[ARM/AArch64][testsuite] Add vmul_lane tests.
[official-gcc.git] / gcc / ada / freeze.adb
blobf14855d247edbb0b6f0d57d3d9c731f590e50bc5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Disp; use Exp_Disp;
36 with Exp_Pakd; use Exp_Pakd;
37 with Exp_Util; use Exp_Util;
38 with Exp_Tss; use Exp_Tss;
39 with Ghost; use Ghost;
40 with Layout; use Layout;
41 with Lib; use Lib;
42 with Namet; use Namet;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch6; use Sem_Ch6;
53 with Sem_Ch7; use Sem_Ch7;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Ch13; use Sem_Ch13;
56 with Sem_Eval; use Sem_Eval;
57 with Sem_Mech; use Sem_Mech;
58 with Sem_Prag; use Sem_Prag;
59 with Sem_Res; use Sem_Res;
60 with Sem_Util; use Sem_Util;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Stand; use Stand;
64 with Targparm; use Targparm;
65 with Tbuild; use Tbuild;
66 with Ttypes; use Ttypes;
67 with Uintp; use Uintp;
68 with Urealp; use Urealp;
69 with Warnsw; use Warnsw;
71 package body Freeze is
73 -----------------------
74 -- Local Subprograms --
75 -----------------------
77 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
78 -- Typ is a type that is being frozen. If no size clause is given,
79 -- but a default Esize has been computed, then this default Esize is
80 -- adjusted up if necessary to be consistent with a given alignment,
81 -- but never to a value greater than Long_Long_Integer'Size. This
82 -- is used for all discrete types and for fixed-point types.
84 procedure Build_And_Analyze_Renamed_Body
85 (Decl : Node_Id;
86 New_S : Entity_Id;
87 After : in out Node_Id);
88 -- Build body for a renaming declaration, insert in tree and analyze
90 procedure Check_Address_Clause (E : Entity_Id);
91 -- Apply legality checks to address clauses for object declarations,
92 -- at the point the object is frozen. Also ensure any initialization is
93 -- performed only after the object has been frozen.
95 procedure Check_Component_Storage_Order
96 (Encl_Type : Entity_Id;
97 Comp : Entity_Id;
98 ADC : Node_Id;
99 Comp_ADC_Present : out Boolean);
100 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
101 -- clause, verify that the component type has an explicit and compatible
102 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
103 -- entity of the component under consideration. For an Encl_Type that
104 -- does not have a Scalar_Storage_Order attribute definition clause,
105 -- verify that the component also does not have such a clause.
106 -- ADC is the attribute definition clause if present (or Empty). On return,
107 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
108 -- attribute definition clause.
110 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
111 -- When an expression function is frozen by a use of it, the expression
112 -- itself is frozen. Check that the expression does not include references
113 -- to deferred constants without completion. We report this at the freeze
114 -- point of the function, to provide a better error message.
116 -- In most cases the expression itself is frozen by the time the function
117 -- itself is frozen, because the formals will be frozen by then. However,
118 -- Attribute references to outer types are freeze points for those types;
119 -- this routine generates the required freeze nodes for them.
121 procedure Check_Strict_Alignment (E : Entity_Id);
122 -- E is a base type. If E is tagged or has a component that is aliased
123 -- or tagged or contains something this is aliased or tagged, set
124 -- Strict_Alignment.
126 procedure Check_Unsigned_Type (E : Entity_Id);
127 pragma Inline (Check_Unsigned_Type);
128 -- If E is a fixed-point or discrete type, then all the necessary work
129 -- to freeze it is completed except for possible setting of the flag
130 -- Is_Unsigned_Type, which is done by this procedure. The call has no
131 -- effect if the entity E is not a discrete or fixed-point type.
133 procedure Freeze_And_Append
134 (Ent : Entity_Id;
135 N : Node_Id;
136 Result : in out List_Id);
137 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
138 -- nodes to Result, modifying Result from No_List if necessary. N has
139 -- the same usage as in Freeze_Entity.
141 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
142 -- Freeze enumeration type. The Esize field is set as processing
143 -- proceeds (i.e. set by default when the type is declared and then
144 -- adjusted by rep clauses. What this procedure does is to make sure
145 -- that if a foreign convention is specified, and no specific size
146 -- is given, then the size must be at least Integer'Size.
148 procedure Freeze_Static_Object (E : Entity_Id);
149 -- If an object is frozen which has Is_Statically_Allocated set, then
150 -- all referenced types must also be marked with this flag. This routine
151 -- is in charge of meeting this requirement for the object entity E.
153 procedure Freeze_Subprogram (E : Entity_Id);
154 -- Perform freezing actions for a subprogram (create extra formals,
155 -- and set proper default mechanism values). Note that this routine
156 -- is not called for internal subprograms, for which neither of these
157 -- actions is needed (or desirable, we do not want for example to have
158 -- these extra formals present in initialization procedures, where they
159 -- would serve no purpose). In this call E is either a subprogram or
160 -- a subprogram type (i.e. an access to a subprogram).
162 function Is_Fully_Defined (T : Entity_Id) return Boolean;
163 -- True if T is not private and has no private components, or has a full
164 -- view. Used to determine whether the designated type of an access type
165 -- should be frozen when the access type is frozen. This is done when an
166 -- allocator is frozen, or an expression that may involve attributes of
167 -- the designated type. Otherwise freezing the access type does not freeze
168 -- the designated type.
170 procedure Process_Default_Expressions
171 (E : Entity_Id;
172 After : in out Node_Id);
173 -- This procedure is called for each subprogram to complete processing of
174 -- default expressions at the point where all types are known to be frozen.
175 -- The expressions must be analyzed in full, to make sure that all error
176 -- processing is done (they have only been pre-analyzed). If the expression
177 -- is not an entity or literal, its analysis may generate code which must
178 -- not be executed. In that case we build a function body to hold that
179 -- code. This wrapper function serves no other purpose (it used to be
180 -- called to evaluate the default, but now the default is inlined at each
181 -- point of call).
183 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
184 -- Typ is a record or array type that is being frozen. This routine sets
185 -- the default component alignment from the scope stack values if the
186 -- alignment is otherwise not specified.
188 procedure Check_Debug_Info_Needed (T : Entity_Id);
189 -- As each entity is frozen, this routine is called to deal with the
190 -- setting of Debug_Info_Needed for the entity. This flag is set if
191 -- the entity comes from source, or if we are in Debug_Generated_Code
192 -- mode or if the -gnatdV debug flag is set. However, it never sets
193 -- the flag if Debug_Info_Off is set. This procedure also ensures that
194 -- subsidiary entities have the flag set as required.
196 procedure Set_SSO_From_Default (T : Entity_Id);
197 -- T is a record or array type that is being frozen. If it is a base type,
198 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
199 -- will be set appropriately. Note that an explicit occurrence of aspect
200 -- Scalar_Storage_Order or an explicit setting of this aspect with an
201 -- attribute definition clause occurs, then these two flags are reset in
202 -- any case, so call will have no effect.
204 procedure Undelay_Type (T : Entity_Id);
205 -- T is a type of a component that we know to be an Itype. We don't want
206 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
207 -- Full_View or Corresponding_Record_Type.
209 procedure Warn_Overlay
210 (Expr : Node_Id;
211 Typ : Entity_Id;
212 Nam : Node_Id);
213 -- Expr is the expression for an address clause for entity Nam whose type
214 -- is Typ. If Typ has a default initialization, and there is no explicit
215 -- initialization in the source declaration, check whether the address
216 -- clause might cause overlaying of an entity, and emit a warning on the
217 -- side effect that the initialization will cause.
219 -------------------------------
220 -- Adjust_Esize_For_Alignment --
221 -------------------------------
223 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
224 Align : Uint;
226 begin
227 if Known_Esize (Typ) and then Known_Alignment (Typ) then
228 Align := Alignment_In_Bits (Typ);
230 if Align > Esize (Typ)
231 and then Align <= Standard_Long_Long_Integer_Size
232 then
233 Set_Esize (Typ, Align);
234 end if;
235 end if;
236 end Adjust_Esize_For_Alignment;
238 ------------------------------------
239 -- Build_And_Analyze_Renamed_Body --
240 ------------------------------------
242 procedure Build_And_Analyze_Renamed_Body
243 (Decl : Node_Id;
244 New_S : Entity_Id;
245 After : in out Node_Id)
247 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
248 Ent : constant Entity_Id := Defining_Entity (Decl);
249 Body_Node : Node_Id;
250 Renamed_Subp : Entity_Id;
252 begin
253 -- If the renamed subprogram is intrinsic, there is no need for a
254 -- wrapper body: we set the alias that will be called and expanded which
255 -- completes the declaration. This transformation is only legal if the
256 -- renamed entity has already been elaborated.
258 -- Note that it is legal for a renaming_as_body to rename an intrinsic
259 -- subprogram, as long as the renaming occurs before the new entity
260 -- is frozen (RM 8.5.4 (5)).
262 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
263 and then Is_Entity_Name (Name (Body_Decl))
264 then
265 Renamed_Subp := Entity (Name (Body_Decl));
266 else
267 Renamed_Subp := Empty;
268 end if;
270 if Present (Renamed_Subp)
271 and then Is_Intrinsic_Subprogram (Renamed_Subp)
272 and then
273 (not In_Same_Source_Unit (Renamed_Subp, Ent)
274 or else Sloc (Renamed_Subp) < Sloc (Ent))
276 -- We can make the renaming entity intrinsic if the renamed function
277 -- has an interface name, or if it is one of the shift/rotate
278 -- operations known to the compiler.
280 and then
281 (Present (Interface_Name (Renamed_Subp))
282 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
283 Name_Rotate_Right,
284 Name_Shift_Left,
285 Name_Shift_Right,
286 Name_Shift_Right_Arithmetic))
287 then
288 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
290 if Present (Alias (Renamed_Subp)) then
291 Set_Alias (Ent, Alias (Renamed_Subp));
292 else
293 Set_Alias (Ent, Renamed_Subp);
294 end if;
296 Set_Is_Intrinsic_Subprogram (Ent);
297 Set_Has_Completion (Ent);
299 else
300 Body_Node := Build_Renamed_Body (Decl, New_S);
301 Insert_After (After, Body_Node);
302 Mark_Rewrite_Insertion (Body_Node);
303 Analyze (Body_Node);
304 After := Body_Node;
305 end if;
306 end Build_And_Analyze_Renamed_Body;
308 ------------------------
309 -- Build_Renamed_Body --
310 ------------------------
312 function Build_Renamed_Body
313 (Decl : Node_Id;
314 New_S : Entity_Id) return Node_Id
316 Loc : constant Source_Ptr := Sloc (New_S);
317 -- We use for the source location of the renamed body, the location of
318 -- the spec entity. It might seem more natural to use the location of
319 -- the renaming declaration itself, but that would be wrong, since then
320 -- the body we create would look as though it was created far too late,
321 -- and this could cause problems with elaboration order analysis,
322 -- particularly in connection with instantiations.
324 N : constant Node_Id := Unit_Declaration_Node (New_S);
325 Nam : constant Node_Id := Name (N);
326 Old_S : Entity_Id;
327 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
328 Actuals : List_Id := No_List;
329 Call_Node : Node_Id;
330 Call_Name : Node_Id;
331 Body_Node : Node_Id;
332 Formal : Entity_Id;
333 O_Formal : Entity_Id;
334 Param_Spec : Node_Id;
336 Pref : Node_Id := Empty;
337 -- If the renamed entity is a primitive operation given in prefix form,
338 -- the prefix is the target object and it has to be added as the first
339 -- actual in the generated call.
341 begin
342 -- Determine the entity being renamed, which is the target of the call
343 -- statement. If the name is an explicit dereference, this is a renaming
344 -- of a subprogram type rather than a subprogram. The name itself is
345 -- fully analyzed.
347 if Nkind (Nam) = N_Selected_Component then
348 Old_S := Entity (Selector_Name (Nam));
350 elsif Nkind (Nam) = N_Explicit_Dereference then
351 Old_S := Etype (Nam);
353 elsif Nkind (Nam) = N_Indexed_Component then
354 if Is_Entity_Name (Prefix (Nam)) then
355 Old_S := Entity (Prefix (Nam));
356 else
357 Old_S := Entity (Selector_Name (Prefix (Nam)));
358 end if;
360 elsif Nkind (Nam) = N_Character_Literal then
361 Old_S := Etype (New_S);
363 else
364 Old_S := Entity (Nam);
365 end if;
367 if Is_Entity_Name (Nam) then
369 -- If the renamed entity is a predefined operator, retain full name
370 -- to ensure its visibility.
372 if Ekind (Old_S) = E_Operator
373 and then Nkind (Nam) = N_Expanded_Name
374 then
375 Call_Name := New_Copy (Name (N));
376 else
377 Call_Name := New_Occurrence_Of (Old_S, Loc);
378 end if;
380 else
381 if Nkind (Nam) = N_Selected_Component
382 and then Present (First_Formal (Old_S))
383 and then
384 (Is_Controlling_Formal (First_Formal (Old_S))
385 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
386 then
388 -- Retrieve the target object, to be added as a first actual
389 -- in the call.
391 Call_Name := New_Occurrence_Of (Old_S, Loc);
392 Pref := Prefix (Nam);
394 else
395 Call_Name := New_Copy (Name (N));
396 end if;
398 -- Original name may have been overloaded, but is fully resolved now
400 Set_Is_Overloaded (Call_Name, False);
401 end if;
403 -- For simple renamings, subsequent calls can be expanded directly as
404 -- calls to the renamed entity. The body must be generated in any case
405 -- for calls that may appear elsewhere. This is not done in the case
406 -- where the subprogram is an instantiation because the actual proper
407 -- body has not been built yet.
409 if Ekind_In (Old_S, E_Function, E_Procedure)
410 and then Nkind (Decl) = N_Subprogram_Declaration
411 and then not Is_Generic_Instance (Old_S)
412 then
413 Set_Body_To_Inline (Decl, Old_S);
414 end if;
416 -- Check whether the return type is a limited view. If the subprogram
417 -- is already frozen the generated body may have a non-limited view
418 -- of the type, that must be used, because it is the one in the spec
419 -- of the renaming declaration.
421 if Ekind (Old_S) = E_Function
422 and then Is_Entity_Name (Result_Definition (Spec))
423 then
424 declare
425 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
426 begin
427 if Ekind (Ret_Type) = E_Incomplete_Type
428 and then Present (Non_Limited_View (Ret_Type))
429 then
430 Set_Result_Definition (Spec,
431 New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
432 end if;
433 end;
434 end if;
436 -- The body generated for this renaming is an internal artifact, and
437 -- does not constitute a freeze point for the called entity.
439 Set_Must_Not_Freeze (Call_Name);
441 Formal := First_Formal (Defining_Entity (Decl));
443 if Present (Pref) then
444 declare
445 Pref_Type : constant Entity_Id := Etype (Pref);
446 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
448 begin
449 -- The controlling formal may be an access parameter, or the
450 -- actual may be an access value, so adjust accordingly.
452 if Is_Access_Type (Pref_Type)
453 and then not Is_Access_Type (Form_Type)
454 then
455 Actuals := New_List
456 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
458 elsif Is_Access_Type (Form_Type)
459 and then not Is_Access_Type (Pref)
460 then
461 Actuals := New_List
462 (Make_Attribute_Reference (Loc,
463 Attribute_Name => Name_Access,
464 Prefix => Relocate_Node (Pref)));
465 else
466 Actuals := New_List (Pref);
467 end if;
468 end;
470 elsif Present (Formal) then
471 Actuals := New_List;
473 else
474 Actuals := No_List;
475 end if;
477 if Present (Formal) then
478 while Present (Formal) loop
479 Append (New_Occurrence_Of (Formal, Loc), Actuals);
480 Next_Formal (Formal);
481 end loop;
482 end if;
484 -- If the renamed entity is an entry, inherit its profile. For other
485 -- renamings as bodies, both profiles must be subtype conformant, so it
486 -- is not necessary to replace the profile given in the declaration.
487 -- However, default values that are aggregates are rewritten when
488 -- partially analyzed, so we recover the original aggregate to insure
489 -- that subsequent conformity checking works. Similarly, if the default
490 -- expression was constant-folded, recover the original expression.
492 Formal := First_Formal (Defining_Entity (Decl));
494 if Present (Formal) then
495 O_Formal := First_Formal (Old_S);
496 Param_Spec := First (Parameter_Specifications (Spec));
497 while Present (Formal) loop
498 if Is_Entry (Old_S) then
499 if Nkind (Parameter_Type (Param_Spec)) /=
500 N_Access_Definition
501 then
502 Set_Etype (Formal, Etype (O_Formal));
503 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
504 end if;
506 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
507 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
508 Nkind (Default_Value (O_Formal))
509 then
510 Set_Expression (Param_Spec,
511 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
512 end if;
514 Next_Formal (Formal);
515 Next_Formal (O_Formal);
516 Next (Param_Spec);
517 end loop;
518 end if;
520 -- If the renamed entity is a function, the generated body contains a
521 -- return statement. Otherwise, build a procedure call. If the entity is
522 -- an entry, subsequent analysis of the call will transform it into the
523 -- proper entry or protected operation call. If the renamed entity is
524 -- a character literal, return it directly.
526 if Ekind (Old_S) = E_Function
527 or else Ekind (Old_S) = E_Operator
528 or else (Ekind (Old_S) = E_Subprogram_Type
529 and then Etype (Old_S) /= Standard_Void_Type)
530 then
531 Call_Node :=
532 Make_Simple_Return_Statement (Loc,
533 Expression =>
534 Make_Function_Call (Loc,
535 Name => Call_Name,
536 Parameter_Associations => Actuals));
538 elsif Ekind (Old_S) = E_Enumeration_Literal then
539 Call_Node :=
540 Make_Simple_Return_Statement (Loc,
541 Expression => New_Occurrence_Of (Old_S, Loc));
543 elsif Nkind (Nam) = N_Character_Literal then
544 Call_Node :=
545 Make_Simple_Return_Statement (Loc,
546 Expression => Call_Name);
548 else
549 Call_Node :=
550 Make_Procedure_Call_Statement (Loc,
551 Name => Call_Name,
552 Parameter_Associations => Actuals);
553 end if;
555 -- Create entities for subprogram body and formals
557 Set_Defining_Unit_Name (Spec,
558 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
560 Param_Spec := First (Parameter_Specifications (Spec));
561 while Present (Param_Spec) loop
562 Set_Defining_Identifier (Param_Spec,
563 Make_Defining_Identifier (Loc,
564 Chars => Chars (Defining_Identifier (Param_Spec))));
565 Next (Param_Spec);
566 end loop;
568 Body_Node :=
569 Make_Subprogram_Body (Loc,
570 Specification => Spec,
571 Declarations => New_List,
572 Handled_Statement_Sequence =>
573 Make_Handled_Sequence_Of_Statements (Loc,
574 Statements => New_List (Call_Node)));
576 if Nkind (Decl) /= N_Subprogram_Declaration then
577 Rewrite (N,
578 Make_Subprogram_Declaration (Loc,
579 Specification => Specification (N)));
580 end if;
582 -- Link the body to the entity whose declaration it completes. If
583 -- the body is analyzed when the renamed entity is frozen, it may
584 -- be necessary to restore the proper scope (see package Exp_Ch13).
586 if Nkind (N) = N_Subprogram_Renaming_Declaration
587 and then Present (Corresponding_Spec (N))
588 then
589 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
590 else
591 Set_Corresponding_Spec (Body_Node, New_S);
592 end if;
594 return Body_Node;
595 end Build_Renamed_Body;
597 --------------------------
598 -- Check_Address_Clause --
599 --------------------------
601 procedure Check_Address_Clause (E : Entity_Id) is
602 Addr : constant Node_Id := Address_Clause (E);
603 Expr : Node_Id;
604 Decl : constant Node_Id := Declaration_Node (E);
605 Loc : constant Source_Ptr := Sloc (Decl);
606 Typ : constant Entity_Id := Etype (E);
607 Lhs : Node_Id;
608 Tag_Assign : Node_Id;
610 begin
611 if Present (Addr) then
612 Expr := Expression (Addr);
614 if Needs_Constant_Address (Decl, Typ) then
615 Check_Constant_Address_Clause (Expr, E);
617 -- Has_Delayed_Freeze was set on E when the address clause was
618 -- analyzed, and must remain set because we want the address
619 -- clause to be elaborated only after any entity it references
620 -- has been elaborated.
621 end if;
623 -- If Rep_Clauses are to be ignored, remove address clause from
624 -- list attached to entity, because it may be illegal for gigi,
625 -- for example by breaking order of elaboration..
627 if Ignore_Rep_Clauses then
628 declare
629 Rep : Node_Id;
631 begin
632 Rep := First_Rep_Item (E);
634 if Rep = Addr then
635 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
637 else
638 while Present (Rep)
639 and then Next_Rep_Item (Rep) /= Addr
640 loop
641 Rep := Next_Rep_Item (Rep);
642 end loop;
643 end if;
645 if Present (Rep) then
646 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
647 end if;
648 end;
650 -- And now remove the address clause
652 Kill_Rep_Clause (Addr);
654 elsif not Error_Posted (Expr)
655 and then not Needs_Finalization (Typ)
656 then
657 Warn_Overlay (Expr, Typ, Name (Addr));
658 end if;
660 if Present (Expression (Decl)) then
662 -- Capture initialization value at point of declaration,
663 -- and make explicit assignment legal, because object may
664 -- be a constant.
666 Remove_Side_Effects (Expression (Decl));
667 Lhs := New_Occurrence_Of (E, Loc);
668 Set_Assignment_OK (Lhs);
670 -- Move initialization to freeze actions (once the object has
671 -- been frozen, and the address clause alignment check has been
672 -- performed.
674 Append_Freeze_Action (E,
675 Make_Assignment_Statement (Loc,
676 Name => Lhs,
677 Expression => Expression (Decl)));
679 Set_No_Initialization (Decl);
681 -- If the objet is tagged, check whether the tag must be
682 -- reassigned expliitly.
684 Tag_Assign := Make_Tag_Assignment (Decl);
685 if Present (Tag_Assign) then
686 Append_Freeze_Action (E, Tag_Assign);
687 end if;
688 end if;
689 end if;
690 end Check_Address_Clause;
692 -----------------------------
693 -- Check_Compile_Time_Size --
694 -----------------------------
696 procedure Check_Compile_Time_Size (T : Entity_Id) is
698 procedure Set_Small_Size (T : Entity_Id; S : Uint);
699 -- Sets the compile time known size (32 bits or less) in the Esize
700 -- field, of T checking for a size clause that was given which attempts
701 -- to give a smaller size, and also checking for an alignment clause.
703 function Size_Known (T : Entity_Id) return Boolean;
704 -- Recursive function that does all the work
706 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
707 -- If T is a constrained subtype, its size is not known if any of its
708 -- discriminant constraints is not static and it is not a null record.
709 -- The test is conservative and doesn't check that the components are
710 -- in fact constrained by non-static discriminant values. Could be made
711 -- more precise ???
713 --------------------
714 -- Set_Small_Size --
715 --------------------
717 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
718 begin
719 if S > 32 then
720 return;
722 -- Check for bad size clause given
724 elsif Has_Size_Clause (T) then
725 if RM_Size (T) < S then
726 Error_Msg_Uint_1 := S;
727 Error_Msg_NE
728 ("size for& too small, minimum allowed is ^",
729 Size_Clause (T), T);
730 end if;
732 -- Set size if not set already
734 elsif Unknown_RM_Size (T) then
735 Set_RM_Size (T, S);
736 end if;
737 end Set_Small_Size;
739 ----------------
740 -- Size_Known --
741 ----------------
743 function Size_Known (T : Entity_Id) return Boolean is
744 Index : Entity_Id;
745 Comp : Entity_Id;
746 Ctyp : Entity_Id;
747 Low : Node_Id;
748 High : Node_Id;
750 begin
751 if Size_Known_At_Compile_Time (T) then
752 return True;
754 -- Always True for scalar types. This is true even for generic formal
755 -- scalar types. We used to return False in the latter case, but the
756 -- size is known at compile time, even in the template, we just do
757 -- not know the exact size but that's not the point of this routine.
759 elsif Is_Scalar_Type (T)
760 or else Is_Task_Type (T)
761 then
762 return True;
764 -- Array types
766 elsif Is_Array_Type (T) then
768 -- String literals always have known size, and we can set it
770 if Ekind (T) = E_String_Literal_Subtype then
771 Set_Small_Size (T, Component_Size (T)
772 * String_Literal_Length (T));
773 return True;
775 -- Unconstrained types never have known at compile time size
777 elsif not Is_Constrained (T) then
778 return False;
780 -- Don't do any recursion on type with error posted, since we may
781 -- have a malformed type that leads us into a loop.
783 elsif Error_Posted (T) then
784 return False;
786 -- Otherwise if component size unknown, then array size unknown
788 elsif not Size_Known (Component_Type (T)) then
789 return False;
790 end if;
792 -- Check for all indexes static, and also compute possible size
793 -- (in case it is less than 32 and may be packable).
795 declare
796 Esiz : Uint := Component_Size (T);
797 Dim : Uint;
799 begin
800 Index := First_Index (T);
801 while Present (Index) loop
802 if Nkind (Index) = N_Range then
803 Get_Index_Bounds (Index, Low, High);
805 elsif Error_Posted (Scalar_Range (Etype (Index))) then
806 return False;
808 else
809 Low := Type_Low_Bound (Etype (Index));
810 High := Type_High_Bound (Etype (Index));
811 end if;
813 if not Compile_Time_Known_Value (Low)
814 or else not Compile_Time_Known_Value (High)
815 or else Etype (Index) = Any_Type
816 then
817 return False;
819 else
820 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
822 if Dim >= 0 then
823 Esiz := Esiz * Dim;
824 else
825 Esiz := Uint_0;
826 end if;
827 end if;
829 Next_Index (Index);
830 end loop;
832 Set_Small_Size (T, Esiz);
833 return True;
834 end;
836 -- Access types always have known at compile time sizes
838 elsif Is_Access_Type (T) then
839 return True;
841 -- For non-generic private types, go to underlying type if present
843 elsif Is_Private_Type (T)
844 and then not Is_Generic_Type (T)
845 and then Present (Underlying_Type (T))
846 then
847 -- Don't do any recursion on type with error posted, since we may
848 -- have a malformed type that leads us into a loop.
850 if Error_Posted (T) then
851 return False;
852 else
853 return Size_Known (Underlying_Type (T));
854 end if;
856 -- Record types
858 elsif Is_Record_Type (T) then
860 -- A class-wide type is never considered to have a known size
862 if Is_Class_Wide_Type (T) then
863 return False;
865 -- A subtype of a variant record must not have non-static
866 -- discriminated components.
868 elsif T /= Base_Type (T)
869 and then not Static_Discriminated_Components (T)
870 then
871 return False;
873 -- Don't do any recursion on type with error posted, since we may
874 -- have a malformed type that leads us into a loop.
876 elsif Error_Posted (T) then
877 return False;
878 end if;
880 -- Now look at the components of the record
882 declare
883 -- The following two variables are used to keep track of the
884 -- size of packed records if we can tell the size of the packed
885 -- record in the front end. Packed_Size_Known is True if so far
886 -- we can figure out the size. It is initialized to True for a
887 -- packed record, unless the record has discriminants or atomic
888 -- components or independent components.
890 -- The reason we eliminate the discriminated case is that
891 -- we don't know the way the back end lays out discriminated
892 -- packed records. If Packed_Size_Known is True, then
893 -- Packed_Size is the size in bits so far.
895 Packed_Size_Known : Boolean :=
896 Is_Packed (T)
897 and then not Has_Discriminants (T)
898 and then not Has_Atomic_Components (T)
899 and then not Has_Independent_Components (T);
901 Packed_Size : Uint := Uint_0;
902 -- Size in bits so far
904 begin
905 -- Test for variant part present
907 if Has_Discriminants (T)
908 and then Present (Parent (T))
909 and then Nkind (Parent (T)) = N_Full_Type_Declaration
910 and then Nkind (Type_Definition (Parent (T))) =
911 N_Record_Definition
912 and then not Null_Present (Type_Definition (Parent (T)))
913 and then
914 Present (Variant_Part
915 (Component_List (Type_Definition (Parent (T)))))
916 then
917 -- If variant part is present, and type is unconstrained,
918 -- then we must have defaulted discriminants, or a size
919 -- clause must be present for the type, or else the size
920 -- is definitely not known at compile time.
922 if not Is_Constrained (T)
923 and then
924 No (Discriminant_Default_Value (First_Discriminant (T)))
925 and then Unknown_RM_Size (T)
926 then
927 return False;
928 end if;
929 end if;
931 -- Loop through components
933 Comp := First_Component_Or_Discriminant (T);
934 while Present (Comp) loop
935 Ctyp := Etype (Comp);
937 -- We do not know the packed size if there is a component
938 -- clause present (we possibly could, but this would only
939 -- help in the case of a record with partial rep clauses.
940 -- That's because in the case of full rep clauses, the
941 -- size gets figured out anyway by a different circuit).
943 if Present (Component_Clause (Comp)) then
944 Packed_Size_Known := False;
945 end if;
947 -- We do not know the packed size if we have a by reference
948 -- type, or an atomic type or an atomic component, or an
949 -- aliased component (because packing does not touch these).
951 if Is_Atomic (Ctyp)
952 or else Is_Atomic (Comp)
953 or else Is_By_Reference_Type (Ctyp)
954 or else Is_Aliased (Comp)
955 then
956 Packed_Size_Known := False;
957 end if;
959 -- We need to identify a component that is an array where
960 -- the index type is an enumeration type with non-standard
961 -- representation, and some bound of the type depends on a
962 -- discriminant.
964 -- This is because gigi computes the size by doing a
965 -- substitution of the appropriate discriminant value in
966 -- the size expression for the base type, and gigi is not
967 -- clever enough to evaluate the resulting expression (which
968 -- involves a call to rep_to_pos) at compile time.
970 -- It would be nice if gigi would either recognize that
971 -- this expression can be computed at compile time, or
972 -- alternatively figured out the size from the subtype
973 -- directly, where all the information is at hand ???
975 if Is_Array_Type (Etype (Comp))
976 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
977 then
978 declare
979 Ocomp : constant Entity_Id :=
980 Original_Record_Component (Comp);
981 OCtyp : constant Entity_Id := Etype (Ocomp);
982 Ind : Node_Id;
983 Indtyp : Entity_Id;
984 Lo, Hi : Node_Id;
986 begin
987 Ind := First_Index (OCtyp);
988 while Present (Ind) loop
989 Indtyp := Etype (Ind);
991 if Is_Enumeration_Type (Indtyp)
992 and then Has_Non_Standard_Rep (Indtyp)
993 then
994 Lo := Type_Low_Bound (Indtyp);
995 Hi := Type_High_Bound (Indtyp);
997 if Is_Entity_Name (Lo)
998 and then Ekind (Entity (Lo)) = E_Discriminant
999 then
1000 return False;
1002 elsif Is_Entity_Name (Hi)
1003 and then Ekind (Entity (Hi)) = E_Discriminant
1004 then
1005 return False;
1006 end if;
1007 end if;
1009 Next_Index (Ind);
1010 end loop;
1011 end;
1012 end if;
1014 -- Clearly size of record is not known if the size of one of
1015 -- the components is not known.
1017 if not Size_Known (Ctyp) then
1018 return False;
1019 end if;
1021 -- Accumulate packed size if possible
1023 if Packed_Size_Known then
1025 -- We can only deal with elementary types, since for
1026 -- non-elementary components, alignment enters into the
1027 -- picture, and we don't know enough to handle proper
1028 -- alignment in this context. Packed arrays count as
1029 -- elementary if the representation is a modular type.
1031 if Is_Elementary_Type (Ctyp)
1032 or else (Is_Array_Type (Ctyp)
1033 and then Present
1034 (Packed_Array_Impl_Type (Ctyp))
1035 and then Is_Modular_Integer_Type
1036 (Packed_Array_Impl_Type (Ctyp)))
1037 then
1038 -- Packed size unknown if we have an atomic type
1039 -- or a by reference type, since the back end
1040 -- knows how these are layed out.
1042 if Is_Atomic (Ctyp)
1043 or else Is_By_Reference_Type (Ctyp)
1044 then
1045 Packed_Size_Known := False;
1047 -- If RM_Size is known and static, then we can keep
1048 -- accumulating the packed size
1050 elsif Known_Static_RM_Size (Ctyp) then
1052 -- A little glitch, to be removed sometime ???
1053 -- gigi does not understand zero sizes yet.
1055 if RM_Size (Ctyp) = Uint_0 then
1056 Packed_Size_Known := False;
1058 -- Normal case where we can keep accumulating the
1059 -- packed array size.
1061 else
1062 Packed_Size := Packed_Size + RM_Size (Ctyp);
1063 end if;
1065 -- If we have a field whose RM_Size is not known then
1066 -- we can't figure out the packed size here.
1068 else
1069 Packed_Size_Known := False;
1070 end if;
1072 -- If we have a non-elementary type we can't figure out
1073 -- the packed array size (alignment issues).
1075 else
1076 Packed_Size_Known := False;
1077 end if;
1078 end if;
1080 Next_Component_Or_Discriminant (Comp);
1081 end loop;
1083 if Packed_Size_Known then
1084 Set_Small_Size (T, Packed_Size);
1085 end if;
1087 return True;
1088 end;
1090 -- All other cases, size not known at compile time
1092 else
1093 return False;
1094 end if;
1095 end Size_Known;
1097 -------------------------------------
1098 -- Static_Discriminated_Components --
1099 -------------------------------------
1101 function Static_Discriminated_Components
1102 (T : Entity_Id) return Boolean
1104 Constraint : Elmt_Id;
1106 begin
1107 if Has_Discriminants (T)
1108 and then Present (Discriminant_Constraint (T))
1109 and then Present (First_Component (T))
1110 then
1111 Constraint := First_Elmt (Discriminant_Constraint (T));
1112 while Present (Constraint) loop
1113 if not Compile_Time_Known_Value (Node (Constraint)) then
1114 return False;
1115 end if;
1117 Next_Elmt (Constraint);
1118 end loop;
1119 end if;
1121 return True;
1122 end Static_Discriminated_Components;
1124 -- Start of processing for Check_Compile_Time_Size
1126 begin
1127 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1128 end Check_Compile_Time_Size;
1130 -----------------------------------
1131 -- Check_Component_Storage_Order --
1132 -----------------------------------
1134 procedure Check_Component_Storage_Order
1135 (Encl_Type : Entity_Id;
1136 Comp : Entity_Id;
1137 ADC : Node_Id;
1138 Comp_ADC_Present : out Boolean)
1140 Comp_Type : Entity_Id;
1141 Comp_ADC : Node_Id;
1142 Err_Node : Node_Id;
1144 Comp_Byte_Aligned : Boolean;
1145 -- Set for the record case, True if Comp starts on a byte boundary
1146 -- (in which case it is allowed to have different storage order).
1148 Comp_SSO_Differs : Boolean;
1149 -- Set True when the component is a nested composite, and it does not
1150 -- have the same scalar storage order as Encl_Type.
1152 Component_Aliased : Boolean;
1154 begin
1155 -- Record case
1157 if Present (Comp) then
1158 Err_Node := Comp;
1159 Comp_Type := Etype (Comp);
1161 if Is_Tag (Comp) then
1162 Comp_Byte_Aligned := True;
1163 Component_Aliased := False;
1165 else
1166 -- If a component clause is present, check if the component starts
1167 -- on a storage element boundary. Otherwise conservatively assume
1168 -- it does so only in the case where the record is not packed.
1170 if Present (Component_Clause (Comp)) then
1171 Comp_Byte_Aligned :=
1172 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1173 else
1174 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1175 end if;
1177 Component_Aliased := Is_Aliased (Comp);
1178 end if;
1180 -- Array case
1182 else
1183 Err_Node := Encl_Type;
1184 Comp_Type := Component_Type (Encl_Type);
1186 Component_Aliased := Has_Aliased_Components (Encl_Type);
1187 end if;
1189 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1190 -- the attribute definition clause is attached to the first subtype.
1192 Comp_Type := Base_Type (Comp_Type);
1193 Comp_ADC := Get_Attribute_Definition_Clause
1194 (First_Subtype (Comp_Type),
1195 Attribute_Scalar_Storage_Order);
1196 Comp_ADC_Present := Present (Comp_ADC);
1198 -- Case of record or array component: check storage order compatibility
1200 if Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
1201 Comp_SSO_Differs :=
1202 Reverse_Storage_Order (Encl_Type)
1204 Reverse_Storage_Order (Comp_Type);
1206 -- Parent and extension must have same storage order
1208 if Present (Comp) and then Chars (Comp) = Name_uParent then
1209 if Comp_SSO_Differs then
1210 Error_Msg_N
1211 ("record extension must have same scalar storage order as "
1212 & "parent", Err_Node);
1213 end if;
1215 -- If enclosing composite has explicit SSO then nested composite must
1216 -- have explicit SSO as well.
1218 elsif Present (ADC) and then No (Comp_ADC) then
1219 Error_Msg_N ("nested composite must have explicit scalar "
1220 & "storage order", Err_Node);
1222 -- If component and composite SSO differs, check that component
1223 -- falls on byte boundaries and isn't packed.
1225 elsif Comp_SSO_Differs then
1227 -- Component SSO differs from enclosing composite:
1229 -- Reject if component is a packed array, as it may be represented
1230 -- as a scalar internally.
1232 if Is_Packed_Array (Comp_Type) then
1233 Error_Msg_N
1234 ("type of packed component must have same scalar "
1235 & "storage order as enclosing composite", Err_Node);
1237 -- Reject if composite is a packed array, as it may be rewritten
1238 -- into an array of scalars.
1240 elsif Is_Packed_Array (Encl_Type) then
1241 Error_Msg_N ("type of packed array must have same scalar "
1242 & "storage order as component", Err_Node);
1244 -- Reject if not byte aligned
1246 elsif Is_Record_Type (Encl_Type)
1247 and then not Comp_Byte_Aligned
1248 then
1249 Error_Msg_N
1250 ("type of non-byte-aligned component must have same scalar "
1251 & "storage order as enclosing composite", Err_Node);
1252 end if;
1253 end if;
1255 -- Enclosing type has explicit SSO: non-composite component must not
1256 -- be aliased.
1258 elsif Present (ADC) and then Component_Aliased then
1259 Error_Msg_N
1260 ("aliased component not permitted for type with "
1261 & "explicit Scalar_Storage_Order", Err_Node);
1262 end if;
1263 end Check_Component_Storage_Order;
1265 -----------------------------
1266 -- Check_Debug_Info_Needed --
1267 -----------------------------
1269 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1270 begin
1271 if Debug_Info_Off (T) then
1272 return;
1274 elsif Comes_From_Source (T)
1275 or else Debug_Generated_Code
1276 or else Debug_Flag_VV
1277 or else Needs_Debug_Info (T)
1278 then
1279 Set_Debug_Info_Needed (T);
1280 end if;
1281 end Check_Debug_Info_Needed;
1283 -------------------------------
1284 -- Check_Expression_Function --
1285 -------------------------------
1287 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1288 Decl : Node_Id;
1290 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1291 -- Function to search for deferred constant
1293 -------------------
1294 -- Find_Constant --
1295 -------------------
1297 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1298 begin
1299 -- When a constant is initialized with the result of a dispatching
1300 -- call, the constant declaration is rewritten as a renaming of the
1301 -- displaced function result. This scenario is not a premature use of
1302 -- a constant even though the Has_Completion flag is not set.
1304 if Is_Entity_Name (Nod)
1305 and then Present (Entity (Nod))
1306 and then Ekind (Entity (Nod)) = E_Constant
1307 and then Scope (Entity (Nod)) = Current_Scope
1308 and then Nkind (Declaration_Node (Entity (Nod))) =
1309 N_Object_Declaration
1310 and then not Is_Imported (Entity (Nod))
1311 and then not Has_Completion (Entity (Nod))
1312 then
1313 Error_Msg_NE
1314 ("premature use of& in call or instance", N, Entity (Nod));
1316 elsif Nkind (Nod) = N_Attribute_Reference then
1317 Analyze (Prefix (Nod));
1319 if Is_Entity_Name (Prefix (Nod))
1320 and then Is_Type (Entity (Prefix (Nod)))
1321 then
1322 Freeze_Before (N, Entity (Prefix (Nod)));
1323 end if;
1324 end if;
1326 return OK;
1327 end Find_Constant;
1329 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1331 -- Start of processing for Check_Expression_Function
1333 begin
1334 Decl := Original_Node (Unit_Declaration_Node (Nam));
1336 if Scope (Nam) = Current_Scope
1337 and then Nkind (Decl) = N_Expression_Function
1338 then
1339 Check_Deferred (Expression (Decl));
1340 end if;
1341 end Check_Expression_Function;
1343 ----------------------------
1344 -- Check_Strict_Alignment --
1345 ----------------------------
1347 procedure Check_Strict_Alignment (E : Entity_Id) is
1348 Comp : Entity_Id;
1350 begin
1351 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1352 Set_Strict_Alignment (E);
1354 elsif Is_Array_Type (E) then
1355 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1357 elsif Is_Record_Type (E) then
1358 if Is_Limited_Record (E) then
1359 Set_Strict_Alignment (E);
1360 return;
1361 end if;
1363 Comp := First_Component (E);
1364 while Present (Comp) loop
1365 if not Is_Type (Comp)
1366 and then (Strict_Alignment (Etype (Comp))
1367 or else Is_Aliased (Comp))
1368 then
1369 Set_Strict_Alignment (E);
1370 return;
1371 end if;
1373 Next_Component (Comp);
1374 end loop;
1375 end if;
1376 end Check_Strict_Alignment;
1378 -------------------------
1379 -- Check_Unsigned_Type --
1380 -------------------------
1382 procedure Check_Unsigned_Type (E : Entity_Id) is
1383 Ancestor : Entity_Id;
1384 Lo_Bound : Node_Id;
1385 Btyp : Entity_Id;
1387 begin
1388 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1389 return;
1390 end if;
1392 -- Do not attempt to analyze case where range was in error
1394 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1395 return;
1396 end if;
1398 -- The situation that is non trivial is something like
1400 -- subtype x1 is integer range -10 .. +10;
1401 -- subtype x2 is x1 range 0 .. V1;
1402 -- subtype x3 is x2 range V2 .. V3;
1403 -- subtype x4 is x3 range V4 .. V5;
1405 -- where Vn are variables. Here the base type is signed, but we still
1406 -- know that x4 is unsigned because of the lower bound of x2.
1408 -- The only way to deal with this is to look up the ancestor chain
1410 Ancestor := E;
1411 loop
1412 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1413 return;
1414 end if;
1416 Lo_Bound := Type_Low_Bound (Ancestor);
1418 if Compile_Time_Known_Value (Lo_Bound) then
1419 if Expr_Rep_Value (Lo_Bound) >= 0 then
1420 Set_Is_Unsigned_Type (E, True);
1421 end if;
1423 return;
1425 else
1426 Ancestor := Ancestor_Subtype (Ancestor);
1428 -- If no ancestor had a static lower bound, go to base type
1430 if No (Ancestor) then
1432 -- Note: the reason we still check for a compile time known
1433 -- value for the base type is that at least in the case of
1434 -- generic formals, we can have bounds that fail this test,
1435 -- and there may be other cases in error situations.
1437 Btyp := Base_Type (E);
1439 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1440 return;
1441 end if;
1443 Lo_Bound := Type_Low_Bound (Base_Type (E));
1445 if Compile_Time_Known_Value (Lo_Bound)
1446 and then Expr_Rep_Value (Lo_Bound) >= 0
1447 then
1448 Set_Is_Unsigned_Type (E, True);
1449 end if;
1451 return;
1452 end if;
1453 end if;
1454 end loop;
1455 end Check_Unsigned_Type;
1457 -------------------------
1458 -- Is_Atomic_Aggregate --
1459 -------------------------
1461 function Is_Atomic_Aggregate
1462 (E : Entity_Id;
1463 Typ : Entity_Id) return Boolean
1465 Loc : constant Source_Ptr := Sloc (E);
1466 New_N : Node_Id;
1467 Par : Node_Id;
1468 Temp : Entity_Id;
1470 begin
1471 Par := Parent (E);
1473 -- Array may be qualified, so find outer context
1475 if Nkind (Par) = N_Qualified_Expression then
1476 Par := Parent (Par);
1477 end if;
1479 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
1480 and then Comes_From_Source (Par)
1481 then
1482 Temp := Make_Temporary (Loc, 'T', E);
1483 New_N :=
1484 Make_Object_Declaration (Loc,
1485 Defining_Identifier => Temp,
1486 Object_Definition => New_Occurrence_Of (Typ, Loc),
1487 Expression => Relocate_Node (E));
1488 Insert_Before (Par, New_N);
1489 Analyze (New_N);
1491 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1492 return True;
1494 else
1495 return False;
1496 end if;
1497 end Is_Atomic_Aggregate;
1499 -----------------------------------------------
1500 -- Explode_Initialization_Compound_Statement --
1501 -----------------------------------------------
1503 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1504 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1506 begin
1507 if Present (Init_Stmts)
1508 and then Nkind (Init_Stmts) = N_Compound_Statement
1509 then
1510 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1512 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1513 -- just removing it, because Freeze_All may rely on this particular
1514 -- Node_Id still being present in the enclosing list to know where to
1515 -- stop freezing.
1517 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1519 Set_Initialization_Statements (E, Empty);
1520 end if;
1521 end Explode_Initialization_Compound_Statement;
1523 ----------------
1524 -- Freeze_All --
1525 ----------------
1527 -- Note: the easy coding for this procedure would be to just build a
1528 -- single list of freeze nodes and then insert them and analyze them
1529 -- all at once. This won't work, because the analysis of earlier freeze
1530 -- nodes may recursively freeze types which would otherwise appear later
1531 -- on in the freeze list. So we must analyze and expand the freeze nodes
1532 -- as they are generated.
1534 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1535 E : Entity_Id;
1536 Decl : Node_Id;
1538 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1539 -- This is the internal recursive routine that does freezing of entities
1540 -- (but NOT the analysis of default expressions, which should not be
1541 -- recursive, we don't want to analyze those till we are sure that ALL
1542 -- the types are frozen).
1544 --------------------
1545 -- Freeze_All_Ent --
1546 --------------------
1548 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1549 E : Entity_Id;
1550 Flist : List_Id;
1551 Lastn : Node_Id;
1553 procedure Process_Flist;
1554 -- If freeze nodes are present, insert and analyze, and reset cursor
1555 -- for next insertion.
1557 -------------------
1558 -- Process_Flist --
1559 -------------------
1561 procedure Process_Flist is
1562 begin
1563 if Is_Non_Empty_List (Flist) then
1564 Lastn := Next (After);
1565 Insert_List_After_And_Analyze (After, Flist);
1567 if Present (Lastn) then
1568 After := Prev (Lastn);
1569 else
1570 After := Last (List_Containing (After));
1571 end if;
1572 end if;
1573 end Process_Flist;
1575 -- Start or processing for Freeze_All_Ent
1577 begin
1578 E := From;
1579 while Present (E) loop
1581 -- If the entity is an inner package which is not a package
1582 -- renaming, then its entities must be frozen at this point. Note
1583 -- that such entities do NOT get frozen at the end of the nested
1584 -- package itself (only library packages freeze).
1586 -- Same is true for task declarations, where anonymous records
1587 -- created for entry parameters must be frozen.
1589 if Ekind (E) = E_Package
1590 and then No (Renamed_Object (E))
1591 and then not Is_Child_Unit (E)
1592 and then not Is_Frozen (E)
1593 then
1594 Push_Scope (E);
1595 Install_Visible_Declarations (E);
1596 Install_Private_Declarations (E);
1598 Freeze_All (First_Entity (E), After);
1600 End_Package_Scope (E);
1602 if Is_Generic_Instance (E)
1603 and then Has_Delayed_Freeze (E)
1604 then
1605 Set_Has_Delayed_Freeze (E, False);
1606 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1607 end if;
1609 elsif Ekind (E) in Task_Kind
1610 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1611 N_Single_Task_Declaration)
1612 then
1613 Push_Scope (E);
1614 Freeze_All (First_Entity (E), After);
1615 End_Scope;
1617 -- For a derived tagged type, we must ensure that all the
1618 -- primitive operations of the parent have been frozen, so that
1619 -- their addresses will be in the parent's dispatch table at the
1620 -- point it is inherited.
1622 elsif Ekind (E) = E_Record_Type
1623 and then Is_Tagged_Type (E)
1624 and then Is_Tagged_Type (Etype (E))
1625 and then Is_Derived_Type (E)
1626 then
1627 declare
1628 Prim_List : constant Elist_Id :=
1629 Primitive_Operations (Etype (E));
1631 Prim : Elmt_Id;
1632 Subp : Entity_Id;
1634 begin
1635 Prim := First_Elmt (Prim_List);
1636 while Present (Prim) loop
1637 Subp := Node (Prim);
1639 if Comes_From_Source (Subp)
1640 and then not Is_Frozen (Subp)
1641 then
1642 Flist := Freeze_Entity (Subp, After);
1643 Process_Flist;
1644 end if;
1646 Next_Elmt (Prim);
1647 end loop;
1648 end;
1649 end if;
1651 if not Is_Frozen (E) then
1652 Flist := Freeze_Entity (E, After);
1653 Process_Flist;
1655 -- If already frozen, and there are delayed aspects, this is where
1656 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1657 -- for a description of how we handle aspect visibility).
1659 elsif Has_Delayed_Aspects (E) then
1661 -- Retrieve the visibility to the discriminants in order to
1662 -- analyze properly the aspects.
1664 Push_Scope_And_Install_Discriminants (E);
1666 declare
1667 Ritem : Node_Id;
1669 begin
1670 Ritem := First_Rep_Item (E);
1671 while Present (Ritem) loop
1672 if Nkind (Ritem) = N_Aspect_Specification
1673 and then Entity (Ritem) = E
1674 and then Is_Delayed_Aspect (Ritem)
1675 then
1676 Check_Aspect_At_End_Of_Declarations (Ritem);
1677 end if;
1679 Ritem := Next_Rep_Item (Ritem);
1680 end loop;
1681 end;
1683 Uninstall_Discriminants_And_Pop_Scope (E);
1684 end if;
1686 -- If an incomplete type is still not frozen, this may be a
1687 -- premature freezing because of a body declaration that follows.
1688 -- Indicate where the freezing took place. Freezing will happen
1689 -- if the body comes from source, but not if it is internally
1690 -- generated, for example as the body of a type invariant.
1692 -- If the freezing is caused by the end of the current declarative
1693 -- part, it is a Taft Amendment type, and there is no error.
1695 if not Is_Frozen (E)
1696 and then Ekind (E) = E_Incomplete_Type
1697 then
1698 declare
1699 Bod : constant Node_Id := Next (After);
1701 begin
1702 -- The presence of a body freezes all entities previously
1703 -- declared in the current list of declarations, but this
1704 -- does not apply if the body does not come from source.
1705 -- A type invariant is transformed into a subprogram body
1706 -- which is placed at the end of the private part of the
1707 -- current package, but this body does not freeze incomplete
1708 -- types that may be declared in this private part.
1710 if (Nkind_In (Bod, N_Subprogram_Body,
1711 N_Entry_Body,
1712 N_Package_Body,
1713 N_Protected_Body,
1714 N_Task_Body)
1715 or else Nkind (Bod) in N_Body_Stub)
1716 and then
1717 List_Containing (After) = List_Containing (Parent (E))
1718 and then Comes_From_Source (Bod)
1719 then
1720 Error_Msg_Sloc := Sloc (Next (After));
1721 Error_Msg_NE
1722 ("type& is frozen# before its full declaration",
1723 Parent (E), E);
1724 end if;
1725 end;
1726 end if;
1728 Next_Entity (E);
1729 end loop;
1730 end Freeze_All_Ent;
1732 -- Start of processing for Freeze_All
1734 begin
1735 Freeze_All_Ent (From, After);
1737 -- Now that all types are frozen, we can deal with default expressions
1738 -- that require us to build a default expression functions. This is the
1739 -- point at which such functions are constructed (after all types that
1740 -- might be used in such expressions have been frozen).
1742 -- For subprograms that are renaming_as_body, we create the wrapper
1743 -- bodies as needed.
1745 -- We also add finalization chains to access types whose designated
1746 -- types are controlled. This is normally done when freezing the type,
1747 -- but this misses recursive type definitions where the later members
1748 -- of the recursion introduce controlled components.
1750 -- Loop through entities
1752 E := From;
1753 while Present (E) loop
1754 if Is_Subprogram (E) then
1755 if not Default_Expressions_Processed (E) then
1756 Process_Default_Expressions (E, After);
1757 end if;
1759 if not Has_Completion (E) then
1760 Decl := Unit_Declaration_Node (E);
1762 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1763 if Error_Posted (Decl) then
1764 Set_Has_Completion (E);
1765 else
1766 Build_And_Analyze_Renamed_Body (Decl, E, After);
1767 end if;
1769 elsif Nkind (Decl) = N_Subprogram_Declaration
1770 and then Present (Corresponding_Body (Decl))
1771 and then
1772 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1773 = N_Subprogram_Renaming_Declaration
1774 then
1775 Build_And_Analyze_Renamed_Body
1776 (Decl, Corresponding_Body (Decl), After);
1777 end if;
1778 end if;
1780 elsif Ekind (E) in Task_Kind
1781 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1782 N_Single_Task_Declaration)
1783 then
1784 declare
1785 Ent : Entity_Id;
1787 begin
1788 Ent := First_Entity (E);
1789 while Present (Ent) loop
1790 if Is_Entry (Ent)
1791 and then not Default_Expressions_Processed (Ent)
1792 then
1793 Process_Default_Expressions (Ent, After);
1794 end if;
1796 Next_Entity (Ent);
1797 end loop;
1798 end;
1800 -- We add finalization masters to access types whose designated types
1801 -- require finalization. This is normally done when freezing the
1802 -- type, but this misses recursive type definitions where the later
1803 -- members of the recursion introduce controlled components (such as
1804 -- can happen when incomplete types are involved), as well cases
1805 -- where a component type is private and the controlled full type
1806 -- occurs after the access type is frozen. Cases that don't need a
1807 -- finalization master are generic formal types (the actual type will
1808 -- have it) and types derived from them, and types with Java and CIL
1809 -- conventions, since those are used for API bindings.
1810 -- (Are there any other cases that should be excluded here???)
1812 elsif Is_Access_Type (E)
1813 and then Comes_From_Source (E)
1814 and then not Is_Generic_Type (Root_Type (E))
1815 and then Needs_Finalization (Designated_Type (E))
1816 then
1817 Build_Finalization_Master (E);
1818 end if;
1820 Next_Entity (E);
1821 end loop;
1822 end Freeze_All;
1824 -----------------------
1825 -- Freeze_And_Append --
1826 -----------------------
1828 procedure Freeze_And_Append
1829 (Ent : Entity_Id;
1830 N : Node_Id;
1831 Result : in out List_Id)
1833 L : constant List_Id := Freeze_Entity (Ent, N);
1834 begin
1835 if Is_Non_Empty_List (L) then
1836 if Result = No_List then
1837 Result := L;
1838 else
1839 Append_List (L, Result);
1840 end if;
1841 end if;
1842 end Freeze_And_Append;
1844 -------------------
1845 -- Freeze_Before --
1846 -------------------
1848 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1849 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
1851 begin
1852 if Ekind (T) = E_Function then
1853 Check_Expression_Function (N, T);
1854 end if;
1856 if Is_Non_Empty_List (Freeze_Nodes) then
1857 Insert_Actions (N, Freeze_Nodes);
1858 end if;
1859 end Freeze_Before;
1861 -------------------
1862 -- Freeze_Entity --
1863 -------------------
1865 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1866 GM : constant Ghost_Mode_Type := Ghost_Mode;
1867 -- Save the current Ghost mode in effect in case the entity being frozen
1868 -- sets a different mode.
1870 Loc : constant Source_Ptr := Sloc (N);
1871 Atype : Entity_Id;
1872 Comp : Entity_Id;
1873 F_Node : Node_Id;
1874 Formal : Entity_Id;
1875 Indx : Node_Id;
1877 Test_E : Entity_Id := E;
1878 -- This could use a comment ???
1880 Late_Freezing : Boolean := False;
1881 -- Used to detect attempt to freeze function declared in another unit
1883 Result : List_Id := No_List;
1884 -- List of freezing actions, left at No_List if none
1886 Has_Default_Initialization : Boolean := False;
1887 -- This flag gets set to true for a variable with default initialization
1889 procedure Add_To_Result (N : Node_Id);
1890 -- N is a freezing action to be appended to the Result
1892 function After_Last_Declaration return Boolean;
1893 -- If Loc is a freeze_entity that appears after the last declaration
1894 -- in the scope, inhibit error messages on late completion.
1896 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1897 -- Check that an Access or Unchecked_Access attribute with a prefix
1898 -- which is the current instance type can only be applied when the type
1899 -- is limited.
1901 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1902 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1903 -- integer literal without an explicit corresponding size clause. The
1904 -- caller has checked that Utype is a modular integer type.
1906 procedure Freeze_Array_Type (Arr : Entity_Id);
1907 -- Freeze array type, including freezing index and component types
1909 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
1910 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1911 -- package. Recurse on inner generic packages.
1913 function Freeze_Profile (E : Entity_Id) return Boolean;
1914 -- Freeze formals and return type of subprogram. If some type in the
1915 -- profile is a limited view, freezing of the entity will take place
1916 -- elsewhere, and the function returns False. This routine will be
1917 -- modified if and when we can implement AI05-019 efficiently ???
1919 procedure Freeze_Record_Type (Rec : Entity_Id);
1920 -- Freeze record type, including freezing component types, and freezing
1921 -- primitive operations if this is a tagged type.
1923 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
1924 -- Determine whether an arbitrary entity is subject to Boolean aspect
1925 -- Import and its value is specified as True.
1927 procedure Late_Freeze_Subprogram (E : Entity_Id);
1928 -- Following AI05-151, a function can return a limited view of a type
1929 -- declared elsewhere. In that case the function cannot be frozen at
1930 -- the end of its enclosing package. If its first use is in a different
1931 -- unit, it cannot be frozen there, but if the call is legal the full
1932 -- view of the return type is available and the subprogram can now be
1933 -- frozen. However the freeze node cannot be inserted at the point of
1934 -- call, but rather must go in the package holding the function, so that
1935 -- the backend can process it in the proper context.
1937 procedure Restore_Globals;
1938 -- Restore the values of all saved global variables
1940 procedure Wrap_Imported_Subprogram (E : Entity_Id);
1941 -- If E is an entity for an imported subprogram with pre/post-conditions
1942 -- then this procedure will create a wrapper to ensure that proper run-
1943 -- time checking of the pre/postconditions. See body for details.
1945 -------------------
1946 -- Add_To_Result --
1947 -------------------
1949 procedure Add_To_Result (N : Node_Id) is
1950 begin
1951 if No (Result) then
1952 Result := New_List (N);
1953 else
1954 Append (N, Result);
1955 end if;
1956 end Add_To_Result;
1958 ----------------------------
1959 -- After_Last_Declaration --
1960 ----------------------------
1962 function After_Last_Declaration return Boolean is
1963 Spec : constant Node_Id := Parent (Current_Scope);
1965 begin
1966 if Nkind (Spec) = N_Package_Specification then
1967 if Present (Private_Declarations (Spec)) then
1968 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1969 elsif Present (Visible_Declarations (Spec)) then
1970 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1971 else
1972 return False;
1973 end if;
1975 else
1976 return False;
1977 end if;
1978 end After_Last_Declaration;
1980 ----------------------------
1981 -- Check_Current_Instance --
1982 ----------------------------
1984 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1986 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
1987 -- Determine whether Typ is compatible with the rules for aliased
1988 -- views of types as defined in RM 3.10 in the various dialects.
1990 function Process (N : Node_Id) return Traverse_Result;
1991 -- Process routine to apply check to given node
1993 -----------------------------
1994 -- Is_Aliased_View_Of_Type --
1995 -----------------------------
1997 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
1998 Typ_Decl : constant Node_Id := Parent (Typ);
2000 begin
2001 -- Common case
2003 if Nkind (Typ_Decl) = N_Full_Type_Declaration
2004 and then Limited_Present (Type_Definition (Typ_Decl))
2005 then
2006 return True;
2008 -- The following paragraphs describe what a legal aliased view of
2009 -- a type is in the various dialects of Ada.
2011 -- Ada 95
2013 -- The current instance of a limited type, and a formal parameter
2014 -- or generic formal object of a tagged type.
2016 -- Ada 95 limited type
2017 -- * Type with reserved word "limited"
2018 -- * A protected or task type
2019 -- * A composite type with limited component
2021 elsif Ada_Version <= Ada_95 then
2022 return Is_Limited_Type (Typ);
2024 -- Ada 2005
2026 -- The current instance of a limited tagged type, a protected
2027 -- type, a task type, or a type that has the reserved word
2028 -- "limited" in its full definition ... a formal parameter or
2029 -- generic formal object of a tagged type.
2031 -- Ada 2005 limited type
2032 -- * Type with reserved word "limited", "synchronized", "task"
2033 -- or "protected"
2034 -- * A composite type with limited component
2035 -- * A derived type whose parent is a non-interface limited type
2037 elsif Ada_Version = Ada_2005 then
2038 return
2039 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2040 or else
2041 (Is_Derived_Type (Typ)
2042 and then not Is_Interface (Etype (Typ))
2043 and then Is_Limited_Type (Etype (Typ)));
2045 -- Ada 2012 and beyond
2047 -- The current instance of an immutably limited type ... a formal
2048 -- parameter or generic formal object of a tagged type.
2050 -- Ada 2012 limited type
2051 -- * Type with reserved word "limited", "synchronized", "task"
2052 -- or "protected"
2053 -- * A composite type with limited component
2054 -- * A derived type whose parent is a non-interface limited type
2055 -- * An incomplete view
2057 -- Ada 2012 immutably limited type
2058 -- * Explicitly limited record type
2059 -- * Record extension with "limited" present
2060 -- * Non-formal limited private type that is either tagged
2061 -- or has at least one access discriminant with a default
2062 -- expression
2063 -- * Task type, protected type or synchronized interface
2064 -- * Type derived from immutably limited type
2066 else
2067 return
2068 Is_Immutably_Limited_Type (Typ)
2069 or else Is_Incomplete_Type (Typ);
2070 end if;
2071 end Is_Aliased_View_Of_Type;
2073 -------------
2074 -- Process --
2075 -------------
2077 function Process (N : Node_Id) return Traverse_Result is
2078 begin
2079 case Nkind (N) is
2080 when N_Attribute_Reference =>
2081 if Nam_In (Attribute_Name (N), Name_Access,
2082 Name_Unchecked_Access)
2083 and then Is_Entity_Name (Prefix (N))
2084 and then Is_Type (Entity (Prefix (N)))
2085 and then Entity (Prefix (N)) = E
2086 then
2087 if Ada_Version < Ada_2012 then
2088 Error_Msg_N
2089 ("current instance must be a limited type",
2090 Prefix (N));
2091 else
2092 Error_Msg_N
2093 ("current instance must be an immutably limited "
2094 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
2095 end if;
2097 return Abandon;
2099 else
2100 return OK;
2101 end if;
2103 when others => return OK;
2104 end case;
2105 end Process;
2107 procedure Traverse is new Traverse_Proc (Process);
2109 -- Local variables
2111 Rec_Type : constant Entity_Id :=
2112 Scope (Defining_Identifier (Comp_Decl));
2114 -- Start of processing for Check_Current_Instance
2116 begin
2117 if not Is_Aliased_View_Of_Type (Rec_Type) then
2118 Traverse (Comp_Decl);
2119 end if;
2120 end Check_Current_Instance;
2122 ------------------------------
2123 -- Check_Suspicious_Modulus --
2124 ------------------------------
2126 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2127 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2129 begin
2130 if not Warn_On_Suspicious_Modulus_Value then
2131 return;
2132 end if;
2134 if Nkind (Decl) = N_Full_Type_Declaration then
2135 declare
2136 Tdef : constant Node_Id := Type_Definition (Decl);
2138 begin
2139 if Nkind (Tdef) = N_Modular_Type_Definition then
2140 declare
2141 Modulus : constant Node_Id :=
2142 Original_Node (Expression (Tdef));
2144 begin
2145 if Nkind (Modulus) = N_Integer_Literal then
2146 declare
2147 Modv : constant Uint := Intval (Modulus);
2148 Sizv : constant Uint := RM_Size (Utype);
2150 begin
2151 -- First case, modulus and size are the same. This
2152 -- happens if you have something like mod 32, with
2153 -- an explicit size of 32, this is for sure a case
2154 -- where the warning is given, since it is seems
2155 -- very unlikely that someone would want e.g. a
2156 -- five bit type stored in 32 bits. It is much
2157 -- more likely they wanted a 32-bit type.
2159 if Modv = Sizv then
2160 null;
2162 -- Second case, the modulus is 32 or 64 and no
2163 -- size clause is present. This is a less clear
2164 -- case for giving the warning, but in the case
2165 -- of 32/64 (5-bit or 6-bit types) these seem rare
2166 -- enough that it is a likely error (and in any
2167 -- case using 2**5 or 2**6 in these cases seems
2168 -- clearer. We don't include 8 or 16 here, simply
2169 -- because in practice 3-bit and 4-bit types are
2170 -- more common and too many false positives if
2171 -- we warn in these cases.
2173 elsif not Has_Size_Clause (Utype)
2174 and then (Modv = Uint_32 or else Modv = Uint_64)
2175 then
2176 null;
2178 -- No warning needed
2180 else
2181 return;
2182 end if;
2184 -- If we fall through, give warning
2186 Error_Msg_Uint_1 := Modv;
2187 Error_Msg_N
2188 ("?M?2 '*'*^' may have been intended here",
2189 Modulus);
2190 end;
2191 end if;
2192 end;
2193 end if;
2194 end;
2195 end if;
2196 end Check_Suspicious_Modulus;
2198 -----------------------
2199 -- Freeze_Array_Type --
2200 -----------------------
2202 procedure Freeze_Array_Type (Arr : Entity_Id) is
2203 FS : constant Entity_Id := First_Subtype (Arr);
2204 Ctyp : constant Entity_Id := Component_Type (Arr);
2205 Clause : Entity_Id;
2207 Non_Standard_Enum : Boolean := False;
2208 -- Set true if any of the index types is an enumeration type with a
2209 -- non-standard representation.
2211 begin
2212 Freeze_And_Append (Ctyp, N, Result);
2214 Indx := First_Index (Arr);
2215 while Present (Indx) loop
2216 Freeze_And_Append (Etype (Indx), N, Result);
2218 if Is_Enumeration_Type (Etype (Indx))
2219 and then Has_Non_Standard_Rep (Etype (Indx))
2220 then
2221 Non_Standard_Enum := True;
2222 end if;
2224 Next_Index (Indx);
2225 end loop;
2227 -- Processing that is done only for base types
2229 if Ekind (Arr) = E_Array_Type then
2231 -- Deal with default setting of reverse storage order
2233 Set_SSO_From_Default (Arr);
2235 -- Propagate flags for component type
2237 if Is_Controlled (Component_Type (Arr))
2238 or else Has_Controlled_Component (Ctyp)
2239 then
2240 Set_Has_Controlled_Component (Arr);
2241 end if;
2243 if Has_Unchecked_Union (Component_Type (Arr)) then
2244 Set_Has_Unchecked_Union (Arr);
2245 end if;
2247 -- Warn for pragma Pack overriding foreign convention
2249 if Has_Foreign_Convention (Ctyp)
2250 and then Has_Pragma_Pack (Arr)
2251 then
2252 declare
2253 CN : constant Name_Id :=
2254 Get_Convention_Name (Convention (Ctyp));
2255 PP : constant Node_Id :=
2256 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2257 begin
2258 if Present (PP) then
2259 Error_Msg_Name_1 := CN;
2260 Error_Msg_Sloc := Sloc (Arr);
2261 Error_Msg_N
2262 ("pragma Pack affects convention % components #??", PP);
2263 Error_Msg_Name_1 := CN;
2264 Error_Msg_N
2265 ("\array components may not have % compatible "
2266 & "representation??", PP);
2267 end if;
2268 end;
2269 end if;
2271 -- If packing was requested or if the component size was
2272 -- set explicitly, then see if bit packing is required. This
2273 -- processing is only done for base types, since all of the
2274 -- representation aspects involved are type-related.
2276 -- This is not just an optimization, if we start processing the
2277 -- subtypes, they interfere with the settings on the base type
2278 -- (this is because Is_Packed has a slightly different meaning
2279 -- before and after freezing).
2281 declare
2282 Csiz : Uint;
2283 Esiz : Uint;
2285 begin
2286 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2287 and then Known_Static_RM_Size (Ctyp)
2288 and then not Has_Component_Size_Clause (Arr)
2289 then
2290 Csiz := UI_Max (RM_Size (Ctyp), 1);
2292 elsif Known_Component_Size (Arr) then
2293 Csiz := Component_Size (Arr);
2295 elsif not Known_Static_Esize (Ctyp) then
2296 Csiz := Uint_0;
2298 else
2299 Esiz := Esize (Ctyp);
2301 -- We can set the component size if it is less than 16,
2302 -- rounding it up to the next storage unit size.
2304 if Esiz <= 8 then
2305 Csiz := Uint_8;
2306 elsif Esiz <= 16 then
2307 Csiz := Uint_16;
2308 else
2309 Csiz := Uint_0;
2310 end if;
2312 -- Set component size up to match alignment if it would
2313 -- otherwise be less than the alignment. This deals with
2314 -- cases of types whose alignment exceeds their size (the
2315 -- padded type cases).
2317 if Csiz /= 0 then
2318 declare
2319 A : constant Uint := Alignment_In_Bits (Ctyp);
2320 begin
2321 if Csiz < A then
2322 Csiz := A;
2323 end if;
2324 end;
2325 end if;
2326 end if;
2328 -- Case of component size that may result in packing
2330 if 1 <= Csiz and then Csiz <= 64 then
2331 declare
2332 Ent : constant Entity_Id :=
2333 First_Subtype (Arr);
2334 Pack_Pragma : constant Node_Id :=
2335 Get_Rep_Pragma (Ent, Name_Pack);
2336 Comp_Size_C : constant Node_Id :=
2337 Get_Attribute_Definition_Clause
2338 (Ent, Attribute_Component_Size);
2340 begin
2341 -- Warn if we have pack and component size so that the
2342 -- pack is ignored.
2344 -- Note: here we must check for the presence of a
2345 -- component size before checking for a Pack pragma to
2346 -- deal with the case where the array type is a derived
2347 -- type whose parent is currently private.
2349 if Present (Comp_Size_C)
2350 and then Has_Pragma_Pack (Ent)
2351 and then Warn_On_Redundant_Constructs
2352 then
2353 Error_Msg_Sloc := Sloc (Comp_Size_C);
2354 Error_Msg_NE
2355 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2356 Error_Msg_N
2357 ("\?r?explicit component size given#!", Pack_Pragma);
2358 Set_Is_Packed (Base_Type (Ent), False);
2359 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2360 end if;
2362 -- Set component size if not already set by a component
2363 -- size clause.
2365 if not Present (Comp_Size_C) then
2366 Set_Component_Size (Arr, Csiz);
2367 end if;
2369 -- Check for base type of 8, 16, 32 bits, where an
2370 -- unsigned subtype has a length one less than the
2371 -- base type (e.g. Natural subtype of Integer).
2373 -- In such cases, if a component size was not set
2374 -- explicitly, then generate a warning.
2376 if Has_Pragma_Pack (Arr)
2377 and then not Present (Comp_Size_C)
2378 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2379 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2380 then
2381 Error_Msg_Uint_1 := Csiz;
2383 if Present (Pack_Pragma) then
2384 Error_Msg_N
2385 ("??pragma Pack causes component size to be ^!",
2386 Pack_Pragma);
2387 Error_Msg_N
2388 ("\??use Component_Size to set desired value!",
2389 Pack_Pragma);
2390 end if;
2391 end if;
2393 -- Actual packing is not needed for 8, 16, 32, 64. Also
2394 -- not needed for 24 if alignment is 1.
2396 if Csiz = 8
2397 or else Csiz = 16
2398 or else Csiz = 32
2399 or else Csiz = 64
2400 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2401 then
2402 -- Here the array was requested to be packed, but
2403 -- the packing request had no effect, so Is_Packed
2404 -- is reset.
2406 -- Note: semantically this means that we lose track
2407 -- of the fact that a derived type inherited a pragma
2408 -- Pack that was non- effective, but that seems fine.
2410 -- We regard a Pack pragma as a request to set a
2411 -- representation characteristic, and this request
2412 -- may be ignored.
2414 Set_Is_Packed (Base_Type (Arr), False);
2415 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2417 if Known_Static_Esize (Component_Type (Arr))
2418 and then Esize (Component_Type (Arr)) = Csiz
2419 then
2420 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2421 end if;
2423 -- In all other cases, packing is indeed needed
2425 else
2426 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2427 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2428 Set_Is_Packed (Base_Type (Arr), True);
2429 end if;
2430 end;
2431 end if;
2432 end;
2434 -- Check for Aliased or Atomic_Components/Atomic with unsuitable
2435 -- packing or explicit component size clause given.
2437 if (Has_Aliased_Components (Arr)
2438 or else Has_Atomic_Components (Arr)
2439 or else Is_Atomic (Ctyp))
2440 and then
2441 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2442 then
2443 Alias_Atomic_Check : declare
2445 procedure Complain_CS (T : String);
2446 -- Outputs error messages for incorrect CS clause or pragma
2447 -- Pack for aliased or atomic components (T is "aliased" or
2448 -- "atomic");
2450 -----------------
2451 -- Complain_CS --
2452 -----------------
2454 procedure Complain_CS (T : String) is
2455 begin
2456 if Has_Component_Size_Clause (Arr) then
2457 Clause :=
2458 Get_Attribute_Definition_Clause
2459 (FS, Attribute_Component_Size);
2461 Error_Msg_N
2462 ("incorrect component size for "
2463 & T & " components", Clause);
2464 Error_Msg_Uint_1 := Esize (Ctyp);
2465 Error_Msg_N
2466 ("\only allowed value is^", Clause);
2468 else
2469 Error_Msg_N
2470 ("cannot pack " & T & " components",
2471 Get_Rep_Pragma (FS, Name_Pack));
2472 end if;
2473 end Complain_CS;
2475 -- Start of processing for Alias_Atomic_Check
2477 begin
2478 -- If object size of component type isn't known, we cannot
2479 -- be sure so we defer to the back end.
2481 if not Known_Static_Esize (Ctyp) then
2482 null;
2484 -- Case where component size has no effect. First check for
2485 -- object size of component type multiple of the storage
2486 -- unit size.
2488 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2490 -- OK in both packing case and component size case if RM
2491 -- size is known and static and same as the object size.
2493 and then
2494 ((Known_Static_RM_Size (Ctyp)
2495 and then Esize (Ctyp) = RM_Size (Ctyp))
2497 -- Or if we have an explicit component size clause and
2498 -- the component size and object size are equal.
2500 or else
2501 (Has_Component_Size_Clause (Arr)
2502 and then Component_Size (Arr) = Esize (Ctyp)))
2503 then
2504 null;
2506 elsif Has_Aliased_Components (Arr) then
2507 Complain_CS ("aliased");
2509 elsif Has_Atomic_Components (Arr) or else Is_Atomic (Ctyp)
2510 then
2511 Complain_CS ("atomic");
2512 end if;
2513 end Alias_Atomic_Check;
2514 end if;
2516 -- Warn for case of atomic type
2518 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2520 if Present (Clause)
2521 and then not Addressable (Component_Size (FS))
2522 then
2523 Error_Msg_NE
2524 ("non-atomic components of type& may not be "
2525 & "accessible by separate tasks??", Clause, Arr);
2527 if Has_Component_Size_Clause (Arr) then
2528 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2529 (FS, Attribute_Component_Size));
2530 Error_Msg_N ("\because of component size clause#??", Clause);
2532 elsif Has_Pragma_Pack (Arr) then
2533 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2534 Error_Msg_N ("\because of pragma Pack#??", Clause);
2535 end if;
2536 end if;
2538 -- Check for scalar storage order
2540 declare
2541 Dummy : Boolean;
2542 begin
2543 Check_Component_Storage_Order
2544 (Encl_Type => Arr,
2545 Comp => Empty,
2546 ADC => Get_Attribute_Definition_Clause
2547 (First_Subtype (Arr),
2548 Attribute_Scalar_Storage_Order),
2549 Comp_ADC_Present => Dummy);
2550 end;
2552 -- Processing that is done only for subtypes
2554 else
2555 -- Acquire alignment from base type
2557 if Unknown_Alignment (Arr) then
2558 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2559 Adjust_Esize_Alignment (Arr);
2560 end if;
2561 end if;
2563 -- Specific checks for bit-packed arrays
2565 if Is_Bit_Packed_Array (Arr) then
2567 -- Check number of elements for bit packed arrays that come from
2568 -- source and have compile time known ranges. The bit-packed
2569 -- arrays circuitry does not support arrays with more than
2570 -- Integer'Last + 1 elements, and when this restriction is
2571 -- violated, causes incorrect data access.
2573 -- For the case where this is not compile time known, a run-time
2574 -- check should be generated???
2576 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2577 declare
2578 Elmts : Uint;
2579 Index : Node_Id;
2580 Ilen : Node_Id;
2581 Ityp : Entity_Id;
2583 begin
2584 Elmts := Uint_1;
2585 Index := First_Index (Arr);
2586 while Present (Index) loop
2587 Ityp := Etype (Index);
2589 -- Never generate an error if any index is of a generic
2590 -- type. We will check this in instances.
2592 if Is_Generic_Type (Ityp) then
2593 Elmts := Uint_0;
2594 exit;
2595 end if;
2597 Ilen :=
2598 Make_Attribute_Reference (Loc,
2599 Prefix => New_Occurrence_Of (Ityp, Loc),
2600 Attribute_Name => Name_Range_Length);
2601 Analyze_And_Resolve (Ilen);
2603 -- No attempt is made to check number of elements if not
2604 -- compile time known.
2606 if Nkind (Ilen) /= N_Integer_Literal then
2607 Elmts := Uint_0;
2608 exit;
2609 end if;
2611 Elmts := Elmts * Intval (Ilen);
2612 Next_Index (Index);
2613 end loop;
2615 if Elmts > Intval (High_Bound
2616 (Scalar_Range (Standard_Integer))) + 1
2617 then
2618 Error_Msg_N
2619 ("bit packed array type may not have "
2620 & "more than Integer''Last+1 elements", Arr);
2621 end if;
2622 end;
2623 end if;
2625 -- Check size
2627 if Known_RM_Size (Arr) then
2628 declare
2629 SizC : constant Node_Id := Size_Clause (Arr);
2630 Discard : Boolean;
2632 begin
2633 -- It is not clear if it is possible to have no size clause
2634 -- at this stage, but it is not worth worrying about. Post
2635 -- error on the entity name in the size clause if present,
2636 -- else on the type entity itself.
2638 if Present (SizC) then
2639 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2640 else
2641 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2642 end if;
2643 end;
2644 end if;
2645 end if;
2647 -- If any of the index types was an enumeration type with a non-
2648 -- standard rep clause, then we indicate that the array type is
2649 -- always packed (even if it is not bit packed).
2651 if Non_Standard_Enum then
2652 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2653 Set_Is_Packed (Base_Type (Arr));
2654 end if;
2656 Set_Component_Alignment_If_Not_Set (Arr);
2658 -- If the array is packed, we must create the packed array type to be
2659 -- used to actually implement the type. This is only needed for real
2660 -- array types (not for string literal types, since they are present
2661 -- only for the front end).
2663 if Is_Packed (Arr)
2664 and then Ekind (Arr) /= E_String_Literal_Subtype
2665 then
2666 Create_Packed_Array_Impl_Type (Arr);
2667 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
2669 -- Make sure that we have the necessary routines to implement the
2670 -- packing, and complain now if not. Note that we only test this
2671 -- for constrained array types.
2673 if Is_Constrained (Arr)
2674 and then Is_Bit_Packed_Array (Arr)
2675 and then Present (Packed_Array_Impl_Type (Arr))
2676 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
2677 then
2678 declare
2679 CS : constant Uint := Component_Size (Arr);
2680 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
2682 begin
2683 if RE /= RE_Null
2684 and then not RTE_Available (RE)
2685 then
2686 Error_Msg_CRT
2687 ("packing of " & UI_Image (CS) & "-bit components",
2688 First_Subtype (Etype (Arr)));
2690 -- Cancel the packing
2692 Set_Is_Packed (Base_Type (Arr), False);
2693 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2694 Set_Packed_Array_Impl_Type (Arr, Empty);
2695 goto Skip_Packed;
2696 end if;
2697 end;
2698 end if;
2700 -- Size information of packed array type is copied to the array
2701 -- type, since this is really the representation. But do not
2702 -- override explicit existing size values. If the ancestor subtype
2703 -- is constrained the Packed_Array_Impl_Type will be inherited
2704 -- from it, but the size may have been provided already, and
2705 -- must not be overridden either.
2707 if not Has_Size_Clause (Arr)
2708 and then
2709 (No (Ancestor_Subtype (Arr))
2710 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
2711 then
2712 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
2713 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
2714 end if;
2716 if not Has_Alignment_Clause (Arr) then
2717 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
2718 end if;
2719 end if;
2721 <<Skip_Packed>>
2723 -- For non-packed arrays set the alignment of the array to the
2724 -- alignment of the component type if it is unknown. Skip this
2725 -- in atomic case (atomic arrays may need larger alignments).
2727 if not Is_Packed (Arr)
2728 and then Unknown_Alignment (Arr)
2729 and then Known_Alignment (Ctyp)
2730 and then Known_Static_Component_Size (Arr)
2731 and then Known_Static_Esize (Ctyp)
2732 and then Esize (Ctyp) = Component_Size (Arr)
2733 and then not Is_Atomic (Arr)
2734 then
2735 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
2736 end if;
2737 end Freeze_Array_Type;
2739 -----------------------------
2740 -- Freeze_Generic_Entities --
2741 -----------------------------
2743 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
2744 E : Entity_Id;
2745 F : Node_Id;
2746 Flist : List_Id;
2748 begin
2749 Flist := New_List;
2750 E := First_Entity (Pack);
2751 while Present (E) loop
2752 if Is_Type (E) and then not Is_Generic_Type (E) then
2753 F := Make_Freeze_Generic_Entity (Sloc (Pack));
2754 Set_Entity (F, E);
2755 Append_To (Flist, F);
2757 elsif Ekind (E) = E_Generic_Package then
2758 Append_List_To (Flist, Freeze_Generic_Entities (E));
2759 end if;
2761 Next_Entity (E);
2762 end loop;
2764 return Flist;
2765 end Freeze_Generic_Entities;
2767 --------------------
2768 -- Freeze_Profile --
2769 --------------------
2771 function Freeze_Profile (E : Entity_Id) return Boolean is
2772 F_Type : Entity_Id;
2773 R_Type : Entity_Id;
2774 Warn_Node : Node_Id;
2776 begin
2777 -- Loop through formals
2779 Formal := First_Formal (E);
2780 while Present (Formal) loop
2781 F_Type := Etype (Formal);
2783 -- AI05-0151: incomplete types can appear in a profile. By the
2784 -- time the entity is frozen, the full view must be available,
2785 -- unless it is a limited view.
2787 if Is_Incomplete_Type (F_Type)
2788 and then Present (Full_View (F_Type))
2789 and then not From_Limited_With (F_Type)
2790 then
2791 F_Type := Full_View (F_Type);
2792 Set_Etype (Formal, F_Type);
2793 end if;
2795 Freeze_And_Append (F_Type, N, Result);
2797 if Is_Private_Type (F_Type)
2798 and then Is_Private_Type (Base_Type (F_Type))
2799 and then No (Full_View (Base_Type (F_Type)))
2800 and then not Is_Generic_Type (F_Type)
2801 and then not Is_Derived_Type (F_Type)
2802 then
2803 -- If the type of a formal is incomplete, subprogram is being
2804 -- frozen prematurely. Within an instance (but not within a
2805 -- wrapper package) this is an artifact of our need to regard
2806 -- the end of an instantiation as a freeze point. Otherwise it
2807 -- is a definite error.
2809 if In_Instance then
2810 Set_Is_Frozen (E, False);
2811 Result := No_List;
2812 return False;
2814 elsif not After_Last_Declaration
2815 and then not Freezing_Library_Level_Tagged_Type
2816 then
2817 Error_Msg_Node_1 := F_Type;
2818 Error_Msg
2819 ("type & must be fully defined before this point", Loc);
2820 end if;
2821 end if;
2823 -- Check suspicious parameter for C function. These tests apply
2824 -- only to exported/imported subprograms.
2826 if Warn_On_Export_Import
2827 and then Comes_From_Source (E)
2828 and then (Convention (E) = Convention_C
2829 or else
2830 Convention (E) = Convention_CPP)
2831 and then (Is_Imported (E) or else Is_Exported (E))
2832 and then Convention (E) /= Convention (Formal)
2833 and then not Has_Warnings_Off (E)
2834 and then not Has_Warnings_Off (F_Type)
2835 and then not Has_Warnings_Off (Formal)
2836 then
2837 -- Qualify mention of formals with subprogram name
2839 Error_Msg_Qual_Level := 1;
2841 -- Check suspicious use of fat C pointer
2843 if Is_Access_Type (F_Type)
2844 and then Esize (F_Type) > Ttypes.System_Address_Size
2845 then
2846 Error_Msg_N
2847 ("?x?type of & does not correspond to C pointer!", Formal);
2849 -- Check suspicious return of boolean
2851 elsif Root_Type (F_Type) = Standard_Boolean
2852 and then Convention (F_Type) = Convention_Ada
2853 and then not Has_Warnings_Off (F_Type)
2854 and then not Has_Size_Clause (F_Type)
2855 and then VM_Target = No_VM
2856 then
2857 Error_Msg_N
2858 ("& is an 8-bit Ada Boolean?x?", Formal);
2859 Error_Msg_N
2860 ("\use appropriate corresponding type in C "
2861 & "(e.g. char)?x?", Formal);
2863 -- Check suspicious tagged type
2865 elsif (Is_Tagged_Type (F_Type)
2866 or else
2867 (Is_Access_Type (F_Type)
2868 and then Is_Tagged_Type (Designated_Type (F_Type))))
2869 and then Convention (E) = Convention_C
2870 then
2871 Error_Msg_N
2872 ("?x?& involves a tagged type which does not "
2873 & "correspond to any C type!", Formal);
2875 -- Check wrong convention subprogram pointer
2877 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2878 and then not Has_Foreign_Convention (F_Type)
2879 then
2880 Error_Msg_N
2881 ("?x?subprogram pointer & should "
2882 & "have foreign convention!", Formal);
2883 Error_Msg_Sloc := Sloc (F_Type);
2884 Error_Msg_NE
2885 ("\?x?add Convention pragma to declaration of &#",
2886 Formal, F_Type);
2887 end if;
2889 -- Turn off name qualification after message output
2891 Error_Msg_Qual_Level := 0;
2892 end if;
2894 -- Check for unconstrained array in exported foreign convention
2895 -- case.
2897 if Has_Foreign_Convention (E)
2898 and then not Is_Imported (E)
2899 and then Is_Array_Type (F_Type)
2900 and then not Is_Constrained (F_Type)
2901 and then Warn_On_Export_Import
2903 -- Exclude VM case, since both .NET and JVM can handle
2904 -- unconstrained arrays without a problem.
2906 and then VM_Target = No_VM
2907 then
2908 Error_Msg_Qual_Level := 1;
2910 -- If this is an inherited operation, place the warning on
2911 -- the derived type declaration, rather than on the original
2912 -- subprogram.
2914 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
2915 then
2916 Warn_Node := Parent (E);
2918 if Formal = First_Formal (E) then
2919 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
2920 end if;
2921 else
2922 Warn_Node := Formal;
2923 end if;
2925 Error_Msg_NE ("?x?type of argument& is unconstrained array",
2926 Warn_Node, Formal);
2927 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
2928 Warn_Node, Formal);
2929 Error_Msg_Qual_Level := 0;
2930 end if;
2932 if not From_Limited_With (F_Type) then
2933 if Is_Access_Type (F_Type) then
2934 F_Type := Designated_Type (F_Type);
2935 end if;
2937 -- If the formal is an anonymous_access_to_subprogram
2938 -- freeze the subprogram type as well, to prevent
2939 -- scope anomalies in gigi, because there is no other
2940 -- clear point at which it could be frozen.
2942 if Is_Itype (Etype (Formal))
2943 and then Ekind (F_Type) = E_Subprogram_Type
2944 then
2945 Freeze_And_Append (F_Type, N, Result);
2946 end if;
2947 end if;
2949 Next_Formal (Formal);
2950 end loop;
2952 -- Case of function: similar checks on return type
2954 if Ekind (E) = E_Function then
2956 -- Check whether function is declared elsewhere.
2958 Late_Freezing :=
2959 Get_Source_Unit (E) /= Get_Source_Unit (N)
2960 and then Returns_Limited_View (E)
2961 and then not In_Open_Scopes (Scope (E));
2963 -- Freeze return type
2965 R_Type := Etype (E);
2967 -- AI05-0151: the return type may have been incomplete
2968 -- at the point of declaration. Replace it with the full
2969 -- view, unless the current type is a limited view. In
2970 -- that case the full view is in a different unit, and
2971 -- gigi finds the non-limited view after the other unit
2972 -- is elaborated.
2974 if Ekind (R_Type) = E_Incomplete_Type
2975 and then Present (Full_View (R_Type))
2976 and then not From_Limited_With (R_Type)
2977 then
2978 R_Type := Full_View (R_Type);
2979 Set_Etype (E, R_Type);
2981 -- If the return type is a limited view and the non-
2982 -- limited view is still incomplete, the function has
2983 -- to be frozen at a later time.
2985 elsif Ekind (R_Type) = E_Incomplete_Type
2986 and then From_Limited_With (R_Type)
2987 and then
2988 Ekind (Non_Limited_View (R_Type)) = E_Incomplete_Type
2989 then
2990 Set_Is_Frozen (E, False);
2991 Set_Returns_Limited_View (E);
2992 return False;
2993 end if;
2995 Freeze_And_Append (R_Type, N, Result);
2997 -- Check suspicious return type for C function
2999 if Warn_On_Export_Import
3000 and then (Convention (E) = Convention_C
3001 or else
3002 Convention (E) = Convention_CPP)
3003 and then (Is_Imported (E) or else Is_Exported (E))
3004 then
3005 -- Check suspicious return of fat C pointer
3007 if Is_Access_Type (R_Type)
3008 and then Esize (R_Type) > Ttypes.System_Address_Size
3009 and then not Has_Warnings_Off (E)
3010 and then not Has_Warnings_Off (R_Type)
3011 then
3012 Error_Msg_N ("?x?return type of& does not "
3013 & "correspond to C pointer!", E);
3015 -- Check suspicious return of boolean
3017 elsif Root_Type (R_Type) = Standard_Boolean
3018 and then Convention (R_Type) = Convention_Ada
3019 and then VM_Target = No_VM
3020 and then not Has_Warnings_Off (E)
3021 and then not Has_Warnings_Off (R_Type)
3022 and then not Has_Size_Clause (R_Type)
3023 then
3024 declare
3025 N : constant Node_Id :=
3026 Result_Definition (Declaration_Node (E));
3027 begin
3028 Error_Msg_NE
3029 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3030 Error_Msg_NE
3031 ("\use appropriate corresponding type in C "
3032 & "(e.g. char)?x?", N, E);
3033 end;
3035 -- Check suspicious return tagged type
3037 elsif (Is_Tagged_Type (R_Type)
3038 or else (Is_Access_Type (R_Type)
3039 and then
3040 Is_Tagged_Type
3041 (Designated_Type (R_Type))))
3042 and then Convention (E) = Convention_C
3043 and then not Has_Warnings_Off (E)
3044 and then not Has_Warnings_Off (R_Type)
3045 then
3046 Error_Msg_N ("?x?return type of & does not "
3047 & "correspond to C type!", E);
3049 -- Check return of wrong convention subprogram pointer
3051 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3052 and then not Has_Foreign_Convention (R_Type)
3053 and then not Has_Warnings_Off (E)
3054 and then not Has_Warnings_Off (R_Type)
3055 then
3056 Error_Msg_N ("?x?& should return a foreign "
3057 & "convention subprogram pointer", E);
3058 Error_Msg_Sloc := Sloc (R_Type);
3059 Error_Msg_NE
3060 ("\?x?add Convention pragma to declaration of& #",
3061 E, R_Type);
3062 end if;
3063 end if;
3065 -- Give warning for suspicious return of a result of an
3066 -- unconstrained array type in a foreign convention function.
3068 if Has_Foreign_Convention (E)
3070 -- We are looking for a return of unconstrained array
3072 and then Is_Array_Type (R_Type)
3073 and then not Is_Constrained (R_Type)
3075 -- Exclude imported routines, the warning does not belong on
3076 -- the import, but rather on the routine definition.
3078 and then not Is_Imported (E)
3080 -- Exclude VM case, since both .NET and JVM can handle return
3081 -- of unconstrained arrays without a problem.
3083 and then VM_Target = No_VM
3085 -- Check that general warning is enabled, and that it is not
3086 -- suppressed for this particular case.
3088 and then Warn_On_Export_Import
3089 and then not Has_Warnings_Off (E)
3090 and then not Has_Warnings_Off (R_Type)
3091 then
3092 Error_Msg_N ("?x?foreign convention function& should not " &
3093 "return unconstrained array!", E);
3094 end if;
3095 end if;
3097 return True;
3098 end Freeze_Profile;
3100 ------------------------
3101 -- Freeze_Record_Type --
3102 ------------------------
3104 procedure Freeze_Record_Type (Rec : Entity_Id) is
3105 ADC : Node_Id;
3106 Comp : Entity_Id;
3107 IR : Node_Id;
3108 Prev : Entity_Id;
3110 Junk : Boolean;
3111 pragma Warnings (Off, Junk);
3113 Rec_Pushed : Boolean := False;
3114 -- Set True if the record type scope Rec has been pushed on the scope
3115 -- stack. Needed for the analysis of delayed aspects specified to the
3116 -- components of Rec.
3118 SSO_ADC : Node_Id;
3119 -- Scalar_Storage_Order attribute definition clause for the record
3121 Unplaced_Component : Boolean := False;
3122 -- Set True if we find at least one component with no component
3123 -- clause (used to warn about useless Pack pragmas).
3125 Placed_Component : Boolean := False;
3126 -- Set True if we find at least one component with a component
3127 -- clause (used to warn about useless Bit_Order pragmas, and also
3128 -- to detect cases where Implicit_Packing may have an effect).
3130 Aliased_Component : Boolean := False;
3131 -- Set True if we find at least one component which is aliased. This
3132 -- is used to prevent Implicit_Packing of the record, since packing
3133 -- cannot modify the size of alignment of an aliased component.
3135 SSO_ADC_Component : Boolean := False;
3136 -- Set True if we find at least one component whose type has a
3137 -- Scalar_Storage_Order attribute definition clause.
3139 All_Scalar_Components : Boolean := True;
3140 -- Set False if we encounter a component of a non-scalar type
3142 Scalar_Component_Total_RM_Size : Uint := Uint_0;
3143 Scalar_Component_Total_Esize : Uint := Uint_0;
3144 -- Accumulates total RM_Size values and total Esize values of all
3145 -- scalar components. Used for processing of Implicit_Packing.
3147 function Check_Allocator (N : Node_Id) return Node_Id;
3148 -- If N is an allocator, possibly wrapped in one or more level of
3149 -- qualified expression(s), return the inner allocator node, else
3150 -- return Empty.
3152 procedure Check_Itype (Typ : Entity_Id);
3153 -- If the component subtype is an access to a constrained subtype of
3154 -- an already frozen type, make the subtype frozen as well. It might
3155 -- otherwise be frozen in the wrong scope, and a freeze node on
3156 -- subtype has no effect. Similarly, if the component subtype is a
3157 -- regular (not protected) access to subprogram, set the anonymous
3158 -- subprogram type to frozen as well, to prevent an out-of-scope
3159 -- freeze node at some eventual point of call. Protected operations
3160 -- are handled elsewhere.
3162 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
3163 -- Make sure that all types mentioned in Discrete_Choices of the
3164 -- variants referenceed by the Variant_Part VP are frozen. This is
3165 -- a recursive routine to deal with nested variants.
3167 ---------------------
3168 -- Check_Allocator --
3169 ---------------------
3171 function Check_Allocator (N : Node_Id) return Node_Id is
3172 Inner : Node_Id;
3173 begin
3174 Inner := N;
3175 loop
3176 if Nkind (Inner) = N_Allocator then
3177 return Inner;
3178 elsif Nkind (Inner) = N_Qualified_Expression then
3179 Inner := Expression (Inner);
3180 else
3181 return Empty;
3182 end if;
3183 end loop;
3184 end Check_Allocator;
3186 -----------------
3187 -- Check_Itype --
3188 -----------------
3190 procedure Check_Itype (Typ : Entity_Id) is
3191 Desig : constant Entity_Id := Designated_Type (Typ);
3193 begin
3194 if not Is_Frozen (Desig)
3195 and then Is_Frozen (Base_Type (Desig))
3196 then
3197 Set_Is_Frozen (Desig);
3199 -- In addition, add an Itype_Reference to ensure that the
3200 -- access subtype is elaborated early enough. This cannot be
3201 -- done if the subtype may depend on discriminants.
3203 if Ekind (Comp) = E_Component
3204 and then Is_Itype (Etype (Comp))
3205 and then not Has_Discriminants (Rec)
3206 then
3207 IR := Make_Itype_Reference (Sloc (Comp));
3208 Set_Itype (IR, Desig);
3209 Add_To_Result (IR);
3210 end if;
3212 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
3213 and then Convention (Desig) /= Convention_Protected
3214 then
3215 Set_Is_Frozen (Desig);
3216 end if;
3217 end Check_Itype;
3219 ------------------------------------
3220 -- Freeze_Choices_In_Variant_Part --
3221 ------------------------------------
3223 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
3224 pragma Assert (Nkind (VP) = N_Variant_Part);
3226 Variant : Node_Id;
3227 Choice : Node_Id;
3228 CL : Node_Id;
3230 begin
3231 -- Loop through variants
3233 Variant := First_Non_Pragma (Variants (VP));
3234 while Present (Variant) loop
3236 -- Loop through choices, checking that all types are frozen
3238 Choice := First_Non_Pragma (Discrete_Choices (Variant));
3239 while Present (Choice) loop
3240 if Nkind (Choice) in N_Has_Etype
3241 and then Present (Etype (Choice))
3242 then
3243 Freeze_And_Append (Etype (Choice), N, Result);
3244 end if;
3246 Next_Non_Pragma (Choice);
3247 end loop;
3249 -- Check for nested variant part to process
3251 CL := Component_List (Variant);
3253 if not Null_Present (CL) then
3254 if Present (Variant_Part (CL)) then
3255 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
3256 end if;
3257 end if;
3259 Next_Non_Pragma (Variant);
3260 end loop;
3261 end Freeze_Choices_In_Variant_Part;
3263 -- Start of processing for Freeze_Record_Type
3265 begin
3266 -- Deal with delayed aspect specifications for components. The
3267 -- analysis of the aspect is required to be delayed to the freeze
3268 -- point, thus we analyze the pragma or attribute definition
3269 -- clause in the tree at this point. We also analyze the aspect
3270 -- specification node at the freeze point when the aspect doesn't
3271 -- correspond to pragma/attribute definition clause.
3273 Comp := First_Entity (Rec);
3274 while Present (Comp) loop
3275 if Ekind (Comp) = E_Component
3276 and then Has_Delayed_Aspects (Comp)
3277 then
3278 if not Rec_Pushed then
3279 Push_Scope (Rec);
3280 Rec_Pushed := True;
3282 -- The visibility to the discriminants must be restored in
3283 -- order to properly analyze the aspects.
3285 if Has_Discriminants (Rec) then
3286 Install_Discriminants (Rec);
3287 end if;
3288 end if;
3290 Analyze_Aspects_At_Freeze_Point (Comp);
3291 end if;
3293 Next_Entity (Comp);
3294 end loop;
3296 -- Pop the scope if Rec scope has been pushed on the scope stack
3297 -- during the delayed aspect analysis process.
3299 if Rec_Pushed then
3300 if Has_Discriminants (Rec) then
3301 Uninstall_Discriminants (Rec);
3302 end if;
3304 Pop_Scope;
3305 end if;
3307 -- Freeze components and embedded subtypes
3309 Comp := First_Entity (Rec);
3310 Prev := Empty;
3311 while Present (Comp) loop
3312 if Is_Aliased (Comp) then
3313 Aliased_Component := True;
3314 end if;
3316 -- Handle the component and discriminant case
3318 if Ekind_In (Comp, E_Component, E_Discriminant) then
3319 declare
3320 CC : constant Node_Id := Component_Clause (Comp);
3322 begin
3323 -- Freezing a record type freezes the type of each of its
3324 -- components. However, if the type of the component is
3325 -- part of this record, we do not want or need a separate
3326 -- Freeze_Node. Note that Is_Itype is wrong because that's
3327 -- also set in private type cases. We also can't check for
3328 -- the Scope being exactly Rec because of private types and
3329 -- record extensions.
3331 if Is_Itype (Etype (Comp))
3332 and then Is_Record_Type (Underlying_Type
3333 (Scope (Etype (Comp))))
3334 then
3335 Undelay_Type (Etype (Comp));
3336 end if;
3338 Freeze_And_Append (Etype (Comp), N, Result);
3340 -- Warn for pragma Pack overriding foreign convention
3342 if Has_Foreign_Convention (Etype (Comp))
3343 and then Has_Pragma_Pack (Rec)
3345 -- Don't warn for aliased components, since override
3346 -- cannot happen in that case.
3348 and then not Is_Aliased (Comp)
3349 then
3350 declare
3351 CN : constant Name_Id :=
3352 Get_Convention_Name (Convention (Etype (Comp)));
3353 PP : constant Node_Id :=
3354 Get_Pragma (Rec, Pragma_Pack);
3355 begin
3356 if Present (PP) then
3357 Error_Msg_Name_1 := CN;
3358 Error_Msg_Sloc := Sloc (Comp);
3359 Error_Msg_N
3360 ("pragma Pack affects convention % component#??",
3361 PP);
3362 Error_Msg_Name_1 := CN;
3363 Error_Msg_NE
3364 ("\component & may not have % compatible "
3365 & "representation??", PP, Comp);
3366 end if;
3367 end;
3368 end if;
3370 -- Check for error of component clause given for variable
3371 -- sized type. We have to delay this test till this point,
3372 -- since the component type has to be frozen for us to know
3373 -- if it is variable length.
3375 if Present (CC) then
3376 Placed_Component := True;
3378 -- We omit this test in a generic context, it will be
3379 -- applied at instantiation time.
3381 if Inside_A_Generic then
3382 null;
3384 -- Also omit this test in CodePeer mode, since we do not
3385 -- have sufficient info on size and rep clauses.
3387 elsif CodePeer_Mode then
3388 null;
3390 -- Omit check if component has a generic type. This can
3391 -- happen in an instantiation within a generic in ASIS
3392 -- mode, where we force freeze actions without full
3393 -- expansion.
3395 elsif Is_Generic_Type (Etype (Comp)) then
3396 null;
3398 -- Do the check
3400 elsif not
3401 Size_Known_At_Compile_Time
3402 (Underlying_Type (Etype (Comp)))
3403 then
3404 Error_Msg_N
3405 ("component clause not allowed for variable " &
3406 "length component", CC);
3407 end if;
3409 else
3410 Unplaced_Component := True;
3411 end if;
3413 -- Case of component requires byte alignment
3415 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
3417 -- Set the enclosing record to also require byte align
3419 Set_Must_Be_On_Byte_Boundary (Rec);
3421 -- Check for component clause that is inconsistent with
3422 -- the required byte boundary alignment.
3424 if Present (CC)
3425 and then Normalized_First_Bit (Comp) mod
3426 System_Storage_Unit /= 0
3427 then
3428 Error_Msg_N
3429 ("component & must be byte aligned",
3430 Component_Name (Component_Clause (Comp)));
3431 end if;
3432 end if;
3433 end;
3434 end if;
3436 -- Gather data for possible Implicit_Packing later. Note that at
3437 -- this stage we might be dealing with a real component, or with
3438 -- an implicit subtype declaration.
3440 if not Is_Scalar_Type (Etype (Comp)) then
3441 All_Scalar_Components := False;
3442 else
3443 Scalar_Component_Total_RM_Size :=
3444 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
3445 Scalar_Component_Total_Esize :=
3446 Scalar_Component_Total_Esize + Esize (Etype (Comp));
3447 end if;
3449 -- If the component is an Itype with Delayed_Freeze and is either
3450 -- a record or array subtype and its base type has not yet been
3451 -- frozen, we must remove this from the entity list of this record
3452 -- and put it on the entity list of the scope of its base type.
3453 -- Note that we know that this is not the type of a component
3454 -- since we cleared Has_Delayed_Freeze for it in the previous
3455 -- loop. Thus this must be the Designated_Type of an access type,
3456 -- which is the type of a component.
3458 if Is_Itype (Comp)
3459 and then Is_Type (Scope (Comp))
3460 and then Is_Composite_Type (Comp)
3461 and then Base_Type (Comp) /= Comp
3462 and then Has_Delayed_Freeze (Comp)
3463 and then not Is_Frozen (Base_Type (Comp))
3464 then
3465 declare
3466 Will_Be_Frozen : Boolean := False;
3467 S : Entity_Id;
3469 begin
3470 -- We have a difficult case to handle here. Suppose Rec is
3471 -- subtype being defined in a subprogram that's created as
3472 -- part of the freezing of Rec'Base. In that case, we know
3473 -- that Comp'Base must have already been frozen by the time
3474 -- we get to elaborate this because Gigi doesn't elaborate
3475 -- any bodies until it has elaborated all of the declarative
3476 -- part. But Is_Frozen will not be set at this point because
3477 -- we are processing code in lexical order.
3479 -- We detect this case by going up the Scope chain of Rec
3480 -- and seeing if we have a subprogram scope before reaching
3481 -- the top of the scope chain or that of Comp'Base. If we
3482 -- do, then mark that Comp'Base will actually be frozen. If
3483 -- so, we merely undelay it.
3485 S := Scope (Rec);
3486 while Present (S) loop
3487 if Is_Subprogram (S) then
3488 Will_Be_Frozen := True;
3489 exit;
3490 elsif S = Scope (Base_Type (Comp)) then
3491 exit;
3492 end if;
3494 S := Scope (S);
3495 end loop;
3497 if Will_Be_Frozen then
3498 Undelay_Type (Comp);
3500 else
3501 if Present (Prev) then
3502 Set_Next_Entity (Prev, Next_Entity (Comp));
3503 else
3504 Set_First_Entity (Rec, Next_Entity (Comp));
3505 end if;
3507 -- Insert in entity list of scope of base type (which
3508 -- must be an enclosing scope, because still unfrozen).
3510 Append_Entity (Comp, Scope (Base_Type (Comp)));
3511 end if;
3512 end;
3514 -- If the component is an access type with an allocator as default
3515 -- value, the designated type will be frozen by the corresponding
3516 -- expression in init_proc. In order to place the freeze node for
3517 -- the designated type before that for the current record type,
3518 -- freeze it now.
3520 -- Same process if the component is an array of access types,
3521 -- initialized with an aggregate. If the designated type is
3522 -- private, it cannot contain allocators, and it is premature
3523 -- to freeze the type, so we check for this as well.
3525 elsif Is_Access_Type (Etype (Comp))
3526 and then Present (Parent (Comp))
3527 and then Present (Expression (Parent (Comp)))
3528 then
3529 declare
3530 Alloc : constant Node_Id :=
3531 Check_Allocator (Expression (Parent (Comp)));
3533 begin
3534 if Present (Alloc) then
3536 -- If component is pointer to a class-wide type, freeze
3537 -- the specific type in the expression being allocated.
3538 -- The expression may be a subtype indication, in which
3539 -- case freeze the subtype mark.
3541 if Is_Class_Wide_Type
3542 (Designated_Type (Etype (Comp)))
3543 then
3544 if Is_Entity_Name (Expression (Alloc)) then
3545 Freeze_And_Append
3546 (Entity (Expression (Alloc)), N, Result);
3548 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
3549 then
3550 Freeze_And_Append
3551 (Entity (Subtype_Mark (Expression (Alloc))),
3552 N, Result);
3553 end if;
3555 elsif Is_Itype (Designated_Type (Etype (Comp))) then
3556 Check_Itype (Etype (Comp));
3558 else
3559 Freeze_And_Append
3560 (Designated_Type (Etype (Comp)), N, Result);
3561 end if;
3562 end if;
3563 end;
3565 elsif Is_Access_Type (Etype (Comp))
3566 and then Is_Itype (Designated_Type (Etype (Comp)))
3567 then
3568 Check_Itype (Etype (Comp));
3570 -- Freeze the designated type when initializing a component with
3571 -- an aggregate in case the aggregate contains allocators.
3573 -- type T is ...;
3574 -- type T_Ptr is access all T;
3575 -- type T_Array is array ... of T_Ptr;
3577 -- type Rec is record
3578 -- Comp : T_Array := (others => ...);
3579 -- end record;
3581 elsif Is_Array_Type (Etype (Comp))
3582 and then Is_Access_Type (Component_Type (Etype (Comp)))
3583 then
3584 declare
3585 Comp_Par : constant Node_Id := Parent (Comp);
3586 Desig_Typ : constant Entity_Id :=
3587 Designated_Type
3588 (Component_Type (Etype (Comp)));
3590 begin
3591 -- The only case when this sort of freezing is not done is
3592 -- when the designated type is class-wide and the root type
3593 -- is the record owning the component. This scenario results
3594 -- in a circularity because the class-wide type requires
3595 -- primitives that have not been created yet as the root
3596 -- type is in the process of being frozen.
3598 -- type Rec is tagged;
3599 -- type Rec_Ptr is access all Rec'Class;
3600 -- type Rec_Array is array ... of Rec_Ptr;
3602 -- type Rec is record
3603 -- Comp : Rec_Array := (others => ...);
3604 -- end record;
3606 if Is_Class_Wide_Type (Desig_Typ)
3607 and then Root_Type (Desig_Typ) = Rec
3608 then
3609 null;
3611 elsif Is_Fully_Defined (Desig_Typ)
3612 and then Present (Comp_Par)
3613 and then Nkind (Comp_Par) = N_Component_Declaration
3614 and then Present (Expression (Comp_Par))
3615 and then Nkind (Expression (Comp_Par)) = N_Aggregate
3616 then
3617 Freeze_And_Append (Desig_Typ, N, Result);
3618 end if;
3619 end;
3620 end if;
3622 Prev := Comp;
3623 Next_Entity (Comp);
3624 end loop;
3626 -- Deal with default setting of reverse storage order
3628 Set_SSO_From_Default (Rec);
3630 -- Check consistent attribute setting on component types
3632 SSO_ADC := Get_Attribute_Definition_Clause
3633 (Rec, Attribute_Scalar_Storage_Order);
3635 declare
3636 Comp_ADC_Present : Boolean;
3637 begin
3638 Comp := First_Component (Rec);
3639 while Present (Comp) loop
3640 Check_Component_Storage_Order
3641 (Encl_Type => Rec,
3642 Comp => Comp,
3643 ADC => SSO_ADC,
3644 Comp_ADC_Present => Comp_ADC_Present);
3645 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
3646 Next_Component (Comp);
3647 end loop;
3648 end;
3650 -- Now deal with reverse storage order/bit order issues
3652 if Present (SSO_ADC) then
3654 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
3655 -- the former is specified.
3657 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
3659 -- Note: report error on Rec, not on SSO_ADC, as ADC may apply
3660 -- to some ancestor type.
3662 Error_Msg_Sloc := Sloc (SSO_ADC);
3663 Error_Msg_N
3664 ("scalar storage order for& specified# inconsistent with "
3665 & "bit order", Rec);
3666 end if;
3668 -- Warn if there is an Scalar_Storage_Order attribute definition
3669 -- clause but no component clause, no component that itself has
3670 -- such an attribute definition, and no pragma Pack.
3672 if not (Placed_Component
3673 or else
3674 SSO_ADC_Component
3675 or else
3676 Is_Packed (Rec))
3677 then
3678 Error_Msg_N
3679 ("??scalar storage order specified but no component clause",
3680 SSO_ADC);
3681 end if;
3682 end if;
3684 -- Deal with Bit_Order aspect
3686 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
3688 if Present (ADC) and then Base_Type (Rec) = Rec then
3689 if not (Placed_Component
3690 or else Present (SSO_ADC)
3691 or else Is_Packed (Rec))
3692 then
3693 -- Warn if clause has no effect when no component clause is
3694 -- present, but suppress warning if the Bit_Order is required
3695 -- due to the presence of a Scalar_Storage_Order attribute.
3697 Error_Msg_N
3698 ("??bit order specification has no effect", ADC);
3699 Error_Msg_N
3700 ("\??since no component clauses were specified", ADC);
3702 -- Here is where we do the processing to adjust component clauses
3703 -- for reversed bit order, when not using reverse SSO.
3705 elsif Reverse_Bit_Order (Rec)
3706 and then not Reverse_Storage_Order (Rec)
3707 then
3708 Adjust_Record_For_Reverse_Bit_Order (Rec);
3710 -- Case where we have both an explicit Bit_Order and the same
3711 -- Scalar_Storage_Order: leave record untouched, the back-end
3712 -- will take care of required layout conversions.
3714 else
3715 null;
3717 end if;
3718 end if;
3720 -- Complete error checking on record representation clause (e.g.
3721 -- overlap of components). This is called after adjusting the
3722 -- record for reverse bit order.
3724 declare
3725 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
3726 begin
3727 if Present (RRC) then
3728 Check_Record_Representation_Clause (RRC);
3729 end if;
3730 end;
3732 -- Set OK_To_Reorder_Components depending on debug flags
3734 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
3735 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
3736 or else
3737 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
3738 then
3739 Set_OK_To_Reorder_Components (Rec);
3740 end if;
3741 end if;
3743 -- Check for useless pragma Pack when all components placed. We only
3744 -- do this check for record types, not subtypes, since a subtype may
3745 -- have all its components placed, and it still makes perfectly good
3746 -- sense to pack other subtypes or the parent type. We do not give
3747 -- this warning if Optimize_Alignment is set to Space, since the
3748 -- pragma Pack does have an effect in this case (it always resets
3749 -- the alignment to one).
3751 if Ekind (Rec) = E_Record_Type
3752 and then Is_Packed (Rec)
3753 and then not Unplaced_Component
3754 and then Optimize_Alignment /= 'S'
3755 then
3756 -- Reset packed status. Probably not necessary, but we do it so
3757 -- that there is no chance of the back end doing something strange
3758 -- with this redundant indication of packing.
3760 Set_Is_Packed (Rec, False);
3762 -- Give warning if redundant constructs warnings on
3764 if Warn_On_Redundant_Constructs then
3765 Error_Msg_N -- CODEFIX
3766 ("??pragma Pack has no effect, no unplaced components",
3767 Get_Rep_Pragma (Rec, Name_Pack));
3768 end if;
3769 end if;
3771 -- If this is the record corresponding to a remote type, freeze the
3772 -- remote type here since that is what we are semantically freezing.
3773 -- This prevents the freeze node for that type in an inner scope.
3775 if Ekind (Rec) = E_Record_Type then
3776 if Present (Corresponding_Remote_Type (Rec)) then
3777 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
3778 end if;
3780 -- Check for controlled components and unchecked unions.
3782 Comp := First_Component (Rec);
3783 while Present (Comp) loop
3785 -- Do not set Has_Controlled_Component on a class-wide
3786 -- equivalent type. See Make_CW_Equivalent_Type.
3788 if not Is_Class_Wide_Equivalent_Type (Rec)
3789 and then
3790 (Has_Controlled_Component (Etype (Comp))
3791 or else
3792 (Chars (Comp) /= Name_uParent
3793 and then Is_Controlled (Etype (Comp)))
3794 or else
3795 (Is_Protected_Type (Etype (Comp))
3796 and then
3797 Present (Corresponding_Record_Type (Etype (Comp)))
3798 and then
3799 Has_Controlled_Component
3800 (Corresponding_Record_Type (Etype (Comp)))))
3801 then
3802 Set_Has_Controlled_Component (Rec);
3803 end if;
3805 if Has_Unchecked_Union (Etype (Comp)) then
3806 Set_Has_Unchecked_Union (Rec);
3807 end if;
3809 -- Scan component declaration for likely misuses of current
3810 -- instance, either in a constraint or a default expression.
3812 if Has_Per_Object_Constraint (Comp) then
3813 Check_Current_Instance (Parent (Comp));
3814 end if;
3816 Next_Component (Comp);
3817 end loop;
3818 end if;
3820 -- Enforce the restriction that access attributes with a current
3821 -- instance prefix can only apply to limited types. This comment
3822 -- is floating here, but does not seem to belong here???
3824 -- Set component alignment if not otherwise already set
3826 Set_Component_Alignment_If_Not_Set (Rec);
3828 -- For first subtypes, check if there are any fixed-point fields with
3829 -- component clauses, where we must check the size. This is not done
3830 -- till the freeze point since for fixed-point types, we do not know
3831 -- the size until the type is frozen. Similar processing applies to
3832 -- bit packed arrays.
3834 if Is_First_Subtype (Rec) then
3835 Comp := First_Component (Rec);
3836 while Present (Comp) loop
3837 if Present (Component_Clause (Comp))
3838 and then (Is_Fixed_Point_Type (Etype (Comp))
3839 or else Is_Bit_Packed_Array (Etype (Comp)))
3840 then
3841 Check_Size
3842 (Component_Name (Component_Clause (Comp)),
3843 Etype (Comp),
3844 Esize (Comp),
3845 Junk);
3846 end if;
3848 Next_Component (Comp);
3849 end loop;
3850 end if;
3852 -- Generate warning for applying C or C++ convention to a record
3853 -- with discriminants. This is suppressed for the unchecked union
3854 -- case, since the whole point in this case is interface C. We also
3855 -- do not generate this within instantiations, since we will have
3856 -- generated a message on the template.
3858 if Has_Discriminants (E)
3859 and then not Is_Unchecked_Union (E)
3860 and then (Convention (E) = Convention_C
3861 or else
3862 Convention (E) = Convention_CPP)
3863 and then Comes_From_Source (E)
3864 and then not In_Instance
3865 and then not Has_Warnings_Off (E)
3866 and then not Has_Warnings_Off (Base_Type (E))
3867 then
3868 declare
3869 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
3870 A2 : Node_Id;
3872 begin
3873 if Present (Cprag) then
3874 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
3876 if Convention (E) = Convention_C then
3877 Error_Msg_N
3878 ("?x?variant record has no direct equivalent in C",
3879 A2);
3880 else
3881 Error_Msg_N
3882 ("?x?variant record has no direct equivalent in C++",
3883 A2);
3884 end if;
3886 Error_Msg_NE
3887 ("\?x?use of convention for type& is dubious", A2, E);
3888 end if;
3889 end;
3890 end if;
3892 -- See if Size is too small as is (and implicit packing might help)
3894 if not Is_Packed (Rec)
3896 -- No implicit packing if even one component is explicitly placed
3898 and then not Placed_Component
3900 -- Or even one component is aliased
3902 and then not Aliased_Component
3904 -- Must have size clause and all scalar components
3906 and then Has_Size_Clause (Rec)
3907 and then All_Scalar_Components
3909 -- Do not try implicit packing on records with discriminants, too
3910 -- complicated, especially in the variant record case.
3912 and then not Has_Discriminants (Rec)
3914 -- We can implicitly pack if the specified size of the record is
3915 -- less than the sum of the object sizes (no point in packing if
3916 -- this is not the case).
3918 and then RM_Size (Rec) < Scalar_Component_Total_Esize
3920 -- And the total RM size cannot be greater than the specified size
3921 -- since otherwise packing will not get us where we have to be.
3923 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
3925 -- Never do implicit packing in CodePeer or SPARK modes since
3926 -- we don't do any packing in these modes, since this generates
3927 -- over-complex code that confuses static analysis, and in
3928 -- general, neither CodePeer not GNATprove care about the
3929 -- internal representation of objects.
3931 and then not (CodePeer_Mode or GNATprove_Mode)
3932 then
3933 -- If implicit packing enabled, do it
3935 if Implicit_Packing then
3936 Set_Is_Packed (Rec);
3938 -- Otherwise flag the size clause
3940 else
3941 declare
3942 Sz : constant Node_Id := Size_Clause (Rec);
3943 begin
3944 Error_Msg_NE -- CODEFIX
3945 ("size given for& too small", Sz, Rec);
3946 Error_Msg_N -- CODEFIX
3947 ("\use explicit pragma Pack "
3948 & "or use pragma Implicit_Packing", Sz);
3949 end;
3950 end if;
3951 end if;
3953 -- The following checks are only relevant when SPARK_Mode is on as
3954 -- they are not standard Ada legality rules.
3956 if SPARK_Mode = On then
3957 if Is_Effectively_Volatile (Rec) then
3959 -- A discriminated type cannot be effectively volatile
3960 -- (SPARK RM C.6(4)).
3962 if Has_Discriminants (Rec) then
3963 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
3965 -- A tagged type cannot be effectively volatile
3966 -- (SPARK RM C.6(5)).
3968 elsif Is_Tagged_Type (Rec) then
3969 Error_Msg_N ("tagged type & cannot be volatile", Rec);
3970 end if;
3972 -- A non-effectively volatile record type cannot contain
3973 -- effectively volatile components (SPARK RM C.6(2)).
3975 else
3976 Comp := First_Component (Rec);
3977 while Present (Comp) loop
3978 if Comes_From_Source (Comp)
3979 and then Is_Effectively_Volatile (Etype (Comp))
3980 then
3981 Error_Msg_Name_1 := Chars (Rec);
3982 Error_Msg_N
3983 ("component & of non-volatile type % cannot be "
3984 & "volatile", Comp);
3985 end if;
3987 Next_Component (Comp);
3988 end loop;
3989 end if;
3990 end if;
3992 -- All done if not a full record definition
3994 if Ekind (Rec) /= E_Record_Type then
3995 return;
3996 end if;
3998 -- Finally we need to check the variant part to make sure that
3999 -- all types within choices are properly frozen as part of the
4000 -- freezing of the record type.
4002 Check_Variant_Part : declare
4003 D : constant Node_Id := Declaration_Node (Rec);
4004 T : Node_Id;
4005 C : Node_Id;
4007 begin
4008 -- Find component list
4010 C := Empty;
4012 if Nkind (D) = N_Full_Type_Declaration then
4013 T := Type_Definition (D);
4015 if Nkind (T) = N_Record_Definition then
4016 C := Component_List (T);
4018 elsif Nkind (T) = N_Derived_Type_Definition
4019 and then Present (Record_Extension_Part (T))
4020 then
4021 C := Component_List (Record_Extension_Part (T));
4022 end if;
4023 end if;
4025 -- Case of variant part present
4027 if Present (C) and then Present (Variant_Part (C)) then
4028 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4029 end if;
4031 -- Note: we used to call Check_Choices here, but it is too early,
4032 -- since predicated subtypes are frozen here, but their freezing
4033 -- actions are in Analyze_Freeze_Entity, which has not been called
4034 -- yet for entities frozen within this procedure, so we moved that
4035 -- call to the Analyze_Freeze_Entity for the record type.
4037 end Check_Variant_Part;
4039 -- Check that all the primitives of an interface type are abstract
4040 -- or null procedures.
4042 if Is_Interface (Rec)
4043 and then not Error_Posted (Parent (Rec))
4044 then
4045 declare
4046 Elmt : Elmt_Id;
4047 Subp : Entity_Id;
4049 begin
4050 Elmt := First_Elmt (Primitive_Operations (Rec));
4051 while Present (Elmt) loop
4052 Subp := Node (Elmt);
4054 if not Is_Abstract_Subprogram (Subp)
4056 -- Avoid reporting the error on inherited primitives
4058 and then Comes_From_Source (Subp)
4059 then
4060 Error_Msg_Name_1 := Chars (Subp);
4062 if Ekind (Subp) = E_Procedure then
4063 if not Null_Present (Parent (Subp)) then
4064 Error_Msg_N
4065 ("interface procedure % must be abstract or null",
4066 Parent (Subp));
4067 end if;
4068 else
4069 Error_Msg_N
4070 ("interface function % must be abstract",
4071 Parent (Subp));
4072 end if;
4073 end if;
4075 Next_Elmt (Elmt);
4076 end loop;
4077 end;
4078 end if;
4079 end Freeze_Record_Type;
4081 -------------------------------
4082 -- Has_Boolean_Aspect_Import --
4083 -------------------------------
4085 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
4086 Decl : constant Node_Id := Declaration_Node (E);
4087 Asp : Node_Id;
4088 Expr : Node_Id;
4090 begin
4091 if Has_Aspects (Decl) then
4092 Asp := First (Aspect_Specifications (Decl));
4093 while Present (Asp) loop
4094 Expr := Expression (Asp);
4096 -- The value of aspect Import is True when the expression is
4097 -- either missing or it is explicitly set to True.
4099 if Get_Aspect_Id (Asp) = Aspect_Import
4100 and then (No (Expr)
4101 or else (Compile_Time_Known_Value (Expr)
4102 and then Is_True (Expr_Value (Expr))))
4103 then
4104 return True;
4105 end if;
4107 Next (Asp);
4108 end loop;
4109 end if;
4111 return False;
4112 end Has_Boolean_Aspect_Import;
4114 ----------------------------
4115 -- Late_Freeze_Subprogram --
4116 ----------------------------
4118 procedure Late_Freeze_Subprogram (E : Entity_Id) is
4119 Spec : constant Node_Id :=
4120 Specification (Unit_Declaration_Node (Scope (E)));
4121 Decls : List_Id;
4123 begin
4124 if Present (Private_Declarations (Spec)) then
4125 Decls := Private_Declarations (Spec);
4126 else
4127 Decls := Visible_Declarations (Spec);
4128 end if;
4130 Append_List (Result, Decls);
4131 end Late_Freeze_Subprogram;
4133 ---------------------
4134 -- Restore_Globals --
4135 ---------------------
4137 procedure Restore_Globals is
4138 begin
4139 Ghost_Mode := GM;
4140 end Restore_Globals;
4142 ------------------------------
4143 -- Wrap_Imported_Subprogram --
4144 ------------------------------
4146 -- The issue here is that our normal approach of checking preconditions
4147 -- and postconditions does not work for imported procedures, since we
4148 -- are not generating code for the body. To get around this we create
4149 -- a wrapper, as shown by the following example:
4151 -- procedure K (A : Integer);
4152 -- pragma Import (C, K);
4154 -- The spec is rewritten by removing the effects of pragma Import, but
4155 -- leaving the convention unchanged, as though the source had said:
4157 -- procedure K (A : Integer);
4158 -- pragma Convention (C, K);
4160 -- and we create a body, added to the entity K freeze actions, which
4161 -- looks like:
4163 -- procedure K (A : Integer) is
4164 -- procedure K (A : Integer);
4165 -- pragma Import (C, K);
4166 -- begin
4167 -- K (A);
4168 -- end K;
4170 -- Now the contract applies in the normal way to the outer procedure,
4171 -- and the inner procedure has no contracts, so there is no problem
4172 -- in just calling it to get the original effect.
4174 -- In the case of a function, we create an appropriate return statement
4175 -- for the subprogram body that calls the inner procedure.
4177 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
4178 Loc : constant Source_Ptr := Sloc (E);
4179 CE : constant Name_Id := Chars (E);
4180 Spec : Node_Id;
4181 Parms : List_Id;
4182 Stmt : Node_Id;
4183 Iprag : Node_Id;
4184 Bod : Node_Id;
4185 Forml : Entity_Id;
4187 begin
4188 -- Nothing to do if not imported
4190 if not Is_Imported (E) then
4191 return;
4193 -- Test enabling conditions for wrapping
4195 elsif Is_Subprogram (E)
4196 and then Present (Contract (E))
4197 and then Present (Pre_Post_Conditions (Contract (E)))
4198 and then not GNATprove_Mode
4199 then
4200 -- Here we do the wrap
4202 -- Note on calls to Copy_Separate_Tree. The trees we are copying
4203 -- here are fully analyzed, but we definitely want fully syntactic
4204 -- unanalyzed trees in the body we construct, so that the analysis
4205 -- generates the right visibility, and that is exactly what the
4206 -- calls to Copy_Separate_Tree give us.
4208 -- Acquire copy of Inline pragma, and indicate that it does not
4209 -- come from an aspect, as it applies to an internal entity.
4211 Iprag := Copy_Separate_Tree (Import_Pragma (E));
4212 Set_From_Aspect_Specification (Iprag, False);
4214 -- Fix up spec to be not imported any more
4216 Set_Is_Imported (E, False);
4217 Set_Interface_Name (E, Empty);
4218 Set_Has_Completion (E, False);
4219 Set_Import_Pragma (E, Empty);
4221 -- Grab the subprogram declaration and specification
4223 Spec := Declaration_Node (E);
4225 -- Build parameter list that we need
4227 Parms := New_List;
4228 Forml := First_Formal (E);
4229 while Present (Forml) loop
4230 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
4231 Next_Formal (Forml);
4232 end loop;
4234 -- Build the call
4236 if Ekind_In (E, E_Function, E_Generic_Function) then
4237 Stmt :=
4238 Make_Simple_Return_Statement (Loc,
4239 Expression =>
4240 Make_Function_Call (Loc,
4241 Name => Make_Identifier (Loc, CE),
4242 Parameter_Associations => Parms));
4244 else
4245 Stmt :=
4246 Make_Procedure_Call_Statement (Loc,
4247 Name => Make_Identifier (Loc, CE),
4248 Parameter_Associations => Parms);
4249 end if;
4251 -- Now build the body
4253 Bod :=
4254 Make_Subprogram_Body (Loc,
4255 Specification =>
4256 Copy_Separate_Tree (Spec),
4257 Declarations => New_List (
4258 Make_Subprogram_Declaration (Loc,
4259 Specification =>
4260 Copy_Separate_Tree (Spec)),
4261 Iprag),
4262 Handled_Statement_Sequence =>
4263 Make_Handled_Sequence_Of_Statements (Loc,
4264 Statements => New_List (Stmt),
4265 End_Label => Make_Identifier (Loc, CE)));
4267 -- Append the body to freeze result
4269 Add_To_Result (Bod);
4270 return;
4272 -- Case of imported subprogram that does not get wrapped
4274 else
4275 -- Set Is_Public. All imported entities need an external symbol
4276 -- created for them since they are always referenced from another
4277 -- object file. Note this used to be set when we set Is_Imported
4278 -- back in Sem_Prag, but now we delay it to this point, since we
4279 -- don't want to set this flag if we wrap an imported subprogram.
4281 Set_Is_Public (E);
4282 end if;
4283 end Wrap_Imported_Subprogram;
4285 -- Start of processing for Freeze_Entity
4287 begin
4288 -- The entity being frozen may be subject to pragma Ghost with policy
4289 -- Ignore. Set the mode now to ensure that any nodes generated during
4290 -- freezing are properly flagged as ignored Ghost.
4292 Set_Ghost_Mode_For_Freeze (E, N);
4294 -- We are going to test for various reasons why this entity need not be
4295 -- frozen here, but in the case of an Itype that's defined within a
4296 -- record, that test actually applies to the record.
4298 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
4299 Test_E := Scope (E);
4300 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
4301 and then Is_Record_Type (Underlying_Type (Scope (E)))
4302 then
4303 Test_E := Underlying_Type (Scope (E));
4304 end if;
4306 -- Do not freeze if already frozen since we only need one freeze node
4308 if Is_Frozen (E) then
4309 Restore_Globals;
4310 return No_List;
4312 -- It is improper to freeze an external entity within a generic because
4313 -- its freeze node will appear in a non-valid context. The entity will
4314 -- be frozen in the proper scope after the current generic is analyzed.
4315 -- However, aspects must be analyzed because they may be queried later
4316 -- within the generic itself, and the corresponding pragma or attribute
4317 -- definition has not been analyzed yet.
4319 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
4320 if Has_Delayed_Aspects (E) then
4321 Analyze_Aspects_At_Freeze_Point (E);
4322 end if;
4324 Restore_Globals;
4325 return No_List;
4327 -- AI05-0213: A formal incomplete type does not freeze the actual. In
4328 -- the instance, the same applies to the subtype renaming the actual.
4330 elsif Is_Private_Type (E)
4331 and then Is_Generic_Actual_Type (E)
4332 and then No (Full_View (Base_Type (E)))
4333 and then Ada_Version >= Ada_2012
4334 then
4335 Restore_Globals;
4336 return No_List;
4338 -- Formal subprograms are never frozen
4340 elsif Is_Formal_Subprogram (E) then
4341 Restore_Globals;
4342 return No_List;
4344 -- Generic types are never frozen as they lack delayed semantic checks
4346 elsif Is_Generic_Type (E) then
4347 Restore_Globals;
4348 return No_List;
4350 -- Do not freeze a global entity within an inner scope created during
4351 -- expansion. A call to subprogram E within some internal procedure
4352 -- (a stream attribute for example) might require freezing E, but the
4353 -- freeze node must appear in the same declarative part as E itself.
4354 -- The two-pass elaboration mechanism in gigi guarantees that E will
4355 -- be frozen before the inner call is elaborated. We exclude constants
4356 -- from this test, because deferred constants may be frozen early, and
4357 -- must be diagnosed (e.g. in the case of a deferred constant being used
4358 -- in a default expression). If the enclosing subprogram comes from
4359 -- source, or is a generic instance, then the freeze point is the one
4360 -- mandated by the language, and we freeze the entity. A subprogram that
4361 -- is a child unit body that acts as a spec does not have a spec that
4362 -- comes from source, but can only come from source.
4364 elsif In_Open_Scopes (Scope (Test_E))
4365 and then Scope (Test_E) /= Current_Scope
4366 and then Ekind (Test_E) /= E_Constant
4367 then
4368 declare
4369 S : Entity_Id;
4371 begin
4372 S := Current_Scope;
4373 while Present (S) loop
4374 if Is_Overloadable (S) then
4375 if Comes_From_Source (S)
4376 or else Is_Generic_Instance (S)
4377 or else Is_Child_Unit (S)
4378 then
4379 exit;
4380 else
4381 Restore_Globals;
4382 return No_List;
4383 end if;
4384 end if;
4386 S := Scope (S);
4387 end loop;
4388 end;
4390 -- Similarly, an inlined instance body may make reference to global
4391 -- entities, but these references cannot be the proper freezing point
4392 -- for them, and in the absence of inlining freezing will take place in
4393 -- their own scope. Normally instance bodies are analyzed after the
4394 -- enclosing compilation, and everything has been frozen at the proper
4395 -- place, but with front-end inlining an instance body is compiled
4396 -- before the end of the enclosing scope, and as a result out-of-order
4397 -- freezing must be prevented.
4399 elsif Front_End_Inlining
4400 and then In_Instance_Body
4401 and then Present (Scope (Test_E))
4402 then
4403 declare
4404 S : Entity_Id;
4406 begin
4407 S := Scope (Test_E);
4408 while Present (S) loop
4409 if Is_Generic_Instance (S) then
4410 exit;
4411 else
4412 S := Scope (S);
4413 end if;
4414 end loop;
4416 if No (S) then
4417 Restore_Globals;
4418 return No_List;
4419 end if;
4420 end;
4422 elsif Ekind (E) = E_Generic_Package then
4423 Result := Freeze_Generic_Entities (E);
4425 Restore_Globals;
4426 return Result;
4427 end if;
4429 -- Add checks to detect proper initialization of scalars that may appear
4430 -- as subprogram parameters.
4432 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
4433 Apply_Parameter_Validity_Checks (E);
4434 end if;
4436 -- Deal with delayed aspect specifications. The analysis of the aspect
4437 -- is required to be delayed to the freeze point, thus we analyze the
4438 -- pragma or attribute definition clause in the tree at this point. We
4439 -- also analyze the aspect specification node at the freeze point when
4440 -- the aspect doesn't correspond to pragma/attribute definition clause.
4442 if Has_Delayed_Aspects (E) then
4443 Analyze_Aspects_At_Freeze_Point (E);
4444 end if;
4446 -- Here to freeze the entity
4448 Set_Is_Frozen (E);
4450 -- Case of entity being frozen is other than a type
4452 if not Is_Type (E) then
4454 -- If entity is exported or imported and does not have an external
4455 -- name, now is the time to provide the appropriate default name.
4456 -- Skip this if the entity is stubbed, since we don't need a name
4457 -- for any stubbed routine. For the case on intrinsics, if no
4458 -- external name is specified, then calls will be handled in
4459 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
4460 -- external name is provided, then Expand_Intrinsic_Call leaves
4461 -- calls in place for expansion by GIGI.
4463 if (Is_Imported (E) or else Is_Exported (E))
4464 and then No (Interface_Name (E))
4465 and then Convention (E) /= Convention_Stubbed
4466 and then Convention (E) /= Convention_Intrinsic
4467 then
4468 Set_Encoded_Interface_Name
4469 (E, Get_Default_External_Name (E));
4471 -- If entity is an atomic object appearing in a declaration and
4472 -- the expression is an aggregate, assign it to a temporary to
4473 -- ensure that the actual assignment is done atomically rather
4474 -- than component-wise (the assignment to the temp may be done
4475 -- component-wise, but that is harmless).
4477 elsif Is_Atomic (E)
4478 and then Nkind (Parent (E)) = N_Object_Declaration
4479 and then Present (Expression (Parent (E)))
4480 and then Nkind (Expression (Parent (E))) = N_Aggregate
4481 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
4482 then
4483 null;
4484 end if;
4486 -- Subprogram case
4488 if Is_Subprogram (E) then
4490 -- Check for needing to wrap imported subprogram
4492 Wrap_Imported_Subprogram (E);
4494 -- Freeze all parameter types and the return type (RM 13.14(14)).
4495 -- However skip this for internal subprograms. This is also where
4496 -- any extra formal parameters are created since we now know
4497 -- whether the subprogram will use a foreign convention.
4499 -- In Ada 2012, freezing a subprogram does not always freeze
4500 -- the corresponding profile (see AI05-019). An attribute
4501 -- reference is not a freezing point of the profile.
4502 -- Other constructs that should not freeze ???
4504 -- This processing doesn't apply to internal entities (see below)
4506 if not Is_Internal (E) then
4507 if not Freeze_Profile (E) then
4508 Restore_Globals;
4509 return Result;
4510 end if;
4511 end if;
4513 -- Must freeze its parent first if it is a derived subprogram
4515 if Present (Alias (E)) then
4516 Freeze_And_Append (Alias (E), N, Result);
4517 end if;
4519 -- We don't freeze internal subprograms, because we don't normally
4520 -- want addition of extra formals or mechanism setting to happen
4521 -- for those. However we do pass through predefined dispatching
4522 -- cases, since extra formals may be needed in some cases, such as
4523 -- for the stream 'Input function (build-in-place formals).
4525 if not Is_Internal (E)
4526 or else Is_Predefined_Dispatching_Operation (E)
4527 then
4528 Freeze_Subprogram (E);
4529 end if;
4531 if Late_Freezing then
4532 Late_Freeze_Subprogram (E);
4533 Restore_Globals;
4534 return No_List;
4535 end if;
4537 -- If warning on suspicious contracts then check for the case of
4538 -- a postcondition other than False for a No_Return subprogram.
4540 if No_Return (E)
4541 and then Warn_On_Suspicious_Contract
4542 and then Present (Contract (E))
4543 then
4544 declare
4545 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
4546 Exp : Node_Id;
4548 begin
4549 while Present (Prag) loop
4550 if Nam_In (Pragma_Name (Prag), Name_Post,
4551 Name_Postcondition,
4552 Name_Refined_Post)
4553 then
4554 Exp :=
4555 Expression
4556 (First (Pragma_Argument_Associations (Prag)));
4558 if Nkind (Exp) /= N_Identifier
4559 or else Chars (Exp) /= Name_False
4560 then
4561 Error_Msg_NE
4562 ("useless postcondition, & is marked "
4563 & "No_Return?T?", Exp, E);
4564 end if;
4565 end if;
4567 Prag := Next_Pragma (Prag);
4568 end loop;
4569 end;
4570 end if;
4572 -- Here for other than a subprogram or type
4574 else
4575 -- If entity has a type, and it is not a generic unit, then
4576 -- freeze it first (RM 13.14(10)).
4578 if Present (Etype (E))
4579 and then Ekind (E) /= E_Generic_Function
4580 then
4581 Freeze_And_Append (Etype (E), N, Result);
4583 -- For an object of an anonymous array type, aspects on the
4584 -- object declaration apply to the type itself. This is the
4585 -- case for Atomic_Components, Volatile_Components, and
4586 -- Independent_Components. In these cases analysis of the
4587 -- generated pragma will mark the anonymous types accordingly,
4588 -- and the object itself does not require a freeze node.
4590 if Ekind (E) = E_Variable
4591 and then Is_Itype (Etype (E))
4592 and then Is_Array_Type (Etype (E))
4593 and then Has_Delayed_Aspects (E)
4594 then
4595 Set_Has_Delayed_Aspects (E, False);
4596 Set_Has_Delayed_Freeze (E, False);
4597 Set_Freeze_Node (E, Empty);
4598 end if;
4599 end if;
4601 -- Special processing for objects created by object declaration
4603 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
4605 -- Abstract type allowed only for C++ imported variables or
4606 -- constants.
4608 -- Note: we inhibit this check for objects that do not come
4609 -- from source because there is at least one case (the
4610 -- expansion of x'Class'Input where x is abstract) where we
4611 -- legitimately generate an abstract object.
4613 if Is_Abstract_Type (Etype (E))
4614 and then Comes_From_Source (Parent (E))
4615 and then not (Is_Imported (E)
4616 and then Is_CPP_Class (Etype (E)))
4617 then
4618 Error_Msg_N ("type of object cannot be abstract",
4619 Object_Definition (Parent (E)));
4621 if Is_CPP_Class (Etype (E)) then
4622 Error_Msg_NE
4623 ("\} may need a cpp_constructor",
4624 Object_Definition (Parent (E)), Etype (E));
4626 elsif Present (Expression (Parent (E))) then
4627 Error_Msg_N -- CODEFIX
4628 ("\maybe a class-wide type was meant",
4629 Object_Definition (Parent (E)));
4630 end if;
4631 end if;
4633 -- For object created by object declaration, perform required
4634 -- categorization (preelaborate and pure) checks. Defer these
4635 -- checks to freeze time since pragma Import inhibits default
4636 -- initialization and thus pragma Import affects these checks.
4638 Validate_Object_Declaration (Declaration_Node (E));
4640 -- If there is an address clause, check that it is valid
4642 Check_Address_Clause (E);
4644 -- Reset Is_True_Constant for non-constant aliased object. We
4645 -- consider that the fact that a non-constant object is aliased
4646 -- may indicate that some funny business is going on, e.g. an
4647 -- aliased object is passed by reference to a procedure which
4648 -- captures the address of the object, which is later used to
4649 -- assign a new value, even though the compiler thinks that
4650 -- it is not modified. Such code is highly dubious, but we
4651 -- choose to make it "work" for non-constant aliased objects.
4652 -- Note that we used to do this for all aliased objects,
4653 -- whether or not constant, but this caused anomalies down
4654 -- the line because we ended up with static objects that
4655 -- were not Is_True_Constant. Not resetting Is_True_Constant
4656 -- for (aliased) constant objects ensures that this anomaly
4657 -- never occurs.
4659 -- However, we don't do that for internal entities. We figure
4660 -- that if we deliberately set Is_True_Constant for an internal
4661 -- entity, e.g. a dispatch table entry, then we mean it.
4663 if Ekind (E) /= E_Constant
4664 and then (Is_Aliased (E) or else Is_Aliased (Etype (E)))
4665 and then not Is_Internal_Name (Chars (E))
4666 then
4667 Set_Is_True_Constant (E, False);
4668 end if;
4670 -- If the object needs any kind of default initialization, an
4671 -- error must be issued if No_Default_Initialization applies.
4672 -- The check doesn't apply to imported objects, which are not
4673 -- ever default initialized, and is why the check is deferred
4674 -- until freezing, at which point we know if Import applies.
4675 -- Deferred constants are also exempted from this test because
4676 -- their completion is explicit, or through an import pragma.
4678 if Ekind (E) = E_Constant
4679 and then Present (Full_View (E))
4680 then
4681 null;
4683 elsif Comes_From_Source (E)
4684 and then not Is_Imported (E)
4685 and then not Has_Init_Expression (Declaration_Node (E))
4686 and then
4687 ((Has_Non_Null_Base_Init_Proc (Etype (E))
4688 and then not No_Initialization (Declaration_Node (E))
4689 and then not Is_Value_Type (Etype (E))
4690 and then not Initialization_Suppressed (Etype (E)))
4691 or else
4692 (Needs_Simple_Initialization (Etype (E))
4693 and then not Is_Internal (E)))
4694 then
4695 Has_Default_Initialization := True;
4696 Check_Restriction
4697 (No_Default_Initialization, Declaration_Node (E));
4698 end if;
4700 -- Check that a Thread_Local_Storage variable does not have
4701 -- default initialization, and any explicit initialization must
4702 -- either be the null constant or a static constant.
4704 if Has_Pragma_Thread_Local_Storage (E) then
4705 declare
4706 Decl : constant Node_Id := Declaration_Node (E);
4707 begin
4708 if Has_Default_Initialization
4709 or else
4710 (Has_Init_Expression (Decl)
4711 and then
4712 (No (Expression (Decl))
4713 or else not
4714 (Is_OK_Static_Expression (Expression (Decl))
4715 or else
4716 Nkind (Expression (Decl)) = N_Null)))
4717 then
4718 Error_Msg_NE
4719 ("Thread_Local_Storage variable& is "
4720 & "improperly initialized", Decl, E);
4721 Error_Msg_NE
4722 ("\only allowed initialization is explicit "
4723 & "NULL or static expression", Decl, E);
4724 end if;
4725 end;
4726 end if;
4728 -- For imported objects, set Is_Public unless there is also an
4729 -- address clause, which means that there is no external symbol
4730 -- needed for the Import (Is_Public may still be set for other
4731 -- unrelated reasons). Note that we delayed this processing
4732 -- till freeze time so that we can be sure not to set the flag
4733 -- if there is an address clause. If there is such a clause,
4734 -- then the only purpose of the Import pragma is to suppress
4735 -- implicit initialization.
4737 if Is_Imported (E) and then No (Address_Clause (E)) then
4738 Set_Is_Public (E);
4739 end if;
4741 -- For source objects that are not Imported and are library
4742 -- level, if no linker section pragma was given inherit the
4743 -- appropriate linker section from the corresponding type.
4745 if Comes_From_Source (E)
4746 and then not Is_Imported (E)
4747 and then Is_Library_Level_Entity (E)
4748 and then No (Linker_Section_Pragma (E))
4749 then
4750 Set_Linker_Section_Pragma
4751 (E, Linker_Section_Pragma (Etype (E)));
4752 end if;
4754 -- For convention C objects of an enumeration type, warn if
4755 -- the size is not integer size and no explicit size given.
4756 -- Skip warning for Boolean, and Character, assume programmer
4757 -- expects 8-bit sizes for these cases.
4759 if (Convention (E) = Convention_C
4760 or else
4761 Convention (E) = Convention_CPP)
4762 and then Is_Enumeration_Type (Etype (E))
4763 and then not Is_Character_Type (Etype (E))
4764 and then not Is_Boolean_Type (Etype (E))
4765 and then Esize (Etype (E)) < Standard_Integer_Size
4766 and then not Has_Size_Clause (E)
4767 then
4768 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
4769 Error_Msg_N
4770 ("??convention C enumeration object has size less than ^",
4772 Error_Msg_N ("\??use explicit size clause to set size", E);
4773 end if;
4774 end if;
4776 -- Check that a constant which has a pragma Volatile[_Components]
4777 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
4779 -- Note: Atomic[_Components] also sets Volatile[_Components]
4781 if Ekind (E) = E_Constant
4782 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
4783 and then not Is_Imported (E)
4784 and then not Has_Boolean_Aspect_Import (E)
4785 then
4786 -- Make sure we actually have a pragma, and have not merely
4787 -- inherited the indication from elsewhere (e.g. an address
4788 -- clause, which is not good enough in RM terms).
4790 if Has_Rep_Pragma (E, Name_Atomic)
4791 or else
4792 Has_Rep_Pragma (E, Name_Atomic_Components)
4793 then
4794 Error_Msg_N
4795 ("stand alone atomic constant must be " &
4796 "imported (RM C.6(13))", E);
4798 elsif Has_Rep_Pragma (E, Name_Volatile)
4799 or else
4800 Has_Rep_Pragma (E, Name_Volatile_Components)
4801 then
4802 Error_Msg_N
4803 ("stand alone volatile constant must be " &
4804 "imported (RM C.6(13))", E);
4805 end if;
4806 end if;
4808 -- Static objects require special handling
4810 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
4811 and then Is_Statically_Allocated (E)
4812 then
4813 Freeze_Static_Object (E);
4814 end if;
4816 -- Remaining step is to layout objects
4818 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
4819 or else Is_Formal (E)
4820 then
4821 Layout_Object (E);
4822 end if;
4824 -- For an object that does not have delayed freezing, and whose
4825 -- initialization actions have been captured in a compound
4826 -- statement, move them back now directly within the enclosing
4827 -- statement sequence.
4829 if Ekind_In (E, E_Constant, E_Variable)
4830 and then not Has_Delayed_Freeze (E)
4831 then
4832 Explode_Initialization_Compound_Statement (E);
4833 end if;
4834 end if;
4836 -- Case of a type or subtype being frozen
4838 else
4839 -- We used to check here that a full type must have preelaborable
4840 -- initialization if it completes a private type specified with
4841 -- pragma Preelaborable_Initialization, but that missed cases where
4842 -- the types occur within a generic package, since the freezing
4843 -- that occurs within a containing scope generally skips traversal
4844 -- of a generic unit's declarations (those will be frozen within
4845 -- instances). This check was moved to Analyze_Package_Specification.
4847 -- The type may be defined in a generic unit. This can occur when
4848 -- freezing a generic function that returns the type (which is
4849 -- defined in a parent unit). It is clearly meaningless to freeze
4850 -- this type. However, if it is a subtype, its size may be determi-
4851 -- nable and used in subsequent checks, so might as well try to
4852 -- compute it.
4854 -- In Ada 2012, Freeze_Entities is also used in the front end to
4855 -- trigger the analysis of aspect expressions, so in this case we
4856 -- want to continue the freezing process.
4858 if Present (Scope (E))
4859 and then Is_Generic_Unit (Scope (E))
4860 and then
4861 (not Has_Predicates (E)
4862 and then not Has_Delayed_Freeze (E))
4863 then
4864 Check_Compile_Time_Size (E);
4865 Restore_Globals;
4866 return No_List;
4867 end if;
4869 -- Check for error of Type_Invariant'Class applied to an untagged
4870 -- type (check delayed to freeze time when full type is available).
4872 declare
4873 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
4874 begin
4875 if Present (Prag)
4876 and then Class_Present (Prag)
4877 and then not Is_Tagged_Type (E)
4878 then
4879 Error_Msg_NE
4880 ("Type_Invariant''Class cannot be specified for &",
4881 Prag, E);
4882 Error_Msg_N
4883 ("\can only be specified for a tagged type", Prag);
4884 end if;
4885 end;
4887 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(8))
4889 if Is_Ghost_Entity (E)
4890 and then Is_Effectively_Volatile (E)
4891 then
4892 Error_Msg_N ("ghost type & cannot be volatile", E);
4893 end if;
4895 -- Deal with special cases of freezing for subtype
4897 if E /= Base_Type (E) then
4899 -- Before we do anything else, a specialized test for the case of
4900 -- a size given for an array where the array needs to be packed,
4901 -- but was not so the size cannot be honored. This is the case
4902 -- where implicit packing may apply. The reason we do this so
4903 -- early is that if we have implicit packing, the layout of the
4904 -- base type is affected, so we must do this before we freeze
4905 -- the base type.
4907 -- We could do this processing only if implicit packing is enabled
4908 -- since in all other cases, the error would be caught by the back
4909 -- end. However, we choose to do the check even if we do not have
4910 -- implicit packing enabled, since this allows us to give a more
4911 -- useful error message (advising use of pragmas Implicit_Packing
4912 -- or Pack).
4914 if Is_Array_Type (E) then
4915 declare
4916 Ctyp : constant Entity_Id := Component_Type (E);
4917 Rsiz : constant Uint := RM_Size (Ctyp);
4918 SZ : constant Node_Id := Size_Clause (E);
4919 Btyp : constant Entity_Id := Base_Type (E);
4921 Lo : Node_Id;
4922 Hi : Node_Id;
4923 Indx : Node_Id;
4925 Num_Elmts : Uint;
4926 -- Number of elements in array
4928 begin
4929 -- Check enabling conditions. These are straightforward
4930 -- except for the test for a limited composite type. This
4931 -- eliminates the rare case of a array of limited components
4932 -- where there are issues of whether or not we can go ahead
4933 -- and pack the array (since we can't freely pack and unpack
4934 -- arrays if they are limited).
4936 -- Note that we check the root type explicitly because the
4937 -- whole point is we are doing this test before we have had
4938 -- a chance to freeze the base type (and it is that freeze
4939 -- action that causes stuff to be inherited).
4941 if Has_Size_Clause (E)
4942 and then Known_Static_RM_Size (E)
4943 and then not Is_Packed (E)
4944 and then not Has_Pragma_Pack (E)
4945 and then not Has_Component_Size_Clause (E)
4946 and then Known_Static_RM_Size (Ctyp)
4947 and then RM_Size (Ctyp) < 64
4948 and then not Is_Limited_Composite (E)
4949 and then not Is_Packed (Root_Type (E))
4950 and then not Has_Component_Size_Clause (Root_Type (E))
4951 and then not (CodePeer_Mode or GNATprove_Mode)
4952 then
4953 -- Compute number of elements in array
4955 Num_Elmts := Uint_1;
4956 Indx := First_Index (E);
4957 while Present (Indx) loop
4958 Get_Index_Bounds (Indx, Lo, Hi);
4960 if not (Compile_Time_Known_Value (Lo)
4961 and then
4962 Compile_Time_Known_Value (Hi))
4963 then
4964 goto No_Implicit_Packing;
4965 end if;
4967 Num_Elmts :=
4968 Num_Elmts *
4969 UI_Max (Uint_0,
4970 Expr_Value (Hi) - Expr_Value (Lo) + 1);
4971 Next_Index (Indx);
4972 end loop;
4974 -- What we are looking for here is the situation where
4975 -- the RM_Size given would be exactly right if there was
4976 -- a pragma Pack (resulting in the component size being
4977 -- the same as the RM_Size). Furthermore, the component
4978 -- type size must be an odd size (not a multiple of
4979 -- storage unit). If the component RM size is an exact
4980 -- number of storage units that is a power of two, the
4981 -- array is not packed and has a standard representation.
4983 if RM_Size (E) = Num_Elmts * Rsiz
4984 and then Rsiz mod System_Storage_Unit /= 0
4985 then
4986 -- For implicit packing mode, just set the component
4987 -- size silently.
4989 if Implicit_Packing then
4990 Set_Component_Size (Btyp, Rsiz);
4991 Set_Is_Bit_Packed_Array (Btyp);
4992 Set_Is_Packed (Btyp);
4993 Set_Has_Non_Standard_Rep (Btyp);
4995 -- Otherwise give an error message
4997 else
4998 Error_Msg_NE
4999 ("size given for& too small", SZ, E);
5000 Error_Msg_N -- CODEFIX
5001 ("\use explicit pragma Pack "
5002 & "or use pragma Implicit_Packing", SZ);
5003 end if;
5005 elsif RM_Size (E) = Num_Elmts * Rsiz
5006 and then Implicit_Packing
5007 and then
5008 (Rsiz / System_Storage_Unit = 1
5009 or else
5010 Rsiz / System_Storage_Unit = 2
5011 or else
5012 Rsiz / System_Storage_Unit = 4)
5013 then
5014 -- Not a packed array, but indicate the desired
5015 -- component size, for the back-end.
5017 Set_Component_Size (Btyp, Rsiz);
5018 end if;
5019 end if;
5020 end;
5021 end if;
5023 <<No_Implicit_Packing>>
5025 -- If ancestor subtype present, freeze that first. Note that this
5026 -- will also get the base type frozen. Need RM reference ???
5028 Atype := Ancestor_Subtype (E);
5030 if Present (Atype) then
5031 Freeze_And_Append (Atype, N, Result);
5033 -- No ancestor subtype present
5035 else
5036 -- See if we have a nearest ancestor that has a predicate.
5037 -- That catches the case of derived type with a predicate.
5038 -- Need RM reference here ???
5040 Atype := Nearest_Ancestor (E);
5042 if Present (Atype) and then Has_Predicates (Atype) then
5043 Freeze_And_Append (Atype, N, Result);
5044 end if;
5046 -- Freeze base type before freezing the entity (RM 13.14(15))
5048 if E /= Base_Type (E) then
5049 Freeze_And_Append (Base_Type (E), N, Result);
5050 end if;
5051 end if;
5053 -- A subtype inherits all the type-related representation aspects
5054 -- from its parents (RM 13.1(8)).
5056 Inherit_Aspects_At_Freeze_Point (E);
5058 -- For a derived type, freeze its parent type first (RM 13.14(15))
5060 elsif Is_Derived_Type (E) then
5061 Freeze_And_Append (Etype (E), N, Result);
5062 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
5064 -- A derived type inherits each type-related representation aspect
5065 -- of its parent type that was directly specified before the
5066 -- declaration of the derived type (RM 13.1(15)).
5068 Inherit_Aspects_At_Freeze_Point (E);
5069 end if;
5071 -- Check for incompatible size and alignment for record type
5073 if Warn_On_Size_Alignment
5074 and then Is_Record_Type (E)
5075 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
5077 -- If explicit Object_Size clause given assume that the programmer
5078 -- knows what he is doing, and expects the compiler behavior.
5080 and then not Has_Object_Size_Clause (E)
5082 -- Check for size not a multiple of alignment
5084 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5085 then
5086 declare
5087 SC : constant Node_Id := Size_Clause (E);
5088 AC : constant Node_Id := Alignment_Clause (E);
5089 Loc : Node_Id;
5090 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5092 begin
5093 if Present (SC) and then Present (AC) then
5095 -- Give a warning
5097 if Sloc (SC) > Sloc (AC) then
5098 Loc := SC;
5099 Error_Msg_NE
5100 ("??size is not a multiple of alignment for &", Loc, E);
5101 Error_Msg_Sloc := Sloc (AC);
5102 Error_Msg_Uint_1 := Alignment (E);
5103 Error_Msg_N ("\??alignment of ^ specified #", Loc);
5105 else
5106 Loc := AC;
5107 Error_Msg_NE
5108 ("??size is not a multiple of alignment for &", Loc, E);
5109 Error_Msg_Sloc := Sloc (SC);
5110 Error_Msg_Uint_1 := RM_Size (E);
5111 Error_Msg_N ("\??size of ^ specified #", Loc);
5112 end if;
5114 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
5115 Error_Msg_N ("\??Object_Size will be increased to ^", Loc);
5116 end if;
5117 end;
5118 end if;
5120 -- Array type
5122 if Is_Array_Type (E) then
5123 Freeze_Array_Type (E);
5125 -- For a class-wide type, the corresponding specific type is
5126 -- frozen as well (RM 13.14(15))
5128 elsif Is_Class_Wide_Type (E) then
5129 Freeze_And_Append (Root_Type (E), N, Result);
5131 -- If the base type of the class-wide type is still incomplete,
5132 -- the class-wide remains unfrozen as well. This is legal when
5133 -- E is the formal of a primitive operation of some other type
5134 -- which is being frozen.
5136 if not Is_Frozen (Root_Type (E)) then
5137 Set_Is_Frozen (E, False);
5138 Restore_Globals;
5139 return Result;
5140 end if;
5142 -- The equivalent type associated with a class-wide subtype needs
5143 -- to be frozen to ensure that its layout is done.
5145 if Ekind (E) = E_Class_Wide_Subtype
5146 and then Present (Equivalent_Type (E))
5147 then
5148 Freeze_And_Append (Equivalent_Type (E), N, Result);
5149 end if;
5151 -- Generate an itype reference for a library-level class-wide type
5152 -- at the freeze point. Otherwise the first explicit reference to
5153 -- the type may appear in an inner scope which will be rejected by
5154 -- the back-end.
5156 if Is_Itype (E)
5157 and then Is_Compilation_Unit (Scope (E))
5158 then
5159 declare
5160 Ref : constant Node_Id := Make_Itype_Reference (Loc);
5162 begin
5163 Set_Itype (Ref, E);
5165 -- From a gigi point of view, a class-wide subtype derives
5166 -- from its record equivalent type. As a result, the itype
5167 -- reference must appear after the freeze node of the
5168 -- equivalent type or gigi will reject the reference.
5170 if Ekind (E) = E_Class_Wide_Subtype
5171 and then Present (Equivalent_Type (E))
5172 then
5173 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
5174 else
5175 Add_To_Result (Ref);
5176 end if;
5177 end;
5178 end if;
5180 -- For a record type or record subtype, freeze all component types
5181 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5182 -- using Is_Record_Type, because we don't want to attempt the freeze
5183 -- for the case of a private type with record extension (we will do
5184 -- that later when the full type is frozen).
5186 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
5187 and then not (Present (Scope (E))
5188 and then Is_Generic_Unit (Scope (E)))
5189 then
5190 Freeze_Record_Type (E);
5192 -- For a concurrent type, freeze corresponding record type. This does
5193 -- not correspond to any specific rule in the RM, but the record type
5194 -- is essentially part of the concurrent type. Also freeze all local
5195 -- entities. This includes record types created for entry parameter
5196 -- blocks and whatever local entities may appear in the private part.
5198 elsif Is_Concurrent_Type (E) then
5199 if Present (Corresponding_Record_Type (E)) then
5200 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
5201 end if;
5203 Comp := First_Entity (E);
5204 while Present (Comp) loop
5205 if Is_Type (Comp) then
5206 Freeze_And_Append (Comp, N, Result);
5208 elsif (Ekind (Comp)) /= E_Function then
5210 -- The guard on the presence of the Etype seems to be needed
5211 -- for some CodePeer (-gnatcC) cases, but not clear why???
5213 if Present (Etype (Comp)) then
5214 if Is_Itype (Etype (Comp))
5215 and then Underlying_Type (Scope (Etype (Comp))) = E
5216 then
5217 Undelay_Type (Etype (Comp));
5218 end if;
5220 Freeze_And_Append (Etype (Comp), N, Result);
5221 end if;
5222 end if;
5224 Next_Entity (Comp);
5225 end loop;
5227 -- Private types are required to point to the same freeze node as
5228 -- their corresponding full views. The freeze node itself has to
5229 -- point to the partial view of the entity (because from the partial
5230 -- view, we can retrieve the full view, but not the reverse).
5231 -- However, in order to freeze correctly, we need to freeze the full
5232 -- view. If we are freezing at the end of a scope (or within the
5233 -- scope) of the private type, the partial and full views will have
5234 -- been swapped, the full view appears first in the entity chain and
5235 -- the swapping mechanism ensures that the pointers are properly set
5236 -- (on scope exit).
5238 -- If we encounter the partial view before the full view (e.g. when
5239 -- freezing from another scope), we freeze the full view, and then
5240 -- set the pointers appropriately since we cannot rely on swapping to
5241 -- fix things up (subtypes in an outer scope might not get swapped).
5243 -- If the full view is itself private, the above requirements apply
5244 -- to the underlying full view instead of the full view. But there is
5245 -- no swapping mechanism for the underlying full view so we need to
5246 -- set the pointers appropriately in both cases.
5248 elsif Is_Incomplete_Or_Private_Type (E)
5249 and then not Is_Generic_Type (E)
5250 then
5251 -- The construction of the dispatch table associated with library
5252 -- level tagged types forces freezing of all the primitives of the
5253 -- type, which may cause premature freezing of the partial view.
5254 -- For example:
5256 -- package Pkg is
5257 -- type T is tagged private;
5258 -- type DT is new T with private;
5259 -- procedure Prim (X : in out T; Y : in out DT'Class);
5260 -- private
5261 -- type T is tagged null record;
5262 -- Obj : T;
5263 -- type DT is new T with null record;
5264 -- end;
5266 -- In this case the type will be frozen later by the usual
5267 -- mechanism: an object declaration, an instantiation, or the
5268 -- end of a declarative part.
5270 if Is_Library_Level_Tagged_Type (E)
5271 and then not Present (Full_View (E))
5272 then
5273 Set_Is_Frozen (E, False);
5274 Restore_Globals;
5275 return Result;
5277 -- Case of full view present
5279 elsif Present (Full_View (E)) then
5281 -- If full view has already been frozen, then no further
5282 -- processing is required
5284 if Is_Frozen (Full_View (E)) then
5285 Set_Has_Delayed_Freeze (E, False);
5286 Set_Freeze_Node (E, Empty);
5288 -- Otherwise freeze full view and patch the pointers so that
5289 -- the freeze node will elaborate both views in the back end.
5290 -- However, if full view is itself private, freeze underlying
5291 -- full view instead and patch the pointers so that the freeze
5292 -- node will elaborate the three views in the back end.
5294 else
5295 declare
5296 Full : Entity_Id := Full_View (E);
5298 begin
5299 if Is_Private_Type (Full)
5300 and then Present (Underlying_Full_View (Full))
5301 then
5302 Full := Underlying_Full_View (Full);
5303 end if;
5305 Freeze_And_Append (Full, N, Result);
5307 if Full /= Full_View (E)
5308 and then Has_Delayed_Freeze (Full_View (E))
5309 then
5310 F_Node := Freeze_Node (Full);
5312 if Present (F_Node) then
5313 Set_Freeze_Node (Full_View (E), F_Node);
5314 Set_Entity (F_Node, Full_View (E));
5316 else
5317 Set_Has_Delayed_Freeze (Full_View (E), False);
5318 Set_Freeze_Node (Full_View (E), Empty);
5319 end if;
5320 end if;
5322 if Has_Delayed_Freeze (E) then
5323 F_Node := Freeze_Node (Full_View (E));
5325 if Present (F_Node) then
5326 Set_Freeze_Node (E, F_Node);
5327 Set_Entity (F_Node, E);
5329 else
5330 -- {Incomplete,Private}_Subtypes with Full_Views
5331 -- constrained by discriminants.
5333 Set_Has_Delayed_Freeze (E, False);
5334 Set_Freeze_Node (E, Empty);
5335 end if;
5336 end if;
5337 end;
5338 end if;
5340 Check_Debug_Info_Needed (E);
5342 -- AI-117 requires that the convention of a partial view be the
5343 -- same as the convention of the full view. Note that this is a
5344 -- recognized breach of privacy, but it's essential for logical
5345 -- consistency of representation, and the lack of a rule in
5346 -- RM95 was an oversight.
5348 Set_Convention (E, Convention (Full_View (E)));
5350 Set_Size_Known_At_Compile_Time (E,
5351 Size_Known_At_Compile_Time (Full_View (E)));
5353 -- Size information is copied from the full view to the
5354 -- incomplete or private view for consistency.
5356 -- We skip this is the full view is not a type. This is very
5357 -- strange of course, and can only happen as a result of
5358 -- certain illegalities, such as a premature attempt to derive
5359 -- from an incomplete type.
5361 if Is_Type (Full_View (E)) then
5362 Set_Size_Info (E, Full_View (E));
5363 Set_RM_Size (E, RM_Size (Full_View (E)));
5364 end if;
5366 Restore_Globals;
5367 return Result;
5369 -- Case of underlying full view present
5371 elsif Is_Private_Type (E)
5372 and then Present (Underlying_Full_View (E))
5373 then
5374 if not Is_Frozen (Underlying_Full_View (E)) then
5375 Freeze_And_Append (Underlying_Full_View (E), N, Result);
5376 end if;
5378 -- Patch the pointers so that the freeze node will elaborate
5379 -- both views in the back end.
5381 if Has_Delayed_Freeze (E) then
5382 F_Node := Freeze_Node (Underlying_Full_View (E));
5384 if Present (F_Node) then
5385 Set_Freeze_Node (E, F_Node);
5386 Set_Entity (F_Node, E);
5388 else
5389 Set_Has_Delayed_Freeze (E, False);
5390 Set_Freeze_Node (E, Empty);
5391 end if;
5392 end if;
5394 Check_Debug_Info_Needed (E);
5396 Restore_Globals;
5397 return Result;
5399 -- Case of no full view present. If entity is derived or subtype,
5400 -- it is safe to freeze, correctness depends on the frozen status
5401 -- of parent. Otherwise it is either premature usage, or a Taft
5402 -- amendment type, so diagnosis is at the point of use and the
5403 -- type might be frozen later.
5405 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
5406 null;
5408 else
5409 Set_Is_Frozen (E, False);
5410 Restore_Globals;
5411 return No_List;
5412 end if;
5414 -- For access subprogram, freeze types of all formals, the return
5415 -- type was already frozen, since it is the Etype of the function.
5416 -- Formal types can be tagged Taft amendment types, but otherwise
5417 -- they cannot be incomplete.
5419 elsif Ekind (E) = E_Subprogram_Type then
5420 Formal := First_Formal (E);
5421 while Present (Formal) loop
5422 if Ekind (Etype (Formal)) = E_Incomplete_Type
5423 and then No (Full_View (Etype (Formal)))
5424 and then not Is_Value_Type (Etype (Formal))
5425 then
5426 if Is_Tagged_Type (Etype (Formal)) then
5427 null;
5429 -- AI05-151: Incomplete types are allowed in access to
5430 -- subprogram specifications.
5432 elsif Ada_Version < Ada_2012 then
5433 Error_Msg_NE
5434 ("invalid use of incomplete type&", E, Etype (Formal));
5435 end if;
5436 end if;
5438 Freeze_And_Append (Etype (Formal), N, Result);
5439 Next_Formal (Formal);
5440 end loop;
5442 Freeze_Subprogram (E);
5444 -- For access to a protected subprogram, freeze the equivalent type
5445 -- (however this is not set if we are not generating code or if this
5446 -- is an anonymous type used just for resolution).
5448 elsif Is_Access_Protected_Subprogram_Type (E) then
5449 if Present (Equivalent_Type (E)) then
5450 Freeze_And_Append (Equivalent_Type (E), N, Result);
5451 end if;
5452 end if;
5454 -- Generic types are never seen by the back-end, and are also not
5455 -- processed by the expander (since the expander is turned off for
5456 -- generic processing), so we never need freeze nodes for them.
5458 if Is_Generic_Type (E) then
5459 Restore_Globals;
5460 return Result;
5461 end if;
5463 -- Some special processing for non-generic types to complete
5464 -- representation details not known till the freeze point.
5466 if Is_Fixed_Point_Type (E) then
5467 Freeze_Fixed_Point_Type (E);
5469 -- Some error checks required for ordinary fixed-point type. Defer
5470 -- these till the freeze-point since we need the small and range
5471 -- values. We only do these checks for base types
5473 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
5474 if Small_Value (E) < Ureal_2_M_80 then
5475 Error_Msg_Name_1 := Name_Small;
5476 Error_Msg_N
5477 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
5479 elsif Small_Value (E) > Ureal_2_80 then
5480 Error_Msg_Name_1 := Name_Small;
5481 Error_Msg_N
5482 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
5483 end if;
5485 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
5486 Error_Msg_Name_1 := Name_First;
5487 Error_Msg_N
5488 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
5489 end if;
5491 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
5492 Error_Msg_Name_1 := Name_Last;
5493 Error_Msg_N
5494 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
5495 end if;
5496 end if;
5498 elsif Is_Enumeration_Type (E) then
5499 Freeze_Enumeration_Type (E);
5501 elsif Is_Integer_Type (E) then
5502 Adjust_Esize_For_Alignment (E);
5504 if Is_Modular_Integer_Type (E)
5505 and then Warn_On_Suspicious_Modulus_Value
5506 then
5507 Check_Suspicious_Modulus (E);
5508 end if;
5510 -- The pool applies to named and anonymous access types, but not
5511 -- to subprogram and to internal types generated for 'Access
5512 -- references.
5514 elsif Is_Access_Type (E)
5515 and then not Is_Access_Subprogram_Type (E)
5516 and then Ekind (E) /= E_Access_Attribute_Type
5517 then
5518 -- If a pragma Default_Storage_Pool applies, and this type has no
5519 -- Storage_Pool or Storage_Size clause (which must have occurred
5520 -- before the freezing point), then use the default. This applies
5521 -- only to base types.
5523 -- None of this applies to access to subprograms, for which there
5524 -- are clearly no pools.
5526 if Present (Default_Pool)
5527 and then Is_Base_Type (E)
5528 and then not Has_Storage_Size_Clause (E)
5529 and then No (Associated_Storage_Pool (E))
5530 then
5531 -- Case of pragma Default_Storage_Pool (null)
5533 if Nkind (Default_Pool) = N_Null then
5534 Set_No_Pool_Assigned (E);
5536 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
5538 else
5539 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
5540 end if;
5541 end if;
5543 -- Check restriction for standard storage pool
5545 if No (Associated_Storage_Pool (E)) then
5546 Check_Restriction (No_Standard_Storage_Pools, E);
5547 end if;
5549 -- Deal with error message for pure access type. This is not an
5550 -- error in Ada 2005 if there is no pool (see AI-366).
5552 if Is_Pure_Unit_Access_Type (E)
5553 and then (Ada_Version < Ada_2005
5554 or else not No_Pool_Assigned (E))
5555 and then not Is_Generic_Unit (Scope (E))
5556 then
5557 Error_Msg_N ("named access type not allowed in pure unit", E);
5559 if Ada_Version >= Ada_2005 then
5560 Error_Msg_N
5561 ("\would be legal if Storage_Size of 0 given??", E);
5563 elsif No_Pool_Assigned (E) then
5564 Error_Msg_N
5565 ("\would be legal in Ada 2005??", E);
5567 else
5568 Error_Msg_N
5569 ("\would be legal in Ada 2005 if "
5570 & "Storage_Size of 0 given??", E);
5571 end if;
5572 end if;
5573 end if;
5575 -- Case of composite types
5577 if Is_Composite_Type (E) then
5579 -- AI-117 requires that all new primitives of a tagged type must
5580 -- inherit the convention of the full view of the type. Inherited
5581 -- and overriding operations are defined to inherit the convention
5582 -- of their parent or overridden subprogram (also specified in
5583 -- AI-117), which will have occurred earlier (in Derive_Subprogram
5584 -- and New_Overloaded_Entity). Here we set the convention of
5585 -- primitives that are still convention Ada, which will ensure
5586 -- that any new primitives inherit the type's convention. Class-
5587 -- wide types can have a foreign convention inherited from their
5588 -- specific type, but are excluded from this since they don't have
5589 -- any associated primitives.
5591 if Is_Tagged_Type (E)
5592 and then not Is_Class_Wide_Type (E)
5593 and then Convention (E) /= Convention_Ada
5594 then
5595 declare
5596 Prim_List : constant Elist_Id := Primitive_Operations (E);
5597 Prim : Elmt_Id;
5599 begin
5600 Prim := First_Elmt (Prim_List);
5601 while Present (Prim) loop
5602 if Convention (Node (Prim)) = Convention_Ada then
5603 Set_Convention (Node (Prim), Convention (E));
5604 end if;
5606 Next_Elmt (Prim);
5607 end loop;
5608 end;
5609 end if;
5611 -- If the type is a simple storage pool type, then this is where
5612 -- we attempt to locate and validate its Allocate, Deallocate, and
5613 -- Storage_Size operations (the first is required, and the latter
5614 -- two are optional). We also verify that the full type for a
5615 -- private type is allowed to be a simple storage pool type.
5617 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
5618 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
5619 then
5620 -- If the type is marked Has_Private_Declaration, then this is
5621 -- a full type for a private type that was specified with the
5622 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
5623 -- pragma is allowed for the full type (for example, it can't
5624 -- be an array type, or a nonlimited record type).
5626 if Has_Private_Declaration (E) then
5627 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
5628 and then not Is_Private_Type (E)
5629 then
5630 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
5631 Error_Msg_N
5632 ("pragma% can only apply to full type that is an " &
5633 "explicitly limited type", E);
5634 end if;
5635 end if;
5637 Validate_Simple_Pool_Ops : declare
5638 Pool_Type : Entity_Id renames E;
5639 Address_Type : constant Entity_Id := RTE (RE_Address);
5640 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
5642 procedure Validate_Simple_Pool_Op_Formal
5643 (Pool_Op : Entity_Id;
5644 Pool_Op_Formal : in out Entity_Id;
5645 Expected_Mode : Formal_Kind;
5646 Expected_Type : Entity_Id;
5647 Formal_Name : String;
5648 OK_Formal : in out Boolean);
5649 -- Validate one formal Pool_Op_Formal of the candidate pool
5650 -- operation Pool_Op. The formal must be of Expected_Type
5651 -- and have mode Expected_Mode. OK_Formal will be set to
5652 -- False if the formal doesn't match. If OK_Formal is False
5653 -- on entry, then the formal will effectively be ignored
5654 -- (because validation of the pool op has already failed).
5655 -- Upon return, Pool_Op_Formal will be updated to the next
5656 -- formal, if any.
5658 procedure Validate_Simple_Pool_Operation
5659 (Op_Name : Name_Id);
5660 -- Search for and validate a simple pool operation with the
5661 -- name Op_Name. If the name is Allocate, then there must be
5662 -- exactly one such primitive operation for the simple pool
5663 -- type. If the name is Deallocate or Storage_Size, then
5664 -- there can be at most one such primitive operation. The
5665 -- profile of the located primitive must conform to what
5666 -- is expected for each operation.
5668 ------------------------------------
5669 -- Validate_Simple_Pool_Op_Formal --
5670 ------------------------------------
5672 procedure Validate_Simple_Pool_Op_Formal
5673 (Pool_Op : Entity_Id;
5674 Pool_Op_Formal : in out Entity_Id;
5675 Expected_Mode : Formal_Kind;
5676 Expected_Type : Entity_Id;
5677 Formal_Name : String;
5678 OK_Formal : in out Boolean)
5680 begin
5681 -- If OK_Formal is False on entry, then simply ignore
5682 -- the formal, because an earlier formal has already
5683 -- been flagged.
5685 if not OK_Formal then
5686 return;
5688 -- If no formal is passed in, then issue an error for a
5689 -- missing formal.
5691 elsif not Present (Pool_Op_Formal) then
5692 Error_Msg_NE
5693 ("simple storage pool op missing formal " &
5694 Formal_Name & " of type&", Pool_Op, Expected_Type);
5695 OK_Formal := False;
5697 return;
5698 end if;
5700 if Etype (Pool_Op_Formal) /= Expected_Type then
5702 -- If the pool type was expected for this formal, then
5703 -- this will not be considered a candidate operation
5704 -- for the simple pool, so we unset OK_Formal so that
5705 -- the op and any later formals will be ignored.
5707 if Expected_Type = Pool_Type then
5708 OK_Formal := False;
5710 return;
5712 else
5713 Error_Msg_NE
5714 ("wrong type for formal " & Formal_Name &
5715 " of simple storage pool op; expected type&",
5716 Pool_Op_Formal, Expected_Type);
5717 end if;
5718 end if;
5720 -- Issue error if formal's mode is not the expected one
5722 if Ekind (Pool_Op_Formal) /= Expected_Mode then
5723 Error_Msg_N
5724 ("wrong mode for formal of simple storage pool op",
5725 Pool_Op_Formal);
5726 end if;
5728 -- Advance to the next formal
5730 Next_Formal (Pool_Op_Formal);
5731 end Validate_Simple_Pool_Op_Formal;
5733 ------------------------------------
5734 -- Validate_Simple_Pool_Operation --
5735 ------------------------------------
5737 procedure Validate_Simple_Pool_Operation
5738 (Op_Name : Name_Id)
5740 Op : Entity_Id;
5741 Found_Op : Entity_Id := Empty;
5742 Formal : Entity_Id;
5743 Is_OK : Boolean;
5745 begin
5746 pragma Assert
5747 (Nam_In (Op_Name, Name_Allocate,
5748 Name_Deallocate,
5749 Name_Storage_Size));
5751 Error_Msg_Name_1 := Op_Name;
5753 -- For each homonym declared immediately in the scope
5754 -- of the simple storage pool type, determine whether
5755 -- the homonym is an operation of the pool type, and,
5756 -- if so, check that its profile is as expected for
5757 -- a simple pool operation of that name.
5759 Op := Get_Name_Entity_Id (Op_Name);
5760 while Present (Op) loop
5761 if Ekind_In (Op, E_Function, E_Procedure)
5762 and then Scope (Op) = Current_Scope
5763 then
5764 Formal := First_Entity (Op);
5766 Is_OK := True;
5768 -- The first parameter must be of the pool type
5769 -- in order for the operation to qualify.
5771 if Op_Name = Name_Storage_Size then
5772 Validate_Simple_Pool_Op_Formal
5773 (Op, Formal, E_In_Parameter, Pool_Type,
5774 "Pool", Is_OK);
5775 else
5776 Validate_Simple_Pool_Op_Formal
5777 (Op, Formal, E_In_Out_Parameter, Pool_Type,
5778 "Pool", Is_OK);
5779 end if;
5781 -- If another operation with this name has already
5782 -- been located for the type, then flag an error,
5783 -- since we only allow the type to have a single
5784 -- such primitive.
5786 if Present (Found_Op) and then Is_OK then
5787 Error_Msg_NE
5788 ("only one % operation allowed for " &
5789 "simple storage pool type&", Op, Pool_Type);
5790 end if;
5792 -- In the case of Allocate and Deallocate, a formal
5793 -- of type System.Address is required.
5795 if Op_Name = Name_Allocate then
5796 Validate_Simple_Pool_Op_Formal
5797 (Op, Formal, E_Out_Parameter,
5798 Address_Type, "Storage_Address", Is_OK);
5800 elsif Op_Name = Name_Deallocate then
5801 Validate_Simple_Pool_Op_Formal
5802 (Op, Formal, E_In_Parameter,
5803 Address_Type, "Storage_Address", Is_OK);
5804 end if;
5806 -- In the case of Allocate and Deallocate, formals
5807 -- of type Storage_Count are required as the third
5808 -- and fourth parameters.
5810 if Op_Name /= Name_Storage_Size then
5811 Validate_Simple_Pool_Op_Formal
5812 (Op, Formal, E_In_Parameter,
5813 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
5814 Validate_Simple_Pool_Op_Formal
5815 (Op, Formal, E_In_Parameter,
5816 Stg_Cnt_Type, "Alignment", Is_OK);
5817 end if;
5819 -- If no mismatched formals have been found (Is_OK)
5820 -- and no excess formals are present, then this
5821 -- operation has been validated, so record it.
5823 if not Present (Formal) and then Is_OK then
5824 Found_Op := Op;
5825 end if;
5826 end if;
5828 Op := Homonym (Op);
5829 end loop;
5831 -- There must be a valid Allocate operation for the type,
5832 -- so issue an error if none was found.
5834 if Op_Name = Name_Allocate
5835 and then not Present (Found_Op)
5836 then
5837 Error_Msg_N ("missing % operation for simple " &
5838 "storage pool type", Pool_Type);
5840 elsif Present (Found_Op) then
5842 -- Simple pool operations can't be abstract
5844 if Is_Abstract_Subprogram (Found_Op) then
5845 Error_Msg_N
5846 ("simple storage pool operation must not be " &
5847 "abstract", Found_Op);
5848 end if;
5850 -- The Storage_Size operation must be a function with
5851 -- Storage_Count as its result type.
5853 if Op_Name = Name_Storage_Size then
5854 if Ekind (Found_Op) = E_Procedure then
5855 Error_Msg_N
5856 ("% operation must be a function", Found_Op);
5858 elsif Etype (Found_Op) /= Stg_Cnt_Type then
5859 Error_Msg_NE
5860 ("wrong result type for%, expected type&",
5861 Found_Op, Stg_Cnt_Type);
5862 end if;
5864 -- Allocate and Deallocate must be procedures
5866 elsif Ekind (Found_Op) = E_Function then
5867 Error_Msg_N
5868 ("% operation must be a procedure", Found_Op);
5869 end if;
5870 end if;
5871 end Validate_Simple_Pool_Operation;
5873 -- Start of processing for Validate_Simple_Pool_Ops
5875 begin
5876 Validate_Simple_Pool_Operation (Name_Allocate);
5877 Validate_Simple_Pool_Operation (Name_Deallocate);
5878 Validate_Simple_Pool_Operation (Name_Storage_Size);
5879 end Validate_Simple_Pool_Ops;
5880 end if;
5881 end if;
5883 -- Now that all types from which E may depend are frozen, see if the
5884 -- size is known at compile time, if it must be unsigned, or if
5885 -- strict alignment is required
5887 Check_Compile_Time_Size (E);
5888 Check_Unsigned_Type (E);
5890 if Base_Type (E) = E then
5891 Check_Strict_Alignment (E);
5892 end if;
5894 -- Do not allow a size clause for a type which does not have a size
5895 -- that is known at compile time
5897 if Has_Size_Clause (E)
5898 and then not Size_Known_At_Compile_Time (E)
5899 then
5900 -- Suppress this message if errors posted on E, even if we are
5901 -- in all errors mode, since this is often a junk message
5903 if not Error_Posted (E) then
5904 Error_Msg_N
5905 ("size clause not allowed for variable length type",
5906 Size_Clause (E));
5907 end if;
5908 end if;
5910 -- Now we set/verify the representation information, in particular
5911 -- the size and alignment values. This processing is not required for
5912 -- generic types, since generic types do not play any part in code
5913 -- generation, and so the size and alignment values for such types
5914 -- are irrelevant. Ditto for types declared within a generic unit,
5915 -- which may have components that depend on generic parameters, and
5916 -- that will be recreated in an instance.
5918 if Inside_A_Generic then
5919 null;
5921 -- Otherwise we call the layout procedure
5923 else
5924 Layout_Type (E);
5925 end if;
5927 -- If this is an access to subprogram whose designated type is itself
5928 -- a subprogram type, the return type of this anonymous subprogram
5929 -- type must be decorated as well.
5931 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
5932 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
5933 then
5934 Layout_Type (Etype (Designated_Type (E)));
5935 end if;
5937 -- If the type has a Defaut_Value/Default_Component_Value aspect,
5938 -- this is where we analye the expression (after the type is frozen,
5939 -- since in the case of Default_Value, we are analyzing with the
5940 -- type itself, and we treat Default_Component_Value similarly for
5941 -- the sake of uniformity).
5943 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
5944 declare
5945 Nam : Name_Id;
5946 Exp : Node_Id;
5947 Typ : Entity_Id;
5949 begin
5950 if Is_Scalar_Type (E) then
5951 Nam := Name_Default_Value;
5952 Typ := E;
5953 Exp := Default_Aspect_Value (Typ);
5954 else
5955 Nam := Name_Default_Component_Value;
5956 Typ := Component_Type (E);
5957 Exp := Default_Aspect_Component_Value (E);
5958 end if;
5960 Analyze_And_Resolve (Exp, Typ);
5962 if Etype (Exp) /= Any_Type then
5963 if not Is_OK_Static_Expression (Exp) then
5964 Error_Msg_Name_1 := Nam;
5965 Flag_Non_Static_Expr
5966 ("aspect% requires static expression", Exp);
5967 end if;
5968 end if;
5969 end;
5970 end if;
5972 -- End of freeze processing for type entities
5973 end if;
5975 -- Here is where we logically freeze the current entity. If it has a
5976 -- freeze node, then this is the point at which the freeze node is
5977 -- linked into the result list.
5979 if Has_Delayed_Freeze (E) then
5981 -- If a freeze node is already allocated, use it, otherwise allocate
5982 -- a new one. The preallocation happens in the case of anonymous base
5983 -- types, where we preallocate so that we can set First_Subtype_Link.
5984 -- Note that we reset the Sloc to the current freeze location.
5986 if Present (Freeze_Node (E)) then
5987 F_Node := Freeze_Node (E);
5988 Set_Sloc (F_Node, Loc);
5990 else
5991 F_Node := New_Node (N_Freeze_Entity, Loc);
5992 Set_Freeze_Node (E, F_Node);
5993 Set_Access_Types_To_Process (F_Node, No_Elist);
5994 Set_TSS_Elist (F_Node, No_Elist);
5995 Set_Actions (F_Node, No_List);
5996 end if;
5998 Set_Entity (F_Node, E);
5999 Add_To_Result (F_Node);
6001 -- A final pass over record types with discriminants. If the type
6002 -- has an incomplete declaration, there may be constrained access
6003 -- subtypes declared elsewhere, which do not depend on the discrimi-
6004 -- nants of the type, and which are used as component types (i.e.
6005 -- the full view is a recursive type). The designated types of these
6006 -- subtypes can only be elaborated after the type itself, and they
6007 -- need an itype reference.
6009 if Ekind (E) = E_Record_Type
6010 and then Has_Discriminants (E)
6011 then
6012 declare
6013 Comp : Entity_Id;
6014 IR : Node_Id;
6015 Typ : Entity_Id;
6017 begin
6018 Comp := First_Component (E);
6019 while Present (Comp) loop
6020 Typ := Etype (Comp);
6022 if Ekind (Comp) = E_Component
6023 and then Is_Access_Type (Typ)
6024 and then Scope (Typ) /= E
6025 and then Base_Type (Designated_Type (Typ)) = E
6026 and then Is_Itype (Designated_Type (Typ))
6027 then
6028 IR := Make_Itype_Reference (Sloc (Comp));
6029 Set_Itype (IR, Designated_Type (Typ));
6030 Append (IR, Result);
6031 end if;
6033 Next_Component (Comp);
6034 end loop;
6035 end;
6036 end if;
6037 end if;
6039 -- When a type is frozen, the first subtype of the type is frozen as
6040 -- well (RM 13.14(15)). This has to be done after freezing the type,
6041 -- since obviously the first subtype depends on its own base type.
6043 if Is_Type (E) then
6044 Freeze_And_Append (First_Subtype (E), N, Result);
6046 -- If we just froze a tagged non-class wide record, then freeze the
6047 -- corresponding class-wide type. This must be done after the tagged
6048 -- type itself is frozen, because the class-wide type refers to the
6049 -- tagged type which generates the class.
6051 if Is_Tagged_Type (E)
6052 and then not Is_Class_Wide_Type (E)
6053 and then Present (Class_Wide_Type (E))
6054 then
6055 Freeze_And_Append (Class_Wide_Type (E), N, Result);
6056 end if;
6057 end if;
6059 Check_Debug_Info_Needed (E);
6061 -- Special handling for subprograms
6063 if Is_Subprogram (E) then
6065 -- If subprogram has address clause then reset Is_Public flag, since
6066 -- we do not want the backend to generate external references.
6068 if Present (Address_Clause (E))
6069 and then not Is_Library_Level_Entity (E)
6070 then
6071 Set_Is_Public (E, False);
6072 end if;
6073 end if;
6075 Restore_Globals;
6076 return Result;
6077 end Freeze_Entity;
6079 -----------------------------
6080 -- Freeze_Enumeration_Type --
6081 -----------------------------
6083 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6084 begin
6085 -- By default, if no size clause is present, an enumeration type with
6086 -- Convention C is assumed to interface to a C enum, and has integer
6087 -- size. This applies to types. For subtypes, verify that its base
6088 -- type has no size clause either. Treat other foreign conventions
6089 -- in the same way, and also make sure alignment is set right.
6091 if Has_Foreign_Convention (Typ)
6092 and then not Has_Size_Clause (Typ)
6093 and then not Has_Size_Clause (Base_Type (Typ))
6094 and then Esize (Typ) < Standard_Integer_Size
6096 -- Don't do this if Short_Enums on target
6098 and then not Target_Short_Enums
6099 then
6100 Init_Esize (Typ, Standard_Integer_Size);
6101 Set_Alignment (Typ, Alignment (Standard_Integer));
6103 -- Normal Ada case or size clause present or not Long_C_Enums on target
6105 else
6106 -- If the enumeration type interfaces to C, and it has a size clause
6107 -- that specifies less than int size, it warrants a warning. The
6108 -- user may intend the C type to be an enum or a char, so this is
6109 -- not by itself an error that the Ada compiler can detect, but it
6110 -- it is a worth a heads-up. For Boolean and Character types we
6111 -- assume that the programmer has the proper C type in mind.
6113 if Convention (Typ) = Convention_C
6114 and then Has_Size_Clause (Typ)
6115 and then Esize (Typ) /= Esize (Standard_Integer)
6116 and then not Is_Boolean_Type (Typ)
6117 and then not Is_Character_Type (Typ)
6119 -- Don't do this if Short_Enums on target
6121 and then not Target_Short_Enums
6122 then
6123 Error_Msg_N
6124 ("C enum types have the size of a C int??", Size_Clause (Typ));
6125 end if;
6127 Adjust_Esize_For_Alignment (Typ);
6128 end if;
6129 end Freeze_Enumeration_Type;
6131 -----------------------
6132 -- Freeze_Expression --
6133 -----------------------
6135 procedure Freeze_Expression (N : Node_Id) is
6136 In_Spec_Exp : constant Boolean := In_Spec_Expression;
6137 Typ : Entity_Id;
6138 Nam : Entity_Id;
6139 Desig_Typ : Entity_Id;
6140 P : Node_Id;
6141 Parent_P : Node_Id;
6143 Freeze_Outside : Boolean := False;
6144 -- This flag is set true if the entity must be frozen outside the
6145 -- current subprogram. This happens in the case of expander generated
6146 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6147 -- not freeze all entities like other bodies, but which nevertheless
6148 -- may reference entities that have to be frozen before the body and
6149 -- obviously cannot be frozen inside the body.
6151 function Find_Aggregate_Component_Desig_Type return Entity_Id;
6152 -- If the expression is an array aggregate, the type of the component
6153 -- expressions is also frozen. If the component type is an access type
6154 -- and the expressions include allocators, the designed type is frozen
6155 -- as well.
6157 function In_Expanded_Body (N : Node_Id) return Boolean;
6158 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6159 -- it is the handled statement sequence of an expander-generated
6160 -- subprogram (init proc, stream subprogram, or renaming as body).
6161 -- If so, this is not a freezing context.
6163 -----------------------------------------
6164 -- Find_Aggregate_Component_Desig_Type --
6165 -----------------------------------------
6167 function Find_Aggregate_Component_Desig_Type return Entity_Id is
6168 Assoc : Node_Id;
6169 Exp : Node_Id;
6171 begin
6172 if Present (Expressions (N)) then
6173 Exp := First (Expressions (N));
6174 while Present (Exp) loop
6175 if Nkind (Exp) = N_Allocator then
6176 return Designated_Type (Component_Type (Etype (N)));
6177 end if;
6179 Next (Exp);
6180 end loop;
6181 end if;
6183 if Present (Component_Associations (N)) then
6184 Assoc := First (Component_Associations (N));
6185 while Present (Assoc) loop
6186 if Nkind (Expression (Assoc)) = N_Allocator then
6187 return Designated_Type (Component_Type (Etype (N)));
6188 end if;
6190 Next (Assoc);
6191 end loop;
6192 end if;
6194 return Empty;
6195 end Find_Aggregate_Component_Desig_Type;
6197 ----------------------
6198 -- In_Expanded_Body --
6199 ----------------------
6201 function In_Expanded_Body (N : Node_Id) return Boolean is
6202 P : Node_Id;
6203 Id : Entity_Id;
6205 begin
6206 if Nkind (N) = N_Subprogram_Body then
6207 P := N;
6208 else
6209 P := Parent (N);
6210 end if;
6212 if Nkind (P) /= N_Subprogram_Body then
6213 return False;
6215 else
6216 Id := Defining_Unit_Name (Specification (P));
6218 -- The following are expander-created bodies, or bodies that
6219 -- are not freeze points.
6221 if Nkind (Id) = N_Defining_Identifier
6222 and then (Is_Init_Proc (Id)
6223 or else Is_TSS (Id, TSS_Stream_Input)
6224 or else Is_TSS (Id, TSS_Stream_Output)
6225 or else Is_TSS (Id, TSS_Stream_Read)
6226 or else Is_TSS (Id, TSS_Stream_Write)
6227 or else Nkind_In (Original_Node (P),
6228 N_Subprogram_Renaming_Declaration,
6229 N_Expression_Function))
6230 then
6231 return True;
6232 else
6233 return False;
6234 end if;
6235 end if;
6236 end In_Expanded_Body;
6238 -- Start of processing for Freeze_Expression
6240 begin
6241 -- Immediate return if freezing is inhibited. This flag is set by the
6242 -- analyzer to stop freezing on generated expressions that would cause
6243 -- freezing if they were in the source program, but which are not
6244 -- supposed to freeze, since they are created.
6246 if Must_Not_Freeze (N) then
6247 return;
6248 end if;
6250 -- If expression is non-static, then it does not freeze in a default
6251 -- expression, see section "Handling of Default Expressions" in the
6252 -- spec of package Sem for further details. Note that we have to make
6253 -- sure that we actually have a real expression (if we have a subtype
6254 -- indication, we can't test Is_OK_Static_Expression). However, we
6255 -- exclude the case of the prefix of an attribute of a static scalar
6256 -- subtype from this early return, because static subtype attributes
6257 -- should always cause freezing, even in default expressions, but
6258 -- the attribute may not have been marked as static yet (because in
6259 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6260 -- Freeze_Expression on the prefix).
6262 if In_Spec_Exp
6263 and then Nkind (N) in N_Subexpr
6264 and then not Is_OK_Static_Expression (N)
6265 and then (Nkind (Parent (N)) /= N_Attribute_Reference
6266 or else not (Is_Entity_Name (N)
6267 and then Is_Type (Entity (N))
6268 and then Is_OK_Static_Subtype (Entity (N))))
6269 then
6270 return;
6271 end if;
6273 -- Freeze type of expression if not frozen already
6275 Typ := Empty;
6277 if Nkind (N) in N_Has_Etype then
6278 if not Is_Frozen (Etype (N)) then
6279 Typ := Etype (N);
6281 -- Base type may be an derived numeric type that is frozen at
6282 -- the point of declaration, but first_subtype is still unfrozen.
6284 elsif not Is_Frozen (First_Subtype (Etype (N))) then
6285 Typ := First_Subtype (Etype (N));
6286 end if;
6287 end if;
6289 -- For entity name, freeze entity if not frozen already. A special
6290 -- exception occurs for an identifier that did not come from source.
6291 -- We don't let such identifiers freeze a non-internal entity, i.e.
6292 -- an entity that did come from source, since such an identifier was
6293 -- generated by the expander, and cannot have any semantic effect on
6294 -- the freezing semantics. For example, this stops the parameter of
6295 -- an initialization procedure from freezing the variable.
6297 if Is_Entity_Name (N)
6298 and then not Is_Frozen (Entity (N))
6299 and then (Nkind (N) /= N_Identifier
6300 or else Comes_From_Source (N)
6301 or else not Comes_From_Source (Entity (N)))
6302 then
6303 Nam := Entity (N);
6305 if Present (Nam) and then Ekind (Nam) = E_Function then
6306 Check_Expression_Function (N, Nam);
6307 end if;
6309 else
6310 Nam := Empty;
6311 end if;
6313 -- For an allocator freeze designated type if not frozen already
6315 -- For an aggregate whose component type is an access type, freeze the
6316 -- designated type now, so that its freeze does not appear within the
6317 -- loop that might be created in the expansion of the aggregate. If the
6318 -- designated type is a private type without full view, the expression
6319 -- cannot contain an allocator, so the type is not frozen.
6321 -- For a function, we freeze the entity when the subprogram declaration
6322 -- is frozen, but a function call may appear in an initialization proc.
6323 -- before the declaration is frozen. We need to generate the extra
6324 -- formals, if any, to ensure that the expansion of the call includes
6325 -- the proper actuals. This only applies to Ada subprograms, not to
6326 -- imported ones.
6328 Desig_Typ := Empty;
6330 case Nkind (N) is
6331 when N_Allocator =>
6332 Desig_Typ := Designated_Type (Etype (N));
6334 when N_Aggregate =>
6335 if Is_Array_Type (Etype (N))
6336 and then Is_Access_Type (Component_Type (Etype (N)))
6337 then
6339 -- Check whether aggregate includes allocators.
6341 Desig_Typ := Find_Aggregate_Component_Desig_Type;
6342 end if;
6344 when N_Selected_Component |
6345 N_Indexed_Component |
6346 N_Slice =>
6348 if Is_Access_Type (Etype (Prefix (N))) then
6349 Desig_Typ := Designated_Type (Etype (Prefix (N)));
6350 end if;
6352 when N_Identifier =>
6353 if Present (Nam)
6354 and then Ekind (Nam) = E_Function
6355 and then Nkind (Parent (N)) = N_Function_Call
6356 and then Convention (Nam) = Convention_Ada
6357 then
6358 Create_Extra_Formals (Nam);
6359 end if;
6361 when others =>
6362 null;
6363 end case;
6365 if Desig_Typ /= Empty
6366 and then (Is_Frozen (Desig_Typ)
6367 or else (not Is_Fully_Defined (Desig_Typ)))
6368 then
6369 Desig_Typ := Empty;
6370 end if;
6372 -- All done if nothing needs freezing
6374 if No (Typ)
6375 and then No (Nam)
6376 and then No (Desig_Typ)
6377 then
6378 return;
6379 end if;
6381 -- Examine the enclosing context by climbing the parent chain. The
6382 -- traversal serves two purposes - to detect scenarios where freezeing
6383 -- is not needed and to find the proper insertion point for the freeze
6384 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6385 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6386 -- the tree may result in types being frozen too early.
6388 P := N;
6389 loop
6390 Parent_P := Parent (P);
6392 -- If we don't have a parent, then we are not in a well-formed tree.
6393 -- This is an unusual case, but there are some legitimate situations
6394 -- in which this occurs, notably when the expressions in the range of
6395 -- a type declaration are resolved. We simply ignore the freeze
6396 -- request in this case. Is this right ???
6398 if No (Parent_P) then
6399 return;
6400 end if;
6402 -- See if we have got to an appropriate point in the tree
6404 case Nkind (Parent_P) is
6406 -- A special test for the exception of (RM 13.14(8)) for the case
6407 -- of per-object expressions (RM 3.8(18)) occurring in component
6408 -- definition or a discrete subtype definition. Note that we test
6409 -- for a component declaration which includes both cases we are
6410 -- interested in, and furthermore the tree does not have explicit
6411 -- nodes for either of these two constructs.
6413 when N_Component_Declaration =>
6415 -- The case we want to test for here is an identifier that is
6416 -- a per-object expression, this is either a discriminant that
6417 -- appears in a context other than the component declaration
6418 -- or it is a reference to the type of the enclosing construct.
6420 -- For either of these cases, we skip the freezing
6422 if not In_Spec_Expression
6423 and then Nkind (N) = N_Identifier
6424 and then (Present (Entity (N)))
6425 then
6426 -- We recognize the discriminant case by just looking for
6427 -- a reference to a discriminant. It can only be one for
6428 -- the enclosing construct. Skip freezing in this case.
6430 if Ekind (Entity (N)) = E_Discriminant then
6431 return;
6433 -- For the case of a reference to the enclosing record,
6434 -- (or task or protected type), we look for a type that
6435 -- matches the current scope.
6437 elsif Entity (N) = Current_Scope then
6438 return;
6439 end if;
6440 end if;
6442 -- If we have an enumeration literal that appears as the choice in
6443 -- the aggregate of an enumeration representation clause, then
6444 -- freezing does not occur (RM 13.14(10)).
6446 when N_Enumeration_Representation_Clause =>
6448 -- The case we are looking for is an enumeration literal
6450 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
6451 and then Is_Enumeration_Type (Etype (N))
6452 then
6453 -- If enumeration literal appears directly as the choice,
6454 -- do not freeze (this is the normal non-overloaded case)
6456 if Nkind (Parent (N)) = N_Component_Association
6457 and then First (Choices (Parent (N))) = N
6458 then
6459 return;
6461 -- If enumeration literal appears as the name of function
6462 -- which is the choice, then also do not freeze. This
6463 -- happens in the overloaded literal case, where the
6464 -- enumeration literal is temporarily changed to a function
6465 -- call for overloading analysis purposes.
6467 elsif Nkind (Parent (N)) = N_Function_Call
6468 and then
6469 Nkind (Parent (Parent (N))) = N_Component_Association
6470 and then
6471 First (Choices (Parent (Parent (N)))) = Parent (N)
6472 then
6473 return;
6474 end if;
6475 end if;
6477 -- Normally if the parent is a handled sequence of statements,
6478 -- then the current node must be a statement, and that is an
6479 -- appropriate place to insert a freeze node.
6481 when N_Handled_Sequence_Of_Statements =>
6483 -- An exception occurs when the sequence of statements is for
6484 -- an expander generated body that did not do the usual freeze
6485 -- all operation. In this case we usually want to freeze
6486 -- outside this body, not inside it, and we skip past the
6487 -- subprogram body that we are inside.
6489 if In_Expanded_Body (Parent_P) then
6490 declare
6491 Subp : constant Node_Id := Parent (Parent_P);
6492 Spec : Entity_Id;
6494 begin
6495 -- Freeze the entity only when it is declared inside the
6496 -- body of the expander generated procedure. This case
6497 -- is recognized by the scope of the entity or its type,
6498 -- which is either the spec for some enclosing body, or
6499 -- (in the case of init_procs, for which there are no
6500 -- separate specs) the current scope.
6502 if Nkind (Subp) = N_Subprogram_Body then
6503 Spec := Corresponding_Spec (Subp);
6505 if (Present (Typ) and then Scope (Typ) = Spec)
6506 or else
6507 (Present (Nam) and then Scope (Nam) = Spec)
6508 then
6509 exit;
6511 elsif Present (Typ)
6512 and then Scope (Typ) = Current_Scope
6513 and then Defining_Entity (Subp) = Current_Scope
6514 then
6515 exit;
6516 end if;
6517 end if;
6519 -- An expression function may act as a completion of
6520 -- a function declaration. As such, it can reference
6521 -- entities declared between the two views:
6523 -- Hidden []; -- 1
6524 -- function F return ...;
6525 -- private
6526 -- function Hidden return ...;
6527 -- function F return ... is (Hidden); -- 2
6529 -- Refering to the example above, freezing the expression
6530 -- of F (2) would place Hidden's freeze node (1) in the
6531 -- wrong place. Avoid explicit freezing and let the usual
6532 -- scenarios do the job - for example, reaching the end
6533 -- of the private declarations, or a call to F.
6535 if Nkind (Original_Node (Subp)) =
6536 N_Expression_Function
6537 then
6538 null;
6540 -- Freeze outside the body
6542 else
6543 Parent_P := Parent (Parent_P);
6544 Freeze_Outside := True;
6545 end if;
6546 end;
6548 -- Here if normal case where we are in handled statement
6549 -- sequence and want to do the insertion right there.
6551 else
6552 exit;
6553 end if;
6555 -- If parent is a body or a spec or a block, then the current node
6556 -- is a statement or declaration and we can insert the freeze node
6557 -- before it.
6559 when N_Block_Statement |
6560 N_Entry_Body |
6561 N_Package_Body |
6562 N_Package_Specification |
6563 N_Protected_Body |
6564 N_Subprogram_Body |
6565 N_Task_Body => exit;
6567 -- The expander is allowed to define types in any statements list,
6568 -- so any of the following parent nodes also mark a freezing point
6569 -- if the actual node is in a list of statements or declarations.
6571 when N_Abortable_Part |
6572 N_Accept_Alternative |
6573 N_And_Then |
6574 N_Case_Statement_Alternative |
6575 N_Compilation_Unit_Aux |
6576 N_Conditional_Entry_Call |
6577 N_Delay_Alternative |
6578 N_Elsif_Part |
6579 N_Entry_Call_Alternative |
6580 N_Exception_Handler |
6581 N_Extended_Return_Statement |
6582 N_Freeze_Entity |
6583 N_If_Statement |
6584 N_Or_Else |
6585 N_Selective_Accept |
6586 N_Triggering_Alternative =>
6588 exit when Is_List_Member (P);
6590 -- Freeze nodes produced by an expression coming from the Actions
6591 -- list of a N_Expression_With_Actions node must remain within the
6592 -- Actions list. Inserting the freeze nodes further up the tree
6593 -- may lead to use before declaration issues in the case of array
6594 -- types.
6596 when N_Expression_With_Actions =>
6597 if Is_List_Member (P)
6598 and then List_Containing (P) = Actions (Parent_P)
6599 then
6600 exit;
6601 end if;
6603 -- Note: N_Loop_Statement is a special case. A type that appears
6604 -- in the source can never be frozen in a loop (this occurs only
6605 -- because of a loop expanded by the expander), so we keep on
6606 -- going. Otherwise we terminate the search. Same is true of any
6607 -- entity which comes from source. (if they have predefined type,
6608 -- that type does not appear to come from source, but the entity
6609 -- should not be frozen here).
6611 when N_Loop_Statement =>
6612 exit when not Comes_From_Source (Etype (N))
6613 and then (No (Nam) or else not Comes_From_Source (Nam));
6615 -- For all other cases, keep looking at parents
6617 when others =>
6618 null;
6619 end case;
6621 -- We fall through the case if we did not yet find the proper
6622 -- place in the free for inserting the freeze node, so climb.
6624 P := Parent_P;
6625 end loop;
6627 -- If the expression appears in a record or an initialization procedure,
6628 -- the freeze nodes are collected and attached to the current scope, to
6629 -- be inserted and analyzed on exit from the scope, to insure that
6630 -- generated entities appear in the correct scope. If the expression is
6631 -- a default for a discriminant specification, the scope is still void.
6632 -- The expression can also appear in the discriminant part of a private
6633 -- or concurrent type.
6635 -- If the expression appears in a constrained subcomponent of an
6636 -- enclosing record declaration, the freeze nodes must be attached to
6637 -- the outer record type so they can eventually be placed in the
6638 -- enclosing declaration list.
6640 -- The other case requiring this special handling is if we are in a
6641 -- default expression, since in that case we are about to freeze a
6642 -- static type, and the freeze scope needs to be the outer scope, not
6643 -- the scope of the subprogram with the default parameter.
6645 -- For default expressions and other spec expressions in generic units,
6646 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
6647 -- placing them at the proper place, after the generic unit.
6649 if (In_Spec_Exp and not Inside_A_Generic)
6650 or else Freeze_Outside
6651 or else (Is_Type (Current_Scope)
6652 and then (not Is_Concurrent_Type (Current_Scope)
6653 or else not Has_Completion (Current_Scope)))
6654 or else Ekind (Current_Scope) = E_Void
6655 then
6656 declare
6657 N : constant Node_Id := Current_Scope;
6658 Freeze_Nodes : List_Id := No_List;
6659 Pos : Int := Scope_Stack.Last;
6661 begin
6662 if Present (Desig_Typ) then
6663 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
6664 end if;
6666 if Present (Typ) then
6667 Freeze_And_Append (Typ, N, Freeze_Nodes);
6668 end if;
6670 if Present (Nam) then
6671 Freeze_And_Append (Nam, N, Freeze_Nodes);
6672 end if;
6674 -- The current scope may be that of a constrained component of
6675 -- an enclosing record declaration, or of a loop of an enclosing
6676 -- quantified expression, which is above the current scope in the
6677 -- scope stack. Indeed in the context of a quantified expression,
6678 -- a scope is created and pushed above the current scope in order
6679 -- to emulate the loop-like behavior of the quantified expression.
6680 -- If the expression is within a top-level pragma, as for a pre-
6681 -- condition on a library-level subprogram, nothing to do.
6683 if not Is_Compilation_Unit (Current_Scope)
6684 and then (Is_Record_Type (Scope (Current_Scope))
6685 or else Nkind (Parent (Current_Scope)) =
6686 N_Quantified_Expression)
6687 then
6688 Pos := Pos - 1;
6689 end if;
6691 if Is_Non_Empty_List (Freeze_Nodes) then
6692 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
6693 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
6694 Freeze_Nodes;
6695 else
6696 Append_List (Freeze_Nodes,
6697 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
6698 end if;
6699 end if;
6700 end;
6702 return;
6703 end if;
6705 -- Now we have the right place to do the freezing. First, a special
6706 -- adjustment, if we are in spec-expression analysis mode, these freeze
6707 -- actions must not be thrown away (normally all inserted actions are
6708 -- thrown away in this mode. However, the freeze actions are from static
6709 -- expressions and one of the important reasons we are doing this
6710 -- special analysis is to get these freeze actions. Therefore we turn
6711 -- off the In_Spec_Expression mode to propagate these freeze actions.
6712 -- This also means they get properly analyzed and expanded.
6714 In_Spec_Expression := False;
6716 -- Freeze the designated type of an allocator (RM 13.14(13))
6718 if Present (Desig_Typ) then
6719 Freeze_Before (P, Desig_Typ);
6720 end if;
6722 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
6723 -- the enumeration representation clause exception in the loop above.
6725 if Present (Typ) then
6726 Freeze_Before (P, Typ);
6727 end if;
6729 -- Freeze name if one is present (RM 13.14(11))
6731 if Present (Nam) then
6732 Freeze_Before (P, Nam);
6733 end if;
6735 -- Restore In_Spec_Expression flag
6737 In_Spec_Expression := In_Spec_Exp;
6738 end Freeze_Expression;
6740 -----------------------------
6741 -- Freeze_Fixed_Point_Type --
6742 -----------------------------
6744 -- Certain fixed-point types and subtypes, including implicit base types
6745 -- and declared first subtypes, have not yet set up a range. This is
6746 -- because the range cannot be set until the Small and Size values are
6747 -- known, and these are not known till the type is frozen.
6749 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
6750 -- whose bounds are unanalyzed real literals. This routine will recognize
6751 -- this case, and transform this range node into a properly typed range
6752 -- with properly analyzed and resolved values.
6754 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
6755 Rng : constant Node_Id := Scalar_Range (Typ);
6756 Lo : constant Node_Id := Low_Bound (Rng);
6757 Hi : constant Node_Id := High_Bound (Rng);
6758 Btyp : constant Entity_Id := Base_Type (Typ);
6759 Brng : constant Node_Id := Scalar_Range (Btyp);
6760 BLo : constant Node_Id := Low_Bound (Brng);
6761 BHi : constant Node_Id := High_Bound (Brng);
6762 Small : constant Ureal := Small_Value (Typ);
6763 Loval : Ureal;
6764 Hival : Ureal;
6765 Atype : Entity_Id;
6767 Orig_Lo : Ureal;
6768 Orig_Hi : Ureal;
6769 -- Save original bounds (for shaving tests)
6771 Actual_Size : Nat;
6772 -- Actual size chosen
6774 function Fsize (Lov, Hiv : Ureal) return Nat;
6775 -- Returns size of type with given bounds. Also leaves these
6776 -- bounds set as the current bounds of the Typ.
6778 -----------
6779 -- Fsize --
6780 -----------
6782 function Fsize (Lov, Hiv : Ureal) return Nat is
6783 begin
6784 Set_Realval (Lo, Lov);
6785 Set_Realval (Hi, Hiv);
6786 return Minimum_Size (Typ);
6787 end Fsize;
6789 -- Start of processing for Freeze_Fixed_Point_Type
6791 begin
6792 -- If Esize of a subtype has not previously been set, set it now
6794 if Unknown_Esize (Typ) then
6795 Atype := Ancestor_Subtype (Typ);
6797 if Present (Atype) then
6798 Set_Esize (Typ, Esize (Atype));
6799 else
6800 Set_Esize (Typ, Esize (Base_Type (Typ)));
6801 end if;
6802 end if;
6804 -- Immediate return if the range is already analyzed. This means that
6805 -- the range is already set, and does not need to be computed by this
6806 -- routine.
6808 if Analyzed (Rng) then
6809 return;
6810 end if;
6812 -- Immediate return if either of the bounds raises Constraint_Error
6814 if Raises_Constraint_Error (Lo)
6815 or else Raises_Constraint_Error (Hi)
6816 then
6817 return;
6818 end if;
6820 Loval := Realval (Lo);
6821 Hival := Realval (Hi);
6823 Orig_Lo := Loval;
6824 Orig_Hi := Hival;
6826 -- Ordinary fixed-point case
6828 if Is_Ordinary_Fixed_Point_Type (Typ) then
6830 -- For the ordinary fixed-point case, we are allowed to fudge the
6831 -- end-points up or down by small. Generally we prefer to fudge up,
6832 -- i.e. widen the bounds for non-model numbers so that the end points
6833 -- are included. However there are cases in which this cannot be
6834 -- done, and indeed cases in which we may need to narrow the bounds.
6835 -- The following circuit makes the decision.
6837 -- Note: our terminology here is that Incl_EP means that the bounds
6838 -- are widened by Small if necessary to include the end points, and
6839 -- Excl_EP means that the bounds are narrowed by Small to exclude the
6840 -- end-points if this reduces the size.
6842 -- Note that in the Incl case, all we care about is including the
6843 -- end-points. In the Excl case, we want to narrow the bounds as
6844 -- much as permitted by the RM, to give the smallest possible size.
6846 Fudge : declare
6847 Loval_Incl_EP : Ureal;
6848 Hival_Incl_EP : Ureal;
6850 Loval_Excl_EP : Ureal;
6851 Hival_Excl_EP : Ureal;
6853 Size_Incl_EP : Nat;
6854 Size_Excl_EP : Nat;
6856 Model_Num : Ureal;
6857 First_Subt : Entity_Id;
6858 Actual_Lo : Ureal;
6859 Actual_Hi : Ureal;
6861 begin
6862 -- First step. Base types are required to be symmetrical. Right
6863 -- now, the base type range is a copy of the first subtype range.
6864 -- This will be corrected before we are done, but right away we
6865 -- need to deal with the case where both bounds are non-negative.
6866 -- In this case, we set the low bound to the negative of the high
6867 -- bound, to make sure that the size is computed to include the
6868 -- required sign. Note that we do not need to worry about the
6869 -- case of both bounds negative, because the sign will be dealt
6870 -- with anyway. Furthermore we can't just go making such a bound
6871 -- symmetrical, since in a twos-complement system, there is an
6872 -- extra negative value which could not be accommodated on the
6873 -- positive side.
6875 if Typ = Btyp
6876 and then not UR_Is_Negative (Loval)
6877 and then Hival > Loval
6878 then
6879 Loval := -Hival;
6880 Set_Realval (Lo, Loval);
6881 end if;
6883 -- Compute the fudged bounds. If the number is a model number,
6884 -- then we do nothing to include it, but we are allowed to backoff
6885 -- to the next adjacent model number when we exclude it. If it is
6886 -- not a model number then we straddle the two values with the
6887 -- model numbers on either side.
6889 Model_Num := UR_Trunc (Loval / Small) * Small;
6891 if Loval = Model_Num then
6892 Loval_Incl_EP := Model_Num;
6893 else
6894 Loval_Incl_EP := Model_Num - Small;
6895 end if;
6897 -- The low value excluding the end point is Small greater, but
6898 -- we do not do this exclusion if the low value is positive,
6899 -- since it can't help the size and could actually hurt by
6900 -- crossing the high bound.
6902 if UR_Is_Negative (Loval_Incl_EP) then
6903 Loval_Excl_EP := Loval_Incl_EP + Small;
6905 -- If the value went from negative to zero, then we have the
6906 -- case where Loval_Incl_EP is the model number just below
6907 -- zero, so we want to stick to the negative value for the
6908 -- base type to maintain the condition that the size will
6909 -- include signed values.
6911 if Typ = Btyp
6912 and then UR_Is_Zero (Loval_Excl_EP)
6913 then
6914 Loval_Excl_EP := Loval_Incl_EP;
6915 end if;
6917 else
6918 Loval_Excl_EP := Loval_Incl_EP;
6919 end if;
6921 -- Similar processing for upper bound and high value
6923 Model_Num := UR_Trunc (Hival / Small) * Small;
6925 if Hival = Model_Num then
6926 Hival_Incl_EP := Model_Num;
6927 else
6928 Hival_Incl_EP := Model_Num + Small;
6929 end if;
6931 if UR_Is_Positive (Hival_Incl_EP) then
6932 Hival_Excl_EP := Hival_Incl_EP - Small;
6933 else
6934 Hival_Excl_EP := Hival_Incl_EP;
6935 end if;
6937 -- One further adjustment is needed. In the case of subtypes, we
6938 -- cannot go outside the range of the base type, or we get
6939 -- peculiarities, and the base type range is already set. This
6940 -- only applies to the Incl values, since clearly the Excl values
6941 -- are already as restricted as they are allowed to be.
6943 if Typ /= Btyp then
6944 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
6945 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
6946 end if;
6948 -- Get size including and excluding end points
6950 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
6951 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
6953 -- No need to exclude end-points if it does not reduce size
6955 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
6956 Loval_Excl_EP := Loval_Incl_EP;
6957 end if;
6959 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
6960 Hival_Excl_EP := Hival_Incl_EP;
6961 end if;
6963 -- Now we set the actual size to be used. We want to use the
6964 -- bounds fudged up to include the end-points but only if this
6965 -- can be done without violating a specifically given size
6966 -- size clause or causing an unacceptable increase in size.
6968 -- Case of size clause given
6970 if Has_Size_Clause (Typ) then
6972 -- Use the inclusive size only if it is consistent with
6973 -- the explicitly specified size.
6975 if Size_Incl_EP <= RM_Size (Typ) then
6976 Actual_Lo := Loval_Incl_EP;
6977 Actual_Hi := Hival_Incl_EP;
6978 Actual_Size := Size_Incl_EP;
6980 -- If the inclusive size is too large, we try excluding
6981 -- the end-points (will be caught later if does not work).
6983 else
6984 Actual_Lo := Loval_Excl_EP;
6985 Actual_Hi := Hival_Excl_EP;
6986 Actual_Size := Size_Excl_EP;
6987 end if;
6989 -- Case of size clause not given
6991 else
6992 -- If we have a base type whose corresponding first subtype
6993 -- has an explicit size that is large enough to include our
6994 -- end-points, then do so. There is no point in working hard
6995 -- to get a base type whose size is smaller than the specified
6996 -- size of the first subtype.
6998 First_Subt := First_Subtype (Typ);
7000 if Has_Size_Clause (First_Subt)
7001 and then Size_Incl_EP <= Esize (First_Subt)
7002 then
7003 Actual_Size := Size_Incl_EP;
7004 Actual_Lo := Loval_Incl_EP;
7005 Actual_Hi := Hival_Incl_EP;
7007 -- If excluding the end-points makes the size smaller and
7008 -- results in a size of 8,16,32,64, then we take the smaller
7009 -- size. For the 64 case, this is compulsory. For the other
7010 -- cases, it seems reasonable. We like to include end points
7011 -- if we can, but not at the expense of moving to the next
7012 -- natural boundary of size.
7014 elsif Size_Incl_EP /= Size_Excl_EP
7015 and then Addressable (Size_Excl_EP)
7016 then
7017 Actual_Size := Size_Excl_EP;
7018 Actual_Lo := Loval_Excl_EP;
7019 Actual_Hi := Hival_Excl_EP;
7021 -- Otherwise we can definitely include the end points
7023 else
7024 Actual_Size := Size_Incl_EP;
7025 Actual_Lo := Loval_Incl_EP;
7026 Actual_Hi := Hival_Incl_EP;
7027 end if;
7029 -- One pathological case: normally we never fudge a low bound
7030 -- down, since it would seem to increase the size (if it has
7031 -- any effect), but for ranges containing single value, or no
7032 -- values, the high bound can be small too large. Consider:
7034 -- type t is delta 2.0**(-14)
7035 -- range 131072.0 .. 0;
7037 -- That lower bound is *just* outside the range of 32 bits, and
7038 -- does need fudging down in this case. Note that the bounds
7039 -- will always have crossed here, since the high bound will be
7040 -- fudged down if necessary, as in the case of:
7042 -- type t is delta 2.0**(-14)
7043 -- range 131072.0 .. 131072.0;
7045 -- So we detect the situation by looking for crossed bounds,
7046 -- and if the bounds are crossed, and the low bound is greater
7047 -- than zero, we will always back it off by small, since this
7048 -- is completely harmless.
7050 if Actual_Lo > Actual_Hi then
7051 if UR_Is_Positive (Actual_Lo) then
7052 Actual_Lo := Loval_Incl_EP - Small;
7053 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7055 -- And of course, we need to do exactly the same parallel
7056 -- fudge for flat ranges in the negative region.
7058 elsif UR_Is_Negative (Actual_Hi) then
7059 Actual_Hi := Hival_Incl_EP + Small;
7060 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7061 end if;
7062 end if;
7063 end if;
7065 Set_Realval (Lo, Actual_Lo);
7066 Set_Realval (Hi, Actual_Hi);
7067 end Fudge;
7069 -- For the decimal case, none of this fudging is required, since there
7070 -- are no end-point problems in the decimal case (the end-points are
7071 -- always included).
7073 else
7074 Actual_Size := Fsize (Loval, Hival);
7075 end if;
7077 -- At this stage, the actual size has been calculated and the proper
7078 -- required bounds are stored in the low and high bounds.
7080 if Actual_Size > 64 then
7081 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
7082 Error_Msg_N
7083 ("size required (^) for type& too large, maximum allowed is 64",
7084 Typ);
7085 Actual_Size := 64;
7086 end if;
7088 -- Check size against explicit given size
7090 if Has_Size_Clause (Typ) then
7091 if Actual_Size > RM_Size (Typ) then
7092 Error_Msg_Uint_1 := RM_Size (Typ);
7093 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
7094 Error_Msg_NE
7095 ("size given (^) for type& too small, minimum allowed is ^",
7096 Size_Clause (Typ), Typ);
7098 else
7099 Actual_Size := UI_To_Int (Esize (Typ));
7100 end if;
7102 -- Increase size to next natural boundary if no size clause given
7104 else
7105 if Actual_Size <= 8 then
7106 Actual_Size := 8;
7107 elsif Actual_Size <= 16 then
7108 Actual_Size := 16;
7109 elsif Actual_Size <= 32 then
7110 Actual_Size := 32;
7111 else
7112 Actual_Size := 64;
7113 end if;
7115 Init_Esize (Typ, Actual_Size);
7116 Adjust_Esize_For_Alignment (Typ);
7117 end if;
7119 -- If we have a base type, then expand the bounds so that they extend to
7120 -- the full width of the allocated size in bits, to avoid junk range
7121 -- checks on intermediate computations.
7123 if Base_Type (Typ) = Typ then
7124 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
7125 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
7126 end if;
7128 -- Final step is to reanalyze the bounds using the proper type
7129 -- and set the Corresponding_Integer_Value fields of the literals.
7131 Set_Etype (Lo, Empty);
7132 Set_Analyzed (Lo, False);
7133 Analyze (Lo);
7135 -- Resolve with universal fixed if the base type, and the base type if
7136 -- it is a subtype. Note we can't resolve the base type with itself,
7137 -- that would be a reference before definition.
7139 if Typ = Btyp then
7140 Resolve (Lo, Universal_Fixed);
7141 else
7142 Resolve (Lo, Btyp);
7143 end if;
7145 -- Set corresponding integer value for bound
7147 Set_Corresponding_Integer_Value
7148 (Lo, UR_To_Uint (Realval (Lo) / Small));
7150 -- Similar processing for high bound
7152 Set_Etype (Hi, Empty);
7153 Set_Analyzed (Hi, False);
7154 Analyze (Hi);
7156 if Typ = Btyp then
7157 Resolve (Hi, Universal_Fixed);
7158 else
7159 Resolve (Hi, Btyp);
7160 end if;
7162 Set_Corresponding_Integer_Value
7163 (Hi, UR_To_Uint (Realval (Hi) / Small));
7165 -- Set type of range to correspond to bounds
7167 Set_Etype (Rng, Etype (Lo));
7169 -- Set Esize to calculated size if not set already
7171 if Unknown_Esize (Typ) then
7172 Init_Esize (Typ, Actual_Size);
7173 end if;
7175 -- Set RM_Size if not already set. If already set, check value
7177 declare
7178 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
7180 begin
7181 if RM_Size (Typ) /= Uint_0 then
7182 if RM_Size (Typ) < Minsiz then
7183 Error_Msg_Uint_1 := RM_Size (Typ);
7184 Error_Msg_Uint_2 := Minsiz;
7185 Error_Msg_NE
7186 ("size given (^) for type& too small, minimum allowed is ^",
7187 Size_Clause (Typ), Typ);
7188 end if;
7190 else
7191 Set_RM_Size (Typ, Minsiz);
7192 end if;
7193 end;
7195 -- Check for shaving
7197 if Comes_From_Source (Typ) then
7198 if Orig_Lo < Expr_Value_R (Lo) then
7199 Error_Msg_N
7200 ("declared low bound of type & is outside type range??", Typ);
7201 Error_Msg_N
7202 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
7203 end if;
7205 if Orig_Hi > Expr_Value_R (Hi) then
7206 Error_Msg_N
7207 ("declared high bound of type & is outside type range??", Typ);
7208 Error_Msg_N
7209 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
7210 end if;
7211 end if;
7212 end Freeze_Fixed_Point_Type;
7214 ------------------
7215 -- Freeze_Itype --
7216 ------------------
7218 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
7219 L : List_Id;
7221 begin
7222 Set_Has_Delayed_Freeze (T);
7223 L := Freeze_Entity (T, N);
7225 if Is_Non_Empty_List (L) then
7226 Insert_Actions (N, L);
7227 end if;
7228 end Freeze_Itype;
7230 --------------------------
7231 -- Freeze_Static_Object --
7232 --------------------------
7234 procedure Freeze_Static_Object (E : Entity_Id) is
7236 Cannot_Be_Static : exception;
7237 -- Exception raised if the type of a static object cannot be made
7238 -- static. This happens if the type depends on non-global objects.
7240 procedure Ensure_Expression_Is_SA (N : Node_Id);
7241 -- Called to ensure that an expression used as part of a type definition
7242 -- is statically allocatable, which means that the expression type is
7243 -- statically allocatable, and the expression is either static, or a
7244 -- reference to a library level constant.
7246 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
7247 -- Called to mark a type as static, checking that it is possible
7248 -- to set the type as static. If it is not possible, then the
7249 -- exception Cannot_Be_Static is raised.
7251 -----------------------------
7252 -- Ensure_Expression_Is_SA --
7253 -----------------------------
7255 procedure Ensure_Expression_Is_SA (N : Node_Id) is
7256 Ent : Entity_Id;
7258 begin
7259 Ensure_Type_Is_SA (Etype (N));
7261 if Is_OK_Static_Expression (N) then
7262 return;
7264 elsif Nkind (N) = N_Identifier then
7265 Ent := Entity (N);
7267 if Present (Ent)
7268 and then Ekind (Ent) = E_Constant
7269 and then Is_Library_Level_Entity (Ent)
7270 then
7271 return;
7272 end if;
7273 end if;
7275 raise Cannot_Be_Static;
7276 end Ensure_Expression_Is_SA;
7278 -----------------------
7279 -- Ensure_Type_Is_SA --
7280 -----------------------
7282 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
7283 N : Node_Id;
7284 C : Entity_Id;
7286 begin
7287 -- If type is library level, we are all set
7289 if Is_Library_Level_Entity (Typ) then
7290 return;
7291 end if;
7293 -- We are also OK if the type already marked as statically allocated,
7294 -- which means we processed it before.
7296 if Is_Statically_Allocated (Typ) then
7297 return;
7298 end if;
7300 -- Mark type as statically allocated
7302 Set_Is_Statically_Allocated (Typ);
7304 -- Check that it is safe to statically allocate this type
7306 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
7307 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
7308 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
7310 elsif Is_Array_Type (Typ) then
7311 N := First_Index (Typ);
7312 while Present (N) loop
7313 Ensure_Type_Is_SA (Etype (N));
7314 Next_Index (N);
7315 end loop;
7317 Ensure_Type_Is_SA (Component_Type (Typ));
7319 elsif Is_Access_Type (Typ) then
7320 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
7322 declare
7323 F : Entity_Id;
7324 T : constant Entity_Id := Etype (Designated_Type (Typ));
7326 begin
7327 if T /= Standard_Void_Type then
7328 Ensure_Type_Is_SA (T);
7329 end if;
7331 F := First_Formal (Designated_Type (Typ));
7332 while Present (F) loop
7333 Ensure_Type_Is_SA (Etype (F));
7334 Next_Formal (F);
7335 end loop;
7336 end;
7338 else
7339 Ensure_Type_Is_SA (Designated_Type (Typ));
7340 end if;
7342 elsif Is_Record_Type (Typ) then
7343 C := First_Entity (Typ);
7344 while Present (C) loop
7345 if Ekind (C) = E_Discriminant
7346 or else Ekind (C) = E_Component
7347 then
7348 Ensure_Type_Is_SA (Etype (C));
7350 elsif Is_Type (C) then
7351 Ensure_Type_Is_SA (C);
7352 end if;
7354 Next_Entity (C);
7355 end loop;
7357 elsif Ekind (Typ) = E_Subprogram_Type then
7358 Ensure_Type_Is_SA (Etype (Typ));
7360 C := First_Formal (Typ);
7361 while Present (C) loop
7362 Ensure_Type_Is_SA (Etype (C));
7363 Next_Formal (C);
7364 end loop;
7366 else
7367 raise Cannot_Be_Static;
7368 end if;
7369 end Ensure_Type_Is_SA;
7371 -- Start of processing for Freeze_Static_Object
7373 begin
7374 Ensure_Type_Is_SA (Etype (E));
7376 exception
7377 when Cannot_Be_Static =>
7379 -- If the object that cannot be static is imported or exported, then
7380 -- issue an error message saying that this object cannot be imported
7381 -- or exported. If it has an address clause it is an overlay in the
7382 -- current partition and the static requirement is not relevant.
7383 -- Do not issue any error message when ignoring rep clauses.
7385 if Ignore_Rep_Clauses then
7386 null;
7388 elsif Is_Imported (E) then
7389 if No (Address_Clause (E)) then
7390 Error_Msg_N
7391 ("& cannot be imported (local type is not constant)", E);
7392 end if;
7394 -- Otherwise must be exported, something is wrong if compiler
7395 -- is marking something as statically allocated which cannot be).
7397 else pragma Assert (Is_Exported (E));
7398 Error_Msg_N
7399 ("& cannot be exported (local type is not constant)", E);
7400 end if;
7401 end Freeze_Static_Object;
7403 -----------------------
7404 -- Freeze_Subprogram --
7405 -----------------------
7407 procedure Freeze_Subprogram (E : Entity_Id) is
7408 Retype : Entity_Id;
7409 F : Entity_Id;
7411 begin
7412 -- Subprogram may not have an address clause unless it is imported
7414 if Present (Address_Clause (E)) then
7415 if not Is_Imported (E) then
7416 Error_Msg_N
7417 ("address clause can only be given " &
7418 "for imported subprogram",
7419 Name (Address_Clause (E)));
7420 end if;
7421 end if;
7423 -- Reset the Pure indication on an imported subprogram unless an
7424 -- explicit Pure_Function pragma was present or the subprogram is an
7425 -- intrinsic. We do this because otherwise it is an insidious error
7426 -- to call a non-pure function from pure unit and have calls
7427 -- mysteriously optimized away. What happens here is that the Import
7428 -- can bypass the normal check to ensure that pure units call only pure
7429 -- subprograms.
7431 -- The reason for the intrinsic exception is that in general, intrinsic
7432 -- functions (such as shifts) are pure anyway. The only exceptions are
7433 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
7434 -- in any case, so no problem arises.
7436 if Is_Imported (E)
7437 and then Is_Pure (E)
7438 and then not Has_Pragma_Pure_Function (E)
7439 and then not Is_Intrinsic_Subprogram (E)
7440 then
7441 Set_Is_Pure (E, False);
7442 end if;
7444 -- For non-foreign convention subprograms, this is where we create
7445 -- the extra formals (for accessibility level and constrained bit
7446 -- information). We delay this till the freeze point precisely so
7447 -- that we know the convention.
7449 if not Has_Foreign_Convention (E) then
7450 Create_Extra_Formals (E);
7451 Set_Mechanisms (E);
7453 -- If this is convention Ada and a Valued_Procedure, that's odd
7455 if Ekind (E) = E_Procedure
7456 and then Is_Valued_Procedure (E)
7457 and then Convention (E) = Convention_Ada
7458 and then Warn_On_Export_Import
7459 then
7460 Error_Msg_N
7461 ("??Valued_Procedure has no effect for convention Ada", E);
7462 Set_Is_Valued_Procedure (E, False);
7463 end if;
7465 -- Case of foreign convention
7467 else
7468 Set_Mechanisms (E);
7470 -- For foreign conventions, warn about return of unconstrained array
7472 if Ekind (E) = E_Function then
7473 Retype := Underlying_Type (Etype (E));
7475 -- If no return type, probably some other error, e.g. a
7476 -- missing full declaration, so ignore.
7478 if No (Retype) then
7479 null;
7481 -- If the return type is generic, we have emitted a warning
7482 -- earlier on, and there is nothing else to check here. Specific
7483 -- instantiations may lead to erroneous behavior.
7485 elsif Is_Generic_Type (Etype (E)) then
7486 null;
7488 -- Display warning if returning unconstrained array
7490 elsif Is_Array_Type (Retype)
7491 and then not Is_Constrained (Retype)
7493 -- Check appropriate warning is enabled (should we check for
7494 -- Warnings (Off) on specific entities here, probably so???)
7496 and then Warn_On_Export_Import
7498 -- Exclude the VM case, since return of unconstrained arrays
7499 -- is properly handled in both the JVM and .NET cases.
7501 and then VM_Target = No_VM
7502 then
7503 Error_Msg_N
7504 ("?x?foreign convention function& should not return " &
7505 "unconstrained array", E);
7506 return;
7507 end if;
7508 end if;
7510 -- If any of the formals for an exported foreign convention
7511 -- subprogram have defaults, then emit an appropriate warning since
7512 -- this is odd (default cannot be used from non-Ada code)
7514 if Is_Exported (E) then
7515 F := First_Formal (E);
7516 while Present (F) loop
7517 if Warn_On_Export_Import
7518 and then Present (Default_Value (F))
7519 then
7520 Error_Msg_N
7521 ("?x?parameter cannot be defaulted in non-Ada call",
7522 Default_Value (F));
7523 end if;
7525 Next_Formal (F);
7526 end loop;
7527 end if;
7528 end if;
7530 -- Pragma Inline_Always is disallowed for dispatching subprograms
7531 -- because the address of such subprograms is saved in the dispatch
7532 -- table to support dispatching calls, and dispatching calls cannot
7533 -- be inlined. This is consistent with the restriction against using
7534 -- 'Access or 'Address on an Inline_Always subprogram.
7536 if Is_Dispatching_Operation (E)
7537 and then Has_Pragma_Inline_Always (E)
7538 then
7539 Error_Msg_N
7540 ("pragma Inline_Always not allowed for dispatching subprograms", E);
7541 end if;
7543 -- Because of the implicit representation of inherited predefined
7544 -- operators in the front-end, the overriding status of the operation
7545 -- may be affected when a full view of a type is analyzed, and this is
7546 -- not captured by the analysis of the corresponding type declaration.
7547 -- Therefore the correctness of a not-overriding indicator must be
7548 -- rechecked when the subprogram is frozen.
7550 if Nkind (E) = N_Defining_Operator_Symbol
7551 and then not Error_Posted (Parent (E))
7552 then
7553 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
7554 end if;
7555 end Freeze_Subprogram;
7557 ----------------------
7558 -- Is_Fully_Defined --
7559 ----------------------
7561 function Is_Fully_Defined (T : Entity_Id) return Boolean is
7562 begin
7563 if Ekind (T) = E_Class_Wide_Type then
7564 return Is_Fully_Defined (Etype (T));
7566 elsif Is_Array_Type (T) then
7567 return Is_Fully_Defined (Component_Type (T));
7569 elsif Is_Record_Type (T)
7570 and not Is_Private_Type (T)
7571 then
7572 -- Verify that the record type has no components with private types
7573 -- without completion.
7575 declare
7576 Comp : Entity_Id;
7578 begin
7579 Comp := First_Component (T);
7580 while Present (Comp) loop
7581 if not Is_Fully_Defined (Etype (Comp)) then
7582 return False;
7583 end if;
7585 Next_Component (Comp);
7586 end loop;
7587 return True;
7588 end;
7590 -- For the designated type of an access to subprogram, all types in
7591 -- the profile must be fully defined.
7593 elsif Ekind (T) = E_Subprogram_Type then
7594 declare
7595 F : Entity_Id;
7597 begin
7598 F := First_Formal (T);
7599 while Present (F) loop
7600 if not Is_Fully_Defined (Etype (F)) then
7601 return False;
7602 end if;
7604 Next_Formal (F);
7605 end loop;
7607 return Is_Fully_Defined (Etype (T));
7608 end;
7610 else
7611 return not Is_Private_Type (T)
7612 or else Present (Full_View (Base_Type (T)));
7613 end if;
7614 end Is_Fully_Defined;
7616 ---------------------------------
7617 -- Process_Default_Expressions --
7618 ---------------------------------
7620 procedure Process_Default_Expressions
7621 (E : Entity_Id;
7622 After : in out Node_Id)
7624 Loc : constant Source_Ptr := Sloc (E);
7625 Dbody : Node_Id;
7626 Formal : Node_Id;
7627 Dcopy : Node_Id;
7628 Dnam : Entity_Id;
7630 begin
7631 Set_Default_Expressions_Processed (E);
7633 -- A subprogram instance and its associated anonymous subprogram share
7634 -- their signature. The default expression functions are defined in the
7635 -- wrapper packages for the anonymous subprogram, and should not be
7636 -- generated again for the instance.
7638 if Is_Generic_Instance (E)
7639 and then Present (Alias (E))
7640 and then Default_Expressions_Processed (Alias (E))
7641 then
7642 return;
7643 end if;
7645 Formal := First_Formal (E);
7646 while Present (Formal) loop
7647 if Present (Default_Value (Formal)) then
7649 -- We work with a copy of the default expression because we
7650 -- do not want to disturb the original, since this would mess
7651 -- up the conformance checking.
7653 Dcopy := New_Copy_Tree (Default_Value (Formal));
7655 -- The analysis of the expression may generate insert actions,
7656 -- which of course must not be executed. We wrap those actions
7657 -- in a procedure that is not called, and later on eliminated.
7658 -- The following cases have no side-effects, and are analyzed
7659 -- directly.
7661 if Nkind (Dcopy) = N_Identifier
7662 or else Nkind_In (Dcopy, N_Expanded_Name,
7663 N_Integer_Literal,
7664 N_Character_Literal,
7665 N_String_Literal,
7666 N_Real_Literal)
7667 or else (Nkind (Dcopy) = N_Attribute_Reference
7668 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
7669 or else Known_Null (Dcopy)
7670 then
7671 -- If there is no default function, we must still do a full
7672 -- analyze call on the default value, to ensure that all error
7673 -- checks are performed, e.g. those associated with static
7674 -- evaluation. Note: this branch will always be taken if the
7675 -- analyzer is turned off (but we still need the error checks).
7677 -- Note: the setting of parent here is to meet the requirement
7678 -- that we can only analyze the expression while attached to
7679 -- the tree. Really the requirement is that the parent chain
7680 -- be set, we don't actually need to be in the tree.
7682 Set_Parent (Dcopy, Declaration_Node (Formal));
7683 Analyze (Dcopy);
7685 -- Default expressions are resolved with their own type if the
7686 -- context is generic, to avoid anomalies with private types.
7688 if Ekind (Scope (E)) = E_Generic_Package then
7689 Resolve (Dcopy);
7690 else
7691 Resolve (Dcopy, Etype (Formal));
7692 end if;
7694 -- If that resolved expression will raise constraint error,
7695 -- then flag the default value as raising constraint error.
7696 -- This allows a proper error message on the calls.
7698 if Raises_Constraint_Error (Dcopy) then
7699 Set_Raises_Constraint_Error (Default_Value (Formal));
7700 end if;
7702 -- If the default is a parameterless call, we use the name of
7703 -- the called function directly, and there is no body to build.
7705 elsif Nkind (Dcopy) = N_Function_Call
7706 and then No (Parameter_Associations (Dcopy))
7707 then
7708 null;
7710 -- Else construct and analyze the body of a wrapper procedure
7711 -- that contains an object declaration to hold the expression.
7712 -- Given that this is done only to complete the analysis, it
7713 -- simpler to build a procedure than a function which might
7714 -- involve secondary stack expansion.
7716 else
7717 Dnam := Make_Temporary (Loc, 'D');
7719 Dbody :=
7720 Make_Subprogram_Body (Loc,
7721 Specification =>
7722 Make_Procedure_Specification (Loc,
7723 Defining_Unit_Name => Dnam),
7725 Declarations => New_List (
7726 Make_Object_Declaration (Loc,
7727 Defining_Identifier => Make_Temporary (Loc, 'T'),
7728 Object_Definition =>
7729 New_Occurrence_Of (Etype (Formal), Loc),
7730 Expression => New_Copy_Tree (Dcopy))),
7732 Handled_Statement_Sequence =>
7733 Make_Handled_Sequence_Of_Statements (Loc,
7734 Statements => Empty_List));
7736 Set_Scope (Dnam, Scope (E));
7737 Set_Assignment_OK (First (Declarations (Dbody)));
7738 Set_Is_Eliminated (Dnam);
7739 Insert_After (After, Dbody);
7740 Analyze (Dbody);
7741 After := Dbody;
7742 end if;
7743 end if;
7745 Next_Formal (Formal);
7746 end loop;
7747 end Process_Default_Expressions;
7749 ----------------------------------------
7750 -- Set_Component_Alignment_If_Not_Set --
7751 ----------------------------------------
7753 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
7754 begin
7755 -- Ignore if not base type, subtypes don't need anything
7757 if Typ /= Base_Type (Typ) then
7758 return;
7759 end if;
7761 -- Do not override existing representation
7763 if Is_Packed (Typ) then
7764 return;
7766 elsif Has_Specified_Layout (Typ) then
7767 return;
7769 elsif Component_Alignment (Typ) /= Calign_Default then
7770 return;
7772 else
7773 Set_Component_Alignment
7774 (Typ, Scope_Stack.Table
7775 (Scope_Stack.Last).Component_Alignment_Default);
7776 end if;
7777 end Set_Component_Alignment_If_Not_Set;
7779 --------------------------
7780 -- Set_SSO_From_Default --
7781 --------------------------
7783 procedure Set_SSO_From_Default (T : Entity_Id) is
7784 Reversed : Boolean;
7786 begin
7787 -- Set default SSO for an array or record base type, except in case of
7788 -- a type extension (which always inherits the SSO of its parent type).
7790 if Is_Base_Type (T)
7791 and then (Is_Array_Type (T)
7792 or else (Is_Record_Type (T)
7793 and then not (Is_Tagged_Type (T)
7794 and then Is_Derived_Type (T))))
7795 then
7796 Reversed :=
7797 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
7798 or else
7799 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
7801 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
7803 -- For a record type, if bit order is specified explicitly,
7804 -- then do not set SSO from default if not consistent. Note that
7805 -- we do not want to look at a Bit_Order attribute definition
7806 -- for a parent: if we were to inherit Bit_Order, then both
7807 -- SSO_Set_*_By_Default flags would have been cleared already
7808 -- (by Inherit_Aspects_At_Freeze_Point).
7810 and then not
7811 (Is_Record_Type (T)
7812 and then
7813 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
7814 and then Reverse_Bit_Order (T) /= Reversed)
7815 then
7816 -- If flags cause reverse storage order, then set the result. Note
7817 -- that we would have ignored the pragma setting the non default
7818 -- storage order in any case, hence the assertion at this point.
7820 pragma Assert
7821 (not Reversed or else Support_Nondefault_SSO_On_Target);
7823 Set_Reverse_Storage_Order (T, Reversed);
7825 -- For a record type, also set reversed bit order. Note: if a bit
7826 -- order has been specified explicitly, then this is a no-op.
7828 if Is_Record_Type (T) then
7829 Set_Reverse_Bit_Order (T, Reversed);
7830 end if;
7831 end if;
7832 end if;
7833 end Set_SSO_From_Default;
7835 ------------------
7836 -- Undelay_Type --
7837 ------------------
7839 procedure Undelay_Type (T : Entity_Id) is
7840 begin
7841 Set_Has_Delayed_Freeze (T, False);
7842 Set_Freeze_Node (T, Empty);
7844 -- Since we don't want T to have a Freeze_Node, we don't want its
7845 -- Full_View or Corresponding_Record_Type to have one either.
7847 -- ??? Fundamentally, this whole handling is unpleasant. What we really
7848 -- want is to be sure that for an Itype that's part of record R and is a
7849 -- subtype of type T, that it's frozen after the later of the freeze
7850 -- points of R and T. We have no way of doing that directly, so what we
7851 -- do is force most such Itypes to be frozen as part of freezing R via
7852 -- this procedure and only delay the ones that need to be delayed
7853 -- (mostly the designated types of access types that are defined as part
7854 -- of the record).
7856 if Is_Private_Type (T)
7857 and then Present (Full_View (T))
7858 and then Is_Itype (Full_View (T))
7859 and then Is_Record_Type (Scope (Full_View (T)))
7860 then
7861 Undelay_Type (Full_View (T));
7862 end if;
7864 if Is_Concurrent_Type (T)
7865 and then Present (Corresponding_Record_Type (T))
7866 and then Is_Itype (Corresponding_Record_Type (T))
7867 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
7868 then
7869 Undelay_Type (Corresponding_Record_Type (T));
7870 end if;
7871 end Undelay_Type;
7873 ------------------
7874 -- Warn_Overlay --
7875 ------------------
7877 procedure Warn_Overlay
7878 (Expr : Node_Id;
7879 Typ : Entity_Id;
7880 Nam : Entity_Id)
7882 Ent : constant Entity_Id := Entity (Nam);
7883 -- The object to which the address clause applies
7885 Init : Node_Id;
7886 Old : Entity_Id := Empty;
7887 Decl : Node_Id;
7889 begin
7890 -- No warning if address clause overlay warnings are off
7892 if not Address_Clause_Overlay_Warnings then
7893 return;
7894 end if;
7896 -- No warning if there is an explicit initialization
7898 Init := Original_Node (Expression (Declaration_Node (Ent)));
7900 if Present (Init) and then Comes_From_Source (Init) then
7901 return;
7902 end if;
7904 -- We only give the warning for non-imported entities of a type for
7905 -- which a non-null base init proc is defined, or for objects of access
7906 -- types with implicit null initialization, or when Normalize_Scalars
7907 -- applies and the type is scalar or a string type (the latter being
7908 -- tested for because predefined String types are initialized by inline
7909 -- code rather than by an init_proc). Note that we do not give the
7910 -- warning for Initialize_Scalars, since we suppressed initialization
7911 -- in this case. Also, do not warn if Suppress_Initialization is set.
7913 if Present (Expr)
7914 and then not Is_Imported (Ent)
7915 and then not Initialization_Suppressed (Typ)
7916 and then (Has_Non_Null_Base_Init_Proc (Typ)
7917 or else Is_Access_Type (Typ)
7918 or else (Normalize_Scalars
7919 and then (Is_Scalar_Type (Typ)
7920 or else Is_String_Type (Typ))))
7921 then
7922 if Nkind (Expr) = N_Attribute_Reference
7923 and then Is_Entity_Name (Prefix (Expr))
7924 then
7925 Old := Entity (Prefix (Expr));
7927 elsif Is_Entity_Name (Expr)
7928 and then Ekind (Entity (Expr)) = E_Constant
7929 then
7930 Decl := Declaration_Node (Entity (Expr));
7932 if Nkind (Decl) = N_Object_Declaration
7933 and then Present (Expression (Decl))
7934 and then Nkind (Expression (Decl)) = N_Attribute_Reference
7935 and then Is_Entity_Name (Prefix (Expression (Decl)))
7936 then
7937 Old := Entity (Prefix (Expression (Decl)));
7939 elsif Nkind (Expr) = N_Function_Call then
7940 return;
7941 end if;
7943 -- A function call (most likely to To_Address) is probably not an
7944 -- overlay, so skip warning. Ditto if the function call was inlined
7945 -- and transformed into an entity.
7947 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
7948 return;
7949 end if;
7951 Decl := Next (Parent (Expr));
7953 -- If a pragma Import follows, we assume that it is for the current
7954 -- target of the address clause, and skip the warning.
7956 if Present (Decl)
7957 and then Nkind (Decl) = N_Pragma
7958 and then Pragma_Name (Decl) = Name_Import
7959 then
7960 return;
7961 end if;
7963 if Present (Old) then
7964 Error_Msg_Node_2 := Old;
7965 Error_Msg_N
7966 ("default initialization of & may modify &??",
7967 Nam);
7968 else
7969 Error_Msg_N
7970 ("default initialization of & may modify overlaid storage??",
7971 Nam);
7972 end if;
7974 -- Add friendly warning if initialization comes from a packed array
7975 -- component.
7977 if Is_Record_Type (Typ) then
7978 declare
7979 Comp : Entity_Id;
7981 begin
7982 Comp := First_Component (Typ);
7983 while Present (Comp) loop
7984 if Nkind (Parent (Comp)) = N_Component_Declaration
7985 and then Present (Expression (Parent (Comp)))
7986 then
7987 exit;
7988 elsif Is_Array_Type (Etype (Comp))
7989 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
7990 then
7991 Error_Msg_NE
7992 ("\packed array component& " &
7993 "will be initialized to zero??",
7994 Nam, Comp);
7995 exit;
7996 else
7997 Next_Component (Comp);
7998 end if;
7999 end loop;
8000 end;
8001 end if;
8003 Error_Msg_N
8004 ("\use pragma Import for & to " &
8005 "suppress initialization (RM B.1(24))??",
8006 Nam);
8007 end if;
8008 end Warn_Overlay;
8010 end Freeze;