libstdc++: Remove std::__is_pointer and std::__is_scalar [PR115497]
[official-gcc.git] / gcc / ada / exp_ch6.adb
blob6d3d05fcf203fe5158ad568b80ff449ea8d9586f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Accessibility; use Accessibility;
27 with Atree; use Atree;
28 with Aspects; use Aspects;
29 with Checks; use Checks;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Einfo.Entities; use Einfo.Entities;
33 with Einfo.Utils; use Einfo.Utils;
34 with Errout; use Errout;
35 with Elists; use Elists;
36 with Expander; use Expander;
37 with Exp_Aggr; use Exp_Aggr;
38 with Exp_Atag; use Exp_Atag;
39 with Exp_Ch3; use Exp_Ch3;
40 with Exp_Ch4; use Exp_Ch4;
41 with Exp_Ch7; use Exp_Ch7;
42 with Exp_Ch9; use Exp_Ch9;
43 with Exp_Dbug; use Exp_Dbug;
44 with Exp_Disp; use Exp_Disp;
45 with Exp_Dist; use Exp_Dist;
46 with Exp_Intr; use Exp_Intr;
47 with Exp_Pakd; use Exp_Pakd;
48 with Exp_Tss; use Exp_Tss;
49 with Exp_Util; use Exp_Util;
50 with Freeze; use Freeze;
51 with Inline; use Inline;
52 with Itypes; use Itypes;
53 with Lib; use Lib;
54 with Namet; use Namet;
55 with Nlists; use Nlists;
56 with Nmake; use Nmake;
57 with Opt; use Opt;
58 with Restrict; use Restrict;
59 with Rident; use Rident;
60 with Rtsfind; use Rtsfind;
61 with Sem; use Sem;
62 with Sem_Aux; use Sem_Aux;
63 with Sem_Ch6; use Sem_Ch6;
64 with Sem_Ch8; use Sem_Ch8;
65 with Sem_Ch13; use Sem_Ch13;
66 with Sem_Dim; use Sem_Dim;
67 with Sem_Disp; use Sem_Disp;
68 with Sem_Dist; use Sem_Dist;
69 with Sem_Eval; use Sem_Eval;
70 with Sem_Mech; use Sem_Mech;
71 with Sem_Res; use Sem_Res;
72 with Sem_SCIL; use Sem_SCIL;
73 with Sem_Util; use Sem_Util;
74 use Sem_Util.Storage_Model_Support;
75 with Sinfo; use Sinfo;
76 with Sinfo.Nodes; use Sinfo.Nodes;
77 with Sinfo.Utils; use Sinfo.Utils;
78 with Sinput; use Sinput;
79 with Snames; use Snames;
80 with Stand; use Stand;
81 with Tbuild; use Tbuild;
82 with Uintp; use Uintp;
83 with Validsw; use Validsw;
85 package body Exp_Ch6 is
87 --------------------------------
88 -- Function return mechanisms --
89 --------------------------------
91 -- This is a summary of the various function return mechanisms implemented
92 -- in GNAT for Ada 2005 and later versions of the language. In the below
93 -- table, the first column must be read as an if expression: if the result
94 -- type of the function is limited, then the return mechanism is and ...;
95 -- elsif the result type is indefinite or large definite, then ...; elsif
96 -- ...; else ... The different mechanisms are implemented either in the
97 -- front end, or in the back end, or partly in both ends, depending on the
98 -- result type.
100 -- Result type | Return mechanism | Front end | Back end
101 -- --------------------------------------------------------------------
103 -- Limited Build In Place All
105 -- Indefinite/ Secondary Stack Needs Fin. Others
106 -- Large definite
108 -- Needs Fin. Secondary Stack All
109 -- (BERS False)
111 -- Needs Fin. Invisible Parameter All All
112 -- (BERS True) (return) (call)
114 -- By Reference Invisible Parameter All
116 -- Others Primary stack/ All
117 -- Registers
119 -- Needs Fin.: type needs finalization [RM 7.6(9.1/2-9.6/2)]
120 -- BERS: Opt.Back_End_Return_Slot setting
122 -- The table is valid for all calls except for those dispatching on result;
123 -- the latter calls are considered as returning a class-wide type and thus
124 -- always return on the secondary stack, with the help of a small wrapper
125 -- function (thunk) if the original result type is not itself returned on
126 -- the secondary stack as per the above table.
128 -- Suffixes for Build-In-Place extra formals
130 BIP_Alloc_Suffix : constant String := "BIPalloc";
131 BIP_Storage_Pool_Suffix : constant String := "BIPstoragepool";
132 BIP_Collection_Suffix : constant String := "BIPcollection";
133 BIP_Task_Master_Suffix : constant String := "BIPtaskmaster";
134 BIP_Activation_Chain_Suffix : constant String := "BIPactivationchain";
135 BIP_Object_Access_Suffix : constant String := "BIPaccess";
137 -----------------------
138 -- Local Subprograms --
139 -----------------------
141 procedure Add_Access_Actual_To_Build_In_Place_Call
142 (Function_Call : Node_Id;
143 Function_Id : Entity_Id;
144 Return_Object : Node_Id;
145 Is_Access : Boolean := False);
146 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
147 -- object name given by Return_Object and add the attribute to the end of
148 -- the actual parameter list associated with the build-in-place function
149 -- call denoted by Function_Call. However, if Is_Access is True, then
150 -- Return_Object is already an access expression, in which case it's passed
151 -- along directly to the build-in-place function. Finally, if Return_Object
152 -- is empty, then pass a null literal as the actual.
154 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
155 (Function_Call : Node_Id;
156 Function_Id : Entity_Id;
157 Alloc_Form : BIP_Allocation_Form := Unspecified;
158 Alloc_Form_Exp : Node_Id := Empty;
159 Pool_Exp : Node_Id := Empty);
160 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
161 -- them, add the actuals parameters BIP_Alloc_Form and BIP_Storage_Pool.
162 -- If Alloc_Form_Exp is present, then pass it for the first parameter,
163 -- otherwise pass a literal corresponding to the Alloc_Form parameter
164 -- (which must not be Unspecified in that case). If Pool_Exp is present,
165 -- then use it for BIP_Storage_Pool, otherwise pass "null".
167 procedure Add_Collection_Actual_To_Build_In_Place_Call
168 (Function_Call : Node_Id;
169 Function_Id : Entity_Id;
170 Ptr_Typ : Entity_Id := Empty;
171 Collection_Exp : Node_Id := Empty);
172 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
173 -- finalization actions, add an actual parameter which is a pointer to the
174 -- collection of the access type used by the caller. If Collection_Exp is
175 -- present, then that will be passed as the actual. Otherwise, if Ptr_Typ
176 -- is Empty, this will result in an automatic "null" value for the actual.
178 procedure Add_Task_Actuals_To_Build_In_Place_Call
179 (Function_Call : Node_Id;
180 Function_Id : Entity_Id;
181 Master_Actual : Node_Id;
182 Chain : Node_Id := Empty);
183 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
184 -- contains tasks, add two actual parameters: the master, and a pointer to
185 -- the caller's activation chain. Master_Actual is the actual parameter
186 -- expression to pass for the master. In most cases, this is the current
187 -- master (_master). The two exceptions are: If the function call is the
188 -- initialization expression for an allocator, we pass the master of the
189 -- access type. If the function call is the initialization expression for a
190 -- return object, we pass along the master passed in by the caller. In most
191 -- contexts, the activation chain to pass is the local one, which is
192 -- indicated by No (Chain). However, in an allocator, the caller passes in
193 -- the activation Chain. Note: Master_Actual can be Empty, but only if
194 -- there are no tasks.
196 function Caller_Known_Size
197 (Func_Call : Node_Id;
198 Result_Subt : Entity_Id) return Boolean;
199 -- True if result subtype is definite or has a size that does not require
200 -- secondary stack usage (i.e. no variant part or components whose type
201 -- depends on discriminants). In particular, untagged types with only
202 -- access discriminants do not require secondary stack use. Note we must
203 -- always use the secondary stack for dispatching-on-result calls.
205 function Check_BIP_Actuals
206 (Subp_Call : Node_Id;
207 Subp_Id : Entity_Id) return Boolean;
208 -- Given a subprogram call to the given subprogram return True if the
209 -- names of BIP extra actual and formal parameters match, and the number
210 -- of actuals (including extra actuals) matches the number of formals.
212 function Check_Number_Of_Actuals
213 (Subp_Call : Node_Id;
214 Subp_Id : Entity_Id) return Boolean;
215 -- Given a subprogram call to the given subprogram return True if the
216 -- number of actual parameters (including extra actuals) is correct.
218 procedure Check_Overriding_Operation (Subp : Entity_Id);
219 -- Subp is a dispatching operation. Check whether it may override an
220 -- inherited private operation, in which case its DT entry is that of
221 -- the hidden operation, not the one it may have received earlier.
222 -- This must be done before emitting the code to set the corresponding
223 -- DT to the address of the subprogram. The actual placement of Subp in
224 -- the proper place in the list of primitive operations is done in
225 -- Declare_Inherited_Private_Subprograms, which also has to deal with
226 -- implicit operations. This duplication is unavoidable for now???
228 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
229 -- This procedure is called only if the subprogram body N, whose spec
230 -- has the given entity Spec, contains a parameterless recursive call.
231 -- It attempts to generate runtime code to detect if this a case of
232 -- infinite recursion.
234 -- The body is scanned to determine dependencies. If the only external
235 -- dependencies are on a small set of scalar variables, then the values
236 -- of these variables are captured on entry to the subprogram, and if
237 -- the values are not changed for the call, we know immediately that
238 -- we have an infinite recursion.
240 procedure Expand_Actuals
241 (N : Node_Id;
242 Subp : Entity_Id;
243 Post_Call : out List_Id);
244 -- Return a list of actions to take place after the call in Post_Call. The
245 -- call will later be rewritten as an Expression_With_Actions, with the
246 -- Post_Call actions inserted, and the call inside.
248 -- For each actual of an in-out or out parameter which is a numeric (view)
249 -- conversion of the form T (A), where A denotes a variable, we insert the
250 -- declaration:
252 -- Temp : T[ := T (A)];
254 -- prior to the call. Then we replace the actual with a reference to Temp,
255 -- and append the assignment:
257 -- A := TypeA (Temp);
259 -- after the call. Here TypeA is the actual type of variable A. For out
260 -- parameters, the initial declaration has no expression. If A is not an
261 -- entity name, we generate instead:
263 -- Var : TypeA renames A;
264 -- Temp : T := Var; -- omitting expression for out parameter.
265 -- ...
266 -- Var := TypeA (Temp);
268 -- For other in-out parameters, we emit the required constraint checks
269 -- before and/or after the call.
271 -- For all parameter modes, actuals that denote components and slices of
272 -- packed arrays are expanded into suitable temporaries.
274 -- For nonscalar objects that are possibly unaligned, add call by copy code
275 -- (copy in for IN and IN OUT, copy out for OUT and IN OUT).
277 -- For OUT and IN OUT parameters, add predicate checks after the call
278 -- based on the predicates of the actual type.
280 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id);
281 -- Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
283 procedure Expand_Ctrl_Function_Call (N : Node_Id; Use_Sec_Stack : Boolean);
284 -- N is a function call which returns a controlled object. Transform the
285 -- call into a temporary which retrieves the returned object from the
286 -- primary or secondary stack (Use_Sec_Stack says which) using 'reference.
288 procedure Expand_Non_Function_Return (N : Node_Id);
289 -- Expand a simple return statement found in a procedure body, entry body,
290 -- accept statement, or an extended return statement. Note that all non-
291 -- function returns are simple return statements.
293 function Expand_Protected_Object_Reference
294 (N : Node_Id;
295 Scop : Entity_Id) return Node_Id;
297 procedure Expand_Protected_Subprogram_Call
298 (N : Node_Id;
299 Subp : Entity_Id;
300 Scop : Entity_Id);
301 -- A call to a protected subprogram within the protected object may appear
302 -- as a regular call. The list of actuals must be expanded to contain a
303 -- reference to the object itself, and the call becomes a call to the
304 -- corresponding protected subprogram.
306 procedure Expand_Simple_Function_Return (N : Node_Id);
307 -- Expand simple return from function. In the case where we are returning
308 -- from a function body this is called by Expand_N_Simple_Return_Statement.
310 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id);
311 -- Insert the Post_Call list previously produced by routine Expand_Actuals
312 -- or Expand_Call_Helper into the tree.
314 function Is_Function_Call_With_BIP_Formals (N : Node_Id) return Boolean;
315 -- Ada 2005 (AI-318-02): Returns True if N denotes a call to a function
316 -- that requires handling as a build-in-place call, that is, BIP function
317 -- calls and calls to functions with inherited BIP formals. For example:
319 -- type Iface is limited interface;
320 -- function Get_Object return Iface;
321 -- -- This function has BIP extra formals
323 -- type Root1 is limited tagged record ...
324 -- type T1 is new Root1 and Iface with ...
325 -- function Get_Object return T1;
326 -- -- This primitive requires the BIP formals, and the evaluation of
327 -- -- Is_Build_In_Place_Function_Call returns True.
329 -- type Root2 is tagged record ...
330 -- type T2 is new Root2 and Iface with ...
331 -- function Get_Object return T2;
332 -- -- This primitive inherits the BIP formals of the interface primitive
333 -- -- but, given that T2 is not a limited type, it does not require such
334 -- -- formals; therefore Is_Build_In_Place_Function_Call returns False.
336 procedure Replace_Renaming_Declaration_Id
337 (New_Decl : Node_Id;
338 Orig_Decl : Node_Id);
339 -- Replace the internal identifier of the new renaming declaration New_Decl
340 -- with the identifier of its original declaration Orig_Decl exchanging the
341 -- entities containing their defining identifiers to ensure the correct
342 -- replacement of the object declaration by the object renaming declaration
343 -- to avoid homograph conflicts (since the object declaration's defining
344 -- identifier was already entered in the current scope). The Next_Entity
345 -- links of the two entities are also swapped since the entities are part
346 -- of the return scope's entity list and the list structure would otherwise
347 -- be corrupted. The homonym chain is preserved as well.
349 procedure Rewrite_Function_Call_For_C (N : Node_Id);
350 -- When generating C code, replace a call to a function that returns an
351 -- array into the generated procedure with an additional out parameter.
353 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
354 -- N is a return statement for a function that returns its result on the
355 -- secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
356 -- function and all blocks and loops that the return statement is jumping
357 -- out of. This ensures that the secondary stack is not released; otherwise
358 -- the function result would be reclaimed before returning to the caller.
360 procedure Warn_BIP (Func_Call : Node_Id);
361 -- Give a warning on a build-in-place function call if the -gnatd_B switch
362 -- was given.
364 ----------------------------------------------
365 -- Add_Access_Actual_To_Build_In_Place_Call --
366 ----------------------------------------------
368 procedure Add_Access_Actual_To_Build_In_Place_Call
369 (Function_Call : Node_Id;
370 Function_Id : Entity_Id;
371 Return_Object : Node_Id;
372 Is_Access : Boolean := False)
374 Loc : constant Source_Ptr := Sloc (Function_Call);
375 Obj_Address : Node_Id;
376 Obj_Acc_Formal : Entity_Id;
378 begin
379 -- Locate the implicit access parameter in the called function
381 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
383 -- If no return object is provided, then pass null
385 if No (Return_Object) then
386 Obj_Address := Make_Null (Loc);
387 Set_Parent (Obj_Address, Function_Call);
389 -- If Return_Object is already an expression of an access type, then use
390 -- it directly, since it must be an access value denoting the return
391 -- object, and couldn't possibly be the return object itself.
393 elsif Is_Access then
394 Obj_Address := Return_Object;
395 Set_Parent (Obj_Address, Function_Call);
397 -- Apply Unrestricted_Access to caller's return object
399 else
400 Obj_Address :=
401 Make_Attribute_Reference (Loc,
402 Prefix => Return_Object,
403 Attribute_Name => Name_Unrestricted_Access);
405 Set_Parent (Return_Object, Obj_Address);
406 Set_Parent (Obj_Address, Function_Call);
407 end if;
409 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
411 -- Build the parameter association for the new actual and add it to the
412 -- end of the function's actuals.
414 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
415 end Add_Access_Actual_To_Build_In_Place_Call;
417 ------------------------------------------------------
418 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
419 ------------------------------------------------------
421 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
422 (Function_Call : Node_Id;
423 Function_Id : Entity_Id;
424 Alloc_Form : BIP_Allocation_Form := Unspecified;
425 Alloc_Form_Exp : Node_Id := Empty;
426 Pool_Exp : Node_Id := Empty)
428 Loc : constant Source_Ptr := Sloc (Function_Call);
430 Alloc_Form_Actual : Node_Id;
431 Alloc_Form_Formal : Node_Id;
433 begin
434 -- Nothing to do when the size of the object is known, and the caller is
435 -- in charge of allocating it, and the callee doesn't unconditionally
436 -- require an allocation form (such as due to having a tagged result).
438 if not Needs_BIP_Alloc_Form (Function_Id) then
439 return;
440 end if;
442 -- Locate the implicit allocation form parameter in the called function.
443 -- Maybe it would be better for each implicit formal of a build-in-place
444 -- function to have a flag or a Uint attribute to identify it. ???
446 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
448 if Present (Alloc_Form_Exp) then
449 pragma Assert (Alloc_Form = Unspecified);
451 Alloc_Form_Actual := Alloc_Form_Exp;
453 else
454 pragma Assert (Alloc_Form /= Unspecified);
456 Alloc_Form_Actual :=
457 Make_Integer_Literal (Loc,
458 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
459 end if;
461 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
463 -- Build the parameter association for the new actual and add it to the
464 -- end of the function's actuals.
466 Add_Extra_Actual_To_Call
467 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
469 -- Pass the Storage_Pool parameter. This parameter is omitted on ZFP as
470 -- those targets do not support pools.
472 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
473 declare
474 Pool_Actual : constant Node_Id :=
475 (if Present (Pool_Exp) then Pool_Exp else Make_Null (Loc));
476 Pool_Formal : constant Node_Id :=
477 Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
479 begin
480 Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
481 Add_Extra_Actual_To_Call (Function_Call, Pool_Formal, Pool_Actual);
482 end;
483 end if;
484 end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
486 --------------------------------------------------
487 -- Add_Collection_Actual_To_Build_In_Place_Call --
488 --------------------------------------------------
490 procedure Add_Collection_Actual_To_Build_In_Place_Call
491 (Function_Call : Node_Id;
492 Function_Id : Entity_Id;
493 Ptr_Typ : Entity_Id := Empty;
494 Collection_Exp : Node_Id := Empty)
496 Loc : constant Source_Ptr := Sloc (Function_Call);
498 Actual : Node_Id;
499 Formal : Node_Id;
500 Desig_Typ : Entity_Id;
502 begin
503 if not Needs_BIP_Collection (Function_Id) then
504 return;
505 end if;
507 Formal := Build_In_Place_Formal (Function_Id, BIP_Collection);
509 -- If there is a finalization collection actual, such as the implicit
510 -- finalization collection of an enclosing build-in-place function,
511 -- then this must be added as an extra actual of the call.
513 if Present (Collection_Exp) then
514 Actual := Collection_Exp;
516 -- Case where the context does not require an actual collection
518 elsif No (Ptr_Typ) then
519 Actual := Make_Null (Loc);
521 else
522 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
524 -- Check for a library-level access type whose designated type has
525 -- suppressed finalization or the access type is subject to pragma
526 -- No_Heap_Finalization. Such an access type lacks a collection. Pass
527 -- a null actual to callee in order to signal a missing collection.
529 if Is_Library_Level_Entity (Ptr_Typ)
530 and then (Finalize_Storage_Only (Desig_Typ)
531 or else No_Heap_Finalization (Ptr_Typ))
532 then
533 Actual := Make_Null (Loc);
535 -- Types in need of finalization actions
537 elsif Needs_Finalization (Desig_Typ) then
539 -- The general mechanism of creating finalization collections
540 -- for anonymous access types is disabled by default, otherwise
541 -- finalization collections will pop all over the place. Instead
542 -- such types use context-specific collections.
544 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
545 and then No (Finalization_Collection (Ptr_Typ))
546 then
547 Build_Anonymous_Collection (Ptr_Typ);
548 end if;
550 -- Access-to-controlled types should always have a collection
552 pragma Assert (Present (Finalization_Collection (Ptr_Typ)));
554 Actual :=
555 Make_Attribute_Reference (Loc,
556 Prefix =>
557 New_Occurrence_Of (Finalization_Collection (Ptr_Typ), Loc),
558 Attribute_Name => Name_Unrestricted_Access);
560 -- Tagged types
562 else
563 Actual := Make_Null (Loc);
564 end if;
565 end if;
567 Analyze_And_Resolve (Actual, Etype (Formal));
569 -- Build the parameter association for the new actual and add it to
570 -- the end of the function's actuals.
572 Add_Extra_Actual_To_Call (Function_Call, Formal, Actual);
573 end Add_Collection_Actual_To_Build_In_Place_Call;
575 ------------------------------
576 -- Add_Extra_Actual_To_Call --
577 ------------------------------
579 procedure Add_Extra_Actual_To_Call
580 (Subprogram_Call : Node_Id;
581 Extra_Formal : Entity_Id;
582 Extra_Actual : Node_Id)
584 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
585 Param_Assoc : Node_Id;
587 begin
588 Param_Assoc :=
589 Make_Parameter_Association (Loc,
590 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
591 Explicit_Actual_Parameter => Extra_Actual);
593 Set_Parent (Param_Assoc, Subprogram_Call);
594 Set_Parent (Extra_Actual, Param_Assoc);
596 if Present (Parameter_Associations (Subprogram_Call)) then
597 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
598 N_Parameter_Association
599 then
601 -- Find last named actual, and append
603 declare
604 L : Node_Id;
605 begin
606 L := First_Actual (Subprogram_Call);
607 while Present (L) loop
608 if No (Next_Actual (L)) then
609 Set_Next_Named_Actual (Parent (L), Extra_Actual);
610 exit;
611 end if;
612 Next_Actual (L);
613 end loop;
614 end;
616 else
617 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
618 end if;
620 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
622 else
623 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
624 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
625 end if;
626 end Add_Extra_Actual_To_Call;
628 ---------------------------------------------
629 -- Add_Task_Actuals_To_Build_In_Place_Call --
630 ---------------------------------------------
632 procedure Add_Task_Actuals_To_Build_In_Place_Call
633 (Function_Call : Node_Id;
634 Function_Id : Entity_Id;
635 Master_Actual : Node_Id;
636 Chain : Node_Id := Empty)
638 Loc : constant Source_Ptr := Sloc (Function_Call);
639 Actual : Node_Id;
640 Chain_Actual : Node_Id;
641 Chain_Formal : Node_Id;
642 Master_Formal : Node_Id;
644 begin
645 pragma Assert (Ekind (Function_Id) in E_Function
646 | E_Subprogram_Type);
648 -- No such extra parameters are needed if there are no tasks
650 if not Needs_BIP_Task_Actuals (Function_Id) then
652 -- However we must add dummy extra actuals if the function is
653 -- a dispatching operation that inherited these extra formals
654 -- or an access-to-subprogram type that requires these extra
655 -- actuals.
657 if Has_BIP_Extra_Formal (Function_Id, BIP_Task_Master,
658 Must_Be_Frozen => False)
659 then
660 Master_Formal :=
661 Build_In_Place_Formal (Function_Id, BIP_Task_Master);
662 Actual := Make_Integer_Literal (Loc, Uint_0);
663 Analyze_And_Resolve (Actual, Etype (Master_Formal));
664 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
666 Chain_Formal :=
667 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
668 Chain_Actual := Make_Null (Loc);
669 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
670 Add_Extra_Actual_To_Call
671 (Function_Call, Chain_Formal, Chain_Actual);
672 end if;
674 return;
675 end if;
677 Actual := Master_Actual;
679 -- Use a dummy _master actual in case of No_Task_Hierarchy
681 if Restriction_Active (No_Task_Hierarchy) then
682 Actual := Make_Integer_Literal (Loc, Library_Task_Level);
684 -- In the case where we use the master associated with an access type,
685 -- the actual is an entity and requires an explicit reference.
687 elsif Nkind (Actual) = N_Defining_Identifier then
688 Actual := New_Occurrence_Of (Actual, Loc);
689 end if;
691 -- Locate the implicit master parameter in the called function
693 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
694 Analyze_And_Resolve (Actual, Etype (Master_Formal));
696 -- Build the parameter association for the new actual and add it to the
697 -- end of the function's actuals.
699 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
701 -- Locate the implicit activation chain parameter in the called function
703 Chain_Formal :=
704 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
706 -- Create the actual which is a pointer to the current activation chain
708 if Restriction_Active (No_Task_Hierarchy) then
709 Chain_Actual := Make_Null (Loc);
711 elsif No (Chain) then
712 Chain_Actual :=
713 Make_Attribute_Reference (Loc,
714 Prefix => Make_Identifier (Loc, Name_uChain),
715 Attribute_Name => Name_Unrestricted_Access);
717 -- Allocator case; make a reference to the Chain passed in by the caller
719 else
720 Chain_Actual :=
721 Make_Attribute_Reference (Loc,
722 Prefix => New_Occurrence_Of (Chain, Loc),
723 Attribute_Name => Name_Unrestricted_Access);
724 end if;
726 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
728 -- Build the parameter association for the new actual and add it to the
729 -- end of the function's actuals.
731 Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
732 end Add_Task_Actuals_To_Build_In_Place_Call;
734 ----------------------------------
735 -- Apply_CW_Accessibility_Check --
736 ----------------------------------
738 procedure Apply_CW_Accessibility_Check (Exp : Node_Id; Func : Entity_Id) is
739 Loc : constant Source_Ptr := Sloc (Exp);
741 begin
742 -- CodePeer does not do anything useful on Ada.Tags.Type_Specific_Data
743 -- components.
745 if Ada_Version >= Ada_2005
746 and then not CodePeer_Mode
747 and then Tagged_Type_Expansion
748 and then not Scope_Suppress.Suppress (Accessibility_Check)
749 and then
750 (Is_Class_Wide_Type (Etype (Exp))
751 or else Nkind (Exp) in
752 N_Type_Conversion | N_Unchecked_Type_Conversion
753 or else (Is_Entity_Name (Exp)
754 and then Is_Formal (Entity (Exp)))
755 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
756 Scope_Depth (Enclosing_Dynamic_Scope (Func)))
757 then
758 declare
759 Tag_Node : Node_Id;
761 begin
762 -- Ada 2005 (AI-251): In class-wide interface objects we displace
763 -- "this" to reference the base of the object. This is required to
764 -- get access to the TSD of the object.
766 if Is_Class_Wide_Type (Etype (Exp))
767 and then Is_Interface (Etype (Exp))
768 then
769 -- If the expression is an explicit dereference then we can
770 -- directly displace the pointer to reference the base of
771 -- the object.
773 if Nkind (Exp) = N_Explicit_Dereference then
774 Tag_Node :=
775 Make_Explicit_Dereference (Loc,
776 Prefix =>
777 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
778 Make_Function_Call (Loc,
779 Name =>
780 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
781 Parameter_Associations => New_List (
782 Unchecked_Convert_To (RTE (RE_Address),
783 Duplicate_Subexpr (Prefix (Exp)))))));
785 -- Similar case to the previous one but the expression is a
786 -- renaming of an explicit dereference.
788 elsif Nkind (Exp) = N_Identifier
789 and then Present (Renamed_Object (Entity (Exp)))
790 and then Nkind (Renamed_Object (Entity (Exp)))
791 = N_Explicit_Dereference
792 then
793 Tag_Node :=
794 Make_Explicit_Dereference (Loc,
795 Prefix =>
796 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
797 Make_Function_Call (Loc,
798 Name =>
799 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
800 Parameter_Associations => New_List (
801 Unchecked_Convert_To (RTE (RE_Address),
802 Duplicate_Subexpr
803 (Prefix
804 (Renamed_Object (Entity (Exp)))))))));
806 -- Common case: obtain the address of the actual object and
807 -- displace the pointer to reference the base of the object.
809 else
810 Tag_Node :=
811 Make_Explicit_Dereference (Loc,
812 Prefix =>
813 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
814 Make_Function_Call (Loc,
815 Name =>
816 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
817 Parameter_Associations => New_List (
818 Make_Attribute_Reference (Loc,
819 Prefix => Duplicate_Subexpr (Exp),
820 Attribute_Name => Name_Address)))));
821 end if;
822 else
823 Tag_Node :=
824 Make_Attribute_Reference (Loc,
825 Prefix => Duplicate_Subexpr (Exp),
826 Attribute_Name => Name_Tag);
827 end if;
829 -- Suppress junk access chacks on RE_Tag_Ptr
831 Insert_Action (Exp,
832 Make_Raise_Program_Error (Loc,
833 Condition =>
834 Make_Op_Gt (Loc,
835 Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
836 Right_Opnd =>
837 Make_Integer_Literal (Loc,
838 Scope_Depth (Enclosing_Dynamic_Scope (Func)))),
839 Reason => PE_Accessibility_Check_Failed),
840 Suppress => Access_Check);
841 end;
842 end if;
843 end Apply_CW_Accessibility_Check;
845 -----------------------
846 -- BIP_Formal_Suffix --
847 -----------------------
849 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
850 begin
851 case Kind is
852 when BIP_Alloc_Form =>
853 return BIP_Alloc_Suffix;
855 when BIP_Storage_Pool =>
856 return BIP_Storage_Pool_Suffix;
858 when BIP_Collection =>
859 return BIP_Collection_Suffix;
861 when BIP_Task_Master =>
862 return BIP_Task_Master_Suffix;
864 when BIP_Activation_Chain =>
865 return BIP_Activation_Chain_Suffix;
867 when BIP_Object_Access =>
868 return BIP_Object_Access_Suffix;
869 end case;
870 end BIP_Formal_Suffix;
872 ---------------------
873 -- BIP_Suffix_Kind --
874 ---------------------
876 function BIP_Suffix_Kind (E : Entity_Id) return BIP_Formal_Kind is
877 Nam : constant String := Get_Name_String (Chars (E));
879 function Has_Suffix (Suffix : String) return Boolean;
880 -- Return True if Nam has suffix Suffix
882 function Has_Suffix (Suffix : String) return Boolean is
883 Len : constant Natural := Suffix'Length;
884 begin
885 return Nam'Length > Len
886 and then Nam (Nam'Last - Len + 1 .. Nam'Last) = Suffix;
887 end Has_Suffix;
889 -- Start of processing for BIP_Suffix_Kind
891 begin
892 if Has_Suffix (BIP_Alloc_Suffix) then
893 return BIP_Alloc_Form;
895 elsif Has_Suffix (BIP_Storage_Pool_Suffix) then
896 return BIP_Storage_Pool;
898 elsif Has_Suffix (BIP_Collection_Suffix) then
899 return BIP_Collection;
901 elsif Has_Suffix (BIP_Task_Master_Suffix) then
902 return BIP_Task_Master;
904 elsif Has_Suffix (BIP_Activation_Chain_Suffix) then
905 return BIP_Activation_Chain;
907 elsif Has_Suffix (BIP_Object_Access_Suffix) then
908 return BIP_Object_Access;
910 else
911 raise Program_Error;
912 end if;
913 end BIP_Suffix_Kind;
915 ---------------------------
916 -- Build_In_Place_Formal --
917 ---------------------------
919 function Build_In_Place_Formal
920 (Func : Entity_Id;
921 Kind : BIP_Formal_Kind) return Entity_Id
923 Extra_Formal : Entity_Id := Extra_Formals (Func);
924 Formal_Suffix : constant String := BIP_Formal_Suffix (Kind);
926 begin
927 -- Maybe it would be better for each implicit formal of a build-in-place
928 -- function to have a flag or a Uint attribute to identify it. ???
930 -- The return type in the function declaration may have been a limited
931 -- view, and the extra formals for the function were not generated at
932 -- that point. At the point of call the full view must be available and
933 -- the extra formals can be created and Returns_By_Ref computed.
935 if No (Extra_Formal) then
936 Create_Extra_Formals (Func);
937 Extra_Formal := Extra_Formals (Func);
938 Compute_Returns_By_Ref (Func);
939 end if;
941 -- We search for a formal with a matching suffix. We can't search
942 -- for the full name, because of the code at the end of Sem_Ch6.-
943 -- Create_Extra_Formals, which copies the Extra_Formals over to
944 -- the Alias of an instance, which will cause the formals to have
945 -- "incorrect" names.
947 while Present (Extra_Formal) loop
948 declare
949 Name : constant String := Get_Name_String (Chars (Extra_Formal));
950 begin
951 exit when Name'Length >= Formal_Suffix'Length
952 and then Formal_Suffix =
953 Name (Name'Last - Formal_Suffix'Length + 1 .. Name'Last);
954 end;
956 Next_Formal_With_Extras (Extra_Formal);
957 end loop;
959 if No (Extra_Formal) then
960 raise Program_Error;
961 end if;
963 return Extra_Formal;
964 end Build_In_Place_Formal;
966 -------------------------------
967 -- Build_Procedure_Body_Form --
968 -------------------------------
970 function Build_Procedure_Body_Form
971 (Func_Id : Entity_Id;
972 Func_Body : Node_Id) return Node_Id
974 Loc : constant Source_Ptr := Sloc (Func_Body);
976 Proc_Decl : constant Node_Id := Prev (Unit_Declaration_Node (Func_Id));
977 -- It is assumed that the node before the declaration of the
978 -- corresponding subprogram spec is the declaration of the procedure
979 -- form.
981 Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
983 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
984 -- Replace each return statement found in the list Stmts with an
985 -- assignment of the return expression to parameter Param_Id.
987 ---------------------
988 -- Replace_Returns --
989 ---------------------
991 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
992 Stmt : Node_Id;
994 begin
995 Stmt := First (Stmts);
996 while Present (Stmt) loop
997 if Nkind (Stmt) = N_Block_Statement then
998 Replace_Returns (Param_Id,
999 Statements (Handled_Statement_Sequence (Stmt)));
1001 elsif Nkind (Stmt) = N_Case_Statement then
1002 declare
1003 Alt : Node_Id;
1004 begin
1005 Alt := First (Alternatives (Stmt));
1006 while Present (Alt) loop
1007 Replace_Returns (Param_Id, Statements (Alt));
1008 Next (Alt);
1009 end loop;
1010 end;
1012 elsif Nkind (Stmt) = N_Extended_Return_Statement then
1013 declare
1014 Ret_Obj : constant Entity_Id :=
1015 Defining_Entity
1016 (First (Return_Object_Declarations (Stmt)));
1017 Assign : constant Node_Id :=
1018 Make_Assignment_Statement (Sloc (Stmt),
1019 Name =>
1020 New_Occurrence_Of (Param_Id, Loc),
1021 Expression =>
1022 New_Occurrence_Of (Ret_Obj, Sloc (Stmt)));
1023 Stmts : List_Id;
1025 begin
1026 -- The extended return may just contain the declaration
1028 if Present (Handled_Statement_Sequence (Stmt)) then
1029 Stmts := Statements (Handled_Statement_Sequence (Stmt));
1030 else
1031 Stmts := New_List;
1032 end if;
1034 Set_Assignment_OK (Name (Assign));
1036 Rewrite (Stmt,
1037 Make_Block_Statement (Sloc (Stmt),
1038 Declarations =>
1039 Return_Object_Declarations (Stmt),
1040 Handled_Statement_Sequence =>
1041 Make_Handled_Sequence_Of_Statements (Loc,
1042 Statements => Stmts)));
1044 Replace_Returns (Param_Id, Stmts);
1046 Append_To (Stmts, Assign);
1047 Append_To (Stmts, Make_Simple_Return_Statement (Loc));
1048 end;
1050 elsif Nkind (Stmt) = N_If_Statement then
1051 Replace_Returns (Param_Id, Then_Statements (Stmt));
1052 Replace_Returns (Param_Id, Else_Statements (Stmt));
1054 declare
1055 Part : Node_Id;
1056 begin
1057 Part := First (Elsif_Parts (Stmt));
1058 while Present (Part) loop
1059 Replace_Returns (Param_Id, Then_Statements (Part));
1060 Next (Part);
1061 end loop;
1062 end;
1064 elsif Nkind (Stmt) = N_Loop_Statement then
1065 Replace_Returns (Param_Id, Statements (Stmt));
1067 elsif Nkind (Stmt) = N_Simple_Return_Statement then
1069 -- Generate:
1070 -- Param := Expr;
1071 -- return;
1073 Rewrite (Stmt,
1074 Make_Assignment_Statement (Sloc (Stmt),
1075 Name => New_Occurrence_Of (Param_Id, Loc),
1076 Expression => Relocate_Node (Expression (Stmt))));
1078 Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
1080 -- Skip the added return
1082 Next (Stmt);
1083 end if;
1085 Next (Stmt);
1086 end loop;
1087 end Replace_Returns;
1089 -- Local variables
1091 Stmts : List_Id;
1092 New_Body : Node_Id;
1094 -- Start of processing for Build_Procedure_Body_Form
1096 begin
1097 -- This routine replaces the original function body:
1099 -- function F (...) return Array_Typ is
1100 -- begin
1101 -- ...
1102 -- return Something;
1103 -- end F;
1105 -- with the following:
1107 -- procedure P (..., Result : out Array_Typ) is
1108 -- begin
1109 -- ...
1110 -- Result := Something;
1111 -- end P;
1113 Stmts :=
1114 Statements (Handled_Statement_Sequence (Func_Body));
1115 Replace_Returns (Last_Entity (Proc_Id), Stmts);
1117 New_Body :=
1118 Make_Subprogram_Body (Loc,
1119 Specification =>
1120 Copy_Subprogram_Spec (Specification (Proc_Decl)),
1121 Declarations => Declarations (Func_Body),
1122 Handled_Statement_Sequence =>
1123 Make_Handled_Sequence_Of_Statements (Loc,
1124 Statements => Stmts));
1126 -- If the function is a generic instance, so is the new procedure.
1127 -- Set flag accordingly so that the proper renaming declarations are
1128 -- generated.
1130 Set_Is_Generic_Instance (Proc_Id, Is_Generic_Instance (Func_Id));
1131 return New_Body;
1132 end Build_Procedure_Body_Form;
1134 -----------------------
1135 -- Caller_Known_Size --
1136 -----------------------
1138 function Caller_Known_Size
1139 (Func_Call : Node_Id;
1140 Result_Subt : Entity_Id) return Boolean
1142 Utyp : constant Entity_Id := Underlying_Type (Result_Subt);
1144 begin
1145 return not Needs_Secondary_Stack (Utyp)
1146 and then not (Is_Tagged_Type (Utyp)
1147 and then Present (Controlling_Argument (Func_Call)));
1148 end Caller_Known_Size;
1150 -----------------------
1151 -- Check_BIP_Actuals --
1152 -----------------------
1154 function Check_BIP_Actuals
1155 (Subp_Call : Node_Id;
1156 Subp_Id : Entity_Id) return Boolean
1158 Formal : Entity_Id;
1159 Actual : Node_Id;
1161 begin
1162 pragma Assert (Nkind (Subp_Call) in N_Entry_Call_Statement
1163 | N_Function_Call
1164 | N_Procedure_Call_Statement);
1166 -- In CodePeer_Mode, the tree for `'Elab_Spec` procedures will be
1167 -- malformed because GNAT does not perform the usual expansion that
1168 -- results in the importation of external elaboration procedure symbols.
1169 -- This is expected: the CodePeer backend has special handling for this
1170 -- malformed tree.
1171 -- Thus, we do not need to check the tree (and in fact can't, because
1172 -- it's malformed).
1174 if CodePeer_Mode
1175 and then Nkind (Name (Subp_Call)) = N_Attribute_Reference
1176 and then Attribute_Name (Name (Subp_Call)) in Name_Elab_Spec
1177 | Name_Elab_Body
1178 | Name_Elab_Subp_Body
1179 then
1180 return True;
1181 end if;
1183 Formal := First_Formal_With_Extras (Subp_Id);
1184 Actual := First_Actual (Subp_Call);
1186 while Present (Formal) and then Present (Actual) loop
1187 if Is_Build_In_Place_Entity (Formal)
1188 and then Nkind (Actual) = N_Identifier
1189 and then Is_Build_In_Place_Entity (Entity (Actual))
1190 and then BIP_Suffix_Kind (Formal)
1191 /= BIP_Suffix_Kind (Entity (Actual))
1192 then
1193 return False;
1194 end if;
1196 Next_Formal_With_Extras (Formal);
1197 Next_Actual (Actual);
1198 end loop;
1200 return No (Formal) and then No (Actual);
1201 end Check_BIP_Actuals;
1203 -----------------------------
1204 -- Check_Number_Of_Actuals --
1205 -----------------------------
1207 function Check_Number_Of_Actuals
1208 (Subp_Call : Node_Id;
1209 Subp_Id : Entity_Id) return Boolean
1211 Formal : Entity_Id;
1212 Actual : Node_Id;
1214 begin
1215 pragma Assert (Nkind (Subp_Call) in N_Entry_Call_Statement
1216 | N_Function_Call
1217 | N_Procedure_Call_Statement);
1219 Formal := First_Formal_With_Extras (Subp_Id);
1220 Actual := First_Actual (Subp_Call);
1222 while Present (Formal) and then Present (Actual) loop
1223 Next_Formal_With_Extras (Formal);
1224 Next_Actual (Actual);
1225 end loop;
1227 return No (Formal) and then No (Actual);
1228 end Check_Number_Of_Actuals;
1230 --------------------------------
1231 -- Check_Overriding_Operation --
1232 --------------------------------
1234 procedure Check_Overriding_Operation (Subp : Entity_Id) is
1235 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
1236 Op_List : constant Elist_Id := Primitive_Operations (Typ);
1237 Op_Elmt : Elmt_Id;
1238 Prim_Op : Entity_Id;
1239 Par_Op : Entity_Id;
1241 begin
1242 if Is_Derived_Type (Typ)
1243 and then not Is_Private_Type (Typ)
1244 and then In_Open_Scopes (Scope (Etype (Typ)))
1245 and then Is_Base_Type (Typ)
1246 then
1247 -- Subp overrides an inherited private operation if there is an
1248 -- inherited operation with a different name than Subp (see
1249 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
1250 -- same name as Subp.
1252 Op_Elmt := First_Elmt (Op_List);
1253 while Present (Op_Elmt) loop
1254 Prim_Op := Node (Op_Elmt);
1255 Par_Op := Alias (Prim_Op);
1257 if Present (Par_Op)
1258 and then not Comes_From_Source (Prim_Op)
1259 and then Chars (Prim_Op) /= Chars (Par_Op)
1260 and then Chars (Par_Op) = Chars (Subp)
1261 and then Is_Hidden (Par_Op)
1262 and then Type_Conformant (Prim_Op, Subp)
1263 then
1264 Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
1265 end if;
1267 Next_Elmt (Op_Elmt);
1268 end loop;
1269 end if;
1270 end Check_Overriding_Operation;
1272 -------------------------------
1273 -- Detect_Infinite_Recursion --
1274 -------------------------------
1276 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
1277 Loc : constant Source_Ptr := Sloc (N);
1279 Var_List : constant Elist_Id := New_Elmt_List;
1280 -- List of globals referenced by body of procedure
1282 Call_List : constant Elist_Id := New_Elmt_List;
1283 -- List of recursive calls in body of procedure
1285 Shad_List : constant Elist_Id := New_Elmt_List;
1286 -- List of entity id's for entities created to capture the value of
1287 -- referenced globals on entry to the procedure.
1289 Scop : constant Uint := Scope_Depth (Spec);
1290 -- This is used to record the scope depth of the current procedure, so
1291 -- that we can identify global references.
1293 Max_Vars : constant := 4;
1294 -- Do not test more than four global variables
1296 Count_Vars : Natural := 0;
1297 -- Count variables found so far
1299 Var : Entity_Id;
1300 Elm : Elmt_Id;
1301 Ent : Entity_Id;
1302 Call : Elmt_Id;
1303 Decl : Node_Id;
1304 Test : Node_Id;
1305 Elm1 : Elmt_Id;
1306 Elm2 : Elmt_Id;
1307 Last : Node_Id;
1309 function Process (Nod : Node_Id) return Traverse_Result;
1310 -- Function to traverse the subprogram body (using Traverse_Func)
1312 -------------
1313 -- Process --
1314 -------------
1316 function Process (Nod : Node_Id) return Traverse_Result is
1317 begin
1318 -- Procedure call
1320 if Nkind (Nod) = N_Procedure_Call_Statement then
1322 -- Case of one of the detected recursive calls
1324 if Is_Entity_Name (Name (Nod))
1325 and then Has_Recursive_Call (Entity (Name (Nod)))
1326 and then Entity (Name (Nod)) = Spec
1327 then
1328 Append_Elmt (Nod, Call_List);
1329 return Skip;
1331 -- Any other procedure call may have side effects
1333 else
1334 return Abandon;
1335 end if;
1337 -- A call to a pure function can always be ignored
1339 elsif Nkind (Nod) = N_Function_Call
1340 and then Is_Entity_Name (Name (Nod))
1341 and then Is_Pure (Entity (Name (Nod)))
1342 then
1343 return Skip;
1345 -- Case of an identifier reference
1347 elsif Nkind (Nod) = N_Identifier then
1348 Ent := Entity (Nod);
1350 -- If no entity, then ignore the reference
1352 -- Not clear why this can happen. To investigate, remove this
1353 -- test and look at the crash that occurs here in 3401-004 ???
1355 if No (Ent) then
1356 return Skip;
1358 -- Ignore entities with no Scope, again not clear how this
1359 -- can happen, to investigate, look at 4108-008 ???
1361 elsif No (Scope (Ent)) then
1362 return Skip;
1364 -- Ignore the reference if not to a more global object
1366 elsif Scope_Depth (Scope (Ent)) >= Scop then
1367 return Skip;
1369 -- References to types, exceptions and constants are always OK
1371 elsif Is_Type (Ent)
1372 or else Ekind (Ent) = E_Exception
1373 or else Ekind (Ent) = E_Constant
1374 then
1375 return Skip;
1377 -- If other than a non-volatile scalar variable, we have some
1378 -- kind of global reference (e.g. to a function) that we cannot
1379 -- deal with so we forget the attempt.
1381 elsif Ekind (Ent) /= E_Variable
1382 or else not Is_Scalar_Type (Etype (Ent))
1383 or else Treat_As_Volatile (Ent)
1384 then
1385 return Abandon;
1387 -- Otherwise we have a reference to a global scalar
1389 else
1390 -- Loop through global entities already detected
1392 Elm := First_Elmt (Var_List);
1393 loop
1394 -- If not detected before, record this new global reference
1396 if No (Elm) then
1397 Count_Vars := Count_Vars + 1;
1399 if Count_Vars <= Max_Vars then
1400 Append_Elmt (Entity (Nod), Var_List);
1401 else
1402 return Abandon;
1403 end if;
1405 exit;
1407 -- If recorded before, ignore
1409 elsif Node (Elm) = Entity (Nod) then
1410 return Skip;
1412 -- Otherwise keep looking
1414 else
1415 Next_Elmt (Elm);
1416 end if;
1417 end loop;
1419 return Skip;
1420 end if;
1422 -- For all other node kinds, recursively visit syntactic children
1424 else
1425 return OK;
1426 end if;
1427 end Process;
1429 function Traverse_Body is new Traverse_Func (Process);
1431 -- Start of processing for Detect_Infinite_Recursion
1433 begin
1434 -- Do not attempt detection in No_Implicit_Conditional mode, since we
1435 -- won't be able to generate the code to handle the recursion in any
1436 -- case.
1438 if Restriction_Active (No_Implicit_Conditionals) then
1439 return;
1440 end if;
1442 -- Otherwise do traversal and quit if we get abandon signal
1444 if Traverse_Body (N) = Abandon then
1445 return;
1447 -- We must have a call, since Has_Recursive_Call was set. If not just
1448 -- ignore (this is only an error check, so if we have a funny situation,
1449 -- due to bugs or errors, we do not want to bomb).
1451 elsif Is_Empty_Elmt_List (Call_List) then
1452 return;
1453 end if;
1455 -- Here is the case where we detect recursion at compile time
1457 -- Push our current scope for analyzing the declarations and code that
1458 -- we will insert for the checking.
1460 Push_Scope (Spec);
1462 -- This loop builds temporary variables for each of the referenced
1463 -- globals, so that at the end of the loop the list Shad_List contains
1464 -- these temporaries in one-to-one correspondence with the elements in
1465 -- Var_List.
1467 Last := Empty;
1468 Elm := First_Elmt (Var_List);
1469 while Present (Elm) loop
1470 Var := Node (Elm);
1471 Ent := Make_Temporary (Loc, 'S');
1472 Append_Elmt (Ent, Shad_List);
1474 -- Insert a declaration for this temporary at the start of the
1475 -- declarations for the procedure. The temporaries are declared as
1476 -- constant objects initialized to the current values of the
1477 -- corresponding temporaries.
1479 Decl :=
1480 Make_Object_Declaration (Loc,
1481 Defining_Identifier => Ent,
1482 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
1483 Constant_Present => True,
1484 Expression => New_Occurrence_Of (Var, Loc));
1486 if No (Last) then
1487 Prepend (Decl, Declarations (N));
1488 else
1489 Insert_After (Last, Decl);
1490 end if;
1492 Last := Decl;
1493 Analyze (Decl);
1494 Next_Elmt (Elm);
1495 end loop;
1497 -- Loop through calls
1499 Call := First_Elmt (Call_List);
1500 while Present (Call) loop
1502 -- Build a predicate expression of the form
1504 -- True
1505 -- and then global1 = temp1
1506 -- and then global2 = temp2
1507 -- ...
1509 -- This predicate determines if any of the global values
1510 -- referenced by the procedure have changed since the
1511 -- current call, if not an infinite recursion is assured.
1513 Test := New_Occurrence_Of (Standard_True, Loc);
1515 Elm1 := First_Elmt (Var_List);
1516 Elm2 := First_Elmt (Shad_List);
1517 while Present (Elm1) loop
1518 Test :=
1519 Make_And_Then (Loc,
1520 Left_Opnd => Test,
1521 Right_Opnd =>
1522 Make_Op_Eq (Loc,
1523 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
1524 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
1526 Next_Elmt (Elm1);
1527 Next_Elmt (Elm2);
1528 end loop;
1530 -- Now we replace the call with the sequence
1532 -- if no-changes (see above) then
1533 -- raise Storage_Error;
1534 -- else
1535 -- original-call
1536 -- end if;
1538 Rewrite (Node (Call),
1539 Make_If_Statement (Loc,
1540 Condition => Test,
1541 Then_Statements => New_List (
1542 Make_Raise_Storage_Error (Loc,
1543 Reason => SE_Infinite_Recursion)),
1545 Else_Statements => New_List (
1546 Relocate_Node (Node (Call)))));
1548 Analyze (Node (Call));
1550 Next_Elmt (Call);
1551 end loop;
1553 -- Remove temporary scope stack entry used for analysis
1555 Pop_Scope;
1556 end Detect_Infinite_Recursion;
1558 --------------------
1559 -- Expand_Actuals --
1560 --------------------
1562 procedure Expand_Actuals
1563 (N : Node_Id;
1564 Subp : Entity_Id;
1565 Post_Call : out List_Id)
1567 Loc : constant Source_Ptr := Sloc (N);
1568 Actual : Node_Id;
1569 Formal : Entity_Id;
1570 N_Node : Node_Id;
1571 E_Actual : Entity_Id;
1572 E_Formal : Entity_Id;
1574 procedure Add_Call_By_Copy_Code;
1575 -- For cases where the parameter must be passed by copy, this routine
1576 -- generates a temporary variable into which the actual is copied and
1577 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1578 -- an assignment is also generated to copy the result back. The call
1579 -- also takes care of any constraint checks required for the type
1580 -- conversion case (on both the way in and the way out).
1582 procedure Add_Simple_Call_By_Copy_Code (Force : Boolean);
1583 -- This is similar to the above, but is used in cases where we know
1584 -- that all that is needed is to simply create a temporary and copy
1585 -- the value in and out of the temporary. If Force is True, then the
1586 -- procedure may disregard legality considerations.
1588 -- ??? We need to do the copy for a bit-packed array because this is
1589 -- where the rewriting into a mask-and-shift sequence is done. But of
1590 -- course this may break the program if it expects bits to be really
1591 -- passed by reference. That's what we have done historically though.
1593 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id);
1594 -- Perform copy-back for actual parameter Act which denotes a validation
1595 -- variable.
1597 procedure Check_Fortran_Logical;
1598 -- A value of type Logical that is passed through a formal parameter
1599 -- must be normalized because .TRUE. usually does not have the same
1600 -- representation as True. We assume that .FALSE. = False = 0.
1601 -- What about functions that return a logical type ???
1603 function Is_Legal_Copy return Boolean;
1604 -- Check that an actual can be copied before generating the temporary
1605 -- to be used in the call. If the formal is of a by_reference type or
1606 -- is aliased, then the program is illegal (this can only happen in
1607 -- the presence of representation clauses that force a misalignment)
1608 -- If the formal is a by_reference parameter imposed by a DEC pragma,
1609 -- emit a warning that this might lead to unaligned arguments.
1611 function Make_Var (Actual : Node_Id) return Entity_Id;
1612 -- Returns an entity that refers to the given actual parameter, Actual
1613 -- (not including any type conversion). If Actual is an entity name,
1614 -- then this entity is returned unchanged, otherwise a renaming is
1615 -- created to provide an entity for the actual.
1617 procedure Reset_Packed_Prefix;
1618 -- The expansion of a packed array component reference is delayed in
1619 -- the context of a call. Now we need to complete the expansion, so we
1620 -- unmark the analyzed bits in all prefixes.
1622 function Requires_Atomic_Or_Volatile_Copy return Boolean;
1623 -- Returns whether a copy is required as per RM C.6(19) and gives a
1624 -- warning in this case.
1626 ---------------------------
1627 -- Add_Call_By_Copy_Code --
1628 ---------------------------
1630 procedure Add_Call_By_Copy_Code is
1631 Crep : Boolean;
1632 Expr : Node_Id;
1633 F_Typ : Entity_Id := Etype (Formal);
1634 Indic : Node_Id;
1635 Init : Node_Id;
1636 Temp : Entity_Id;
1637 V_Typ : Entity_Id;
1638 Var : Entity_Id;
1640 begin
1641 if not Is_Legal_Copy then
1642 return;
1643 end if;
1645 Temp := Make_Temporary (Loc, 'T', Actual);
1647 -- Handle formals whose type comes from the limited view
1649 if From_Limited_With (F_Typ)
1650 and then Has_Non_Limited_View (F_Typ)
1651 then
1652 F_Typ := Non_Limited_View (F_Typ);
1653 end if;
1655 -- Use formal type for temp, unless formal type is an unconstrained
1656 -- array, in which case we don't have to worry about bounds checks,
1657 -- and we use the actual type, since that has appropriate bounds.
1659 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1660 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1661 else
1662 Indic := New_Occurrence_Of (F_Typ, Loc);
1663 end if;
1665 -- The new code will be properly analyzed below and the setting of
1666 -- the Do_Range_Check flag recomputed so remove the obsolete one.
1668 Set_Do_Range_Check (Actual, False);
1670 if Nkind (Actual) = N_Type_Conversion then
1671 Set_Do_Range_Check (Expression (Actual), False);
1673 V_Typ := Etype (Expression (Actual));
1675 -- If the formal is an (in-)out parameter, capture the name
1676 -- of the variable in order to build the post-call assignment.
1678 Var := Make_Var (Expression (Actual));
1680 Crep := not Has_Compatible_Representation
1681 (Target_Typ => F_Typ,
1682 Operand_Typ => Etype (Expression (Actual)));
1684 else
1685 V_Typ := Etype (Actual);
1686 Var := Make_Var (Actual);
1687 Crep := False;
1688 end if;
1690 -- If the actual denotes a variable which captures the value of an
1691 -- object for validation purposes, we propagate the link with this
1692 -- object to the new variable made from the actual just above.
1694 if Ekind (Formal) /= E_In_Parameter
1695 and then Is_Validation_Variable_Reference (Actual)
1696 then
1697 declare
1698 Ref : constant Node_Id := Unqual_Conv (Actual);
1700 begin
1701 if Is_Entity_Name (Ref) then
1702 Set_Validated_Object (Var, Validated_Object (Entity (Ref)));
1704 else
1705 pragma Assert (False);
1706 null;
1707 end if;
1708 end;
1709 end if;
1711 -- Setup initialization for case of in out parameter, or an out
1712 -- parameter where the formal is an unconstrained array (in the
1713 -- latter case, we have to pass in an object with bounds).
1715 -- If this is an out parameter, the initial copy is wasteful, so as
1716 -- an optimization for the one-dimensional case we extract the
1717 -- bounds of the actual and build an uninitialized temporary of the
1718 -- right size.
1720 -- If the formal is an out parameter with discriminants, the
1721 -- discriminants must be captured even if the rest of the object
1722 -- is in principle uninitialized, because the discriminants may
1723 -- be read by the called subprogram.
1725 if Ekind (Formal) = E_In_Out_Parameter
1726 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1727 or else Has_Discriminants (F_Typ)
1728 then
1729 if Nkind (Actual) = N_Type_Conversion then
1730 if Conversion_OK (Actual) then
1731 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1732 else
1733 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1734 end if;
1736 elsif Ekind (Formal) = E_Out_Parameter
1737 and then Is_Array_Type (F_Typ)
1738 and then Number_Dimensions (F_Typ) = 1
1739 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1740 then
1741 -- Actual is a one-dimensional array or slice, and the type
1742 -- requires no initialization. Create a temporary of the
1743 -- right size, but do not copy actual into it (optimization).
1745 Init := Empty;
1746 Indic :=
1747 Make_Subtype_Indication (Loc,
1748 Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1749 Constraint =>
1750 Make_Index_Or_Discriminant_Constraint (Loc,
1751 Constraints => New_List (
1752 Make_Range (Loc,
1753 Low_Bound =>
1754 Make_Attribute_Reference (Loc,
1755 Prefix => New_Occurrence_Of (Var, Loc),
1756 Attribute_Name => Name_First),
1757 High_Bound =>
1758 Make_Attribute_Reference (Loc,
1759 Prefix => New_Occurrence_Of (Var, Loc),
1760 Attribute_Name => Name_Last)))));
1762 else
1763 Init := New_Occurrence_Of (Var, Loc);
1764 end if;
1766 -- An initialization is created for packed conversions as
1767 -- actuals for out parameters to enable Make_Object_Declaration
1768 -- to determine the proper subtype for N_Node. Note that this
1769 -- is wasteful because the extra copying on the call side is
1770 -- not required for such out parameters. ???
1772 elsif Ekind (Formal) = E_Out_Parameter
1773 and then Nkind (Actual) = N_Type_Conversion
1774 and then (Is_Bit_Packed_Array (F_Typ)
1775 or else
1776 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1777 then
1778 if Conversion_OK (Actual) then
1779 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1780 else
1781 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1782 end if;
1784 elsif Ekind (Formal) = E_In_Parameter then
1786 -- Handle the case in which the actual is a type conversion
1788 if Nkind (Actual) = N_Type_Conversion then
1789 if Conversion_OK (Actual) then
1790 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1791 else
1792 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1793 end if;
1794 else
1795 Init := New_Occurrence_Of (Var, Loc);
1796 end if;
1798 -- Access types are passed in without checks, but if a copy-back is
1799 -- required for a null-excluding check on an in-out or out parameter,
1800 -- then the initial value is that of the actual.
1802 elsif Is_Access_Type (E_Formal)
1803 and then Can_Never_Be_Null (Etype (Actual))
1804 and then not Can_Never_Be_Null (E_Formal)
1805 then
1806 Init := New_Occurrence_Of (Var, Loc);
1808 -- View conversions when the formal type has the Default_Value aspect
1809 -- require passing in the value of the conversion's operand. The type
1810 -- of that operand also has Default_Value, as required by AI12-0074
1811 -- (RM 6.4.1(5.3/4)). The subtype denoted by the subtype_indication
1812 -- is changed to the base type of the formal subtype, to ensure that
1813 -- the actual's value can be assigned without a constraint check
1814 -- (note that no check is done on passing to an out parameter). Also
1815 -- note that the two types necessarily share the same ancestor type,
1816 -- as required by 6.4.1(5.2/4), so underlying base types will match.
1818 elsif Ekind (Formal) = E_Out_Parameter
1819 and then Is_Scalar_Type (Etype (F_Typ))
1820 and then Nkind (Actual) = N_Type_Conversion
1821 and then Present (Default_Aspect_Value (Etype (F_Typ)))
1822 then
1823 Indic := New_Occurrence_Of (Base_Type (F_Typ), Loc);
1824 Init := Convert_To
1825 (Base_Type (F_Typ), New_Occurrence_Of (Var, Loc));
1827 else
1828 Init := Empty;
1829 end if;
1831 N_Node :=
1832 Make_Object_Declaration (Loc,
1833 Defining_Identifier => Temp,
1834 Object_Definition => Indic,
1835 Expression => Init);
1836 Set_Assignment_OK (N_Node);
1837 Insert_Action (N, N_Node);
1839 -- Now, normally the deal here is that we use the defining
1840 -- identifier created by that object declaration. There is
1841 -- one exception to this. In the change of representation case
1842 -- the above declaration will end up looking like:
1844 -- temp : type := identifier;
1846 -- And in this case we might as well use the identifier directly
1847 -- and eliminate the temporary. Note that the analysis of the
1848 -- declaration was not a waste of time in that case, since it is
1849 -- what generated the necessary change of representation code. If
1850 -- the change of representation introduced additional code, as in
1851 -- a fixed-integer conversion, the expression is not an identifier
1852 -- and must be kept.
1854 if Crep
1855 and then Present (Expression (N_Node))
1856 and then Is_Entity_Name (Expression (N_Node))
1857 then
1858 Temp := Entity (Expression (N_Node));
1859 Rewrite (N_Node, Make_Null_Statement (Loc));
1860 end if;
1862 -- For IN parameter, all we do is to replace the actual
1864 if Ekind (Formal) = E_In_Parameter then
1865 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1866 Analyze (Actual);
1868 -- Processing for OUT or IN OUT parameter
1870 else
1871 -- Kill current value indications for the temporary variable we
1872 -- created, since we just passed it as an OUT parameter.
1874 Kill_Current_Values (Temp);
1875 Set_Is_Known_Valid (Temp, False);
1876 Set_Is_True_Constant (Temp, False);
1878 -- If type conversion, use reverse conversion on exit
1880 if Nkind (Actual) = N_Type_Conversion then
1881 if Conversion_OK (Actual) then
1882 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1883 else
1884 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1885 end if;
1886 else
1887 Expr := New_Occurrence_Of (Temp, Loc);
1888 end if;
1890 Rewrite (Actual, New_Occurrence_Of (Temp, Sloc (Actual)));
1891 Analyze (Actual);
1893 -- If the actual is a conversion of a packed reference, it may
1894 -- already have been expanded by Remove_Side_Effects, and the
1895 -- resulting variable is a temporary which does not designate
1896 -- the proper out-parameter, which may not be addressable. In
1897 -- that case, generate an assignment to the original expression
1898 -- (before expansion of the packed reference) so that the proper
1899 -- expansion of assignment to a packed component can take place.
1901 declare
1902 Obj : Node_Id;
1903 Lhs : Node_Id;
1905 begin
1906 if Is_Renaming_Of_Object (Var)
1907 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1908 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1909 = N_Indexed_Component
1910 and then
1911 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1912 then
1913 Obj := Renamed_Object (Var);
1914 Lhs :=
1915 Make_Selected_Component (Loc,
1916 Prefix =>
1917 New_Copy_Tree (Original_Node (Prefix (Obj))),
1918 Selector_Name => New_Copy (Selector_Name (Obj)));
1919 Reset_Analyzed_Flags (Lhs);
1921 else
1922 Lhs := New_Occurrence_Of (Var, Loc);
1923 end if;
1925 Set_Assignment_OK (Lhs);
1927 if Is_Access_Type (E_Formal)
1928 and then Is_Entity_Name (Lhs)
1929 and then
1930 Present (Effective_Extra_Accessibility (Entity (Lhs)))
1931 and then not No_Dynamic_Accessibility_Checks_Enabled (Lhs)
1932 then
1933 -- Copyback target is an Ada 2012 stand-alone object of an
1934 -- anonymous access type.
1936 pragma Assert (Ada_Version >= Ada_2012);
1938 Apply_Accessibility_Check (Lhs, E_Formal, N);
1940 Append_To (Post_Call,
1941 Make_Assignment_Statement (Loc,
1942 Name => Lhs,
1943 Expression => Expr));
1945 -- We would like to somehow suppress generation of the
1946 -- extra_accessibility assignment generated by the expansion
1947 -- of the above assignment statement. It's not a correctness
1948 -- issue because the following assignment renders it dead,
1949 -- but generating back-to-back assignments to the same
1950 -- target is undesirable. ???
1952 Append_To (Post_Call,
1953 Make_Assignment_Statement (Loc,
1954 Name => New_Occurrence_Of (
1955 Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1956 Expression => Make_Integer_Literal (Loc,
1957 Type_Access_Level (E_Formal))));
1959 else
1960 if Is_Access_Type (E_Formal)
1961 and then Can_Never_Be_Null (Etype (Actual))
1962 and then not Can_Never_Be_Null (E_Formal)
1963 then
1964 Append_To (Post_Call,
1965 Make_Raise_Constraint_Error (Loc,
1966 Condition =>
1967 Make_Op_Eq (Loc,
1968 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1969 Right_Opnd => Make_Null (Loc)),
1970 Reason => CE_Access_Check_Failed));
1971 end if;
1973 Append_To (Post_Call,
1974 Make_Assignment_Statement (Loc,
1975 Name => Lhs,
1976 Expression => Expr));
1977 end if;
1979 -- Add a copy-back to reflect any potential changes in value
1980 -- back into the original object, if any.
1982 if Is_Validation_Variable_Reference (Lhs) then
1983 Add_Validation_Call_By_Copy_Code (Lhs);
1984 end if;
1985 end;
1986 end if;
1987 end Add_Call_By_Copy_Code;
1989 ----------------------------------
1990 -- Add_Simple_Call_By_Copy_Code --
1991 ----------------------------------
1993 procedure Add_Simple_Call_By_Copy_Code (Force : Boolean) is
1994 With_Storage_Model : constant Boolean :=
1995 Nkind (Actual) = N_Explicit_Dereference
1996 and then
1997 Has_Designated_Storage_Model_Aspect (Etype (Prefix (Actual)));
1999 Cpcod : List_Id;
2000 Decl : Node_Id;
2001 F_Typ : Entity_Id;
2002 Incod : Node_Id;
2003 Indic : Node_Id;
2004 Lhs : Node_Id;
2005 Outcod : Node_Id;
2006 Rhs : Node_Id;
2007 Temp : Entity_Id;
2009 begin
2010 -- Unless forced not to, check the legality of the copy operation
2012 if not Force and then not Is_Legal_Copy then
2013 return;
2014 end if;
2016 F_Typ := Etype (Formal);
2018 -- Handle formals whose type comes from the limited view
2020 if From_Limited_With (F_Typ)
2021 and then Has_Non_Limited_View (F_Typ)
2022 then
2023 F_Typ := Non_Limited_View (F_Typ);
2024 end if;
2026 -- Use formal type for temp, unless formal type is an unconstrained
2027 -- composite, in which case we don't have to worry about checks and
2028 -- we can use the actual type, since that has appropriate bounds.
2030 if Is_Composite_Type (F_Typ) and then not Is_Constrained (F_Typ) then
2031 Indic := New_Occurrence_Of (Get_Actual_Subtype (Actual), Loc);
2032 else
2033 Indic := New_Occurrence_Of (F_Typ, Loc);
2034 end if;
2036 -- Prepare to generate code
2038 Reset_Packed_Prefix;
2040 Incod := Relocate_Node (Actual);
2041 Outcod := New_Copy_Tree (Incod);
2043 -- Generate declaration of temporary variable, initializing it
2044 -- with the input parameter unless we have an OUT formal or
2045 -- this is an initialization call.
2047 if Ekind (Formal) = E_Out_Parameter then
2048 Incod := Empty;
2050 elsif Inside_Init_Proc then
2052 -- Skip using the actual as the expression in Decl if we are in
2053 -- an init proc and it is not a component which depends on a
2054 -- discriminant, because, in this case, we need to use the actual
2055 -- type of the component instead.
2057 if Nkind (Actual) /= N_Selected_Component
2058 or else
2059 not Has_Discriminant_Dependent_Constraint
2060 (Entity (Selector_Name (Actual)))
2061 then
2062 Incod := Empty;
2064 -- Otherwise, keep the component so we can generate the proper
2065 -- actual subtype - since the subtype depends on enclosing
2066 -- discriminants.
2068 else
2069 null;
2070 end if;
2071 end if;
2073 Cpcod := New_List;
2075 if With_Storage_Model then
2076 Temp :=
2077 Build_Temporary_On_Secondary_Stack (Loc, Entity (Indic), Cpcod);
2079 if Present (Incod) then
2080 Append_To (Cpcod,
2081 Make_Assignment_Statement (Loc,
2082 Name =>
2083 Make_Explicit_Dereference (Loc,
2084 Prefix => New_Occurrence_Of (Temp, Loc)),
2085 Expression => Incod));
2086 Set_Suppress_Assignment_Checks (Last (Cpcod));
2087 end if;
2089 else
2090 Temp := Make_Temporary (Loc, 'T', Actual);
2092 Decl :=
2093 Make_Object_Declaration (Loc,
2094 Defining_Identifier => Temp,
2095 Object_Definition => Indic,
2096 Expression => Incod);
2098 -- If the call is to initialize a component of a composite type,
2099 -- and the component does not depend on discriminants, use the
2100 -- actual type of the component. This is required in case the
2101 -- component is constrained, because in general the formal of the
2102 -- initialization procedure will be unconstrained. Note that if
2103 -- the component being initialized is constrained by an enclosing
2104 -- discriminant, the presence of the initialization in the
2105 -- declaration will generate an expression for the actual subtype.
2107 if Inside_Init_Proc and then No (Incod) then
2108 Set_No_Initialization (Decl);
2109 Set_Object_Definition (Decl,
2110 New_Occurrence_Of (Etype (Actual), Loc));
2111 end if;
2113 Append_To (Cpcod, Decl);
2114 end if;
2116 Insert_Actions (N, Cpcod);
2118 -- The actual is simply a reference to the temporary
2120 if With_Storage_Model then
2121 Rewrite (Actual,
2122 Make_Explicit_Dereference (Loc,
2123 Prefix => New_Occurrence_Of (Temp, Loc)));
2124 else
2125 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
2126 end if;
2128 Analyze (Actual);
2130 -- Generate copy out if OUT or IN OUT parameter
2132 if Ekind (Formal) /= E_In_Parameter then
2133 Lhs := Outcod;
2135 if With_Storage_Model then
2136 Rhs :=
2137 Make_Explicit_Dereference (Loc,
2138 Prefix => New_Occurrence_Of (Temp, Loc));
2139 else
2140 Rhs := New_Occurrence_Of (Temp, Loc);
2141 Set_Is_True_Constant (Temp, False);
2142 end if;
2144 -- Deal with conversion
2146 if Nkind (Lhs) = N_Type_Conversion then
2147 Lhs := Expression (Lhs);
2148 Rhs := Convert_To (Etype (Actual), Rhs);
2149 end if;
2151 Append_To (Post_Call,
2152 Make_Assignment_Statement (Loc,
2153 Name => Lhs,
2154 Expression => Rhs));
2155 Set_Suppress_Assignment_Checks (Last (Post_Call));
2156 Set_Assignment_OK (Name (Last (Post_Call)));
2157 end if;
2158 end Add_Simple_Call_By_Copy_Code;
2160 --------------------------------------
2161 -- Add_Validation_Call_By_Copy_Code --
2162 --------------------------------------
2164 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id) is
2165 Var : constant Node_Id := Unqual_Conv (Act);
2167 Expr : Node_Id;
2168 Obj : Node_Id;
2169 Obj_Typ : Entity_Id;
2170 Var_Id : Entity_Id;
2172 begin
2173 -- Generate range check if required
2175 if Do_Range_Check (Actual) then
2176 Generate_Range_Check (Actual, E_Formal, CE_Range_Check_Failed);
2177 end if;
2179 -- If there is a type conversion in the actual, it will be reinstated
2180 -- below, the new instance will be properly analyzed and the setting
2181 -- of the Do_Range_Check flag recomputed so remove the obsolete one.
2183 if Nkind (Actual) = N_Type_Conversion then
2184 Set_Do_Range_Check (Expression (Actual), False);
2185 end if;
2187 -- Copy the value of the validation variable back into the object
2188 -- being validated.
2190 if Is_Entity_Name (Var) then
2191 Var_Id := Entity (Var);
2192 Obj := Validated_Object (Var_Id);
2193 Obj_Typ := Etype (Obj);
2195 Expr := New_Occurrence_Of (Var_Id, Loc);
2197 -- A type conversion is needed when the validation variable and
2198 -- the validated object carry different types. This case occurs
2199 -- when the actual is qualified in some fashion.
2201 -- Common:
2202 -- subtype Int is Integer range ...;
2203 -- procedure Call (Val : in out Integer);
2205 -- Original:
2206 -- Object : Int;
2207 -- Call (Integer (Object));
2209 -- Expanded:
2210 -- Object : Int;
2211 -- Var : Integer := Object; -- conversion to base type
2212 -- if not Var'Valid then -- validity check
2213 -- Call (Var); -- modify Var
2214 -- Object := Int (Var); -- conversion to subtype
2216 if Etype (Var_Id) /= Obj_Typ then
2217 Expr :=
2218 Make_Type_Conversion (Loc,
2219 Subtype_Mark => New_Occurrence_Of (Obj_Typ, Loc),
2220 Expression => Expr);
2221 end if;
2223 -- Generate:
2224 -- Object := Var;
2225 -- <or>
2226 -- Object := Object_Type (Var);
2228 Append_To (Post_Call,
2229 Make_Assignment_Statement (Loc,
2230 Name => Obj,
2231 Expression => Expr));
2233 -- If the flow reaches this point, then this routine was invoked with
2234 -- an actual which does not denote a validation variable.
2236 else
2237 pragma Assert (False);
2238 null;
2239 end if;
2240 end Add_Validation_Call_By_Copy_Code;
2242 ---------------------------
2243 -- Check_Fortran_Logical --
2244 ---------------------------
2246 procedure Check_Fortran_Logical is
2247 Logical : constant Entity_Id := Etype (Formal);
2248 Var : Entity_Id;
2250 -- Note: this is very incomplete, e.g. it does not handle arrays
2251 -- of logical values. This is really not the right approach at all???)
2253 begin
2254 if Convention (Subp) = Convention_Fortran
2255 and then Root_Type (Etype (Formal)) = Standard_Boolean
2256 and then Ekind (Formal) /= E_In_Parameter
2257 then
2258 Var := Make_Var (Actual);
2259 Append_To (Post_Call,
2260 Make_Assignment_Statement (Loc,
2261 Name => New_Occurrence_Of (Var, Loc),
2262 Expression =>
2263 Unchecked_Convert_To (
2264 Logical,
2265 Make_Op_Ne (Loc,
2266 Left_Opnd => New_Occurrence_Of (Var, Loc),
2267 Right_Opnd =>
2268 Unchecked_Convert_To (
2269 Logical,
2270 New_Occurrence_Of (Standard_False, Loc))))));
2271 end if;
2272 end Check_Fortran_Logical;
2274 -------------------
2275 -- Is_Legal_Copy --
2276 -------------------
2278 function Is_Legal_Copy return Boolean is
2279 begin
2280 -- An attempt to copy a value of such a type can only occur if
2281 -- representation clauses give the actual a misaligned address.
2283 if Is_By_Reference_Type (Etype (Formal))
2284 or else Is_Aliased (Formal)
2285 or else (Mechanism (Formal) = By_Reference
2286 and then not Has_Foreign_Convention (Subp))
2287 then
2289 -- The actual may in fact be properly aligned but there is not
2290 -- enough front-end information to determine this. In that case
2291 -- gigi will emit an error or a warning if a copy is not legal,
2292 -- or generate the proper code.
2294 return False;
2296 -- For users of Starlet, we assume that the specification of by-
2297 -- reference mechanism is mandatory. This may lead to unaligned
2298 -- objects but at least for DEC legacy code it is known to work.
2299 -- The warning will alert users of this code that a problem may
2300 -- be lurking.
2302 elsif Mechanism (Formal) = By_Reference
2303 and then Ekind (Scope (Formal)) = E_Procedure
2304 and then Is_Valued_Procedure (Scope (Formal))
2305 then
2306 Error_Msg_N
2307 ("by_reference actual may be misaligned??", Actual);
2308 return False;
2310 else
2311 return True;
2312 end if;
2313 end Is_Legal_Copy;
2315 --------------
2316 -- Make_Var --
2317 --------------
2319 function Make_Var (Actual : Node_Id) return Entity_Id is
2320 Var : Entity_Id;
2322 begin
2323 if Is_Entity_Name (Actual) then
2324 return Entity (Actual);
2326 else
2327 Var := Make_Temporary (Loc, 'T', Actual);
2329 N_Node :=
2330 Make_Object_Renaming_Declaration (Loc,
2331 Defining_Identifier => Var,
2332 Subtype_Mark =>
2333 New_Occurrence_Of (Etype (Actual), Loc),
2334 Name => Relocate_Node (Actual));
2336 Insert_Action (N, N_Node);
2337 return Var;
2338 end if;
2339 end Make_Var;
2341 -------------------------
2342 -- Reset_Packed_Prefix --
2343 -------------------------
2345 procedure Reset_Packed_Prefix is
2346 Pfx : Node_Id := Actual;
2347 begin
2348 loop
2349 Set_Analyzed (Pfx, False);
2350 exit when
2351 Nkind (Pfx) not in N_Selected_Component | N_Indexed_Component;
2352 Pfx := Prefix (Pfx);
2353 end loop;
2354 end Reset_Packed_Prefix;
2356 ----------------------------------------
2357 -- Requires_Atomic_Or_Volatile_Copy --
2358 ----------------------------------------
2360 function Requires_Atomic_Or_Volatile_Copy return Boolean is
2361 begin
2362 -- If the formal is already passed by copy, no need to do anything
2364 if Is_By_Copy_Type (E_Formal) then
2365 return False;
2366 end if;
2368 -- There is no requirement inside initialization procedures and this
2369 -- would generate copies for atomic or volatile composite components.
2371 if Inside_Init_Proc then
2372 return False;
2373 end if;
2375 -- Check for atomicity mismatch
2377 if Is_Atomic_Object (Actual) and then not Is_Atomic (E_Formal)
2378 then
2379 if Comes_From_Source (N) then
2380 Error_Msg_N
2381 ("??atomic actual passed by copy (RM C.6(19))", Actual);
2382 end if;
2383 return True;
2384 end if;
2386 -- Check for volatility mismatch
2388 if Is_Volatile_Object_Ref (Actual) and then not Is_Volatile (E_Formal)
2389 then
2390 if Comes_From_Source (N) then
2391 Error_Msg_N
2392 ("??volatile actual passed by copy (RM C.6(19))", Actual);
2393 end if;
2394 return True;
2395 end if;
2397 return False;
2398 end Requires_Atomic_Or_Volatile_Copy;
2400 -- Start of processing for Expand_Actuals
2402 begin
2403 Post_Call := New_List;
2405 Formal := First_Formal (Subp);
2406 Actual := First_Actual (N);
2407 while Present (Formal) loop
2408 E_Formal := Etype (Formal);
2409 E_Actual := Etype (Actual);
2411 -- Handle formals whose type comes from the limited view
2413 if From_Limited_With (E_Formal)
2414 and then Has_Non_Limited_View (E_Formal)
2415 then
2416 E_Formal := Non_Limited_View (E_Formal);
2417 end if;
2419 if Is_Scalar_Type (E_Formal)
2420 or else Nkind (Actual) = N_Slice
2421 then
2422 Check_Fortran_Logical;
2424 -- RM 6.4.1 (11)
2426 elsif Ekind (Formal) /= E_Out_Parameter then
2428 -- The unusual case of the current instance of a protected type
2429 -- requires special handling. This can only occur in the context
2430 -- of a call within the body of a protected operation.
2432 if Is_Entity_Name (Actual)
2433 and then Ekind (Entity (Actual)) = E_Protected_Type
2434 and then In_Open_Scopes (Entity (Actual))
2435 then
2436 if Scope (Subp) /= Entity (Actual) then
2437 Error_Msg_N
2438 ("operation outside protected type may not "
2439 & "call back its protected operations??", Actual);
2440 end if;
2442 Rewrite (Actual,
2443 Expand_Protected_Object_Reference (N, Entity (Actual)));
2444 end if;
2446 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
2447 -- build-in-place function, then a temporary return object needs
2448 -- to be created and access to it must be passed to the function
2449 -- (and ensure that we have an activation chain defined for tasks
2450 -- and a Master variable).
2452 -- Currently we limit such functions to those with inherently
2453 -- limited result subtypes, but eventually we plan to expand the
2454 -- functions that are treated as build-in-place to include other
2455 -- composite result types.
2457 -- But do not do it here for intrinsic subprograms since this will
2458 -- be done properly after the subprogram is expanded.
2460 if Is_Intrinsic_Subprogram (Subp) then
2461 null;
2463 elsif Is_Build_In_Place_Function_Call (Actual) then
2464 if Might_Have_Tasks (Etype (Actual)) then
2465 Build_Activation_Chain_Entity (N);
2466 Build_Master_Entity (Etype (Actual));
2467 end if;
2469 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
2471 -- Ada 2005 (AI-318-02): Specialization of the previous case for
2472 -- actuals containing build-in-place function calls whose returned
2473 -- object covers interface types.
2475 elsif Present (Unqual_BIP_Iface_Function_Call (Actual)) then
2476 Build_Activation_Chain_Entity (N);
2477 Build_Master_Entity (Etype (Actual));
2478 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Actual);
2479 end if;
2481 Apply_Constraint_Check (Actual, E_Formal);
2483 -- Out parameter case. No constraint checks on access type
2484 -- RM 6.4.1 (13), but on return a null-excluding check may be
2485 -- required (see below).
2487 elsif Is_Access_Type (E_Formal) then
2488 null;
2490 -- RM 6.4.1 (14)
2492 elsif Has_Discriminants (Base_Type (E_Formal))
2493 or else Has_Non_Null_Base_Init_Proc (E_Formal)
2494 then
2495 Apply_Constraint_Check (Actual, E_Formal);
2497 -- RM 6.4.1 (15)
2499 else
2500 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
2501 end if;
2503 -- Processing for IN-OUT and OUT parameters
2505 if Ekind (Formal) /= E_In_Parameter then
2507 -- For type conversions of arrays, apply length/range checks
2509 if Is_Array_Type (E_Formal)
2510 and then Nkind (Actual) = N_Type_Conversion
2511 then
2512 if Is_Constrained (E_Formal) then
2513 Apply_Length_Check (Expression (Actual), E_Formal);
2514 else
2515 Apply_Range_Check (Expression (Actual), E_Formal);
2516 end if;
2517 end if;
2519 -- If argument is a type conversion for a type that is passed by
2520 -- copy, then we must pass the parameter by copy.
2522 if Nkind (Actual) = N_Type_Conversion
2523 and then
2524 (Is_Elementary_Type (E_Formal)
2525 or else Is_Bit_Packed_Array (Etype (Formal))
2526 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
2528 -- Also pass by copy if change of representation
2530 or else not Has_Compatible_Representation
2531 (Target_Typ => Etype (Formal),
2532 Operand_Typ => Etype (Expression (Actual))))
2533 then
2534 Add_Call_By_Copy_Code;
2536 -- References to components of bit-packed arrays are expanded
2537 -- at this point, rather than at the point of analysis of the
2538 -- actuals, to handle the expansion of the assignment to
2539 -- [in] out parameters.
2541 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2542 Add_Simple_Call_By_Copy_Code (Force => True);
2544 -- If the actual has a nonnative storage model, we need a copy
2546 elsif Nkind (Actual) = N_Explicit_Dereference
2547 and then
2548 Has_Designated_Storage_Model_Aspect (Etype (Prefix (Actual)))
2549 and then
2550 (Present (Storage_Model_Copy_To
2551 (Storage_Model_Object (Etype (Prefix (Actual)))))
2552 or else
2553 (Ekind (Formal) = E_In_Out_Parameter
2554 and then
2555 Present (Storage_Model_Copy_From
2556 (Storage_Model_Object (Etype (Prefix (Actual)))))))
2557 then
2558 Add_Simple_Call_By_Copy_Code (Force => True);
2560 -- If a nonscalar actual is possibly bit-aligned, we need a copy
2561 -- because the back-end cannot cope with such objects. In other
2562 -- cases where alignment forces a copy, the back-end generates
2563 -- it properly. It should not be generated unconditionally in the
2564 -- front-end because it does not know precisely the alignment
2565 -- requirements of the target, and makes too conservative an
2566 -- estimate, leading to superfluous copies or spurious errors
2567 -- on by-reference parameters.
2569 elsif Nkind (Actual) = N_Selected_Component
2570 and then
2571 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
2572 and then not Represented_As_Scalar (Etype (Formal))
2573 then
2574 Add_Simple_Call_By_Copy_Code (Force => False);
2576 -- References to slices of bit-packed arrays are expanded
2578 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2579 Add_Call_By_Copy_Code;
2581 -- References to possibly unaligned slices of arrays are expanded
2583 elsif Is_Possibly_Unaligned_Slice (Actual) then
2584 Add_Call_By_Copy_Code;
2586 -- Deal with access types where the actual subtype and the
2587 -- formal subtype are not the same, requiring a check.
2589 -- It is necessary to exclude tagged types because of "downward
2590 -- conversion" errors, but null-excluding checks on return may be
2591 -- required.
2593 elsif Is_Access_Type (E_Formal)
2594 and then not Is_Tagged_Type (Designated_Type (E_Formal))
2595 and then (not Same_Type (E_Formal, E_Actual)
2596 or else (Can_Never_Be_Null (E_Actual)
2597 and then not Can_Never_Be_Null (E_Formal)))
2598 then
2599 Add_Call_By_Copy_Code;
2601 -- We may need to force a copy because of atomicity or volatility
2602 -- considerations.
2604 elsif Requires_Atomic_Or_Volatile_Copy then
2605 Add_Call_By_Copy_Code;
2607 -- Add call-by-copy code for the case of scalar out parameters
2608 -- when it is not known at compile time that the subtype of the
2609 -- formal is a subrange of the subtype of the actual (or vice
2610 -- versa for in out parameters), in order to get range checks
2611 -- on such actuals. (Maybe this case should be handled earlier
2612 -- in the if statement???)
2614 elsif Is_Scalar_Type (E_Formal)
2615 and then
2616 (not In_Subrange_Of (E_Formal, E_Actual)
2617 or else
2618 (Ekind (Formal) = E_In_Out_Parameter
2619 and then not In_Subrange_Of (E_Actual, E_Formal)))
2620 then
2621 Add_Call_By_Copy_Code;
2623 -- The actual denotes a variable which captures the value of an
2624 -- object for validation purposes. Add a copy-back to reflect any
2625 -- potential changes in value back into the original object.
2627 -- Var : ... := Object;
2628 -- if not Var'Valid then -- validity check
2629 -- Call (Var); -- modify var
2630 -- Object := Var; -- update Object
2632 elsif Is_Validation_Variable_Reference (Actual) then
2633 Add_Validation_Call_By_Copy_Code (Actual);
2634 end if;
2636 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
2637 -- by-reference parameters on exit from the call. If the actual
2638 -- is a derived type and the operation is inherited, the body
2639 -- of the operation will not contain a call to the predicate
2640 -- function, so it must be done explicitly after the call. Ditto
2641 -- if the actual is an entity of a predicated subtype.
2643 -- The rule refers to by-reference types, but a check is needed
2644 -- for by-copy types as well. That check is subsumed by the rule
2645 -- for subtype conversion on assignment, but we can generate the
2646 -- required check now.
2648 -- Note also that Subp may be either a subprogram entity for
2649 -- direct calls, or a type entity for indirect calls, which must
2650 -- be handled separately because the name does not denote an
2651 -- overloadable entity.
2653 By_Ref_Predicate_Check : declare
2654 Aund : constant Entity_Id := Underlying_Type (E_Actual);
2655 Atyp : Entity_Id;
2657 begin
2658 if No (Aund) then
2659 Atyp := E_Actual;
2660 else
2661 Atyp := Aund;
2662 end if;
2664 if Predicate_Enabled (Atyp)
2666 -- Skip predicate checks for special cases
2668 and then Predicate_Tests_On_Arguments (Subp)
2669 then
2670 Append_To (Post_Call,
2671 Make_Predicate_Check (Atyp, Actual));
2672 end if;
2673 end By_Ref_Predicate_Check;
2675 -- Processing for IN parameters
2677 else
2678 -- Generate range check if required
2680 if Do_Range_Check (Actual) then
2681 Generate_Range_Check (Actual, E_Formal, CE_Range_Check_Failed);
2682 end if;
2684 -- For IN parameters in the bit-packed array case, we expand an
2685 -- indexed component (the circuit in Exp_Ch4 deliberately left
2686 -- indexed components appearing as actuals untouched, so that
2687 -- the special processing above for the OUT and IN OUT cases
2688 -- could be performed. We could make the test in Exp_Ch4 more
2689 -- complex and have it detect the parameter mode, but it is
2690 -- easier simply to handle all cases here.)
2692 if Nkind (Actual) = N_Indexed_Component
2693 and then Is_Bit_Packed_Array (Etype (Prefix (Actual)))
2694 then
2695 Reset_Packed_Prefix;
2696 Expand_Packed_Element_Reference (Actual);
2698 -- If we have a reference to a bit-packed array, we copy it, since
2699 -- the actual must be byte aligned.
2701 -- Is this really necessary in all cases???
2703 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2704 Add_Simple_Call_By_Copy_Code (Force => True);
2706 -- If the actual has a nonnative storage model, we need a copy
2708 elsif Nkind (Actual) = N_Explicit_Dereference
2709 and then
2710 Has_Designated_Storage_Model_Aspect (Etype (Prefix (Actual)))
2711 and then
2712 Present (Storage_Model_Copy_From
2713 (Storage_Model_Object (Etype (Prefix (Actual)))))
2714 then
2715 Add_Simple_Call_By_Copy_Code (Force => True);
2717 -- If we have a C++ constructor call, we need to create the object
2719 elsif Is_CPP_Constructor_Call (Actual) then
2720 Add_Simple_Call_By_Copy_Code (Force => True);
2722 -- If a nonscalar actual is possibly unaligned, we need a copy
2724 elsif Is_Possibly_Unaligned_Object (Actual)
2725 and then not Represented_As_Scalar (Etype (Formal))
2726 then
2727 Add_Simple_Call_By_Copy_Code (Force => False);
2729 -- Similarly, we have to expand slices of packed arrays here
2730 -- because the result must be byte aligned.
2732 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2733 Add_Call_By_Copy_Code;
2735 -- Only processing remaining is to pass by copy if this is a
2736 -- reference to a possibly unaligned slice, since the caller
2737 -- expects an appropriately aligned argument.
2739 elsif Is_Possibly_Unaligned_Slice (Actual) then
2740 Add_Call_By_Copy_Code;
2742 -- We may need to force a copy because of atomicity or volatility
2743 -- considerations.
2745 elsif Requires_Atomic_Or_Volatile_Copy then
2746 Add_Call_By_Copy_Code;
2748 -- An unusual case: a current instance of an enclosing task can be
2749 -- an actual, and must be replaced by a reference to self.
2751 elsif Is_Entity_Name (Actual)
2752 and then Is_Task_Type (Entity (Actual))
2753 then
2754 if In_Open_Scopes (Entity (Actual)) then
2755 Rewrite (Actual,
2756 (Make_Function_Call (Loc,
2757 Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
2758 Analyze (Actual);
2760 -- A task type cannot otherwise appear as an actual
2762 else
2763 raise Program_Error;
2764 end if;
2765 end if;
2766 end if;
2768 -- Type-invariant checks for in-out and out parameters, as well as
2769 -- for in parameters of procedures (AI05-0289 and AI12-0044).
2771 if Ekind (Formal) /= E_In_Parameter
2772 or else Ekind (Subp) = E_Procedure
2773 then
2774 Caller_Side_Invariant_Checks : declare
2776 function Is_Public_Subp return Boolean;
2777 -- Check whether the subprogram being called is a visible
2778 -- operation of the type of the actual. Used to determine
2779 -- whether an invariant check must be generated on the
2780 -- caller side.
2782 ---------------------
2783 -- Is_Public_Subp --
2784 ---------------------
2786 function Is_Public_Subp return Boolean is
2787 Pack : constant Entity_Id := Scope (Subp);
2788 Subp_Decl : Node_Id;
2790 begin
2791 if not Is_Subprogram (Subp) then
2792 return False;
2794 -- The operation may be inherited, or a primitive of the
2795 -- root type.
2797 elsif
2798 Nkind (Parent (Subp)) in N_Private_Extension_Declaration
2799 | N_Full_Type_Declaration
2800 then
2801 Subp_Decl := Parent (Subp);
2803 else
2804 Subp_Decl := Unit_Declaration_Node (Subp);
2805 end if;
2807 return Ekind (Pack) = E_Package
2808 and then
2809 List_Containing (Subp_Decl) =
2810 Visible_Declarations
2811 (Specification (Unit_Declaration_Node (Pack)));
2812 end Is_Public_Subp;
2814 -- Start of processing for Caller_Side_Invariant_Checks
2816 begin
2817 -- We generate caller-side invariant checks in two cases:
2819 -- a) when calling an inherited operation, where there is an
2820 -- implicit view conversion of the actual to the parent type.
2822 -- b) When the conversion is explicit
2824 -- We treat these cases separately because the required
2825 -- conversion for a) is added later when expanding the call.
2827 if Has_Invariants (Etype (Actual))
2828 and then
2829 Nkind (Parent (Etype (Actual)))
2830 = N_Private_Extension_Declaration
2831 then
2832 if Comes_From_Source (N) and then Is_Public_Subp then
2833 Append_To (Post_Call, Make_Invariant_Call (Actual));
2834 end if;
2836 elsif Nkind (Actual) = N_Type_Conversion
2837 and then Has_Invariants (Etype (Expression (Actual)))
2838 then
2839 if Comes_From_Source (N) and then Is_Public_Subp then
2840 Append_To
2841 (Post_Call, Make_Invariant_Call (Expression (Actual)));
2842 end if;
2843 end if;
2844 end Caller_Side_Invariant_Checks;
2845 end if;
2847 Next_Formal (Formal);
2848 Next_Actual (Actual);
2849 end loop;
2850 end Expand_Actuals;
2852 -----------------
2853 -- Expand_Call --
2854 -----------------
2856 procedure Expand_Call (N : Node_Id) is
2857 function Is_Unchecked_Union_Equality (N : Node_Id) return Boolean;
2858 -- Return True if N is a call to the predefined equality operator of an
2859 -- unchecked union type, or a renaming thereof.
2861 ---------------------------------
2862 -- Is_Unchecked_Union_Equality --
2863 ---------------------------------
2865 function Is_Unchecked_Union_Equality (N : Node_Id) return Boolean is
2866 begin
2867 if Is_Entity_Name (Name (N))
2868 and then Ekind (Entity (Name (N))) = E_Function
2869 and then Present (First_Formal (Entity (Name (N))))
2870 and then
2871 Is_Unchecked_Union (Etype (First_Formal (Entity (Name (N)))))
2872 then
2873 declare
2874 Func : constant Entity_Id := Entity (Name (N));
2875 Typ : constant Entity_Id := Etype (First_Formal (Func));
2876 Decl : constant Node_Id :=
2877 Original_Node (Parent (Declaration_Node (Func)));
2879 begin
2880 return Func = TSS (Typ, TSS_Composite_Equality)
2881 or else (Nkind (Decl) = N_Subprogram_Renaming_Declaration
2882 and then Nkind (Name (Decl)) = N_Operator_Symbol
2883 and then Chars (Name (Decl)) = Name_Op_Eq
2884 and then Ekind (Entity (Name (Decl))) = E_Operator);
2885 end;
2887 else
2888 return False;
2889 end if;
2890 end Is_Unchecked_Union_Equality;
2892 -- If this is an indirect call through an Access_To_Subprogram
2893 -- with contract specifications, it is rewritten as a call to
2894 -- the corresponding Access_Subprogram_Wrapper with the same
2895 -- actuals, whose body contains a naked indirect call (which
2896 -- itself must not be rewritten, to prevent infinite recursion).
2898 Must_Rewrite_Indirect_Call : constant Boolean :=
2899 Ada_Version >= Ada_2022
2900 and then Nkind (Name (N)) = N_Explicit_Dereference
2901 and then Ekind (Etype (Name (N))) = E_Subprogram_Type
2902 and then Present
2903 (Access_Subprogram_Wrapper (Etype (Name (N))));
2905 Post_Call : List_Id;
2907 -- Start of processing for Expand_Call
2909 begin
2910 pragma Assert (Nkind (N) in N_Entry_Call_Statement
2911 | N_Function_Call
2912 | N_Procedure_Call_Statement);
2914 -- Check that this is not the call in the body of the access
2915 -- subprogram wrapper or the postconditions wrapper.
2917 if Must_Rewrite_Indirect_Call
2918 and then (not Is_Overloadable (Current_Scope)
2919 or else not (Is_Access_Subprogram_Wrapper (Current_Scope)
2920 or else
2921 (Chars (Current_Scope) = Name_uWrapped_Statements
2922 and then Is_Access_Subprogram_Wrapper
2923 (Scope (Current_Scope)))))
2924 then
2925 declare
2926 Loc : constant Source_Ptr := Sloc (N);
2927 Wrapper : constant Entity_Id :=
2928 Access_Subprogram_Wrapper (Etype (Name (N)));
2929 Ptr : constant Node_Id := Prefix (Name (N));
2930 Ptr_Type : constant Entity_Id := Etype (Ptr);
2931 Typ : constant Entity_Id := Etype (N);
2933 New_N : Node_Id;
2934 Parms : List_Id := Parameter_Associations (N);
2935 Ptr_Act : Node_Id;
2937 begin
2938 -- The last actual in the call is the pointer itself.
2939 -- If the aspect is inherited, convert the pointer to the
2940 -- parent type that specifies the contract.
2941 -- If the original access_to_subprogram has defaults for
2942 -- in-mode parameters, the call may include named associations,
2943 -- so we create one for the pointer as well.
2945 if Is_Derived_Type (Ptr_Type)
2946 and then Ptr_Type /= Etype (Last_Formal (Wrapper))
2947 then
2948 Ptr_Act :=
2949 Make_Type_Conversion (Loc,
2950 New_Occurrence_Of
2951 (Etype (Last_Formal (Wrapper)), Loc), Ptr);
2953 else
2954 Ptr_Act := Ptr;
2955 end if;
2957 -- Handle parameterless subprogram.
2959 if No (Parms) then
2960 Parms := New_List;
2961 end if;
2963 Append
2964 (Make_Parameter_Association (Loc,
2965 Selector_Name => Make_Identifier (Loc,
2966 Chars (Last_Formal (Wrapper))),
2967 Explicit_Actual_Parameter => Ptr_Act),
2968 Parms);
2970 if Nkind (N) = N_Procedure_Call_Statement then
2971 New_N := Make_Procedure_Call_Statement (Loc,
2972 Name => New_Occurrence_Of (Wrapper, Loc),
2973 Parameter_Associations => Parms);
2974 else
2975 New_N := Make_Function_Call (Loc,
2976 Name => New_Occurrence_Of (Wrapper, Loc),
2977 Parameter_Associations => Parms);
2978 end if;
2980 Rewrite (N, New_N);
2981 Analyze_And_Resolve (N, Typ);
2982 end;
2984 -- Case of a call to the predefined equality operator of an unchecked
2985 -- union type, which requires specific processing.
2987 elsif Is_Unchecked_Union_Equality (N) then
2988 declare
2989 Eq : constant Entity_Id := Entity (Name (N));
2991 begin
2992 Expand_Unchecked_Union_Equality (N);
2994 -- If the call was not rewritten as a raise, expand the actuals
2996 if Nkind (N) = N_Function_Call then
2997 pragma Assert (Check_Number_Of_Actuals (N, Eq));
2998 Expand_Actuals (N, Eq, Post_Call);
2999 pragma Assert (Is_Empty_List (Post_Call));
3000 end if;
3001 end;
3003 -- Normal case
3005 else
3006 Expand_Call_Helper (N, Post_Call);
3007 Insert_Post_Call_Actions (N, Post_Call);
3008 end if;
3009 end Expand_Call;
3011 ------------------------
3012 -- Expand_Call_Helper --
3013 ------------------------
3015 -- This procedure handles expansion of function calls and procedure call
3016 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
3017 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
3019 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
3020 -- Provide values of actuals for all formals in Extra_Formals list
3021 -- Replace "call" to enumeration literal function by literal itself
3022 -- Rewrite call to predefined operator as operator
3023 -- Replace actuals to in-out parameters that are numeric conversions,
3024 -- with explicit assignment to temporaries before and after the call.
3026 -- Note that the list of actuals has been filled with default expressions
3027 -- during semantic analysis of the call. Only the extra actuals required
3028 -- for the 'Constrained attribute and for accessibility checks are added
3029 -- at this point.
3031 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id) is
3032 Loc : constant Source_Ptr := Sloc (N);
3033 Call_Node : Node_Id := N;
3034 Extra_Actuals : List_Id := No_List;
3035 Prev : Node_Id := Empty;
3037 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
3038 -- Adds one entry to the end of the actual parameter list. Used for
3039 -- default parameters and for extra actuals (for Extra_Formals). The
3040 -- argument is an N_Parameter_Association node.
3042 procedure Add_Cond_Expression_Extra_Actual (Formal : Entity_Id);
3043 -- Adds extra accessibility actuals in the case of a conditional
3044 -- expression corresponding to Formal.
3046 -- Note: Conditional expressions used as actuals for anonymous access
3047 -- formals complicate the process of propagating extra accessibility
3048 -- actuals and must be handled in a recursive fashion since they can
3049 -- be embedded within each other.
3051 procedure Add_Dummy_Build_In_Place_Actuals
3052 (Function_Id : Entity_Id;
3053 Num_Added_Extra_Actuals : Nat := 0);
3054 -- Adds dummy actuals for the BIP extra formals of the called function.
3055 -- Num_Added_Extra_Actuals is the number of non-BIP extra actuals added
3056 -- to the actuals immediately before calling this subprogram.
3058 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
3059 -- Adds an extra actual to the list of extra actuals. Expr is the
3060 -- expression for the value of the actual, EF is the entity for the
3061 -- extra formal.
3063 procedure Add_View_Conversion_Invariants
3064 (Formal : Entity_Id;
3065 Actual : Node_Id);
3066 -- Adds invariant checks for every intermediate type between the range
3067 -- of a view converted argument to its ancestor (from parent to child).
3069 function Can_Fold_Predicate_Call (P : Entity_Id) return Boolean;
3070 -- Try to constant-fold a predicate check, which often enough is a
3071 -- simple arithmetic expression that can be computed statically if
3072 -- its argument is static. This cleans up the output of CCG, even
3073 -- though useless predicate checks will be generally removed by
3074 -- back-end optimizations.
3076 procedure Check_Subprogram_Variant;
3077 -- Emit a call to the internally generated procedure with checks for
3078 -- aspect Subprogram_Variant, if present and enabled.
3080 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
3081 -- Within an instance, a type derived from an untagged formal derived
3082 -- type inherits from the original parent, not from the actual. The
3083 -- current derivation mechanism has the derived type inherit from the
3084 -- actual, which is only correct outside of the instance. If the
3085 -- subprogram is inherited, we test for this particular case through a
3086 -- convoluted tree traversal before setting the proper subprogram to be
3087 -- called.
3089 function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
3090 -- Return true if E comes from an instance that is not yet frozen
3092 function Is_Class_Wide_Interface_Type (E : Entity_Id) return Boolean;
3093 -- Return True when E is a class-wide interface type or an access to
3094 -- a class-wide interface type.
3096 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
3097 -- Determine if Subp denotes a non-dispatching call to a Deep routine
3099 function New_Value (From : Node_Id) return Node_Id;
3100 -- From is the original Expression. New_Value is equivalent to a call
3101 -- to Duplicate_Subexpr with an explicit dereference when From is an
3102 -- access parameter.
3104 --------------------------
3105 -- Add_Actual_Parameter --
3106 --------------------------
3108 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
3109 Actual_Expr : constant Node_Id :=
3110 Explicit_Actual_Parameter (Insert_Param);
3112 begin
3113 -- Case of insertion is first named actual
3115 if No (Prev) or else
3116 Nkind (Parent (Prev)) /= N_Parameter_Association
3117 then
3118 Set_Next_Named_Actual
3119 (Insert_Param, First_Named_Actual (Call_Node));
3120 Set_First_Named_Actual (Call_Node, Actual_Expr);
3122 if No (Prev) then
3123 if No (Parameter_Associations (Call_Node)) then
3124 Set_Parameter_Associations (Call_Node, New_List);
3125 end if;
3127 Append (Insert_Param, Parameter_Associations (Call_Node));
3129 else
3130 Insert_After (Prev, Insert_Param);
3131 end if;
3133 -- Case of insertion is not first named actual
3135 else
3136 Set_Next_Named_Actual
3137 (Insert_Param, Next_Named_Actual (Parent (Prev)));
3138 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
3139 Append (Insert_Param, Parameter_Associations (Call_Node));
3140 end if;
3142 Prev := Actual_Expr;
3143 end Add_Actual_Parameter;
3145 --------------------------------------
3146 -- Add_Cond_Expression_Extra_Actual --
3147 --------------------------------------
3149 procedure Add_Cond_Expression_Extra_Actual
3150 (Formal : Entity_Id)
3152 Decl : Node_Id;
3153 Lvl : Entity_Id;
3155 procedure Insert_Level_Assign (Branch : Node_Id);
3156 -- Recursively add assignment of the level temporary on each branch
3157 -- while moving through nested conditional expressions.
3159 -------------------------
3160 -- Insert_Level_Assign --
3161 -------------------------
3163 procedure Insert_Level_Assign (Branch : Node_Id) is
3165 procedure Expand_Branch (Res_Assn : Node_Id);
3166 -- Perform expansion or iterate further within nested
3167 -- conditionals given the object declaration or assignment to
3168 -- result object created during expansion which represents a
3169 -- branch of the conditional expression.
3171 -------------------
3172 -- Expand_Branch --
3173 -------------------
3175 procedure Expand_Branch (Res_Assn : Node_Id) is
3176 begin
3177 pragma Assert (Nkind (Res_Assn) in
3178 N_Assignment_Statement |
3179 N_Object_Declaration);
3181 -- There are more nested conditional expressions so we must go
3182 -- deeper.
3184 if Nkind (Expression (Res_Assn)) = N_Expression_With_Actions
3185 and then
3186 Nkind (Original_Node (Expression (Res_Assn)))
3187 in N_Case_Expression | N_If_Expression
3188 then
3189 Insert_Level_Assign
3190 (Expression (Res_Assn));
3192 -- Add the level assignment
3194 else
3195 Insert_Before_And_Analyze (Res_Assn,
3196 Make_Assignment_Statement (Loc,
3197 Name => New_Occurrence_Of (Lvl, Loc),
3198 Expression =>
3199 Accessibility_Level
3200 (Expr => Expression (Res_Assn),
3201 Level => Dynamic_Level,
3202 Allow_Alt_Model => False)));
3203 end if;
3204 end Expand_Branch;
3206 Cond : Node_Id;
3207 Alt : Node_Id;
3209 -- Start of processing for Insert_Level_Assign
3211 begin
3212 -- Examine further nested conditionals
3214 pragma Assert (Nkind (Branch) =
3215 N_Expression_With_Actions);
3217 -- Find the relevant statement in the actions
3219 Cond := First (Actions (Branch));
3220 while Present (Cond) loop
3221 exit when Nkind (Cond) in N_Case_Statement | N_If_Statement;
3222 Next (Cond);
3223 end loop;
3225 -- The conditional expression may have been optimized away, so
3226 -- examine the actions in the branch.
3228 if No (Cond) then
3229 Expand_Branch (Last (Actions (Branch)));
3231 -- Iterate through if expression branches
3233 elsif Nkind (Cond) = N_If_Statement then
3234 Expand_Branch (Last (Then_Statements (Cond)));
3235 Expand_Branch (Last (Else_Statements (Cond)));
3237 -- Iterate through case alternatives
3239 elsif Nkind (Cond) = N_Case_Statement then
3241 Alt := First (Alternatives (Cond));
3242 while Present (Alt) loop
3243 Expand_Branch (Last (Statements (Alt)));
3244 Next (Alt);
3245 end loop;
3246 end if;
3247 end Insert_Level_Assign;
3249 -- Start of processing for cond expression case
3251 begin
3252 -- Create declaration of a temporary to store the accessibility
3253 -- level of each branch of the conditional expression.
3255 Lvl := Make_Temporary (Loc, 'L');
3256 Decl := Make_Object_Declaration (Loc,
3257 Defining_Identifier => Lvl,
3258 Object_Definition =>
3259 New_Occurrence_Of (Standard_Natural, Loc));
3261 -- Install the declaration and perform necessary expansion if we
3262 -- are dealing with a procedure call.
3264 if Nkind (Call_Node) = N_Procedure_Call_Statement then
3265 -- Generate:
3266 -- Lvl : Natural;
3267 -- Call (
3268 -- {do
3269 -- If_Exp_Res : Typ;
3270 -- if Cond then
3271 -- Lvl := 0; -- Access level
3272 -- If_Exp_Res := Exp;
3273 -- ...
3274 -- in If_Exp_Res end;},
3275 -- Lvl,
3276 -- ...
3277 -- )
3279 Insert_Before_And_Analyze (Call_Node, Decl);
3281 -- Ditto for a function call. Note that we do not wrap the function
3282 -- call into an expression with action to avoid bad interactions with
3283 -- Exp_Ch4.Process_Transient_In_Expression.
3285 else
3286 -- Generate:
3287 -- Lvl : Natural; -- placed above the function call
3288 -- ...
3289 -- Func_Call (
3290 -- {do
3291 -- If_Exp_Res : Typ
3292 -- if Cond then
3293 -- Lvl := 0; -- Access level
3294 -- If_Exp_Res := Exp;
3295 -- in If_Exp_Res end;},
3296 -- Lvl,
3297 -- ...
3298 -- )
3300 Insert_Action (Call_Node, Decl);
3301 Analyze (Call_Node);
3302 end if;
3304 -- Decorate the conditional expression with assignments to our level
3305 -- temporary.
3307 Insert_Level_Assign (Prev);
3309 -- Make our level temporary the passed actual
3311 Add_Extra_Actual
3312 (Expr => New_Occurrence_Of (Lvl, Loc),
3313 EF => Extra_Accessibility (Formal));
3314 end Add_Cond_Expression_Extra_Actual;
3316 --------------------------------------
3317 -- Add_Dummy_Build_In_Place_Actuals --
3318 --------------------------------------
3320 procedure Add_Dummy_Build_In_Place_Actuals
3321 (Function_Id : Entity_Id;
3322 Num_Added_Extra_Actuals : Nat := 0)
3324 Loc : constant Source_Ptr := Sloc (Call_Node);
3325 Formal : Entity_Id := Extra_Formals (Function_Id);
3326 Actual : Node_Id;
3327 Skip_Extra : Nat;
3329 begin
3330 -- We never generate extra formals if expansion is not active because
3331 -- we don't need them unless we are generating code. No action needed
3332 -- for thunks since they propagate all their extra actuals.
3334 if not Expander_Active
3335 or else Is_Thunk (Current_Scope)
3336 then
3337 return;
3338 end if;
3340 -- Skip already-added non-BIP extra actuals
3342 Skip_Extra := Num_Added_Extra_Actuals;
3343 while Skip_Extra > 0 loop
3344 pragma Assert (not Is_Build_In_Place_Entity (Formal));
3345 Formal := Extra_Formal (Formal);
3346 Skip_Extra := Skip_Extra - 1;
3347 end loop;
3349 -- Append the dummy BIP extra actuals
3351 while Present (Formal) loop
3352 pragma Assert (Is_Build_In_Place_Entity (Formal));
3354 -- BIPalloc
3356 if Etype (Formal) = Standard_Natural then
3357 Actual := Make_Integer_Literal (Loc, Uint_0);
3358 Analyze_And_Resolve (Actual, Standard_Natural);
3359 Add_Extra_Actual_To_Call (N, Formal, Actual);
3361 -- BIPtaskmaster
3363 elsif Etype (Formal) = Standard_Integer then
3364 Actual := Make_Integer_Literal (Loc, Uint_0);
3365 Analyze_And_Resolve (Actual, Standard_Integer);
3366 Add_Extra_Actual_To_Call (N, Formal, Actual);
3368 -- BIPstoragepool, BIPcollection, BIPactivationchain,
3369 -- and BIPaccess.
3371 elsif Is_Access_Type (Etype (Formal)) then
3372 Actual := Make_Null (Loc);
3373 Analyze_And_Resolve (Actual, Etype (Formal));
3374 Add_Extra_Actual_To_Call (N, Formal, Actual);
3376 else
3377 pragma Assert (False);
3378 raise Program_Error;
3379 end if;
3381 Formal := Extra_Formal (Formal);
3382 end loop;
3384 -- Mark the call as processed build-in-place call; required
3385 -- to avoid adding the extra formals twice.
3387 Set_Is_Expanded_Build_In_Place_Call (Call_Node);
3389 pragma Assert (Check_Number_Of_Actuals (Call_Node, Function_Id));
3390 pragma Assert (Check_BIP_Actuals (Call_Node, Function_Id));
3391 end Add_Dummy_Build_In_Place_Actuals;
3393 ----------------------
3394 -- Add_Extra_Actual --
3395 ----------------------
3397 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
3398 Loc : constant Source_Ptr := Sloc (Expr);
3400 begin
3401 if Extra_Actuals = No_List then
3402 Extra_Actuals := New_List;
3403 Set_Parent (Extra_Actuals, Call_Node);
3404 end if;
3406 Append_To (Extra_Actuals,
3407 Make_Parameter_Association (Loc,
3408 Selector_Name => New_Occurrence_Of (EF, Loc),
3409 Explicit_Actual_Parameter => Expr));
3411 Analyze_And_Resolve (Expr, Etype (EF));
3413 if Nkind (Call_Node) = N_Function_Call then
3414 Set_Is_Accessibility_Actual (Parent (Expr));
3415 end if;
3416 end Add_Extra_Actual;
3418 ------------------------------------
3419 -- Add_View_Conversion_Invariants --
3420 ------------------------------------
3422 procedure Add_View_Conversion_Invariants
3423 (Formal : Entity_Id;
3424 Actual : Node_Id)
3426 Arg : Entity_Id;
3427 Curr_Typ : Entity_Id;
3428 Inv_Checks : List_Id;
3429 Par_Typ : Entity_Id;
3431 begin
3432 Inv_Checks := No_List;
3434 -- Extract the argument from a potentially nested set of view
3435 -- conversions.
3437 Arg := Actual;
3438 while Nkind (Arg) = N_Type_Conversion loop
3439 Arg := Expression (Arg);
3440 end loop;
3442 -- Move up the derivation chain starting with the type of the formal
3443 -- parameter down to the type of the actual object.
3445 Curr_Typ := Empty;
3446 Par_Typ := Etype (Arg);
3447 while Par_Typ /= Etype (Formal) and Par_Typ /= Curr_Typ loop
3448 Curr_Typ := Par_Typ;
3450 if Has_Invariants (Curr_Typ)
3451 and then Present (Invariant_Procedure (Curr_Typ))
3452 then
3453 -- Verify the invariant of the current type. Generate:
3455 -- <Curr_Typ>Invariant (Curr_Typ (Arg));
3457 Prepend_New_To (Inv_Checks,
3458 Make_Procedure_Call_Statement (Loc,
3459 Name =>
3460 New_Occurrence_Of
3461 (Invariant_Procedure (Curr_Typ), Loc),
3462 Parameter_Associations => New_List (
3463 Make_Type_Conversion (Loc,
3464 Subtype_Mark => New_Occurrence_Of (Curr_Typ, Loc),
3465 Expression => New_Copy_Tree (Arg)))));
3466 end if;
3468 Par_Typ := Base_Type (Etype (Curr_Typ));
3469 end loop;
3471 -- If the node is a function call the generated tests have been
3472 -- already handled in Insert_Post_Call_Actions.
3474 if not Is_Empty_List (Inv_Checks)
3475 and then Nkind (Call_Node) = N_Procedure_Call_Statement
3476 then
3477 Insert_Actions_After (Call_Node, Inv_Checks);
3478 end if;
3479 end Add_View_Conversion_Invariants;
3481 -----------------------------
3482 -- Can_Fold_Predicate_Call --
3483 -----------------------------
3485 function Can_Fold_Predicate_Call (P : Entity_Id) return Boolean is
3486 Actual : Node_Id;
3488 function Augments_Other_Dynamic_Predicate (DP_Aspect_Spec : Node_Id)
3489 return Boolean;
3490 -- Given a Dynamic_Predicate aspect aspecification for a
3491 -- discrete type, returns True iff another DP specification
3492 -- applies (indirectly, via a subtype type or a derived type)
3493 -- to the same entity that this aspect spec applies to.
3495 function May_Fold (N : Node_Id) return Traverse_Result;
3496 -- The predicate expression is foldable if it only contains operators
3497 -- and literals. During this check, we also replace occurrences of
3498 -- the formal of the constructed predicate function with the static
3499 -- value of the actual. This is done on a copy of the analyzed
3500 -- expression for the predicate.
3502 --------------------------------------
3503 -- Augments_Other_Dynamic_Predicate --
3504 --------------------------------------
3506 function Augments_Other_Dynamic_Predicate (DP_Aspect_Spec : Node_Id)
3507 return Boolean
3509 Aspect_Bearer : Entity_Id := Entity (DP_Aspect_Spec);
3510 begin
3511 loop
3512 Aspect_Bearer := Nearest_Ancestor (Aspect_Bearer);
3514 if No (Aspect_Bearer) then
3515 return False;
3516 end if;
3518 declare
3519 Aspect_Spec : constant Node_Id :=
3520 Find_Aspect (Aspect_Bearer, Aspect_Dynamic_Predicate);
3521 begin
3522 if Present (Aspect_Spec)
3523 and then Aspect_Spec /= DP_Aspect_Spec
3524 then
3525 -- Found another Dynamic_Predicate aspect spec
3526 return True;
3527 end if;
3528 end;
3529 end loop;
3530 end Augments_Other_Dynamic_Predicate;
3532 --------------
3533 -- May_Fold --
3534 --------------
3536 function May_Fold (N : Node_Id) return Traverse_Result is
3537 begin
3538 case Nkind (N) is
3539 when N_Op =>
3540 return OK;
3542 when N_Expanded_Name
3543 | N_Identifier
3545 if Ekind (Entity (N)) = E_In_Parameter
3546 and then Entity (N) = First_Entity (P)
3547 then
3548 Rewrite (N, New_Copy (Actual));
3549 Set_Is_Static_Expression (N);
3550 return OK;
3552 elsif Ekind (Entity (N)) = E_Enumeration_Literal then
3553 return OK;
3555 else
3556 return Abandon;
3557 end if;
3559 when N_Case_Expression
3560 | N_If_Expression
3562 return OK;
3564 when N_Integer_Literal =>
3565 return OK;
3567 when others =>
3568 return Abandon;
3569 end case;
3570 end May_Fold;
3572 function Try_Fold is new Traverse_Func (May_Fold);
3574 -- Other Local variables
3576 Subt : constant Entity_Id := Etype (First_Entity (P));
3577 Aspect : Node_Id;
3578 Pred : Node_Id;
3580 -- Start of processing for Can_Fold_Predicate_Call
3582 begin
3583 -- Folding is only interesting if the actual is static and its type
3584 -- has a Dynamic_Predicate aspect. For CodePeer we preserve the
3585 -- function call.
3587 Actual := First (Parameter_Associations (Call_Node));
3588 Aspect := Find_Aspect (Subt, Aspect_Dynamic_Predicate);
3590 -- If actual is a declared constant, retrieve its value
3592 if Is_Entity_Name (Actual)
3593 and then Ekind (Entity (Actual)) = E_Constant
3594 then
3595 Actual := Constant_Value (Entity (Actual));
3596 end if;
3598 if No (Actual)
3599 or else Nkind (Actual) /= N_Integer_Literal
3600 or else not Has_Dynamic_Predicate_Aspect (Subt)
3601 or else No (Aspect)
3603 -- Do not fold if multiple applicable predicate aspects
3604 or else Has_Ghost_Predicate_Aspect (Subt)
3605 or else Has_Aspect (Subt, Aspect_Static_Predicate)
3606 or else Has_Aspect (Subt, Aspect_Predicate)
3607 or else Augments_Other_Dynamic_Predicate (Aspect)
3608 or else CodePeer_Mode
3609 then
3610 return False;
3611 end if;
3613 -- Retrieve the analyzed expression for the predicate
3615 Pred := New_Copy_Tree (Expression (Aspect));
3617 if Try_Fold (Pred) = OK then
3618 Rewrite (Call_Node, Pred);
3619 Analyze_And_Resolve (Call_Node, Standard_Boolean);
3620 return True;
3622 -- Otherwise continue the expansion of the function call
3624 else
3625 return False;
3626 end if;
3627 end Can_Fold_Predicate_Call;
3629 ------------------------------
3630 -- Check_Subprogram_Variant --
3631 ------------------------------
3633 procedure Check_Subprogram_Variant is
3635 function Duplicate_Params_Without_Extra_Actuals
3636 (Call_Node : Node_Id) return List_Id;
3637 -- Duplicate actual parameters of Call_Node into New_Call without
3638 -- extra actuals.
3640 --------------------------------------------
3641 -- Duplicate_Params_Without_Extra_Actuals --
3642 --------------------------------------------
3644 function Duplicate_Params_Without_Extra_Actuals
3645 (Call_Node : Node_Id) return List_Id
3647 Proc_Id : constant Entity_Id := Entity (Name (Call_Node));
3648 Actuals : constant List_Id := Parameter_Associations (Call_Node);
3649 NL : List_Id;
3650 Actual : Node_Or_Entity_Id;
3651 Formal : Entity_Id;
3653 begin
3654 if Actuals = No_List then
3655 return No_List;
3657 else
3658 NL := New_List;
3659 Actual := First (Actuals);
3660 Formal := First_Formal (Proc_Id);
3662 while Present (Formal)
3663 and then Formal /= Extra_Formals (Proc_Id)
3664 loop
3665 Append (New_Copy (Actual), NL);
3666 Next (Actual);
3668 Next_Formal (Formal);
3669 end loop;
3671 return NL;
3672 end if;
3673 end Duplicate_Params_Without_Extra_Actuals;
3675 -- Local variables
3677 Variant_Prag : constant Node_Id :=
3678 Get_Pragma (Current_Scope, Pragma_Subprogram_Variant);
3680 New_Call : Node_Id;
3681 Pragma_Arg1 : Node_Id;
3682 Variant_Proc : Entity_Id;
3684 begin
3685 if Present (Variant_Prag) and then Is_Checked (Variant_Prag) then
3687 Pragma_Arg1 :=
3688 Expression (First (Pragma_Argument_Associations (Variant_Prag)));
3690 -- If pragma parameter is still an aggregate, it comes from a
3691 -- structural variant, which is not expanded and ignored for
3692 -- run-time execution.
3694 if Nkind (Pragma_Arg1) = N_Aggregate then
3695 pragma Assert
3696 (Chars
3697 (First
3698 (Choices
3699 (First (Component_Associations (Pragma_Arg1))))) =
3700 Name_Structural);
3701 return;
3702 end if;
3704 -- Otherwise, analysis of the pragma rewrites its argument with a
3705 -- reference to the internally generated procedure.
3707 Variant_Proc := Entity (Pragma_Arg1);
3709 New_Call :=
3710 Make_Procedure_Call_Statement (Loc,
3711 Name =>
3712 New_Occurrence_Of (Variant_Proc, Loc),
3713 Parameter_Associations =>
3714 Duplicate_Params_Without_Extra_Actuals (Call_Node));
3716 Insert_Action (Call_Node, New_Call);
3718 pragma Assert (Etype (New_Call) /= Any_Type
3719 or else Serious_Errors_Detected > 0);
3720 end if;
3721 end Check_Subprogram_Variant;
3723 ---------------------------
3724 -- Inherited_From_Formal --
3725 ---------------------------
3727 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
3728 Par : Entity_Id;
3729 Gen_Par : Entity_Id;
3730 Gen_Prim : Elist_Id;
3731 Elmt : Elmt_Id;
3732 Indic : Node_Id;
3734 begin
3735 -- If the operation is inherited, it is attached to the corresponding
3736 -- type derivation. If the parent in the derivation is a generic
3737 -- actual, it is a subtype of the actual, and we have to recover the
3738 -- original derived type declaration to find the proper parent.
3740 if Nkind (Parent (S)) /= N_Full_Type_Declaration
3741 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
3742 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
3743 N_Derived_Type_Definition
3744 or else not In_Instance
3745 then
3746 return Empty;
3748 else
3749 Indic :=
3750 Subtype_Indication
3751 (Type_Definition (Original_Node (Parent (S))));
3753 if Nkind (Indic) = N_Subtype_Indication then
3754 Par := Entity (Subtype_Mark (Indic));
3755 else
3756 Par := Entity (Indic);
3757 end if;
3758 end if;
3760 if not Is_Generic_Actual_Type (Par)
3761 or else Is_Tagged_Type (Par)
3762 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
3763 or else not In_Open_Scopes (Scope (Par))
3764 then
3765 return Empty;
3766 else
3767 Gen_Par := Generic_Parent_Type (Parent (Par));
3768 end if;
3770 -- If the actual has no generic parent type, the formal is not
3771 -- a formal derived type, so nothing to inherit.
3773 if No (Gen_Par) then
3774 return Empty;
3775 end if;
3777 -- If the generic parent type is still the generic type, this is a
3778 -- private formal, not a derived formal, and there are no operations
3779 -- inherited from the formal.
3781 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
3782 return Empty;
3783 end if;
3785 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
3787 Elmt := First_Elmt (Gen_Prim);
3788 while Present (Elmt) loop
3789 if Chars (Node (Elmt)) = Chars (S) then
3790 declare
3791 F1 : Entity_Id;
3792 F2 : Entity_Id;
3794 begin
3795 F1 := First_Formal (S);
3796 F2 := First_Formal (Node (Elmt));
3797 while Present (F1)
3798 and then Present (F2)
3799 loop
3800 if Etype (F1) = Etype (F2)
3801 or else Etype (F2) = Gen_Par
3802 then
3803 Next_Formal (F1);
3804 Next_Formal (F2);
3805 else
3806 Next_Elmt (Elmt);
3807 exit; -- not the right subprogram
3808 end if;
3810 return Node (Elmt);
3811 end loop;
3812 end;
3814 else
3815 Next_Elmt (Elmt);
3816 end if;
3817 end loop;
3819 raise Program_Error;
3820 end Inherited_From_Formal;
3822 --------------------------
3823 -- In_Unfrozen_Instance --
3824 --------------------------
3826 function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
3827 S : Entity_Id;
3829 begin
3830 S := E;
3831 while Present (S) and then S /= Standard_Standard loop
3832 if Is_Generic_Instance (S)
3833 and then Present (Freeze_Node (S))
3834 and then not Analyzed (Freeze_Node (S))
3835 then
3836 return True;
3837 end if;
3839 S := Scope (S);
3840 end loop;
3842 return False;
3843 end In_Unfrozen_Instance;
3845 ----------------------------------
3846 -- Is_Class_Wide_Interface_Type --
3847 ----------------------------------
3849 function Is_Class_Wide_Interface_Type (E : Entity_Id) return Boolean is
3850 DDT : Entity_Id;
3851 Typ : Entity_Id := E;
3853 begin
3854 if Has_Non_Limited_View (Typ) then
3855 Typ := Non_Limited_View (Typ);
3856 end if;
3858 if Ekind (Typ) = E_Anonymous_Access_Type then
3859 DDT := Directly_Designated_Type (Typ);
3861 if Has_Non_Limited_View (DDT) then
3862 DDT := Non_Limited_View (DDT);
3863 end if;
3865 return Is_Class_Wide_Type (DDT) and then Is_Interface (DDT);
3866 else
3867 return Is_Class_Wide_Type (Typ) and then Is_Interface (Typ);
3868 end if;
3869 end Is_Class_Wide_Interface_Type;
3871 -------------------------
3872 -- Is_Direct_Deep_Call --
3873 -------------------------
3875 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
3876 begin
3877 if Is_TSS (Subp, TSS_Deep_Adjust)
3878 or else Is_TSS (Subp, TSS_Deep_Finalize)
3879 or else Is_TSS (Subp, TSS_Deep_Initialize)
3880 then
3881 declare
3882 Actual : Node_Id;
3883 Formal : Entity_Id;
3885 begin
3886 Actual := First (Parameter_Associations (Call_Node));
3887 Formal := First_Formal (Subp);
3888 while Present (Actual)
3889 and then Present (Formal)
3890 loop
3891 if Nkind (Actual) = N_Identifier
3892 and then Is_Controlling_Actual (Actual)
3893 and then Etype (Actual) = Etype (Formal)
3894 then
3895 return True;
3896 end if;
3898 Next (Actual);
3899 Next_Formal (Formal);
3900 end loop;
3901 end;
3902 end if;
3904 return False;
3905 end Is_Direct_Deep_Call;
3907 ---------------
3908 -- New_Value --
3909 ---------------
3911 function New_Value (From : Node_Id) return Node_Id is
3912 Res : constant Node_Id := Duplicate_Subexpr (From);
3913 begin
3914 if Is_Access_Type (Etype (From)) then
3915 return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
3916 else
3917 return Res;
3918 end if;
3919 end New_Value;
3921 -- Local variables
3923 Remote : constant Boolean := Is_Remote_Call (Call_Node);
3924 Actual : Node_Id;
3925 Formal : Entity_Id;
3926 Orig_Subp : Entity_Id := Empty;
3927 Param_Count : Positive;
3928 Parent_Formal : Entity_Id;
3929 Parent_Subp : Entity_Id;
3930 Scop : Entity_Id;
3931 Subp : Entity_Id;
3933 CW_Interface_Formals_Present : Boolean := False;
3935 -- Start of processing for Expand_Call_Helper
3937 begin
3938 Post_Call := New_List;
3940 -- Expand the function or procedure call if the first actual has a
3941 -- declared dimension aspect, and the subprogram is declared in one
3942 -- of the dimension I/O packages.
3944 if Ada_Version >= Ada_2012
3945 and then Nkind (Call_Node) in N_Subprogram_Call
3946 and then Present (Parameter_Associations (Call_Node))
3947 then
3948 Expand_Put_Call_With_Symbol (Call_Node);
3949 end if;
3951 -- Ignore if previous error
3953 if Nkind (Call_Node) in N_Has_Etype
3954 and then Etype (Call_Node) = Any_Type
3955 then
3956 return;
3957 end if;
3959 -- Call using access to subprogram with explicit dereference
3961 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3962 Subp := Etype (Name (Call_Node));
3963 Parent_Subp := Empty;
3965 -- Case of call to simple entry, where the Name is a selected component
3966 -- whose prefix is the task, and whose selector name is the entry name
3968 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
3969 Subp := Entity (Selector_Name (Name (Call_Node)));
3970 Parent_Subp := Empty;
3972 -- Case of call to member of entry family, where Name is an indexed
3973 -- component, with the prefix being a selected component giving the
3974 -- task and entry family name, and the index being the entry index.
3976 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
3977 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
3978 Parent_Subp := Empty;
3980 -- Normal case
3982 else
3983 Subp := Entity (Name (Call_Node));
3984 Parent_Subp := Alias (Subp);
3986 -- Replace call to Raise_Exception by call to Raise_Exception_Always
3987 -- if we can tell that the first parameter cannot possibly be null.
3988 -- This improves efficiency by avoiding a run-time test.
3990 -- We do not do this if Raise_Exception_Always does not exist, which
3991 -- can happen in configurable run time profiles which provide only a
3992 -- Raise_Exception.
3994 if Is_RTE (Subp, RE_Raise_Exception)
3995 and then RTE_Available (RE_Raise_Exception_Always)
3996 then
3997 declare
3998 FA : constant Node_Id :=
3999 Original_Node (First_Actual (Call_Node));
4001 begin
4002 -- The case we catch is where the first argument is obtained
4003 -- using the Identity attribute (which must always be
4004 -- non-null).
4006 if Nkind (FA) = N_Attribute_Reference
4007 and then Attribute_Name (FA) = Name_Identity
4008 then
4009 Subp := RTE (RE_Raise_Exception_Always);
4010 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
4011 end if;
4012 end;
4013 end if;
4015 if Ekind (Subp) = E_Entry then
4016 Parent_Subp := Empty;
4017 end if;
4018 end if;
4020 -- Ensure that the called subprogram has all its formals
4022 if not Is_Frozen (Subp) then
4023 Create_Extra_Formals (Subp);
4024 end if;
4026 -- Ada 2005 (AI-345): We have a procedure call as a triggering
4027 -- alternative in an asynchronous select or as an entry call in
4028 -- a conditional or timed select. Check whether the procedure call
4029 -- is a renaming of an entry and rewrite it as an entry call.
4031 if Ada_Version >= Ada_2005
4032 and then Nkind (Call_Node) = N_Procedure_Call_Statement
4033 and then
4034 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
4035 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
4036 or else
4037 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
4038 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
4039 then
4040 declare
4041 Ren_Decl : Node_Id;
4042 Ren_Root : Entity_Id := Subp;
4044 begin
4045 -- This may be a chain of renamings, find the root
4047 if Present (Alias (Ren_Root)) then
4048 Ren_Root := Alias (Ren_Root);
4049 end if;
4051 if Present (Parent (Ren_Root))
4052 and then Present (Original_Node (Parent (Parent (Ren_Root))))
4053 then
4054 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
4056 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
4057 Rewrite (Call_Node,
4058 Make_Entry_Call_Statement (Loc,
4059 Name =>
4060 New_Copy_Tree (Name (Ren_Decl)),
4061 Parameter_Associations =>
4062 New_Copy_List_Tree
4063 (Parameter_Associations (Call_Node))));
4065 return;
4066 end if;
4067 end if;
4068 end;
4069 end if;
4071 -- If this is a call to a predicate function, try to constant fold it
4073 if Nkind (Call_Node) = N_Function_Call
4074 and then Is_Entity_Name (Name (Call_Node))
4075 and then Is_Predicate_Function (Subp)
4076 and then Can_Fold_Predicate_Call (Subp)
4077 then
4078 return;
4079 end if;
4081 if Transform_Function_Array
4082 and then Nkind (Call_Node) = N_Function_Call
4083 and then Is_Entity_Name (Name (Call_Node))
4084 then
4085 declare
4086 Func_Id : constant Entity_Id :=
4087 Ultimate_Alias (Entity (Name (Call_Node)));
4088 begin
4089 -- When generating C code, transform a function call that returns
4090 -- a constrained array type into procedure form.
4092 if Rewritten_For_C (Func_Id) then
4094 -- For internally generated calls ensure that they reference
4095 -- the entity of the spec of the called function (needed since
4096 -- the expander may generate calls using the entity of their
4097 -- body).
4099 if not Comes_From_Source (Call_Node)
4100 and then Nkind (Unit_Declaration_Node (Func_Id)) =
4101 N_Subprogram_Body
4102 then
4103 Set_Entity (Name (Call_Node),
4104 Corresponding_Function
4105 (Corresponding_Procedure (Func_Id)));
4106 end if;
4108 Rewrite_Function_Call_For_C (Call_Node);
4109 return;
4111 -- Also introduce a temporary for functions that return a record
4112 -- called within another procedure or function call, since records
4113 -- are passed by pointer in the generated C code, and we cannot
4114 -- take a pointer from a subprogram call.
4116 elsif Modify_Tree_For_C
4117 and then Nkind (Parent (Call_Node)) in N_Subprogram_Call
4118 and then Is_Record_Type (Etype (Func_Id))
4119 then
4120 declare
4121 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
4122 Decl : Node_Id;
4124 begin
4125 -- Generate:
4126 -- Temp : ... := Func_Call (...);
4128 Decl :=
4129 Make_Object_Declaration (Loc,
4130 Defining_Identifier => Temp_Id,
4131 Object_Definition =>
4132 New_Occurrence_Of (Etype (Func_Id), Loc),
4133 Expression =>
4134 Make_Function_Call (Loc,
4135 Name =>
4136 New_Occurrence_Of (Func_Id, Loc),
4137 Parameter_Associations =>
4138 Parameter_Associations (Call_Node)));
4140 Insert_Action (Parent (Call_Node), Decl);
4141 Rewrite (Call_Node, New_Occurrence_Of (Temp_Id, Loc));
4142 return;
4143 end;
4144 end if;
4145 end;
4146 end if;
4148 -- First step, compute extra actuals, corresponding to any Extra_Formals
4149 -- present. Note that we do not access Extra_Formals directly, instead
4150 -- we simply note the presence of the extra formals as we process the
4151 -- regular formals collecting corresponding actuals in Extra_Actuals.
4153 -- We also generate any required range checks for actuals for in formals
4154 -- as we go through the loop, since this is a convenient place to do it.
4155 -- (Though it seems that this would be better done in Expand_Actuals???)
4157 -- Special case: Thunks must not compute the extra actuals; they must
4158 -- just propagate to the target primitive their extra actuals.
4160 if Is_Thunk (Current_Scope)
4161 and then Thunk_Entity (Current_Scope) = Subp
4162 and then Present (Extra_Formals (Subp))
4163 then
4164 pragma Assert (Extra_Formals_Match_OK (Current_Scope, Subp));
4166 declare
4167 Target_Formal : Entity_Id;
4168 Thunk_Formal : Entity_Id;
4170 begin
4171 Target_Formal := Extra_Formals (Subp);
4172 Thunk_Formal := Extra_Formals (Current_Scope);
4173 while Present (Target_Formal) loop
4174 Add_Extra_Actual
4175 (Expr => New_Occurrence_Of (Thunk_Formal, Loc),
4176 EF => Thunk_Formal);
4178 Target_Formal := Extra_Formal (Target_Formal);
4179 Thunk_Formal := Extra_Formal (Thunk_Formal);
4180 end loop;
4182 while Is_Non_Empty_List (Extra_Actuals) loop
4183 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
4184 end loop;
4186 -- Mark the call as processed build-in-place call; required
4187 -- to avoid adding the extra formals twice.
4189 if Nkind (Call_Node) = N_Function_Call then
4190 Set_Is_Expanded_Build_In_Place_Call (Call_Node);
4191 end if;
4193 Expand_Actuals (Call_Node, Subp, Post_Call);
4194 pragma Assert (Is_Empty_List (Post_Call));
4195 pragma Assert (Check_Number_Of_Actuals (Call_Node, Subp));
4196 pragma Assert (Check_BIP_Actuals (Call_Node, Subp));
4197 return;
4198 end;
4199 end if;
4201 Formal := First_Formal (Subp);
4202 Actual := First_Actual (Call_Node);
4203 Param_Count := 1;
4204 while Present (Formal) loop
4205 -- Prepare to examine current entry
4207 Prev := Actual;
4209 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
4210 -- to expand it in a further round.
4212 CW_Interface_Formals_Present :=
4213 CW_Interface_Formals_Present
4214 or else Is_Class_Wide_Interface_Type (Etype (Formal));
4216 -- Create possible extra actual for constrained case. Usually, the
4217 -- extra actual is of the form actual'constrained, but since this
4218 -- attribute is only available for unconstrained records, TRUE is
4219 -- expanded if the type of the formal happens to be constrained (for
4220 -- instance when this procedure is inherited from an unconstrained
4221 -- record to a constrained one) or if the actual has no discriminant
4222 -- (its type is constrained). An exception to this is the case of a
4223 -- private type without discriminants. In this case we pass FALSE
4224 -- because the object has underlying discriminants with defaults.
4226 if Present (Extra_Constrained (Formal)) then
4227 if Is_Mutably_Tagged_Type (Etype (Actual))
4228 or else (Is_Private_Type (Etype (Prev))
4229 and then not Has_Discriminants
4230 (Base_Type (Etype (Prev))))
4231 then
4232 Add_Extra_Actual
4233 (Expr => New_Occurrence_Of (Standard_False, Loc),
4234 EF => Extra_Constrained (Formal));
4236 elsif Is_Constrained (Etype (Formal))
4237 or else not Has_Discriminants (Etype (Prev))
4238 then
4239 Add_Extra_Actual
4240 (Expr => New_Occurrence_Of (Standard_True, Loc),
4241 EF => Extra_Constrained (Formal));
4243 -- Do not produce extra actuals for Unchecked_Union parameters.
4244 -- Jump directly to the end of the loop.
4246 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
4247 goto Skip_Extra_Actual_Generation;
4249 else
4250 -- If the actual is a type conversion, then the constrained
4251 -- test applies to the actual, not the target type.
4253 declare
4254 Act_Prev : Node_Id;
4256 begin
4257 -- Test for unchecked conversions as well, which can occur
4258 -- as out parameter actuals on calls to stream procedures.
4260 Act_Prev := Prev;
4261 while Nkind (Act_Prev) in N_Type_Conversion
4262 | N_Unchecked_Type_Conversion
4263 loop
4264 Act_Prev := Expression (Act_Prev);
4265 end loop;
4267 -- If the expression is a conversion of a dereference, this
4268 -- is internally generated code that manipulates addresses,
4269 -- e.g. when building interface tables. No check should
4270 -- occur in this case, and the discriminated object is not
4271 -- directly at hand.
4273 if not Comes_From_Source (Actual)
4274 and then Nkind (Actual) = N_Unchecked_Type_Conversion
4275 and then Nkind (Act_Prev) = N_Explicit_Dereference
4276 then
4277 Add_Extra_Actual
4278 (Expr => New_Occurrence_Of (Standard_False, Loc),
4279 EF => Extra_Constrained (Formal));
4281 else
4282 Add_Extra_Actual
4283 (Expr =>
4284 Make_Attribute_Reference (Sloc (Prev),
4285 Prefix =>
4286 Duplicate_Subexpr_No_Checks
4287 (Act_Prev, Name_Req => True),
4288 Attribute_Name => Name_Constrained),
4289 EF => Extra_Constrained (Formal));
4290 end if;
4291 end;
4292 end if;
4293 end if;
4295 -- Create possible extra actual for accessibility level
4297 if Present (Extra_Accessibility (Formal)) then
4298 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
4299 -- accessibility levels.
4301 if Is_Thunk (Current_Scope) then
4302 declare
4303 Parm_Ent : Entity_Id;
4305 begin
4306 if Is_Controlling_Actual (Actual) then
4308 -- Find the corresponding actual of the thunk
4310 Parm_Ent := First_Entity (Current_Scope);
4311 for J in 2 .. Param_Count loop
4312 Next_Entity (Parm_Ent);
4313 end loop;
4315 -- Handle unchecked conversion of access types generated
4316 -- in thunks (cf. Expand_Interface_Thunk).
4318 elsif Is_Access_Type (Etype (Actual))
4319 and then Nkind (Actual) = N_Unchecked_Type_Conversion
4320 then
4321 Parm_Ent := Entity (Expression (Actual));
4323 else pragma Assert (Is_Entity_Name (Actual));
4324 Parm_Ent := Entity (Actual);
4325 end if;
4327 Add_Extra_Actual
4328 (Expr => Accessibility_Level
4329 (Expr => Parm_Ent,
4330 Level => Dynamic_Level,
4331 Allow_Alt_Model => False),
4332 EF => Extra_Accessibility (Formal));
4333 end;
4335 -- Conditional expressions
4337 elsif Nkind (Prev) = N_Expression_With_Actions
4338 and then Nkind (Original_Node (Prev)) in
4339 N_If_Expression | N_Case_Expression
4340 then
4341 Add_Cond_Expression_Extra_Actual (Formal);
4343 -- Internal constant generated to remove side effects (normally
4344 -- from the expansion of dispatching calls).
4346 -- First verify the actual is internal
4348 elsif not Comes_From_Source (Prev)
4349 and then not Is_Rewrite_Substitution (Prev)
4351 -- Next check that the actual is a constant
4353 and then Nkind (Prev) = N_Identifier
4354 and then Ekind (Entity (Prev)) = E_Constant
4355 and then Nkind (Parent (Entity (Prev))) = N_Object_Declaration
4356 then
4357 -- Generate the accessibility level based on the expression in
4358 -- the constant's declaration.
4360 declare
4361 Ent : Entity_Id := Entity (Prev);
4363 begin
4364 -- Handle deferred constants
4366 if Present (Full_View (Ent)) then
4367 Ent := Full_View (Ent);
4368 end if;
4370 Add_Extra_Actual
4371 (Expr => Accessibility_Level
4372 (Expr => Expression (Parent (Ent)),
4373 Level => Dynamic_Level,
4374 Allow_Alt_Model => False),
4375 EF => Extra_Accessibility (Formal));
4376 end;
4378 -- Normal case
4380 else
4381 Add_Extra_Actual
4382 (Expr => Accessibility_Level
4383 (Expr => Prev,
4384 Level => Dynamic_Level,
4385 Allow_Alt_Model => False),
4386 EF => Extra_Accessibility (Formal));
4387 end if;
4388 end if;
4390 -- Perform the check of 4.6(49) that prevents a null value from being
4391 -- passed as an actual to an access parameter. Note that the check
4392 -- is elided in the common cases of passing an access attribute or
4393 -- access parameter as an actual. Also, we currently don't enforce
4394 -- this check for expander-generated actuals and when -gnatdj is set.
4396 if Ada_Version >= Ada_2005 then
4398 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
4399 -- the intent of 6.4.1(13) is that null-exclusion checks should
4400 -- not be done for 'out' parameters, even though it refers only
4401 -- to constraint checks, and a null_exclusion is not a constraint.
4402 -- Note that AI05-0196-1 corrects this mistake in the RM.
4404 if Is_Access_Type (Etype (Formal))
4405 and then Can_Never_Be_Null (Etype (Formal))
4406 and then Ekind (Formal) /= E_Out_Parameter
4407 and then Nkind (Prev) /= N_Raise_Constraint_Error
4408 and then (Known_Null (Prev)
4409 or else not Can_Never_Be_Null (Etype (Prev)))
4410 then
4411 Install_Null_Excluding_Check (Prev);
4412 end if;
4414 -- Ada_Version < Ada_2005
4416 else
4417 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
4418 or else Access_Checks_Suppressed (Subp)
4419 then
4420 null;
4422 elsif Debug_Flag_J then
4423 null;
4425 elsif not Comes_From_Source (Prev) then
4426 null;
4428 elsif Is_Entity_Name (Prev)
4429 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
4430 then
4431 null;
4433 elsif Nkind (Prev) in N_Allocator | N_Attribute_Reference then
4434 null;
4436 else
4437 Install_Null_Excluding_Check (Prev);
4438 end if;
4439 end if;
4441 -- Perform appropriate validity checks on parameters that
4442 -- are entities.
4444 if Validity_Checks_On then
4445 if (Ekind (Formal) = E_In_Parameter
4446 and then Validity_Check_In_Params)
4447 or else
4448 (Ekind (Formal) = E_In_Out_Parameter
4449 and then Validity_Check_In_Out_Params)
4450 then
4451 -- If the actual is an indexed component of a packed type (or
4452 -- is an indexed or selected component whose prefix recursively
4453 -- meets this condition), it has not been expanded yet. It will
4454 -- be copied in the validity code that follows, and has to be
4455 -- expanded appropriately, so reanalyze it.
4457 -- What we do is just to unset analyzed bits on prefixes till
4458 -- we reach something that does not have a prefix.
4460 declare
4461 Nod : Node_Id;
4463 begin
4464 Nod := Actual;
4465 while Nkind (Nod) in
4466 N_Indexed_Component | N_Selected_Component
4467 loop
4468 Set_Analyzed (Nod, False);
4469 Nod := Prefix (Nod);
4470 end loop;
4471 end;
4473 Ensure_Valid (Actual);
4474 end if;
4475 end if;
4477 -- For IN OUT and OUT parameters, ensure that subscripts are valid
4478 -- since this is a left side reference. We only do this for calls
4479 -- from the source program since we assume that compiler generated
4480 -- calls explicitly generate any required checks. We also need it
4481 -- only if we are doing standard validity checks, since clearly it is
4482 -- not needed if validity checks are off, and in subscript validity
4483 -- checking mode, all indexed components are checked with a call
4484 -- directly from Expand_N_Indexed_Component.
4486 if Comes_From_Source (Call_Node)
4487 and then Ekind (Formal) /= E_In_Parameter
4488 and then Validity_Checks_On
4489 and then Validity_Check_Default
4490 and then not Validity_Check_Subscripts
4491 then
4492 Check_Valid_Lvalue_Subscripts (Actual);
4493 end if;
4495 -- Mark any scalar OUT parameter that is a simple variable as no
4496 -- longer known to be valid (unless the type is always valid). This
4497 -- reflects the fact that if an OUT parameter is never set in a
4498 -- procedure, then it can become invalid on the procedure return.
4500 if Ekind (Formal) = E_Out_Parameter
4501 and then Is_Entity_Name (Actual)
4502 and then Ekind (Entity (Actual)) = E_Variable
4503 and then not Is_Known_Valid (Etype (Actual))
4504 then
4505 Set_Is_Known_Valid (Entity (Actual), False);
4506 end if;
4508 -- For an OUT or IN OUT parameter, if the actual is an entity, then
4509 -- clear current values, since they can be clobbered. We are probably
4510 -- doing this in more places than we need to, but better safe than
4511 -- sorry when it comes to retaining bad current values.
4513 if Ekind (Formal) /= E_In_Parameter
4514 and then Is_Entity_Name (Actual)
4515 and then Present (Entity (Actual))
4516 then
4517 declare
4518 Ent : constant Entity_Id := Entity (Actual);
4519 Sav : Node_Id;
4521 begin
4522 -- For an OUT or IN OUT parameter that is an assignable entity,
4523 -- we do not want to clobber the Last_Assignment field, since
4524 -- if it is set, it was precisely because it is indeed an OUT
4525 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
4526 -- since the subprogram could have returned in invalid value.
4528 if Is_Assignable (Ent) then
4529 Sav := Last_Assignment (Ent);
4530 Kill_Current_Values (Ent);
4531 Set_Last_Assignment (Ent, Sav);
4532 Set_Is_Known_Valid (Ent, False);
4533 Set_Is_True_Constant (Ent, False);
4535 -- For all other cases, just kill the current values
4537 else
4538 Kill_Current_Values (Ent);
4539 end if;
4540 end;
4541 end if;
4543 -- If the formal is class-wide and the actual is an aggregate, force
4544 -- evaluation so that the back end who does not know about class-wide
4545 -- type, does not generate a temporary of the wrong size.
4547 if not Is_Class_Wide_Type (Etype (Formal)) then
4548 null;
4550 elsif Nkind (Actual) = N_Aggregate
4551 or else (Nkind (Actual) = N_Qualified_Expression
4552 and then Nkind (Expression (Actual)) = N_Aggregate)
4553 then
4554 Force_Evaluation (Actual);
4555 end if;
4557 -- In a remote call, if the formal is of a class-wide type, check
4558 -- that the actual meets the requirements described in E.4(18).
4560 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
4561 Insert_Action (Actual,
4562 Make_Transportable_Check (Loc,
4563 Duplicate_Subexpr_Move_Checks (Actual)));
4564 end if;
4566 -- Perform invariant checks for all intermediate types in a view
4567 -- conversion after successful return from a call that passes the
4568 -- view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
4569 -- 13/3, 14/3)). Consider only source conversion in order to avoid
4570 -- generating spurious checks on complex expansion such as object
4571 -- initialization through an extension aggregate.
4573 if Comes_From_Source (Call_Node)
4574 and then Ekind (Formal) /= E_In_Parameter
4575 and then Nkind (Actual) = N_Type_Conversion
4576 then
4577 Add_View_Conversion_Invariants (Formal, Actual);
4578 end if;
4580 -- Generating C the initialization of an allocator is performed by
4581 -- means of individual statements, and hence it must be done before
4582 -- the call.
4584 if Modify_Tree_For_C
4585 and then Nkind (Actual) = N_Allocator
4586 and then Nkind (Expression (Actual)) = N_Qualified_Expression
4587 then
4588 Remove_Side_Effects (Actual);
4589 end if;
4591 -- This label is required when skipping extra actual generation for
4592 -- Unchecked_Union parameters.
4594 <<Skip_Extra_Actual_Generation>>
4596 Param_Count := Param_Count + 1;
4597 Next_Actual (Actual);
4598 Next_Formal (Formal);
4599 end loop;
4601 -- If we are calling an Ada 2012 function which needs to have the
4602 -- "accessibility level determined by the point of call" (AI05-0234)
4603 -- passed in to it, then pass it in.
4605 if Ekind (Subp) in E_Function | E_Operator | E_Subprogram_Type
4606 and then
4607 Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
4608 then
4609 declare
4610 Extra_Form : Node_Id := Empty;
4611 Level : Node_Id := Empty;
4613 begin
4614 -- Detect cases where the function call has been internally
4615 -- generated by examining the original node and return library
4616 -- level - taking care to avoid ignoring function calls expanded
4617 -- in prefix notation.
4619 if Nkind (Original_Node (Call_Node)) not in N_Function_Call
4620 | N_Selected_Component
4621 | N_Indexed_Component
4622 then
4623 Level := Make_Integer_Literal
4624 (Loc, Scope_Depth (Standard_Standard));
4626 -- Otherwise get the level normally based on the call node
4628 else
4629 Level := Accessibility_Level
4630 (Expr => Call_Node,
4631 Level => Dynamic_Level,
4632 Allow_Alt_Model => False);
4633 end if;
4635 -- It may be possible that we are re-expanding an already
4636 -- expanded call when are are dealing with dispatching ???
4638 if No (Parameter_Associations (Call_Node))
4639 or else Nkind (Last (Parameter_Associations (Call_Node)))
4640 /= N_Parameter_Association
4641 or else not Is_Accessibility_Actual
4642 (Last (Parameter_Associations (Call_Node)))
4643 then
4644 Extra_Form := Extra_Accessibility_Of_Result
4645 (Ultimate_Alias (Subp));
4647 Add_Extra_Actual
4648 (Expr => Level,
4649 EF => Extra_Form);
4650 end if;
4651 end;
4652 end if;
4654 -- If we are expanding the RHS of an assignment we need to check if tag
4655 -- propagation is needed. You might expect this processing to be in
4656 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
4657 -- assignment might be transformed to a declaration for an unconstrained
4658 -- value if the expression is classwide.
4660 if Nkind (Call_Node) = N_Function_Call
4661 and then Is_Tag_Indeterminate (Call_Node)
4662 and then Is_Entity_Name (Name (Call_Node))
4663 then
4664 declare
4665 Ass : Node_Id := Empty;
4667 begin
4668 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
4669 Ass := Parent (Call_Node);
4671 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
4672 and then Nkind (Parent (Parent (Call_Node))) =
4673 N_Assignment_Statement
4674 then
4675 Ass := Parent (Parent (Call_Node));
4677 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
4678 and then Nkind (Parent (Parent (Call_Node))) =
4679 N_Assignment_Statement
4680 then
4681 Ass := Parent (Parent (Call_Node));
4682 end if;
4684 if Present (Ass)
4685 and then Is_Class_Wide_Type (Etype (Name (Ass)))
4686 then
4687 -- Move the error messages below to sem???
4689 if Is_Access_Type (Etype (Call_Node)) then
4690 if Designated_Type (Etype (Call_Node)) /=
4691 Root_Type (Etype (Name (Ass)))
4692 then
4693 Error_Msg_NE
4694 ("tag-indeterminate expression must have designated "
4695 & "type& (RM 5.2 (6))",
4696 Call_Node, Root_Type (Etype (Name (Ass))));
4697 else
4698 Propagate_Tag (Name (Ass), Call_Node);
4699 end if;
4701 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
4702 Error_Msg_NE
4703 ("tag-indeterminate expression must have type & "
4704 & "(RM 5.2 (6))",
4705 Call_Node, Root_Type (Etype (Name (Ass))));
4707 else
4708 Propagate_Tag (Name (Ass), Call_Node);
4709 end if;
4711 -- The call will be rewritten as a dispatching call, and
4712 -- expanded as such.
4714 return;
4715 end if;
4716 end;
4717 end if;
4719 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
4720 -- it to point to the correct secondary virtual table.
4722 if Nkind (Call_Node) in N_Subprogram_Call
4723 and then CW_Interface_Formals_Present
4724 then
4725 Expand_Interface_Actuals (Call_Node);
4726 end if;
4728 -- Install class-wide preconditions runtime check when this is a
4729 -- dispatching primitive that has or inherits class-wide preconditions;
4730 -- otherwise no runtime check is installed.
4732 if Nkind (Call_Node) in N_Subprogram_Call
4733 and then Is_Dispatching_Operation (Subp)
4734 then
4735 Install_Class_Preconditions_Check (Call_Node);
4736 end if;
4738 -- Deals with Dispatch_Call if we still have a call, before expanding
4739 -- extra actuals since this will be done on the re-analysis of the
4740 -- dispatching call. Note that we do not try to shorten the actual list
4741 -- for a dispatching call, it would not make sense to do so. Expansion
4742 -- of dispatching calls is suppressed for VM targets, because the VM
4743 -- back-ends directly handle the generation of dispatching calls and
4744 -- would have to undo any expansion to an indirect call.
4746 if Nkind (Call_Node) in N_Subprogram_Call
4747 and then Present (Controlling_Argument (Call_Node))
4748 then
4749 if Tagged_Type_Expansion then
4750 Expand_Dispatching_Call (Call_Node);
4752 -- Expand_Dispatching_Call takes care of all the needed processing
4754 return;
4755 end if;
4757 -- VM targets
4759 declare
4760 Call_Typ : constant Entity_Id := Etype (Call_Node);
4761 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
4762 Eq_Prim_Op : Entity_Id := Empty;
4763 New_Call : Node_Id;
4764 Param : Node_Id;
4765 Prev_Call : Node_Id;
4767 begin
4768 Apply_Tag_Checks (Call_Node);
4770 if not Is_Limited_Type (Typ) then
4771 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
4772 end if;
4774 -- If this is a dispatching "=", we must first compare the
4775 -- tags so we generate: x.tag = y.tag and then x = y
4777 if Subp = Eq_Prim_Op then
4779 -- Mark the node as analyzed to avoid reanalyzing this
4780 -- dispatching call (which would cause a never-ending loop)
4782 Prev_Call := Relocate_Node (Call_Node);
4783 Set_Analyzed (Prev_Call);
4785 Param := First_Actual (Call_Node);
4786 New_Call :=
4787 Make_And_Then (Loc,
4788 Left_Opnd =>
4789 Make_Op_Eq (Loc,
4790 Left_Opnd =>
4791 Make_Selected_Component (Loc,
4792 Prefix => New_Value (Param),
4793 Selector_Name =>
4794 New_Occurrence_Of
4795 (First_Tag_Component (Typ), Loc)),
4797 Right_Opnd =>
4798 Make_Selected_Component (Loc,
4799 Prefix =>
4800 Unchecked_Convert_To (Typ,
4801 New_Value (Next_Actual (Param))),
4802 Selector_Name =>
4803 New_Occurrence_Of
4804 (First_Tag_Component (Typ), Loc))),
4805 Right_Opnd => Prev_Call);
4807 Rewrite (Call_Node, New_Call);
4808 Analyze_And_Resolve
4809 (Call_Node, Call_Typ, Suppress => All_Checks);
4810 end if;
4812 -- Expansion of a dispatching call results in an indirect call,
4813 -- which in turn causes current values to be killed (see
4814 -- Resolve_Call), so on VM targets we do the call here to
4815 -- ensure consistent warnings between VM and non-VM targets.
4817 Kill_Current_Values;
4819 -- If this is a dispatching "=" then we must update the reference
4820 -- to the call node because we generated:
4821 -- x.tag = y.tag and then x = y
4823 if Subp = Eq_Prim_Op then
4824 Call_Node := Right_Opnd (Call_Node);
4825 end if;
4826 end;
4827 end if;
4829 -- Similarly, expand calls to RCI subprograms on which pragma
4830 -- All_Calls_Remote applies. The rewriting will be reanalyzed
4831 -- later. Do this only when the call comes from source since we
4832 -- do not want such a rewriting to occur in expanded code.
4834 if Is_All_Remote_Call (Call_Node) then
4835 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
4837 -- Similarly, do not add extra actuals for an entry call whose entity
4838 -- is a protected procedure, or for an internal protected subprogram
4839 -- call, because it will be rewritten as a protected subprogram call
4840 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
4842 elsif Is_Protected_Type (Scope (Subp))
4843 and then Ekind (Subp) in E_Procedure | E_Function
4844 then
4845 null;
4847 -- During that loop we gathered the extra actuals (the ones that
4848 -- correspond to Extra_Formals), so now they can be appended.
4850 elsif Is_Non_Empty_List (Extra_Actuals) then
4851 declare
4852 Num_Extra_Actuals : constant Nat := List_Length (Extra_Actuals);
4854 begin
4855 while Is_Non_Empty_List (Extra_Actuals) loop
4856 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
4857 end loop;
4859 -- Add dummy extra BIP actuals if we are calling a function that
4860 -- inherited the BIP extra actuals but does not require them.
4862 if Nkind (Call_Node) = N_Function_Call
4863 and then Is_Function_Call_With_BIP_Formals (Call_Node)
4864 and then not Is_Build_In_Place_Function_Call (Call_Node)
4865 then
4866 Add_Dummy_Build_In_Place_Actuals (Subp,
4867 Num_Added_Extra_Actuals => Num_Extra_Actuals);
4868 end if;
4869 end;
4871 -- Add dummy extra BIP actuals if we are calling a function that
4872 -- inherited the BIP extra actuals but does not require them.
4874 elsif Nkind (Call_Node) = N_Function_Call
4875 and then Is_Function_Call_With_BIP_Formals (Call_Node)
4876 and then not Is_Build_In_Place_Function_Call (Call_Node)
4877 then
4878 Add_Dummy_Build_In_Place_Actuals (Subp);
4879 end if;
4881 -- At this point we have all the actuals, so this is the point at which
4882 -- the various expansion activities for actuals is carried out.
4884 Expand_Actuals (Call_Node, Subp, Post_Call);
4886 -- If it is a recursive call then call the internal procedure that
4887 -- verifies Subprogram_Variant contract (if present and enabled).
4888 -- Detecting calls to subprogram aliases is necessary for recursive
4889 -- calls in instances of generic subprograms, where the renaming of
4890 -- the current subprogram is called.
4892 if Is_Subprogram (Subp)
4893 and then not Is_Ignored_Ghost_Entity (Subp)
4894 and then Same_Or_Aliased_Subprograms (Subp, Current_Scope)
4895 then
4896 Check_Subprogram_Variant;
4897 end if;
4899 -- Verify that the actuals do not share storage. This check must be done
4900 -- on the caller side rather that inside the subprogram to avoid issues
4901 -- of parameter passing.
4903 if Check_Aliasing_Of_Parameters then
4904 Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
4905 end if;
4907 -- If the subprogram is a renaming, or if it is inherited, replace it in
4908 -- the call with the name of the actual subprogram being called. If this
4909 -- is a dispatching call, the run-time decides what to call. The Alias
4910 -- attribute does not apply to entries.
4912 if Nkind (Call_Node) /= N_Entry_Call_Statement
4913 and then No (Controlling_Argument (Call_Node))
4914 and then Present (Parent_Subp)
4915 and then not Is_Direct_Deep_Call (Subp)
4916 then
4917 if Present (Inherited_From_Formal (Subp)) then
4918 Parent_Subp := Inherited_From_Formal (Subp);
4919 else
4920 Parent_Subp := Ultimate_Alias (Parent_Subp);
4921 end if;
4923 -- The below setting of Entity is suspect, see F109-018 discussion???
4925 Set_Entity (Name (Call_Node), Parent_Subp);
4927 -- Inspect all formals of derived subprogram Subp. Compare parameter
4928 -- types with the parent subprogram and check whether an actual may
4929 -- need a type conversion to the corresponding formal of the parent
4930 -- subprogram.
4932 -- Not clear whether intrinsic subprograms need such conversions. ???
4934 if not Is_Intrinsic_Subprogram (Parent_Subp)
4935 or else Is_Generic_Instance (Parent_Subp)
4936 then
4937 declare
4938 procedure Convert (Act : Node_Id; Typ : Entity_Id);
4939 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
4940 -- and resolve the newly generated construct.
4942 -------------
4943 -- Convert --
4944 -------------
4946 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
4947 begin
4948 Rewrite (Act, OK_Convert_To (Typ, Act));
4949 Analyze_And_Resolve (Act, Typ);
4950 end Convert;
4952 -- Local variables
4954 Actual_Typ : Entity_Id;
4955 Formal_Typ : Entity_Id;
4956 Parent_Typ : Entity_Id;
4958 begin
4959 Actual := First_Actual (Call_Node);
4960 Formal := First_Formal (Subp);
4961 Parent_Formal := First_Formal (Parent_Subp);
4962 while Present (Formal) loop
4963 Actual_Typ := Etype (Actual);
4964 Formal_Typ := Etype (Formal);
4965 Parent_Typ := Etype (Parent_Formal);
4967 -- For an IN parameter of a scalar type, the derived formal
4968 -- type and parent formal type differ, and the parent formal
4969 -- type and actual type do not match statically.
4971 if Is_Scalar_Type (Formal_Typ)
4972 and then Ekind (Formal) = E_In_Parameter
4973 and then Formal_Typ /= Parent_Typ
4974 and then
4975 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
4976 and then not Raises_Constraint_Error (Actual)
4977 then
4978 Convert (Actual, Parent_Typ);
4980 -- For access types, the parent formal type and actual type
4981 -- differ.
4983 elsif Is_Access_Type (Formal_Typ)
4984 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
4985 then
4986 if Ekind (Formal) /= E_In_Parameter then
4987 Convert (Actual, Parent_Typ);
4989 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
4990 and then Designated_Type (Parent_Typ) /=
4991 Designated_Type (Actual_Typ)
4992 and then not Is_Controlling_Formal (Formal)
4993 then
4994 -- This unchecked conversion is not necessary unless
4995 -- inlining is enabled, because in that case the type
4996 -- mismatch may become visible in the body about to be
4997 -- inlined.
4999 Rewrite (Actual,
5000 Unchecked_Convert_To (Parent_Typ, Actual));
5001 Analyze_And_Resolve (Actual, Parent_Typ);
5002 end if;
5004 -- If there is a change of representation, then generate a
5005 -- warning, and do the change of representation.
5007 elsif not Has_Compatible_Representation
5008 (Target_Typ => Formal_Typ,
5009 Operand_Typ => Parent_Typ)
5010 then
5011 Error_Msg_N
5012 ("??change of representation required", Actual);
5013 Convert (Actual, Parent_Typ);
5015 -- For array and record types, the parent formal type and
5016 -- derived formal type have different sizes or pragma Pack
5017 -- status.
5019 elsif ((Is_Array_Type (Formal_Typ)
5020 and then Is_Array_Type (Parent_Typ))
5021 or else
5022 (Is_Record_Type (Formal_Typ)
5023 and then Is_Record_Type (Parent_Typ)))
5024 and then Known_Esize (Formal_Typ)
5025 and then Known_Esize (Parent_Typ)
5026 and then
5027 (Esize (Formal_Typ) /= Esize (Parent_Typ)
5028 or else Has_Pragma_Pack (Formal_Typ) /=
5029 Has_Pragma_Pack (Parent_Typ))
5030 then
5031 Convert (Actual, Parent_Typ);
5032 end if;
5034 Next_Actual (Actual);
5035 Next_Formal (Formal);
5036 Next_Formal (Parent_Formal);
5037 end loop;
5038 end;
5039 end if;
5041 Orig_Subp := Subp;
5042 Subp := Parent_Subp;
5043 end if;
5045 -- Deal with case where call is an explicit dereference
5047 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
5049 -- Handle case of access to protected subprogram type
5051 if Is_Access_Protected_Subprogram_Type
5052 (Base_Type (Etype (Prefix (Name (Call_Node)))))
5053 then
5054 -- If this is a call through an access to protected operation, the
5055 -- prefix has the form (object'address, operation'access). Rewrite
5056 -- as a for other protected calls: the object is the 1st parameter
5057 -- of the list of actuals.
5059 declare
5060 Call : Node_Id;
5061 Parm : List_Id;
5062 Nam : Node_Id;
5063 Obj : Node_Id;
5064 Ptr : constant Node_Id := Prefix (Name (Call_Node));
5066 T : constant Entity_Id :=
5067 Equivalent_Type (Base_Type (Etype (Ptr)));
5069 D_T : constant Entity_Id :=
5070 Designated_Type (Base_Type (Etype (Ptr)));
5072 begin
5073 Obj :=
5074 Make_Selected_Component (Loc,
5075 Prefix => Unchecked_Convert_To (T, Ptr),
5076 Selector_Name =>
5077 New_Occurrence_Of (First_Entity (T), Loc));
5079 Nam :=
5080 Make_Selected_Component (Loc,
5081 Prefix => Unchecked_Convert_To (T, Ptr),
5082 Selector_Name =>
5083 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
5085 Nam :=
5086 Make_Explicit_Dereference (Loc,
5087 Prefix => Nam);
5089 if Present (Parameter_Associations (Call_Node)) then
5090 Parm := Parameter_Associations (Call_Node);
5091 else
5092 Parm := New_List;
5093 end if;
5095 Prepend (Obj, Parm);
5097 if Etype (D_T) = Standard_Void_Type then
5098 Call :=
5099 Make_Procedure_Call_Statement (Loc,
5100 Name => Nam,
5101 Parameter_Associations => Parm);
5102 else
5103 Call :=
5104 Make_Function_Call (Loc,
5105 Name => Nam,
5106 Parameter_Associations => Parm);
5107 end if;
5109 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
5110 Set_Etype (Call, Etype (D_T));
5112 -- We do not re-analyze the call to avoid infinite recursion.
5113 -- We analyze separately the prefix and the object, and set
5114 -- the checks on the prefix that would otherwise be emitted
5115 -- when resolving a call.
5117 Rewrite (Call_Node, Call);
5118 Analyze (Nam);
5119 Apply_Access_Check (Nam);
5120 Analyze (Obj);
5121 return;
5122 end;
5123 end if;
5124 end if;
5126 -- If this is a call to an intrinsic subprogram, then perform the
5127 -- appropriate expansion to the corresponding tree node and we
5128 -- are all done (since after that the call is gone).
5130 -- In the case where the intrinsic is to be processed by the back end,
5131 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
5132 -- since the idea in this case is to pass the call unchanged. If the
5133 -- intrinsic is an inherited unchecked conversion, and the derived type
5134 -- is the target type of the conversion, we must retain it as the return
5135 -- type of the expression. Otherwise the expansion below, which uses the
5136 -- parent operation, will yield the wrong type.
5138 if Is_Intrinsic_Subprogram (Subp) then
5139 Expand_Intrinsic_Call (Call_Node, Subp);
5141 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
5142 and then Parent_Subp /= Orig_Subp
5143 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
5144 then
5145 Set_Etype (Call_Node, Etype (Orig_Subp));
5146 end if;
5148 return;
5149 end if;
5151 if Ekind (Subp) in E_Function | E_Procedure then
5153 -- We perform a simple optimization on calls for To_Address by
5154 -- replacing them with an unchecked conversion. Not only is this
5155 -- efficient, but it also avoids order of elaboration problems when
5156 -- address clauses are inlined (address expression elaborated at the
5157 -- wrong point).
5159 -- We perform this optimization regardless of whether we are in the
5160 -- main unit or in a unit in the context of the main unit, to ensure
5161 -- that the generated tree is the same in both cases, for CodePeer
5162 -- use.
5164 if Is_RTE (Subp, RE_To_Address) then
5165 Rewrite (Call_Node,
5166 Unchecked_Convert_To
5167 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
5168 return;
5170 -- A call to a null procedure is replaced by a null statement, but we
5171 -- are not allowed to ignore possible side effects of the call, so we
5172 -- make sure that actuals are evaluated.
5173 -- We also suppress this optimization for GNATcoverage.
5175 elsif Is_Null_Procedure (Subp)
5176 and then not Opt.Suppress_Control_Flow_Optimizations
5177 then
5178 Actual := First_Actual (Call_Node);
5179 while Present (Actual) loop
5180 Remove_Side_Effects (Actual);
5181 Next_Actual (Actual);
5182 end loop;
5184 Rewrite (Call_Node, Make_Null_Statement (Loc));
5185 return;
5186 end if;
5188 -- Handle inlining. No action needed if the subprogram is not inlined
5190 if not Is_Inlined (Subp) then
5191 null;
5193 -- Front-end inlining of expression functions (performed also when
5194 -- back-end inlining is enabled).
5196 elsif Is_Inlinable_Expression_Function (Subp) then
5197 Rewrite
5198 (Call_Node, New_Copy (Expression_Of_Expression_Function (Subp)));
5199 Analyze (Call_Node);
5200 return;
5202 -- Handle front-end inlining
5204 elsif not Back_End_Inlining then
5205 Inlined_Subprogram : declare
5206 Bod : Node_Id;
5207 Must_Inline : Boolean := False;
5208 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
5210 begin
5211 -- Verify that the body to inline has already been seen, and
5212 -- that if the body is in the current unit the inlining does
5213 -- not occur earlier. This avoids order-of-elaboration problems
5214 -- in the back end.
5216 -- This should be documented in sinfo/einfo ???
5218 if No (Spec)
5219 or else Nkind (Spec) /= N_Subprogram_Declaration
5220 or else No (Body_To_Inline (Spec))
5221 then
5222 Must_Inline := False;
5224 -- If this an inherited function that returns a private type,
5225 -- do not inline if the full view is an unconstrained array,
5226 -- because such calls cannot be inlined.
5228 elsif Present (Orig_Subp)
5229 and then Is_Array_Type (Etype (Orig_Subp))
5230 and then not Is_Constrained (Etype (Orig_Subp))
5231 then
5232 Must_Inline := False;
5234 elsif In_Unfrozen_Instance (Scope (Subp)) then
5235 Must_Inline := False;
5237 else
5238 Bod := Body_To_Inline (Spec);
5240 if (In_Extended_Main_Code_Unit (Call_Node)
5241 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
5242 or else Has_Pragma_Inline_Always (Subp))
5243 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
5244 or else
5245 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
5246 then
5247 Must_Inline := True;
5249 -- If we are compiling a package body that is not the main
5250 -- unit, it must be for inlining/instantiation purposes,
5251 -- in which case we inline the call to insure that the same
5252 -- temporaries are generated when compiling the body by
5253 -- itself. Otherwise link errors can occur.
5255 -- If the function being called is itself in the main unit,
5256 -- we cannot inline, because there is a risk of double
5257 -- elaboration and/or circularity: the inlining can make
5258 -- visible a private entity in the body of the main unit,
5259 -- that gigi will see before its sees its proper definition.
5261 elsif not In_Extended_Main_Code_Unit (Call_Node)
5262 and then In_Package_Body
5263 then
5264 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
5266 -- Inline calls to _Wrapped_Statements when generating C
5268 elsif Modify_Tree_For_C
5269 and then In_Same_Extended_Unit (Sloc (Bod), Loc)
5270 and then Chars (Name (Call_Node))
5271 = Name_uWrapped_Statements
5272 then
5273 Must_Inline := True;
5274 end if;
5275 end if;
5277 if Must_Inline then
5278 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
5280 else
5281 -- Let the back end handle it
5283 Add_Inlined_Body (Subp, Call_Node);
5285 if Front_End_Inlining
5286 and then Nkind (Spec) = N_Subprogram_Declaration
5287 and then In_Extended_Main_Code_Unit (Call_Node)
5288 and then No (Body_To_Inline (Spec))
5289 and then not Has_Completion (Subp)
5290 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
5291 then
5292 Cannot_Inline
5293 ("cannot inline& (body not seen yet)?",
5294 Call_Node, Subp);
5295 end if;
5296 end if;
5297 end Inlined_Subprogram;
5299 -- Front-end expansion of simple functions returning unconstrained
5300 -- types (see Check_And_Split_Unconstrained_Function). Note that the
5301 -- case of a simple renaming (Body_To_Inline in N_Entity below, see
5302 -- also Build_Renamed_Body) cannot be expanded here because this may
5303 -- give rise to order-of-elaboration issues for the types of the
5304 -- parameters of the subprogram, if any.
5306 elsif Present (Unit_Declaration_Node (Subp))
5307 and then Nkind (Unit_Declaration_Node (Subp)) =
5308 N_Subprogram_Declaration
5309 and then Present (Body_To_Inline (Unit_Declaration_Node (Subp)))
5310 and then
5311 Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) not in
5312 N_Entity
5313 then
5314 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
5316 -- Back-end inlining either if optimization is enabled, we're
5317 -- generating C, or the call is required to be inlined.
5319 elsif Optimization_Level > 0
5320 or else CCG_Mode
5321 or else Has_Pragma_Inline_Always (Subp)
5322 then
5323 Add_Inlined_Body (Subp, Call_Node);
5324 end if;
5325 end if;
5327 -- Check for protected subprogram. This is either an intra-object call,
5328 -- or a protected function call. Protected procedure calls are rewritten
5329 -- as entry calls and handled accordingly.
5331 -- In Ada 2005, this may be an indirect call to an access parameter that
5332 -- is an access_to_subprogram. In that case the anonymous type has a
5333 -- scope that is a protected operation, but the call is a regular one.
5334 -- In either case do not expand call if subprogram is eliminated.
5336 Scop := Scope (Subp);
5338 if Nkind (Call_Node) /= N_Entry_Call_Statement
5339 and then Is_Protected_Type (Scop)
5340 and then Ekind (Subp) /= E_Subprogram_Type
5341 and then not Is_Eliminated (Subp)
5342 then
5343 -- If the call is an internal one, it is rewritten as a call to the
5344 -- corresponding unprotected subprogram.
5346 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
5347 end if;
5349 -- Functions returning controlled objects need special attention. If
5350 -- the return type is limited, then the context is initialization and
5351 -- different processing applies. If the call is to a protected function,
5352 -- the expansion above will call Expand_Call recursively. Otherwise the
5353 -- function call is transformed into a reference to the result that has
5354 -- been built either on the primary or the secondary stack.
5356 if Needs_Finalization (Etype (Subp)) then
5357 if not Is_Build_In_Place_Function_Call (Call_Node)
5358 and then
5359 (No (First_Formal (Subp))
5360 or else
5361 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
5362 then
5363 Expand_Ctrl_Function_Call
5364 (Call_Node, Needs_Secondary_Stack (Etype (Subp)));
5366 -- Build-in-place function calls which appear in anonymous contexts
5367 -- need a transient scope to ensure the proper finalization of the
5368 -- intermediate result after its use.
5370 elsif Is_Build_In_Place_Function_Call (Call_Node)
5371 and then Nkind (Parent (Unqual_Conv (Call_Node))) in
5372 N_Attribute_Reference
5373 | N_Function_Call
5374 | N_Indexed_Component
5375 | N_Object_Renaming_Declaration
5376 | N_Procedure_Call_Statement
5377 | N_Selected_Component
5378 | N_Slice
5379 and then
5380 (Ekind (Current_Scope) /= E_Loop
5381 or else Nkind (Parent (Call_Node)) /= N_Function_Call
5382 or else not
5383 Is_Build_In_Place_Function_Call (Parent (Call_Node)))
5384 then
5385 Establish_Transient_Scope
5386 (Call_Node, Needs_Secondary_Stack (Etype (Subp)));
5387 end if;
5388 end if;
5389 end Expand_Call_Helper;
5391 -------------------------------
5392 -- Expand_Ctrl_Function_Call --
5393 -------------------------------
5395 procedure Expand_Ctrl_Function_Call (N : Node_Id; Use_Sec_Stack : Boolean)
5397 Par : constant Node_Id := Parent (N);
5399 begin
5400 -- Optimization: if the returned value is returned again, then no need
5401 -- to copy/readjust/finalize, we can just pass the value through (see
5402 -- Expand_N_Simple_Return_Statement), and thus no attachment is needed.
5403 -- Note that simple return statements are distributed into conditional
5404 -- expressions but we may be invoked before this distribution is done.
5406 if Nkind (Par) = N_Simple_Return_Statement
5407 or else (Nkind (Par) = N_If_Expression
5408 and then Nkind (Parent (Par)) = N_Simple_Return_Statement)
5409 or else (Nkind (Par) = N_Case_Expression_Alternative
5410 and then
5411 Nkind (Parent (Parent (Par))) = N_Simple_Return_Statement)
5412 then
5413 return;
5414 end if;
5416 -- Another optimization: if the returned value is used to initialize an
5417 -- object, then no need to copy/readjust/finalize, we can initialize it
5418 -- in place. However, if the call returns on the secondary stack, then
5419 -- we need the expansion because we'll be renaming the temporary as the
5420 -- (permanent) object. We also apply it in the case of the expression of
5421 -- a delta aggregate, since it is used only to initialize a temporary.
5423 if Nkind (Par) in N_Object_Declaration | N_Delta_Aggregate
5424 and then Expression (Par) = N
5425 and then not Use_Sec_Stack
5426 then
5427 return;
5428 end if;
5430 -- Resolution is now finished, make sure we don't start analysis again
5431 -- because of the duplication.
5433 Set_Analyzed (N);
5435 -- Apply the transformation unless it was already applied earlier. This
5436 -- may happen because Remove_Side_Effects can be called during semantic
5437 -- analysis, for example from Build_Actual_Subtype_Of_Component. It is
5438 -- crucial to avoid creating a reference of reference here, because it
5439 -- would not be subsequently recognized by the Is_Finalizable_Transient
5440 -- and Requires_Cleanup_Actions predicates.
5442 if Nkind (Par) /= N_Reference then
5443 Remove_Side_Effects (N);
5444 end if;
5445 end Expand_Ctrl_Function_Call;
5447 ----------------------------------------
5448 -- Expand_N_Extended_Return_Statement --
5449 ----------------------------------------
5451 -- If there is a Handled_Statement_Sequence, we rewrite this:
5453 -- return Result : T := <expression> do
5454 -- <handled_seq_of_stms>
5455 -- end return;
5457 -- to be:
5459 -- declare
5460 -- Result : T := <expression>;
5461 -- begin
5462 -- <handled_seq_of_stms>
5463 -- return Result;
5464 -- end;
5466 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
5468 -- return Result : T := <expression>;
5470 -- to be:
5472 -- return <expression>;
5474 -- unless it's build-in-place or there's no <expression>, in which case
5475 -- we generate:
5477 -- declare
5478 -- Result : T := <expression>;
5479 -- begin
5480 -- return Result;
5481 -- end;
5483 -- Note that this case could have been written by the user as an extended
5484 -- return statement, or could have been transformed to this from a simple
5485 -- return statement.
5487 -- That is, we need to have a reified return object if there are statements
5488 -- (which might refer to it) or if we're doing build-in-place (so we can
5489 -- set its address to the final resting place or if there is no expression
5490 -- (in which case default initial values might need to be set)).
5492 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
5493 Loc : constant Source_Ptr := Sloc (N);
5494 Func_Id : constant Entity_Id :=
5495 Return_Applies_To (Return_Statement_Entity (N));
5496 Is_BIP_Func : constant Boolean :=
5497 Is_Build_In_Place_Function (Func_Id);
5498 Ret_Obj_Id : constant Entity_Id :=
5499 First_Entity (Return_Statement_Entity (N));
5500 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
5501 Ret_Typ : constant Entity_Id := Etype (Func_Id);
5503 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
5504 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
5505 -- with parameters:
5506 -- From current activation chain
5507 -- To activation chain passed in by the caller
5508 -- New_Master master passed in by the caller
5510 -- Func_Id is the entity of the function where the extended return
5511 -- statement appears.
5513 ---------------------------
5514 -- Move_Activation_Chain --
5515 ---------------------------
5517 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
5518 begin
5519 return
5520 Make_Procedure_Call_Statement (Loc,
5521 Name =>
5522 New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
5524 Parameter_Associations => New_List (
5526 -- Source chain
5528 Make_Attribute_Reference (Loc,
5529 Prefix => Make_Identifier (Loc, Name_uChain),
5530 Attribute_Name => Name_Unrestricted_Access),
5532 -- Destination chain
5534 New_Occurrence_Of
5535 (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
5537 -- New master
5539 New_Occurrence_Of
5540 (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
5541 end Move_Activation_Chain;
5543 -- Local variables
5545 Exp : Node_Id;
5546 HSS : Node_Id;
5547 Result : Node_Id;
5548 Stmts : List_Id := No_List;
5550 Return_Stmt : Node_Id := Empty;
5551 -- Force initialization to facilitate static analysis
5553 -- Start of processing for Expand_N_Extended_Return_Statement
5555 begin
5556 -- Given that functionality of interface thunks is simple (just displace
5557 -- the pointer to the object) they are always handled by means of
5558 -- simple return statements.
5560 pragma Assert (not Is_Thunk (Current_Subprogram));
5562 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
5563 Exp := Expression (Ret_Obj_Decl);
5565 -- Assert that if F says "return R : T := G(...) do..."
5566 -- then F and G are both b-i-p, or neither b-i-p.
5568 if Present (Exp) and then Nkind (Exp) = N_Function_Call then
5569 pragma Assert (Ekind (Current_Subprogram) = E_Function);
5570 pragma Assert
5571 (Is_Build_In_Place_Function (Current_Subprogram) =
5572 Is_Build_In_Place_Function_Call (Exp));
5573 null;
5574 end if;
5576 else
5577 Exp := Empty;
5578 end if;
5580 HSS := Handled_Statement_Sequence (N);
5582 -- Build a simple_return_statement that returns the return object when
5583 -- there is a statement sequence, or no expression, or the analysis of
5584 -- the return object declaration generated extra actions, or the result
5585 -- will be built in place. Note however that we currently do this for
5586 -- all composite cases, even though they are not built in place.
5588 if Present (HSS)
5589 or else No (Exp)
5590 or else List_Length (Return_Object_Declarations (N)) > 1
5591 or else Is_Composite_Type (Ret_Typ)
5592 then
5593 if No (HSS) then
5594 Stmts := New_List;
5596 -- If the extended return has a handled statement sequence, then wrap
5597 -- it in a block and use the block as the first statement.
5599 else
5600 Stmts := New_List (
5601 Make_Block_Statement (Loc,
5602 Declarations => New_List,
5603 Handled_Statement_Sequence => HSS));
5604 end if;
5606 -- If the result type contains tasks, we call Move_Activation_Chain.
5607 -- Later, the cleanup code will call Complete_Master, which will
5608 -- terminate any unactivated tasks belonging to the return statement
5609 -- master. But Move_Activation_Chain updates their master to be that
5610 -- of the caller, so they will not be terminated unless the return
5611 -- statement completes unsuccessfully due to exception, abort, goto,
5612 -- or exit. As a formality, we test whether the function requires the
5613 -- result to be built in place, though that's necessarily true for
5614 -- the case of result types with task parts.
5616 if Is_BIP_Func and then Has_Task (Ret_Typ) then
5618 -- The return expression is an aggregate for a complex type which
5619 -- contains tasks. This particular case is left unexpanded since
5620 -- the regular expansion would insert all temporaries and
5621 -- initialization code in the wrong block.
5623 if Nkind (Exp) = N_Aggregate then
5624 Expand_N_Aggregate (Exp);
5625 end if;
5627 -- Do not move the activation chain if the return object does not
5628 -- contain tasks.
5630 if Has_Task (Etype (Ret_Obj_Id)) then
5631 Append_To (Stmts, Move_Activation_Chain (Func_Id));
5632 end if;
5633 end if;
5635 -- If the returned object needs finalization actions, the function
5636 -- must perform the appropriate cleanup should it fail to return.
5638 if Needs_Finalization (Etype (Ret_Obj_Id)) then
5639 Append_To
5640 (Stmts, Make_Suppress_Object_Finalize_Call (Loc, Ret_Obj_Id));
5641 end if;
5643 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
5644 end if;
5646 -- Case where we build a return statement block
5648 if Present (HSS) then
5649 Result :=
5650 Make_Block_Statement (Loc,
5651 Declarations => Return_Object_Declarations (N),
5652 Handled_Statement_Sequence => HSS);
5654 -- We set the entity of the new block statement to be that of the
5655 -- return statement. This is necessary so that various fields, such
5656 -- as Finalization_Chain_Entity carry over from the return statement
5657 -- to the block. Note that this block is unusual, in that its entity
5658 -- is an E_Return_Statement rather than an E_Block.
5660 Set_Identifier
5661 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
5663 -- Build a simple_return_statement that returns the return object
5665 Return_Stmt :=
5666 Make_Simple_Return_Statement (Loc,
5667 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
5668 Append_To (Stmts, Return_Stmt);
5670 -- Case where we do not need to build a block. But we're about to drop
5671 -- Return_Object_Declarations on the floor, so assert that it contains
5672 -- only the return object declaration.
5674 else pragma Assert (List_Length (Return_Object_Declarations (N)) = 1);
5676 -- Build simple_return_statement that returns the expression directly
5678 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5679 Result := Return_Stmt;
5680 end if;
5682 -- Set the flag to prevent infinite recursion
5684 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
5685 Set_Return_Statement (Ret_Obj_Id, Return_Stmt);
5687 Rewrite (N, Result);
5689 -- AI12-043: The checks of 6.5(8.1/3) and 6.5(21/3) are made immediately
5690 -- before an object is returned. A predicate that applies to the return
5691 -- subtype is checked immediately before an object is returned.
5693 Analyze (N);
5694 end Expand_N_Extended_Return_Statement;
5696 ----------------------------
5697 -- Expand_N_Function_Call --
5698 ----------------------------
5700 procedure Expand_N_Function_Call (N : Node_Id) is
5701 begin
5702 Expand_Call (N);
5703 end Expand_N_Function_Call;
5705 ---------------------------------------
5706 -- Expand_N_Procedure_Call_Statement --
5707 ---------------------------------------
5709 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5710 begin
5711 Expand_Call (N);
5712 end Expand_N_Procedure_Call_Statement;
5714 ------------------------------------
5715 -- Expand_N_Return_When_Statement --
5716 ------------------------------------
5718 procedure Expand_N_Return_When_Statement (N : Node_Id) is
5719 Loc : constant Source_Ptr := Sloc (N);
5720 begin
5721 Rewrite (N,
5722 Make_If_Statement (Loc,
5723 Condition => Condition (N),
5724 Then_Statements => New_List (
5725 Make_Simple_Return_Statement (Loc,
5726 Expression => Expression (N)))));
5728 Analyze (N);
5729 end Expand_N_Return_When_Statement;
5731 --------------------------------------
5732 -- Expand_N_Simple_Return_Statement --
5733 --------------------------------------
5735 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5736 begin
5737 -- Defend against previous errors (i.e. the return statement calls a
5738 -- function that is not available in configurable runtime).
5740 if Present (Expression (N))
5741 and then Nkind (Expression (N)) = N_Empty
5742 then
5743 Check_Error_Detected;
5744 return;
5745 end if;
5747 -- Distinguish the function and non-function cases:
5749 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5750 when E_Function
5751 | E_Generic_Function
5753 Expand_Simple_Function_Return (N);
5755 when E_Entry
5756 | E_Entry_Family
5757 | E_Generic_Procedure
5758 | E_Procedure
5759 | E_Return_Statement
5761 Expand_Non_Function_Return (N);
5763 when others =>
5764 raise Program_Error;
5765 end case;
5767 exception
5768 when RE_Not_Available =>
5769 return;
5770 end Expand_N_Simple_Return_Statement;
5772 ------------------------------
5773 -- Expand_N_Subprogram_Body --
5774 ------------------------------
5776 -- Add dummy push/pop label nodes at start and end to clear any local
5777 -- exception indications if local-exception-to-goto optimization is active.
5779 -- Add return statement if last statement in body is not a return statement
5780 -- (this makes things easier on Gigi which does not want to have to handle
5781 -- a missing return).
5783 -- Add call to Activate_Tasks if body is a task activator
5785 -- Deal with possible detection of infinite recursion
5787 -- Eliminate body completely if convention stubbed
5789 -- Encode entity names within body, since we will not need to reference
5790 -- these entities any longer in the front end.
5792 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5794 -- Reset Pure indication if any parameter has root type System.Address
5795 -- or has any parameters of limited types, where limited means that the
5796 -- run-time view is limited (i.e. the full type is limited).
5798 -- Wrap thread body
5800 procedure Expand_N_Subprogram_Body (N : Node_Id) is
5801 Body_Id : constant Entity_Id := Defining_Entity (N);
5802 HSS : constant Node_Id := Handled_Statement_Sequence (N);
5803 Loc : constant Source_Ptr := Sloc (N);
5805 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
5806 -- Append a return statement to the statement sequence Stmts if the last
5807 -- statement is not already a return or a goto statement. Note that the
5808 -- latter test is not critical, it does not matter if we add a few extra
5809 -- returns, since they get eliminated anyway later on. Spec_Id denotes
5810 -- the corresponding spec of the subprogram body.
5812 ----------------
5813 -- Add_Return --
5814 ----------------
5816 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
5817 Last_Stmt : Node_Id;
5818 Loc : Source_Ptr;
5819 Stmt : Node_Id;
5821 begin
5822 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5823 -- not relevant in this context since they are not executable.
5825 Last_Stmt := Last (Stmts);
5826 while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
5827 Prev (Last_Stmt);
5828 end loop;
5830 -- Now insert return unless last statement is a transfer
5832 if not Is_Transfer (Last_Stmt) then
5834 -- The source location for the return is the end label of the
5835 -- procedure if present. Otherwise use the sloc of the last
5836 -- statement in the list. If the list comes from a generated
5837 -- exception handler and we are not debugging generated code,
5838 -- all the statements within the handler are made invisible
5839 -- to the debugger.
5841 if Nkind (Parent (Stmts)) = N_Exception_Handler
5842 and then not Comes_From_Source (Parent (Stmts))
5843 then
5844 Loc := Sloc (Last_Stmt);
5845 elsif Present (End_Label (HSS)) then
5846 Loc := Sloc (End_Label (HSS));
5847 else
5848 Loc := Sloc (Last_Stmt);
5849 end if;
5851 -- Append return statement, and set analyzed manually. We can't
5852 -- call Analyze on this return since the scope is wrong.
5854 -- Note: it almost works to push the scope and then do the Analyze
5855 -- call, but something goes wrong in some weird cases and it is
5856 -- not worth worrying about ???
5858 Stmt := Make_Simple_Return_Statement (Loc);
5860 -- The return statement is handled properly, and the call to the
5861 -- postcondition, inserted below, does not require information
5862 -- from the body either. However, that call is analyzed in the
5863 -- enclosing scope, and an elaboration check might improperly be
5864 -- added to it. A guard in Sem_Elab is needed to prevent that
5865 -- spurious check, see Check_Elab_Call.
5867 Append_To (Stmts, Stmt);
5868 Set_Analyzed (Stmt);
5870 -- Ada 2022 (AI12-0279): append the call to 'Yield unless this is
5871 -- a generic subprogram (since in such case it will be added to
5872 -- the instantiations).
5874 if Has_Yield_Aspect (Spec_Id)
5875 and then Ekind (Spec_Id) /= E_Generic_Procedure
5876 and then RTE_Available (RE_Yield)
5877 then
5878 Insert_Action (Stmt,
5879 Make_Procedure_Call_Statement (Loc,
5880 New_Occurrence_Of (RTE (RE_Yield), Loc)));
5881 end if;
5882 end if;
5883 end Add_Return;
5885 -- Local variables
5887 Except_H : Node_Id;
5888 L : List_Id;
5889 Spec_Id : Entity_Id;
5891 -- Start of processing for Expand_N_Subprogram_Body
5893 begin
5894 if Present (Corresponding_Spec (N)) then
5895 Spec_Id := Corresponding_Spec (N);
5896 else
5897 Spec_Id := Body_Id;
5898 end if;
5900 -- If this is a Pure function which has any parameters whose root type
5901 -- is System.Address, reset the Pure indication.
5902 -- This check is also performed when the subprogram is frozen, but we
5903 -- repeat it on the body so that the indication is consistent, and so
5904 -- it applies as well to bodies without separate specifications.
5906 if Is_Pure (Spec_Id)
5907 and then Is_Subprogram (Spec_Id)
5908 and then not Has_Pragma_Pure_Function (Spec_Id)
5909 then
5910 Check_Function_With_Address_Parameter (Spec_Id);
5912 if Spec_Id /= Body_Id then
5913 Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
5914 end if;
5915 end if;
5917 -- Set L to either the list of declarations if present, or to the list
5918 -- of statements if no declarations are present. This is used to insert
5919 -- new stuff at the start.
5921 if Is_Non_Empty_List (Declarations (N)) then
5922 L := Declarations (N);
5923 else
5924 L := Statements (HSS);
5925 end if;
5927 -- If local-exception-to-goto optimization active, insert dummy push
5928 -- statements at start, and dummy pop statements at end, but inhibit
5929 -- this if we have No_Exception_Handlers or expanding a entry barrier
5930 -- function, since they are useless and interfere with analysis (e.g. by
5931 -- CodePeer) and other optimizations. We also don't need these if we're
5932 -- unnesting subprograms because the only purpose of these nodes is to
5933 -- ensure we don't set a label in one subprogram and branch to it in
5934 -- another.
5936 if (Debug_Flag_Dot_G
5937 or else Restriction_Active (No_Exception_Propagation))
5938 and then not Restriction_Active (No_Exception_Handlers)
5939 and then not CodePeer_Mode
5940 and then not Is_Entry_Barrier_Function (N)
5941 and then not Unnest_Subprogram_Mode
5942 and then Is_Non_Empty_List (L)
5943 then
5944 declare
5945 FS : constant Node_Id := First (L);
5946 FL : constant Source_Ptr := Sloc (FS);
5947 LS : Node_Id;
5948 LL : Source_Ptr;
5950 begin
5951 -- LS points to either last statement, if statements are present
5952 -- or to the last declaration if there are no statements present.
5953 -- It is the node after which the pop's are generated.
5955 if Is_Non_Empty_List (Statements (HSS)) then
5956 LS := Last (Statements (HSS));
5957 else
5958 LS := Last (L);
5959 end if;
5961 LL := Sloc (LS);
5963 Insert_List_Before_And_Analyze (FS, New_List (
5964 Make_Push_Constraint_Error_Label (FL),
5965 Make_Push_Program_Error_Label (FL),
5966 Make_Push_Storage_Error_Label (FL)));
5968 Insert_List_After_And_Analyze (LS, New_List (
5969 Make_Pop_Constraint_Error_Label (LL),
5970 Make_Pop_Program_Error_Label (LL),
5971 Make_Pop_Storage_Error_Label (LL)));
5972 end;
5973 end if;
5975 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5977 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5978 declare
5979 F : Entity_Id;
5980 A : Node_Id;
5982 begin
5983 -- Loop through formals
5985 F := First_Formal (Spec_Id);
5986 while Present (F) loop
5987 if Is_Scalar_Type (Etype (F))
5988 and then Ekind (F) = E_Out_Parameter
5989 then
5990 Check_Restriction (No_Default_Initialization, F);
5992 -- Insert the initialization. We turn off validity checks
5993 -- for this assignment, since we do not want any check on
5994 -- the initial value itself (which may well be invalid).
5995 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5997 A :=
5998 Make_Assignment_Statement (Loc,
5999 Name => New_Occurrence_Of (F, Loc),
6000 Expression => Get_Simple_Init_Val (Etype (F), N));
6001 Set_Suppress_Assignment_Checks (A);
6003 Insert_Before_And_Analyze (First (L),
6004 A, Suppress => Validity_Check);
6005 end if;
6007 Next_Formal (F);
6008 end loop;
6009 end;
6010 end if;
6012 -- Clear out statement list for stubbed procedure
6014 if Present (Corresponding_Spec (N)) then
6015 Set_Elaboration_Flag (N, Spec_Id);
6017 if Convention (Spec_Id) = Convention_Stubbed
6018 or else Is_Eliminated (Spec_Id)
6019 then
6020 Set_Declarations (N, Empty_List);
6021 Set_Handled_Statement_Sequence (N,
6022 Make_Handled_Sequence_Of_Statements (Loc,
6023 Statements => New_List (Make_Null_Statement (Loc))));
6025 return;
6026 end if;
6027 end if;
6029 -- Create a set of discriminals for the next protected subprogram body
6031 if Is_List_Member (N)
6032 and then Present (Parent (List_Containing (N)))
6033 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
6034 and then Present (Next_Protected_Operation (N))
6035 then
6036 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
6037 end if;
6039 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
6040 -- subprograms with no specs are not frozen.
6042 Compute_Returns_By_Ref (Spec_Id);
6044 -- For a procedure, we add a return for all possible syntactic ends of
6045 -- the subprogram.
6047 if Ekind (Spec_Id) in E_Procedure | E_Generic_Procedure then
6048 Add_Return (Spec_Id, Statements (HSS));
6050 if Present (Exception_Handlers (HSS)) then
6051 Except_H := First_Non_Pragma (Exception_Handlers (HSS));
6052 while Present (Except_H) loop
6053 Add_Return (Spec_Id, Statements (Except_H));
6054 Next_Non_Pragma (Except_H);
6055 end loop;
6056 end if;
6058 -- For a function, we must deal with the case where there is at least
6059 -- one missing return. What we do is to wrap the entire body of the
6060 -- function in a block:
6062 -- begin
6063 -- ...
6064 -- end;
6066 -- becomes
6068 -- begin
6069 -- begin
6070 -- ...
6071 -- end;
6073 -- raise Program_Error;
6074 -- end;
6076 -- This approach is necessary because the raise must be signalled to the
6077 -- caller, not handled by any local handler (RM 6.4(11)).
6079 -- Note: we do not need to analyze the constructed sequence here, since
6080 -- it has no handler, and an attempt to analyze the handled statement
6081 -- sequence twice is risky in various ways (e.g. the issue of expanding
6082 -- cleanup actions twice).
6084 elsif Has_Missing_Return (Spec_Id) then
6085 declare
6086 Hloc : constant Source_Ptr := Sloc (HSS);
6087 Blok : constant Node_Id :=
6088 Make_Block_Statement (Hloc,
6089 Handled_Statement_Sequence => HSS);
6090 Rais : constant Node_Id :=
6091 Make_Raise_Program_Error (Hloc,
6092 Reason => PE_Missing_Return);
6094 begin
6095 Set_Handled_Statement_Sequence (N,
6096 Make_Handled_Sequence_Of_Statements (Hloc,
6097 Statements => New_List (Blok, Rais)));
6099 Push_Scope (Spec_Id);
6100 Analyze (Blok);
6101 Analyze (Rais);
6102 Pop_Scope;
6103 end;
6104 end if;
6106 -- If subprogram contains a parameterless recursive call, then we may
6107 -- have an infinite recursion, so see if we can generate code to check
6108 -- for this possibility if storage checks are not suppressed.
6110 if Ekind (Spec_Id) = E_Procedure
6111 and then Has_Recursive_Call (Spec_Id)
6112 and then not Storage_Checks_Suppressed (Spec_Id)
6113 then
6114 Detect_Infinite_Recursion (N, Spec_Id);
6115 end if;
6117 -- Set to encode entity names in package body before gigi is called
6119 Qualify_Entity_Names (N);
6121 -- If the body belongs to a nonabstract library-level source primitive
6122 -- of a tagged type, install an elaboration check which ensures that a
6123 -- dispatching call targeting the primitive will not execute the body
6124 -- without it being previously elaborated.
6126 Install_Primitive_Elaboration_Check (N);
6127 end Expand_N_Subprogram_Body;
6129 -----------------------------------
6130 -- Expand_N_Subprogram_Body_Stub --
6131 -----------------------------------
6133 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
6134 Bod : Node_Id;
6136 begin
6137 if Present (Corresponding_Body (N)) then
6138 Bod := Unit_Declaration_Node (Corresponding_Body (N));
6140 -- The body may have been expanded already when it is analyzed
6141 -- through the subunit node. Do no expand again: it interferes
6142 -- with the construction of unnesting tables when generating C.
6144 if not Analyzed (Bod) then
6145 Expand_N_Subprogram_Body (Bod);
6146 end if;
6148 -- Add full qualification to entities that may be created late
6149 -- during unnesting.
6151 Qualify_Entity_Names (N);
6152 end if;
6153 end Expand_N_Subprogram_Body_Stub;
6155 -------------------------------------
6156 -- Expand_N_Subprogram_Declaration --
6157 -------------------------------------
6159 -- If the declaration appears within a protected body, it is a private
6160 -- operation of the protected type. We must create the corresponding
6161 -- protected subprogram an associated formals. For a normal protected
6162 -- operation, this is done when expanding the protected type declaration.
6164 -- If the declaration is for a null procedure, emit null body
6166 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
6167 Loc : constant Source_Ptr := Sloc (N);
6168 Subp : constant Entity_Id := Defining_Entity (N);
6170 -- Local variables
6172 Scop : constant Entity_Id := Scope (Subp);
6173 Prot_Bod : Node_Id;
6174 Prot_Decl : Node_Id;
6175 Prot_Id : Entity_Id;
6176 Typ : Entity_Id;
6178 begin
6179 -- Deal with case of protected subprogram. Do not generate protected
6180 -- operation if operation is flagged as eliminated.
6182 if Is_List_Member (N)
6183 and then Present (Parent (List_Containing (N)))
6184 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
6185 and then Is_Protected_Type (Scop)
6186 then
6187 if No (Protected_Body_Subprogram (Subp))
6188 and then not Is_Eliminated (Subp)
6189 then
6190 Prot_Decl :=
6191 Make_Subprogram_Declaration (Loc,
6192 Specification =>
6193 Build_Protected_Sub_Specification
6194 (N, Scop, Unprotected_Mode));
6196 -- The protected subprogram is declared outside of the protected
6197 -- body. Given that the body has frozen all entities so far, we
6198 -- analyze the subprogram and perform freezing actions explicitly.
6199 -- including the generation of an explicit freeze node, to ensure
6200 -- that gigi has the proper order of elaboration.
6201 -- If the body is a subunit, the insertion point is before the
6202 -- stub in the parent.
6204 Prot_Bod := Parent (List_Containing (N));
6206 if Nkind (Parent (Prot_Bod)) = N_Subunit then
6207 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
6208 end if;
6210 Insert_Before (Prot_Bod, Prot_Decl);
6211 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
6212 Set_Has_Delayed_Freeze (Prot_Id);
6214 Push_Scope (Scope (Scop));
6215 Analyze (Prot_Decl);
6216 Freeze_Before (N, Prot_Id);
6217 Set_Protected_Body_Subprogram (Subp, Prot_Id);
6218 Pop_Scope;
6219 end if;
6221 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
6222 -- cases this is superfluous because calls to it will be automatically
6223 -- inlined, but we definitely need the body if preconditions for the
6224 -- procedure are present, or if performing coverage analysis.
6226 elsif Nkind (Specification (N)) = N_Procedure_Specification
6227 and then Null_Present (Specification (N))
6228 then
6229 declare
6230 Bod : constant Node_Id := Body_To_Inline (N);
6232 begin
6233 Set_Has_Completion (Subp, False);
6234 Append_Freeze_Action (Subp, Bod);
6236 -- The body now contains raise statements, so calls to it will
6237 -- not be inlined.
6239 Set_Is_Inlined (Subp, False);
6240 end;
6241 end if;
6243 -- When generating C code, transform a function that returns a
6244 -- constrained array type into a procedure with an out parameter
6245 -- that carries the return value.
6247 -- We skip this transformation for unchecked conversions, since they
6248 -- are not needed by the C generator (and this also produces cleaner
6249 -- output).
6251 Typ := Get_Fullest_View (Etype (Subp));
6253 if Transform_Function_Array
6254 and then Nkind (Specification (N)) = N_Function_Specification
6255 and then Is_Array_Type (Typ)
6256 and then Is_Constrained (Typ)
6257 and then not Is_Unchecked_Conversion_Instance (Subp)
6258 then
6259 Build_Procedure_Form (N);
6260 end if;
6261 end Expand_N_Subprogram_Declaration;
6263 --------------------------------
6264 -- Expand_Non_Function_Return --
6265 --------------------------------
6267 procedure Expand_Non_Function_Return (N : Node_Id) is
6268 pragma Assert (No (Expression (N)));
6270 Loc : constant Source_Ptr := Sloc (N);
6271 Scope_Id : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
6272 Kind : constant Entity_Kind := Ekind (Scope_Id);
6273 Call : Node_Id;
6274 Acc_Stat : Node_Id;
6275 Goto_Stat : Node_Id;
6276 Lab_Node : Node_Id;
6278 begin
6279 -- Ada 2022 (AI12-0279)
6281 if Has_Yield_Aspect (Scope_Id)
6282 and then RTE_Available (RE_Yield)
6283 then
6284 Insert_Action (N,
6285 Make_Procedure_Call_Statement (Loc,
6286 New_Occurrence_Of (RTE (RE_Yield), Loc)));
6287 end if;
6289 -- If it is a return from a procedure do no extra steps
6291 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
6292 return;
6294 -- If it is a nested return within an extended one, replace it with a
6295 -- return of the previously declared return object.
6297 elsif Kind = E_Return_Statement then
6298 declare
6299 Ret_Obj_Id : constant Entity_Id := First_Entity (Scope_Id);
6301 begin
6302 -- Apply the same processing as Expand_N_Extended_Return_Statement
6303 -- if the returned object needs finalization actions. Note that we
6304 -- are invoked before Expand_N_Extended_Return_Statement but there
6305 -- may be multiple nested returns within the extended one.
6307 if Needs_Finalization (Etype (Ret_Obj_Id)) then
6308 Insert_Action
6309 (N, Make_Suppress_Object_Finalize_Call (Loc, Ret_Obj_Id));
6310 end if;
6312 Rewrite (N,
6313 Make_Simple_Return_Statement (Loc,
6314 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc)));
6315 Set_Comes_From_Extended_Return_Statement (N);
6316 Set_Return_Statement_Entity (N, Scope_Id);
6317 Expand_Simple_Function_Return (N);
6318 return;
6319 end;
6320 end if;
6322 pragma Assert (Is_Entry (Scope_Id));
6324 -- Look at the enclosing block to see whether the return is from an
6325 -- accept statement or an entry body.
6327 for J in reverse 0 .. Scope_Stack.Last loop
6328 Scope_Id := Scope_Stack.Table (J).Entity;
6329 exit when Is_Concurrent_Type (Scope_Id);
6330 end loop;
6332 -- If it is a return from accept statement it is expanded as call to
6333 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
6335 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6336 -- Expand_N_Accept_Alternative in exp_ch9.adb)
6338 if Is_Task_Type (Scope_Id) then
6340 Call :=
6341 Make_Procedure_Call_Statement (Loc,
6342 Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
6343 Insert_Before (N, Call);
6344 -- why not insert actions here???
6345 Analyze (Call);
6347 Acc_Stat := Parent (N);
6348 while Nkind (Acc_Stat) /= N_Accept_Statement loop
6349 Acc_Stat := Parent (Acc_Stat);
6350 end loop;
6352 Lab_Node := Last (Statements
6353 (Handled_Statement_Sequence (Acc_Stat)));
6355 Goto_Stat := Make_Goto_Statement (Loc,
6356 Name => New_Occurrence_Of
6357 (Entity (Identifier (Lab_Node)), Loc));
6359 Set_Analyzed (Goto_Stat);
6361 Rewrite (N, Goto_Stat);
6362 Analyze (N);
6364 -- If it is a return from an entry body, put a Complete_Entry_Body call
6365 -- in front of the return.
6367 elsif Is_Protected_Type (Scope_Id) then
6368 Call :=
6369 Make_Procedure_Call_Statement (Loc,
6370 Name =>
6371 New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
6372 Parameter_Associations => New_List (
6373 Make_Attribute_Reference (Loc,
6374 Prefix =>
6375 New_Occurrence_Of
6376 (Find_Protection_Object (Current_Scope), Loc),
6377 Attribute_Name => Name_Unchecked_Access)));
6379 Insert_Before (N, Call);
6380 Analyze (Call);
6381 end if;
6382 end Expand_Non_Function_Return;
6384 ---------------------------------------
6385 -- Expand_Protected_Object_Reference --
6386 ---------------------------------------
6388 function Expand_Protected_Object_Reference
6389 (N : Node_Id;
6390 Scop : Entity_Id) return Node_Id
6392 Loc : constant Source_Ptr := Sloc (N);
6393 Corr : Entity_Id;
6394 Rec : Node_Id;
6395 Param : Entity_Id;
6396 Proc : Entity_Id;
6398 begin
6399 Rec := Make_Identifier (Loc, Name_uObject);
6400 Set_Etype (Rec, Corresponding_Record_Type (Scop));
6402 -- Find enclosing protected operation, and retrieve its first parameter,
6403 -- which denotes the enclosing protected object. If the enclosing
6404 -- operation is an entry, we are immediately within the protected body,
6405 -- and we can retrieve the object from the service entries procedure. A
6406 -- barrier function has the same signature as an entry. A barrier
6407 -- function is compiled within the protected object, but unlike
6408 -- protected operations its never needs locks, so that its protected
6409 -- body subprogram points to itself.
6411 Proc := Current_Scope;
6412 while Present (Proc) and then Scope (Proc) /= Scop loop
6413 Proc := Scope (Proc);
6414 if Is_Subprogram (Proc)
6415 and then Present (Protected_Subprogram (Proc))
6416 then
6417 Proc := Protected_Subprogram (Proc);
6418 end if;
6419 end loop;
6421 Corr := Protected_Body_Subprogram (Proc);
6423 if No (Corr) then
6425 -- Previous error left expansion incomplete.
6426 -- Nothing to do on this call.
6428 return Empty;
6429 end if;
6431 Param :=
6432 Defining_Identifier
6433 (First (Parameter_Specifications (Parent (Corr))));
6435 if Is_Subprogram (Proc) and then Proc /= Corr then
6437 -- Protected function or procedure
6439 Set_Entity (Rec, Param);
6441 -- Rec is a reference to an entity which will not be in scope when
6442 -- the call is reanalyzed, and needs no further analysis.
6444 Set_Analyzed (Rec);
6446 else
6447 -- Entry or barrier function for entry body. The first parameter of
6448 -- the entry body procedure is pointer to the object. We create a
6449 -- local variable of the proper type, duplicating what is done to
6450 -- define _object later on.
6452 declare
6453 Decls : List_Id;
6454 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
6456 begin
6457 Decls := New_List (
6458 Make_Full_Type_Declaration (Loc,
6459 Defining_Identifier => Obj_Ptr,
6460 Type_Definition =>
6461 Make_Access_To_Object_Definition (Loc,
6462 Subtype_Indication =>
6463 New_Occurrence_Of
6464 (Corresponding_Record_Type (Scop), Loc))));
6466 Insert_Actions (N, Decls);
6467 Freeze_Before (N, Obj_Ptr);
6469 Rec :=
6470 Make_Explicit_Dereference (Loc,
6471 Prefix =>
6472 Unchecked_Convert_To (Obj_Ptr,
6473 New_Occurrence_Of (Param, Loc)));
6475 -- Analyze new actual. Other actuals in calls are already analyzed
6476 -- and the list of actuals is not reanalyzed after rewriting.
6478 Set_Parent (Rec, N);
6479 Analyze (Rec);
6480 end;
6481 end if;
6483 return Rec;
6484 end Expand_Protected_Object_Reference;
6486 --------------------------------------
6487 -- Expand_Protected_Subprogram_Call --
6488 --------------------------------------
6490 procedure Expand_Protected_Subprogram_Call
6491 (N : Node_Id;
6492 Subp : Entity_Id;
6493 Scop : Entity_Id)
6495 Rec : Node_Id;
6497 procedure Expand_Internal_Init_Call;
6498 -- A call to an operation of the type may occur in the initialization
6499 -- of a private component. In that case the prefix of the call is an
6500 -- entity name and the call is treated as internal even though it
6501 -- appears in code outside of the protected type.
6503 procedure Freeze_Called_Function;
6504 -- If it is a function call it can appear in elaboration code and
6505 -- the called entity must be frozen before the call. This must be
6506 -- done before the call is expanded, as the expansion may rewrite it
6507 -- to something other than a call (e.g. a temporary initialized in a
6508 -- transient block).
6510 -------------------------------
6511 -- Expand_Internal_Init_Call --
6512 -------------------------------
6514 procedure Expand_Internal_Init_Call is
6515 begin
6516 -- If the context is a protected object (rather than a protected
6517 -- type) the call itself is bound to raise program_error because
6518 -- the protected body will not have been elaborated yet. This is
6519 -- diagnosed subsequently in Sem_Elab.
6521 Freeze_Called_Function;
6523 -- The target of the internal call is the first formal of the
6524 -- enclosing initialization procedure.
6526 Rec := New_Occurrence_Of (First_Formal (Current_Scope), Sloc (N));
6527 Build_Protected_Subprogram_Call (N,
6528 Name => Name (N),
6529 Rec => Rec,
6530 External => False);
6531 Analyze (N);
6532 Resolve (N, Etype (Subp));
6533 end Expand_Internal_Init_Call;
6535 ----------------------------
6536 -- Freeze_Called_Function --
6537 ----------------------------
6539 procedure Freeze_Called_Function is
6540 begin
6541 if Ekind (Subp) = E_Function then
6542 Freeze_Expression (Name (N));
6543 end if;
6544 end Freeze_Called_Function;
6546 -- Start of processing for Expand_Protected_Subprogram_Call
6548 begin
6549 -- If the protected object is not an enclosing scope, this is an inter-
6550 -- object function call. Inter-object procedure calls are expanded by
6551 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6552 -- subprogram being called is in the protected body being compiled, and
6553 -- if the protected object in the call is statically the enclosing type.
6554 -- The object may be a component of some other data structure, in which
6555 -- case this must be handled as an inter-object call.
6557 if not Scope_Within_Or_Same (Inner => Current_Scope, Outer => Scop)
6558 or else Is_Entry_Wrapper (Current_Scope)
6559 or else not Is_Entity_Name (Name (N))
6560 then
6561 if Nkind (Name (N)) = N_Selected_Component then
6562 Rec := Prefix (Name (N));
6564 elsif Nkind (Name (N)) = N_Indexed_Component then
6565 Rec := Prefix (Prefix (Name (N)));
6567 -- If this is a call within an entry wrapper, it appears within a
6568 -- precondition that calls another primitive of the synchronized
6569 -- type. The target object of the call is the first actual on the
6570 -- wrapper. Note that this is an external call, because the wrapper
6571 -- is called outside of the synchronized object. This means that
6572 -- an entry call to an entry with preconditions involves two
6573 -- synchronized operations.
6575 elsif Ekind (Current_Scope) = E_Procedure
6576 and then Is_Entry_Wrapper (Current_Scope)
6577 then
6578 Rec := New_Occurrence_Of (First_Entity (Current_Scope), Sloc (N));
6580 -- A default parameter of a protected operation may be a call to
6581 -- a protected function of the type. This appears as an internal
6582 -- call in the profile of the operation, but if the context is an
6583 -- external call we must convert the call into an external one,
6584 -- using the protected object that is the target, so that:
6586 -- Prot.P (F)
6587 -- is transformed into
6588 -- Prot.P (Prot.F)
6590 elsif Nkind (Parent (N)) = N_Procedure_Call_Statement
6591 and then Nkind (Name (Parent (N))) = N_Selected_Component
6592 and then Is_Protected_Type (Etype (Prefix (Name (Parent (N)))))
6593 and then Is_Entity_Name (Name (N))
6594 and then Scope (Entity (Name (N))) =
6595 Etype (Prefix (Name (Parent (N))))
6596 then
6597 Rewrite (Name (N),
6598 Make_Selected_Component (Sloc (N),
6599 Prefix => New_Copy_Tree (Prefix (Name (Parent (N)))),
6600 Selector_Name => Relocate_Node (Name (N))));
6602 Analyze_And_Resolve (N);
6603 return;
6605 else
6606 -- If the context is the initialization procedure for a protected
6607 -- type, the call is legal because the called entity must be a
6608 -- function of that enclosing type, and this is treated as an
6609 -- internal call.
6611 pragma Assert
6612 (Is_Entity_Name (Name (N)) and then Inside_Init_Proc);
6614 Expand_Internal_Init_Call;
6615 return;
6616 end if;
6618 Freeze_Called_Function;
6619 Build_Protected_Subprogram_Call (N,
6620 Name => New_Occurrence_Of (Subp, Sloc (N)),
6621 Rec => Convert_Concurrent (Rec, Etype (Rec)),
6622 External => True);
6624 else
6625 Rec := Expand_Protected_Object_Reference (N, Scop);
6627 if No (Rec) then
6628 return;
6629 end if;
6631 Freeze_Called_Function;
6632 Build_Protected_Subprogram_Call (N,
6633 Name => Name (N),
6634 Rec => Rec,
6635 External => False);
6636 end if;
6638 -- Analyze and resolve the new call. The actuals have already been
6639 -- resolved, but expansion of a function call will add extra actuals
6640 -- if needed. Analysis of a procedure call already includes resolution.
6642 Analyze (N);
6644 if Ekind (Subp) = E_Function then
6645 Resolve (N, Etype (Subp));
6646 end if;
6647 end Expand_Protected_Subprogram_Call;
6649 -----------------------------------
6650 -- Expand_Simple_Function_Return --
6651 -----------------------------------
6653 -- The "simple" comes from the syntax rule simple_return_statement. The
6654 -- semantics are not at all simple.
6656 procedure Expand_Simple_Function_Return (N : Node_Id) is
6657 Loc : constant Source_Ptr := Sloc (N);
6659 Scope_Id : constant Entity_Id :=
6660 Return_Applies_To (Return_Statement_Entity (N));
6661 -- The function we are returning from
6663 R_Type : constant Entity_Id := Etype (Scope_Id);
6664 -- The result type of the function
6666 Utyp : constant Entity_Id := Underlying_Type (R_Type);
6667 -- The underlying result type of the function
6669 Exp : Node_Id := Expression (N);
6670 pragma Assert (Present (Exp));
6672 Exp_Is_Function_Call : constant Boolean :=
6673 Nkind (Exp) = N_Function_Call
6674 or else
6675 (Is_Captured_Function_Call (Exp)
6676 and then Is_Related_To_Func_Return (Entity (Prefix (Exp))));
6677 -- If the expression is a captured function call, then we need to make
6678 -- sure that the object doing the capture is properly recognized by the
6679 -- Is_Related_To_Func_Return predicate; otherwise, if it is of a type
6680 -- that needs finalization, Requires_Cleanup_Actions would return true
6681 -- because of this and Build_Finalizer would finalize it prematurely.
6683 Exp_Typ : constant Entity_Id := Etype (Exp);
6684 -- The type of the expression (not necessarily the same as R_Type)
6686 Subtype_Ind : Node_Id;
6687 -- If the result type of the function is class-wide and the expression
6688 -- has a specific type, then we use the expression's type as the type of
6689 -- the return object. In cases where the expression is an aggregate that
6690 -- is built in place, this avoids the need for an expensive conversion
6691 -- of the return object to the specific type on assignments to the
6692 -- individual components.
6694 -- Start of processing for Expand_Simple_Function_Return
6696 begin
6697 if Is_Class_Wide_Type (R_Type)
6698 and then not Is_Class_Wide_Type (Exp_Typ)
6699 and then Nkind (Exp) /= N_Type_Conversion
6700 then
6701 Subtype_Ind := New_Occurrence_Of (Exp_Typ, Loc);
6702 else
6703 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6705 -- If the result type is class-wide and the expression is a view
6706 -- conversion, the conversion plays no role in the expansion because
6707 -- it does not modify the tag of the object. Remove the conversion
6708 -- altogether to prevent tag overwriting.
6710 if Is_Class_Wide_Type (R_Type)
6711 and then not Is_Class_Wide_Type (Exp_Typ)
6712 and then Nkind (Exp) = N_Type_Conversion
6713 then
6714 Exp := Expression (Exp);
6715 end if;
6716 end if;
6718 -- For the case of a simple return that does not come from an
6719 -- extended return, in the case of build-in-place, we rewrite
6720 -- "return <expression>;" to be:
6722 -- return _anon_ : <return_subtype> := <expression>
6724 -- The expansion produced by Expand_N_Extended_Return_Statement will
6725 -- contain simple return statements (for example, a block containing
6726 -- simple return of the return object), which brings us back here with
6727 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6728 -- checking for a simple return that does not come from an extended
6729 -- return is to avoid this infinite recursion.
6731 -- The reason for this design is that for Ada 2005 limited returns, we
6732 -- need to reify the return object, so we can build it "in place", and
6733 -- we need a block statement to hang finalization and tasking stuff.
6735 pragma Assert
6736 (Comes_From_Extended_Return_Statement (N)
6737 or else not Is_Build_In_Place_Function_Call (Exp)
6738 or else Has_BIP_Formals (Scope_Id));
6740 if not Comes_From_Extended_Return_Statement (N)
6741 and then Is_Build_In_Place_Function (Scope_Id)
6743 -- The functionality of interface thunks is simple and it is always
6744 -- handled by means of simple return statements. This leaves their
6745 -- expansion simple and clean.
6747 and then not Is_Thunk (Scope_Id)
6748 then
6749 declare
6750 Return_Object_Entity : constant Entity_Id :=
6751 Make_Temporary (Loc, 'R', Exp);
6753 Obj_Decl : constant Node_Id :=
6754 Make_Object_Declaration (Loc,
6755 Defining_Identifier => Return_Object_Entity,
6756 Object_Definition => Subtype_Ind,
6757 Expression => Exp);
6759 Ext : constant Node_Id :=
6760 Make_Extended_Return_Statement (Loc,
6761 Return_Object_Declarations => New_List (Obj_Decl));
6762 -- Do not perform this high-level optimization if the result type
6763 -- is an interface because the "this" pointer must be displaced.
6765 begin
6766 Rewrite (N, Ext);
6767 Analyze (N);
6768 return;
6769 end;
6770 end if;
6772 -- Assert that if F says "return G(...);"
6773 -- then F and G are both b-i-p, or neither b-i-p.
6775 if Nkind (Exp) = N_Function_Call then
6776 pragma Assert (Ekind (Scope_Id) = E_Function);
6777 pragma Assert
6778 (Is_Build_In_Place_Function (Scope_Id) =
6779 Is_Build_In_Place_Function_Call (Exp));
6780 null;
6781 end if;
6783 -- Here we have a simple return statement that is part of the expansion
6784 -- of an extended return statement (either written by the user, or
6785 -- generated by the above code).
6787 -- Always normalize C/Fortran boolean result. This is not always needed,
6788 -- but it seems a good idea to minimize the passing around of non-
6789 -- normalized values, and in any case this handles the processing of
6790 -- barrier functions for protected types, which turn the condition into
6791 -- a return statement.
6793 if Is_Boolean_Type (Exp_Typ) and then Nonzero_Is_True (Exp_Typ) then
6794 Adjust_Condition (Exp);
6795 Adjust_Result_Type (Exp, Exp_Typ);
6797 -- The adjustment of the expression may have rewritten the return
6798 -- statement itself, e.g. when it is turned into an if expression.
6800 if Nkind (N) /= N_Simple_Return_Statement then
6801 return;
6802 end if;
6803 end if;
6805 -- Do validity check if enabled for returns
6807 if Validity_Checks_On and then Validity_Check_Returns then
6808 Ensure_Valid (Exp);
6809 end if;
6811 -- Check the result expression of a scalar function against the subtype
6812 -- of the function by inserting a conversion. This conversion must
6813 -- eventually be performed for other classes of types, but for now it's
6814 -- only done for scalars ???
6816 if Is_Scalar_Type (Exp_Typ) and then Exp_Typ /= R_Type then
6817 Rewrite (Exp, Convert_To (R_Type, Exp));
6819 -- The expression is resolved to ensure that the conversion gets
6820 -- expanded to generate a possible constraint check.
6822 Analyze_And_Resolve (Exp, R_Type);
6823 end if;
6825 -- Deal with returning variable length objects and controlled types
6827 -- Nothing to do if we are returning by reference
6829 if Is_Build_In_Place_Function (Scope_Id) then
6830 -- Prevent the reclamation of the secondary stack by all enclosing
6831 -- blocks and loops as well as the related function; otherwise the
6832 -- result would be reclaimed too early.
6834 if Needs_BIP_Alloc_Form (Scope_Id) then
6835 Set_Enclosing_Sec_Stack_Return (N);
6836 end if;
6838 elsif Is_Inherently_Limited_Type (R_Type) then
6839 null;
6841 -- No copy needed for thunks returning interface type objects since
6842 -- the object is returned by reference and the maximum functionality
6843 -- required is just to displace the pointer.
6845 elsif Is_Thunk (Scope_Id) and then Is_Interface (Exp_Typ) then
6846 null;
6848 -- If the call is within a thunk and the type is a limited view, the
6849 -- back end will eventually see the non-limited view of the type.
6851 elsif Is_Thunk (Scope_Id) and then Is_Incomplete_Type (Exp_Typ) then
6852 return;
6854 -- A return statement from an ignored Ghost function does not use the
6855 -- secondary stack (or any other one).
6857 elsif (not Needs_Secondary_Stack (R_Type)
6858 and then not Is_Secondary_Stack_Thunk (Scope_Id))
6859 or else Is_Ignored_Ghost_Entity (Scope_Id)
6860 then
6861 -- Mutable records with variable-length components are not returned
6862 -- on the sec-stack, so we need to make sure that the back end will
6863 -- only copy back the size of the actual value, and not the maximum
6864 -- size. We create an actual subtype for this purpose. However we
6865 -- need not do it if the expression is a function call since this
6866 -- will be done in the called function and doing it here too would
6867 -- cause a temporary with maximum size to be created. Likewise for
6868 -- a special return object, since there is no copy in this case.
6870 declare
6871 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exp_Typ));
6872 Decl : Node_Id;
6873 Ent : Entity_Id;
6875 begin
6876 if not Exp_Is_Function_Call
6877 and then not (Is_Entity_Name (Exp)
6878 and then Is_Special_Return_Object (Entity (Exp)))
6879 and then Has_Defaulted_Discriminants (Ubt)
6880 and then not Is_Constrained (Ubt)
6881 and then not Has_Unchecked_Union (Ubt)
6882 then
6883 Decl := Build_Actual_Subtype (Ubt, Exp);
6884 Ent := Defining_Identifier (Decl);
6885 Insert_Action (Exp, Decl);
6886 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6887 Analyze_And_Resolve (Exp);
6888 end if;
6889 end;
6891 -- For types which need finalization, do the allocation on the return
6892 -- stack manually in order to call Adjust at the right time:
6894 -- type Ann is access R_Type;
6895 -- for Ann'Storage_pool use rs_pool;
6896 -- Rnn : constant Ann := new Exp_Typ'(Exp);
6897 -- return Rnn.all;
6899 -- but optimize the case where the result is a function call that
6900 -- also needs finalization. In this case the result can directly be
6901 -- allocated on the return stack of the caller and no further
6902 -- processing is required. Likewise if this is a return object.
6904 if Comes_From_Extended_Return_Statement (N) then
6905 null;
6907 elsif Present (Utyp)
6908 and then Needs_Finalization (Utyp)
6909 and then not (Exp_Is_Function_Call
6910 and then Needs_Finalization (Exp_Typ))
6911 then
6912 declare
6913 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
6915 Alloc_Node : Node_Id;
6916 Temp : Entity_Id;
6918 begin
6919 Mutate_Ekind (Acc_Typ, E_Access_Type);
6921 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_RS_Pool));
6923 -- This is an allocator for the return stack, and it's fine
6924 -- to have Comes_From_Source set False on it, as gigi knows not
6925 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6927 Alloc_Node :=
6928 Make_Allocator (Loc,
6929 Expression =>
6930 Make_Qualified_Expression (Loc,
6931 Subtype_Mark => New_Occurrence_Of (Exp_Typ, Loc),
6932 Expression => Relocate_Node (Exp)));
6934 -- We do not want discriminant checks on the declaration,
6935 -- given that it gets its value from the allocator.
6937 Set_No_Initialization (Alloc_Node);
6939 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6941 Insert_Actions (Exp, New_List (
6942 Make_Full_Type_Declaration (Loc,
6943 Defining_Identifier => Acc_Typ,
6944 Type_Definition =>
6945 Make_Access_To_Object_Definition (Loc,
6946 Subtype_Indication => Subtype_Ind)),
6948 Make_Object_Declaration (Loc,
6949 Defining_Identifier => Temp,
6950 Constant_Present => True,
6951 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
6952 Expression => Alloc_Node)));
6954 Rewrite (Exp,
6955 Make_Explicit_Dereference (Loc,
6956 Prefix => New_Occurrence_Of (Temp, Loc)));
6958 Analyze_And_Resolve (Exp, R_Type);
6959 end;
6960 end if;
6962 -- Here if secondary stack is used
6964 else
6965 -- Prevent the reclamation of the secondary stack by all enclosing
6966 -- blocks and loops as well as the related function; otherwise the
6967 -- result would be reclaimed too early.
6969 Set_Enclosing_Sec_Stack_Return (N);
6971 -- Nothing else to do for a return object
6973 if Comes_From_Extended_Return_Statement (N) then
6974 null;
6976 -- Optimize the case where the result is a function call that also
6977 -- returns on the secondary stack; in this case the result is already
6978 -- on the secondary stack and no further processing is required.
6980 elsif Exp_Is_Function_Call
6981 and then Needs_Secondary_Stack (Exp_Typ)
6982 then
6983 -- Remove side effects from the expression now so that other parts
6984 -- of the expander do not have to reanalyze this node without this
6985 -- optimization
6987 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6989 -- Ada 2005 (AI-251): If the type of the returned object is
6990 -- an interface then add an implicit type conversion to force
6991 -- displacement of the "this" pointer.
6993 if Is_Interface (R_Type) then
6994 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6995 end if;
6997 Analyze_And_Resolve (Exp, R_Type);
6999 -- For types which both need finalization and are returned on the
7000 -- secondary stack, do the allocation on secondary stack manually
7001 -- in order to call Adjust at the right time:
7003 -- type Ann is access R_Type;
7004 -- for Ann'Storage_pool use ss_pool;
7005 -- Rnn : constant Ann := new Exp_Typ'(Exp);
7006 -- return Rnn.all;
7008 -- And we do the same for class-wide types that are not potentially
7009 -- controlled (by the virtue of restriction No_Finalization) because
7010 -- gigi is not able to properly allocate class-wide types.
7012 -- But optimize the case where the result is a function call that
7013 -- also needs finalization; in this case the result can directly be
7014 -- allocated on the secondary stack and no further processing is
7015 -- required, unless the returned object is an interface.
7017 elsif CW_Or_Needs_Finalization (Utyp)
7018 and then (Is_Interface (R_Type)
7019 or else not (Exp_Is_Function_Call
7020 and then Needs_Finalization (Exp_Typ)))
7021 then
7022 declare
7023 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
7025 Alloc_Node : Node_Id;
7026 Temp : Entity_Id;
7028 begin
7029 Mutate_Ekind (Acc_Typ, E_Access_Type);
7030 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
7032 -- This is an allocator for the secondary stack, and it's fine
7033 -- to have Comes_From_Source set False on it, as gigi knows not
7034 -- to flag it as a violation of No_Implicit_Heap_Allocations.
7036 Alloc_Node :=
7037 Make_Allocator (Loc,
7038 Expression =>
7039 Make_Qualified_Expression (Loc,
7040 Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
7041 Expression => Relocate_Node (Exp)));
7043 -- We do not want discriminant checks on the declaration,
7044 -- given that it gets its value from the allocator.
7046 Set_No_Initialization (Alloc_Node);
7048 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
7050 Insert_Actions (Exp, New_List (
7051 Make_Full_Type_Declaration (Loc,
7052 Defining_Identifier => Acc_Typ,
7053 Type_Definition =>
7054 Make_Access_To_Object_Definition (Loc,
7055 Subtype_Indication => Subtype_Ind)),
7057 Make_Object_Declaration (Loc,
7058 Defining_Identifier => Temp,
7059 Constant_Present => True,
7060 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
7061 Expression => Alloc_Node)));
7063 Rewrite (Exp,
7064 Make_Explicit_Dereference (Loc,
7065 Prefix => New_Occurrence_Of (Temp, Loc)));
7067 -- Ada 2005 (AI-251): If the type of the returned object is
7068 -- an interface then add an implicit type conversion to force
7069 -- displacement of the "this" pointer.
7071 if Is_Interface (R_Type) then
7072 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
7073 end if;
7075 Analyze_And_Resolve (Exp, R_Type);
7076 end;
7078 -- Otherwise use the gigi mechanism to allocate result on the
7079 -- secondary stack.
7081 else
7082 Check_Restriction (No_Secondary_Stack, N);
7083 Set_Storage_Pool (N, RTE (RE_SS_Pool));
7084 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
7085 end if;
7086 end if;
7088 -- Implement the rules of 6.5(8-10), which require a tag check in
7089 -- the case of a limited tagged return type, and tag reassignment for
7090 -- nonlimited tagged results. These actions are needed when the return
7091 -- type is a specific tagged type and the result expression is a
7092 -- conversion or a formal parameter, because in that case the tag of
7093 -- the expression might differ from the tag of the specific result type.
7095 -- We must also verify an underlying type exists for the return type in
7096 -- case it is incomplete - in which case is not necessary to generate a
7097 -- check anyway since an incomplete limited tagged return type would
7098 -- qualify as a premature usage.
7100 if Present (Utyp)
7101 and then Is_Tagged_Type (Utyp)
7102 and then not Is_Class_Wide_Type (Utyp)
7103 and then (Nkind (Exp) in
7104 N_Type_Conversion | N_Unchecked_Type_Conversion
7105 or else (Nkind (Exp) = N_Explicit_Dereference
7106 and then Nkind (Prefix (Exp)) in
7107 N_Type_Conversion |
7108 N_Unchecked_Type_Conversion)
7109 or else (Is_Entity_Name (Exp)
7110 and then Is_Formal (Entity (Exp))))
7111 then
7112 -- When the return type is limited, perform a check that the tag of
7113 -- the result is the same as the tag of the return type.
7115 if Is_Limited_Type (R_Type) then
7116 Insert_Action (Exp,
7117 Make_Raise_Constraint_Error (Loc,
7118 Condition =>
7119 Make_Op_Ne (Loc,
7120 Left_Opnd =>
7121 Make_Selected_Component (Loc,
7122 Prefix => Duplicate_Subexpr (Exp),
7123 Selector_Name => Make_Identifier (Loc, Name_uTag)),
7124 Right_Opnd =>
7125 Make_Attribute_Reference (Loc,
7126 Prefix =>
7127 New_Occurrence_Of (Base_Type (Utyp), Loc),
7128 Attribute_Name => Name_Tag)),
7129 Reason => CE_Tag_Check_Failed));
7131 -- If the result type is a specific nonlimited tagged type, then we
7132 -- have to ensure that the tag of the result is that of the result
7133 -- type. This is handled by making a copy of the expression in
7134 -- the case where it might have a different tag, namely when the
7135 -- expression is a conversion or a formal parameter. We create a new
7136 -- object of the result type and initialize it from the expression,
7137 -- which will implicitly force the tag to be set appropriately.
7139 else
7140 declare
7141 ExpR : constant Node_Id := Relocate_Node (Exp);
7142 Result_Id : constant Entity_Id :=
7143 Make_Temporary (Loc, 'R', ExpR);
7144 Result_Exp : constant Node_Id :=
7145 New_Occurrence_Of (Result_Id, Loc);
7146 Result_Obj : constant Node_Id :=
7147 Make_Object_Declaration (Loc,
7148 Defining_Identifier => Result_Id,
7149 Object_Definition =>
7150 New_Occurrence_Of (R_Type, Loc),
7151 Constant_Present => True,
7152 Expression => ExpR);
7154 begin
7155 Set_Assignment_OK (Result_Obj);
7156 Insert_Action (Exp, Result_Obj);
7158 Rewrite (Exp, Result_Exp);
7159 Analyze_And_Resolve (Exp, R_Type);
7160 end;
7161 end if;
7163 -- Ada 2005 (AI95-344): If the result type is class-wide, then insert
7164 -- a check that the level of the return expression's underlying type
7165 -- is not deeper than the level of the master enclosing the function.
7167 -- AI12-043: The check is made immediately after the return object is
7168 -- created. This means that we do not apply it to the simple return
7169 -- generated by the expansion of an extended return statement.
7171 -- No runtime check needed in interface thunks since it is performed
7172 -- by the target primitive associated with the thunk.
7174 elsif Is_Class_Wide_Type (R_Type)
7175 and then not Comes_From_Extended_Return_Statement (N)
7176 and then not Is_Thunk (Scope_Id)
7177 then
7178 Apply_CW_Accessibility_Check (Exp, Scope_Id);
7180 -- Ada 2012 (AI05-0073): If the result subtype of the function is
7181 -- defined by an access_definition designating a specific tagged
7182 -- type T, a check is made that the result value is null or the tag
7183 -- of the object designated by the result value identifies T.
7185 -- The return expression is referenced twice in the code below, so it
7186 -- must be made free of side effects. Given that different compilers
7187 -- may evaluate these parameters in different order, both occurrences
7188 -- perform a copy.
7190 elsif Ekind (R_Type) = E_Anonymous_Access_Type
7191 and then Is_Tagged_Type (Designated_Type (R_Type))
7192 and then not Is_Class_Wide_Type (Designated_Type (R_Type))
7193 and then Nkind (Original_Node (Exp)) /= N_Null
7194 and then not Tag_Checks_Suppressed (Designated_Type (R_Type))
7195 then
7196 -- Generate:
7197 -- [Constraint_Error
7198 -- when Exp /= null
7199 -- and then Exp.all not in Designated_Type]
7201 Insert_Action (N,
7202 Make_Raise_Constraint_Error (Loc,
7203 Condition =>
7204 Make_And_Then (Loc,
7205 Left_Opnd =>
7206 Make_Op_Ne (Loc,
7207 Left_Opnd => Duplicate_Subexpr (Exp),
7208 Right_Opnd => Make_Null (Loc)),
7210 Right_Opnd =>
7211 Make_Not_In (Loc,
7212 Left_Opnd =>
7213 Make_Explicit_Dereference (Loc,
7214 Prefix => Duplicate_Subexpr (Exp)),
7215 Right_Opnd =>
7216 New_Occurrence_Of (Designated_Type (R_Type), Loc))),
7218 Reason => CE_Tag_Check_Failed),
7219 Suppress => All_Checks);
7220 end if;
7222 -- If the result is of an unconstrained array subtype with fixed lower
7223 -- bound, then sliding to that bound may be needed.
7225 if Is_Fixed_Lower_Bound_Array_Subtype (R_Type) then
7226 Expand_Sliding_Conversion (Exp, R_Type);
7227 end if;
7229 -- If we are returning a nonscalar object that is possibly unaligned,
7230 -- then copy the value into a temporary first. This copy may need to
7231 -- expand to a loop of component operations.
7233 if Is_Possibly_Unaligned_Slice (Exp)
7234 or else (Is_Possibly_Unaligned_Object (Exp)
7235 and then not Represented_As_Scalar (Etype (Exp)))
7236 then
7237 declare
7238 ExpR : constant Node_Id := Relocate_Node (Exp);
7239 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
7240 begin
7241 Insert_Action (Exp,
7242 Make_Object_Declaration (Loc,
7243 Defining_Identifier => Tnn,
7244 Constant_Present => True,
7245 Object_Definition => New_Occurrence_Of (R_Type, Loc),
7246 Expression => ExpR),
7247 Suppress => All_Checks);
7248 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
7249 end;
7250 end if;
7252 -- Ada 2005 (AI-251): If this return statement corresponds with an
7253 -- simple return statement associated with an extended return statement
7254 -- and the type of the returned object is an interface then generate an
7255 -- implicit conversion to force displacement of the "this" pointer.
7257 if Ada_Version >= Ada_2005
7258 and then Comes_From_Extended_Return_Statement (N)
7259 and then Nkind (Expression (N)) = N_Identifier
7260 and then Is_Interface (Utyp)
7261 and then Utyp /= Underlying_Type (Exp_Typ)
7262 then
7263 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
7264 Analyze_And_Resolve (Exp);
7265 end if;
7267 -- Ada 2022 (AI12-0279)
7269 if Has_Yield_Aspect (Scope_Id)
7270 and then RTE_Available (RE_Yield)
7271 then
7272 Insert_Action (N,
7273 Make_Procedure_Call_Statement (Loc,
7274 New_Occurrence_Of (RTE (RE_Yield), Loc)));
7275 end if;
7276 end Expand_Simple_Function_Return;
7278 -----------------------
7279 -- Freeze_Subprogram --
7280 -----------------------
7282 procedure Freeze_Subprogram (N : Node_Id) is
7283 Loc : constant Source_Ptr := Sloc (N);
7284 Subp : constant Entity_Id := Entity (N);
7286 begin
7287 -- We suppress the initialization of the dispatch table entry when
7288 -- not Tagged_Type_Expansion because the dispatching mechanism is
7289 -- handled internally by the target.
7291 if Is_Dispatching_Operation (Subp)
7292 and then not Is_Abstract_Subprogram (Subp)
7293 and then Present (DTC_Entity (Subp))
7294 and then Present (Scope (DTC_Entity (Subp)))
7295 and then Tagged_Type_Expansion
7296 and then not Restriction_Active (No_Dispatching_Calls)
7297 and then RTE_Available (RE_Tag)
7298 then
7299 declare
7300 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
7302 L : List_Id;
7304 begin
7305 -- Handle private overridden primitives
7307 if not Is_CPP_Class (Typ) then
7308 Check_Overriding_Operation (Subp);
7309 end if;
7311 -- We assume that imported CPP primitives correspond with objects
7312 -- whose constructor is in the CPP side; therefore we don't need
7313 -- to generate code to register them in the dispatch table.
7315 if Is_CPP_Class (Typ) then
7316 null;
7318 -- Handle CPP primitives found in derivations of CPP_Class types.
7319 -- These primitives must have been inherited from some parent, and
7320 -- there is no need to register them in the dispatch table because
7321 -- Build_Inherit_Prims takes care of initializing these slots.
7323 elsif Is_Imported (Subp)
7324 and then Convention (Subp) in Convention_C_Family
7325 then
7326 null;
7328 -- Generate code to register the primitive in non statically
7329 -- allocated dispatch tables
7331 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
7333 -- When a primitive is frozen, enter its name in its dispatch
7334 -- table slot.
7336 if not Is_Interface (Typ)
7337 or else Present (Interface_Alias (Subp))
7338 then
7339 if Is_Predefined_Dispatching_Operation (Subp) then
7340 L := Register_Predefined_Primitive (Loc, Subp);
7341 else
7342 L := New_List;
7343 end if;
7345 Append_List_To (L, Register_Primitive (Loc, Subp));
7347 if Is_Empty_List (L) then
7348 null;
7350 elsif No (Actions (N)) then
7351 Set_Actions (N, L);
7353 else
7354 Append_List (L, Actions (N));
7355 end if;
7356 end if;
7357 end if;
7358 end;
7359 end if;
7361 -- Mark functions that return by reference. Note that it cannot be part
7362 -- of the normal semantic analysis of the spec since the underlying
7363 -- returned type may not be known yet (for private types).
7365 Compute_Returns_By_Ref (Subp);
7366 end Freeze_Subprogram;
7368 --------------------------
7369 -- Has_BIP_Extra_Formal --
7370 --------------------------
7372 function Has_BIP_Extra_Formal
7373 (E : Entity_Id;
7374 Kind : BIP_Formal_Kind;
7375 Must_Be_Frozen : Boolean := True) return Boolean
7377 Extra_Formal : Entity_Id := Extra_Formals (E);
7379 begin
7380 -- We can only rely on the availability of the extra formals in frozen
7381 -- entities or in subprogram types of dispatching calls (since their
7382 -- extra formals are added when the target subprogram is frozen; see
7383 -- Expand_Dispatching_Call).
7385 pragma Assert ((Is_Frozen (E) or else not Must_Be_Frozen)
7386 or else (Ekind (E) = E_Subprogram_Type
7387 and then Is_Dispatch_Table_Entity (E))
7388 or else (Is_Dispatching_Operation (E)
7389 and then Is_Frozen (Find_Dispatching_Type (E))));
7391 while Present (Extra_Formal) loop
7392 if Is_Build_In_Place_Entity (Extra_Formal)
7393 and then BIP_Suffix_Kind (Extra_Formal) = Kind
7394 then
7395 return True;
7396 end if;
7398 Next_Formal_With_Extras (Extra_Formal);
7399 end loop;
7401 return False;
7402 end Has_BIP_Extra_Formal;
7404 ------------------------------
7405 -- Insert_Post_Call_Actions --
7406 ------------------------------
7408 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id) is
7409 Context : constant Node_Id := Parent (N);
7411 begin
7412 if Is_Empty_List (Post_Call) then
7413 return;
7414 end if;
7416 -- Cases where the call is not a member of a statement list. This also
7417 -- includes the cases where the call is an actual in another function
7418 -- call, or is an index, or is an operand of an if-expression, i.e. is
7419 -- in an expression context.
7421 if not Is_List_Member (N)
7422 or else Nkind (Context) in N_Function_Call
7423 | N_If_Expression
7424 | N_Indexed_Component
7425 then
7426 -- In Ada 2012 the call may be a function call in an expression
7427 -- (since OUT and IN OUT parameters are now allowed for such calls).
7428 -- The write-back of (in)-out parameters is handled by the back-end,
7429 -- but the constraint checks generated when subtypes of formal and
7430 -- actual don't match must be inserted in the form of assignments.
7431 -- Also do this in the case of explicit dereferences, which can occur
7432 -- due to rewritings of function calls with controlled results.
7434 if Nkind (N) = N_Function_Call
7435 or else Nkind (Original_Node (N)) = N_Function_Call
7436 or else Nkind (N) = N_Explicit_Dereference
7437 then
7438 pragma Assert (Ada_Version >= Ada_2012);
7439 -- Functions with '[in] out' parameters are only allowed in Ada
7440 -- 2012.
7442 -- We used to handle this by climbing up parents to a
7443 -- non-statement/declaration and then simply making a call to
7444 -- Insert_Actions_After (P, Post_Call), but that doesn't work
7445 -- for Ada 2012. If we are in the middle of an expression, e.g.
7446 -- the condition of an IF, this call would insert after the IF
7447 -- statement, which is much too late to be doing the write back.
7448 -- For example:
7450 -- if Clobber (X) then
7451 -- Put_Line (X'Img);
7452 -- else
7453 -- goto Junk
7454 -- end if;
7456 -- Now assume Clobber changes X, if we put the write back after
7457 -- the IF, the Put_Line gets the wrong value and the goto causes
7458 -- the write back to be skipped completely.
7460 -- To deal with this, we replace the call by
7462 -- do
7463 -- Tnnn : constant function-result-type := function-call;
7464 -- Post_Call actions
7465 -- in
7466 -- Tnnn;
7467 -- end;
7469 -- However, that doesn't work if function-result-type requires
7470 -- finalization (because function-call's result never gets
7471 -- finalized). So in that case, we instead replace the call by
7473 -- do
7474 -- type Ref is access all function-result-type;
7475 -- Ptr : constant Ref := function-call'Reference;
7476 -- Tnnn : constant function-result-type := Ptr.all;
7477 -- Finalize (Ptr.all);
7478 -- Post_Call actions
7479 -- in
7480 -- Tnnn;
7481 -- end;
7484 declare
7485 Loc : constant Source_Ptr := Sloc (N);
7486 Tnnn : constant Entity_Id := Make_Temporary (Loc, 'T');
7487 FRTyp : constant Entity_Id := Etype (N);
7488 Name : constant Node_Id := Relocate_Node (N);
7490 begin
7491 if Needs_Finalization (FRTyp) then
7492 declare
7493 Ptr_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
7495 Ptr_Typ_Decl : constant Node_Id :=
7496 Make_Full_Type_Declaration (Loc,
7497 Defining_Identifier => Ptr_Typ,
7498 Type_Definition =>
7499 Make_Access_To_Object_Definition (Loc,
7500 All_Present => True,
7501 Subtype_Indication =>
7502 New_Occurrence_Of (FRTyp, Loc)));
7504 Ptr_Obj : constant Entity_Id :=
7505 Make_Temporary (Loc, 'P');
7507 Ptr_Obj_Decl : constant Node_Id :=
7508 Make_Object_Declaration (Loc,
7509 Defining_Identifier => Ptr_Obj,
7510 Object_Definition =>
7511 New_Occurrence_Of (Ptr_Typ, Loc),
7512 Constant_Present => True,
7513 Expression =>
7514 Make_Attribute_Reference (Loc,
7515 Prefix => Name,
7516 Attribute_Name => Name_Unrestricted_Access));
7518 function Ptr_Dereference return Node_Id is
7519 (Make_Explicit_Dereference (Loc,
7520 Prefix => New_Occurrence_Of (Ptr_Obj, Loc)));
7522 Tnn_Decl : constant Node_Id :=
7523 Make_Object_Declaration (Loc,
7524 Defining_Identifier => Tnnn,
7525 Object_Definition => New_Occurrence_Of (FRTyp, Loc),
7526 Constant_Present => True,
7527 Expression => Ptr_Dereference);
7529 Finalize_Call : constant Node_Id :=
7530 Make_Final_Call
7531 (Obj_Ref => Ptr_Dereference, Typ => FRTyp);
7532 begin
7533 -- Prepend in reverse order
7535 Prepend_To (Post_Call, Finalize_Call);
7536 Prepend_To (Post_Call, Tnn_Decl);
7537 Prepend_To (Post_Call, Ptr_Obj_Decl);
7538 Prepend_To (Post_Call, Ptr_Typ_Decl);
7539 end;
7540 else
7541 Prepend_To (Post_Call,
7542 Make_Object_Declaration (Loc,
7543 Defining_Identifier => Tnnn,
7544 Object_Definition => New_Occurrence_Of (FRTyp, Loc),
7545 Constant_Present => True,
7546 Expression => Name));
7547 end if;
7549 Rewrite (N,
7550 Make_Expression_With_Actions (Loc,
7551 Actions => Post_Call,
7552 Expression => New_Occurrence_Of (Tnnn, Loc)));
7554 -- We don't want to just blindly call Analyze_And_Resolve
7555 -- because that would cause unwanted recursion on the call.
7556 -- So for a moment set the call as analyzed to prevent that
7557 -- recursion, and get the rest analyzed properly, then reset
7558 -- the analyzed flag, so our caller can continue.
7560 Set_Analyzed (Name, True);
7561 Analyze_And_Resolve (N, FRTyp);
7562 Set_Analyzed (Name, False);
7563 end;
7565 -- If not the special Ada 2012 case of a function call, then we must
7566 -- have the triggering statement of a triggering alternative or an
7567 -- entry call alternative, and we can add the post call stuff to the
7568 -- corresponding statement list.
7570 else
7571 pragma Assert (Nkind (Context) in N_Entry_Call_Alternative
7572 | N_Triggering_Alternative);
7574 if Is_Non_Empty_List (Statements (Context)) then
7575 Insert_List_Before_And_Analyze
7576 (First (Statements (Context)), Post_Call);
7577 else
7578 Set_Statements (Context, Post_Call);
7579 end if;
7580 end if;
7582 -- A procedure call is always part of a declarative or statement list,
7583 -- however a function call may appear nested within a construct. Most
7584 -- cases of function call nesting are handled in the special case above.
7585 -- The only exception is when the function call acts as an actual in a
7586 -- procedure call. In this case the function call is in a list, but the
7587 -- post-call actions must be inserted after the procedure call.
7588 -- What if the function call is an aggregate component ???
7590 elsif Nkind (Context) = N_Procedure_Call_Statement then
7591 Insert_Actions_After (Context, Post_Call);
7593 -- Otherwise, normal case where N is in a statement sequence, just put
7594 -- the post-call stuff after the call statement.
7596 else
7597 Insert_Actions_After (N, Post_Call);
7598 end if;
7599 end Insert_Post_Call_Actions;
7601 ---------------------------------------
7602 -- Install_Class_Preconditions_Check --
7603 ---------------------------------------
7605 procedure Install_Class_Preconditions_Check (Call_Node : Node_Id) is
7606 Loc : constant Source_Ptr := Sloc (Call_Node);
7608 function Build_Dynamic_Check_Helper_Call return Node_Id;
7609 -- Build call to the helper runtime function of the nearest ancestor
7610 -- of the target subprogram that dynamically evaluates the merged
7611 -- or-else preconditions.
7613 function Build_Error_Message (Subp_Id : Entity_Id) return Node_Id;
7614 -- Build message associated with the class-wide precondition of Subp_Id
7615 -- indicating the call that caused it.
7617 function Build_Static_Check_Helper_Call return Node_Id;
7618 -- Build call to the helper runtime function of the nearest ancestor
7619 -- of the target subprogram that dynamically evaluates the merged
7620 -- or-else preconditions.
7622 function Class_Preconditions_Subprogram
7623 (Spec_Id : Entity_Id;
7624 Dynamic : Boolean) return Node_Id;
7625 -- Return the nearest ancestor of Spec_Id defining a helper function
7626 -- that evaluates a combined or-else expression containing all the
7627 -- inherited class-wide preconditions; Dynamic enables searching for
7628 -- the helper that dynamically evaluates preconditions using dispatching
7629 -- calls; if False it searches for the helper that statically evaluates
7630 -- preconditions; return Empty when not available (which means that no
7631 -- preconditions check is required).
7633 -------------------------------------
7634 -- Build_Dynamic_Check_Helper_Call --
7635 -------------------------------------
7637 function Build_Dynamic_Check_Helper_Call return Node_Id is
7638 Spec_Id : constant Entity_Id := Entity (Name (Call_Node));
7639 CW_Subp : constant Entity_Id :=
7640 Class_Preconditions_Subprogram (Spec_Id,
7641 Dynamic => True);
7642 Helper_Id : constant Entity_Id :=
7643 Dynamic_Call_Helper (CW_Subp);
7644 Actuals : constant List_Id := New_List;
7645 A : Node_Id := First_Actual (Call_Node);
7647 begin
7648 while Present (A) loop
7650 -- Ensure that the evaluation of the actuals will not produce
7651 -- side effects.
7653 Remove_Side_Effects (A);
7655 Append_To (Actuals, New_Copy_Tree (A));
7657 Next_Actual (A);
7658 end loop;
7660 return
7661 Make_Function_Call (Loc,
7662 Name => New_Occurrence_Of (Helper_Id, Loc),
7663 Parameter_Associations => Actuals);
7664 end Build_Dynamic_Check_Helper_Call;
7666 -------------------------
7667 -- Build_Error_Message --
7668 -------------------------
7670 function Build_Error_Message (Subp_Id : Entity_Id) return Node_Id is
7672 procedure Append_Message
7673 (Id : Entity_Id;
7674 Is_First : in out Boolean);
7675 -- Build the fragment of the message associated with subprogram Id;
7676 -- Is_First facilitates identifying continuation messages.
7678 --------------------
7679 -- Append_Message --
7680 --------------------
7682 procedure Append_Message
7683 (Id : Entity_Id;
7684 Is_First : in out Boolean)
7686 Prag : constant Node_Id :=
7687 Get_Class_Wide_Pragma (Id, Pragma_Precondition);
7689 begin
7690 if No (Prag) or else Is_Ignored (Prag) then
7691 return;
7692 end if;
7694 if Is_First then
7695 Is_First := False;
7697 if Id /= Subp_Id then
7698 Append
7699 (Global_Name_Buffer, "failed inherited precondition ");
7700 else
7701 Append (Global_Name_Buffer, "failed precondition ");
7702 end if;
7704 else
7705 Append (Global_Name_Buffer, ASCII.LF);
7706 Append (Global_Name_Buffer, " or ");
7708 Append (Global_Name_Buffer, "failed inherited precondition ");
7709 end if;
7711 Append (Global_Name_Buffer, "from " &
7712 Build_Location_String
7713 (Sloc
7714 (First_Node
7715 (Expression
7716 (First (Pragma_Argument_Associations (Prag)))))));
7717 end Append_Message;
7719 -- Local variables
7721 Str_Loc : constant String := Build_Location_String (Loc);
7722 Subps : constant Subprogram_List :=
7723 Inherited_Subprograms (Subp_Id);
7724 Is_First : Boolean := True;
7726 -- Start of processing for Build_Error_Message
7728 begin
7729 Name_Len := 0;
7730 Append_Message (Subp_Id, Is_First);
7732 for Index in Subps'Range loop
7733 Append_Message (Subps (Index), Is_First);
7734 end loop;
7736 if Present (Controlling_Argument (Call_Node)) then
7737 Append (Global_Name_Buffer, " in dispatching call at ");
7738 else
7739 Append (Global_Name_Buffer, " in call at ");
7740 end if;
7742 Append (Global_Name_Buffer, Str_Loc);
7744 return Make_String_Literal (Loc, Name_Buffer (1 .. Name_Len));
7745 end Build_Error_Message;
7747 ------------------------------------
7748 -- Build_Static_Check_Helper_Call --
7749 ------------------------------------
7751 function Build_Static_Check_Helper_Call return Node_Id is
7752 Actuals : constant List_Id := New_List;
7753 A : Node_Id;
7754 Helper_Id : Entity_Id;
7755 F : Entity_Id;
7756 CW_Subp : Entity_Id;
7757 Spec_Id : constant Entity_Id := Entity (Name (Call_Node));
7759 begin
7760 -- The target is the wrapper built to support inheriting body but
7761 -- overriding pre/postconditions (AI12-0195).
7763 if Is_Dispatch_Table_Wrapper (Spec_Id) then
7764 CW_Subp := Spec_Id;
7766 -- Common case
7768 else
7769 CW_Subp := Class_Preconditions_Subprogram (Spec_Id,
7770 Dynamic => False);
7771 end if;
7773 Helper_Id := Static_Call_Helper (CW_Subp);
7775 F := First_Formal (Helper_Id);
7776 A := First_Actual (Call_Node);
7777 while Present (A) loop
7779 -- Ensure that the evaluation of the actuals will not produce
7780 -- side effects.
7782 Remove_Side_Effects (A);
7784 -- Ensure matching types to avoid reporting spurious errors since
7785 -- the called helper may have been built for a parent type.
7787 if Etype (F) /= Etype (A) then
7788 Append_To (Actuals,
7789 Unchecked_Convert_To (Etype (F), New_Copy_Tree (A)));
7790 else
7791 Append_To (Actuals, New_Copy_Tree (A));
7792 end if;
7794 Next_Formal (F);
7795 Next_Actual (A);
7796 end loop;
7798 return
7799 Make_Function_Call (Loc,
7800 Name => New_Occurrence_Of (Helper_Id, Loc),
7801 Parameter_Associations => Actuals);
7802 end Build_Static_Check_Helper_Call;
7804 ------------------------------------
7805 -- Class_Preconditions_Subprogram --
7806 ------------------------------------
7808 function Class_Preconditions_Subprogram
7809 (Spec_Id : Entity_Id;
7810 Dynamic : Boolean) return Node_Id
7812 Subp_Id : constant Entity_Id := Ultimate_Alias (Spec_Id);
7814 begin
7815 -- Prevent cascaded errors
7817 if not Is_Dispatching_Operation (Subp_Id) then
7818 return Empty;
7820 -- No need to search if this subprogram has the helper we are
7821 -- searching
7823 elsif Dynamic then
7824 if Present (Dynamic_Call_Helper (Subp_Id)) then
7825 return Subp_Id;
7826 end if;
7827 else
7828 if Present (Static_Call_Helper (Subp_Id)) then
7829 return Subp_Id;
7830 end if;
7831 end if;
7833 -- Process inherited subprograms looking for class-wide
7834 -- preconditions.
7836 declare
7837 Subps : constant Subprogram_List :=
7838 Inherited_Subprograms (Subp_Id);
7839 Subp_Id : Entity_Id;
7841 begin
7842 for Index in Subps'Range loop
7843 Subp_Id := Subps (Index);
7845 if Present (Alias (Subp_Id)) then
7846 Subp_Id := Ultimate_Alias (Subp_Id);
7847 end if;
7849 -- Wrappers of class-wide pre/postconditions reference the
7850 -- parent primitive that has the inherited contract.
7852 if Is_Wrapper (Subp_Id)
7853 and then Present (LSP_Subprogram (Subp_Id))
7854 then
7855 Subp_Id := LSP_Subprogram (Subp_Id);
7856 end if;
7858 if Dynamic then
7859 if Present (Dynamic_Call_Helper (Subp_Id)) then
7860 return Subp_Id;
7861 end if;
7862 else
7863 if Present (Static_Call_Helper (Subp_Id)) then
7864 return Subp_Id;
7865 end if;
7866 end if;
7867 end loop;
7868 end;
7870 return Empty;
7871 end Class_Preconditions_Subprogram;
7873 -- Local variables
7875 Dynamic_Check : constant Boolean :=
7876 Present (Controlling_Argument (Call_Node));
7877 Class_Subp : Entity_Id;
7878 Cond : Node_Id;
7879 Fail : Node_Id;
7880 Subp : Entity_Id;
7882 -- Start of processing for Install_Class_Preconditions_Check
7884 begin
7885 -- Do not expand the check if we are compiling under restriction
7886 -- No_Dispatching_Calls; the semantic analyzer has previously
7887 -- notified the violation of this restriction.
7889 if Dynamic_Check
7890 and then Restriction_Active (No_Dispatching_Calls)
7891 then
7892 return;
7894 -- Class-wide precondition check not needed in interface thunks since
7895 -- they are installed in the dispatching call that caused invoking the
7896 -- thunk.
7898 elsif Is_Thunk (Current_Scope) then
7899 return;
7900 end if;
7902 Subp := Entity (Name (Call_Node));
7904 -- No check needed for this subprogram call if no class-wide
7905 -- preconditions apply (or if the unique available preconditions
7906 -- are ignored preconditions).
7908 Class_Subp := Class_Preconditions_Subprogram (Subp, Dynamic_Check);
7910 if No (Class_Subp)
7911 or else No (Class_Preconditions (Class_Subp))
7912 then
7913 return;
7914 end if;
7916 -- Build and install the check
7918 if Dynamic_Check then
7919 Cond := Build_Dynamic_Check_Helper_Call;
7920 else
7921 Cond := Build_Static_Check_Helper_Call;
7922 end if;
7924 if Exception_Locations_Suppressed then
7925 Fail :=
7926 Make_Raise_Statement (Loc,
7927 Name =>
7928 New_Occurrence_Of
7929 (RTE (RE_Assert_Failure), Loc));
7931 -- Failed check with message indicating the failed precondition and the
7932 -- call that caused it.
7934 else
7935 Fail :=
7936 Make_Procedure_Call_Statement (Loc,
7937 Name =>
7938 New_Occurrence_Of
7939 (RTE (RE_Raise_Assert_Failure), Loc),
7940 Parameter_Associations =>
7941 New_List (Build_Error_Message (Subp)));
7942 end if;
7944 Insert_Action (Call_Node,
7945 Make_If_Statement (Loc,
7946 Condition => Make_Op_Not (Loc, Cond),
7947 Then_Statements => New_List (Fail)));
7948 end Install_Class_Preconditions_Check;
7950 ------------------------------
7951 -- Is_Build_In_Place_Entity --
7952 ------------------------------
7954 function Is_Build_In_Place_Entity (E : Entity_Id) return Boolean is
7955 Nam : constant String := Get_Name_String (Chars (E));
7957 function Has_Suffix (Suffix : String) return Boolean;
7958 -- Return True if Nam has suffix Suffix
7960 function Has_Suffix (Suffix : String) return Boolean is
7961 Len : constant Natural := Suffix'Length;
7962 begin
7963 return Nam'Length > Len
7964 and then Nam (Nam'Last - Len + 1 .. Nam'Last) = Suffix;
7965 end Has_Suffix;
7967 -- Start of processing for Is_Build_In_Place_Entity
7969 begin
7970 return Has_Suffix (BIP_Alloc_Suffix)
7971 or else Has_Suffix (BIP_Storage_Pool_Suffix)
7972 or else Has_Suffix (BIP_Collection_Suffix)
7973 or else Has_Suffix (BIP_Task_Master_Suffix)
7974 or else Has_Suffix (BIP_Activation_Chain_Suffix)
7975 or else Has_Suffix (BIP_Object_Access_Suffix);
7976 end Is_Build_In_Place_Entity;
7978 --------------------------------
7979 -- Is_Build_In_Place_Function --
7980 --------------------------------
7982 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
7983 Kind : constant Entity_Kind := Ekind (E);
7984 Typ : constant Entity_Id := Etype (E);
7986 begin
7987 -- This function is called from Expand_Subtype_From_Expr during
7988 -- semantic analysis, even when expansion is off. In those cases
7989 -- the build_in_place expansion will not take place.
7991 if not Expander_Active then
7992 return False;
7993 end if;
7995 -- We never use build-in-place if the convention is other than Ada,
7996 -- but note that it is OK for a build-in-place function to return a
7997 -- type with a foreign convention because the machinery ensures there
7998 -- is no copying.
8000 return (Kind in E_Function | E_Generic_Function
8001 or else
8002 (Kind = E_Subprogram_Type and then Typ /= Standard_Void_Type))
8003 and then Is_Build_In_Place_Result_Type (Typ)
8004 and then not Has_Foreign_Convention (E);
8005 end Is_Build_In_Place_Function;
8007 -------------------------------------
8008 -- Is_Build_In_Place_Function_Call --
8009 -------------------------------------
8011 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
8012 Exp_Node : constant Node_Id := Unqual_Conv (N);
8013 Function_Id : Entity_Id;
8015 begin
8016 -- Return False if the expander is currently inactive, since awareness
8017 -- of build-in-place treatment is only relevant during expansion. Note
8018 -- that Is_Build_In_Place_Function, which is called as part of this
8019 -- function, is also conditioned this way, but we need to check here as
8020 -- well to avoid blowing up on processing protected calls when expansion
8021 -- is disabled (such as with -gnatc) since those would trip over the
8022 -- raise of Program_Error below.
8024 -- In SPARK mode, build-in-place calls are not expanded, so that we
8025 -- may end up with a call that is neither resolved to an entity, nor
8026 -- an indirect call.
8028 if not Expander_Active or else Nkind (Exp_Node) /= N_Function_Call then
8029 return False;
8030 end if;
8032 if Is_Entity_Name (Name (Exp_Node)) then
8033 Function_Id := Entity (Name (Exp_Node));
8035 -- In the case of an explicitly dereferenced call, use the subprogram
8036 -- type generated for the dereference.
8038 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
8039 Function_Id := Etype (Name (Exp_Node));
8041 -- This may be a call to a protected function.
8043 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
8044 -- The selector in question might not have been analyzed due to a
8045 -- previous error, so analyze it here to output the appropriate
8046 -- error message instead of crashing when attempting to fetch its
8047 -- entity.
8049 if not Analyzed (Selector_Name (Name (Exp_Node))) then
8050 Analyze (Selector_Name (Name (Exp_Node)));
8051 end if;
8053 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
8055 else
8056 raise Program_Error;
8057 end if;
8059 declare
8060 Result : constant Boolean := Is_Build_In_Place_Function (Function_Id);
8061 -- So we can stop here in the debugger
8062 begin
8063 return Result;
8064 end;
8065 end Is_Build_In_Place_Function_Call;
8067 ---------------------------------------
8068 -- Is_Function_Call_With_BIP_Formals --
8069 ---------------------------------------
8071 function Is_Function_Call_With_BIP_Formals (N : Node_Id) return Boolean is
8072 Exp_Node : constant Node_Id := Unqual_Conv (N);
8073 Function_Id : Entity_Id;
8075 begin
8076 -- Return False if the expander is currently inactive, since awareness
8077 -- of build-in-place treatment is only relevant during expansion. Note
8078 -- that Is_Build_In_Place_Function, which is called as part of this
8079 -- function, is also conditioned this way, but we need to check here as
8080 -- well to avoid blowing up on processing protected calls when expansion
8081 -- is disabled (such as with -gnatc) since those would trip over the
8082 -- raise of Program_Error below.
8084 -- In SPARK mode, build-in-place calls are not expanded, so that we
8085 -- may end up with a call that is neither resolved to an entity, nor
8086 -- an indirect call.
8088 if not Expander_Active or else Nkind (Exp_Node) /= N_Function_Call then
8089 return False;
8090 end if;
8092 if Is_Entity_Name (Name (Exp_Node)) then
8093 Function_Id := Entity (Name (Exp_Node));
8095 -- In the case of an explicitly dereferenced call, use the subprogram
8096 -- type generated for the dereference.
8098 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
8099 Function_Id := Etype (Name (Exp_Node));
8101 -- This may be a call to a protected function.
8103 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
8104 -- The selector in question might not have been analyzed due to a
8105 -- previous error, so analyze it here to output the appropriate
8106 -- error message instead of crashing when attempting to fetch its
8107 -- entity.
8109 if not Analyzed (Selector_Name (Name (Exp_Node))) then
8110 Analyze (Selector_Name (Name (Exp_Node)));
8111 end if;
8113 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
8115 else
8116 raise Program_Error;
8117 end if;
8119 if Is_Build_In_Place_Function (Function_Id) then
8120 return True;
8122 -- True also if the function has BIP Formals
8124 else
8125 declare
8126 Kind : constant Entity_Kind := Ekind (Function_Id);
8128 begin
8129 if (Kind in E_Function | E_Generic_Function
8130 or else (Kind = E_Subprogram_Type
8131 and then
8132 Etype (Function_Id) /= Standard_Void_Type))
8133 and then Has_BIP_Formals (Function_Id)
8134 then
8135 -- So we can stop here in the debugger
8136 return True;
8137 else
8138 return False;
8139 end if;
8140 end;
8141 end if;
8142 end Is_Function_Call_With_BIP_Formals;
8144 -----------------------------------
8145 -- Is_Build_In_Place_Result_Type --
8146 -----------------------------------
8148 function Is_Build_In_Place_Result_Type (Typ : Entity_Id) return Boolean is
8149 begin
8150 if not Expander_Active then
8151 return False;
8152 end if;
8154 -- In Ada 2005 all functions with an inherently limited return type
8155 -- must be handled using a build-in-place profile, including the case
8156 -- of a function with a limited interface result, where the function
8157 -- may return objects of nonlimited descendants.
8159 return Is_Inherently_Limited_Type (Typ)
8160 and then Ada_Version >= Ada_2005
8161 and then not Debug_Flag_Dot_L;
8162 end Is_Build_In_Place_Result_Type;
8164 -------------------------------------
8165 -- Is_Build_In_Place_Return_Object --
8166 -------------------------------------
8168 function Is_Build_In_Place_Return_Object (E : Entity_Id) return Boolean is
8169 begin
8170 return Is_Return_Object (E)
8171 and then Is_Build_In_Place_Function (Return_Applies_To (Scope (E)));
8172 end Is_Build_In_Place_Return_Object;
8174 -----------------------------------
8175 -- Is_By_Reference_Return_Object --
8176 -----------------------------------
8178 function Is_By_Reference_Return_Object (E : Entity_Id) return Boolean is
8179 begin
8180 return Is_Return_Object (E)
8181 and then Is_By_Reference_Type (Etype (Return_Applies_To (Scope (E))));
8182 end Is_By_Reference_Return_Object;
8184 -----------------------
8185 -- Is_Null_Procedure --
8186 -----------------------
8188 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
8189 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
8191 begin
8192 if Ekind (Subp) /= E_Procedure then
8193 return False;
8195 -- Check if this is a declared null procedure
8197 elsif Nkind (Decl) = N_Subprogram_Declaration then
8198 if not Null_Present (Specification (Decl)) then
8199 return False;
8201 elsif No (Body_To_Inline (Decl)) then
8202 return False;
8204 -- Check if the body contains only a null statement, followed by
8205 -- the return statement added during expansion.
8207 else
8208 declare
8209 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
8211 Stat : Node_Id;
8212 Stat2 : Node_Id;
8214 begin
8215 if Nkind (Orig_Bod) /= N_Subprogram_Body then
8216 return False;
8217 else
8218 -- We must skip SCIL nodes because they are currently
8219 -- implemented as special N_Null_Statement nodes.
8221 Stat :=
8222 First_Non_SCIL_Node
8223 (Statements (Handled_Statement_Sequence (Orig_Bod)));
8224 Stat2 := Next_Non_SCIL_Node (Stat);
8226 return
8227 Is_Empty_List (Declarations (Orig_Bod))
8228 and then Nkind (Stat) = N_Null_Statement
8229 and then
8230 (No (Stat2)
8231 or else
8232 (Nkind (Stat2) = N_Simple_Return_Statement
8233 and then No (Next (Stat2))));
8234 end if;
8235 end;
8236 end if;
8238 else
8239 return False;
8240 end if;
8241 end Is_Null_Procedure;
8243 --------------------------------------
8244 -- Is_Secondary_Stack_Return_Object --
8245 --------------------------------------
8247 function Is_Secondary_Stack_Return_Object (E : Entity_Id) return Boolean is
8248 begin
8249 return Is_Return_Object (E)
8250 and then Needs_Secondary_Stack (Etype (Return_Applies_To (Scope (E))));
8251 end Is_Secondary_Stack_Return_Object;
8253 ------------------------------
8254 -- Is_Special_Return_Object --
8255 ------------------------------
8257 function Is_Special_Return_Object (E : Entity_Id) return Boolean is
8258 begin
8259 return Is_Build_In_Place_Return_Object (E)
8260 or else Is_Secondary_Stack_Return_Object (E)
8261 or else (Back_End_Return_Slot
8262 and then Is_By_Reference_Return_Object (E));
8263 end Is_Special_Return_Object;
8265 -------------------------------------------
8266 -- Make_Build_In_Place_Call_In_Allocator --
8267 -------------------------------------------
8269 procedure Make_Build_In_Place_Call_In_Allocator
8270 (Allocator : Node_Id;
8271 Function_Call : Node_Id)
8273 Acc_Type : constant Entity_Id := Etype (Allocator);
8274 Loc : constant Source_Ptr := Sloc (Function_Call);
8275 Func_Call : Node_Id := Function_Call;
8276 Ref_Func_Call : Node_Id;
8277 Function_Id : Entity_Id;
8278 Result_Subt : Entity_Id;
8279 New_Allocator : Node_Id;
8280 Return_Obj_Access : Entity_Id; -- temp for function result
8281 Temp_Init : Node_Id; -- initial value of Return_Obj_Access
8282 Alloc_Form : BIP_Allocation_Form;
8283 Pool_Actual : Node_Id; -- Present if Alloc_Form = User_Storage_Pool
8284 Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
8285 Chain : Entity_Id; -- activation chain, in case of tasks
8287 begin
8288 -- Step past qualification or unchecked conversion (the latter can occur
8289 -- in cases of calls to 'Input).
8291 if Nkind (Func_Call) in N_Qualified_Expression
8292 | N_Type_Conversion
8293 | N_Unchecked_Type_Conversion
8294 then
8295 Func_Call := Expression (Func_Call);
8296 end if;
8298 -- Mark the call as processed as a build-in-place call
8300 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
8301 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8303 if Is_Entity_Name (Name (Func_Call)) then
8304 Function_Id := Entity (Name (Func_Call));
8306 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8307 Function_Id := Etype (Name (Func_Call));
8309 else
8310 raise Program_Error;
8311 end if;
8313 Warn_BIP (Func_Call);
8315 Result_Subt := Available_View (Etype (Function_Id));
8317 -- Create a temp for the function result. In the caller-allocates case,
8318 -- this will be initialized to the result of a new uninitialized
8319 -- allocator. Note: we do not use Allocator as the Related_Node of
8320 -- Return_Obj_Access in call to Make_Temporary below as this would
8321 -- create a sort of infinite "recursion".
8323 Return_Obj_Access := Make_Temporary (Loc, 'R');
8324 Set_Etype (Return_Obj_Access, Acc_Type);
8325 Set_Can_Never_Be_Null (Acc_Type, False);
8326 -- It gets initialized to null, so we can't have that
8328 -- When the result subtype is returned on the secondary stack or is
8329 -- tagged, the called function itself must perform the allocation of
8330 -- the return object, so we pass parameters indicating that.
8332 -- But that's also the case when the result subtype needs finalization
8333 -- actions because the caller side allocation may result in undesirable
8334 -- finalization. Consider the following example:
8336 -- function Make_Lim_Ctrl return Lim_Ctrl is
8337 -- begin
8338 -- return Result : Lim_Ctrl := raise Program_Error do
8339 -- null;
8340 -- end return;
8341 -- end Make_Lim_Ctrl;
8343 -- Obj : Lim_Ctrl_Ptr := new Lim_Ctrl'(Make_Lim_Ctrl);
8345 -- Even though the size of limited controlled type Lim_Ctrl is known,
8346 -- allocating Obj at the caller side will chain Obj on Lim_Ctrl_Ptr's
8347 -- finalization collection. The subsequent call to Make_Lim_Ctrl will
8348 -- fail during the initialization actions for Result, which means that
8349 -- Result (and Obj by extension) should not be finalized. However Obj
8350 -- will be finalized when access type Lim_Ctrl_Ptr goes out of scope
8351 -- since it is already attached on the its finalization collection.
8353 if Needs_BIP_Alloc_Form (Function_Id) then
8354 Temp_Init := Empty;
8356 -- Case of a user-defined storage pool. Pass an allocation parameter
8357 -- indicating that the function should allocate its result in the
8358 -- pool, and pass an access to the pool. Use 'Unrestricted_Access
8359 -- because the pool may not be aliased.
8361 if Present (Associated_Storage_Pool (Acc_Type)) then
8362 Alloc_Form := User_Storage_Pool;
8363 Pool_Actual :=
8364 Make_Attribute_Reference (Loc,
8365 Prefix =>
8366 New_Occurrence_Of
8367 (Associated_Storage_Pool (Acc_Type), Loc),
8368 Attribute_Name => Name_Unrestricted_Access);
8370 -- No user-defined pool; pass an allocation parameter indicating that
8371 -- the function should allocate its result on the heap. When there is
8372 -- a finalization collection, a pool reference is required.
8374 elsif Needs_BIP_Collection (Function_Id) then
8375 Alloc_Form := Global_Heap;
8376 Pool_Actual :=
8377 Make_Attribute_Reference (Loc,
8378 Prefix =>
8379 New_Occurrence_Of (RTE (RE_Global_Pool_Object), Loc),
8380 Attribute_Name => Name_Unrestricted_Access);
8382 else
8383 Alloc_Form := Global_Heap;
8384 Pool_Actual := Empty;
8385 end if;
8387 -- The caller does not provide the return object in this case, so we
8388 -- have to pass null for the object access actual.
8390 Return_Obj_Actual := Empty;
8392 -- When the result subtype neither is returned on the secondary stack
8393 -- nor is tagged, the return object is created on the caller side, and
8394 -- access to it is passed to the function.
8396 else
8397 -- Replace the initialized allocator of form "new T'(Func (...))"
8398 -- with an uninitialized allocator of form "new T", where T is the
8399 -- result subtype of the called function. The call to the function
8400 -- is handled separately further below.
8402 New_Allocator :=
8403 Make_Allocator (Loc,
8404 Expression => New_Occurrence_Of (Result_Subt, Loc));
8405 Set_No_Initialization (New_Allocator);
8407 -- Copy attributes to new allocator. Note that the new allocator
8408 -- logically comes from source if the original one did, so copy the
8409 -- relevant flag. This ensures proper treatment of the restriction
8410 -- No_Implicit_Heap_Allocations in this case.
8412 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
8413 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8414 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8416 Rewrite (Allocator, New_Allocator);
8418 -- Initial value of the temp is the result of the uninitialized
8419 -- allocator. Unchecked_Convert is needed for T'Input where T is
8420 -- derived from a controlled type.
8422 Temp_Init := Relocate_Node (Allocator);
8424 if Nkind (Function_Call) in
8425 N_Type_Conversion | N_Unchecked_Type_Conversion
8426 then
8427 Temp_Init := Unchecked_Convert_To (Acc_Type, Temp_Init);
8428 end if;
8430 -- Indicate that caller allocates, and pass in the return object
8432 Alloc_Form := Caller_Allocation;
8433 Pool_Actual := Empty;
8434 Return_Obj_Actual := Unchecked_Convert_To
8435 (Result_Subt,
8436 Make_Explicit_Dereference (Loc,
8437 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
8438 end if;
8440 -- Declare the temp object
8442 Insert_Action (Allocator,
8443 Make_Object_Declaration (Loc,
8444 Defining_Identifier => Return_Obj_Access,
8445 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
8446 Expression => Temp_Init));
8448 Ref_Func_Call := Make_Reference (Loc, Func_Call);
8450 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8451 -- then generate an implicit conversion to force displacement of the
8452 -- "this" pointer.
8454 if Is_Interface (Designated_Type (Acc_Type)) then
8455 Rewrite
8456 (Ref_Func_Call,
8457 OK_Convert_To (Acc_Type, Ref_Func_Call));
8459 -- If the types are incompatible, we need an unchecked conversion. Note
8460 -- that the full types will be compatible, but the types not visibly
8461 -- compatible.
8463 elsif Nkind (Function_Call)
8464 in N_Type_Conversion | N_Unchecked_Type_Conversion
8465 then
8466 Ref_Func_Call := Unchecked_Convert_To (Acc_Type, Ref_Func_Call);
8467 end if;
8469 declare
8470 Assign : constant Node_Id :=
8471 Make_Assignment_Statement (Loc,
8472 Name => New_Occurrence_Of (Return_Obj_Access, Loc),
8473 Expression => Ref_Func_Call);
8474 -- Assign the result of the function call into the temp. In the
8475 -- caller-allocates case, this is overwriting the temp with its
8476 -- initial value, which has no effect. In the callee-allocates case,
8477 -- this is setting the temp to point to the object allocated by the
8478 -- callee. Unchecked_Convert is needed for T'Input where T is derived
8479 -- from a controlled type.
8481 Actions : List_Id;
8482 -- Actions to be inserted. If there are no tasks, this is just the
8483 -- assignment statement. If the allocated object has tasks, we need
8484 -- to wrap the assignment in a block that activates them. The
8485 -- activation chain of that block must be passed to the function,
8486 -- rather than some outer chain.
8488 begin
8489 if Might_Have_Tasks (Result_Subt) then
8490 Actions := New_List;
8491 Build_Task_Allocate_Block
8492 (Actions, Allocator, Init_Stmts => New_List (Assign));
8493 Chain := Activation_Chain_Entity (Last (Actions));
8494 else
8495 Actions := New_List (Assign);
8496 Chain := Empty;
8497 end if;
8499 Insert_Actions (Allocator, Actions);
8500 end;
8502 -- When the function has a controlling result, an allocation-form
8503 -- parameter must be passed indicating that the caller is allocating
8504 -- the result object. This is needed because such a function can be
8505 -- called as a dispatching operation and must be treated similarly
8506 -- to functions with unconstrained result subtypes.
8508 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8509 (Func_Call,
8510 Function_Id,
8511 Alloc_Form => Alloc_Form,
8512 Pool_Exp => Pool_Actual);
8514 Add_Collection_Actual_To_Build_In_Place_Call
8515 (Func_Call, Function_Id, Ptr_Typ => Acc_Type);
8517 Add_Task_Actuals_To_Build_In_Place_Call
8518 (Func_Call,
8519 Function_Id,
8520 Master_Actual => Master_Id (Acc_Type),
8521 Chain => Chain);
8523 -- Add an implicit actual to the function call that provides access
8524 -- to the allocated object. An unchecked conversion to the (specific)
8525 -- result subtype of the function is inserted to handle cases where
8526 -- the access type of the allocator has a class-wide designated type.
8528 Add_Access_Actual_To_Build_In_Place_Call
8529 (Func_Call, Function_Id, Return_Obj_Actual);
8531 -- Finally, replace the allocator node with a reference to the temp
8533 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8535 Analyze_And_Resolve (Allocator, Acc_Type);
8536 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
8537 pragma Assert (Check_BIP_Actuals (Func_Call, Function_Id));
8538 end Make_Build_In_Place_Call_In_Allocator;
8540 ---------------------------------------------------
8541 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8542 ---------------------------------------------------
8544 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8545 (Function_Call : Node_Id)
8547 Loc : constant Source_Ptr := Sloc (Function_Call);
8548 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8549 Function_Id : Entity_Id;
8550 Result_Subt : Entity_Id;
8551 Return_Obj_Id : Entity_Id;
8552 Return_Obj_Decl : Entity_Id;
8554 begin
8555 -- If the call has already been processed to add build-in-place actuals
8556 -- then return. One place this can occur is for calls to build-in-place
8557 -- functions that occur within a call to a protected operation, where
8558 -- due to rewriting and expansion of the protected call there can be
8559 -- more than one call to Expand_Actuals for the same set of actuals.
8561 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8562 return;
8563 end if;
8565 -- Mark the call as processed as a build-in-place call
8567 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8569 if Is_Entity_Name (Name (Func_Call)) then
8570 Function_Id := Entity (Name (Func_Call));
8572 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8573 Function_Id := Etype (Name (Func_Call));
8575 else
8576 raise Program_Error;
8577 end if;
8579 Warn_BIP (Func_Call);
8581 Result_Subt := Etype (Function_Id);
8583 -- If the build-in-place function returns a controlled object, then the
8584 -- object needs to be finalized immediately after the context. Since
8585 -- this case produces a transient scope, the servicing finalizer needs
8586 -- to name the returned object. Create a temporary which is initialized
8587 -- with the function call:
8589 -- Temp_Id : Func_Type := BIP_Func_Call;
8591 -- The initialization expression of the temporary will be rewritten by
8592 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8593 -- Call_In_Object_Declaration.
8595 if Needs_Finalization (Result_Subt) then
8596 declare
8597 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
8598 Temp_Decl : Node_Id;
8600 begin
8601 -- Reset the guard on the function call since the following does
8602 -- not perform actual call expansion.
8604 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8606 Temp_Decl :=
8607 Make_Object_Declaration (Loc,
8608 Defining_Identifier => Temp_Id,
8609 Object_Definition =>
8610 New_Occurrence_Of (Result_Subt, Loc),
8611 Expression =>
8612 New_Copy_Tree (Function_Call));
8614 Insert_Action (Function_Call, Temp_Decl);
8616 Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
8617 Analyze (Function_Call);
8618 end;
8620 -- When the result subtype is definite, an object of the subtype is
8621 -- declared and an access value designating it is passed as an actual.
8623 elsif Caller_Known_Size (Func_Call, Result_Subt) then
8625 -- Create a temporary object to hold the function result
8627 Return_Obj_Id := Make_Temporary (Loc, 'R');
8628 Set_Etype (Return_Obj_Id, Result_Subt);
8630 Return_Obj_Decl :=
8631 Make_Object_Declaration (Loc,
8632 Defining_Identifier => Return_Obj_Id,
8633 Aliased_Present => True,
8634 Object_Definition => New_Occurrence_Of (Result_Subt, Loc));
8636 Set_No_Initialization (Return_Obj_Decl);
8638 Insert_Action (Func_Call, Return_Obj_Decl);
8640 -- When the function has a controlling result, an allocation-form
8641 -- parameter must be passed indicating that the caller is allocating
8642 -- the result object. This is needed because such a function can be
8643 -- called as a dispatching operation and must be treated similarly
8644 -- to functions with unconstrained result subtypes.
8646 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8647 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8649 Add_Collection_Actual_To_Build_In_Place_Call
8650 (Func_Call, Function_Id);
8652 Add_Task_Actuals_To_Build_In_Place_Call
8653 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8655 -- Add an implicit actual to the function call that provides access
8656 -- to the caller's return object.
8658 Add_Access_Actual_To_Build_In_Place_Call
8659 (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
8661 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
8662 pragma Assert (Check_BIP_Actuals (Func_Call, Function_Id));
8664 -- When the result subtype is unconstrained, the function must allocate
8665 -- the return object in the secondary stack, so appropriate implicit
8666 -- parameters are added to the call to indicate that. A transient
8667 -- scope is established to ensure eventual cleanup of the result.
8669 else
8670 -- Pass an allocation parameter indicating that the function should
8671 -- allocate its result on the secondary stack.
8673 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8674 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8676 Add_Collection_Actual_To_Build_In_Place_Call
8677 (Func_Call, Function_Id);
8679 Add_Task_Actuals_To_Build_In_Place_Call
8680 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8682 -- Pass a null value to the function since no return object is
8683 -- available on the caller side.
8685 Add_Access_Actual_To_Build_In_Place_Call
8686 (Func_Call, Function_Id, Empty);
8688 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
8689 pragma Assert (Check_BIP_Actuals (Func_Call, Function_Id));
8690 end if;
8691 end Make_Build_In_Place_Call_In_Anonymous_Context;
8693 --------------------------------------------
8694 -- Make_Build_In_Place_Call_In_Assignment --
8695 --------------------------------------------
8697 procedure Make_Build_In_Place_Call_In_Assignment
8698 (Assign : Node_Id;
8699 Function_Call : Node_Id)
8701 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8702 Lhs : constant Node_Id := Name (Assign);
8703 Loc : constant Source_Ptr := Sloc (Function_Call);
8704 Func_Id : Entity_Id;
8705 Obj_Decl : Node_Id;
8706 Obj_Id : Entity_Id;
8707 Ptr_Typ : Entity_Id;
8708 Ptr_Typ_Decl : Node_Id;
8709 New_Expr : Node_Id;
8710 Result_Subt : Entity_Id;
8712 begin
8713 -- Mark the call as processed as a build-in-place call
8715 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
8716 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8718 if Is_Entity_Name (Name (Func_Call)) then
8719 Func_Id := Entity (Name (Func_Call));
8721 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8722 Func_Id := Etype (Name (Func_Call));
8724 else
8725 raise Program_Error;
8726 end if;
8728 Warn_BIP (Func_Call);
8730 Result_Subt := Etype (Func_Id);
8732 -- When the result subtype is unconstrained, an additional actual must
8733 -- be passed to indicate that the caller is providing the return object.
8734 -- This parameter must also be passed when the called function has a
8735 -- controlling result, because dispatching calls to the function needs
8736 -- to be treated effectively the same as calls to class-wide functions.
8738 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8739 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
8741 Add_Collection_Actual_To_Build_In_Place_Call
8742 (Func_Call, Func_Id);
8744 Add_Task_Actuals_To_Build_In_Place_Call
8745 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
8747 -- Add an implicit actual to the function call that provides access to
8748 -- the caller's return object.
8750 Add_Access_Actual_To_Build_In_Place_Call
8751 (Func_Call, Func_Id, Unchecked_Convert_To (Result_Subt, Lhs));
8753 -- Create an access type designating the function's result subtype
8755 Ptr_Typ := Make_Temporary (Loc, 'A');
8757 Ptr_Typ_Decl :=
8758 Make_Full_Type_Declaration (Loc,
8759 Defining_Identifier => Ptr_Typ,
8760 Type_Definition =>
8761 Make_Access_To_Object_Definition (Loc,
8762 All_Present => True,
8763 Subtype_Indication =>
8764 New_Occurrence_Of (Result_Subt, Loc)));
8765 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8767 -- Finally, create an access object initialized to a reference to the
8768 -- function call. We know this access value is non-null, so mark the
8769 -- entity accordingly to suppress junk access checks.
8771 New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8773 -- Add a conversion if it's the wrong type
8775 New_Expr := Unchecked_Convert_To (Ptr_Typ, New_Expr);
8777 Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
8778 Set_Etype (Obj_Id, Ptr_Typ);
8779 Set_Is_Known_Non_Null (Obj_Id);
8781 Obj_Decl :=
8782 Make_Object_Declaration (Loc,
8783 Defining_Identifier => Obj_Id,
8784 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8785 Expression => New_Expr);
8786 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
8788 Rewrite (Assign, Make_Null_Statement (Loc));
8789 pragma Assert (Check_Number_Of_Actuals (Func_Call, Func_Id));
8790 pragma Assert (Check_BIP_Actuals (Func_Call, Func_Id));
8791 end Make_Build_In_Place_Call_In_Assignment;
8793 ----------------------------------------------------
8794 -- Make_Build_In_Place_Call_In_Object_Declaration --
8795 ----------------------------------------------------
8797 procedure Make_Build_In_Place_Call_In_Object_Declaration
8798 (Obj_Decl : Node_Id;
8799 Function_Call : Node_Id)
8801 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id;
8802 -- Get the value of Function_Id, below
8804 ---------------------
8805 -- Get_Function_Id --
8806 ---------------------
8808 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id is
8809 begin
8810 if Is_Entity_Name (Name (Func_Call)) then
8811 return Entity (Name (Func_Call));
8813 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8814 return Etype (Name (Func_Call));
8816 else
8817 raise Program_Error;
8818 end if;
8819 end Get_Function_Id;
8821 -- Local variables
8823 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8824 Function_Id : constant Entity_Id := Get_Function_Id (Func_Call);
8825 Loc : constant Source_Ptr := Sloc (Function_Call);
8826 Obj_Loc : constant Source_Ptr := Sloc (Obj_Decl);
8827 Obj_Def_Id : constant Entity_Id := Defining_Identifier (Obj_Decl);
8828 Obj_Typ : constant Entity_Id := Etype (Obj_Def_Id);
8829 Encl_Func : constant Entity_Id := Enclosing_Subprogram (Obj_Def_Id);
8830 Result_Subt : constant Entity_Id := Etype (Function_Id);
8832 Call_Deref : Node_Id;
8833 Caller_Object : Node_Id;
8834 Collection_Actual : Node_Id := Empty;
8835 Def_Id : Entity_Id;
8836 Designated_Type : Entity_Id;
8837 Pool_Actual : Node_Id;
8838 Ptr_Typ : Entity_Id;
8839 Ptr_Typ_Decl : Node_Id;
8840 Pass_Caller_Acc : Boolean := False;
8841 Res_Decl : Node_Id;
8843 Definite : constant Boolean :=
8844 Caller_Known_Size (Func_Call, Result_Subt)
8845 and then not Is_Class_Wide_Type (Obj_Typ);
8846 -- In the case of "X : T'Class := F(...);", where F returns a
8847 -- Caller_Known_Size (specific) tagged type, we treat it as
8848 -- indefinite, because the code for the Definite case below sets the
8849 -- initialization expression of the object to Empty, which would be
8850 -- illegal Ada, and would cause gigi to misallocate X.
8852 Is_OK_Return_Object : constant Boolean :=
8853 Is_Return_Object (Obj_Def_Id)
8854 and then
8855 not Has_Foreign_Convention (Return_Applies_To (Scope (Obj_Def_Id)));
8857 -- Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
8859 begin
8860 -- If the call has already been processed to add build-in-place actuals
8861 -- then return.
8863 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8864 return;
8865 end if;
8867 -- Mark the call as processed as a build-in-place call
8869 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8871 Warn_BIP (Func_Call);
8873 -- Create an access type designating the function's result subtype.
8874 -- We use the type of the original call because it may be a call to an
8875 -- inherited operation, which the expansion has replaced with the parent
8876 -- operation that yields the parent type. Note that this access type
8877 -- must be declared before we establish a transient scope, so that it
8878 -- receives the proper accessibility level.
8880 if Is_Class_Wide_Type (Obj_Typ)
8881 and then not Is_Interface (Obj_Typ)
8882 and then not Is_Class_Wide_Type (Etype (Function_Call))
8883 then
8884 Designated_Type := Obj_Typ;
8885 else
8886 Designated_Type := Etype (Function_Call);
8887 end if;
8889 Ptr_Typ := Make_Temporary (Loc, 'A');
8890 Ptr_Typ_Decl :=
8891 Make_Full_Type_Declaration (Loc,
8892 Defining_Identifier => Ptr_Typ,
8893 Type_Definition =>
8894 Make_Access_To_Object_Definition (Loc,
8895 All_Present => True,
8896 Subtype_Indication =>
8897 New_Occurrence_Of (Designated_Type, Loc)));
8899 -- The access type and its accompanying object must be inserted after
8900 -- the object declaration in the constrained case, so that the function
8901 -- call can be passed access to the object. In the indefinite case, or
8902 -- if the object declaration is for a return object, the access type and
8903 -- object must be inserted before the object, since the object
8904 -- declaration is rewritten to be a renaming of a dereference of the
8905 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8906 -- the result object is in a different (transient) scope, so won't cause
8907 -- freezing.
8909 if Definite and then not Is_OK_Return_Object then
8911 -- The presence of an address clause complicates the build-in-place
8912 -- expansion because the indicated address must be processed before
8913 -- the indirect call is generated (including the definition of a
8914 -- local pointer to the object). The address clause may come from
8915 -- an aspect specification or from an explicit attribute
8916 -- specification appearing after the object declaration. These two
8917 -- cases require different processing.
8919 if Has_Aspect (Obj_Def_Id, Aspect_Address) then
8921 -- Skip non-delayed pragmas that correspond to other aspects, if
8922 -- any, to find proper insertion point for freeze node of object.
8924 declare
8925 D : Node_Id := Obj_Decl;
8926 N : Node_Id := Next (D);
8928 begin
8929 while Present (N)
8930 and then Nkind (N) in N_Attribute_Reference | N_Pragma
8931 loop
8932 Analyze (N);
8933 D := N;
8934 Next (N);
8935 end loop;
8937 Insert_After (D, Ptr_Typ_Decl);
8939 -- Freeze object before pointer declaration, to ensure that
8940 -- generated attribute for address is inserted at the proper
8941 -- place.
8943 Freeze_Before (Ptr_Typ_Decl, Obj_Def_Id);
8944 end;
8946 Analyze (Ptr_Typ_Decl);
8948 elsif Present (Following_Address_Clause (Obj_Decl)) then
8950 -- Locate explicit address clause, which may also follow pragmas
8951 -- generated by other aspect specifications.
8953 declare
8954 Addr : constant Node_Id := Following_Address_Clause (Obj_Decl);
8955 D : Node_Id := Next (Obj_Decl);
8957 begin
8958 while Present (D) loop
8959 Analyze (D);
8960 exit when D = Addr;
8961 Next (D);
8962 end loop;
8964 Insert_After_And_Analyze (Addr, Ptr_Typ_Decl);
8965 end;
8967 else
8968 Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
8969 end if;
8970 else
8971 Insert_Action (Obj_Decl, Ptr_Typ_Decl);
8972 end if;
8974 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8975 -- elaborated in an inner (transient) scope and thus won't cause
8976 -- freezing by itself. It's not an itype, but it needs to be frozen
8977 -- inside the current subprogram (see Freeze_Outside in freeze.adb).
8979 Freeze_Itype (Ptr_Typ, Ptr_Typ_Decl);
8981 -- If the object is a return object of an enclosing build-in-place
8982 -- function, then the implicit build-in-place parameters of the
8983 -- enclosing function are simply passed along to the called function.
8984 -- (Unfortunately, this won't cover the case of extension aggregates
8985 -- where the ancestor part is a build-in-place indefinite function
8986 -- call that should be passed along the caller's parameters.
8987 -- Currently those get mishandled by reassigning the result of the
8988 -- call to the aggregate return object, when the call result should
8989 -- really be directly built in place in the aggregate and not in a
8990 -- temporary. ???)
8992 if Is_OK_Return_Object then
8993 Pass_Caller_Acc := True;
8995 -- When the enclosing function has a BIP_Alloc_Form formal then we
8996 -- pass it along to the callee (such as when the enclosing function
8997 -- has an unconstrained or tagged result type).
8999 if Needs_BIP_Alloc_Form (Encl_Func) then
9000 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
9001 Pool_Actual :=
9002 New_Occurrence_Of
9003 (Build_In_Place_Formal
9004 (Encl_Func, BIP_Storage_Pool), Loc);
9006 -- The build-in-place pool formal is not built on e.g. ZFP
9008 else
9009 Pool_Actual := Empty;
9010 end if;
9012 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9013 (Function_Call => Func_Call,
9014 Function_Id => Function_Id,
9015 Alloc_Form_Exp =>
9016 New_Occurrence_Of
9017 (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
9018 Pool_Exp => Pool_Actual);
9020 -- Otherwise, if enclosing function has a definite result subtype,
9021 -- then caller allocation will be used.
9023 else
9024 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9025 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
9026 end if;
9028 if Needs_BIP_Collection (Encl_Func) then
9029 Collection_Actual :=
9030 New_Occurrence_Of
9031 (Build_In_Place_Formal
9032 (Encl_Func, BIP_Collection), Loc);
9033 end if;
9035 -- Retrieve the BIPacc formal from the enclosing function and convert
9036 -- it to the access type of the callee's BIP_Object_Access formal.
9038 Caller_Object :=
9039 Unchecked_Convert_To
9040 (Etype (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
9041 New_Occurrence_Of
9042 (Build_In_Place_Formal (Encl_Func, BIP_Object_Access), Loc));
9044 -- In the definite case, add an implicit actual to the function call
9045 -- that provides access to the declared object. An unchecked conversion
9046 -- to the (specific) result type of the function is inserted to handle
9047 -- the case where the object is declared with a class-wide type.
9049 elsif Definite then
9050 Caller_Object := Unchecked_Convert_To
9051 (Result_Subt, New_Occurrence_Of (Obj_Def_Id, Loc));
9053 -- When the function has a controlling result, an allocation-form
9054 -- parameter must be passed indicating that the caller is allocating
9055 -- the result object. This is needed because such a function can be
9056 -- called as a dispatching operation and must be treated similarly to
9057 -- functions with indefinite result subtypes.
9059 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9060 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
9062 -- The allocation for indefinite library-level objects occurs on the
9063 -- heap as opposed to the secondary stack. This accommodates DLLs where
9064 -- the secondary stack is destroyed after each library unload. This is a
9065 -- hybrid mechanism where a stack-allocated object lives on the heap.
9067 elsif Is_Library_Level_Entity (Obj_Def_Id)
9068 and then not Restriction_Active (No_Implicit_Heap_Allocations)
9069 then
9070 -- Create a finalization collection for the access result type to
9071 -- ensure that the heap allocation can properly chain the object
9072 -- and later finalize it when the library unit goes out of scope.
9074 if Needs_BIP_Collection (Func_Call) then
9075 Build_Finalization_Collection
9076 (Typ => Ptr_Typ,
9077 For_Lib_Level => True,
9078 Insertion_Node => Ptr_Typ_Decl);
9080 Collection_Actual :=
9081 Make_Attribute_Reference (Loc,
9082 Prefix =>
9083 New_Occurrence_Of (Finalization_Collection (Ptr_Typ), Loc),
9084 Attribute_Name => Name_Unrestricted_Access);
9086 Pool_Actual :=
9087 Make_Attribute_Reference (Loc,
9088 Prefix =>
9089 New_Occurrence_Of (RTE (RE_Global_Pool_Object), Loc),
9090 Attribute_Name => Name_Unrestricted_Access);
9092 else
9093 Pool_Actual := Empty;
9094 end if;
9096 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9097 (Func_Call,
9098 Function_Id,
9099 Alloc_Form => Global_Heap,
9100 Pool_Exp => Pool_Actual);
9101 Caller_Object := Empty;
9103 -- In other indefinite cases, pass an indication to do the allocation
9104 -- on the secondary stack and set Caller_Object to Empty so that a null
9105 -- value will be passed for the caller's object address. A transient
9106 -- scope is established to ensure eventual cleanup of the result.
9108 else
9109 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9110 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
9111 Caller_Object := Empty;
9113 Establish_Transient_Scope (Obj_Decl, Manage_Sec_Stack => True);
9114 end if;
9116 -- Pass along any finalization collection actual, which is needed in
9117 -- the case where the called function initializes a return object of
9118 -- an enclosing build-in-place function.
9120 Add_Collection_Actual_To_Build_In_Place_Call
9121 (Func_Call, Function_Id, Collection_Exp => Collection_Actual);
9123 if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
9124 and then Needs_BIP_Task_Actuals (Function_Id)
9125 then
9126 -- Here we're passing along the master that was passed in to this
9127 -- function.
9129 Add_Task_Actuals_To_Build_In_Place_Call
9130 (Func_Call, Function_Id,
9131 Master_Actual =>
9132 New_Occurrence_Of
9133 (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
9135 else
9136 Add_Task_Actuals_To_Build_In_Place_Call
9137 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
9138 end if;
9140 Add_Access_Actual_To_Build_In_Place_Call
9141 (Func_Call,
9142 Function_Id,
9143 Caller_Object,
9144 Is_Access => Pass_Caller_Acc);
9146 -- Finally, create an access object initialized to a reference to the
9147 -- function call. We know this access value cannot be null, so mark the
9148 -- entity accordingly to suppress the access check. We need to suppress
9149 -- warnings, because this can be part of the expansion of "for ... of"
9150 -- and similar constructs that generate finalization actions. Such
9151 -- finalization actions are safe, because they check a count that
9152 -- indicates which objects should be finalized, but the back end
9153 -- nonetheless warns about uninitialized objects.
9155 Def_Id := Make_Temporary (Loc, 'R', Func_Call);
9156 Set_Warnings_Off (Def_Id);
9157 Set_Etype (Def_Id, Ptr_Typ);
9158 Set_Is_Known_Non_Null (Def_Id);
9160 if Nkind (Function_Call) in N_Type_Conversion
9161 | N_Unchecked_Type_Conversion
9162 then
9163 Res_Decl :=
9164 Make_Object_Declaration (Loc,
9165 Defining_Identifier => Def_Id,
9166 Constant_Present => True,
9167 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
9168 Expression =>
9169 Unchecked_Convert_To
9170 (Ptr_Typ, Make_Reference (Loc, Relocate_Node (Func_Call))));
9171 else
9172 Res_Decl :=
9173 Make_Object_Declaration (Loc,
9174 Defining_Identifier => Def_Id,
9175 Constant_Present => True,
9176 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
9177 Expression =>
9178 Make_Reference (Loc, Relocate_Node (Func_Call)));
9179 end if;
9181 Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
9183 -- If the result subtype of the called function is definite and is not
9184 -- itself the return expression of an enclosing BIP function, then mark
9185 -- the object as having no initialization.
9187 if Definite and then not Is_OK_Return_Object then
9189 -- The related object declaration is encased in a transient block
9190 -- because the build-in-place function call contains at least one
9191 -- nested function call that produces a controlled transient
9192 -- temporary:
9194 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
9196 -- Since the build-in-place expansion decouples the call from the
9197 -- object declaration, the finalization machinery lacks the context
9198 -- which prompted the generation of the transient block. To resolve
9199 -- this scenario, store the build-in-place call.
9201 if Scope_Is_Transient then
9202 Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
9203 end if;
9205 Set_Expression (Obj_Decl, Empty);
9206 Set_No_Initialization (Obj_Decl);
9208 -- In case of an indefinite result subtype, or if the call is the
9209 -- return expression of an enclosing BIP function, rewrite the object
9210 -- declaration as an object renaming where the renamed object is a
9211 -- dereference of <function_Call>'reference:
9213 -- Obj : Subt renames <function_call>'Ref.all;
9215 else
9216 Call_Deref :=
9217 Make_Explicit_Dereference (Obj_Loc,
9218 Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
9220 Rewrite (Obj_Decl,
9221 Make_Object_Renaming_Declaration (Obj_Loc,
9222 Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
9223 Subtype_Mark =>
9224 New_Occurrence_Of (Designated_Type, Obj_Loc),
9225 Name => Call_Deref));
9227 -- At this point, Defining_Identifier (Obj_Decl) is no longer equal
9228 -- to Obj_Def_Id.
9230 pragma Assert (Ekind (Defining_Identifier (Obj_Decl)) = E_Void);
9231 Set_Renamed_Object_Of_Possibly_Void
9232 (Defining_Identifier (Obj_Decl), Call_Deref);
9234 -- If the original entity comes from source, then mark the new
9235 -- entity as needing debug information, even though it's defined
9236 -- by a generated renaming that does not come from source, so that
9237 -- the Materialize_Entity flag will be set on the entity when
9238 -- Debug_Renaming_Declaration is called during analysis.
9240 if Comes_From_Source (Obj_Def_Id) then
9241 Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
9242 end if;
9244 Analyze (Obj_Decl);
9245 Replace_Renaming_Declaration_Id
9246 (Obj_Decl, Original_Node (Obj_Decl));
9247 end if;
9249 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
9250 pragma Assert (Check_BIP_Actuals (Func_Call, Function_Id));
9251 end Make_Build_In_Place_Call_In_Object_Declaration;
9253 -------------------------------------------------
9254 -- Make_Build_In_Place_Iface_Call_In_Allocator --
9255 -------------------------------------------------
9257 procedure Make_Build_In_Place_Iface_Call_In_Allocator
9258 (Allocator : Node_Id;
9259 Function_Call : Node_Id)
9261 BIP_Func_Call : constant Node_Id :=
9262 Unqual_BIP_Iface_Function_Call (Function_Call);
9263 Loc : constant Source_Ptr := Sloc (Function_Call);
9265 Anon_Type : Entity_Id;
9266 Tmp_Decl : Node_Id;
9267 Tmp_Id : Entity_Id;
9269 begin
9270 -- No action if the call has already been processed
9272 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9273 return;
9274 end if;
9276 Tmp_Id := Make_Temporary (Loc, 'D');
9278 -- Insert a temporary before N initialized with the BIP function call
9279 -- without its enclosing type conversions and analyze it without its
9280 -- expansion. This temporary facilitates us reusing the BIP machinery,
9281 -- which takes care of adding the extra build-in-place actuals and
9282 -- transforms this object declaration into an object renaming
9283 -- declaration.
9285 Anon_Type := Create_Itype (E_Anonymous_Access_Type, Function_Call);
9286 Set_Directly_Designated_Type (Anon_Type, Etype (BIP_Func_Call));
9287 Set_Etype (Anon_Type, Anon_Type);
9288 Build_Class_Wide_Master (Anon_Type);
9290 Tmp_Decl :=
9291 Make_Object_Declaration (Loc,
9292 Defining_Identifier => Tmp_Id,
9293 Object_Definition => New_Occurrence_Of (Anon_Type, Loc),
9294 Expression =>
9295 Make_Allocator (Loc,
9296 Expression =>
9297 Make_Qualified_Expression (Loc,
9298 Subtype_Mark =>
9299 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
9300 Expression => New_Copy_Tree (BIP_Func_Call))));
9302 -- Manually set the associated node for the anonymous access type to
9303 -- be its local declaration, to avoid confusing and complicating
9304 -- the accessibility machinery.
9306 Set_Associated_Node_For_Itype (Anon_Type, Tmp_Decl);
9308 Expander_Mode_Save_And_Set (False);
9309 Insert_Action (Allocator, Tmp_Decl);
9310 Expander_Mode_Restore;
9312 Make_Build_In_Place_Call_In_Allocator
9313 (Allocator => Expression (Tmp_Decl),
9314 Function_Call => Expression (Expression (Tmp_Decl)));
9316 -- Add a conversion to displace the pointer to the allocated object
9317 -- to reference the corresponding dispatch table.
9319 Rewrite (Allocator,
9320 Convert_To (Etype (Allocator),
9321 New_Occurrence_Of (Tmp_Id, Loc)));
9322 end Make_Build_In_Place_Iface_Call_In_Allocator;
9324 ---------------------------------------------------------
9325 -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
9326 ---------------------------------------------------------
9328 procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
9329 (Function_Call : Node_Id)
9331 BIP_Func_Call : constant Node_Id :=
9332 Unqual_BIP_Iface_Function_Call (Function_Call);
9333 Loc : constant Source_Ptr := Sloc (Function_Call);
9335 Tmp_Decl : Node_Id;
9336 Tmp_Id : Entity_Id;
9338 begin
9339 -- No action of the call has already been processed
9341 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9342 return;
9343 end if;
9345 pragma Assert (Needs_Finalization (Etype (BIP_Func_Call)));
9347 -- Insert a temporary before the call initialized with function call to
9348 -- reuse the BIP machinery which takes care of adding the extra build-in
9349 -- place actuals and transforms this object declaration into an object
9350 -- renaming declaration.
9352 Tmp_Id := Make_Temporary (Loc, 'D');
9354 Tmp_Decl :=
9355 Make_Object_Declaration (Loc,
9356 Defining_Identifier => Tmp_Id,
9357 Object_Definition =>
9358 New_Occurrence_Of (Etype (Function_Call), Loc),
9359 Expression => Relocate_Node (Function_Call));
9361 Expander_Mode_Save_And_Set (False);
9362 Insert_Action (Function_Call, Tmp_Decl);
9363 Expander_Mode_Restore;
9365 Make_Build_In_Place_Iface_Call_In_Object_Declaration
9366 (Obj_Decl => Tmp_Decl,
9367 Function_Call => Expression (Tmp_Decl));
9368 end Make_Build_In_Place_Iface_Call_In_Anonymous_Context;
9370 ----------------------------------------------------------
9371 -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
9372 ----------------------------------------------------------
9374 procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
9375 (Obj_Decl : Node_Id;
9376 Function_Call : Node_Id)
9378 BIP_Func_Call : constant Node_Id :=
9379 Unqual_BIP_Iface_Function_Call (Function_Call);
9380 Loc : constant Source_Ptr := Sloc (Function_Call);
9381 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
9383 Tmp_Decl : Node_Id;
9384 Tmp_Id : Entity_Id;
9386 begin
9387 -- No action of the call has already been processed
9389 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9390 return;
9391 end if;
9393 Tmp_Id := Make_Temporary (Loc, 'D');
9395 -- Insert a temporary before N initialized with the BIP function call
9396 -- without its enclosing type conversions and analyze it without its
9397 -- expansion. This temporary facilitates us reusing the BIP machinery,
9398 -- which takes care of adding the extra build-in-place actuals and
9399 -- transforms this object declaration into an object renaming
9400 -- declaration.
9402 Tmp_Decl :=
9403 Make_Object_Declaration (Loc,
9404 Defining_Identifier => Tmp_Id,
9405 Object_Definition =>
9406 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
9407 Expression => New_Copy_Tree (BIP_Func_Call));
9409 Expander_Mode_Save_And_Set (False);
9410 Insert_Action (Obj_Decl, Tmp_Decl);
9411 Expander_Mode_Restore;
9413 -- Inherit Is_Return_Object from the parent object to the temp object,
9414 -- so that Make_In_Build_Place_Call_In_Object_Declaration will handle
9415 -- the temp properly in cases where there's a BIP_Alloc_Form formal of
9416 -- an enclosing function that should be passed along (and which also
9417 -- ensures that if the BIP call is used as a function result and it
9418 -- requires finalization, then it will not be finalized prematurely
9419 -- or redundantly).
9421 Set_Is_Return_Object (Tmp_Id, Is_Return_Object (Obj_Id));
9423 Make_Build_In_Place_Call_In_Object_Declaration
9424 (Obj_Decl => Tmp_Decl,
9425 Function_Call => Expression (Tmp_Decl));
9427 pragma Assert (Nkind (Tmp_Decl) = N_Object_Renaming_Declaration);
9429 -- Replace the original build-in-place function call by a reference to
9430 -- the resulting temporary object renaming declaration. In this way,
9431 -- all the interface conversions performed in the original Function_Call
9432 -- on the build-in-place object are preserved.
9434 Rewrite (BIP_Func_Call, New_Occurrence_Of (Tmp_Id, Loc));
9436 -- Replace the original object declaration by an internal object
9437 -- renaming declaration. This leaves the generated code more clean (the
9438 -- build-in-place function call in an object renaming declaration and
9439 -- displacements of the pointer to the build-in-place object in another
9440 -- renaming declaration) and allows us to invoke the routine that takes
9441 -- care of replacing the identifier of the renaming declaration (routine
9442 -- originally developed for the regular build-in-place management).
9444 Rewrite (Obj_Decl,
9445 Make_Object_Renaming_Declaration (Loc,
9446 Defining_Identifier => Make_Temporary (Loc, 'D'),
9447 Subtype_Mark => New_Occurrence_Of (Etype (Obj_Id), Loc),
9448 Name => Function_Call));
9449 Analyze (Obj_Decl);
9451 Replace_Renaming_Declaration_Id (Obj_Decl, Original_Node (Obj_Decl));
9452 end Make_Build_In_Place_Iface_Call_In_Object_Declaration;
9454 --------------------------------------------
9455 -- Make_CPP_Constructor_Call_In_Allocator --
9456 --------------------------------------------
9458 procedure Make_CPP_Constructor_Call_In_Allocator
9459 (Allocator : Node_Id;
9460 Function_Call : Node_Id)
9462 Loc : constant Source_Ptr := Sloc (Function_Call);
9463 Acc_Type : constant Entity_Id := Etype (Allocator);
9464 Function_Id : constant Entity_Id := Entity (Name (Function_Call));
9465 Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
9467 New_Allocator : Node_Id;
9468 Return_Obj_Access : Entity_Id;
9469 Tmp_Obj : Node_Id;
9471 begin
9472 pragma Assert (Nkind (Allocator) = N_Allocator
9473 and then Nkind (Function_Call) = N_Function_Call);
9474 pragma Assert (Convention (Function_Id) = Convention_CPP
9475 and then Is_Constructor (Function_Id));
9476 pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
9478 -- Replace the initialized allocator of form "new T'(Func (...))" with
9479 -- an uninitialized allocator of form "new T", where T is the result
9480 -- subtype of the called function. The call to the function is handled
9481 -- separately further below.
9483 New_Allocator :=
9484 Make_Allocator (Loc,
9485 Expression => New_Occurrence_Of (Result_Subt, Loc));
9486 Set_No_Initialization (New_Allocator);
9488 -- Copy attributes to new allocator. Note that the new allocator
9489 -- logically comes from source if the original one did, so copy the
9490 -- relevant flag. This ensures proper treatment of the restriction
9491 -- No_Implicit_Heap_Allocations in this case.
9493 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
9494 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
9495 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
9497 Rewrite (Allocator, New_Allocator);
9499 -- Create a new access object and initialize it to the result of the
9500 -- new uninitialized allocator. Note: we do not use Allocator as the
9501 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9502 -- as this would create a sort of infinite "recursion".
9504 Return_Obj_Access := Make_Temporary (Loc, 'R');
9505 Set_Etype (Return_Obj_Access, Acc_Type);
9507 -- Generate:
9508 -- Rnnn : constant ptr_T := new (T);
9509 -- Init (Rnn.all,...);
9511 Tmp_Obj :=
9512 Make_Object_Declaration (Loc,
9513 Defining_Identifier => Return_Obj_Access,
9514 Constant_Present => True,
9515 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
9516 Expression => Relocate_Node (Allocator));
9517 Insert_Action (Allocator, Tmp_Obj);
9519 Insert_List_After_And_Analyze (Tmp_Obj,
9520 Build_Initialization_Call (Allocator,
9521 Id_Ref =>
9522 Make_Explicit_Dereference (Loc,
9523 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
9524 Typ => Etype (Function_Id),
9525 Constructor_Ref => Function_Call));
9527 -- Finally, replace the allocator node with a reference to the result of
9528 -- the function call itself (which will effectively be an access to the
9529 -- object created by the allocator).
9531 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
9533 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9534 -- generate an implicit conversion to force displacement of the "this"
9535 -- pointer.
9537 if Is_Interface (Designated_Type (Acc_Type)) then
9538 Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9539 end if;
9541 Analyze_And_Resolve (Allocator, Acc_Type);
9542 end Make_CPP_Constructor_Call_In_Allocator;
9544 ----------------------
9545 -- Might_Have_Tasks --
9546 ----------------------
9548 function Might_Have_Tasks (Typ : Entity_Id) return Boolean is
9549 begin
9550 return not Global_No_Tasking
9551 and then not No_Run_Time_Mode
9552 and then (Has_Task (Typ)
9553 or else (Is_Class_Wide_Type (Typ)
9554 and then Is_Limited_Record (Typ)
9555 and then not Has_Aspect
9556 (Etype (Typ), Aspect_No_Task_Parts)));
9557 end Might_Have_Tasks;
9559 ----------------------------
9560 -- Needs_BIP_Task_Actuals --
9561 ----------------------------
9563 function Needs_BIP_Task_Actuals (Func_Id : Entity_Id) return Boolean is
9564 Subp_Id : Entity_Id;
9565 Func_Typ : Entity_Id;
9567 begin
9568 if Global_No_Tasking or else No_Run_Time_Mode then
9569 return False;
9570 end if;
9572 -- For thunks we must rely on their target entity; otherwise, given that
9573 -- the profile of thunks for functions returning a limited interface
9574 -- type returns a class-wide type, we would erroneously add these extra
9575 -- formals.
9577 if Is_Thunk (Func_Id) then
9578 Subp_Id := Thunk_Target (Func_Id);
9580 -- Common case
9582 else
9583 Subp_Id := Func_Id;
9584 end if;
9586 Func_Typ := Underlying_Type (Etype (Subp_Id));
9588 -- Functions returning types with foreign convention don't have extra
9589 -- formals.
9591 if Has_Foreign_Convention (Func_Typ) then
9592 return False;
9594 -- At first sight, for all the following cases, we could add assertions
9595 -- to ensure that if Func_Id is frozen then the computed result matches
9596 -- with the availability of the task master extra formal; unfortunately
9597 -- this is not feasible because we may be precisely freezing this entity
9598 -- (that is, Is_Frozen has been set by Freeze_Entity but it has not
9599 -- completed its work).
9601 elsif Has_Task (Func_Typ) then
9602 return True;
9604 elsif Ekind (Func_Id) = E_Function then
9605 return Might_Have_Tasks (Func_Typ);
9607 -- Handle subprogram type internally generated for dispatching call. We
9608 -- cannot rely on the return type of the subprogram type of dispatching
9609 -- calls since it is always a class-wide type (cf. Expand_Dispatching_
9610 -- Call).
9612 elsif Ekind (Func_Id) = E_Subprogram_Type then
9613 if Is_Dispatch_Table_Entity (Func_Id) then
9614 return Has_BIP_Extra_Formal (Func_Id, BIP_Task_Master);
9615 else
9616 return Might_Have_Tasks (Func_Typ);
9617 end if;
9619 else
9620 raise Program_Error;
9621 end if;
9622 end Needs_BIP_Task_Actuals;
9624 --------------------------
9625 -- Needs_BIP_Collection --
9626 --------------------------
9628 function Needs_BIP_Collection (Func_Id : Entity_Id) return Boolean is
9629 Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9631 begin
9632 -- A formal for the finalization collection is needed for build-in-place
9633 -- functions whose result type needs finalization or is a tagged type.
9634 -- Tagged primitive build-in-place functions need such a formal because
9635 -- they can be called by a dispatching call, and extensions may require
9636 -- finalization even if the root type doesn't. This means nonprimitive
9637 -- build-in-place functions with tagged results also need it, since such
9638 -- functions can be called via access-to-function types, and those can
9639 -- be used to call primitives, so the formal needs to be passed to all
9640 -- such build-in-place functions, primitive or not.
9642 return not Restriction_Active (No_Finalization)
9643 and then (Needs_Finalization (Typ) or else Is_Tagged_Type (Typ))
9644 and then not Has_Foreign_Convention (Typ);
9645 end Needs_BIP_Collection;
9647 --------------------------
9648 -- Needs_BIP_Alloc_Form --
9649 --------------------------
9651 function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9652 Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9654 begin
9655 -- See Make_Build_In_Place_Call_In_Allocator for the rationale
9657 if Needs_BIP_Collection (Func_Id) then
9658 return True;
9659 end if;
9661 -- A formal giving the allocation method is needed for build-in-place
9662 -- functions whose result type is returned on the secondary stack or
9663 -- is a tagged type. Tagged primitive build-in-place functions need
9664 -- such a formal because they can be called by a dispatching call, and
9665 -- the secondary stack is always used for dispatching-on-result calls.
9666 -- This means nonprimitive build-in-place functions with tagged results
9667 -- also need it, as such functions can be called via access-to-function
9668 -- types, and those can be used to call primitives, so the formal needs
9669 -- to be passed to all such build-in-place functions, primitive or not.
9671 -- We never use build-in-place if the function has foreign convention,
9672 -- but note that it is OK for a build-in-place function to return a
9673 -- type with a foreign convention because the machinery ensures there
9674 -- is no copying.
9676 return not Restriction_Active (No_Secondary_Stack)
9677 and then (Needs_Secondary_Stack (Typ) or else Is_Tagged_Type (Typ))
9678 and then not Has_Foreign_Convention (Func_Id);
9679 end Needs_BIP_Alloc_Form;
9681 -------------------------------------
9682 -- Replace_Renaming_Declaration_Id --
9683 -------------------------------------
9685 procedure Replace_Renaming_Declaration_Id
9686 (New_Decl : Node_Id;
9687 Orig_Decl : Node_Id)
9689 New_Id : constant Entity_Id := Defining_Entity (New_Decl);
9690 Orig_Id : constant Entity_Id := Defining_Entity (Orig_Decl);
9692 begin
9693 Set_Chars (New_Id, Chars (Orig_Id));
9695 -- Swap next entity links in preparation for exchanging entities
9697 declare
9698 Next_Id : constant Entity_Id := Next_Entity (New_Id);
9699 begin
9700 Link_Entities (New_Id, Next_Entity (Orig_Id));
9701 Link_Entities (Orig_Id, Next_Id);
9702 end;
9704 Set_Homonym (New_Id, Homonym (Orig_Id));
9705 Exchange_Entities (New_Id, Orig_Id);
9707 -- Preserve source indication of original declaration, so that xref
9708 -- information is properly generated for the right entity.
9710 Preserve_Comes_From_Source (New_Decl, Orig_Decl);
9711 Preserve_Comes_From_Source (Orig_Id, Orig_Decl);
9713 Set_Comes_From_Source (New_Id, False);
9715 -- Preserve aliased indication
9717 Set_Is_Aliased (Orig_Id, Is_Aliased (New_Id));
9718 end Replace_Renaming_Declaration_Id;
9720 ---------------------------------
9721 -- Rewrite_Function_Call_For_C --
9722 ---------------------------------
9724 procedure Rewrite_Function_Call_For_C (N : Node_Id) is
9725 Orig_Func : constant Entity_Id := Entity (Name (N));
9726 Func_Id : constant Entity_Id := Ultimate_Alias (Orig_Func);
9727 Par : constant Node_Id := Parent (N);
9728 Proc_Id : constant Entity_Id := Corresponding_Procedure (Func_Id);
9729 Loc : constant Source_Ptr := Sloc (Par);
9730 Actuals : List_Id;
9731 Last_Actual : Node_Id;
9732 Last_Formal : Entity_Id;
9734 -- Start of processing for Rewrite_Function_Call_For_C
9736 begin
9737 -- The actuals may be given by named associations, so the added actual
9738 -- that is the target of the return value of the call must be a named
9739 -- association as well, so we retrieve the name of the generated
9740 -- out_formal.
9742 Last_Formal := First_Formal (Proc_Id);
9743 while Present (Next_Formal (Last_Formal)) loop
9744 Next_Formal (Last_Formal);
9745 end loop;
9747 Actuals := Parameter_Associations (N);
9749 -- The original function may lack parameters
9751 if No (Actuals) then
9752 Actuals := New_List;
9753 end if;
9755 -- If the function call is the expression of an assignment statement,
9756 -- transform the assignment into a procedure call. Generate:
9758 -- LHS := Func_Call (...);
9760 -- Proc_Call (..., LHS);
9762 -- If function is inherited, a conversion may be necessary.
9764 if Nkind (Par) = N_Assignment_Statement then
9765 Last_Actual := Name (Par);
9767 if not Comes_From_Source (Orig_Func)
9768 and then Etype (Orig_Func) /= Etype (Func_Id)
9769 then
9770 Last_Actual :=
9771 Make_Type_Conversion (Loc,
9772 New_Occurrence_Of (Etype (Func_Id), Loc),
9773 Last_Actual);
9774 end if;
9776 Append_To (Actuals,
9777 Make_Parameter_Association (Loc,
9778 Selector_Name =>
9779 Make_Identifier (Loc, Chars (Last_Formal)),
9780 Explicit_Actual_Parameter => Last_Actual));
9782 Rewrite (Par,
9783 Make_Procedure_Call_Statement (Loc,
9784 Name => New_Occurrence_Of (Proc_Id, Loc),
9785 Parameter_Associations => Actuals));
9786 Analyze (Par);
9788 -- Otherwise the context is an expression. Generate a temporary and a
9789 -- procedure call to obtain the function result. Generate:
9791 -- ... Func_Call (...) ...
9793 -- Temp : ...;
9794 -- Proc_Call (..., Temp);
9795 -- ... Temp ...
9797 else
9798 declare
9799 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
9800 Call : Node_Id;
9801 Decl : Node_Id;
9803 begin
9804 -- Generate:
9805 -- Temp : ...;
9807 Decl :=
9808 Make_Object_Declaration (Loc,
9809 Defining_Identifier => Temp_Id,
9810 Object_Definition =>
9811 New_Occurrence_Of (Etype (Func_Id), Loc));
9813 -- Generate:
9814 -- Proc_Call (..., Temp);
9816 Append_To (Actuals,
9817 Make_Parameter_Association (Loc,
9818 Selector_Name =>
9819 Make_Identifier (Loc, Chars (Last_Formal)),
9820 Explicit_Actual_Parameter =>
9821 New_Occurrence_Of (Temp_Id, Loc)));
9823 Call :=
9824 Make_Procedure_Call_Statement (Loc,
9825 Name => New_Occurrence_Of (Proc_Id, Loc),
9826 Parameter_Associations => Actuals);
9828 Insert_Actions (Par, New_List (Decl, Call));
9829 Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
9830 end;
9831 end if;
9832 end Rewrite_Function_Call_For_C;
9834 ------------------------------------
9835 -- Set_Enclosing_Sec_Stack_Return --
9836 ------------------------------------
9838 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
9839 P : Node_Id := N;
9841 begin
9842 -- Due to a possible mix of internally generated blocks, source blocks
9843 -- and loops, the scope stack may not be contiguous as all labels are
9844 -- inserted at the top level within the related function. Instead,
9845 -- perform a parent-based traversal and mark all appropriate constructs.
9847 while Present (P) loop
9849 -- Mark the label of a source or internally generated block or
9850 -- loop.
9852 if Nkind (P) in N_Block_Statement | N_Loop_Statement then
9853 Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
9855 -- Mark the enclosing function
9857 elsif Nkind (P) = N_Subprogram_Body then
9858 if Present (Corresponding_Spec (P)) then
9859 Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
9860 else
9861 Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
9862 end if;
9864 -- Do not go beyond the enclosing function
9866 exit;
9867 end if;
9869 P := Parent (P);
9870 end loop;
9871 end Set_Enclosing_Sec_Stack_Return;
9873 ------------------------------------
9874 -- Unqual_BIP_Iface_Function_Call --
9875 ------------------------------------
9877 function Unqual_BIP_Iface_Function_Call (Expr : Node_Id) return Node_Id is
9878 Has_Pointer_Displacement : Boolean := False;
9879 On_Object_Declaration : Boolean := False;
9880 -- Remember if processing the renaming expressions on recursion we have
9881 -- traversed an object declaration, since we can traverse many object
9882 -- declaration renamings but just one regular object declaration.
9884 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id;
9885 -- Search for a build-in-place function call skipping any qualification
9886 -- including qualified expressions, type conversions, references, calls
9887 -- to displace the pointer to the object, and renamings. Return Empty if
9888 -- no build-in-place function call is found.
9890 ------------------------------
9891 -- Unqual_BIP_Function_Call --
9892 ------------------------------
9894 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id is
9895 begin
9896 -- Recurse to handle case of multiple levels of qualification and/or
9897 -- conversion.
9899 if Nkind (Expr) in N_Qualified_Expression
9900 | N_Type_Conversion
9901 | N_Unchecked_Type_Conversion
9902 then
9903 return Unqual_BIP_Function_Call (Expression (Expr));
9905 -- Recurse to handle case of multiple levels of references and
9906 -- explicit dereferences.
9908 elsif Nkind (Expr) in N_Attribute_Reference
9909 | N_Explicit_Dereference
9910 | N_Reference
9911 then
9912 return Unqual_BIP_Function_Call (Prefix (Expr));
9914 -- Recurse on object renamings
9916 elsif Nkind (Expr) = N_Identifier
9917 and then Present (Entity (Expr))
9918 and then Ekind (Entity (Expr)) in E_Constant | E_Variable
9919 and then Nkind (Parent (Entity (Expr))) =
9920 N_Object_Renaming_Declaration
9921 and then Present (Renamed_Object (Entity (Expr)))
9922 then
9923 return Unqual_BIP_Function_Call (Renamed_Object (Entity (Expr)));
9925 -- Recurse on the initializing expression of the first reference of
9926 -- an object declaration.
9928 elsif not On_Object_Declaration
9929 and then Nkind (Expr) = N_Identifier
9930 and then Present (Entity (Expr))
9931 and then Ekind (Entity (Expr)) in E_Constant | E_Variable
9932 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
9933 and then Present (Expression (Parent (Entity (Expr))))
9934 then
9935 On_Object_Declaration := True;
9936 return
9937 Unqual_BIP_Function_Call (Expression (Parent (Entity (Expr))));
9939 -- Recurse to handle calls to displace the pointer to the object to
9940 -- reference a secondary dispatch table.
9942 elsif Nkind (Expr) = N_Function_Call
9943 and then Nkind (Name (Expr)) in N_Has_Entity
9944 and then Present (Entity (Name (Expr)))
9945 and then Is_RTE (Entity (Name (Expr)), RE_Displace)
9946 then
9947 Has_Pointer_Displacement := True;
9948 return
9949 Unqual_BIP_Function_Call (First (Parameter_Associations (Expr)));
9951 -- Normal case: check if the inner expression is a BIP function call
9952 -- and the pointer to the object is displaced.
9954 elsif Has_Pointer_Displacement
9955 and then Is_Build_In_Place_Function_Call (Expr)
9956 then
9957 return Expr;
9959 else
9960 return Empty;
9961 end if;
9962 end Unqual_BIP_Function_Call;
9964 -- Start of processing for Unqual_BIP_Iface_Function_Call
9966 begin
9967 if Nkind (Expr) = N_Identifier and then No (Entity (Expr)) then
9969 -- Can happen for X'Elab_Spec in the binder-generated file
9971 return Empty;
9972 end if;
9974 return Unqual_BIP_Function_Call (Expr);
9975 end Unqual_BIP_Iface_Function_Call;
9977 -------------------------------
9978 -- Validate_Subprogram_Calls --
9979 -------------------------------
9981 procedure Validate_Subprogram_Calls (N : Node_Id) is
9983 function Process_Node (Nod : Node_Id) return Traverse_Result;
9984 -- Function to traverse the subtree of N using Traverse_Proc.
9986 ------------------
9987 -- Process_Node --
9988 ------------------
9990 function Process_Node (Nod : Node_Id) return Traverse_Result is
9991 begin
9992 case Nkind (Nod) is
9993 when N_Entry_Call_Statement
9994 | N_Procedure_Call_Statement
9995 | N_Function_Call
9997 declare
9998 Call_Node : Node_Id renames Nod;
9999 Subp : Entity_Id;
10001 begin
10002 -- Call using access to subprogram with explicit dereference
10004 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
10005 Subp := Etype (Name (Call_Node));
10007 -- Prefix notation calls
10009 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
10010 Subp := Entity (Selector_Name (Name (Call_Node)));
10012 -- Call to member of entry family, where Name is an indexed
10013 -- component, with the prefix being a selected component
10014 -- giving the task and entry family name, and the index
10015 -- being the entry index.
10017 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
10018 Subp :=
10019 Entity (Selector_Name (Prefix (Name (Call_Node))));
10021 -- Normal case
10023 else
10024 Subp := Entity (Name (Call_Node));
10025 end if;
10027 pragma Assert (Check_BIP_Actuals (Call_Node, Subp));
10028 end;
10030 -- Skip generic bodies
10032 when N_Package_Body =>
10033 if Ekind (Unique_Defining_Entity (Nod)) = E_Generic_Package then
10034 return Skip;
10035 end if;
10037 when N_Subprogram_Body =>
10038 if Ekind (Unique_Defining_Entity (Nod)) in E_Generic_Function
10039 | E_Generic_Procedure
10040 then
10041 return Skip;
10042 end if;
10044 -- Nodes we want to ignore
10046 -- Skip calls placed in the full declaration of record types since
10047 -- the call will be performed by their Init Proc; for example,
10048 -- calls initializing default values of discriminants or calls
10049 -- providing the initial value of record type components. Other
10050 -- full type declarations are processed because they may have
10051 -- calls that must be checked. For example:
10053 -- type T is array (1 .. Some_Function_Call (...)) of Some_Type;
10055 -- ??? More work needed here to handle the following case:
10057 -- type Rec is record
10058 -- F : String (1 .. <some complicated expression>);
10059 -- end record;
10061 when N_Full_Type_Declaration =>
10062 if Is_Record_Type (Defining_Entity (Nod)) then
10063 return Skip;
10064 end if;
10066 -- Skip calls placed in subprogram specifications since function
10067 -- calls initializing default parameter values will be processed
10068 -- when the call to the subprogram is found (if the default actual
10069 -- parameter is required), and calls found in aspects will be
10070 -- processed when their corresponding pragma is found, or in the
10071 -- specific case of class-wide pre-/postconditions, when their
10072 -- helpers are found.
10074 when N_Procedure_Specification
10075 | N_Function_Specification
10077 return Skip;
10079 when N_Abstract_Subprogram_Declaration
10080 | N_Aspect_Specification
10081 | N_At_Clause
10082 | N_Call_Marker
10083 | N_Empty
10084 | N_Enumeration_Representation_Clause
10085 | N_Enumeration_Type_Definition
10086 | N_Function_Instantiation
10087 | N_Freeze_Generic_Entity
10088 | N_Generic_Function_Renaming_Declaration
10089 | N_Generic_Package_Renaming_Declaration
10090 | N_Generic_Procedure_Renaming_Declaration
10091 | N_Generic_Package_Declaration
10092 | N_Generic_Subprogram_Declaration
10093 | N_Itype_Reference
10094 | N_Number_Declaration
10095 | N_Package_Instantiation
10096 | N_Package_Renaming_Declaration
10097 | N_Pragma
10098 | N_Procedure_Instantiation
10099 | N_Protected_Type_Declaration
10100 | N_Record_Representation_Clause
10101 | N_Validate_Unchecked_Conversion
10102 | N_Variable_Reference_Marker
10103 | N_Use_Package_Clause
10104 | N_Use_Type_Clause
10105 | N_With_Clause
10107 return Skip;
10109 when others =>
10110 null;
10111 end case;
10113 return OK;
10114 end Process_Node;
10116 procedure Check_Calls is new Traverse_Proc (Process_Node);
10118 -- Start of processing for Validate_Subprogram_Calls
10120 begin
10121 -- No action required if we are not generating code or compiling sources
10122 -- that have errors.
10124 if Serious_Errors_Detected > 0
10125 or else Operating_Mode /= Generate_Code
10126 then
10127 return;
10128 end if;
10130 Check_Calls (N);
10131 end Validate_Subprogram_Calls;
10133 --------------
10134 -- Warn_BIP --
10135 --------------
10137 procedure Warn_BIP (Func_Call : Node_Id) is
10138 begin
10139 if Debug_Flag_Underscore_BB then
10140 Error_Msg_N ("build-in-place function call??", Func_Call);
10141 end if;
10142 end Warn_BIP;
10144 end Exp_Ch6;