1904 Add_Call_By_Copy_Code
;
1906 -- Add call-by-copy code for the case of scalar out parameters
1907 -- when it is not known at compile time that the subtype of the
1908 -- formal is a subrange of the subtype of the actual (or vice
1909 -- versa for in out parameters), in order to get range checks
1910 -- on such actuals. (Maybe this case should be handled earlier
1911 -- in the if statement???)
1913 elsif Is_Scalar_Type
(E_Formal
)
1915 (not In_Subrange_Of
(E_Formal
, E_Actual
)
1917 (Ekind
(Formal
) = E_In_Out_Parameter
1918 and then not In_Subrange_Of
(E_Actual
, E_Formal
)))
1920 -- Perhaps the setting back to False should be done within
1921 -- Add_Call_By_Copy_Code, since it could get set on other
1922 -- cases occurring above???
1924 if Do_Range_Check
(Actual
) then
1925 Set_Do_Range_Check
(Actual
, False);
1928 Add_Call_By_Copy_Code
;
1931 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
1932 -- by-reference parameters on exit from the call. If the actual
1933 -- is a derived type and the operation is inherited, the body
1934 -- of the operation will not contain a call to the predicate
1935 -- function, so it must be done explicitly after the call. Ditto
1936 -- if the actual is an entity of a predicated subtype.
1938 -- The rule refers to by-reference types, but a check is needed
1939 -- for by-copy types as well. That check is subsumed by the rule
1940 -- for subtype conversion on assignment, but we can generate the
1941 -- required check now.
1943 -- Note also that Subp may be either a subprogram entity for
1944 -- direct calls, or a type entity for indirect calls, which must
1945 -- be handled separately because the name does not denote an
1946 -- overloadable entity.
1948 By_Ref_Predicate_Check
: declare
1949 Aund
: constant Entity_Id
:= Underlying_Type
(E_Actual
);
1952 function Is_Public_Subp
return Boolean;
1953 -- Check whether the subprogram being called is a visible
1954 -- operation of the type of the actual. Used to determine
1955 -- whether an invariant check must be generated on the
1958 ---------------------
1959 -- Is_Public_Subp --
1960 ---------------------
1962 function Is_Public_Subp
return Boolean is
1963 Pack
: constant Entity_Id
:= Scope
(Subp
);
1964 Subp_Decl
: Node_Id
;
1967 if not Is_Subprogram
(Subp
) then
1970 -- The operation may be inherited, or a primitive of the
1974 Nkind_In
(Parent
(Subp
), N_Private_Extension_Declaration
,
1975 N_Full_Type_Declaration
)
1977 Subp_Decl
:= Parent
(Subp
);
1980 Subp_Decl
:= Unit_Declaration_Node
(Subp
);
1983 return Ekind
(Pack
) = E_Package
1985 List_Containing
(Subp_Decl
) =
1986 Visible_Declarations
1987 (Specification
(Unit_Declaration_Node
(Pack
)));
1990 -- Start of processing for By_Ref_Predicate_Check
1999 if Has_Predicates
(Atyp
)
2000 and then Present
(Predicate_Function
(Atyp
))
2002 -- Skip predicate checks for special cases
2004 and then Predicate_Tests_On_Arguments
(Subp
)
2006 Append_To
(Post_Call
,
2007 Make_Predicate_Check
(Atyp
, Actual
));
2010 -- We generated caller-side invariant checks in two cases:
2012 -- a) when calling an inherited operation, where there is an
2013 -- implicit view conversion of the actual to the parent type.
2015 -- b) When the conversion is explicit
2017 -- We treat these cases separately because the required
2018 -- conversion for a) is added later when expanding the call.
2020 if Has_Invariants
(Etype
(Actual
))
2022 Nkind
(Parent
(Subp
)) = N_Private_Extension_Declaration
2024 if Comes_From_Source
(N
) and then Is_Public_Subp
then
2025 Append_To
(Post_Call
, Make_Invariant_Call
(Actual
));
2028 elsif Nkind
(Actual
) = N_Type_Conversion
2029 and then Has_Invariants
(Etype
(Expression
(Actual
)))
2031 if Comes_From_Source
(N
) and then Is_Public_Subp
then
2032 Append_To
(Post_Call
,
2033 Make_Invariant_Call
(Expression
(Actual
)));
2036 end By_Ref_Predicate_Check
;
2038 -- Processing for IN parameters
2041 -- For IN parameters in the bit-packed array case, we expand an
2042 -- indexed component (the circuit in Exp_Ch4 deliberately left
2043 -- indexed components appearing as actuals untouched, so that
2044 -- the special processing above for the OUT and IN OUT cases
2045 -- could be performed. We could make the test in Exp_Ch4 more
2046 -- complex and have it detect the parameter mode, but it is
2047 -- easier simply to handle all cases here.)
2049 if Nkind
(Actual
) = N_Indexed_Component
2050 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Actual
)))
2052 Reset_Packed_Prefix
;
2053 Expand_Packed_Element_Reference
(Actual
);
2055 -- If we have a reference to a bit-packed array, we copy it, since
2056 -- the actual must be byte aligned.
2058 -- Is this really necessary in all cases???
2060 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
2061 Add_Simple_Call_By_Copy_Code
;
2063 -- If a non-scalar actual is possibly unaligned, we need a copy
2065 elsif Is_Possibly_Unaligned_Object
(Actual
)
2066 and then not Represented_As_Scalar
(Etype
(Formal
))
2068 Add_Simple_Call_By_Copy_Code
;
2070 -- Similarly, we have to expand slices of packed arrays here
2071 -- because the result must be byte aligned.
2073 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
2074 Add_Call_By_Copy_Code
;
2076 -- Only processing remaining is to pass by copy if this is a
2077 -- reference to a possibly unaligned slice, since the caller
2078 -- expects an appropriately aligned argument.
2080 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
2081 Add_Call_By_Copy_Code
;
2083 -- An unusual case: a current instance of an enclosing task can be
2084 -- an actual, and must be replaced by a reference to self.
2086 elsif Is_Entity_Name
(Actual
)
2087 and then Is_Task_Type
(Entity
(Actual
))
2089 if In_Open_Scopes
(Entity
(Actual
)) then
2091 (Make_Function_Call
(Loc
,
2092 Name
=> New_Occurrence_Of
(RTE
(RE_Self
), Loc
))));
2095 -- A task type cannot otherwise appear as an actual
2098 raise Program_Error
;
2103 Next_Formal
(Formal
);
2104 Next_Actual
(Actual
);
2107 -- Find right place to put post call stuff if it is present
2109 if not Is_Empty_List
(Post_Call
) then
2111 -- Cases where the call is not a member of a statement list.
2112 -- This includes the case where the call is an actual in another
2113 -- function call or indexing, i.e. an expression context as well.
2115 if not Is_List_Member
(N
)
2116 or else Nkind_In
(Parent
(N
), N_Function_Call
, N_Indexed_Component
)
2118 -- In Ada 2012 the call may be a function call in an expression
2119 -- (since OUT and IN OUT parameters are now allowed for such
2120 -- calls). The write-back of (in)-out parameters is handled
2121 -- by the back-end, but the constraint checks generated when
2122 -- subtypes of formal and actual don't match must be inserted
2123 -- in the form of assignments.
2125 if Ada_Version
>= Ada_2012
2126 and then Nkind
(N
) = N_Function_Call
2128 -- We used to just do handle this by climbing up parents to
2129 -- a non-statement/declaration and then simply making a call
2130 -- to Insert_Actions_After (P, Post_Call), but that doesn't
2131 -- work. If we are in the middle of an expression, e.g. the
2132 -- condition of an IF, this call would insert after the IF
2133 -- statement, which is much too late to be doing the write
2134 -- back. For example:
2136 -- if Clobber (X) then
2137 -- Put_Line (X'Img);
2142 -- Now assume Clobber changes X, if we put the write back
2143 -- after the IF, the Put_Line gets the wrong value and the
2144 -- goto causes the write back to be skipped completely.
2146 -- To deal with this, we replace the call by
2149 -- Tnnn : constant function-result-type := function-call;
2150 -- Post_Call actions
2156 Tnnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
2157 FRTyp
: constant Entity_Id
:= Etype
(N
);
2158 Name
: constant Node_Id
:= Relocate_Node
(N
);
2161 Prepend_To
(Post_Call
,
2162 Make_Object_Declaration
(Loc
,
2163 Defining_Identifier
=> Tnnn
,
2164 Object_Definition
=> New_Occurrence_Of
(FRTyp
, Loc
),
2165 Constant_Present
=> True,
2166 Expression
=> Name
));
2169 Make_Expression_With_Actions
(Loc
,
2170 Actions
=> Post_Call
,
2171 Expression
=> New_Occurrence_Of
(Tnnn
, Loc
)));
2173 -- We don't want to just blindly call Analyze_And_Resolve
2174 -- because that would cause unwanted recursion on the call.
2175 -- So for a moment set the call as analyzed to prevent that
2176 -- recursion, and get the rest analyzed properly, then reset
2177 -- the analyzed flag, so our caller can continue.
2179 Set_Analyzed
(Name
, True);
2180 Analyze_And_Resolve
(N
, FRTyp
);
2181 Set_Analyzed
(Name
, False);
2183 -- Reset calling argument to point to function call inside
2184 -- the expression with actions so the caller can continue
2185 -- to process the call. In spite of the fact that it is
2186 -- marked Analyzed above, it may be rewritten by Remove_
2187 -- Side_Effects if validity checks are present, so go back
2188 -- to original call.
2190 N
:= Original_Node
(Name
);
2193 -- If not the special Ada 2012 case of a function call, then
2194 -- we must have the triggering statement of a triggering
2195 -- alternative or an entry call alternative, and we can add
2196 -- the post call stuff to the corresponding statement list.
2204 pragma Assert
(Nkind_In
(P
, N_Triggering_Alternative
,
2205 N_Entry_Call_Alternative
));
2207 if Is_Non_Empty_List
(Statements
(P
)) then
2208 Insert_List_Before_And_Analyze
2209 (First
(Statements
(P
)), Post_Call
);
2211 Set_Statements
(P
, Post_Call
);
2218 -- Otherwise, normal case where N is in a statement sequence,
2219 -- just put the post-call stuff after the call statement.
2222 Insert_Actions_After
(N
, Post_Call
);
2227 -- The call node itself is re-analyzed in Expand_Call
2235 -- This procedure handles expansion of function calls and procedure call
2236 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
2237 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
2239 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
2240 -- Provide values of actuals for all formals in Extra_Formals list
2241 -- Replace "call" to enumeration literal function by literal itself
2242 -- Rewrite call to predefined operator as operator
2243 -- Replace actuals to in-out parameters that are numeric conversions,
2244 -- with explicit assignment to temporaries before and after the call.
2246 -- Note that the list of actuals has been filled with default expressions
2247 -- during semantic analysis of the call. Only the extra actuals required
2248 -- for the 'Constrained attribute and for accessibility checks are added
2251 procedure Expand_Call
(N
: Node_Id
) is
2252 Loc
: constant Source_Ptr
:= Sloc
(N
);
2253 Call_Node
: Node_Id
:= N
;
2254 Extra_Actuals
: List_Id
:= No_List
;
2255 Prev
: Node_Id
:= Empty
;
2257 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
);
2258 -- Adds one entry to the end of the actual parameter list. Used for
2259 -- default parameters and for extra actuals (for Extra_Formals). The
2260 -- argument is an N_Parameter_Association node.
2262 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
);
2263 -- Adds an extra actual to the list of extra actuals. Expr is the
2264 -- expression for the value of the actual, EF is the entity for the
2267 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
;
2268 -- Within an instance, a type derived from an untagged formal derived
2269 -- type inherits from the original parent, not from the actual. The
2270 -- current derivation mechanism has the derived type inherit from the
2271 -- actual, which is only correct outside of the instance. If the
2272 -- subprogram is inherited, we test for this particular case through a
2273 -- convoluted tree traversal before setting the proper subprogram to be
2276 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean;
2277 -- Return true if E comes from an instance that is not yet frozen
2279 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean;
2280 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2282 function New_Value
(From
: Node_Id
) return Node_Id
;
2283 -- From is the original Expression. New_Value is equivalent to a call
2284 -- to Duplicate_Subexpr with an explicit dereference when From is an
2285 -- access parameter.
2287 --------------------------
2288 -- Add_Actual_Parameter --
2289 --------------------------
2291 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
) is
2292 Actual_Expr
: constant Node_Id
:=
2293 Explicit_Actual_Parameter
(Insert_Param
);
2296 -- Case of insertion is first named actual
2298 if No
(Prev
) or else
2299 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
2301 Set_Next_Named_Actual
2302 (Insert_Param
, First_Named_Actual
(Call_Node
));
2303 Set_First_Named_Actual
(Call_Node
, Actual_Expr
);
2306 if No
(Parameter_Associations
(Call_Node
)) then
2307 Set_Parameter_Associations
(Call_Node
, New_List
);
2310 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2313 Insert_After
(Prev
, Insert_Param
);
2316 -- Case of insertion is not first named actual
2319 Set_Next_Named_Actual
2320 (Insert_Param
, Next_Named_Actual
(Parent
(Prev
)));
2321 Set_Next_Named_Actual
(Parent
(Prev
), Actual_Expr
);
2322 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2325 Prev
:= Actual_Expr
;
2326 end Add_Actual_Parameter
;
2328 ----------------------
2329 -- Add_Extra_Actual --
2330 ----------------------
2332 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
) is
2333 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2336 if Extra_Actuals
= No_List
then
2337 Extra_Actuals
:= New_List
;
2338 Set_Parent
(Extra_Actuals
, Call_Node
);
2341 Append_To
(Extra_Actuals
,
2342 Make_Parameter_Association
(Loc
,
2343 Selector_Name
=> New_Occurrence_Of
(EF
, Loc
),
2344 Explicit_Actual_Parameter
=> Expr
));
2346 Analyze_And_Resolve
(Expr
, Etype
(EF
));
2348 if Nkind
(Call_Node
) = N_Function_Call
then
2349 Set_Is_Accessibility_Actual
(Parent
(Expr
));
2351 end Add_Extra_Actual
;
2353 ---------------------------
2354 -- Inherited_From_Formal --
2355 ---------------------------
2357 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
is
2359 Gen_Par
: Entity_Id
;
2360 Gen_Prim
: Elist_Id
;
2365 -- If the operation is inherited, it is attached to the corresponding
2366 -- type derivation. If the parent in the derivation is a generic
2367 -- actual, it is a subtype of the actual, and we have to recover the
2368 -- original derived type declaration to find the proper parent.
2370 if Nkind
(Parent
(S
)) /= N_Full_Type_Declaration
2371 or else not Is_Derived_Type
(Defining_Identifier
(Parent
(S
)))
2372 or else Nkind
(Type_Definition
(Original_Node
(Parent
(S
)))) /=
2373 N_Derived_Type_Definition
2374 or else not In_Instance
2381 (Type_Definition
(Original_Node
(Parent
(S
))));
2383 if Nkind
(Indic
) = N_Subtype_Indication
then
2384 Par
:= Entity
(Subtype_Mark
(Indic
));
2386 Par
:= Entity
(Indic
);
2390 if not Is_Generic_Actual_Type
(Par
)
2391 or else Is_Tagged_Type
(Par
)
2392 or else Nkind
(Parent
(Par
)) /= N_Subtype_Declaration
2393 or else not In_Open_Scopes
(Scope
(Par
))
2397 Gen_Par
:= Generic_Parent_Type
(Parent
(Par
));
2400 -- If the actual has no generic parent type, the formal is not
2401 -- a formal derived type, so nothing to inherit.
2403 if No
(Gen_Par
) then
2407 -- If the generic parent type is still the generic type, this is a
2408 -- private formal, not a derived formal, and there are no operations
2409 -- inherited from the formal.
2411 if Nkind
(Parent
(Gen_Par
)) = N_Formal_Type_Declaration
then
2415 Gen_Prim
:= Collect_Primitive_Operations
(Gen_Par
);
2417 Elmt
:= First_Elmt
(Gen_Prim
);
2418 while Present
(Elmt
) loop
2419 if Chars
(Node
(Elmt
)) = Chars
(S
) then
2425 F1
:= First_Formal
(S
);
2426 F2
:= First_Formal
(Node
(Elmt
));
2428 and then Present
(F2
)
2430 if Etype
(F1
) = Etype
(F2
)
2431 or else Etype
(F2
) = Gen_Par
2437 exit; -- not the right subprogram
2449 raise Program_Error
;
2450 end Inherited_From_Formal
;
2452 --------------------------
2453 -- In_Unfrozen_Instance --
2454 --------------------------
2456 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean is
2461 while Present
(S
) and then S
/= Standard_Standard
loop
2462 if Is_Generic_Instance
(S
)
2463 and then Present
(Freeze_Node
(S
))
2464 and then not Analyzed
(Freeze_Node
(S
))
2473 end In_Unfrozen_Instance
;
2475 -------------------------
2476 -- Is_Direct_Deep_Call --
2477 -------------------------
2479 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean is
2481 if Is_TSS
(Subp
, TSS_Deep_Adjust
)
2482 or else Is_TSS
(Subp
, TSS_Deep_Finalize
)
2483 or else Is_TSS
(Subp
, TSS_Deep_Initialize
)
2490 Actual
:= First
(Parameter_Associations
(N
));
2491 Formal
:= First_Formal
(Subp
);
2492 while Present
(Actual
)
2493 and then Present
(Formal
)
2495 if Nkind
(Actual
) = N_Identifier
2496 and then Is_Controlling_Actual
(Actual
)
2497 and then Etype
(Actual
) = Etype
(Formal
)
2503 Next_Formal
(Formal
);
2509 end Is_Direct_Deep_Call
;
2515 function New_Value
(From
: Node_Id
) return Node_Id
is
2516 Res
: constant Node_Id
:= Duplicate_Subexpr
(From
);
2518 if Is_Access_Type
(Etype
(From
)) then
2519 return Make_Explicit_Dereference
(Sloc
(From
), Prefix
=> Res
);
2527 Remote
: constant Boolean := Is_Remote_Call
(Call_Node
);
2530 Orig_Subp
: Entity_Id
:= Empty
;
2531 Param_Count
: Natural := 0;
2532 Parent_Formal
: Entity_Id
;
2533 Parent_Subp
: Entity_Id
;
2537 Prev_Orig
: Node_Id
;
2538 -- Original node for an actual, which may have been rewritten. If the
2539 -- actual is a function call that has been transformed from a selected
2540 -- component, the original node is unanalyzed. Otherwise, it carries
2541 -- semantic information used to generate additional actuals.
2543 CW_Interface_Formals_Present
: Boolean := False;
2545 -- Start of processing for Expand_Call
2548 -- Expand the function or procedure call if the first actual has a
2549 -- declared dimension aspect, and the subprogram is declared in one
2550 -- of the dimension I/O packages.
2552 if Ada_Version
>= Ada_2012
2554 Nkind_In
(Call_Node
, N_Procedure_Call_Statement
, N_Function_Call
)
2555 and then Present
(Parameter_Associations
(Call_Node
))
2557 Expand_Put_Call_With_Symbol
(Call_Node
);
2560 -- Ignore if previous error
2562 if Nkind
(Call_Node
) in N_Has_Etype
2563 and then Etype
(Call_Node
) = Any_Type
2568 -- Call using access to subprogram with explicit dereference
2570 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
2571 Subp
:= Etype
(Name
(Call_Node
));
2572 Parent_Subp
:= Empty
;
2574 -- Case of call to simple entry, where the Name is a selected component
2575 -- whose prefix is the task, and whose selector name is the entry name
2577 elsif Nkind
(Name
(Call_Node
)) = N_Selected_Component
then
2578 Subp
:= Entity
(Selector_Name
(Name
(Call_Node
)));
2579 Parent_Subp
:= Empty
;
2581 -- Case of call to member of entry family, where Name is an indexed
2582 -- component, with the prefix being a selected component giving the
2583 -- task and entry family name, and the index being the entry index.
2585 elsif Nkind
(Name
(Call_Node
)) = N_Indexed_Component
then
2586 Subp
:= Entity
(Selector_Name
(Prefix
(Name
(Call_Node
))));
2587 Parent_Subp
:= Empty
;
2592 Subp
:= Entity
(Name
(Call_Node
));
2593 Parent_Subp
:= Alias
(Subp
);
2595 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2596 -- if we can tell that the first parameter cannot possibly be null.
2597 -- This improves efficiency by avoiding a run-time test.
2599 -- We do not do this if Raise_Exception_Always does not exist, which
2600 -- can happen in configurable run time profiles which provide only a
2603 if Is_RTE
(Subp
, RE_Raise_Exception
)
2604 and then RTE_Available
(RE_Raise_Exception_Always
)
2607 FA
: constant Node_Id
:=
2608 Original_Node
(First_Actual
(Call_Node
));
2611 -- The case we catch is where the first argument is obtained
2612 -- using the Identity attribute (which must always be
2615 if Nkind
(FA
) = N_Attribute_Reference
2616 and then Attribute_Name
(FA
) = Name_Identity
2618 Subp
:= RTE
(RE_Raise_Exception_Always
);
2619 Set_Name
(Call_Node
, New_Occurrence_Of
(Subp
, Loc
));
2624 if Ekind
(Subp
) = E_Entry
then
2625 Parent_Subp
:= Empty
;
2629 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2630 -- alternative in an asynchronous select or as an entry call in
2631 -- a conditional or timed select. Check whether the procedure call
2632 -- is a renaming of an entry and rewrite it as an entry call.
2634 if Ada_Version
>= Ada_2005
2635 and then Nkind
(Call_Node
) = N_Procedure_Call_Statement
2637 ((Nkind
(Parent
(Call_Node
)) = N_Triggering_Alternative
2638 and then Triggering_Statement
(Parent
(Call_Node
)) = Call_Node
)
2640 (Nkind
(Parent
(Call_Node
)) = N_Entry_Call_Alternative
2641 and then Entry_Call_Statement
(Parent
(Call_Node
)) = Call_Node
))
2645 Ren_Root
: Entity_Id
:= Subp
;
2648 -- This may be a chain of renamings, find the root
2650 if Present
(Alias
(Ren_Root
)) then
2651 Ren_Root
:= Alias
(Ren_Root
);
2654 if Present
(Original_Node
(Parent
(Parent
(Ren_Root
)))) then
2655 Ren_Decl
:= Original_Node
(Parent
(Parent
(Ren_Root
)));
2657 if Nkind
(Ren_Decl
) = N_Subprogram_Renaming_Declaration
then
2659 Make_Entry_Call_Statement
(Loc
,
2661 New_Copy_Tree
(Name
(Ren_Decl
)),
2662 Parameter_Associations
=>
2664 (Parameter_Associations
(Call_Node
))));
2672 -- When generating C code, transform a function call that returns a
2673 -- constrained array type into procedure form.
2675 if Modify_Tree_For_C
2676 and then Nkind
(Call_Node
) = N_Function_Call
2677 and then Is_Entity_Name
(Name
(Call_Node
))
2678 and then Rewritten_For_C
(Ultimate_Alias
(Entity
(Name
(Call_Node
))))
2680 -- For internally generated calls ensure that they reference the
2681 -- entity of the spec of the called function (needed since the
2682 -- expander may generate calls using the entity of their body).
2683 -- See for example Expand_Boolean_Operator().
2685 if not (Comes_From_Source
(Call_Node
))
2686 and then Nkind
(Unit_Declaration_Node
2687 (Ultimate_Alias
(Entity
(Name
(Call_Node
))))) =
2690 Set_Entity
(Name
(Call_Node
),
2691 Corresponding_Function
2692 (Corresponding_Procedure
2693 (Ultimate_Alias
(Entity
(Name
(Call_Node
))))));
2696 Rewrite_Function_Call_For_C
(Call_Node
);
2700 -- First step, compute extra actuals, corresponding to any Extra_Formals
2701 -- present. Note that we do not access Extra_Formals directly, instead
2702 -- we simply note the presence of the extra formals as we process the
2703 -- regular formals collecting corresponding actuals in Extra_Actuals.
2705 -- We also generate any required range checks for actuals for in formals
2706 -- as we go through the loop, since this is a convenient place to do it.
2707 -- (Though it seems that this would be better done in Expand_Actuals???)
2709 -- Special case: Thunks must not compute the extra actuals; they must
2710 -- just propagate to the target primitive their extra actuals.
2712 if Is_Thunk
(Current_Scope
)
2713 and then Thunk_Entity
(Current_Scope
) = Subp
2714 and then Present
(Extra_Formals
(Subp
))
2716 pragma Assert
(Present
(Extra_Formals
(Current_Scope
)));
2719 Target_Formal
: Entity_Id
;
2720 Thunk_Formal
: Entity_Id
;
2723 Target_Formal
:= Extra_Formals
(Subp
);
2724 Thunk_Formal
:= Extra_Formals
(Current_Scope
);
2725 while Present
(Target_Formal
) loop
2727 (New_Occurrence_Of
(Thunk_Formal
, Loc
), Thunk_Formal
);
2729 Target_Formal
:= Extra_Formal
(Target_Formal
);
2730 Thunk_Formal
:= Extra_Formal
(Thunk_Formal
);
2733 while Is_Non_Empty_List
(Extra_Actuals
) loop
2734 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
2737 Expand_Actuals
(Call_Node
, Subp
);
2742 Formal
:= First_Formal
(Subp
);
2743 Actual
:= First_Actual
(Call_Node
);
2745 while Present
(Formal
) loop
2747 -- Generate range check if required
2749 if Do_Range_Check
(Actual
)
2750 and then Ekind
(Formal
) = E_In_Parameter
2752 Generate_Range_Check
2753 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
2756 -- Prepare to examine current entry
2759 Prev_Orig
:= Original_Node
(Prev
);
2761 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2762 -- to expand it in a further round.
2764 CW_Interface_Formals_Present
:=
2765 CW_Interface_Formals_Present
2767 (Ekind
(Etype
(Formal
)) = E_Class_Wide_Type
2768 and then Is_Interface
(Etype
(Etype
(Formal
))))
2770 (Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
2771 and then Is_Interface
(Directly_Designated_Type
2772 (Etype
(Etype
(Formal
)))));
2774 -- Create possible extra actual for constrained case. Usually, the
2775 -- extra actual is of the form actual'constrained, but since this
2776 -- attribute is only available for unconstrained records, TRUE is
2777 -- expanded if the type of the formal happens to be constrained (for
2778 -- instance when this procedure is inherited from an unconstrained
2779 -- record to a constrained one) or if the actual has no discriminant
2780 -- (its type is constrained). An exception to this is the case of a
2781 -- private type without discriminants. In this case we pass FALSE
2782 -- because the object has underlying discriminants with defaults.
2784 if Present
(Extra_Constrained
(Formal
)) then
2785 if Ekind
(Etype
(Prev
)) in Private_Kind
2786 and then not Has_Discriminants
(Base_Type
(Etype
(Prev
)))
2789 (New_Occurrence_Of
(Standard_False
, Loc
),
2790 Extra_Constrained
(Formal
));
2792 elsif Is_Constrained
(Etype
(Formal
))
2793 or else not Has_Discriminants
(Etype
(Prev
))
2796 (New_Occurrence_Of
(Standard_True
, Loc
),
2797 Extra_Constrained
(Formal
));
2799 -- Do not produce extra actuals for Unchecked_Union parameters.
2800 -- Jump directly to the end of the loop.
2802 elsif Is_Unchecked_Union
(Base_Type
(Etype
(Actual
))) then
2803 goto Skip_Extra_Actual_Generation
;
2806 -- If the actual is a type conversion, then the constrained
2807 -- test applies to the actual, not the target type.
2813 -- Test for unchecked conversions as well, which can occur
2814 -- as out parameter actuals on calls to stream procedures.
2817 while Nkind_In
(Act_Prev
, N_Type_Conversion
,
2818 N_Unchecked_Type_Conversion
)
2820 Act_Prev
:= Expression
(Act_Prev
);
2823 -- If the expression is a conversion of a dereference, this
2824 -- is internally generated code that manipulates addresses,
2825 -- e.g. when building interface tables. No check should
2826 -- occur in this case, and the discriminated object is not
2829 if not Comes_From_Source
(Actual
)
2830 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2831 and then Nkind
(Act_Prev
) = N_Explicit_Dereference
2834 (New_Occurrence_Of
(Standard_False
, Loc
),
2835 Extra_Constrained
(Formal
));
2839 (Make_Attribute_Reference
(Sloc
(Prev
),
2841 Duplicate_Subexpr_No_Checks
2842 (Act_Prev
, Name_Req
=> True),
2843 Attribute_Name
=> Name_Constrained
),
2844 Extra_Constrained
(Formal
));
2850 -- Create possible extra actual for accessibility level
2852 if Present
(Extra_Accessibility
(Formal
)) then
2854 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2855 -- attribute, then the original actual may be an aliased object
2856 -- occurring as the prefix in a call using "Object.Operation"
2857 -- notation. In that case we must pass the level of the object,
2858 -- so Prev_Orig is reset to Prev and the attribute will be
2859 -- processed by the code for Access attributes further below.
2861 if Prev_Orig
/= Prev
2862 and then Nkind
(Prev
) = N_Attribute_Reference
2864 Get_Attribute_Id
(Attribute_Name
(Prev
)) = Attribute_Access
2865 and then Is_Aliased_View
(Prev_Orig
)
2870 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2871 -- accessibility levels.
2873 if Is_Thunk
(Current_Scope
) then
2875 Parm_Ent
: Entity_Id
;
2878 if Is_Controlling_Actual
(Actual
) then
2880 -- Find the corresponding actual of the thunk
2882 Parm_Ent
:= First_Entity
(Current_Scope
);
2883 for J
in 2 .. Param_Count
loop
2884 Next_Entity
(Parm_Ent
);
2887 -- Handle unchecked conversion of access types generated
2888 -- in thunks (cf. Expand_Interface_Thunk).
2890 elsif Is_Access_Type
(Etype
(Actual
))
2891 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2893 Parm_Ent
:= Entity
(Expression
(Actual
));
2895 else pragma Assert
(Is_Entity_Name
(Actual
));
2896 Parm_Ent
:= Entity
(Actual
);
2900 (New_Occurrence_Of
(Extra_Accessibility
(Parm_Ent
), Loc
),
2901 Extra_Accessibility
(Formal
));
2904 elsif Is_Entity_Name
(Prev_Orig
) then
2906 -- When passing an access parameter, or a renaming of an access
2907 -- parameter, as the actual to another access parameter we need
2908 -- to pass along the actual's own access level parameter. This
2909 -- is done if we are within the scope of the formal access
2910 -- parameter (if this is an inlined body the extra formal is
2913 if (Is_Formal
(Entity
(Prev_Orig
))
2915 (Present
(Renamed_Object
(Entity
(Prev_Orig
)))
2917 Is_Entity_Name
(Renamed_Object
(Entity
(Prev_Orig
)))
2920 (Entity
(Renamed_Object
(Entity
(Prev_Orig
))))))
2921 and then Ekind
(Etype
(Prev_Orig
)) = E_Anonymous_Access_Type
2922 and then In_Open_Scopes
(Scope
(Entity
(Prev_Orig
)))
2925 Parm_Ent
: constant Entity_Id
:= Param_Entity
(Prev_Orig
);
2928 pragma Assert
(Present
(Parm_Ent
));
2930 if Present
(Extra_Accessibility
(Parm_Ent
)) then
2933 (Extra_Accessibility
(Parm_Ent
), Loc
),
2934 Extra_Accessibility
(Formal
));
2936 -- If the actual access parameter does not have an
2937 -- associated extra formal providing its scope level,
2938 -- then treat the actual as having library-level
2943 (Make_Integer_Literal
(Loc
,
2944 Intval
=> Scope_Depth
(Standard_Standard
)),
2945 Extra_Accessibility
(Formal
));
2949 -- The actual is a normal access value, so just pass the level
2950 -- of the actual's access type.
2954 (Dynamic_Accessibility_Level
(Prev_Orig
),
2955 Extra_Accessibility
(Formal
));
2958 -- If the actual is an access discriminant, then pass the level
2959 -- of the enclosing object (RM05-3.10.2(12.4/2)).
2961 elsif Nkind
(Prev_Orig
) = N_Selected_Component
2962 and then Ekind
(Entity
(Selector_Name
(Prev_Orig
))) =
2964 and then Ekind
(Etype
(Entity
(Selector_Name
(Prev_Orig
)))) =
2965 E_Anonymous_Access_Type
2968 (Make_Integer_Literal
(Loc
,
2969 Intval
=> Object_Access_Level
(Prefix
(Prev_Orig
))),
2970 Extra_Accessibility
(Formal
));
2975 case Nkind
(Prev_Orig
) is
2977 when N_Attribute_Reference
=>
2978 case Get_Attribute_Id
(Attribute_Name
(Prev_Orig
)) is
2980 -- For X'Access, pass on the level of the prefix X
2982 when Attribute_Access
=>
2984 -- If this is an Access attribute applied to the
2985 -- the current instance object passed to a type
2986 -- initialization procedure, then use the level
2987 -- of the type itself. This is not really correct,
2988 -- as there should be an extra level parameter
2989 -- passed in with _init formals (only in the case
2990 -- where the type is immutably limited), but we
2991 -- don't have an easy way currently to create such
2992 -- an extra formal (init procs aren't ever frozen).
2993 -- For now we just use the level of the type,
2994 -- which may be too shallow, but that works better
2995 -- than passing Object_Access_Level of the type,
2996 -- which can be one level too deep in some cases.
2999 if Is_Entity_Name
(Prefix
(Prev_Orig
))
3000 and then Is_Type
(Entity
(Prefix
(Prev_Orig
)))
3003 (Make_Integer_Literal
(Loc
,
3006 (Entity
(Prefix
(Prev_Orig
)))),
3007 Extra_Accessibility
(Formal
));
3011 (Make_Integer_Literal
(Loc
,
3014 (Prefix
(Prev_Orig
))),
3015 Extra_Accessibility
(Formal
));
3018 -- Treat the unchecked attributes as library-level
3020 when Attribute_Unchecked_Access |
3021 Attribute_Unrestricted_Access
=>
3023 (Make_Integer_Literal
(Loc
,
3024 Intval
=> Scope_Depth
(Standard_Standard
)),
3025 Extra_Accessibility
(Formal
));
3027 -- No other cases of attributes returning access
3028 -- values that can be passed to access parameters.
3031 raise Program_Error
;
3035 -- For allocators we pass the level of the execution of the
3036 -- called subprogram, which is one greater than the current
3041 (Make_Integer_Literal
(Loc
,
3042 Intval
=> Scope_Depth
(Current_Scope
) + 1),
3043 Extra_Accessibility
(Formal
));
3045 -- For most other cases we simply pass the level of the
3046 -- actual's access type. The type is retrieved from
3047 -- Prev rather than Prev_Orig, because in some cases
3048 -- Prev_Orig denotes an original expression that has
3049 -- not been analyzed.
3053 (Dynamic_Accessibility_Level
(Prev
),
3054 Extra_Accessibility
(Formal
));
3059 -- Perform the check of 4.6(49) that prevents a null value from being
3060 -- passed as an actual to an access parameter. Note that the check
3061 -- is elided in the common cases of passing an access attribute or
3062 -- access parameter as an actual. Also, we currently don't enforce
3063 -- this check for expander-generated actuals and when -gnatdj is set.
3065 if Ada_Version
>= Ada_2005
then
3067 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3068 -- the intent of 6.4.1(13) is that null-exclusion checks should
3069 -- not be done for 'out' parameters, even though it refers only
3070 -- to constraint checks, and a null_exclusion is not a constraint.
3071 -- Note that AI05-0196-1 corrects this mistake in the RM.
3073 if Is_Access_Type
(Etype
(Formal
))
3074 and then Can_Never_Be_Null
(Etype
(Formal
))
3075 and then Ekind
(Formal
) /= E_Out_Parameter
3076 and then Nkind
(Prev
) /= N_Raise_Constraint_Error
3077 and then (Known_Null
(Prev
)
3078 or else not Can_Never_Be_Null
(Etype
(Prev
)))
3080 Install_Null_Excluding_Check
(Prev
);
3083 -- Ada_Version < Ada_2005
3086 if Ekind
(Etype
(Formal
)) /= E_Anonymous_Access_Type
3087 or else Access_Checks_Suppressed
(Subp
)
3091 elsif Debug_Flag_J
then
3094 elsif not Comes_From_Source
(Prev
) then
3097 elsif Is_Entity_Name
(Prev
)
3098 and then Ekind
(Etype
(Prev
)) = E_Anonymous_Access_Type
3102 elsif Nkind_In
(Prev
, N_Allocator
, N_Attribute_Reference
) then
3106 Install_Null_Excluding_Check
(Prev
);
3110 -- Perform appropriate validity checks on parameters that
3113 if Validity_Checks_On
then
3114 if (Ekind
(Formal
) = E_In_Parameter
3115 and then Validity_Check_In_Params
)
3117 (Ekind
(Formal
) = E_In_Out_Parameter
3118 and then Validity_Check_In_Out_Params
)
3120 -- If the actual is an indexed component of a packed type (or
3121 -- is an indexed or selected component whose prefix recursively
3122 -- meets this condition), it has not been expanded yet. It will
3123 -- be copied in the validity code that follows, and has to be
3124 -- expanded appropriately, so reanalyze it.
3126 -- What we do is just to unset analyzed bits on prefixes till
3127 -- we reach something that does not have a prefix.
3134 while Nkind_In
(Nod
, N_Indexed_Component
,
3135 N_Selected_Component
)
3137 Set_Analyzed
(Nod
, False);
3138 Nod
:= Prefix
(Nod
);
3142 Ensure_Valid
(Actual
);
3146 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3147 -- since this is a left side reference. We only do this for calls
3148 -- from the source program since we assume that compiler generated
3149 -- calls explicitly generate any required checks. We also need it
3150 -- only if we are doing standard validity checks, since clearly it is
3151 -- not needed if validity checks are off, and in subscript validity
3152 -- checking mode, all indexed components are checked with a call
3153 -- directly from Expand_N_Indexed_Component.
3155 if Comes_From_Source
(Call_Node
)
3156 and then Ekind
(Formal
) /= E_In_Parameter
3157 and then Validity_Checks_On
3158 and then Validity_Check_Default
3159 and then not Validity_Check_Subscripts
3161 Check_Valid_Lvalue_Subscripts
(Actual
);
3164 -- Mark any scalar OUT parameter that is a simple variable as no
3165 -- longer known to be valid (unless the type is always valid). This
3166 -- reflects the fact that if an OUT parameter is never set in a
3167 -- procedure, then it can become invalid on the procedure return.
3169 if Ekind
(Formal
) = E_Out_Parameter
3170 and then Is_Entity_Name
(Actual
)
3171 and then Ekind
(Entity
(Actual
)) = E_Variable
3172 and then not Is_Known_Valid
(Etype
(Actual
))
3174 Set_Is_Known_Valid
(Entity
(Actual
), False);
3177 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3178 -- clear current values, since they can be clobbered. We are probably
3179 -- doing this in more places than we need to, but better safe than
3180 -- sorry when it comes to retaining bad current values.
3182 if Ekind
(Formal
) /= E_In_Parameter
3183 and then Is_Entity_Name
(Actual
)
3184 and then Present
(Entity
(Actual
))
3187 Ent
: constant Entity_Id
:= Entity
(Actual
);
3191 -- For an OUT or IN OUT parameter that is an assignable entity,
3192 -- we do not want to clobber the Last_Assignment field, since
3193 -- if it is set, it was precisely because it is indeed an OUT
3194 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3195 -- since the subprogram could have returned in invalid value.
3197 if Ekind_In
(Formal
, E_Out_Parameter
, E_In_Out_Parameter
)
3198 and then Is_Assignable
(Ent
)
3200 Sav
:= Last_Assignment
(Ent
);
3201 Kill_Current_Values
(Ent
);
3202 Set_Last_Assignment
(Ent
, Sav
);
3203 Set_Is_Known_Valid
(Ent
, False);
3205 -- For all other cases, just kill the current values
3208 Kill_Current_Values
(Ent
);
3213 -- If the formal is class wide and the actual is an aggregate, force
3214 -- evaluation so that the back end who does not know about class-wide
3215 -- type, does not generate a temporary of the wrong size.
3217 if not Is_Class_Wide_Type
(Etype
(Formal
)) then
3220 elsif Nkind
(Actual
) = N_Aggregate
3221 or else (Nkind
(Actual
) = N_Qualified_Expression
3222 and then Nkind
(Expression
(Actual
)) = N_Aggregate
)
3224 Force_Evaluation
(Actual
);
3227 -- In a remote call, if the formal is of a class-wide type, check
3228 -- that the actual meets the requirements described in E.4(18).
3230 if Remote
and then Is_Class_Wide_Type
(Etype
(Formal
)) then
3231 Insert_Action
(Actual
,
3232 Make_Transportable_Check
(Loc
,
3233 Duplicate_Subexpr_Move_Checks
(Actual
)));
3236 -- This label is required when skipping extra actual generation for
3237 -- Unchecked_Union parameters.
3239 <<Skip_Extra_Actual_Generation
>>
3241 Param_Count
:= Param_Count
+ 1;
3242 Next_Actual
(Actual
);
3243 Next_Formal
(Formal
);
3246 -- If we are calling an Ada 2012 function which needs to have the
3247 -- "accessibility level determined by the point of call" (AI05-0234)
3248 -- passed in to it, then pass it in.
3250 if Ekind_In
(Subp
, E_Function
, E_Operator
, E_Subprogram_Type
)
3252 Present
(Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)))
3255 Ancestor
: Node_Id
:= Parent
(Call_Node
);
3256 Level
: Node_Id
:= Empty
;
3257 Defer
: Boolean := False;
3260 -- Unimplemented: if Subp returns an anonymous access type, then
3262 -- a) if the call is the operand of an explict conversion, then
3263 -- the target type of the conversion (a named access type)
3264 -- determines the accessibility level pass in;
3266 -- b) if the call defines an access discriminant of an object
3267 -- (e.g., the discriminant of an object being created by an
3268 -- allocator, or the discriminant of a function result),
3269 -- then the accessibility level to pass in is that of the
3270 -- discriminated object being initialized).
3274 while Nkind
(Ancestor
) = N_Qualified_Expression
3276 Ancestor
:= Parent
(Ancestor
);
3279 case Nkind
(Ancestor
) is
3282 -- At this point, we'd like to assign
3284 -- Level := Dynamic_Accessibility_Level (Ancestor);
3286 -- but Etype of Ancestor may not have been set yet,
3287 -- so that doesn't work.
3289 -- Handle this later in Expand_Allocator_Expression.
3293 when N_Object_Declaration | N_Object_Renaming_Declaration
=>
3295 Def_Id
: constant Entity_Id
:=
3296 Defining_Identifier
(Ancestor
);
3299 if Is_Return_Object
(Def_Id
) then
3300 if Present
(Extra_Accessibility_Of_Result
3301 (Return_Applies_To
(Scope
(Def_Id
))))
3303 -- Pass along value that was passed in if the
3304 -- routine we are returning from also has an
3305 -- Accessibility_Of_Result formal.
3309 (Extra_Accessibility_Of_Result
3310 (Return_Applies_To
(Scope
(Def_Id
))), Loc
);
3314 Make_Integer_Literal
(Loc
,
3315 Intval
=> Object_Access_Level
(Def_Id
));
3319 when N_Simple_Return_Statement
=>
3320 if Present
(Extra_Accessibility_Of_Result
3322 (Return_Statement_Entity
(Ancestor
))))
3324 -- Pass along value that was passed in if the returned
3325 -- routine also has an Accessibility_Of_Result formal.
3329 (Extra_Accessibility_Of_Result
3331 (Return_Statement_Entity
(Ancestor
))), Loc
);
3339 if not Present
(Level
) then
3341 -- The "innermost master that evaluates the function call".
3343 -- ??? - Should we use Integer'Last here instead in order
3344 -- to deal with (some of) the problems associated with
3345 -- calls to subps whose enclosing scope is unknown (e.g.,
3346 -- Anon_Access_To_Subp_Param.all)?
3348 Level
:= Make_Integer_Literal
(Loc
,
3349 Scope_Depth
(Current_Scope
) + 1);
3354 Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)));
3359 -- If we are expanding the RHS of an assignment we need to check if tag
3360 -- propagation is needed. You might expect this processing to be in
3361 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3362 -- assignment might be transformed to a declaration for an unconstrained
3363 -- value if the expression is classwide.
3365 if Nkind
(Call_Node
) = N_Function_Call
3366 and then Is_Tag_Indeterminate
(Call_Node
)
3367 and then Is_Entity_Name
(Name
(Call_Node
))
3370 Ass
: Node_Id
:= Empty
;
3373 if Nkind
(Parent
(Call_Node
)) = N_Assignment_Statement
then
3374 Ass
:= Parent
(Call_Node
);
3376 elsif Nkind
(Parent
(Call_Node
)) = N_Qualified_Expression
3377 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3378 N_Assignment_Statement
3380 Ass
:= Parent
(Parent
(Call_Node
));
3382 elsif Nkind
(Parent
(Call_Node
)) = N_Explicit_Dereference
3383 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3384 N_Assignment_Statement
3386 Ass
:= Parent
(Parent
(Call_Node
));
3390 and then Is_Class_Wide_Type
(Etype
(Name
(Ass
)))
3392 if Is_Access_Type
(Etype
(Call_Node
)) then
3393 if Designated_Type
(Etype
(Call_Node
)) /=
3394 Root_Type
(Etype
(Name
(Ass
)))
3397 ("tag-indeterminate expression "
3398 & " must have designated type& (RM 5.2 (6))",
3399 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3401 Propagate_Tag
(Name
(Ass
), Call_Node
);
3404 elsif Etype
(Call_Node
) /= Root_Type
(Etype
(Name
(Ass
))) then
3406 ("tag-indeterminate expression must have type&"
3408 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3411 Propagate_Tag
(Name
(Ass
), Call_Node
);
3414 -- The call will be rewritten as a dispatching call, and
3415 -- expanded as such.
3422 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3423 -- it to point to the correct secondary virtual table
3425 if Nkind
(Call_Node
) in N_Subprogram_Call
3426 and then CW_Interface_Formals_Present
3428 Expand_Interface_Actuals
(Call_Node
);
3431 -- Deals with Dispatch_Call if we still have a call, before expanding
3432 -- extra actuals since this will be done on the re-analysis of the
3433 -- dispatching call. Note that we do not try to shorten the actual list
3434 -- for a dispatching call, it would not make sense to do so. Expansion
3435 -- of dispatching calls is suppressed for VM targets, because the VM
3436 -- back-ends directly handle the generation of dispatching calls and
3437 -- would have to undo any expansion to an indirect call.
3439 if Nkind
(Call_Node
) in N_Subprogram_Call
3440 and then Present
(Controlling_Argument
(Call_Node
))
3443 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
3444 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
3445 Eq_Prim_Op
: Entity_Id
:= Empty
;
3448 Prev_Call
: Node_Id
;
3451 if not Is_Limited_Type
(Typ
) then
3452 Eq_Prim_Op
:= Find_Prim_Op
(Typ
, Name_Op_Eq
);
3455 if Tagged_Type_Expansion
then
3456 Expand_Dispatching_Call
(Call_Node
);
3458 -- The following return is worrisome. Is it really OK to skip
3459 -- all remaining processing in this procedure ???
3466 Apply_Tag_Checks
(Call_Node
);
3468 -- If this is a dispatching "=", we must first compare the
3469 -- tags so we generate: x.tag = y.tag and then x = y
3471 if Subp
= Eq_Prim_Op
then
3473 -- Mark the node as analyzed to avoid reanalyzing this
3474 -- dispatching call (which would cause a never-ending loop)
3476 Prev_Call
:= Relocate_Node
(Call_Node
);
3477 Set_Analyzed
(Prev_Call
);
3479 Param
:= First_Actual
(Call_Node
);
3485 Make_Selected_Component
(Loc
,
3486 Prefix
=> New_Value
(Param
),
3489 (First_Tag_Component
(Typ
), Loc
)),
3492 Make_Selected_Component
(Loc
,
3494 Unchecked_Convert_To
(Typ
,
3495 New_Value
(Next_Actual
(Param
))),
3498 (First_Tag_Component
(Typ
), Loc
))),
3499 Right_Opnd
=> Prev_Call
);
3501 Rewrite
(Call_Node
, New_Call
);
3504 (Call_Node
, Call_Typ
, Suppress
=> All_Checks
);
3507 -- Expansion of a dispatching call results in an indirect call,
3508 -- which in turn causes current values to be killed (see
3509 -- Resolve_Call), so on VM targets we do the call here to
3510 -- ensure consistent warnings between VM and non-VM targets.
3512 Kill_Current_Values
;
3515 -- If this is a dispatching "=" then we must update the reference
3516 -- to the call node because we generated:
3517 -- x.tag = y.tag and then x = y
3519 if Subp
= Eq_Prim_Op
then
3520 Call_Node
:= Right_Opnd
(Call_Node
);
3525 -- Similarly, expand calls to RCI subprograms on which pragma
3526 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3527 -- later. Do this only when the call comes from source since we
3528 -- do not want such a rewriting to occur in expanded code.
3530 if Is_All_Remote_Call
(Call_Node
) then
3531 Expand_All_Calls_Remote_Subprogram_Call
(Call_Node
);
3533 -- Similarly, do not add extra actuals for an entry call whose entity
3534 -- is a protected procedure, or for an internal protected subprogram
3535 -- call, because it will be rewritten as a protected subprogram call
3536 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3538 elsif Is_Protected_Type
(Scope
(Subp
))
3539 and then (Ekind
(Subp
) = E_Procedure
3540 or else Ekind
(Subp
) = E_Function
)
3544 -- During that loop we gathered the extra actuals (the ones that
3545 -- correspond to Extra_Formals), so now they can be appended.
3548 while Is_Non_Empty_List
(Extra_Actuals
) loop
3549 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
3553 -- At this point we have all the actuals, so this is the point at which
3554 -- the various expansion activities for actuals is carried out.
3556 Expand_Actuals
(Call_Node
, Subp
);
3558 -- Verify that the actuals do not share storage. This check must be done
3559 -- on the caller side rather that inside the subprogram to avoid issues
3560 -- of parameter passing.
3562 if Check_Aliasing_Of_Parameters
then
3563 Apply_Parameter_Aliasing_Checks
(Call_Node
, Subp
);
3566 -- If the subprogram is a renaming, or if it is inherited, replace it in
3567 -- the call with the name of the actual subprogram being called. If this
3568 -- is a dispatching call, the run-time decides what to call. The Alias
3569 -- attribute does not apply to entries.
3571 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
3572 and then No
(Controlling_Argument
(Call_Node
))
3573 and then Present
(Parent_Subp
)
3574 and then not Is_Direct_Deep_Call
(Subp
)
3576 if Present
(Inherited_From_Formal
(Subp
)) then
3577 Parent_Subp
:= Inherited_From_Formal
(Subp
);
3579 Parent_Subp
:= Ultimate_Alias
(Parent_Subp
);
3582 -- The below setting of Entity is suspect, see F109-018 discussion???
3584 Set_Entity
(Name
(Call_Node
), Parent_Subp
);
3586 if Is_Abstract_Subprogram
(Parent_Subp
)
3587 and then not In_Instance
3590 ("cannot call abstract subprogram &!",
3591 Name
(Call_Node
), Parent_Subp
);
3594 -- Inspect all formals of derived subprogram Subp. Compare parameter
3595 -- types with the parent subprogram and check whether an actual may
3596 -- need a type conversion to the corresponding formal of the parent
3599 -- Not clear whether intrinsic subprograms need such conversions. ???
3601 if not Is_Intrinsic_Subprogram
(Parent_Subp
)
3602 or else Is_Generic_Instance
(Parent_Subp
)
3605 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
);
3606 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3607 -- and resolve the newly generated construct.
3613 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
) is
3615 Rewrite
(Act
, OK_Convert_To
(Typ
, Relocate_Node
(Act
)));
3622 Actual_Typ
: Entity_Id
;
3623 Formal_Typ
: Entity_Id
;
3624 Parent_Typ
: Entity_Id
;
3627 Actual
:= First_Actual
(Call_Node
);
3628 Formal
:= First_Formal
(Subp
);
3629 Parent_Formal
:= First_Formal
(Parent_Subp
);
3630 while Present
(Formal
) loop
3631 Actual_Typ
:= Etype
(Actual
);
3632 Formal_Typ
:= Etype
(Formal
);
3633 Parent_Typ
:= Etype
(Parent_Formal
);
3635 -- For an IN parameter of a scalar type, the parent formal
3636 -- type and derived formal type differ or the parent formal
3637 -- type and actual type do not match statically.
3639 if Is_Scalar_Type
(Formal_Typ
)
3640 and then Ekind
(Formal
) = E_In_Parameter
3641 and then Formal_Typ
/= Parent_Typ
3643 not Subtypes_Statically_Match
(Parent_Typ
, Actual_Typ
)
3644 and then not Raises_Constraint_Error
(Actual
)
3646 Convert
(Actual
, Parent_Typ
);
3647 Enable_Range_Check
(Actual
);
3649 -- If the actual has been marked as requiring a range
3650 -- check, then generate it here.
3652 if Do_Range_Check
(Actual
) then
3653 Generate_Range_Check
3654 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
3657 -- For access types, the parent formal type and actual type
3660 elsif Is_Access_Type
(Formal_Typ
)
3661 and then Base_Type
(Parent_Typ
) /= Base_Type
(Actual_Typ
)
3663 if Ekind
(Formal
) /= E_In_Parameter
then
3664 Convert
(Actual
, Parent_Typ
);
3666 elsif Ekind
(Parent_Typ
) = E_Anonymous_Access_Type
3667 and then Designated_Type
(Parent_Typ
) /=
3668 Designated_Type
(Actual_Typ
)
3669 and then not Is_Controlling_Formal
(Formal
)
3671 -- This unchecked conversion is not necessary unless
3672 -- inlining is enabled, because in that case the type
3673 -- mismatch may become visible in the body about to be
3677 Unchecked_Convert_To
(Parent_Typ
,
3678 Relocate_Node
(Actual
)));
3680 Resolve
(Actual
, Parent_Typ
);
3683 -- If there is a change of representation, then generate a
3684 -- warning, and do the change of representation.
3686 elsif not Same_Representation
(Formal_Typ
, Parent_Typ
) then
3688 ("??change of representation required", Actual
);
3689 Convert
(Actual
, Parent_Typ
);
3691 -- For array and record types, the parent formal type and
3692 -- derived formal type have different sizes or pragma Pack
3695 elsif ((Is_Array_Type
(Formal_Typ
)
3696 and then Is_Array_Type
(Parent_Typ
))
3698 (Is_Record_Type
(Formal_Typ
)
3699 and then Is_Record_Type
(Parent_Typ
)))
3701 (Esize
(Formal_Typ
) /= Esize
(Parent_Typ
)
3702 or else Has_Pragma_Pack
(Formal_Typ
) /=
3703 Has_Pragma_Pack
(Parent_Typ
))
3705 Convert
(Actual
, Parent_Typ
);
3708 Next_Actual
(Actual
);
3709 Next_Formal
(Formal
);
3710 Next_Formal
(Parent_Formal
);
3716 Subp
:= Parent_Subp
;
3719 -- Deal with case where call is an explicit dereference
3721 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
3723 -- Handle case of access to protected subprogram type
3725 if Is_Access_Protected_Subprogram_Type
3726 (Base_Type
(Etype
(Prefix
(Name
(Call_Node
)))))
3728 -- If this is a call through an access to protected operation, the
3729 -- prefix has the form (object'address, operation'access). Rewrite
3730 -- as a for other protected calls: the object is the 1st parameter
3731 -- of the list of actuals.
3738 Ptr
: constant Node_Id
:= Prefix
(Name
(Call_Node
));
3740 T
: constant Entity_Id
:=
3741 Equivalent_Type
(Base_Type
(Etype
(Ptr
)));
3743 D_T
: constant Entity_Id
:=
3744 Designated_Type
(Base_Type
(Etype
(Ptr
)));
3748 Make_Selected_Component
(Loc
,
3749 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
3751 New_Occurrence_Of
(First_Entity
(T
), Loc
));
3754 Make_Selected_Component
(Loc
,
3755 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
3757 New_Occurrence_Of
(Next_Entity
(First_Entity
(T
)), Loc
));
3760 Make_Explicit_Dereference
(Loc
,
3763 if Present
(Parameter_Associations
(Call_Node
)) then
3764 Parm
:= Parameter_Associations
(Call_Node
);
3769 Prepend
(Obj
, Parm
);
3771 if Etype
(D_T
) = Standard_Void_Type
then
3773 Make_Procedure_Call_Statement
(Loc
,
3775 Parameter_Associations
=> Parm
);
3778 Make_Function_Call
(Loc
,
3780 Parameter_Associations
=> Parm
);
3783 Set_First_Named_Actual
(Call
, First_Named_Actual
(Call_Node
));
3784 Set_Etype
(Call
, Etype
(D_T
));
3786 -- We do not re-analyze the call to avoid infinite recursion.
3787 -- We analyze separately the prefix and the object, and set
3788 -- the checks on the prefix that would otherwise be emitted
3789 -- when resolving a call.
3791 Rewrite
(Call_Node
, Call
);
3793 Apply_Access_Check
(Nam
);
3800 -- If this is a call to an intrinsic subprogram, then perform the
3801 -- appropriate expansion to the corresponding tree node and we
3802 -- are all done (since after that the call is gone).
3804 -- In the case where the intrinsic is to be processed by the back end,
3805 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
3806 -- since the idea in this case is to pass the call unchanged. If the
3807 -- intrinsic is an inherited unchecked conversion, and the derived type
3808 -- is the target type of the conversion, we must retain it as the return
3809 -- type of the expression. Otherwise the expansion below, which uses the
3810 -- parent operation, will yield the wrong type.
3812 if Is_Intrinsic_Subprogram
(Subp
) then
3813 Expand_Intrinsic_Call
(Call_Node
, Subp
);
3815 if Nkind
(Call_Node
) = N_Unchecked_Type_Conversion
3816 and then Parent_Subp
/= Orig_Subp
3817 and then Etype
(Parent_Subp
) /= Etype
(Orig_Subp
)
3819 Set_Etype
(Call_Node
, Etype
(Orig_Subp
));
3825 if Ekind_In
(Subp
, E_Function
, E_Procedure
) then
3827 -- We perform two simple optimization on calls:
3829 -- a) replace calls to null procedures unconditionally;
3831 -- b) for To_Address, just do an unchecked conversion. Not only is
3832 -- this efficient, but it also avoids order of elaboration problems
3833 -- when address clauses are inlined (address expression elaborated
3834 -- at the wrong point).
3836 -- We perform these optimization regardless of whether we are in the
3837 -- main unit or in a unit in the context of the main unit, to ensure
3838 -- that tree generated is the same in both cases, for CodePeer use.
3840 if Is_RTE
(Subp
, RE_To_Address
) then
3842 Unchecked_Convert_To
3843 (RTE
(RE_Address
), Relocate_Node
(First_Actual
(Call_Node
))));
3846 elsif Is_Null_Procedure
(Subp
) then
3847 Rewrite
(Call_Node
, Make_Null_Statement
(Loc
));
3851 -- Handle inlining. No action needed if the subprogram is not inlined
3853 if not Is_Inlined
(Subp
) then
3856 -- Handle frontend inlining
3858 elsif not Back_End_Inlining
then
3859 Inlined_Subprogram
: declare
3861 Must_Inline
: Boolean := False;
3862 Spec
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
3865 -- Verify that the body to inline has already been seen, and
3866 -- that if the body is in the current unit the inlining does
3867 -- not occur earlier. This avoids order-of-elaboration problems
3870 -- This should be documented in sinfo/einfo ???
3873 or else Nkind
(Spec
) /= N_Subprogram_Declaration
3874 or else No
(Body_To_Inline
(Spec
))
3876 Must_Inline
:= False;
3878 -- If this an inherited function that returns a private type,
3879 -- do not inline if the full view is an unconstrained array,
3880 -- because such calls cannot be inlined.
3882 elsif Present
(Orig_Subp
)
3883 and then Is_Array_Type
(Etype
(Orig_Subp
))
3884 and then not Is_Constrained
(Etype
(Orig_Subp
))
3886 Must_Inline
:= False;
3888 elsif In_Unfrozen_Instance
(Scope
(Subp
)) then
3889 Must_Inline
:= False;
3892 Bod
:= Body_To_Inline
(Spec
);
3894 if (In_Extended_Main_Code_Unit
(Call_Node
)
3895 or else In_Extended_Main_Code_Unit
(Parent
(Call_Node
))
3896 or else Has_Pragma_Inline_Always
(Subp
))
3897 and then (not In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
3899 Earlier_In_Extended_Unit
(Sloc
(Bod
), Loc
))
3901 Must_Inline
:= True;
3903 -- If we are compiling a package body that is not the main
3904 -- unit, it must be for inlining/instantiation purposes,
3905 -- in which case we inline the call to insure that the same
3906 -- temporaries are generated when compiling the body by
3907 -- itself. Otherwise link errors can occur.
3909 -- If the function being called is itself in the main unit,
3910 -- we cannot inline, because there is a risk of double
3911 -- elaboration and/or circularity: the inlining can make
3912 -- visible a private entity in the body of the main unit,
3913 -- that gigi will see before its sees its proper definition.
3915 elsif not (In_Extended_Main_Code_Unit
(Call_Node
))
3916 and then In_Package_Body
3918 Must_Inline
:= not In_Extended_Main_Source_Unit
(Subp
);
3920 -- Inline calls to _postconditions when generating C code
3922 elsif Modify_Tree_For_C
3923 and then In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
3924 and then Chars
(Name
(N
)) = Name_uPostconditions
3926 Must_Inline
:= True;
3931 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
3934 -- Let the back end handle it
3936 Add_Inlined_Body
(Subp
, Call_Node
);
3938 if Front_End_Inlining
3939 and then Nkind
(Spec
) = N_Subprogram_Declaration
3940 and then (In_Extended_Main_Code_Unit
(Call_Node
))
3941 and then No
(Body_To_Inline
(Spec
))
3942 and then not Has_Completion
(Subp
)
3943 and then In_Same_Extended_Unit
(Sloc
(Spec
), Loc
)
3946 ("cannot inline& (body not seen yet)?",
3950 end Inlined_Subprogram
;
3952 -- Back end inlining: let the back end handle it
3954 elsif No
(Unit_Declaration_Node
(Subp
))
3955 or else Nkind
(Unit_Declaration_Node
(Subp
)) /=
3956 N_Subprogram_Declaration
3957 or else No
(Body_To_Inline
(Unit_Declaration_Node
(Subp
)))
3958 or else Nkind
(Body_To_Inline
(Unit_Declaration_Node
(Subp
))) in
3961 Add_Inlined_Body
(Subp
, Call_Node
);
3963 -- If the inlined call appears within an instantiation and some
3964 -- level of optimization is required, ensure that the enclosing
3965 -- instance body is available so that the back-end can actually
3966 -- perform the inlining.
3969 and then Comes_From_Source
(Subp
)
3970 and then Optimization_Level
> 0
3975 Inst_Node
: Node_Id
;
3978 Inst
:= Scope
(Subp
);
3980 -- Find enclosing instance
3982 while Present
(Inst
) and then Inst
/= Standard_Standard
loop
3983 exit when Is_Generic_Instance
(Inst
);
3984 Inst
:= Scope
(Inst
);
3988 and then Is_Generic_Instance
(Inst
)
3989 and then not Is_Inlined
(Inst
)
3991 Set_Is_Inlined
(Inst
);
3992 Decl
:= Unit_Declaration_Node
(Inst
);
3994 -- Do not add a pending instantiation if the body exits
3995 -- already, or if the instance is a compilation unit, or
3996 -- the instance node is missing.
3998 if Present
(Corresponding_Body
(Decl
))
3999 or else Nkind
(Parent
(Decl
)) = N_Compilation_Unit
4000 or else No
(Next
(Decl
))
4005 -- The instantiation node usually follows the package
4006 -- declaration for the instance. If the generic unit
4007 -- has aspect specifications, they are transformed
4008 -- into pragmas in the instance, and the instance node
4009 -- appears after them.
4011 Inst_Node
:= Next
(Decl
);
4013 while Nkind
(Inst_Node
) /= N_Package_Instantiation
loop
4014 Inst_Node
:= Next
(Inst_Node
);
4017 Add_Pending_Instantiation
(Inst_Node
, Decl
);
4023 -- Front end expansion of simple functions returning unconstrained
4024 -- types (see Check_And_Split_Unconstrained_Function). Note that the
4025 -- case of a simple renaming (Body_To_Inline in N_Entity above, see
4026 -- also Build_Renamed_Body) cannot be expanded here because this may
4027 -- give rise to order-of-elaboration issues for the types of the
4028 -- parameters of the subprogram, if any.
4031 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
4035 -- Check for protected subprogram. This is either an intra-object call,
4036 -- or a protected function call. Protected procedure calls are rewritten
4037 -- as entry calls and handled accordingly.
4039 -- In Ada 2005, this may be an indirect call to an access parameter that
4040 -- is an access_to_subprogram. In that case the anonymous type has a
4041 -- scope that is a protected operation, but the call is a regular one.
4042 -- In either case do not expand call if subprogram is eliminated.
4044 Scop
:= Scope
(Subp
);
4046 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
4047 and then Is_Protected_Type
(Scop
)
4048 and then Ekind
(Subp
) /= E_Subprogram_Type
4049 and then not Is_Eliminated
(Subp
)
4051 -- If the call is an internal one, it is rewritten as a call to the
4052 -- corresponding unprotected subprogram.
4054 Expand_Protected_Subprogram_Call
(Call_Node
, Subp
, Scop
);
4057 -- Functions returning controlled objects need special attention. If
4058 -- the return type is limited, then the context is initialization and
4059 -- different processing applies. If the call is to a protected function,
4060 -- the expansion above will call Expand_Call recursively. Otherwise the
4061 -- function call is transformed into a temporary which obtains the
4062 -- result from the secondary stack.
4064 if Needs_Finalization
(Etype
(Subp
)) then
4065 if not Is_Limited_View
(Etype
(Subp
))
4067 (No
(First_Formal
(Subp
))
4069 not Is_Concurrent_Record_Type
(Etype
(First_Formal
(Subp
))))
4071 Expand_Ctrl_Function_Call
(Call_Node
);
4073 -- Build-in-place function calls which appear in anonymous contexts
4074 -- need a transient scope to ensure the proper finalization of the
4075 -- intermediate result after its use.
4077 elsif Is_Build_In_Place_Function_Call
(Call_Node
)
4079 Nkind_In
(Parent
(Call_Node
), N_Attribute_Reference
,
4081 N_Indexed_Component
,
4082 N_Object_Renaming_Declaration
,
4083 N_Procedure_Call_Statement
,
4084 N_Selected_Component
,
4087 Establish_Transient_Scope
(Call_Node
, Sec_Stack
=> True);
4092 -------------------------------
4093 -- Expand_Ctrl_Function_Call --
4094 -------------------------------
4096 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
) is
4097 function Is_Element_Reference
(N
: Node_Id
) return Boolean;
4098 -- Determine whether node N denotes a reference to an Ada 2012 container
4101 --------------------------
4102 -- Is_Element_Reference --
4103 --------------------------
4105 function Is_Element_Reference
(N
: Node_Id
) return Boolean is
4106 Ref
: constant Node_Id
:= Original_Node
(N
);
4109 -- Analysis marks an element reference by setting the generalized
4110 -- indexing attribute of an indexed component before the component
4111 -- is rewritten into a function call.
4114 Nkind
(Ref
) = N_Indexed_Component
4115 and then Present
(Generalized_Indexing
(Ref
));
4116 end Is_Element_Reference
;
4118 -- Start of processing for Expand_Ctrl_Function_Call
4121 -- Optimization, if the returned value (which is on the sec-stack) is
4122 -- returned again, no need to copy/readjust/finalize, we can just pass
4123 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4124 -- attachment is needed
4126 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
4130 -- Resolution is now finished, make sure we don't start analysis again
4131 -- because of the duplication.
4135 -- A function which returns a controlled object uses the secondary
4136 -- stack. Rewrite the call into a temporary which obtains the result of
4137 -- the function using 'reference.
4139 Remove_Side_Effects
(N
);
4141 -- The side effect removal of the function call produced a temporary.
4142 -- When the context is a case expression, if expression, or expression
4143 -- with actions, the lifetime of the temporary must be extended to match
4144 -- that of the context. Otherwise the function result will be finalized
4145 -- too early and affect the result of the expression. To prevent this
4146 -- unwanted effect, the temporary should not be considered for clean up
4147 -- actions by the general finalization machinery.
4149 -- Exception to this rule are references to Ada 2012 container elements.
4150 -- Such references must be finalized at the end of each iteration of the
4151 -- related quantified expression, otherwise the container will remain
4154 if Nkind
(N
) = N_Explicit_Dereference
4155 and then Within_Case_Or_If_Expression
(N
)
4156 and then not Is_Element_Reference
(N
)
4158 Set_Is_Ignored_Transient
(Entity
(Prefix
(N
)));
4160 end Expand_Ctrl_Function_Call
;
4162 ----------------------------------------
4163 -- Expand_N_Extended_Return_Statement --
4164 ----------------------------------------
4166 -- If there is a Handled_Statement_Sequence, we rewrite this:
4168 -- return Result : T := <expression> do
4169 -- <handled_seq_of_stms>
4175 -- Result : T := <expression>;
4177 -- <handled_seq_of_stms>
4181 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4183 -- return Result : T := <expression>;
4187 -- return <expression>;
4189 -- unless it's build-in-place or there's no <expression>, in which case
4193 -- Result : T := <expression>;
4198 -- Note that this case could have been written by the user as an extended
4199 -- return statement, or could have been transformed to this from a simple
4200 -- return statement.
4202 -- That is, we need to have a reified return object if there are statements
4203 -- (which might refer to it) or if we're doing build-in-place (so we can
4204 -- set its address to the final resting place or if there is no expression
4205 -- (in which case default initial values might need to be set).
4207 procedure Expand_N_Extended_Return_Statement
(N
: Node_Id
) is
4208 Loc
: constant Source_Ptr
:= Sloc
(N
);
4210 function Build_Heap_Allocator
4211 (Temp_Id
: Entity_Id
;
4212 Temp_Typ
: Entity_Id
;
4213 Func_Id
: Entity_Id
;
4214 Ret_Typ
: Entity_Id
;
4215 Alloc_Expr
: Node_Id
) return Node_Id
;
4216 -- Create the statements necessary to allocate a return object on the
4217 -- caller's master. The master is available through implicit parameter
4218 -- BIPfinalizationmaster.
4220 -- if BIPfinalizationmaster /= null then
4222 -- type Ptr_Typ is access Ret_Typ;
4223 -- for Ptr_Typ'Storage_Pool use
4224 -- Base_Pool (BIPfinalizationmaster.all).all;
4228 -- procedure Allocate (...) is
4230 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4233 -- Local := <Alloc_Expr>;
4234 -- Temp_Id := Temp_Typ (Local);
4238 -- Temp_Id is the temporary which is used to reference the internally
4239 -- created object in all allocation forms. Temp_Typ is the type of the
4240 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4241 -- type of Func_Id. Alloc_Expr is the actual allocator.
4243 function Move_Activation_Chain
(Func_Id
: Entity_Id
) return Node_Id
;
4244 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4246 -- From current activation chain
4247 -- To activation chain passed in by the caller
4248 -- New_Master master passed in by the caller
4250 -- Func_Id is the entity of the function where the extended return
4251 -- statement appears.
4253 --------------------------
4254 -- Build_Heap_Allocator --
4255 --------------------------
4257 function Build_Heap_Allocator
4258 (Temp_Id
: Entity_Id
;
4259 Temp_Typ
: Entity_Id
;
4260 Func_Id
: Entity_Id
;
4261 Ret_Typ
: Entity_Id
;
4262 Alloc_Expr
: Node_Id
) return Node_Id
4265 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
4267 -- Processing for build-in-place object allocation.
4269 if Needs_Finalization
(Ret_Typ
) then
4271 Decls
: constant List_Id
:= New_List
;
4272 Fin_Mas_Id
: constant Entity_Id
:=
4273 Build_In_Place_Formal
4274 (Func_Id
, BIP_Finalization_Master
);
4275 Stmts
: constant List_Id
:= New_List
;
4276 Desig_Typ
: Entity_Id
;
4277 Local_Id
: Entity_Id
;
4278 Pool_Id
: Entity_Id
;
4279 Ptr_Typ
: Entity_Id
;
4283 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4285 Pool_Id
:= Make_Temporary
(Loc
, 'P');
4288 Make_Object_Renaming_Declaration
(Loc
,
4289 Defining_Identifier
=> Pool_Id
,
4291 New_Occurrence_Of
(RTE
(RE_Root_Storage_Pool
), Loc
),
4293 Make_Explicit_Dereference
(Loc
,
4295 Make_Function_Call
(Loc
,
4297 New_Occurrence_Of
(RTE
(RE_Base_Pool
), Loc
),
4298 Parameter_Associations
=> New_List
(
4299 Make_Explicit_Dereference
(Loc
,
4301 New_Occurrence_Of
(Fin_Mas_Id
, Loc
)))))));
4303 -- Create an access type which uses the storage pool of the
4304 -- caller's master. This additional type is necessary because
4305 -- the finalization master cannot be associated with the type
4306 -- of the temporary. Otherwise the secondary stack allocation
4309 Desig_Typ
:= Ret_Typ
;
4311 -- Ensure that the build-in-place machinery uses a fat pointer
4312 -- when allocating an unconstrained array on the heap. In this
4313 -- case the result object type is a constrained array type even
4314 -- though the function type is unconstrained.
4316 if Ekind
(Desig_Typ
) = E_Array_Subtype
then
4317 Desig_Typ
:= Base_Type
(Desig_Typ
);
4321 -- type Ptr_Typ is access Desig_Typ;
4323 Ptr_Typ
:= Make_Temporary
(Loc
, 'P');
4326 Make_Full_Type_Declaration
(Loc
,
4327 Defining_Identifier
=> Ptr_Typ
,
4329 Make_Access_To_Object_Definition
(Loc
,
4330 Subtype_Indication
=>
4331 New_Occurrence_Of
(Desig_Typ
, Loc
))));
4333 -- Perform minor decoration in order to set the master and the
4334 -- storage pool attributes.
4336 Set_Ekind
(Ptr_Typ
, E_Access_Type
);
4337 Set_Finalization_Master
(Ptr_Typ
, Fin_Mas_Id
);
4338 Set_Associated_Storage_Pool
(Ptr_Typ
, Pool_Id
);
4340 -- Create the temporary, generate:
4341 -- Local_Id : Ptr_Typ;
4343 Local_Id
:= Make_Temporary
(Loc
, 'T');
4346 Make_Object_Declaration
(Loc
,
4347 Defining_Identifier
=> Local_Id
,
4348 Object_Definition
=>
4349 New_Occurrence_Of
(Ptr_Typ
, Loc
)));
4351 -- Allocate the object, generate:
4352 -- Local_Id := <Alloc_Expr>;
4355 Make_Assignment_Statement
(Loc
,
4356 Name
=> New_Occurrence_Of
(Local_Id
, Loc
),
4357 Expression
=> Alloc_Expr
));
4360 -- Temp_Id := Temp_Typ (Local_Id);
4363 Make_Assignment_Statement
(Loc
,
4364 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4366 Unchecked_Convert_To
(Temp_Typ
,
4367 New_Occurrence_Of
(Local_Id
, Loc
))));
4369 -- Wrap the allocation in a block. This is further conditioned
4370 -- by checking the caller finalization master at runtime. A
4371 -- null value indicates a non-existent master, most likely due
4372 -- to a Finalize_Storage_Only allocation.
4375 -- if BIPfinalizationmaster /= null then
4384 Make_If_Statement
(Loc
,
4387 Left_Opnd
=> New_Occurrence_Of
(Fin_Mas_Id
, Loc
),
4388 Right_Opnd
=> Make_Null
(Loc
)),
4390 Then_Statements
=> New_List
(
4391 Make_Block_Statement
(Loc
,
4392 Declarations
=> Decls
,
4393 Handled_Statement_Sequence
=>
4394 Make_Handled_Sequence_Of_Statements
(Loc
,
4395 Statements
=> Stmts
))));
4398 -- For all other cases, generate:
4399 -- Temp_Id := <Alloc_Expr>;
4403 Make_Assignment_Statement
(Loc
,
4404 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4405 Expression
=> Alloc_Expr
);
4407 end Build_Heap_Allocator
;
4409 ---------------------------
4410 -- Move_Activation_Chain --
4411 ---------------------------
4413 function Move_Activation_Chain
(Func_Id
: Entity_Id
) return Node_Id
is
4416 Make_Procedure_Call_Statement
(Loc
,
4418 New_Occurrence_Of
(RTE
(RE_Move_Activation_Chain
), Loc
),
4420 Parameter_Associations
=> New_List
(
4424 Make_Attribute_Reference
(Loc
,
4425 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
4426 Attribute_Name
=> Name_Unrestricted_Access
),
4428 -- Destination chain
4431 (Build_In_Place_Formal
(Func_Id
, BIP_Activation_Chain
), Loc
),
4436 (Build_In_Place_Formal
(Func_Id
, BIP_Task_Master
), Loc
)));
4437 end Move_Activation_Chain
;
4441 Func_Id
: constant Entity_Id
:=
4442 Return_Applies_To
(Return_Statement_Entity
(N
));
4443 Is_BIP_Func
: constant Boolean :=
4444 Is_Build_In_Place_Function
(Func_Id
);
4445 Ret_Obj_Id
: constant Entity_Id
:=
4446 First_Entity
(Return_Statement_Entity
(N
));
4447 Ret_Obj_Decl
: constant Node_Id
:= Parent
(Ret_Obj_Id
);
4448 Ret_Typ
: constant Entity_Id
:= Etype
(Func_Id
);
4453 Return_Stmt
: Node_Id
;
4456 -- Start of processing for Expand_N_Extended_Return_Statement
4459 -- Given that functionality of interface thunks is simple (just displace
4460 -- the pointer to the object) they are always handled by means of
4461 -- simple return statements.
4463 pragma Assert
(not Is_Thunk
(Current_Scope
));
4465 if Nkind
(Ret_Obj_Decl
) = N_Object_Declaration
then
4466 Exp
:= Expression
(Ret_Obj_Decl
);
4471 HSS
:= Handled_Statement_Sequence
(N
);
4473 -- If the returned object needs finalization actions, the function must
4474 -- perform the appropriate cleanup should it fail to return. The state
4475 -- of the function itself is tracked through a flag which is coupled
4476 -- with the scope finalizer. There is one flag per each return object
4477 -- in case of multiple returns.
4479 if Is_BIP_Func
and then Needs_Finalization
(Etype
(Ret_Obj_Id
)) then
4481 Flag_Decl
: Node_Id
;
4482 Flag_Id
: Entity_Id
;
4486 -- Recover the function body
4488 Func_Bod
:= Unit_Declaration_Node
(Func_Id
);
4490 if Nkind
(Func_Bod
) = N_Subprogram_Declaration
then
4491 Func_Bod
:= Parent
(Parent
(Corresponding_Body
(Func_Bod
)));
4494 -- Create a flag to track the function state
4496 Flag_Id
:= Make_Temporary
(Loc
, 'F');
4497 Set_Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
, Flag_Id
);
4499 -- Insert the flag at the beginning of the function declarations,
4501 -- Fnn : Boolean := False;
4504 Make_Object_Declaration
(Loc
,
4505 Defining_Identifier
=> Flag_Id
,
4506 Object_Definition
=>
4507 New_Occurrence_Of
(Standard_Boolean
, Loc
),
4509 New_Occurrence_Of
(Standard_False
, Loc
));
4511 Prepend_To
(Declarations
(Func_Bod
), Flag_Decl
);
4512 Analyze
(Flag_Decl
);
4516 -- Build a simple_return_statement that returns the return object when
4517 -- there is a statement sequence, or no expression, or the result will
4518 -- be built in place. Note however that we currently do this for all
4519 -- composite cases, even though nonlimited composite results are not yet
4520 -- built in place (though we plan to do so eventually).
4523 or else Is_Composite_Type
(Ret_Typ
)
4529 -- If the extended return has a handled statement sequence, then wrap
4530 -- it in a block and use the block as the first statement.
4534 Make_Block_Statement
(Loc
,
4535 Declarations
=> New_List
,
4536 Handled_Statement_Sequence
=> HSS
));
4539 -- If the result type contains tasks, we call Move_Activation_Chain.
4540 -- Later, the cleanup code will call Complete_Master, which will
4541 -- terminate any unactivated tasks belonging to the return statement
4542 -- master. But Move_Activation_Chain updates their master to be that
4543 -- of the caller, so they will not be terminated unless the return
4544 -- statement completes unsuccessfully due to exception, abort, goto,
4545 -- or exit. As a formality, we test whether the function requires the
4546 -- result to be built in place, though that's necessarily true for
4547 -- the case of result types with task parts.
4549 if Is_BIP_Func
and then Has_Task
(Ret_Typ
) then
4551 -- The return expression is an aggregate for a complex type which
4552 -- contains tasks. This particular case is left unexpanded since
4553 -- the regular expansion would insert all temporaries and
4554 -- initialization code in the wrong block.
4556 if Nkind
(Exp
) = N_Aggregate
then
4557 Expand_N_Aggregate
(Exp
);
4560 -- Do not move the activation chain if the return object does not
4563 if Has_Task
(Etype
(Ret_Obj_Id
)) then
4564 Append_To
(Stmts
, Move_Activation_Chain
(Func_Id
));
4568 -- Update the state of the function right before the object is
4571 if Is_BIP_Func
and then Needs_Finalization
(Etype
(Ret_Obj_Id
)) then
4573 Flag_Id
: constant Entity_Id
:=
4574 Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
);
4581 Make_Assignment_Statement
(Loc
,
4582 Name
=> New_Occurrence_Of
(Flag_Id
, Loc
),
4583 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4587 -- Build a simple_return_statement that returns the return object
4590 Make_Simple_Return_Statement
(Loc
,
4591 Expression
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
));
4592 Append_To
(Stmts
, Return_Stmt
);
4594 HSS
:= Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
);
4597 -- Case where we build a return statement block
4599 if Present
(HSS
) then
4601 Make_Block_Statement
(Loc
,
4602 Declarations
=> Return_Object_Declarations
(N
),
4603 Handled_Statement_Sequence
=> HSS
);
4605 -- We set the entity of the new block statement to be that of the
4606 -- return statement. This is necessary so that various fields, such
4607 -- as Finalization_Chain_Entity carry over from the return statement
4608 -- to the block. Note that this block is unusual, in that its entity
4609 -- is an E_Return_Statement rather than an E_Block.
4612 (Result
, New_Occurrence_Of
(Return_Statement_Entity
(N
), Loc
));
4614 -- If the object decl was already rewritten as a renaming, then we
4615 -- don't want to do the object allocation and transformation of
4616 -- the return object declaration to a renaming. This case occurs
4617 -- when the return object is initialized by a call to another
4618 -- build-in-place function, and that function is responsible for
4619 -- the allocation of the return object.
4622 and then Nkind
(Ret_Obj_Decl
) = N_Object_Renaming_Declaration
4625 (Nkind
(Original_Node
(Ret_Obj_Decl
)) = N_Object_Declaration
4626 and then Is_Build_In_Place_Function_Call
4627 (Expression
(Original_Node
(Ret_Obj_Decl
))));
4629 -- Return the build-in-place result by reference
4631 Set_By_Ref
(Return_Stmt
);
4633 elsif Is_BIP_Func
then
4635 -- Locate the implicit access parameter associated with the
4636 -- caller-supplied return object and convert the return
4637 -- statement's return object declaration to a renaming of a
4638 -- dereference of the access parameter. If the return object's
4639 -- declaration includes an expression that has not already been
4640 -- expanded as separate assignments, then add an assignment
4641 -- statement to ensure the return object gets initialized.
4644 -- Result : T [:= <expression>];
4651 -- Result : T renames FuncRA.all;
4652 -- [Result := <expression;]
4657 Ret_Obj_Expr
: constant Node_Id
:= Expression
(Ret_Obj_Decl
);
4658 Ret_Obj_Typ
: constant Entity_Id
:= Etype
(Ret_Obj_Id
);
4660 Init_Assignment
: Node_Id
:= Empty
;
4661 Obj_Acc_Formal
: Entity_Id
;
4662 Obj_Acc_Deref
: Node_Id
;
4663 Obj_Alloc_Formal
: Entity_Id
;
4666 -- Build-in-place results must be returned by reference
4668 Set_By_Ref
(Return_Stmt
);
4670 -- Retrieve the implicit access parameter passed by the caller
4673 Build_In_Place_Formal
(Func_Id
, BIP_Object_Access
);
4675 -- If the return object's declaration includes an expression
4676 -- and the declaration isn't marked as No_Initialization, then
4677 -- we need to generate an assignment to the object and insert
4678 -- it after the declaration before rewriting it as a renaming
4679 -- (otherwise we'll lose the initialization). The case where
4680 -- the result type is an interface (or class-wide interface)
4681 -- is also excluded because the context of the function call
4682 -- must be unconstrained, so the initialization will always
4683 -- be done as part of an allocator evaluation (storage pool
4684 -- or secondary stack), never to a constrained target object
4685 -- passed in by the caller. Besides the assignment being
4686 -- unneeded in this case, it avoids problems with trying to
4687 -- generate a dispatching assignment when the return expression
4688 -- is a nonlimited descendant of a limited interface (the
4689 -- interface has no assignment operation).
4691 if Present
(Ret_Obj_Expr
)
4692 and then not No_Initialization
(Ret_Obj_Decl
)
4693 and then not Is_Interface
(Ret_Obj_Typ
)
4696 Make_Assignment_Statement
(Loc
,
4697 Name
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
),
4698 Expression
=> Relocate_Node
(Ret_Obj_Expr
));
4700 Set_Etype
(Name
(Init_Assignment
), Etype
(Ret_Obj_Id
));
4701 Set_Assignment_OK
(Name
(Init_Assignment
));
4702 Set_No_Ctrl_Actions
(Init_Assignment
);
4704 Set_Parent
(Name
(Init_Assignment
), Init_Assignment
);
4705 Set_Parent
(Expression
(Init_Assignment
), Init_Assignment
);
4707 Set_Expression
(Ret_Obj_Decl
, Empty
);
4709 if Is_Class_Wide_Type
(Etype
(Ret_Obj_Id
))
4710 and then not Is_Class_Wide_Type
4711 (Etype
(Expression
(Init_Assignment
)))
4713 Rewrite
(Expression
(Init_Assignment
),
4714 Make_Type_Conversion
(Loc
,
4716 New_Occurrence_Of
(Etype
(Ret_Obj_Id
), Loc
),
4718 Relocate_Node
(Expression
(Init_Assignment
))));
4721 -- In the case of functions where the calling context can
4722 -- determine the form of allocation needed, initialization
4723 -- is done with each part of the if statement that handles
4724 -- the different forms of allocation (this is true for
4725 -- unconstrained and tagged result subtypes).
4727 if Is_Constrained
(Ret_Typ
)
4728 and then not Is_Tagged_Type
(Underlying_Type
(Ret_Typ
))
4730 Insert_After
(Ret_Obj_Decl
, Init_Assignment
);
4734 -- When the function's subtype is unconstrained, a run-time
4735 -- test is needed to determine the form of allocation to use
4736 -- for the return object. The function has an implicit formal
4737 -- parameter indicating this. If the BIP_Alloc_Form formal has
4738 -- the value one, then the caller has passed access to an
4739 -- existing object for use as the return object. If the value
4740 -- is two, then the return object must be allocated on the
4741 -- secondary stack. Otherwise, the object must be allocated in
4742 -- a storage pool (currently only supported for the global
4743 -- heap, user-defined storage pools TBD ???). We generate an
4744 -- if statement to test the implicit allocation formal and
4745 -- initialize a local access value appropriately, creating
4746 -- allocators in the secondary stack and global heap cases.
4747 -- The special formal also exists and must be tested when the
4748 -- function has a tagged result, even when the result subtype
4749 -- is constrained, because in general such functions can be
4750 -- called in dispatching contexts and must be handled similarly
4751 -- to functions with a class-wide result.
4753 if not Is_Constrained
(Ret_Typ
)
4754 or else Is_Tagged_Type
(Underlying_Type
(Ret_Typ
))
4757 Build_In_Place_Formal
(Func_Id
, BIP_Alloc_Form
);
4760 Pool_Id
: constant Entity_Id
:=
4761 Make_Temporary
(Loc
, 'P');
4762 Alloc_Obj_Id
: Entity_Id
;
4763 Alloc_Obj_Decl
: Node_Id
;
4764 Alloc_If_Stmt
: Node_Id
;
4765 Heap_Allocator
: Node_Id
;
4766 Pool_Decl
: Node_Id
;
4767 Pool_Allocator
: Node_Id
;
4768 Ptr_Type_Decl
: Node_Id
;
4769 Ref_Type
: Entity_Id
;
4770 SS_Allocator
: Node_Id
;
4773 -- Reuse the itype created for the function's implicit
4774 -- access formal. This avoids the need to create a new
4775 -- access type here, plus it allows assigning the access
4776 -- formal directly without applying a conversion.
4778 -- Ref_Type := Etype (Object_Access);
4780 -- Create an access type designating the function's
4783 Ref_Type
:= Make_Temporary
(Loc
, 'A');
4786 Make_Full_Type_Declaration
(Loc
,
4787 Defining_Identifier
=> Ref_Type
,
4789 Make_Access_To_Object_Definition
(Loc
,
4790 All_Present
=> True,
4791 Subtype_Indication
=>
4792 New_Occurrence_Of
(Ret_Obj_Typ
, Loc
)));
4794 Insert_Before
(Ret_Obj_Decl
, Ptr_Type_Decl
);
4796 -- Create an access object that will be initialized to an
4797 -- access value denoting the return object, either coming
4798 -- from an implicit access value passed in by the caller
4799 -- or from the result of an allocator.
4801 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
4802 Set_Etype
(Alloc_Obj_Id
, Ref_Type
);
4805 Make_Object_Declaration
(Loc
,
4806 Defining_Identifier
=> Alloc_Obj_Id
,
4807 Object_Definition
=>
4808 New_Occurrence_Of
(Ref_Type
, Loc
));
4810 Insert_Before
(Ret_Obj_Decl
, Alloc_Obj_Decl
);
4812 -- Create allocators for both the secondary stack and
4813 -- global heap. If there's an initialization expression,
4814 -- then create these as initialized allocators.
4816 if Present
(Ret_Obj_Expr
)
4817 and then not No_Initialization
(Ret_Obj_Decl
)
4819 -- Always use the type of the expression for the
4820 -- qualified expression, rather than the result type.
4821 -- In general we cannot always use the result type
4822 -- for the allocator, because the expression might be
4823 -- of a specific type, such as in the case of an
4824 -- aggregate or even a nonlimited object when the
4825 -- result type is a limited class-wide interface type.
4828 Make_Allocator
(Loc
,
4830 Make_Qualified_Expression
(Loc
,
4833 (Etype
(Ret_Obj_Expr
), Loc
),
4834 Expression
=> New_Copy_Tree
(Ret_Obj_Expr
)));
4837 -- If the function returns a class-wide type we cannot
4838 -- use the return type for the allocator. Instead we
4839 -- use the type of the expression, which must be an
4840 -- aggregate of a definite type.
4842 if Is_Class_Wide_Type
(Ret_Obj_Typ
) then
4844 Make_Allocator
(Loc
,
4847 (Etype
(Ret_Obj_Expr
), Loc
));
4850 Make_Allocator
(Loc
,
4852 New_Occurrence_Of
(Ret_Obj_Typ
, Loc
));
4855 -- If the object requires default initialization then
4856 -- that will happen later following the elaboration of
4857 -- the object renaming. If we don't turn it off here
4858 -- then the object will be default initialized twice.
4860 Set_No_Initialization
(Heap_Allocator
);
4863 -- The Pool_Allocator is just like the Heap_Allocator,
4864 -- except we set Storage_Pool and Procedure_To_Call so
4865 -- it will use the user-defined storage pool.
4867 Pool_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
4869 -- Do not generate the renaming of the build-in-place
4870 -- pool parameter on ZFP because the parameter is not
4871 -- created in the first place.
4873 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
4875 Make_Object_Renaming_Declaration
(Loc
,
4876 Defining_Identifier
=> Pool_Id
,
4879 (RTE
(RE_Root_Storage_Pool
), Loc
),
4881 Make_Explicit_Dereference
(Loc
,
4883 (Build_In_Place_Formal
4884 (Func_Id
, BIP_Storage_Pool
), Loc
)));
4885 Set_Storage_Pool
(Pool_Allocator
, Pool_Id
);
4886 Set_Procedure_To_Call
4887 (Pool_Allocator
, RTE
(RE_Allocate_Any
));
4889 Pool_Decl
:= Make_Null_Statement
(Loc
);
4892 -- If the No_Allocators restriction is active, then only
4893 -- an allocator for secondary stack allocation is needed.
4894 -- It's OK for such allocators to have Comes_From_Source
4895 -- set to False, because gigi knows not to flag them as
4896 -- being a violation of No_Implicit_Heap_Allocations.
4898 if Restriction_Active
(No_Allocators
) then
4899 SS_Allocator
:= Heap_Allocator
;
4900 Heap_Allocator
:= Make_Null
(Loc
);
4901 Pool_Allocator
:= Make_Null
(Loc
);
4903 -- Otherwise the heap and pool allocators may be needed,
4904 -- so we make another allocator for secondary stack
4908 SS_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
4910 -- The heap and pool allocators are marked as
4911 -- Comes_From_Source since they correspond to an
4912 -- explicit user-written allocator (that is, it will
4913 -- only be executed on behalf of callers that call the
4914 -- function as initialization for such an allocator).
4915 -- Prevents errors when No_Implicit_Heap_Allocations
4918 Set_Comes_From_Source
(Heap_Allocator
, True);
4919 Set_Comes_From_Source
(Pool_Allocator
, True);
4922 -- The allocator is returned on the secondary stack.
4924 Set_Storage_Pool
(SS_Allocator
, RTE
(RE_SS_Pool
));
4925 Set_Procedure_To_Call
4926 (SS_Allocator
, RTE
(RE_SS_Allocate
));
4928 -- The allocator is returned on the secondary stack,
4929 -- so indicate that the function return, as well as
4930 -- all blocks that encloses the allocator, must not
4931 -- release it. The flags must be set now because
4932 -- the decision to use the secondary stack is done
4933 -- very late in the course of expanding the return
4934 -- statement, past the point where these flags are
4937 Set_Uses_Sec_Stack
(Func_Id
);
4938 Set_Uses_Sec_Stack
(Return_Statement_Entity
(N
));
4939 Set_Sec_Stack_Needed_For_Return
4940 (Return_Statement_Entity
(N
));
4941 Set_Enclosing_Sec_Stack_Return
(N
);
4943 -- Create an if statement to test the BIP_Alloc_Form
4944 -- formal and initialize the access object to either the
4945 -- BIP_Object_Access formal (BIP_Alloc_Form =
4946 -- Caller_Allocation), the result of allocating the
4947 -- object in the secondary stack (BIP_Alloc_Form =
4948 -- Secondary_Stack), or else an allocator to create the
4949 -- return object in the heap or user-defined pool
4950 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
4952 -- ??? An unchecked type conversion must be made in the
4953 -- case of assigning the access object formal to the
4954 -- local access object, because a normal conversion would
4955 -- be illegal in some cases (such as converting access-
4956 -- to-unconstrained to access-to-constrained), but the
4957 -- the unchecked conversion will presumably fail to work
4958 -- right in just such cases. It's not clear at all how to
4962 Make_If_Statement
(Loc
,
4966 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
4968 Make_Integer_Literal
(Loc
,
4969 UI_From_Int
(BIP_Allocation_Form
'Pos
4970 (Caller_Allocation
)))),
4972 Then_Statements
=> New_List
(
4973 Make_Assignment_Statement
(Loc
,
4975 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
4977 Make_Unchecked_Type_Conversion
(Loc
,
4979 New_Occurrence_Of
(Ref_Type
, Loc
),
4981 New_Occurrence_Of
(Obj_Acc_Formal
, Loc
)))),
4983 Elsif_Parts
=> New_List
(
4984 Make_Elsif_Part
(Loc
,
4988 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
4990 Make_Integer_Literal
(Loc
,
4991 UI_From_Int
(BIP_Allocation_Form
'Pos
4992 (Secondary_Stack
)))),
4994 Then_Statements
=> New_List
(
4995 Make_Assignment_Statement
(Loc
,
4997 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
4998 Expression
=> SS_Allocator
))),
5000 Make_Elsif_Part
(Loc
,
5004 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5006 Make_Integer_Literal
(Loc
,
5007 UI_From_Int
(BIP_Allocation_Form
'Pos
5010 Then_Statements
=> New_List
(
5011 Build_Heap_Allocator
5012 (Temp_Id
=> Alloc_Obj_Id
,
5013 Temp_Typ
=> Ref_Type
,
5015 Ret_Typ
=> Ret_Obj_Typ
,
5016 Alloc_Expr
=> Heap_Allocator
)))),
5018 Else_Statements
=> New_List
(
5020 Build_Heap_Allocator
5021 (Temp_Id
=> Alloc_Obj_Id
,
5022 Temp_Typ
=> Ref_Type
,
5024 Ret_Typ
=> Ret_Obj_Typ
,
5025 Alloc_Expr
=> Pool_Allocator
)));
5027 -- If a separate initialization assignment was created
5028 -- earlier, append that following the assignment of the
5029 -- implicit access formal to the access object, to ensure
5030 -- that the return object is initialized in that case. In
5031 -- this situation, the target of the assignment must be
5032 -- rewritten to denote a dereference of the access to the
5033 -- return object passed in by the caller.
5035 if Present
(Init_Assignment
) then
5036 Rewrite
(Name
(Init_Assignment
),
5037 Make_Explicit_Dereference
(Loc
,
5038 Prefix
=> New_Occurrence_Of
(Alloc_Obj_Id
, Loc
)));
5040 Set_Etype
(Name
(Init_Assignment
), Etype
(Ret_Obj_Id
));
5043 (Then_Statements
(Alloc_If_Stmt
), Init_Assignment
);
5046 Insert_Before
(Ret_Obj_Decl
, Alloc_If_Stmt
);
5048 -- Remember the local access object for use in the
5049 -- dereference of the renaming created below.
5051 Obj_Acc_Formal
:= Alloc_Obj_Id
;
5055 -- Replace the return object declaration with a renaming of a
5056 -- dereference of the access value designating the return
5060 Make_Explicit_Dereference
(Loc
,
5061 Prefix
=> New_Occurrence_Of
(Obj_Acc_Formal
, Loc
));
5063 Rewrite
(Ret_Obj_Decl
,
5064 Make_Object_Renaming_Declaration
(Loc
,
5065 Defining_Identifier
=> Ret_Obj_Id
,
5066 Access_Definition
=> Empty
,
5067 Subtype_Mark
=> New_Occurrence_Of
(Ret_Obj_Typ
, Loc
),
5068 Name
=> Obj_Acc_Deref
));
5070 Set_Renamed_Object
(Ret_Obj_Id
, Obj_Acc_Deref
);
5074 -- Case where we do not build a block
5077 -- We're about to drop Return_Object_Declarations on the floor, so
5078 -- we need to insert it, in case it got expanded into useful code.
5079 -- Remove side effects from expression, which may be duplicated in
5080 -- subsequent checks (see Expand_Simple_Function_Return).
5082 Insert_List_Before
(N
, Return_Object_Declarations
(N
));
5083 Remove_Side_Effects
(Exp
);
5085 -- Build simple_return_statement that returns the expression directly
5087 Return_Stmt
:= Make_Simple_Return_Statement
(Loc
, Expression
=> Exp
);
5088 Result
:= Return_Stmt
;
5091 -- Set the flag to prevent infinite recursion
5093 Set_Comes_From_Extended_Return_Statement
(Return_Stmt
);
5095 Rewrite
(N
, Result
);
5097 end Expand_N_Extended_Return_Statement
;
5099 ----------------------------
5100 -- Expand_N_Function_Call --
5101 ----------------------------
5103 procedure Expand_N_Function_Call
(N
: Node_Id
) is
5106 end Expand_N_Function_Call
;
5108 ---------------------------------------
5109 -- Expand_N_Procedure_Call_Statement --
5110 ---------------------------------------
5112 procedure Expand_N_Procedure_Call_Statement
(N
: Node_Id
) is
5113 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
5116 -- The procedure call is Ghost when the name is Ghost. Set the mode now
5117 -- to ensure that any nodes generated during expansion are properly set
5123 Ghost_Mode
:= Save_Ghost_Mode
;
5124 end Expand_N_Procedure_Call_Statement
;
5126 --------------------------------------
5127 -- Expand_N_Simple_Return_Statement --
5128 --------------------------------------
5130 procedure Expand_N_Simple_Return_Statement
(N
: Node_Id
) is
5132 -- Defend against previous errors (i.e. the return statement calls a
5133 -- function that is not available in configurable runtime).
5135 if Present
(Expression
(N
))
5136 and then Nkind
(Expression
(N
)) = N_Empty
5138 Check_Error_Detected
;
5142 -- Distinguish the function and non-function cases:
5144 case Ekind
(Return_Applies_To
(Return_Statement_Entity
(N
))) is
5147 E_Generic_Function
=>
5148 Expand_Simple_Function_Return
(N
);
5151 E_Generic_Procedure |
5154 E_Return_Statement
=>
5155 Expand_Non_Function_Return
(N
);
5158 raise Program_Error
;
5162 when RE_Not_Available
=>
5164 end Expand_N_Simple_Return_Statement
;
5166 ------------------------------
5167 -- Expand_N_Subprogram_Body --
5168 ------------------------------
5170 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5173 -- Add dummy push/pop label nodes at start and end to clear any local
5174 -- exception indications if local-exception-to-goto optimization is active.
5176 -- Add return statement if last statement in body is not a return statement
5177 -- (this makes things easier on Gigi which does not want to have to handle
5178 -- a missing return).
5180 -- Add call to Activate_Tasks if body is a task activator
5182 -- Deal with possible detection of infinite recursion
5184 -- Eliminate body completely if convention stubbed
5186 -- Encode entity names within body, since we will not need to reference
5187 -- these entities any longer in the front end.
5189 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5191 -- Reset Pure indication if any parameter has root type System.Address
5192 -- or has any parameters of limited types, where limited means that the
5193 -- run-time view is limited (i.e. the full type is limited).
5197 procedure Expand_N_Subprogram_Body
(N
: Node_Id
) is
5198 Body_Id
: constant Entity_Id
:= Defining_Entity
(N
);
5199 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
5200 Loc
: constant Source_Ptr
:= Sloc
(N
);
5202 procedure Add_Return
(Spec_Id
: Entity_Id
; Stmts
: List_Id
);
5203 -- Append a return statement to the statement sequence Stmts if the last
5204 -- statement is not already a return or a goto statement. Note that the
5205 -- latter test is not critical, it does not matter if we add a few extra
5206 -- returns, since they get eliminated anyway later on. Spec_Id denotes
5207 -- the corresponding spec of the subprogram body.
5213 procedure Add_Return
(Spec_Id
: Entity_Id
; Stmts
: List_Id
) is
5214 Last_Stmt
: Node_Id
;
5219 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5220 -- not relevant in this context since they are not executable.
5222 Last_Stmt
:= Last
(Stmts
);
5223 while Nkind
(Last_Stmt
) in N_Pop_xxx_Label
loop
5227 -- Now insert return unless last statement is a transfer
5229 if not Is_Transfer
(Last_Stmt
) then
5231 -- The source location for the return is the end label of the
5232 -- procedure if present. Otherwise use the sloc of the last
5233 -- statement in the list. If the list comes from a generated
5234 -- exception handler and we are not debugging generated code,
5235 -- all the statements within the handler are made invisible
5238 if Nkind
(Parent
(Stmts
)) = N_Exception_Handler
5239 and then not Comes_From_Source
(Parent
(Stmts
))
5241 Loc
:= Sloc
(Last_Stmt
);
5242 elsif Present
(End_Label
(HSS
)) then
5243 Loc
:= Sloc
(End_Label
(HSS
));
5245 Loc
:= Sloc
(Last_Stmt
);
5248 -- Append return statement, and set analyzed manually. We can't
5249 -- call Analyze on this return since the scope is wrong.
5251 -- Note: it almost works to push the scope and then do the Analyze
5252 -- call, but something goes wrong in some weird cases and it is
5253 -- not worth worrying about ???
5255 Stmt
:= Make_Simple_Return_Statement
(Loc
);
5257 -- The return statement is handled properly, and the call to the
5258 -- postcondition, inserted below, does not require information
5259 -- from the body either. However, that call is analyzed in the
5260 -- enclosing scope, and an elaboration check might improperly be
5261 -- added to it. A guard in Sem_Elab is needed to prevent that
5262 -- spurious check, see Check_Elab_Call.
5264 Append_To
(Stmts
, Stmt
);
5265 Set_Analyzed
(Stmt
);
5267 -- Call the _Postconditions procedure if the related subprogram
5268 -- has contract assertions that need to be verified on exit.
5270 if Ekind
(Spec_Id
) = E_Procedure
5271 and then Present
(Postconditions_Proc
(Spec_Id
))
5273 Insert_Action
(Stmt
,
5274 Make_Procedure_Call_Statement
(Loc
,
5276 New_Occurrence_Of
(Postconditions_Proc
(Spec_Id
), Loc
)));
5283 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
5287 Spec_Id
: Entity_Id
;
5289 -- Start of processing for Expand_N_Subprogram_Body
5292 if Present
(Corresponding_Spec
(N
)) then
5293 Spec_Id
:= Corresponding_Spec
(N
);
5298 -- If this is a Pure function which has any parameters whose root type
5299 -- is System.Address, reset the Pure indication.
5300 -- This check is also performed when the subprogram is frozen, but we
5301 -- repeat it on the body so that the indication is consistent, and so
5302 -- it applies as well to bodies without separate specifications.
5304 if Is_Pure
(Spec_Id
)
5305 and then Is_Subprogram
(Spec_Id
)
5306 and then not Has_Pragma_Pure_Function
(Spec_Id
)
5308 Check_Function_With_Address_Parameter
(Spec_Id
);
5310 if Spec_Id
/= Body_Id
then
5311 Set_Is_Pure
(Body_Id
, Is_Pure
(Spec_Id
));
5315 -- The subprogram body is Ghost when it is stand alone and subject to
5316 -- pragma Ghost or the corresponding spec is Ghost. To accomodate both
5317 -- cases, set the mode now to ensure that any nodes generated during
5318 -- expansion are marked as Ghost.
5320 Set_Ghost_Mode
(N
, Spec_Id
);
5322 -- Set L to either the list of declarations if present, or to the list
5323 -- of statements if no declarations are present. This is used to insert
5324 -- new stuff at the start.
5326 if Is_Non_Empty_List
(Declarations
(N
)) then
5327 L
:= Declarations
(N
);
5329 L
:= Statements
(HSS
);
5332 -- If local-exception-to-goto optimization active, insert dummy push
5333 -- statements at start, and dummy pop statements at end, but inhibit
5334 -- this if we have No_Exception_Handlers, since they are useless and
5335 -- intefere with analysis, e.g. by codepeer.
5337 if (Debug_Flag_Dot_G
5338 or else Restriction_Active
(No_Exception_Propagation
))
5339 and then not Restriction_Active
(No_Exception_Handlers
)
5340 and then not CodePeer_Mode
5341 and then Is_Non_Empty_List
(L
)
5344 FS
: constant Node_Id
:= First
(L
);
5345 FL
: constant Source_Ptr
:= Sloc
(FS
);
5350 -- LS points to either last statement, if statements are present
5351 -- or to the last declaration if there are no statements present.
5352 -- It is the node after which the pop's are generated.
5354 if Is_Non_Empty_List
(Statements
(HSS
)) then
5355 LS
:= Last
(Statements
(HSS
));
5362 Insert_List_Before_And_Analyze
(FS
, New_List
(
5363 Make_Push_Constraint_Error_Label
(FL
),
5364 Make_Push_Program_Error_Label
(FL
),
5365 Make_Push_Storage_Error_Label
(FL
)));
5367 Insert_List_After_And_Analyze
(LS
, New_List
(
5368 Make_Pop_Constraint_Error_Label
(LL
),
5369 Make_Pop_Program_Error_Label
(LL
),
5370 Make_Pop_Storage_Error_Label
(LL
)));
5374 -- Need poll on entry to subprogram if polling enabled. We only do this
5375 -- for non-empty subprograms, since it does not seem necessary to poll
5376 -- for a dummy null subprogram.
5378 if Is_Non_Empty_List
(L
) then
5380 -- Do not add a polling call if the subprogram is to be inlined by
5381 -- the back-end, to avoid repeated calls with multiple inlinings.
5383 if Is_Inlined
(Spec_Id
)
5384 and then Front_End_Inlining
5385 and then Optimization_Level
> 1
5389 Generate_Poll_Call
(First
(L
));
5393 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5395 if Init_Or_Norm_Scalars
and then Is_Subprogram
(Spec_Id
) then
5401 -- Loop through formals
5403 F
:= First_Formal
(Spec_Id
);
5404 while Present
(F
) loop
5405 if Is_Scalar_Type
(Etype
(F
))
5406 and then Ekind
(F
) = E_Out_Parameter
5408 Check_Restriction
(No_Default_Initialization
, F
);
5410 -- Insert the initialization. We turn off validity checks
5411 -- for this assignment, since we do not want any check on
5412 -- the initial value itself (which may well be invalid).
5413 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5416 Make_Assignment_Statement
(Loc
,
5417 Name
=> New_Occurrence_Of
(F
, Loc
),
5418 Expression
=> Get_Simple_Init_Val
(Etype
(F
), N
));
5419 Set_Suppress_Assignment_Checks
(A
);
5421 Insert_Before_And_Analyze
(First
(L
),
5422 A
, Suppress
=> Validity_Check
);
5430 -- Clear out statement list for stubbed procedure
5432 if Present
(Corresponding_Spec
(N
)) then
5433 Set_Elaboration_Flag
(N
, Spec_Id
);
5435 if Convention
(Spec_Id
) = Convention_Stubbed
5436 or else Is_Eliminated
(Spec_Id
)
5438 Set_Declarations
(N
, Empty_List
);
5439 Set_Handled_Statement_Sequence
(N
,
5440 Make_Handled_Sequence_Of_Statements
(Loc
,
5441 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
5443 Ghost_Mode
:= Save_Ghost_Mode
;
5448 -- Create a set of discriminals for the next protected subprogram body
5450 if Is_List_Member
(N
)
5451 and then Present
(Parent
(List_Containing
(N
)))
5452 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5453 and then Present
(Next_Protected_Operation
(N
))
5455 Set_Discriminals
(Parent
(Base_Type
(Scope
(Spec_Id
))));
5458 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5459 -- subprograms with no specs are not frozen.
5462 Typ
: constant Entity_Id
:= Etype
(Spec_Id
);
5463 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5466 if not Acts_As_Spec
(N
)
5467 and then Nkind
(Parent
(Parent
(Spec_Id
))) /=
5468 N_Subprogram_Body_Stub
5472 elsif Is_Limited_View
(Typ
) then
5473 Set_Returns_By_Ref
(Spec_Id
);
5475 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5476 Set_Returns_By_Ref
(Spec_Id
);
5480 -- For a procedure, we add a return for all possible syntactic ends of
5483 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
) then
5484 Add_Return
(Spec_Id
, Statements
(HSS
));
5486 if Present
(Exception_Handlers
(HSS
)) then
5487 Except_H
:= First_Non_Pragma
(Exception_Handlers
(HSS
));
5488 while Present
(Except_H
) loop
5489 Add_Return
(Spec_Id
, Statements
(Except_H
));
5490 Next_Non_Pragma
(Except_H
);
5494 -- For a function, we must deal with the case where there is at least
5495 -- one missing return. What we do is to wrap the entire body of the
5496 -- function in a block:
5509 -- raise Program_Error;
5512 -- This approach is necessary because the raise must be signalled to the
5513 -- caller, not handled by any local handler (RM 6.4(11)).
5515 -- Note: we do not need to analyze the constructed sequence here, since
5516 -- it has no handler, and an attempt to analyze the handled statement
5517 -- sequence twice is risky in various ways (e.g. the issue of expanding
5518 -- cleanup actions twice).
5520 elsif Has_Missing_Return
(Spec_Id
) then
5522 Hloc
: constant Source_Ptr
:= Sloc
(HSS
);
5523 Blok
: constant Node_Id
:=
5524 Make_Block_Statement
(Hloc
,
5525 Handled_Statement_Sequence
=> HSS
);
5526 Rais
: constant Node_Id
:=
5527 Make_Raise_Program_Error
(Hloc
,
5528 Reason
=> PE_Missing_Return
);
5531 Set_Handled_Statement_Sequence
(N
,
5532 Make_Handled_Sequence_Of_Statements
(Hloc
,
5533 Statements
=> New_List
(Blok
, Rais
)));
5535 Push_Scope
(Spec_Id
);
5542 -- If subprogram contains a parameterless recursive call, then we may
5543 -- have an infinite recursion, so see if we can generate code to check
5544 -- for this possibility if storage checks are not suppressed.
5546 if Ekind
(Spec_Id
) = E_Procedure
5547 and then Has_Recursive_Call
(Spec_Id
)
5548 and then not Storage_Checks_Suppressed
(Spec_Id
)
5550 Detect_Infinite_Recursion
(N
, Spec_Id
);
5553 -- Set to encode entity names in package body before gigi is called
5555 Qualify_Entity_Names
(N
);
5557 Ghost_Mode
:= Save_Ghost_Mode
;
5558 end Expand_N_Subprogram_Body
;
5560 -----------------------------------
5561 -- Expand_N_Subprogram_Body_Stub --
5562 -----------------------------------
5564 procedure Expand_N_Subprogram_Body_Stub
(N
: Node_Id
) is
5568 if Present
(Corresponding_Body
(N
)) then
5569 Bod
:= Unit_Declaration_Node
(Corresponding_Body
(N
));
5571 -- The body may have been expanded already when it is analyzed
5572 -- through the subunit node. Do no expand again: it interferes
5573 -- with the construction of unnesting tables when generating C.
5575 if not Analyzed
(Bod
) then
5576 Expand_N_Subprogram_Body
(Bod
);
5579 -- Add full qualification to entities that may be created late
5580 -- during unnesting.
5582 Qualify_Entity_Names
(N
);
5584 end Expand_N_Subprogram_Body_Stub
;
5586 -------------------------------------
5587 -- Expand_N_Subprogram_Declaration --
5588 -------------------------------------
5590 -- If the declaration appears within a protected body, it is a private
5591 -- operation of the protected type. We must create the corresponding
5592 -- protected subprogram an associated formals. For a normal protected
5593 -- operation, this is done when expanding the protected type declaration.
5595 -- If the declaration is for a null procedure, emit null body
5597 procedure Expand_N_Subprogram_Declaration
(N
: Node_Id
) is
5598 Loc
: constant Source_Ptr
:= Sloc
(N
);
5599 Subp
: constant Entity_Id
:= Defining_Entity
(N
);
5603 Scop
: constant Entity_Id
:= Scope
(Subp
);
5605 Prot_Decl
: Node_Id
;
5606 Prot_Id
: Entity_Id
;
5608 -- Start of processing for Expand_N_Subprogram_Declaration
5611 -- In SPARK, subprogram declarations are only allowed in package
5614 if Nkind
(Parent
(N
)) /= N_Package_Specification
then
5615 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5616 Check_SPARK_05_Restriction
5617 ("subprogram declaration is not a library item", N
);
5619 elsif Present
(Next
(N
))
5620 and then Nkind
(Next
(N
)) = N_Pragma
5621 and then Get_Pragma_Id
(Pragma_Name
(Next
(N
))) = Pragma_Import
5623 -- In SPARK, subprogram declarations are also permitted in
5624 -- declarative parts when immediately followed by a corresponding
5625 -- pragma Import. We only check here that there is some pragma
5630 Check_SPARK_05_Restriction
5631 ("subprogram declaration is not allowed here", N
);
5635 -- Deal with case of protected subprogram. Do not generate protected
5636 -- operation if operation is flagged as eliminated.
5638 if Is_List_Member
(N
)
5639 and then Present
(Parent
(List_Containing
(N
)))
5640 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5641 and then Is_Protected_Type
(Scop
)
5643 if No
(Protected_Body_Subprogram
(Subp
))
5644 and then not Is_Eliminated
(Subp
)
5647 Make_Subprogram_Declaration
(Loc
,
5649 Build_Protected_Sub_Specification
5650 (N
, Scop
, Unprotected_Mode
));
5652 -- The protected subprogram is declared outside of the protected
5653 -- body. Given that the body has frozen all entities so far, we
5654 -- analyze the subprogram and perform freezing actions explicitly.
5655 -- including the generation of an explicit freeze node, to ensure
5656 -- that gigi has the proper order of elaboration.
5657 -- If the body is a subunit, the insertion point is before the
5658 -- stub in the parent.
5660 Prot_Bod
:= Parent
(List_Containing
(N
));
5662 if Nkind
(Parent
(Prot_Bod
)) = N_Subunit
then
5663 Prot_Bod
:= Corresponding_Stub
(Parent
(Prot_Bod
));
5666 Insert_Before
(Prot_Bod
, Prot_Decl
);
5667 Prot_Id
:= Defining_Unit_Name
(Specification
(Prot_Decl
));
5668 Set_Has_Delayed_Freeze
(Prot_Id
);
5670 Push_Scope
(Scope
(Scop
));
5671 Analyze
(Prot_Decl
);
5672 Freeze_Before
(N
, Prot_Id
);
5673 Set_Protected_Body_Subprogram
(Subp
, Prot_Id
);
5675 -- Create protected operation as well. Even though the operation
5676 -- is only accessible within the body, it is possible to make it
5677 -- available outside of the protected object by using 'Access to
5678 -- provide a callback, so build protected version in all cases.
5681 Make_Subprogram_Declaration
(Loc
,
5683 Build_Protected_Sub_Specification
(N
, Scop
, Protected_Mode
));
5684 Insert_Before
(Prot_Bod
, Prot_Decl
);
5685 Analyze
(Prot_Decl
);
5690 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5691 -- cases this is superfluous because calls to it will be automatically
5692 -- inlined, but we definitely need the body if preconditions for the
5693 -- procedure are present.
5695 elsif Nkind
(Specification
(N
)) = N_Procedure_Specification
5696 and then Null_Present
(Specification
(N
))
5699 Bod
: constant Node_Id
:= Body_To_Inline
(N
);
5702 Set_Has_Completion
(Subp
, False);
5703 Append_Freeze_Action
(Subp
, Bod
);
5705 -- The body now contains raise statements, so calls to it will
5708 Set_Is_Inlined
(Subp
, False);
5712 -- When generating C code, transform a function that returns a
5713 -- constrained array type into a procedure with an out parameter
5714 -- that carries the return value.
5716 -- We skip this transformation for unchecked conversions, since they
5717 -- are not needed by the C generator (and this also produces cleaner
5720 if Modify_Tree_For_C
5721 and then Nkind
(Specification
(N
)) = N_Function_Specification
5722 and then Is_Array_Type
(Etype
(Subp
))
5723 and then Is_Constrained
(Etype
(Subp
))
5724 and then not Is_Unchecked_Conversion_Instance
(Subp
)
5726 Build_Procedure_Form
(N
);
5728 end Expand_N_Subprogram_Declaration
;
5730 --------------------------------
5731 -- Expand_Non_Function_Return --
5732 --------------------------------
5734 procedure Expand_Non_Function_Return
(N
: Node_Id
) is
5735 pragma Assert
(No
(Expression
(N
)));
5737 Loc
: constant Source_Ptr
:= Sloc
(N
);
5738 Scope_Id
: Entity_Id
:= Return_Applies_To
(Return_Statement_Entity
(N
));
5739 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
5742 Goto_Stat
: Node_Id
;
5746 -- Call the _Postconditions procedure if the related subprogram has
5747 -- contract assertions that need to be verified on exit.
5749 if Ekind_In
(Scope_Id
, E_Entry
, E_Entry_Family
, E_Procedure
)
5750 and then Present
(Postconditions_Proc
(Scope_Id
))
5753 Make_Procedure_Call_Statement
(Loc
,
5754 Name
=> New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
)));
5757 -- If it is a return from a procedure do no extra steps
5759 if Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
5762 -- If it is a nested return within an extended one, replace it with a
5763 -- return of the previously declared return object.
5765 elsif Kind
= E_Return_Statement
then
5767 Make_Simple_Return_Statement
(Loc
,
5769 New_Occurrence_Of
(First_Entity
(Scope_Id
), Loc
)));
5770 Set_Comes_From_Extended_Return_Statement
(N
);
5771 Set_Return_Statement_Entity
(N
, Scope_Id
);
5772 Expand_Simple_Function_Return
(N
);
5776 pragma Assert
(Is_Entry
(Scope_Id
));
5778 -- Look at the enclosing block to see whether the return is from an
5779 -- accept statement or an entry body.
5781 for J
in reverse 0 .. Scope_Stack
.Last
loop
5782 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
5783 exit when Is_Concurrent_Type
(Scope_Id
);
5786 -- If it is a return from accept statement it is expanded as call to
5787 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
5789 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5790 -- Expand_N_Accept_Alternative in exp_ch9.adb)
5792 if Is_Task_Type
(Scope_Id
) then
5795 Make_Procedure_Call_Statement
(Loc
,
5796 Name
=> New_Occurrence_Of
(RTE
(RE_Complete_Rendezvous
), Loc
));
5797 Insert_Before
(N
, Call
);
5798 -- why not insert actions here???
5801 Acc_Stat
:= Parent
(N
);
5802 while Nkind
(Acc_Stat
) /= N_Accept_Statement
loop
5803 Acc_Stat
:= Parent
(Acc_Stat
);
5806 Lab_Node
:= Last
(Statements
5807 (Handled_Statement_Sequence
(Acc_Stat
)));
5809 Goto_Stat
:= Make_Goto_Statement
(Loc
,
5810 Name
=> New_Occurrence_Of
5811 (Entity
(Identifier
(Lab_Node
)), Loc
));
5813 Set_Analyzed
(Goto_Stat
);
5815 Rewrite
(N
, Goto_Stat
);
5818 -- If it is a return from an entry body, put a Complete_Entry_Body call
5819 -- in front of the return.
5821 elsif Is_Protected_Type
(Scope_Id
) then
5823 Make_Procedure_Call_Statement
(Loc
,
5825 New_Occurrence_Of
(RTE
(RE_Complete_Entry_Body
), Loc
),
5826 Parameter_Associations
=> New_List
(
5827 Make_Attribute_Reference
(Loc
,
5830 (Find_Protection_Object
(Current_Scope
), Loc
),
5831 Attribute_Name
=> Name_Unchecked_Access
)));
5833 Insert_Before
(N
, Call
);
5836 end Expand_Non_Function_Return
;
5838 ---------------------------------------
5839 -- Expand_Protected_Object_Reference --
5840 ---------------------------------------
5842 function Expand_Protected_Object_Reference
5844 Scop
: Entity_Id
) return Node_Id
5846 Loc
: constant Source_Ptr
:= Sloc
(N
);
5853 Rec
:= Make_Identifier
(Loc
, Name_uObject
);
5854 Set_Etype
(Rec
, Corresponding_Record_Type
(Scop
));
5856 -- Find enclosing protected operation, and retrieve its first parameter,
5857 -- which denotes the enclosing protected object. If the enclosing
5858 -- operation is an entry, we are immediately within the protected body,
5859 -- and we can retrieve the object from the service entries procedure. A
5860 -- barrier function has the same signature as an entry. A barrier
5861 -- function is compiled within the protected object, but unlike
5862 -- protected operations its never needs locks, so that its protected
5863 -- body subprogram points to itself.
5865 Proc
:= Current_Scope
;
5866 while Present
(Proc
)
5867 and then Scope
(Proc
) /= Scop
5869 Proc
:= Scope
(Proc
);
5872 Corr
:= Protected_Body_Subprogram
(Proc
);
5876 -- Previous error left expansion incomplete.
5877 -- Nothing to do on this call.
5884 (First
(Parameter_Specifications
(Parent
(Corr
))));
5886 if Is_Subprogram
(Proc
) and then Proc
/= Corr
then
5888 -- Protected function or procedure
5890 Set_Entity
(Rec
, Param
);
5892 -- Rec is a reference to an entity which will not be in scope when
5893 -- the call is reanalyzed, and needs no further analysis.
5898 -- Entry or barrier function for entry body. The first parameter of
5899 -- the entry body procedure is pointer to the object. We create a
5900 -- local variable of the proper type, duplicating what is done to
5901 -- define _object later on.
5905 Obj_Ptr
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
5909 Make_Full_Type_Declaration
(Loc
,
5910 Defining_Identifier
=> Obj_Ptr
,
5912 Make_Access_To_Object_Definition
(Loc
,
5913 Subtype_Indication
=>
5915 (Corresponding_Record_Type
(Scop
), Loc
))));
5917 Insert_Actions
(N
, Decls
);
5918 Freeze_Before
(N
, Obj_Ptr
);
5921 Make_Explicit_Dereference
(Loc
,
5923 Unchecked_Convert_To
(Obj_Ptr
,
5924 New_Occurrence_Of
(Param
, Loc
)));
5926 -- Analyze new actual. Other actuals in calls are already analyzed
5927 -- and the list of actuals is not reanalyzed after rewriting.
5929 Set_Parent
(Rec
, N
);
5935 end Expand_Protected_Object_Reference
;
5937 --------------------------------------
5938 -- Expand_Protected_Subprogram_Call --
5939 --------------------------------------
5941 procedure Expand_Protected_Subprogram_Call
5948 procedure Expand_Internal_Init_Call
;
5949 -- A call to an operation of the type may occur in the initialization
5950 -- of a private component. In that case the prefix of the call is an
5951 -- entity name and the call is treated as internal even though it
5952 -- appears in code outside of the protected type.
5954 procedure Freeze_Called_Function
;
5955 -- If it is a function call it can appear in elaboration code and
5956 -- the called entity must be frozen before the call. This must be
5957 -- done before the call is expanded, as the expansion may rewrite it
5958 -- to something other than a call (e.g. a temporary initialized in a
5959 -- transient block).
5961 -------------------------------
5962 -- Expand_Internal_Init_Call --
5963 -------------------------------
5965 procedure Expand_Internal_Init_Call
is
5967 -- If the context is a protected object (rather than a protected
5968 -- type) the call itself is bound to raise program_error because
5969 -- the protected body will not have been elaborated yet. This is
5970 -- diagnosed subsequently in Sem_Elab.
5972 Freeze_Called_Function
;
5974 -- The target of the internal call is the first formal of the
5975 -- enclosing initialization procedure.
5977 Rec
:= New_Occurrence_Of
(First_Formal
(Current_Scope
), Sloc
(N
));
5978 Build_Protected_Subprogram_Call
(N
,
5983 Resolve
(N
, Etype
(Subp
));
5984 end Expand_Internal_Init_Call
;
5986 ----------------------------
5987 -- Freeze_Called_Function --
5988 ----------------------------
5990 procedure Freeze_Called_Function
is
5992 if Ekind
(Subp
) = E_Function
then
5993 Freeze_Expression
(Name
(N
));
5995 end Freeze_Called_Function
;
5997 -- Start of processing for Expand_Protected_Subprogram_Call
6000 -- If the protected object is not an enclosing scope, this is an inter-
6001 -- object function call. Inter-object procedure calls are expanded by
6002 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6003 -- subprogram being called is in the protected body being compiled, and
6004 -- if the protected object in the call is statically the enclosing type.
6005 -- The object may be an component of some other data structure, in which
6006 -- case this must be handled as an inter-object call.
6008 if not In_Open_Scopes
(Scop
)
6009 or else (not Is_Entity_Name
(Name
(N
)))
6011 if Nkind
(Name
(N
)) = N_Selected_Component
then
6012 Rec
:= Prefix
(Name
(N
));
6014 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
6015 Rec
:= Prefix
(Prefix
(Name
(N
)));
6018 -- If the context is the initialization procedure for a protected
6019 -- type, the call is legal because the called entity must be a
6020 -- function of that enclosing type, and this is treated as an
6023 pragma Assert
(Is_Entity_Name
(Name
(N
))
6024 and then Inside_Init_Proc
);
6025 Expand_Internal_Init_Call
;
6029 Freeze_Called_Function
;
6030 Build_Protected_Subprogram_Call
(N
,
6031 Name
=> New_Occurrence_Of
(Subp
, Sloc
(N
)),
6032 Rec
=> Convert_Concurrent
(Rec
, Etype
(Rec
)),
6036 Rec
:= Expand_Protected_Object_Reference
(N
, Scop
);
6042 Freeze_Called_Function
;
6043 Build_Protected_Subprogram_Call
(N
,
6050 -- Analyze and resolve the new call. The actuals have already been
6051 -- resolved, but expansion of a function call will add extra actuals
6052 -- if needed. Analysis of a procedure call already includes resolution.
6056 if Ekind
(Subp
) = E_Function
then
6057 Resolve
(N
, Etype
(Subp
));
6059 end Expand_Protected_Subprogram_Call
;
6061 -----------------------------------
6062 -- Expand_Simple_Function_Return --
6063 -----------------------------------
6065 -- The "simple" comes from the syntax rule simple_return_statement. The
6066 -- semantics are not at all simple.
6068 procedure Expand_Simple_Function_Return
(N
: Node_Id
) is
6069 Loc
: constant Source_Ptr
:= Sloc
(N
);
6071 Scope_Id
: constant Entity_Id
:=
6072 Return_Applies_To
(Return_Statement_Entity
(N
));
6073 -- The function we are returning from
6075 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
6076 -- The result type of the function
6078 Utyp
: constant Entity_Id
:= Underlying_Type
(R_Type
);
6080 Exp
: Node_Id
:= Expression
(N
);
6081 pragma Assert
(Present
(Exp
));
6083 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
6084 -- The type of the expression (not necessarily the same as R_Type)
6086 Subtype_Ind
: Node_Id
;
6087 -- If the result type of the function is class-wide and the expression
6088 -- has a specific type, then we use the expression's type as the type of
6089 -- the return object. In cases where the expression is an aggregate that
6090 -- is built in place, this avoids the need for an expensive conversion
6091 -- of the return object to the specific type on assignments to the
6092 -- individual components.
6095 if Is_Class_Wide_Type
(R_Type
)
6096 and then not Is_Class_Wide_Type
(Exptyp
)
6097 and then Nkind
(Exp
) /= N_Type_Conversion
6099 Subtype_Ind
:= New_Occurrence_Of
(Exptyp
, Loc
);
6101 Subtype_Ind
:= New_Occurrence_Of
(R_Type
, Loc
);
6103 -- If the result type is class-wide and the expression is a view
6104 -- conversion, the conversion plays no role in the expansion because
6105 -- it does not modify the tag of the object. Remove the conversion
6106 -- altogether to prevent tag overwriting.
6108 if Is_Class_Wide_Type
(R_Type
)
6109 and then not Is_Class_Wide_Type
(Exptyp
)
6110 and then Nkind
(Exp
) = N_Type_Conversion
6112 Exp
:= Expression
(Exp
);
6116 -- For the case of a simple return that does not come from an extended
6117 -- return, in the case of Ada 2005 where we are returning a limited
6118 -- type, we rewrite "return <expression>;" to be:
6120 -- return _anon_ : <return_subtype> := <expression>
6122 -- The expansion produced by Expand_N_Extended_Return_Statement will
6123 -- contain simple return statements (for example, a block containing
6124 -- simple return of the return object), which brings us back here with
6125 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6126 -- checking for a simple return that does not come from an extended
6127 -- return is to avoid this infinite recursion.
6129 -- The reason for this design is that for Ada 2005 limited returns, we
6130 -- need to reify the return object, so we can build it "in place", and
6131 -- we need a block statement to hang finalization and tasking stuff.
6133 -- ??? In order to avoid disruption, we avoid translating to extended
6134 -- return except in the cases where we really need to (Ada 2005 for
6135 -- inherently limited). We might prefer to do this translation in all
6136 -- cases (except perhaps for the case of Ada 95 inherently limited),
6137 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6138 -- code. This would also allow us to do the build-in-place optimization
6139 -- for efficiency even in cases where it is semantically not required.
6141 -- As before, we check the type of the return expression rather than the
6142 -- return type of the function, because the latter may be a limited
6143 -- class-wide interface type, which is not a limited type, even though
6144 -- the type of the expression may be.
6146 if not Comes_From_Extended_Return_Statement
(N
)
6147 and then Is_Limited_View
(Etype
(Expression
(N
)))
6148 and then Ada_Version
>= Ada_2005
6149 and then not Debug_Flag_Dot_L
6151 -- The functionality of interface thunks is simple and it is always
6152 -- handled by means of simple return statements. This leaves their
6153 -- expansion simple and clean.
6155 and then not Is_Thunk
(Current_Scope
)
6158 Return_Object_Entity
: constant Entity_Id
:=
6159 Make_Temporary
(Loc
, 'R', Exp
);
6161 Obj_Decl
: constant Node_Id
:=
6162 Make_Object_Declaration
(Loc
,
6163 Defining_Identifier
=> Return_Object_Entity
,
6164 Object_Definition
=> Subtype_Ind
,
6167 Ext
: constant Node_Id
:=
6168 Make_Extended_Return_Statement
(Loc
,
6169 Return_Object_Declarations
=> New_List
(Obj_Decl
));
6170 -- Do not perform this high-level optimization if the result type
6171 -- is an interface because the "this" pointer must be displaced.
6180 -- Here we have a simple return statement that is part of the expansion
6181 -- of an extended return statement (either written by the user, or
6182 -- generated by the above code).
6184 -- Always normalize C/Fortran boolean result. This is not always needed,
6185 -- but it seems a good idea to minimize the passing around of non-
6186 -- normalized values, and in any case this handles the processing of
6187 -- barrier functions for protected types, which turn the condition into
6188 -- a return statement.
6190 if Is_Boolean_Type
(Exptyp
)
6191 and then Nonzero_Is_True
(Exptyp
)
6193 Adjust_Condition
(Exp
);
6194 Adjust_Result_Type
(Exp
, Exptyp
);
6197 -- Do validity check if enabled for returns
6199 if Validity_Checks_On
6200 and then Validity_Check_Returns
6205 -- Check the result expression of a scalar function against the subtype
6206 -- of the function by inserting a conversion. This conversion must
6207 -- eventually be performed for other classes of types, but for now it's
6208 -- only done for scalars.
6211 if Is_Scalar_Type
(Exptyp
) then
6212 Rewrite
(Exp
, Convert_To
(R_Type
, Exp
));
6214 -- The expression is resolved to ensure that the conversion gets
6215 -- expanded to generate a possible constraint check.
6217 Analyze_And_Resolve
(Exp
, R_Type
);
6220 -- Deal with returning variable length objects and controlled types
6222 -- Nothing to do if we are returning by reference, or this is not a
6223 -- type that requires special processing (indicated by the fact that
6224 -- it requires a cleanup scope for the secondary stack case).
6226 if Is_Limited_View
(Exptyp
)
6227 or else Is_Limited_Interface
(Exptyp
)
6231 -- No copy needed for thunks returning interface type objects since
6232 -- the object is returned by reference and the maximum functionality
6233 -- required is just to displace the pointer.
6235 elsif Is_Thunk
(Current_Scope
) and then Is_Interface
(Exptyp
) then
6238 -- If the call is within a thunk and the type is a limited view, the
6239 -- backend will eventually see the non-limited view of the type.
6241 elsif Is_Thunk
(Current_Scope
) and then Is_Incomplete_Type
(Exptyp
) then
6244 elsif not Requires_Transient_Scope
(R_Type
) then
6246 -- Mutable records with variable-length components are not returned
6247 -- on the sec-stack, so we need to make sure that the back end will
6248 -- only copy back the size of the actual value, and not the maximum
6249 -- size. We create an actual subtype for this purpose. However we
6250 -- need not do it if the expression is a function call since this
6251 -- will be done in the called function and doing it here too would
6252 -- cause a temporary with maximum size to be created.
6255 Ubt
: constant Entity_Id
:= Underlying_Type
(Base_Type
(Exptyp
));
6259 if Nkind
(Exp
) /= N_Function_Call
6260 and then Has_Discriminants
(Ubt
)
6261 and then not Is_Constrained
(Ubt
)
6262 and then not Has_Unchecked_Union
(Ubt
)
6264 Decl
:= Build_Actual_Subtype
(Ubt
, Exp
);
6265 Ent
:= Defining_Identifier
(Decl
);
6266 Insert_Action
(Exp
, Decl
);
6267 Rewrite
(Exp
, Unchecked_Convert_To
(Ent
, Exp
));
6268 Analyze_And_Resolve
(Exp
);
6272 -- Here if secondary stack is used
6275 -- Prevent the reclamation of the secondary stack by all enclosing
6276 -- blocks and loops as well as the related function; otherwise the
6277 -- result would be reclaimed too early.
6279 Set_Enclosing_Sec_Stack_Return
(N
);
6281 -- Optimize the case where the result is a function call. In this
6282 -- case either the result is already on the secondary stack, or is
6283 -- already being returned with the stack pointer depressed and no
6284 -- further processing is required except to set the By_Ref flag
6285 -- to ensure that gigi does not attempt an extra unnecessary copy.
6286 -- (actually not just unnecessary but harmfully wrong in the case
6287 -- of a controlled type, where gigi does not know how to do a copy).
6288 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6289 -- for array types if the constrained status of the target type is
6290 -- different from that of the expression.
6292 if Requires_Transient_Scope
(Exptyp
)
6294 (not Is_Array_Type
(Exptyp
)
6295 or else Is_Constrained
(Exptyp
) = Is_Constrained
(R_Type
)
6296 or else CW_Or_Has_Controlled_Part
(Utyp
))
6297 and then Nkind
(Exp
) = N_Function_Call
6301 -- Remove side effects from the expression now so that other parts
6302 -- of the expander do not have to reanalyze this node without this
6305 Rewrite
(Exp
, Duplicate_Subexpr_No_Checks
(Exp
));
6307 -- For controlled types, do the allocation on the secondary stack
6308 -- manually in order to call adjust at the right time:
6310 -- type Anon1 is access R_Type;
6311 -- for Anon1'Storage_pool use ss_pool;
6312 -- Anon2 : anon1 := new R_Type'(expr);
6313 -- return Anon2.all;
6315 -- We do the same for classwide types that are not potentially
6316 -- controlled (by the virtue of restriction No_Finalization) because
6317 -- gigi is not able to properly allocate class-wide types.
6319 elsif CW_Or_Has_Controlled_Part
(Utyp
) then
6321 Loc
: constant Source_Ptr
:= Sloc
(N
);
6322 Acc_Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
6323 Alloc_Node
: Node_Id
;
6327 Set_Ekind
(Acc_Typ
, E_Access_Type
);
6329 Set_Associated_Storage_Pool
(Acc_Typ
, RTE
(RE_SS_Pool
));
6331 -- This is an allocator for the secondary stack, and it's fine
6332 -- to have Comes_From_Source set False on it, as gigi knows not
6333 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6336 Make_Allocator
(Loc
,
6338 Make_Qualified_Expression
(Loc
,
6339 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Exp
), Loc
),
6340 Expression
=> Relocate_Node
(Exp
)));
6342 -- We do not want discriminant checks on the declaration,
6343 -- given that it gets its value from the allocator.
6345 Set_No_Initialization
(Alloc_Node
);
6347 Temp
:= Make_Temporary
(Loc
, 'R', Alloc_Node
);
6349 Insert_List_Before_And_Analyze
(N
, New_List
(
6350 Make_Full_Type_Declaration
(Loc
,
6351 Defining_Identifier
=> Acc_Typ
,
6353 Make_Access_To_Object_Definition
(Loc
,
6354 Subtype_Indication
=> Subtype_Ind
)),
6356 Make_Object_Declaration
(Loc
,
6357 Defining_Identifier
=> Temp
,
6358 Object_Definition
=> New_Occurrence_Of
(Acc_Typ
, Loc
),
6359 Expression
=> Alloc_Node
)));
6362 Make_Explicit_Dereference
(Loc
,
6363 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
6365 -- Ada 2005 (AI-251): If the type of the returned object is
6366 -- an interface then add an implicit type conversion to force
6367 -- displacement of the "this" pointer.
6369 if Is_Interface
(R_Type
) then
6370 Rewrite
(Exp
, Convert_To
(R_Type
, Relocate_Node
(Exp
)));
6373 Analyze_And_Resolve
(Exp
, R_Type
);
6376 -- Otherwise use the gigi mechanism to allocate result on the
6380 Check_Restriction
(No_Secondary_Stack
, N
);
6381 Set_Storage_Pool
(N
, RTE
(RE_SS_Pool
));
6382 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
6386 -- Implement the rules of 6.5(8-10), which require a tag check in
6387 -- the case of a limited tagged return type, and tag reassignment for
6388 -- nonlimited tagged results. These actions are needed when the return
6389 -- type is a specific tagged type and the result expression is a
6390 -- conversion or a formal parameter, because in that case the tag of
6391 -- the expression might differ from the tag of the specific result type.
6393 if Is_Tagged_Type
(Utyp
)
6394 and then not Is_Class_Wide_Type
(Utyp
)
6395 and then (Nkind_In
(Exp
, N_Type_Conversion
,
6396 N_Unchecked_Type_Conversion
)
6397 or else (Is_Entity_Name
(Exp
)
6398 and then Ekind
(Entity
(Exp
)) in Formal_Kind
))
6400 -- When the return type is limited, perform a check that the tag of
6401 -- the result is the same as the tag of the return type.
6403 if Is_Limited_Type
(R_Type
) then
6405 Make_Raise_Constraint_Error
(Loc
,
6409 Make_Selected_Component
(Loc
,
6410 Prefix
=> Duplicate_Subexpr
(Exp
),
6411 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6413 Make_Attribute_Reference
(Loc
,
6415 New_Occurrence_Of
(Base_Type
(Utyp
), Loc
),
6416 Attribute_Name
=> Name_Tag
)),
6417 Reason
=> CE_Tag_Check_Failed
));
6419 -- If the result type is a specific nonlimited tagged type, then we
6420 -- have to ensure that the tag of the result is that of the result
6421 -- type. This is handled by making a copy of the expression in
6422 -- the case where it might have a different tag, namely when the
6423 -- expression is a conversion or a formal parameter. We create a new
6424 -- object of the result type and initialize it from the expression,
6425 -- which will implicitly force the tag to be set appropriately.
6429 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6430 Result_Id
: constant Entity_Id
:=
6431 Make_Temporary
(Loc
, 'R', ExpR
);
6432 Result_Exp
: constant Node_Id
:=
6433 New_Occurrence_Of
(Result_Id
, Loc
);
6434 Result_Obj
: constant Node_Id
:=
6435 Make_Object_Declaration
(Loc
,
6436 Defining_Identifier
=> Result_Id
,
6437 Object_Definition
=>
6438 New_Occurrence_Of
(R_Type
, Loc
),
6439 Constant_Present
=> True,
6440 Expression
=> ExpR
);
6443 Set_Assignment_OK
(Result_Obj
);
6444 Insert_Action
(Exp
, Result_Obj
);
6446 Rewrite
(Exp
, Result_Exp
);
6447 Analyze_And_Resolve
(Exp
, R_Type
);
6451 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6452 -- a check that the level of the return expression's underlying type
6453 -- is not deeper than the level of the master enclosing the function.
6454 -- Always generate the check when the type of the return expression
6455 -- is class-wide, when it's a type conversion, or when it's a formal
6456 -- parameter. Otherwise, suppress the check in the case where the
6457 -- return expression has a specific type whose level is known not to
6458 -- be statically deeper than the function's result type.
6460 -- No runtime check needed in interface thunks since it is performed
6461 -- by the target primitive associated with the thunk.
6463 -- Note: accessibility check is skipped in the VM case, since there
6464 -- does not seem to be any practical way to implement this check.
6466 elsif Ada_Version
>= Ada_2005
6467 and then Tagged_Type_Expansion
6468 and then Is_Class_Wide_Type
(R_Type
)
6469 and then not Is_Thunk
(Current_Scope
)
6470 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
6472 (Is_Class_Wide_Type
(Etype
(Exp
))
6473 or else Nkind_In
(Exp
, N_Type_Conversion
,
6474 N_Unchecked_Type_Conversion
)
6475 or else (Is_Entity_Name
(Exp
)
6476 and then Ekind
(Entity
(Exp
)) in Formal_Kind
)
6477 or else Scope_Depth
(Enclosing_Dynamic_Scope
(Etype
(Exp
))) >
6478 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))
6484 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6485 -- "this" to reference the base of the object. This is required to
6486 -- get access to the TSD of the object.
6488 if Is_Class_Wide_Type
(Etype
(Exp
))
6489 and then Is_Interface
(Etype
(Exp
))
6491 -- If the expression is an explicit dereference then we can
6492 -- directly displace the pointer to reference the base of
6495 if Nkind
(Exp
) = N_Explicit_Dereference
then
6497 Make_Explicit_Dereference
(Loc
,
6499 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6500 Make_Function_Call
(Loc
,
6502 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6503 Parameter_Associations
=> New_List
(
6504 Unchecked_Convert_To
(RTE
(RE_Address
),
6505 Duplicate_Subexpr
(Prefix
(Exp
)))))));
6507 -- Similar case to the previous one but the expression is a
6508 -- renaming of an explicit dereference.
6510 elsif Nkind
(Exp
) = N_Identifier
6511 and then Present
(Renamed_Object
(Entity
(Exp
)))
6512 and then Nkind
(Renamed_Object
(Entity
(Exp
)))
6513 = N_Explicit_Dereference
6516 Make_Explicit_Dereference
(Loc
,
6518 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6519 Make_Function_Call
(Loc
,
6521 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6522 Parameter_Associations
=> New_List
(
6523 Unchecked_Convert_To
(RTE
(RE_Address
),
6526 (Renamed_Object
(Entity
(Exp
)))))))));
6528 -- Common case: obtain the address of the actual object and
6529 -- displace the pointer to reference the base of the object.
6533 Make_Explicit_Dereference
(Loc
,
6535 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6536 Make_Function_Call
(Loc
,
6538 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6539 Parameter_Associations
=> New_List
(
6540 Make_Attribute_Reference
(Loc
,
6541 Prefix
=> Duplicate_Subexpr
(Exp
),
6542 Attribute_Name
=> Name_Address
)))));
6546 Make_Attribute_Reference
(Loc
,
6547 Prefix
=> Duplicate_Subexpr
(Exp
),
6548 Attribute_Name
=> Name_Tag
);
6552 Make_Raise_Program_Error
(Loc
,
6555 Left_Opnd
=> Build_Get_Access_Level
(Loc
, Tag_Node
),
6557 Make_Integer_Literal
(Loc
,
6558 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))),
6559 Reason
=> PE_Accessibility_Check_Failed
));
6562 -- AI05-0073: If function has a controlling access result, check that
6563 -- the tag of the return value, if it is not null, matches designated
6564 -- type of return type.
6566 -- The return expression is referenced twice in the code below, so it
6567 -- must be made free of side effects. Given that different compilers
6568 -- may evaluate these parameters in different order, both occurrences
6571 elsif Ekind
(R_Type
) = E_Anonymous_Access_Type
6572 and then Has_Controlling_Result
(Scope_Id
)
6575 Make_Raise_Constraint_Error
(Loc
,
6580 Left_Opnd
=> Duplicate_Subexpr
(Exp
),
6581 Right_Opnd
=> Make_Null
(Loc
)),
6583 Right_Opnd
=> Make_Op_Ne
(Loc
,
6585 Make_Selected_Component
(Loc
,
6586 Prefix
=> Duplicate_Subexpr
(Exp
),
6587 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6590 Make_Attribute_Reference
(Loc
,
6592 New_Occurrence_Of
(Designated_Type
(R_Type
), Loc
),
6593 Attribute_Name
=> Name_Tag
))),
6595 Reason
=> CE_Tag_Check_Failed
),
6596 Suppress
=> All_Checks
);
6599 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6600 -- ensure that the function result does not outlive an
6601 -- object designated by one of it discriminants.
6603 if Present
(Extra_Accessibility_Of_Result
(Scope_Id
))
6604 and then Has_Unconstrained_Access_Discriminants
(R_Type
)
6607 Discrim_Source
: Node_Id
;
6609 procedure Check_Against_Result_Level
(Level
: Node_Id
);
6610 -- Check the given accessibility level against the level
6611 -- determined by the point of call. (AI05-0234).
6613 --------------------------------
6614 -- Check_Against_Result_Level --
6615 --------------------------------
6617 procedure Check_Against_Result_Level
(Level
: Node_Id
) is
6620 Make_Raise_Program_Error
(Loc
,
6626 (Extra_Accessibility_Of_Result
(Scope_Id
), Loc
)),
6627 Reason
=> PE_Accessibility_Check_Failed
));
6628 end Check_Against_Result_Level
;
6631 Discrim_Source
:= Exp
;
6632 while Nkind
(Discrim_Source
) = N_Qualified_Expression
loop
6633 Discrim_Source
:= Expression
(Discrim_Source
);
6636 if Nkind
(Discrim_Source
) = N_Identifier
6637 and then Is_Return_Object
(Entity
(Discrim_Source
))
6639 Discrim_Source
:= Entity
(Discrim_Source
);
6641 if Is_Constrained
(Etype
(Discrim_Source
)) then
6642 Discrim_Source
:= Etype
(Discrim_Source
);
6644 Discrim_Source
:= Expression
(Parent
(Discrim_Source
));
6647 elsif Nkind
(Discrim_Source
) = N_Identifier
6648 and then Nkind_In
(Original_Node
(Discrim_Source
),
6649 N_Aggregate
, N_Extension_Aggregate
)
6651 Discrim_Source
:= Original_Node
(Discrim_Source
);
6653 elsif Nkind
(Discrim_Source
) = N_Explicit_Dereference
and then
6654 Nkind
(Original_Node
(Discrim_Source
)) = N_Function_Call
6656 Discrim_Source
:= Original_Node
(Discrim_Source
);
6659 while Nkind_In
(Discrim_Source
, N_Qualified_Expression
,
6661 N_Unchecked_Type_Conversion
)
6663 Discrim_Source
:= Expression
(Discrim_Source
);
6666 case Nkind
(Discrim_Source
) is
6667 when N_Defining_Identifier
=>
6669 pragma Assert
(Is_Composite_Type
(Discrim_Source
)
6670 and then Has_Discriminants
(Discrim_Source
)
6671 and then Is_Constrained
(Discrim_Source
));
6674 Discrim
: Entity_Id
:=
6675 First_Discriminant
(Base_Type
(R_Type
));
6676 Disc_Elmt
: Elmt_Id
:=
6677 First_Elmt
(Discriminant_Constraint
6681 if Ekind
(Etype
(Discrim
)) =
6682 E_Anonymous_Access_Type
6684 Check_Against_Result_Level
6685 (Dynamic_Accessibility_Level
(Node
(Disc_Elmt
)));
6688 Next_Elmt
(Disc_Elmt
);
6689 Next_Discriminant
(Discrim
);
6690 exit when not Present
(Discrim
);
6694 when N_Aggregate | N_Extension_Aggregate
=>
6696 -- Unimplemented: extension aggregate case where discrims
6697 -- come from ancestor part, not extension part.
6700 Discrim
: Entity_Id
:=
6701 First_Discriminant
(Base_Type
(R_Type
));
6703 Disc_Exp
: Node_Id
:= Empty
;
6705 Positionals_Exhausted
6706 : Boolean := not Present
(Expressions
6709 function Associated_Expr
6710 (Comp_Id
: Entity_Id
;
6711 Associations
: List_Id
) return Node_Id
;
6713 -- Given a component and a component associations list,
6714 -- locate the expression for that component; returns
6715 -- Empty if no such expression is found.
6717 ---------------------
6718 -- Associated_Expr --
6719 ---------------------
6721 function Associated_Expr
6722 (Comp_Id
: Entity_Id
;
6723 Associations
: List_Id
) return Node_Id
6729 -- Simple linear search seems ok here
6731 Assoc
:= First
(Associations
);
6732 while Present
(Assoc
) loop
6733 Choice
:= First
(Choices
(Assoc
));
6734 while Present
(Choice
) loop
6735 if (Nkind
(Choice
) = N_Identifier
6736 and then Chars
(Choice
) = Chars
(Comp_Id
))
6737 or else (Nkind
(Choice
) = N_Others_Choice
)
6739 return Expression
(Assoc
);
6749 end Associated_Expr
;
6751 -- Start of processing for Expand_Simple_Function_Return
6754 if not Positionals_Exhausted
then
6755 Disc_Exp
:= First
(Expressions
(Discrim_Source
));
6759 if Positionals_Exhausted
then
6763 Component_Associations
(Discrim_Source
));
6766 if Ekind
(Etype
(Discrim
)) =
6767 E_Anonymous_Access_Type
6769 Check_Against_Result_Level
6770 (Dynamic_Accessibility_Level
(Disc_Exp
));
6773 Next_Discriminant
(Discrim
);
6774 exit when not Present
(Discrim
);
6776 if not Positionals_Exhausted
then
6778 Positionals_Exhausted
:= not Present
(Disc_Exp
);
6783 when N_Function_Call
=>
6785 -- No check needed (check performed by callee)
6792 Level
: constant Node_Id
:=
6793 Make_Integer_Literal
(Loc
,
6794 Object_Access_Level
(Discrim_Source
));
6797 -- Unimplemented: check for name prefix that includes
6798 -- a dereference of an access value with a dynamic
6799 -- accessibility level (e.g., an access param or a
6800 -- saooaaat) and use dynamic level in that case. For
6802 -- return Access_Param.all(Some_Index).Some_Component;
6805 Set_Etype
(Level
, Standard_Natural
);
6806 Check_Against_Result_Level
(Level
);
6813 -- If we are returning an object that may not be bit-aligned, then copy
6814 -- the value into a temporary first. This copy may need to expand to a
6815 -- loop of component operations.
6817 if Is_Possibly_Unaligned_Slice
(Exp
)
6818 or else Is_Possibly_Unaligned_Object
(Exp
)
6821 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6822 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', ExpR
);
6825 Make_Object_Declaration
(Loc
,
6826 Defining_Identifier
=> Tnn
,
6827 Constant_Present
=> True,
6828 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
6829 Expression
=> ExpR
),
6830 Suppress
=> All_Checks
);
6831 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6835 -- Call the _Postconditions procedure if the related function has
6836 -- contract assertions that need to be verified on exit.
6838 if Ekind
(Scope_Id
) = E_Function
6839 and then Present
(Postconditions_Proc
(Scope_Id
))
6841 -- In the case of discriminated objects, we have created a
6842 -- constrained subtype above, and used the underlying type. This
6843 -- transformation is post-analysis and harmless, except that now the
6844 -- call to the post-condition will be analyzed and the type kinds
6847 if Nkind
(Exp
) = N_Unchecked_Type_Conversion
6848 and then Is_Private_Type
(R_Type
) /= Is_Private_Type
(Etype
(Exp
))
6850 Rewrite
(Exp
, Expression
(Relocate_Node
(Exp
)));
6853 -- We are going to reference the returned value twice in this case,
6854 -- once in the call to _Postconditions, and once in the actual return
6855 -- statement, but we can't have side effects happening twice.
6857 Force_Evaluation
(Exp
, Mode
=> Strict
);
6859 -- Generate call to _Postconditions
6862 Make_Procedure_Call_Statement
(Loc
,
6864 New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
),
6865 Parameter_Associations
=> New_List
(New_Copy_Tree
(Exp
))));
6868 -- Ada 2005 (AI-251): If this return statement corresponds with an
6869 -- simple return statement associated with an extended return statement
6870 -- and the type of the returned object is an interface then generate an
6871 -- implicit conversion to force displacement of the "this" pointer.
6873 if Ada_Version
>= Ada_2005
6874 and then Comes_From_Extended_Return_Statement
(N
)
6875 and then Nkind
(Expression
(N
)) = N_Identifier
6876 and then Is_Interface
(Utyp
)
6877 and then Utyp
/= Underlying_Type
(Exptyp
)
6879 Rewrite
(Exp
, Convert_To
(Utyp
, Relocate_Node
(Exp
)));
6880 Analyze_And_Resolve
(Exp
);
6882 end Expand_Simple_Function_Return
;
6884 --------------------------------------------
6885 -- Has_Unconstrained_Access_Discriminants --
6886 --------------------------------------------
6888 function Has_Unconstrained_Access_Discriminants
6889 (Subtyp
: Entity_Id
) return Boolean
6894 if Has_Discriminants
(Subtyp
)
6895 and then not Is_Constrained
(Subtyp
)
6897 Discr
:= First_Discriminant
(Subtyp
);
6898 while Present
(Discr
) loop
6899 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
then
6903 Next_Discriminant
(Discr
);
6908 end Has_Unconstrained_Access_Discriminants
;
6910 --------------------------------
6911 -- Is_Build_In_Place_Function --
6912 --------------------------------
6914 function Is_Build_In_Place_Function
(E
: Entity_Id
) return Boolean is
6916 -- This function is called from Expand_Subtype_From_Expr during
6917 -- semantic analysis, even when expansion is off. In those cases
6918 -- the build_in_place expansion will not take place.
6920 if not Expander_Active
then
6924 -- For now we test whether E denotes a function or access-to-function
6925 -- type whose result subtype is inherently limited. Later this test
6926 -- may be revised to allow composite nonlimited types. Functions with
6927 -- a foreign convention or whose result type has a foreign convention
6930 if Ekind_In
(E
, E_Function
, E_Generic_Function
)
6931 or else (Ekind
(E
) = E_Subprogram_Type
6932 and then Etype
(E
) /= Standard_Void_Type
)
6934 -- Note: If the function has a foreign convention, it cannot build
6935 -- its result in place, so you're on your own. On the other hand,
6936 -- if only the return type has a foreign convention, its layout is
6937 -- intended to be compatible with the other language, but the build-
6938 -- in place machinery can ensure that the object is not copied.
6940 if Has_Foreign_Convention
(E
) then
6943 -- In Ada 2005 all functions with an inherently limited return type
6944 -- must be handled using a build-in-place profile, including the case
6945 -- of a function with a limited interface result, where the function
6946 -- may return objects of nonlimited descendants.
6949 return Is_Limited_View
(Etype
(E
))
6950 and then Ada_Version
>= Ada_2005
6951 and then not Debug_Flag_Dot_L
;
6957 end Is_Build_In_Place_Function
;
6959 -------------------------------------
6960 -- Is_Build_In_Place_Function_Call --
6961 -------------------------------------
6963 function Is_Build_In_Place_Function_Call
(N
: Node_Id
) return Boolean is
6964 Exp_Node
: Node_Id
:= N
;
6965 Function_Id
: Entity_Id
;
6968 -- Return False if the expander is currently inactive, since awareness
6969 -- of build-in-place treatment is only relevant during expansion. Note
6970 -- that Is_Build_In_Place_Function, which is called as part of this
6971 -- function, is also conditioned this way, but we need to check here as
6972 -- well to avoid blowing up on processing protected calls when expansion
6973 -- is disabled (such as with -gnatc) since those would trip over the
6974 -- raise of Program_Error below.
6976 -- In SPARK mode, build-in-place calls are not expanded, so that we
6977 -- may end up with a call that is neither resolved to an entity, nor
6978 -- an indirect call.
6980 if not Expander_Active
then
6984 -- Step past qualification, type conversion (which can occur in actual
6985 -- parameter contexts), and unchecked conversion (which can occur in
6986 -- cases of calls to 'Input).
6988 if Nkind_In
(Exp_Node
, N_Qualified_Expression
,
6990 N_Unchecked_Type_Conversion
)
6992 Exp_Node
:= Expression
(N
);
6995 if Nkind
(Exp_Node
) /= N_Function_Call
then
6999 if Is_Entity_Name
(Name
(Exp_Node
)) then
7000 Function_Id
:= Entity
(Name
(Exp_Node
));
7002 -- In the case of an explicitly dereferenced call, use the subprogram
7003 -- type generated for the dereference.
7005 elsif Nkind
(Name
(Exp_Node
)) = N_Explicit_Dereference
then
7006 Function_Id
:= Etype
(Name
(Exp_Node
));
7008 -- This may be a call to a protected function.
7010 elsif Nkind
(Name
(Exp_Node
)) = N_Selected_Component
then
7011 Function_Id
:= Etype
(Entity
(Selector_Name
(Name
(Exp_Node
))));
7014 raise Program_Error
;
7017 return Is_Build_In_Place_Function
(Function_Id
);
7019 end Is_Build_In_Place_Function_Call
;
7021 -----------------------
7022 -- Freeze_Subprogram --
7023 -----------------------
7025 procedure Freeze_Subprogram
(N
: Node_Id
) is
7026 Loc
: constant Source_Ptr
:= Sloc
(N
);
7028 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
);
7029 -- (Ada 2005): Register a predefined primitive in all the secondary
7030 -- dispatch tables of its primitive type.
7032 ----------------------------------
7033 -- Register_Predefined_DT_Entry --
7034 ----------------------------------
7036 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
) is
7037 Iface_DT_Ptr
: Elmt_Id
;
7038 Tagged_Typ
: Entity_Id
;
7039 Thunk_Id
: Entity_Id
;
7040 Thunk_Code
: Node_Id
;
7043 Tagged_Typ
:= Find_Dispatching_Type
(Prim
);
7045 if No
(Access_Disp_Table
(Tagged_Typ
))
7046 or else not Has_Interfaces
(Tagged_Typ
)
7047 or else not RTE_Available
(RE_Interface_Tag
)
7048 or else Restriction_Active
(No_Dispatching_Calls
)
7053 -- Skip the first two access-to-dispatch-table pointers since they
7054 -- leads to the primary dispatch table (predefined DT and user
7055 -- defined DT). We are only concerned with the secondary dispatch
7056 -- table pointers. Note that the access-to- dispatch-table pointer
7057 -- corresponds to the first implemented interface retrieved below.
7060 Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(Tagged_Typ
))));
7062 while Present
(Iface_DT_Ptr
)
7063 and then Ekind
(Node
(Iface_DT_Ptr
)) = E_Constant
7065 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
7066 Expand_Interface_Thunk
(Prim
, Thunk_Id
, Thunk_Code
);
7068 if Present
(Thunk_Code
) then
7069 Insert_Actions_After
(N
, New_List
(
7072 Build_Set_Predefined_Prim_Op_Address
(Loc
,
7074 New_Occurrence_Of
(Node
(Next_Elmt
(Iface_DT_Ptr
)), Loc
),
7075 Position
=> DT_Position
(Prim
),
7077 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
7078 Make_Attribute_Reference
(Loc
,
7079 Prefix
=> New_Occurrence_Of
(Thunk_Id
, Loc
),
7080 Attribute_Name
=> Name_Unrestricted_Access
))),
7082 Build_Set_Predefined_Prim_Op_Address
(Loc
,
7085 (Node
(Next_Elmt
(Next_Elmt
(Next_Elmt
(Iface_DT_Ptr
)))),
7087 Position
=> DT_Position
(Prim
),
7089 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
7090 Make_Attribute_Reference
(Loc
,
7091 Prefix
=> New_Occurrence_Of
(Prim
, Loc
),
7092 Attribute_Name
=> Name_Unrestricted_Access
)))));
7095 -- Skip the tag of the predefined primitives dispatch table
7097 Next_Elmt
(Iface_DT_Ptr
);
7098 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
7100 -- Skip tag of the no-thunks dispatch table
7102 Next_Elmt
(Iface_DT_Ptr
);
7103 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
7105 -- Skip tag of predefined primitives no-thunks dispatch table
7107 Next_Elmt
(Iface_DT_Ptr
);
7108 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
7110 Next_Elmt
(Iface_DT_Ptr
);
7112 end Register_Predefined_DT_Entry
;
7116 Subp
: constant Entity_Id
:= Entity
(N
);
7118 -- Start of processing for Freeze_Subprogram
7121 -- We suppress the initialization of the dispatch table entry when
7122 -- not Tagged_Type_Expansion because the dispatching mechanism is
7123 -- handled internally by the target.
7125 if Is_Dispatching_Operation
(Subp
)
7126 and then not Is_Abstract_Subprogram
(Subp
)
7127 and then Present
(DTC_Entity
(Subp
))
7128 and then Present
(Scope
(DTC_Entity
(Subp
)))
7129 and then Tagged_Type_Expansion
7130 and then not Restriction_Active
(No_Dispatching_Calls
)
7131 and then RTE_Available
(RE_Tag
)
7134 Typ
: constant Entity_Id
:= Scope
(DTC_Entity
(Subp
));
7137 -- Handle private overridden primitives
7139 if not Is_CPP_Class
(Typ
) then
7140 Check_Overriding_Operation
(Subp
);
7143 -- We assume that imported CPP primitives correspond with objects
7144 -- whose constructor is in the CPP side; therefore we don't need
7145 -- to generate code to register them in the dispatch table.
7147 if Is_CPP_Class
(Typ
) then
7150 -- Handle CPP primitives found in derivations of CPP_Class types.
7151 -- These primitives must have been inherited from some parent, and
7152 -- there is no need to register them in the dispatch table because
7153 -- Build_Inherit_Prims takes care of initializing these slots.
7155 elsif Is_Imported
(Subp
)
7156 and then (Convention
(Subp
) = Convention_CPP
7157 or else Convention
(Subp
) = Convention_C
)
7161 -- Generate code to register the primitive in non statically
7162 -- allocated dispatch tables
7164 elsif not Building_Static_DT
(Scope
(DTC_Entity
(Subp
))) then
7166 -- When a primitive is frozen, enter its name in its dispatch
7169 if not Is_Interface
(Typ
)
7170 or else Present
(Interface_Alias
(Subp
))
7172 if Is_Predefined_Dispatching_Operation
(Subp
) then
7173 Register_Predefined_DT_Entry
(Subp
);
7176 Insert_Actions_After
(N
,
7177 Register_Primitive
(Loc
, Prim
=> Subp
));
7183 -- Mark functions that return by reference. Note that it cannot be part
7184 -- of the normal semantic analysis of the spec since the underlying
7185 -- returned type may not be known yet (for private types).
7188 Typ
: constant Entity_Id
:= Etype
(Subp
);
7189 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
7191 if Is_Limited_View
(Typ
) then
7192 Set_Returns_By_Ref
(Subp
);
7193 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
7194 Set_Returns_By_Ref
(Subp
);
7198 -- Wnen freezing a null procedure, analyze its delayed aspects now
7199 -- because we may not have reached the end of the declarative list when
7200 -- delayed aspects are normally analyzed. This ensures that dispatching
7201 -- calls are properly rewritten when the generated _Postcondition
7202 -- procedure is analyzed in the null procedure body.
7204 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
7205 and then Null_Present
(Parent
(Subp
))
7207 Analyze_Entry_Or_Subprogram_Contract
(Subp
);
7209 end Freeze_Subprogram
;
7211 -----------------------
7212 -- Is_Null_Procedure --
7213 -----------------------
7215 function Is_Null_Procedure
(Subp
: Entity_Id
) return Boolean is
7216 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
7219 if Ekind
(Subp
) /= E_Procedure
then
7222 -- Check if this is a declared null procedure
7224 elsif Nkind
(Decl
) = N_Subprogram_Declaration
then
7225 if not Null_Present
(Specification
(Decl
)) then
7228 elsif No
(Body_To_Inline
(Decl
)) then
7231 -- Check if the body contains only a null statement, followed by
7232 -- the return statement added during expansion.
7236 Orig_Bod
: constant Node_Id
:= Body_To_Inline
(Decl
);
7242 if Nkind
(Orig_Bod
) /= N_Subprogram_Body
then
7245 -- We must skip SCIL nodes because they are currently
7246 -- implemented as special N_Null_Statement nodes.
7250 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
7251 Stat2
:= Next_Non_SCIL_Node
(Stat
);
7254 Is_Empty_List
(Declarations
(Orig_Bod
))
7255 and then Nkind
(Stat
) = N_Null_Statement
7259 (Nkind
(Stat2
) = N_Simple_Return_Statement
7260 and then No
(Next
(Stat2
))));
7268 end Is_Null_Procedure
;
7270 -------------------------------------------
7271 -- Make_Build_In_Place_Call_In_Allocator --
7272 -------------------------------------------
7274 procedure Make_Build_In_Place_Call_In_Allocator
7275 (Allocator
: Node_Id
;
7276 Function_Call
: Node_Id
)
7278 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
7280 Func_Call
: Node_Id
:= Function_Call
;
7281 Ref_Func_Call
: Node_Id
;
7282 Function_Id
: Entity_Id
;
7283 Result_Subt
: Entity_Id
;
7284 New_Allocator
: Node_Id
;
7285 Return_Obj_Access
: Entity_Id
; -- temp for function result
7286 Temp_Init
: Node_Id
; -- initial value of Return_Obj_Access
7287 Alloc_Form
: BIP_Allocation_Form
;
7288 Pool
: Node_Id
; -- nonnull if Alloc_Form = User_Storage_Pool
7289 Return_Obj_Actual
: Node_Id
; -- the temp.all, in caller-allocates case
7290 Chain
: Entity_Id
; -- activation chain, in case of tasks
7293 -- Step past qualification or unchecked conversion (the latter can occur
7294 -- in cases of calls to 'Input).
7296 if Nkind_In
(Func_Call
,
7297 N_Qualified_Expression
,
7299 N_Unchecked_Type_Conversion
)
7301 Func_Call
:= Expression
(Func_Call
);
7304 -- If the call has already been processed to add build-in-place actuals
7305 -- then return. This should not normally occur in an allocator context,
7306 -- but we add the protection as a defensive measure.
7308 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
7312 -- Mark the call as processed as a build-in-place call
7314 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
7316 Loc
:= Sloc
(Function_Call
);
7318 if Is_Entity_Name
(Name
(Func_Call
)) then
7319 Function_Id
:= Entity
(Name
(Func_Call
));
7321 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
7322 Function_Id
:= Etype
(Name
(Func_Call
));
7325 raise Program_Error
;
7328 Result_Subt
:= Available_View
(Etype
(Function_Id
));
7330 -- Create a temp for the function result. In the caller-allocates case,
7331 -- this will be initialized to the result of a new uninitialized
7332 -- allocator. Note: we do not use Allocator as the Related_Node of
7333 -- Return_Obj_Access in call to Make_Temporary below as this would
7334 -- create a sort of infinite "recursion".
7336 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
7337 Set_Etype
(Return_Obj_Access
, Acc_Type
);
7339 -- When the result subtype is constrained, the return object is
7340 -- allocated on the caller side, and access to it is passed to the
7343 -- Here and in related routines, we must examine the full view of the
7344 -- type, because the view at the point of call may differ from that
7345 -- that in the function body, and the expansion mechanism depends on
7346 -- the characteristics of the full view.
7348 if Is_Constrained
(Underlying_Type
(Result_Subt
)) then
7350 -- Replace the initialized allocator of form "new T'(Func (...))"
7351 -- with an uninitialized allocator of form "new T", where T is the
7352 -- result subtype of the called function. The call to the function
7353 -- is handled separately further below.
7356 Make_Allocator
(Loc
,
7357 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
7358 Set_No_Initialization
(New_Allocator
);
7360 -- Copy attributes to new allocator. Note that the new allocator
7361 -- logically comes from source if the original one did, so copy the
7362 -- relevant flag. This ensures proper treatment of the restriction
7363 -- No_Implicit_Heap_Allocations in this case.
7365 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
7366 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
7367 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
7369 Rewrite
(Allocator
, New_Allocator
);
7371 -- Initial value of the temp is the result of the uninitialized
7374 Temp_Init
:= Relocate_Node
(Allocator
);
7376 -- Indicate that caller allocates, and pass in the return object
7378 Alloc_Form
:= Caller_Allocation
;
7379 Pool
:= Make_Null
(No_Location
);
7380 Return_Obj_Actual
:=
7381 Make_Unchecked_Type_Conversion
(Loc
,
7382 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
7384 Make_Explicit_Dereference
(Loc
,
7385 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)));
7387 -- When the result subtype is unconstrained, the function itself must
7388 -- perform the allocation of the return object, so we pass parameters
7394 -- Case of a user-defined storage pool. Pass an allocation parameter
7395 -- indicating that the function should allocate its result in the
7396 -- pool, and pass the pool. Use 'Unrestricted_Access because the
7397 -- pool may not be aliased.
7399 if Present
(Associated_Storage_Pool
(Acc_Type
)) then
7400 Alloc_Form
:= User_Storage_Pool
;
7402 Make_Attribute_Reference
(Loc
,
7405 (Associated_Storage_Pool
(Acc_Type
), Loc
),
7406 Attribute_Name
=> Name_Unrestricted_Access
);
7408 -- No user-defined pool; pass an allocation parameter indicating that
7409 -- the function should allocate its result on the heap.
7412 Alloc_Form
:= Global_Heap
;
7413 Pool
:= Make_Null
(No_Location
);
7416 -- The caller does not provide the return object in this case, so we
7417 -- have to pass null for the object access actual.
7419 Return_Obj_Actual
:= Empty
;
7422 -- Declare the temp object
7424 Insert_Action
(Allocator
,
7425 Make_Object_Declaration
(Loc
,
7426 Defining_Identifier
=> Return_Obj_Access
,
7427 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
7428 Expression
=> Temp_Init
));
7430 Ref_Func_Call
:= Make_Reference
(Loc
, Func_Call
);
7432 -- Ada 2005 (AI-251): If the type of the allocator is an interface
7433 -- then generate an implicit conversion to force displacement of the
7436 if Is_Interface
(Designated_Type
(Acc_Type
)) then
7439 OK_Convert_To
(Acc_Type
, Ref_Func_Call
));
7443 Assign
: constant Node_Id
:=
7444 Make_Assignment_Statement
(Loc
,
7445 Name
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
),
7446 Expression
=> Ref_Func_Call
);
7447 -- Assign the result of the function call into the temp. In the
7448 -- caller-allocates case, this is overwriting the temp with its
7449 -- initial value, which has no effect. In the callee-allocates case,
7450 -- this is setting the temp to point to the object allocated by the
7454 -- Actions to be inserted. If there are no tasks, this is just the
7455 -- assignment statement. If the allocated object has tasks, we need
7456 -- to wrap the assignment in a block that activates them. The
7457 -- activation chain of that block must be passed to the function,
7458 -- rather than some outer chain.
7460 if Has_Task
(Result_Subt
) then
7461 Actions
:= New_List
;
7462 Build_Task_Allocate_Block_With_Init_Stmts
7463 (Actions
, Allocator
, Init_Stmts
=> New_List
(Assign
));
7464 Chain
:= Activation_Chain_Entity
(Last
(Actions
));
7466 Actions
:= New_List
(Assign
);
7470 Insert_Actions
(Allocator
, Actions
);
7473 -- When the function has a controlling result, an allocation-form
7474 -- parameter must be passed indicating that the caller is allocating
7475 -- the result object. This is needed because such a function can be
7476 -- called as a dispatching operation and must be treated similarly
7477 -- to functions with unconstrained result subtypes.
7479 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7480 (Func_Call
, Function_Id
, Alloc_Form
, Pool_Actual
=> Pool
);
7482 Add_Finalization_Master_Actual_To_Build_In_Place_Call
7483 (Func_Call
, Function_Id
, Acc_Type
);
7485 Add_Task_Actuals_To_Build_In_Place_Call
7486 (Func_Call
, Function_Id
, Master_Actual
=> Master_Id
(Acc_Type
),
7489 -- Add an implicit actual to the function call that provides access
7490 -- to the allocated object. An unchecked conversion to the (specific)
7491 -- result subtype of the function is inserted to handle cases where
7492 -- the access type of the allocator has a class-wide designated type.
7494 Add_Access_Actual_To_Build_In_Place_Call
7495 (Func_Call
, Function_Id
, Return_Obj_Actual
);
7497 -- Finally, replace the allocator node with a reference to the temp
7499 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
7501 Analyze_And_Resolve
(Allocator
, Acc_Type
);
7502 end Make_Build_In_Place_Call_In_Allocator
;
7504 ---------------------------------------------------
7505 -- Make_Build_In_Place_Call_In_Anonymous_Context --
7506 ---------------------------------------------------
7508 procedure Make_Build_In_Place_Call_In_Anonymous_Context
7509 (Function_Call
: Node_Id
)
7512 Func_Call
: Node_Id
:= Function_Call
;
7513 Function_Id
: Entity_Id
;
7514 Result_Subt
: Entity_Id
;
7515 Return_Obj_Id
: Entity_Id
;
7516 Return_Obj_Decl
: Entity_Id
;
7519 -- Step past qualification, type conversion (which can occur in actual
7520 -- parameter contexts), and unchecked conversion (which can occur in
7521 -- cases of calls to 'Input).
7523 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
7525 N_Unchecked_Type_Conversion
)
7527 Func_Call
:= Expression
(Func_Call
);
7530 -- If the call has already been processed to add build-in-place actuals
7531 -- then return. One place this can occur is for calls to build-in-place
7532 -- functions that occur within a call to a protected operation, where
7533 -- due to rewriting and expansion of the protected call there can be
7534 -- more than one call to Expand_Actuals for the same set of actuals.
7536 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
7540 -- Mark the call as processed as a build-in-place call
7542 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
7544 Loc
:= Sloc
(Function_Call
);
7546 if Is_Entity_Name
(Name
(Func_Call
)) then
7547 Function_Id
:= Entity
(Name
(Func_Call
));
7549 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
7550 Function_Id
:= Etype
(Name
(Func_Call
));
7553 raise Program_Error
;
7556 Result_Subt
:= Etype
(Function_Id
);
7558 -- If the build-in-place function returns a controlled object, then the
7559 -- object needs to be finalized immediately after the context. Since
7560 -- this case produces a transient scope, the servicing finalizer needs
7561 -- to name the returned object. Create a temporary which is initialized
7562 -- with the function call:
7564 -- Temp_Id : Func_Type := BIP_Func_Call;
7566 -- The initialization expression of the temporary will be rewritten by
7567 -- the expander using the appropriate mechanism in Make_Build_In_Place_
7568 -- Call_In_Object_Declaration.
7570 if Needs_Finalization
(Result_Subt
) then
7572 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
7573 Temp_Decl
: Node_Id
;
7576 -- Reset the guard on the function call since the following does
7577 -- not perform actual call expansion.
7579 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
, False);
7582 Make_Object_Declaration
(Loc
,
7583 Defining_Identifier
=> Temp_Id
,
7584 Object_Definition
=>
7585 New_Occurrence_Of
(Result_Subt
, Loc
),
7587 New_Copy_Tree
(Function_Call
));
7589 Insert_Action
(Function_Call
, Temp_Decl
);
7591 Rewrite
(Function_Call
, New_Occurrence_Of
(Temp_Id
, Loc
));
7592 Analyze
(Function_Call
);
7595 -- When the result subtype is constrained, an object of the subtype is
7596 -- declared and an access value designating it is passed as an actual.
7598 elsif Is_Constrained
(Underlying_Type
(Result_Subt
)) then
7600 -- Create a temporary object to hold the function result
7602 Return_Obj_Id
:= Make_Temporary
(Loc
, 'R');
7603 Set_Etype
(Return_Obj_Id
, Result_Subt
);
7606 Make_Object_Declaration
(Loc
,
7607 Defining_Identifier
=> Return_Obj_Id
,
7608 Aliased_Present
=> True,
7609 Object_Definition
=> New_Occurrence_Of
(Result_Subt
, Loc
));
7611 Set_No_Initialization
(Return_Obj_Decl
);
7613 Insert_Action
(Func_Call
, Return_Obj_Decl
);
7615 -- When the function has a controlling result, an allocation-form
7616 -- parameter must be passed indicating that the caller is allocating
7617 -- the result object. This is needed because such a function can be
7618 -- called as a dispatching operation and must be treated similarly
7619 -- to functions with unconstrained result subtypes.
7621 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7622 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
7624 Add_Finalization_Master_Actual_To_Build_In_Place_Call
7625 (Func_Call
, Function_Id
);
7627 Add_Task_Actuals_To_Build_In_Place_Call
7628 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
7630 -- Add an implicit actual to the function call that provides access
7631 -- to the caller's return object.
7633 Add_Access_Actual_To_Build_In_Place_Call
7634 (Func_Call
, Function_Id
, New_Occurrence_Of
(Return_Obj_Id
, Loc
));
7636 -- When the result subtype is unconstrained, the function must allocate
7637 -- the return object in the secondary stack, so appropriate implicit
7638 -- parameters are added to the call to indicate that. A transient
7639 -- scope is established to ensure eventual cleanup of the result.
7642 -- Pass an allocation parameter indicating that the function should
7643 -- allocate its result on the secondary stack.
7645 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7646 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
7648 Add_Finalization_Master_Actual_To_Build_In_Place_Call
7649 (Func_Call
, Function_Id
);
7651 Add_Task_Actuals_To_Build_In_Place_Call
7652 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
7654 -- Pass a null value to the function since no return object is
7655 -- available on the caller side.
7657 Add_Access_Actual_To_Build_In_Place_Call
7658 (Func_Call
, Function_Id
, Empty
);
7660 end Make_Build_In_Place_Call_In_Anonymous_Context
;
7662 --------------------------------------------
7663 -- Make_Build_In_Place_Call_In_Assignment --
7664 --------------------------------------------
7666 procedure Make_Build_In_Place_Call_In_Assignment
7668 Function_Call
: Node_Id
)
7670 Lhs
: constant Node_Id
:= Name
(Assign
);
7671 Func_Call
: Node_Id
:= Function_Call
;
7672 Func_Id
: Entity_Id
;
7676 Ptr_Typ
: Entity_Id
;
7677 Ptr_Typ_Decl
: Node_Id
;
7679 Result_Subt
: Entity_Id
;
7683 -- Step past qualification or unchecked conversion (the latter can occur
7684 -- in cases of calls to 'Input).
7686 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
7687 N_Unchecked_Type_Conversion
)
7689 Func_Call
:= Expression
(Func_Call
);
7692 -- If the call has already been processed to add build-in-place actuals
7693 -- then return. This should not normally occur in an assignment context,
7694 -- but we add the protection as a defensive measure.
7696 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
7700 -- Mark the call as processed as a build-in-place call
7702 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
7704 Loc
:= Sloc
(Function_Call
);
7706 if Is_Entity_Name
(Name
(Func_Call
)) then
7707 Func_Id
:= Entity
(Name
(Func_Call
));
7709 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
7710 Func_Id
:= Etype
(Name
(Func_Call
));
7713 raise Program_Error
;
7716 Result_Subt
:= Etype
(Func_Id
);
7718 -- When the result subtype is unconstrained, an additional actual must
7719 -- be passed to indicate that the caller is providing the return object.
7720 -- This parameter must also be passed when the called function has a
7721 -- controlling result, because dispatching calls to the function needs
7722 -- to be treated effectively the same as calls to class-wide functions.
7724 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7725 (Func_Call
, Func_Id
, Alloc_Form
=> Caller_Allocation
);
7727 Add_Finalization_Master_Actual_To_Build_In_Place_Call
7728 (Func_Call
, Func_Id
);
7730 Add_Task_Actuals_To_Build_In_Place_Call
7731 (Func_Call
, Func_Id
, Make_Identifier
(Loc
, Name_uMaster
));
7733 -- Add an implicit actual to the function call that provides access to
7734 -- the caller's return object.
7736 Add_Access_Actual_To_Build_In_Place_Call
7739 Make_Unchecked_Type_Conversion
(Loc
,
7740 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
7741 Expression
=> Relocate_Node
(Lhs
)));
7743 -- Create an access type designating the function's result subtype
7745 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
7748 Make_Full_Type_Declaration
(Loc
,
7749 Defining_Identifier
=> Ptr_Typ
,
7751 Make_Access_To_Object_Definition
(Loc
,
7752 All_Present
=> True,
7753 Subtype_Indication
=>
7754 New_Occurrence_Of
(Result_Subt
, Loc
)));
7755 Insert_After_And_Analyze
(Assign
, Ptr_Typ_Decl
);
7757 -- Finally, create an access object initialized to a reference to the
7758 -- function call. We know this access value is non-null, so mark the
7759 -- entity accordingly to suppress junk access checks.
7761 New_Expr
:= Make_Reference
(Loc
, Relocate_Node
(Func_Call
));
7763 Obj_Id
:= Make_Temporary
(Loc
, 'R', New_Expr
);
7764 Set_Etype
(Obj_Id
, Ptr_Typ
);
7765 Set_Is_Known_Non_Null
(Obj_Id
);
7768 Make_Object_Declaration
(Loc
,
7769 Defining_Identifier
=> Obj_Id
,
7770 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
7771 Expression
=> New_Expr
);
7772 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Obj_Decl
);
7774 Rewrite
(Assign
, Make_Null_Statement
(Loc
));
7776 -- Retrieve the target of the assignment
7778 if Nkind
(Lhs
) = N_Selected_Component
then
7779 Target
:= Selector_Name
(Lhs
);
7780 elsif Nkind
(Lhs
) = N_Type_Conversion
then
7781 Target
:= Expression
(Lhs
);
7786 -- If we are assigning to a return object or this is an expression of
7787 -- an extension aggregate, the target should either be an identifier
7788 -- or a simple expression. All other cases imply a different scenario.
7790 if Nkind
(Target
) in N_Has_Entity
then
7791 Target
:= Entity
(Target
);
7795 end Make_Build_In_Place_Call_In_Assignment
;
7797 ----------------------------------------------------
7798 -- Make_Build_In_Place_Call_In_Object_Declaration --
7799 ----------------------------------------------------
7801 procedure Make_Build_In_Place_Call_In_Object_Declaration
7802 (Obj_Decl
: Node_Id
;
7803 Function_Call
: Node_Id
)
7805 Obj_Def_Id
: constant Entity_Id
:= Defining_Identifier
(Obj_Decl
);
7806 Encl_Func
: constant Entity_Id
:= Enclosing_Subprogram
(Obj_Def_Id
);
7807 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
7808 Obj_Loc
: constant Source_Ptr
:= Sloc
(Obj_Decl
);
7810 Call_Deref
: Node_Id
;
7811 Caller_Object
: Node_Id
;
7813 Fmaster_Actual
: Node_Id
:= Empty
;
7814 Func_Call
: Node_Id
:= Function_Call
;
7815 Function_Id
: Entity_Id
;
7816 Pool_Actual
: Node_Id
;
7817 Ptr_Typ
: Entity_Id
;
7818 Ptr_Typ_Decl
: Node_Id
;
7819 Pass_Caller_Acc
: Boolean := False;
7821 Result_Subt
: Entity_Id
;
7824 -- True if result subtype is definite, or has a size that does not
7825 -- require secondary stack usage (i.e. no variant part or components
7826 -- whose type depends on discriminants). In particular, untagged types
7827 -- with only access discriminants do not require secondary stack use.
7828 -- Note that if the return type is tagged we must always use the sec.
7829 -- stack because the call may dispatch on result.
7832 -- Step past qualification or unchecked conversion (the latter can occur
7833 -- in cases of calls to 'Input).
7835 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
7836 N_Unchecked_Type_Conversion
)
7838 Func_Call
:= Expression
(Func_Call
);
7841 -- If the call has already been processed to add build-in-place actuals
7842 -- then return. This should not normally occur in an object declaration,
7843 -- but we add the protection as a defensive measure.
7845 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
7849 -- Mark the call as processed as a build-in-place call
7851 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
7853 if Is_Entity_Name
(Name
(Func_Call
)) then
7854 Function_Id
:= Entity
(Name
(Func_Call
));
7856 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
7857 Function_Id
:= Etype
(Name
(Func_Call
));
7860 raise Program_Error
;
7863 Result_Subt
:= Etype
(Function_Id
);
7865 (Is_Definite_Subtype
(Underlying_Type
(Result_Subt
))
7866 and then not Is_Tagged_Type
(Result_Subt
))
7867 or else not Requires_Transient_Scope
(Underlying_Type
(Result_Subt
));
7869 -- Create an access type designating the function's result subtype. We
7870 -- use the type of the original call because it may be a call to an
7871 -- inherited operation, which the expansion has replaced with the parent
7872 -- operation that yields the parent type. Note that this access type
7873 -- must be declared before we establish a transient scope, so that it
7874 -- receives the proper accessibility level.
7876 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
7878 Make_Full_Type_Declaration
(Loc
,
7879 Defining_Identifier
=> Ptr_Typ
,
7881 Make_Access_To_Object_Definition
(Loc
,
7882 All_Present
=> True,
7883 Subtype_Indication
=>
7884 New_Occurrence_Of
(Etype
(Function_Call
), Loc
)));
7886 -- The access type and its accompanying object must be inserted after
7887 -- the object declaration in the constrained case, so that the function
7888 -- call can be passed access to the object. In the indefinite case,
7889 -- or if the object declaration is for a return object, the access type
7890 -- and object must be inserted before the object, since the object
7891 -- declaration is rewritten to be a renaming of a dereference of the
7892 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
7893 -- the result object is in a different (transient) scope, so won't
7897 and then not Is_Return_Object
(Defining_Identifier
(Obj_Decl
))
7899 Insert_After_And_Analyze
(Obj_Decl
, Ptr_Typ_Decl
);
7901 Insert_Action
(Obj_Decl
, Ptr_Typ_Decl
);
7904 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
7905 -- elaborated in an inner (transient) scope and thus won't cause
7906 -- freezing by itself.
7909 Ptr_Typ_Freeze_Ref
: constant Node_Id
:=
7910 New_Occurrence_Of
(Ptr_Typ
, Loc
);
7912 Set_Parent
(Ptr_Typ_Freeze_Ref
, Ptr_Typ_Decl
);
7913 Freeze_Expression
(Ptr_Typ_Freeze_Ref
);
7916 -- If the object is a return object of an enclosing build-in-place
7917 -- function, then the implicit build-in-place parameters of the
7918 -- enclosing function are simply passed along to the called function.
7919 -- (Unfortunately, this won't cover the case of extension aggregates
7920 -- where the ancestor part is a build-in-place indefinite function
7921 -- call that should be passed along the caller's parameters. Currently
7922 -- those get mishandled by reassigning the result of the call to the
7923 -- aggregate return object, when the call result should really be
7924 -- directly built in place in the aggregate and not in a temporary. ???)
7926 if Is_Return_Object
(Defining_Identifier
(Obj_Decl
)) then
7927 Pass_Caller_Acc
:= True;
7929 -- When the enclosing function has a BIP_Alloc_Form formal then we
7930 -- pass it along to the callee (such as when the enclosing function
7931 -- has an unconstrained or tagged result type).
7933 if Needs_BIP_Alloc_Form
(Encl_Func
) then
7934 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
7937 (Build_In_Place_Formal
(Encl_Func
, BIP_Storage_Pool
), Loc
);
7939 -- The build-in-place pool formal is not built on e.g. ZFP
7942 Pool_Actual
:= Empty
;
7945 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7946 (Function_Call
=> Func_Call
,
7947 Function_Id
=> Function_Id
,
7950 (Build_In_Place_Formal
(Encl_Func
, BIP_Alloc_Form
), Loc
),
7951 Pool_Actual
=> Pool_Actual
);
7953 -- Otherwise, if enclosing function has a definite result subtype,
7954 -- then caller allocation will be used.
7957 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7958 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
7961 if Needs_BIP_Finalization_Master
(Encl_Func
) then
7964 (Build_In_Place_Formal
7965 (Encl_Func
, BIP_Finalization_Master
), Loc
);
7968 -- Retrieve the BIPacc formal from the enclosing function and convert
7969 -- it to the access type of the callee's BIP_Object_Access formal.
7972 Make_Unchecked_Type_Conversion
(Loc
,
7976 (Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
)),
7980 (Build_In_Place_Formal
(Encl_Func
, BIP_Object_Access
),
7983 -- In the definite case, add an implicit actual to the function call
7984 -- that provides access to the declared object. An unchecked conversion
7985 -- to the (specific) result type of the function is inserted to handle
7986 -- the case where the object is declared with a class-wide type.
7990 Make_Unchecked_Type_Conversion
(Loc
,
7991 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
7992 Expression
=> New_Occurrence_Of
(Obj_Def_Id
, Loc
));
7994 -- When the function has a controlling result, an allocation-form
7995 -- parameter must be passed indicating that the caller is allocating
7996 -- the result object. This is needed because such a function can be
7997 -- called as a dispatching operation and must be treated similarly
7998 -- to functions with indefinite result subtypes.
8000 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8001 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8003 -- The allocation for indefinite library-level objects occurs on the
8004 -- heap as opposed to the secondary stack. This accommodates DLLs where
8005 -- the secondary stack is destroyed after each library unload. This is
8006 -- a hybrid mechanism where a stack-allocated object lives on the heap.
8008 elsif Is_Library_Level_Entity
(Defining_Identifier
(Obj_Decl
))
8009 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
8011 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8012 (Func_Call
, Function_Id
, Alloc_Form
=> Global_Heap
);
8013 Caller_Object
:= Empty
;
8015 -- Create a finalization master for the access result type to ensure
8016 -- that the heap allocation can properly chain the object and later
8017 -- finalize it when the library unit goes out of scope.
8019 if Needs_Finalization
(Etype
(Func_Call
)) then
8020 Build_Finalization_Master
8022 For_Lib_Level
=> True,
8023 Insertion_Node
=> Ptr_Typ_Decl
);
8026 Make_Attribute_Reference
(Loc
,
8028 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
8029 Attribute_Name
=> Name_Unrestricted_Access
);
8032 -- In other indefinite cases, pass an indication to do the allocation
8033 -- on the secondary stack and set Caller_Object to Empty so that a null
8034 -- value will be passed for the caller's object address. A transient
8035 -- scope is established to ensure eventual cleanup of the result.
8038 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8039 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
8040 Caller_Object
:= Empty
;
8042 Establish_Transient_Scope
(Obj_Decl
, Sec_Stack
=> True);
8045 -- Pass along any finalization master actual, which is needed in the
8046 -- case where the called function initializes a return object of an
8047 -- enclosing build-in-place function.
8049 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8050 (Func_Call
=> Func_Call
,
8051 Func_Id
=> Function_Id
,
8052 Master_Exp
=> Fmaster_Actual
);
8054 if Nkind
(Parent
(Obj_Decl
)) = N_Extended_Return_Statement
8055 and then Has_Task
(Result_Subt
)
8057 -- Here we're passing along the master that was passed in to this
8060 Add_Task_Actuals_To_Build_In_Place_Call
8061 (Func_Call
, Function_Id
,
8064 (Build_In_Place_Formal
(Encl_Func
, BIP_Task_Master
), Loc
));
8067 Add_Task_Actuals_To_Build_In_Place_Call
8068 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8071 Add_Access_Actual_To_Build_In_Place_Call
8072 (Func_Call
, Function_Id
, Caller_Object
, Is_Access
=> Pass_Caller_Acc
);
8074 -- Finally, create an access object initialized to a reference to the
8075 -- function call. We know this access value cannot be null, so mark the
8076 -- entity accordingly to suppress the access check.
8078 Def_Id
:= Make_Temporary
(Loc
, 'R', Func_Call
);
8079 Set_Etype
(Def_Id
, Ptr_Typ
);
8080 Set_Is_Known_Non_Null
(Def_Id
);
8083 Make_Object_Declaration
(Loc
,
8084 Defining_Identifier
=> Def_Id
,
8085 Constant_Present
=> True,
8086 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8088 Make_Reference
(Loc
, Relocate_Node
(Func_Call
)));
8090 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Res_Decl
);
8092 -- If the result subtype of the called function is definite and is not
8093 -- itself the return expression of an enclosing BIP function, then mark
8094 -- the object as having no initialization.
8097 and then not Is_Return_Object
(Defining_Identifier
(Obj_Decl
))
8099 -- The related object declaration is encased in a transient block
8100 -- because the build-in-place function call contains at least one
8101 -- nested function call that produces a controlled transient
8104 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8106 -- Since the build-in-place expansion decouples the call from the
8107 -- object declaration, the finalization machinery lacks the context
8108 -- which prompted the generation of the transient block. To resolve
8109 -- this scenario, store the build-in-place call.
8111 if Scope_Is_Transient
and then Node_To_Be_Wrapped
= Obj_Decl
then
8112 Set_BIP_Initialization_Call
(Obj_Def_Id
, Res_Decl
);
8115 Set_Expression
(Obj_Decl
, Empty
);
8116 Set_No_Initialization
(Obj_Decl
);
8118 -- In case of an indefinite result subtype, or if the call is the
8119 -- return expression of an enclosing BIP function, rewrite the object
8120 -- declaration as an object renaming where the renamed object is a
8121 -- dereference of <function_Call>'reference:
8123 -- Obj : Subt renames <function_call>'Ref.all;
8127 Make_Explicit_Dereference
(Obj_Loc
,
8128 Prefix
=> New_Occurrence_Of
(Def_Id
, Obj_Loc
));
8131 Make_Object_Renaming_Declaration
(Obj_Loc
,
8132 Defining_Identifier
=> Make_Temporary
(Obj_Loc
, 'D'),
8133 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Obj_Loc
),
8134 Name
=> Call_Deref
));
8136 Set_Renamed_Object
(Defining_Identifier
(Obj_Decl
), Call_Deref
);
8138 -- If the original entity comes from source, then mark the new
8139 -- entity as needing debug information, even though it's defined
8140 -- by a generated renaming that does not come from source, so that
8141 -- the Materialize_Entity flag will be set on the entity when
8142 -- Debug_Renaming_Declaration is called during analysis.
8144 if Comes_From_Source
(Obj_Def_Id
) then
8145 Set_Debug_Info_Needed
(Defining_Identifier
(Obj_Decl
));
8150 -- Replace the internal identifier of the renaming declaration's
8151 -- entity with identifier of the original object entity. We also have
8152 -- to exchange the entities containing their defining identifiers to
8153 -- ensure the correct replacement of the object declaration by the
8154 -- object renaming declaration to avoid homograph conflicts (since
8155 -- the object declaration's defining identifier was already entered
8156 -- in current scope). The Next_Entity links of the two entities also
8157 -- have to be swapped since the entities are part of the return
8158 -- scope's entity list and the list structure would otherwise be
8159 -- corrupted. Finally, the homonym chain must be preserved as well.
8162 Ren_Id
: constant Entity_Id
:= Defining_Entity
(Obj_Decl
);
8163 Next_Id
: constant Entity_Id
:= Next_Entity
(Ren_Id
);
8166 Set_Chars
(Ren_Id
, Chars
(Obj_Def_Id
));
8168 -- Swap next entity links in preparation for exchanging entities
8170 Set_Next_Entity
(Ren_Id
, Next_Entity
(Obj_Def_Id
));
8171 Set_Next_Entity
(Obj_Def_Id
, Next_Id
);
8172 Set_Homonym
(Ren_Id
, Homonym
(Obj_Def_Id
));
8174 Exchange_Entities
(Ren_Id
, Obj_Def_Id
);
8176 -- Preserve source indication of original declaration, so that
8177 -- xref information is properly generated for the right entity.
8179 Preserve_Comes_From_Source
(Obj_Decl
, Original_Node
(Obj_Decl
));
8180 Preserve_Comes_From_Source
(Obj_Def_Id
, Original_Node
(Obj_Decl
));
8182 Set_Comes_From_Source
(Ren_Id
, False);
8186 -- If the object entity has a class-wide Etype, then we need to change
8187 -- it to the result subtype of the function call, because otherwise the
8188 -- object will be class-wide without an explicit initialization and
8189 -- won't be allocated properly by the back end. It seems unclean to make
8190 -- such a revision to the type at this point, and we should try to
8191 -- improve this treatment when build-in-place functions with class-wide
8192 -- results are implemented. ???
8194 if Is_Class_Wide_Type
(Etype
(Defining_Identifier
(Obj_Decl
))) then
8195 Set_Etype
(Defining_Identifier
(Obj_Decl
), Result_Subt
);
8197 end Make_Build_In_Place_Call_In_Object_Declaration
;
8199 --------------------------------------------
8200 -- Make_CPP_Constructor_Call_In_Allocator --
8201 --------------------------------------------
8203 procedure Make_CPP_Constructor_Call_In_Allocator
8204 (Allocator
: Node_Id
;
8205 Function_Call
: Node_Id
)
8207 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8208 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
8209 Function_Id
: constant Entity_Id
:= Entity
(Name
(Function_Call
));
8210 Result_Subt
: constant Entity_Id
:= Available_View
(Etype
(Function_Id
));
8212 New_Allocator
: Node_Id
;
8213 Return_Obj_Access
: Entity_Id
;
8217 pragma Assert
(Nkind
(Allocator
) = N_Allocator
8218 and then Nkind
(Function_Call
) = N_Function_Call
);
8219 pragma Assert
(Convention
(Function_Id
) = Convention_CPP
8220 and then Is_Constructor
(Function_Id
));
8221 pragma Assert
(Is_Constrained
(Underlying_Type
(Result_Subt
)));
8223 -- Replace the initialized allocator of form "new T'(Func (...))" with
8224 -- an uninitialized allocator of form "new T", where T is the result
8225 -- subtype of the called function. The call to the function is handled
8226 -- separately further below.
8229 Make_Allocator
(Loc
,
8230 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8231 Set_No_Initialization
(New_Allocator
);
8233 -- Copy attributes to new allocator. Note that the new allocator
8234 -- logically comes from source if the original one did, so copy the
8235 -- relevant flag. This ensures proper treatment of the restriction
8236 -- No_Implicit_Heap_Allocations in this case.
8238 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
8239 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
8240 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
8242 Rewrite
(Allocator
, New_Allocator
);
8244 -- Create a new access object and initialize it to the result of the
8245 -- new uninitialized allocator. Note: we do not use Allocator as the
8246 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
8247 -- as this would create a sort of infinite "recursion".
8249 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
8250 Set_Etype
(Return_Obj_Access
, Acc_Type
);
8253 -- Rnnn : constant ptr_T := new (T);
8254 -- Init (Rnn.all,...);
8257 Make_Object_Declaration
(Loc
,
8258 Defining_Identifier
=> Return_Obj_Access
,
8259 Constant_Present
=> True,
8260 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
8261 Expression
=> Relocate_Node
(Allocator
));
8262 Insert_Action
(Allocator
, Tmp_Obj
);
8264 Insert_List_After_And_Analyze
(Tmp_Obj
,
8265 Build_Initialization_Call
(Loc
,
8267 Make_Explicit_Dereference
(Loc
,
8268 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)),
8269 Typ
=> Etype
(Function_Id
),
8270 Constructor_Ref
=> Function_Call
));
8272 -- Finally, replace the allocator node with a reference to the result of
8273 -- the function call itself (which will effectively be an access to the
8274 -- object created by the allocator).
8276 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
8278 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
8279 -- generate an implicit conversion to force displacement of the "this"
8282 if Is_Interface
(Designated_Type
(Acc_Type
)) then
8283 Rewrite
(Allocator
, Convert_To
(Acc_Type
, Relocate_Node
(Allocator
)));
8286 Analyze_And_Resolve
(Allocator
, Acc_Type
);
8287 end Make_CPP_Constructor_Call_In_Allocator
;
8289 -----------------------------------
8290 -- Needs_BIP_Finalization_Master --
8291 -----------------------------------
8293 function Needs_BIP_Finalization_Master
8294 (Func_Id
: Entity_Id
) return Boolean
8296 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
8297 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8300 not Restriction_Active
(No_Finalization
)
8301 and then Needs_Finalization
(Func_Typ
);
8302 end Needs_BIP_Finalization_Master
;
8304 --------------------------
8305 -- Needs_BIP_Alloc_Form --
8306 --------------------------
8308 function Needs_BIP_Alloc_Form
(Func_Id
: Entity_Id
) return Boolean is
8309 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
8310 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8312 return not Is_Constrained
(Func_Typ
) or else Is_Tagged_Type
(Func_Typ
);
8313 end Needs_BIP_Alloc_Form
;
8315 --------------------------------------
8316 -- Needs_Result_Accessibility_Level --
8317 --------------------------------------
8319 function Needs_Result_Accessibility_Level
8320 (Func_Id
: Entity_Id
) return Boolean
8322 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8324 function Has_Unconstrained_Access_Discriminant_Component
8325 (Comp_Typ
: Entity_Id
) return Boolean;
8326 -- Returns True if any component of the type has an unconstrained access
8329 -----------------------------------------------------
8330 -- Has_Unconstrained_Access_Discriminant_Component --
8331 -----------------------------------------------------
8333 function Has_Unconstrained_Access_Discriminant_Component
8334 (Comp_Typ
: Entity_Id
) return Boolean
8337 if not Is_Limited_Type
(Comp_Typ
) then
8340 -- Only limited types can have access discriminants with
8343 elsif Has_Unconstrained_Access_Discriminants
(Comp_Typ
) then
8346 elsif Is_Array_Type
(Comp_Typ
) then
8347 return Has_Unconstrained_Access_Discriminant_Component
8348 (Underlying_Type
(Component_Type
(Comp_Typ
)));
8350 elsif Is_Record_Type
(Comp_Typ
) then
8355 Comp
:= First_Component
(Comp_Typ
);
8356 while Present
(Comp
) loop
8357 if Has_Unconstrained_Access_Discriminant_Component
8358 (Underlying_Type
(Etype
(Comp
)))
8363 Next_Component
(Comp
);
8369 end Has_Unconstrained_Access_Discriminant_Component
;
8371 Feature_Disabled
: constant Boolean := True;
8374 -- Start of processing for Needs_Result_Accessibility_Level
8377 -- False if completion unavailable (how does this happen???)
8379 if not Present
(Func_Typ
) then
8382 elsif Feature_Disabled
then
8385 -- False if not a function, also handle enum-lit renames case
8387 elsif Func_Typ
= Standard_Void_Type
8388 or else Is_Scalar_Type
(Func_Typ
)
8392 -- Handle a corner case, a cross-dialect subp renaming. For example,
8393 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
8394 -- an Ada 2005 (or earlier) unit references predefined run-time units.
8396 elsif Present
(Alias
(Func_Id
)) then
8398 -- Unimplemented: a cross-dialect subp renaming which does not set
8399 -- the Alias attribute (e.g., a rename of a dereference of an access
8400 -- to subprogram value). ???
8402 return Present
(Extra_Accessibility_Of_Result
(Alias
(Func_Id
)));
8404 -- Remaining cases require Ada 2012 mode
8406 elsif Ada_Version
< Ada_2012
then
8409 elsif Ekind
(Func_Typ
) = E_Anonymous_Access_Type
8410 or else Is_Tagged_Type
(Func_Typ
)
8412 -- In the case of, say, a null tagged record result type, the need
8413 -- for this extra parameter might not be obvious. This function
8414 -- returns True for all tagged types for compatibility reasons.
8415 -- A function with, say, a tagged null controlling result type might
8416 -- be overridden by a primitive of an extension having an access
8417 -- discriminant and the overrider and overridden must have compatible
8418 -- calling conventions (including implicitly declared parameters).
8419 -- Similarly, values of one access-to-subprogram type might designate
8420 -- both a primitive subprogram of a given type and a function
8421 -- which is, for example, not a primitive subprogram of any type.
8422 -- Again, this requires calling convention compatibility.
8423 -- It might be possible to solve these issues by introducing
8424 -- wrappers, but that is not the approach that was chosen.
8428 elsif Has_Unconstrained_Access_Discriminants
(Func_Typ
) then
8431 elsif Has_Unconstrained_Access_Discriminant_Component
(Func_Typ
) then
8434 -- False for all other cases
8439 end Needs_Result_Accessibility_Level
;
8441 ---------------------------------
8442 -- Rewrite_Function_Call_For_C --
8443 ---------------------------------
8445 procedure Rewrite_Function_Call_For_C
(N
: Node_Id
) is
8446 Orig_Func
: constant Entity_Id
:= Entity
(Name
(N
));
8447 Func_Id
: constant Entity_Id
:= Ultimate_Alias
(Orig_Func
);
8448 Par
: constant Node_Id
:= Parent
(N
);
8449 Proc_Id
: constant Entity_Id
:= Corresponding_Procedure
(Func_Id
);
8450 Loc
: constant Source_Ptr
:= Sloc
(Par
);
8452 Last_Actual
: Node_Id
;
8453 Last_Formal
: Entity_Id
;
8455 -- Start of processing for Rewrite_Function_Call_For_C
8458 -- The actuals may be given by named associations, so the added actual
8459 -- that is the target of the return value of the call must be a named
8460 -- association as well, so we retrieve the name of the generated
8463 Last_Formal
:= First_Formal
(Proc_Id
);
8464 while Present
(Next_Formal
(Last_Formal
)) loop
8465 Last_Formal
:= Next_Formal
(Last_Formal
);
8468 Actuals
:= Parameter_Associations
(N
);
8470 -- The original function may lack parameters
8472 if No
(Actuals
) then
8473 Actuals
:= New_List
;
8476 -- If the function call is the expression of an assignment statement,
8477 -- transform the assignment into a procedure call. Generate:
8479 -- LHS := Func_Call (...);
8481 -- Proc_Call (..., LHS);
8483 -- If function is inherited, a conversion may be necessary.
8485 if Nkind
(Par
) = N_Assignment_Statement
then
8486 Last_Actual
:= Name
(Par
);
8488 if not Comes_From_Source
(Orig_Func
)
8489 and then Etype
(Orig_Func
) /= Etype
(Func_Id
)
8492 Make_Type_Conversion
(Loc
,
8493 New_Occurrence_Of
(Etype
(Func_Id
), Loc
),
8498 Make_Parameter_Association
(Loc
,
8500 Make_Identifier
(Loc
, Chars
(Last_Formal
)),
8501 Explicit_Actual_Parameter
=> Last_Actual
));
8504 Make_Procedure_Call_Statement
(Loc
,
8505 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
8506 Parameter_Associations
=> Actuals
));
8509 -- Otherwise the context is an expression. Generate a temporary and a
8510 -- procedure call to obtain the function result. Generate:
8512 -- ... Func_Call (...) ...
8515 -- Proc_Call (..., Temp);
8520 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
8529 Make_Object_Declaration
(Loc
,
8530 Defining_Identifier
=> Temp_Id
,
8531 Object_Definition
=>
8532 New_Occurrence_Of
(Etype
(Func_Id
), Loc
));
8535 -- Proc_Call (..., Temp);
8538 Make_Parameter_Association
(Loc
,
8540 Make_Identifier
(Loc
, Chars
(Last_Formal
)),
8541 Explicit_Actual_Parameter
=>
8542 New_Occurrence_Of
(Temp_Id
, Loc
)));
8545 Make_Procedure_Call_Statement
(Loc
,
8546 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
8547 Parameter_Associations
=> Actuals
);
8549 Insert_Actions
(Par
, New_List
(Decl
, Call
));
8550 Rewrite
(N
, New_Occurrence_Of
(Temp_Id
, Loc
));
8553 end Rewrite_Function_Call_For_C
;
8555 ------------------------------------
8556 -- Set_Enclosing_Sec_Stack_Return --
8557 ------------------------------------
8559 procedure Set_Enclosing_Sec_Stack_Return
(N
: Node_Id
) is
8563 -- Due to a possible mix of internally generated blocks, source blocks
8564 -- and loops, the scope stack may not be contiguous as all labels are
8565 -- inserted at the top level within the related function. Instead,
8566 -- perform a parent-based traversal and mark all appropriate constructs.
8568 while Present
(P
) loop
8570 -- Mark the label of a source or internally generated block or
8573 if Nkind_In
(P
, N_Block_Statement
, N_Loop_Statement
) then
8574 Set_Sec_Stack_Needed_For_Return
(Entity
(Identifier
(P
)));
8576 -- Mark the enclosing function
8578 elsif Nkind
(P
) = N_Subprogram_Body
then
8579 if Present
(Corresponding_Spec
(P
)) then
8580 Set_Sec_Stack_Needed_For_Return
(Corresponding_Spec
(P
));
8582 Set_Sec_Stack_Needed_For_Return
(Defining_Entity
(P
));
8585 -- Do not go beyond the enclosing function
8592 end Set_Enclosing_Sec_Stack_Return
;