libobjc: Fix typos
[official-gcc.git] / gcc / ada / freeze.adb
blob882c026455ecc0fe1df35fb57173833c160dec99
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Einfo.Entities; use Einfo.Entities;
33 with Einfo.Utils; use Einfo.Utils;
34 with Elists; use Elists;
35 with Errout; use Errout;
36 with Exp_Ch3; use Exp_Ch3;
37 with Exp_Ch7; use Exp_Ch7;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Pakd; use Exp_Pakd;
40 with Exp_Util; use Exp_Util;
41 with Exp_Tss; use Exp_Tss;
42 with Ghost; use Ghost;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Local_Restrict;
46 with Namet; use Namet;
47 with Nlists; use Nlists;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch3; use Sem_Ch3;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Disp; use Sem_Disp;
62 with Sem_Eval; use Sem_Eval;
63 with Sem_Mech; use Sem_Mech;
64 with Sem_Prag; use Sem_Prag;
65 with Sem_Res; use Sem_Res;
66 with Sem_Util; use Sem_Util;
67 with Sinfo; use Sinfo;
68 with Sinfo.Nodes; use Sinfo.Nodes;
69 with Sinfo.Utils; use Sinfo.Utils;
70 with Snames; use Snames;
71 with Stand; use Stand;
72 with Stringt; use Stringt;
73 with Strub; use Strub;
74 with Targparm; use Targparm;
75 with Tbuild; use Tbuild;
76 with Ttypes; use Ttypes;
77 with Uintp; use Uintp;
78 with Urealp; use Urealp;
79 with Warnsw; use Warnsw;
81 package body Freeze is
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
88 -- Typ is a type that is being frozen. If no size clause is given,
89 -- but a default Esize has been computed, then this default Esize is
90 -- adjusted up if necessary to be consistent with a given alignment,
91 -- but never to a value greater than System_Max_Integer_Size. This is
92 -- used for all discrete types and for fixed-point types.
94 procedure Build_And_Analyze_Renamed_Body
95 (Decl : Node_Id;
96 New_S : Entity_Id;
97 After : in out Node_Id);
98 -- Build body for a renaming declaration, insert in tree and analyze
100 procedure Check_Address_Clause (E : Entity_Id);
101 -- Apply legality checks to address clauses for object declarations,
102 -- at the point the object is frozen. Also ensure any initialization is
103 -- performed only after the object has been frozen.
105 procedure Check_Component_Storage_Order
106 (Encl_Type : Entity_Id;
107 Comp : Entity_Id;
108 ADC : Node_Id;
109 Comp_ADC_Present : out Boolean);
110 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
111 -- clause, verify that the component type has an explicit and compatible
112 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
113 -- entity of the component under consideration. For an Encl_Type that
114 -- does not have a Scalar_Storage_Order attribute definition clause,
115 -- verify that the component also does not have such a clause.
116 -- ADC is the attribute definition clause if present (or Empty). On return,
117 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
118 -- attribute definition clause.
120 procedure Check_Debug_Info_Needed (T : Entity_Id);
121 -- As each entity is frozen, this routine is called to deal with the
122 -- setting of Debug_Info_Needed for the entity. This flag is set if
123 -- the entity comes from source, or if we are in Debug_Generated_Code
124 -- mode or if the -gnatdV debug flag is set. However, it never sets
125 -- the flag if Debug_Info_Off is set. This procedure also ensures that
126 -- subsidiary entities have the flag set as required.
128 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
129 -- When an expression function is frozen by a use of it, the expression
130 -- itself is frozen. Check that the expression does not include references
131 -- to deferred constants without completion. We report this at the freeze
132 -- point of the function, to provide a better error message.
134 -- In most cases the expression itself is frozen by the time the function
135 -- itself is frozen, because the formals will be frozen by then. However,
136 -- Attribute references to outer types are freeze points for those types;
137 -- this routine generates the required freeze nodes for them.
139 procedure Check_Strict_Alignment (E : Entity_Id);
140 -- E is a base type. If E is tagged or has a component that is aliased
141 -- or tagged or contains something this is aliased or tagged, set
142 -- Strict_Alignment.
144 procedure Check_Unsigned_Type (E : Entity_Id);
145 pragma Inline (Check_Unsigned_Type);
146 -- If E is a fixed-point or discrete type, then all the necessary work
147 -- to freeze it is completed except for possible setting of the flag
148 -- Is_Unsigned_Type, which is done by this procedure. The call has no
149 -- effect if the entity E is not a discrete or fixed-point type.
151 procedure Freeze_And_Append
152 (Ent : Entity_Id;
153 N : Node_Id;
154 Result : in out List_Id);
155 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
156 -- nodes to Result, modifying Result from No_List if necessary. N has
157 -- the same usage as in Freeze_Entity.
159 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
160 -- Freeze enumeration type. The Esize field is set as processing
161 -- proceeds (i.e. set by default when the type is declared and then
162 -- adjusted by rep clauses). What this procedure does is to make sure
163 -- that if a foreign convention is specified, and no specific size
164 -- is given, then the size must be at least Integer'Size.
166 procedure Freeze_Static_Object (E : Entity_Id);
167 -- If an object is frozen which has Is_Statically_Allocated set, then
168 -- all referenced types must also be marked with this flag. This routine
169 -- is in charge of meeting this requirement for the object entity E.
171 procedure Freeze_Subprogram (E : Entity_Id);
172 -- Perform freezing actions for a subprogram (create extra formals,
173 -- and set proper default mechanism values). Note that this routine
174 -- is not called for internal subprograms, for which neither of these
175 -- actions is needed (or desirable, we do not want for example to have
176 -- these extra formals present in initialization procedures, where they
177 -- would serve no purpose). In this call E is either a subprogram or
178 -- a subprogram type (i.e. an access to a subprogram).
180 function Is_Fully_Defined (T : Entity_Id) return Boolean;
181 -- True if T is not private and has no private components, or has a full
182 -- view. Used to determine whether the designated type of an access type
183 -- should be frozen when the access type is frozen. This is done when an
184 -- allocator is frozen, or an expression that may involve attributes of
185 -- the designated type. Otherwise freezing the access type does not freeze
186 -- the designated type.
188 procedure Process_Default_Expressions
189 (E : Entity_Id;
190 After : in out Node_Id);
191 -- This procedure is called for each subprogram to complete processing of
192 -- default expressions at the point where all types are known to be frozen.
193 -- The expressions must be analyzed in full, to make sure that all error
194 -- processing is done (they have only been preanalyzed). If the expression
195 -- is not an entity or literal, its analysis may generate code which must
196 -- not be executed. In that case we build a function body to hold that
197 -- code. This wrapper function serves no other purpose (it used to be
198 -- called to evaluate the default, but now the default is inlined at each
199 -- point of call).
201 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
202 -- Typ is a record or array type that is being frozen. This routine sets
203 -- the default component alignment from the scope stack values if the
204 -- alignment is otherwise not specified.
206 procedure Set_SSO_From_Default (T : Entity_Id);
207 -- T is a record or array type that is being frozen. If it is a base type,
208 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
209 -- will be set appropriately. Note that an explicit occurrence of aspect
210 -- Scalar_Storage_Order or an explicit setting of this aspect with an
211 -- attribute definition clause occurs, then these two flags are reset in
212 -- any case, so call will have no effect.
214 function Should_Freeze_Type
215 (Typ : Entity_Id;
216 E : Entity_Id;
217 N : Node_Id) return Boolean;
218 -- True if Typ should be frozen when the profile of E is being frozen at N.
220 -- ??? Expression functions that are not completions shouldn't freeze types
221 -- but our current expansion and freezing model requires an early freezing
222 -- when the tag of Typ is needed or for an aggregate with a subtype of Typ,
223 -- so we return True in these cases.
225 procedure Undelay_Type (T : Entity_Id);
226 -- T is a type of a component that we know to be an Itype. We don't want
227 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
228 -- Full_View or Corresponding_Record_Type.
230 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id);
231 -- Expr is the expression for an address clause for the entity denoted by
232 -- Nam whose type is Typ. If Typ has a default initialization, and there is
233 -- no explicit initialization in the source declaration, check whether the
234 -- address clause might cause overlaying of an entity, and emit a warning
235 -- on the side effect that the initialization will cause.
237 -------------------------------
238 -- Adjust_Esize_For_Alignment --
239 -------------------------------
241 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
242 Align : Uint;
244 begin
245 if Known_Esize (Typ) and then Known_Alignment (Typ) then
246 Align := Alignment_In_Bits (Typ);
248 if Align > Esize (Typ) then
249 if Align > System_Max_Integer_Size then
250 pragma Assert (Serious_Errors_Detected > 0);
251 else
252 Set_Esize (Typ, Align);
253 end if;
254 end if;
255 end if;
256 end Adjust_Esize_For_Alignment;
258 ------------------------------------
259 -- Build_And_Analyze_Renamed_Body --
260 ------------------------------------
262 procedure Build_And_Analyze_Renamed_Body
263 (Decl : Node_Id;
264 New_S : Entity_Id;
265 After : in out Node_Id)
267 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
268 Ent : constant Entity_Id := Defining_Entity (Decl);
269 Body_Node : Node_Id;
270 Renamed_Subp : Entity_Id;
272 begin
273 -- If the renamed subprogram is intrinsic, there is no need for a
274 -- wrapper body: we set the alias that will be called and expanded which
275 -- completes the declaration. This transformation is only legal if the
276 -- renamed entity has already been elaborated.
278 -- Note that it is legal for a renaming_as_body to rename an intrinsic
279 -- subprogram, as long as the renaming occurs before the new entity
280 -- is frozen (RM 8.5.4 (5)).
282 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
283 and then Is_Entity_Name (Name (Body_Decl))
284 then
285 Renamed_Subp := Entity (Name (Body_Decl));
286 else
287 Renamed_Subp := Empty;
288 end if;
290 if Present (Renamed_Subp)
291 and then Is_Intrinsic_Subprogram (Renamed_Subp)
292 and then
293 (not In_Same_Source_Unit (Renamed_Subp, Ent)
294 or else Sloc (Renamed_Subp) < Sloc (Ent))
296 -- We can make the renaming entity intrinsic if the renamed function
297 -- has an interface name, or if it is one of the shift/rotate
298 -- operations known to the compiler.
300 and then
301 (Present (Interface_Name (Renamed_Subp))
302 or else Chars (Renamed_Subp) in Name_Rotate_Left
303 | Name_Rotate_Right
304 | Name_Shift_Left
305 | Name_Shift_Right
306 | Name_Shift_Right_Arithmetic)
307 then
308 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
310 if Present (Alias (Renamed_Subp)) then
311 Set_Alias (Ent, Alias (Renamed_Subp));
312 else
313 Set_Alias (Ent, Renamed_Subp);
314 end if;
316 Set_Is_Intrinsic_Subprogram (Ent);
317 Set_Has_Completion (Ent);
319 else
320 Body_Node := Build_Renamed_Body (Decl, New_S);
321 Insert_After (After, Body_Node);
322 Mark_Rewrite_Insertion (Body_Node);
323 Analyze (Body_Node);
324 After := Body_Node;
325 end if;
326 end Build_And_Analyze_Renamed_Body;
328 ------------------------
329 -- Build_Renamed_Body --
330 ------------------------
332 function Build_Renamed_Body
333 (Decl : Node_Id;
334 New_S : Entity_Id) return Node_Id
336 Loc : constant Source_Ptr := Sloc (New_S);
337 -- We use for the source location of the renamed body, the location of
338 -- the spec entity. It might seem more natural to use the location of
339 -- the renaming declaration itself, but that would be wrong, since then
340 -- the body we create would look as though it was created far too late,
341 -- and this could cause problems with elaboration order analysis,
342 -- particularly in connection with instantiations.
344 N : constant Node_Id := Unit_Declaration_Node (New_S);
345 Nam : constant Node_Id := Name (N);
346 Old_S : Entity_Id;
347 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
348 Actuals : List_Id;
349 Call_Node : Node_Id;
350 Call_Name : Node_Id;
351 Body_Node : Node_Id;
352 Formal : Entity_Id;
353 O_Formal : Entity_Id;
354 Param_Spec : Node_Id;
356 Pref : Node_Id := Empty;
357 -- If the renamed entity is a primitive operation given in prefix form,
358 -- the prefix is the target object and it has to be added as the first
359 -- actual in the generated call.
361 begin
362 -- Determine the entity being renamed, which is the target of the call
363 -- statement. If the name is an explicit dereference, this is a renaming
364 -- of a subprogram type rather than a subprogram. The name itself is
365 -- fully analyzed.
367 if Nkind (Nam) = N_Selected_Component then
368 Old_S := Entity (Selector_Name (Nam));
370 elsif Nkind (Nam) = N_Explicit_Dereference then
371 Old_S := Etype (Nam);
373 elsif Nkind (Nam) = N_Indexed_Component then
374 if Is_Entity_Name (Prefix (Nam)) then
375 Old_S := Entity (Prefix (Nam));
376 else
377 Old_S := Entity (Selector_Name (Prefix (Nam)));
378 end if;
380 elsif Nkind (Nam) = N_Character_Literal then
381 Old_S := Etype (New_S);
383 else
384 Old_S := Entity (Nam);
385 end if;
387 if Is_Entity_Name (Nam) then
389 -- If the renamed entity is a predefined operator, retain full name
390 -- to ensure its visibility.
392 if Ekind (Old_S) = E_Operator
393 and then Nkind (Nam) = N_Expanded_Name
394 then
395 Call_Name := New_Copy (Name (N));
396 else
397 Call_Name := New_Occurrence_Of (Old_S, Loc);
398 end if;
400 else
401 if Nkind (Nam) = N_Selected_Component
402 and then Present (First_Formal (Old_S))
403 and then
404 (Is_Controlling_Formal (First_Formal (Old_S))
405 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
406 then
408 -- Retrieve the target object, to be added as a first actual
409 -- in the call.
411 Call_Name := New_Occurrence_Of (Old_S, Loc);
412 Pref := Prefix (Nam);
414 else
415 Call_Name := New_Copy (Name (N));
416 end if;
418 -- Original name may have been overloaded, but is fully resolved now
420 Set_Is_Overloaded (Call_Name, False);
421 end if;
423 if Nkind (Decl) /= N_Subprogram_Declaration then
424 Rewrite (N,
425 Make_Subprogram_Declaration (Loc,
426 Specification => Specification (N)));
427 end if;
429 -- For simple renamings, subsequent calls can be expanded directly as
430 -- calls to the renamed entity. The body must be generated in any case
431 -- for calls that may appear elsewhere. This is not done in the case
432 -- where the subprogram is an instantiation because the actual proper
433 -- body has not been built yet.
435 if Ekind (Old_S) in E_Function | E_Procedure
436 and then not Is_Generic_Instance (Old_S)
437 then
438 Set_Body_To_Inline (Decl, Old_S);
439 end if;
441 -- Check whether the return type is a limited view. If the subprogram
442 -- is already frozen the generated body may have a non-limited view
443 -- of the type, that must be used, because it is the one in the spec
444 -- of the renaming declaration.
446 if Ekind (Old_S) = E_Function
447 and then Is_Entity_Name (Result_Definition (Spec))
448 then
449 declare
450 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
451 begin
452 if Has_Non_Limited_View (Ret_Type) then
453 Set_Result_Definition
454 (Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
455 end if;
456 end;
457 end if;
459 -- The body generated for this renaming is an internal artifact, and
460 -- does not constitute a freeze point for the called entity.
462 Set_Must_Not_Freeze (Call_Name);
464 Formal := First_Formal (Defining_Entity (Decl));
466 if Present (Pref) then
467 declare
468 Pref_Type : constant Entity_Id := Etype (Pref);
469 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
471 begin
472 -- The controlling formal may be an access parameter, or the
473 -- actual may be an access value, so adjust accordingly.
475 if Is_Access_Type (Pref_Type)
476 and then not Is_Access_Type (Form_Type)
477 then
478 Actuals := New_List
479 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
481 elsif Is_Access_Type (Form_Type)
482 and then not Is_Access_Type (Pref)
483 then
484 Actuals :=
485 New_List (
486 Make_Attribute_Reference (Loc,
487 Attribute_Name => Name_Access,
488 Prefix => Relocate_Node (Pref)));
489 else
490 Actuals := New_List (Pref);
491 end if;
492 end;
494 elsif Present (Formal) then
495 Actuals := New_List;
497 else
498 Actuals := No_List;
499 end if;
501 while Present (Formal) loop
502 Append (New_Occurrence_Of (Formal, Loc), Actuals);
503 Next_Formal (Formal);
504 end loop;
506 -- If the renamed entity is an entry, inherit its profile. For other
507 -- renamings as bodies, both profiles must be subtype conformant, so it
508 -- is not necessary to replace the profile given in the declaration.
509 -- However, default values that are aggregates are rewritten when
510 -- partially analyzed, so we recover the original aggregate to insure
511 -- that subsequent conformity checking works. Similarly, if the default
512 -- expression was constant-folded, recover the original expression.
514 Formal := First_Formal (Defining_Entity (Decl));
516 if Present (Formal) then
517 O_Formal := First_Formal (Old_S);
518 Param_Spec := First (Parameter_Specifications (Spec));
519 while Present (Formal) loop
520 if Is_Entry (Old_S) then
521 if Nkind (Parameter_Type (Param_Spec)) /=
522 N_Access_Definition
523 then
524 Set_Etype (Formal, Etype (O_Formal));
525 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
526 end if;
528 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
529 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
530 Nkind (Default_Value (O_Formal))
531 then
532 Set_Expression (Param_Spec,
533 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
534 end if;
536 Next_Formal (Formal);
537 Next_Formal (O_Formal);
538 Next (Param_Spec);
539 end loop;
540 end if;
542 -- If the renamed entity is a function, the generated body contains a
543 -- return statement. Otherwise, build a procedure call. If the entity is
544 -- an entry, subsequent analysis of the call will transform it into the
545 -- proper entry or protected operation call. If the renamed entity is
546 -- a character literal, return it directly.
548 if Ekind (Old_S) = E_Function
549 or else Ekind (Old_S) = E_Operator
550 or else (Ekind (Old_S) = E_Subprogram_Type
551 and then Etype (Old_S) /= Standard_Void_Type)
552 then
553 Call_Node :=
554 Make_Simple_Return_Statement (Loc,
555 Expression =>
556 Make_Function_Call (Loc,
557 Name => Call_Name,
558 Parameter_Associations => Actuals));
560 elsif Ekind (Old_S) = E_Enumeration_Literal then
561 Call_Node :=
562 Make_Simple_Return_Statement (Loc,
563 Expression => New_Occurrence_Of (Old_S, Loc));
565 elsif Nkind (Nam) = N_Character_Literal then
566 Call_Node :=
567 Make_Simple_Return_Statement (Loc, Expression => Call_Name);
569 else
570 Call_Node :=
571 Make_Procedure_Call_Statement (Loc,
572 Name => Call_Name,
573 Parameter_Associations => Actuals);
574 end if;
576 -- Create entities for subprogram body and formals
578 Set_Defining_Unit_Name (Spec,
579 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
581 Param_Spec := First (Parameter_Specifications (Spec));
582 while Present (Param_Spec) loop
583 Set_Defining_Identifier (Param_Spec,
584 Make_Defining_Identifier (Loc,
585 Chars => Chars (Defining_Identifier (Param_Spec))));
586 Next (Param_Spec);
587 end loop;
589 -- Copy SPARK pragma from renaming declaration
591 Set_SPARK_Pragma
592 (Defining_Unit_Name (Spec), SPARK_Pragma (New_S));
593 Set_SPARK_Pragma_Inherited
594 (Defining_Unit_Name (Spec), SPARK_Pragma_Inherited (New_S));
596 -- In GNATprove, prefer to generate an expression function whenever
597 -- possible, to benefit from the more precise analysis in that case
598 -- (as if an implicit postcondition had been generated).
600 if GNATprove_Mode
601 and then Nkind (Call_Node) = N_Simple_Return_Statement
602 then
603 Body_Node :=
604 Make_Expression_Function (Loc,
605 Specification => Spec,
606 Expression => Expression (Call_Node));
607 else
608 Body_Node :=
609 Make_Subprogram_Body (Loc,
610 Specification => Spec,
611 Declarations => New_List,
612 Handled_Statement_Sequence =>
613 Make_Handled_Sequence_Of_Statements (Loc,
614 Statements => New_List (Call_Node)));
615 end if;
617 -- Link the body to the entity whose declaration it completes. If
618 -- the body is analyzed when the renamed entity is frozen, it may
619 -- be necessary to restore the proper scope (see package Exp_Ch13).
621 if Nkind (N) = N_Subprogram_Renaming_Declaration
622 and then Present (Corresponding_Spec (N))
623 then
624 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
625 else
626 Set_Corresponding_Spec (Body_Node, New_S);
627 end if;
629 return Body_Node;
630 end Build_Renamed_Body;
632 --------------------------
633 -- Check_Address_Clause --
634 --------------------------
636 procedure Check_Address_Clause (E : Entity_Id) is
637 Addr : constant Node_Id := Address_Clause (E);
638 Typ : constant Entity_Id := Etype (E);
639 Decl : Node_Id;
640 Expr : Node_Id;
641 Init : Node_Id;
642 Lhs : Node_Id;
643 Tag_Assign : Node_Id;
645 begin
646 if Present (Addr) then
648 -- For a deferred constant, the initialization value is on full view
650 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
651 Decl := Declaration_Node (Full_View (E));
652 else
653 Decl := Declaration_Node (E);
654 end if;
656 Expr := Expression (Addr);
658 if Needs_Constant_Address (Decl, Typ) then
659 Check_Constant_Address_Clause (Expr, E);
661 -- Has_Delayed_Freeze was set on E when the address clause was
662 -- analyzed, and must remain set because we want the address
663 -- clause to be elaborated only after any entity it references
664 -- has been elaborated.
665 end if;
667 -- If Rep_Clauses are to be ignored, remove address clause from
668 -- list attached to entity, because it may be illegal for gigi,
669 -- for example by breaking order of elaboration.
671 if Ignore_Rep_Clauses then
672 declare
673 Rep : Node_Id;
675 begin
676 Rep := First_Rep_Item (E);
678 if Rep = Addr then
679 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
681 else
682 while Present (Rep)
683 and then Next_Rep_Item (Rep) /= Addr
684 loop
685 Next_Rep_Item (Rep);
686 end loop;
687 end if;
689 if Present (Rep) then
690 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
691 end if;
692 end;
694 -- And now remove the address clause
696 Kill_Rep_Clause (Addr);
698 elsif not Error_Posted (Expr)
699 and then not Needs_Finalization (Typ)
700 then
701 Warn_Overlay (Expr, Typ, Name (Addr));
702 end if;
704 Init := Expression (Decl);
706 -- If a variable, or a non-imported constant, overlays a constant
707 -- object and has an initialization value, then the initialization
708 -- may end up writing into read-only memory. Detect the cases of
709 -- statically identical values and remove the initialization. In
710 -- the other cases, give a warning. We will give other warnings
711 -- later for the variable if it is assigned.
713 if (Ekind (E) = E_Variable
714 or else (Ekind (E) = E_Constant
715 and then not Is_Imported (E)))
716 and then Overlays_Constant (E)
717 and then Present (Init)
718 then
719 declare
720 O_Ent : Entity_Id;
721 Off : Boolean;
723 begin
724 Find_Overlaid_Entity (Addr, O_Ent, Off);
726 if Ekind (O_Ent) = E_Constant
727 and then Etype (O_Ent) = Typ
728 and then Present (Constant_Value (O_Ent))
729 and then Compile_Time_Compare
730 (Init,
731 Constant_Value (O_Ent),
732 Assume_Valid => True) = EQ
733 then
734 Set_No_Initialization (Decl);
735 return;
737 elsif Comes_From_Source (Init)
738 and then Address_Clause_Overlay_Warnings
739 then
740 Error_Msg_Sloc := Sloc (Addr);
741 Error_Msg_NE
742 ("?o?constant& may be modified via address clause#",
743 Decl, O_Ent);
744 end if;
745 end;
746 end if;
748 -- Remove side effects from initial expression, except in the case of
749 -- limited build-in-place calls and aggregates, which have their own
750 -- expansion elsewhere. This exception is necessary to avoid copying
751 -- limited objects.
753 if Present (Init)
754 and then not Is_Inherently_Limited_Type (Typ)
755 then
756 -- Capture initialization value at point of declaration, and make
757 -- explicit assignment legal, because object may be a constant.
759 Remove_Side_Effects (Init);
760 Lhs := New_Occurrence_Of (E, Sloc (Decl));
761 Set_Assignment_OK (Lhs);
763 -- Move initialization to freeze actions, once the object has
764 -- been frozen and the address clause alignment check has been
765 -- performed.
767 Append_Freeze_Action (E,
768 Make_Assignment_Statement (Sloc (Decl),
769 Name => Lhs,
770 Expression => Expression (Decl)));
772 Set_No_Initialization (Decl);
774 -- If the object is tagged, check whether the tag must be
775 -- reassigned explicitly.
777 Tag_Assign := Make_Tag_Assignment (Decl);
778 if Present (Tag_Assign) then
779 Append_Freeze_Action (E, Tag_Assign);
780 end if;
781 end if;
782 end if;
783 end Check_Address_Clause;
785 -----------------------------
786 -- Check_Compile_Time_Size --
787 -----------------------------
789 procedure Check_Compile_Time_Size (T : Entity_Id) is
791 procedure Set_Small_Size (T : Entity_Id; S : Uint);
792 -- Sets the compile time known size in the RM_Size field of T, checking
793 -- for a size clause that was given which attempts to give a small size.
795 function Size_Known (T : Entity_Id) return Boolean;
796 -- Recursive function that does all the work
798 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
799 -- If T is a constrained subtype, its size is not known if any of its
800 -- discriminant constraints is not static and it is not a null record.
801 -- The test is conservative and doesn't check that the components are
802 -- in fact constrained by non-static discriminant values. Could be made
803 -- more precise ???
805 --------------------
806 -- Set_Small_Size --
807 --------------------
809 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
810 begin
811 if S > System_Max_Integer_Size then
812 return;
814 -- Check for bad size clause given
816 elsif Has_Size_Clause (T) then
817 if RM_Size (T) < S then
818 Error_Msg_Uint_1 := S;
819 Error_Msg_NE (Size_Too_Small_Message, Size_Clause (T), T);
820 end if;
822 -- Set size if not set already. Do not set it to Uint_0, because in
823 -- some cases (notably array-of-record), the Component_Size is
824 -- No_Uint, which causes S to be Uint_0. Presumably the RM_Size and
825 -- Component_Size will eventually be set correctly by the back end.
827 elsif not Known_RM_Size (T) and then S /= Uint_0 then
828 Set_RM_Size (T, S);
829 end if;
830 end Set_Small_Size;
832 ----------------
833 -- Size_Known --
834 ----------------
836 function Size_Known (T : Entity_Id) return Boolean is
837 Comp : Entity_Id;
838 Ctyp : Entity_Id;
840 begin
841 if Size_Known_At_Compile_Time (T) then
842 return True;
844 -- Always True for elementary types, even generic formal elementary
845 -- types. We used to return False in the latter case, but the size
846 -- is known at compile time, even in the template, we just do not
847 -- know the exact size but that's not the point of this routine.
849 elsif Is_Elementary_Type (T) or else Is_Task_Type (T) then
850 return True;
852 -- Array types
854 elsif Is_Array_Type (T) then
856 -- String literals always have known size, and we can set it
858 if Ekind (T) = E_String_Literal_Subtype then
859 if Known_Component_Size (T) then
860 Set_Small_Size
861 (T, Component_Size (T) * String_Literal_Length (T));
863 else
864 -- The following is wrong, but does what previous versions
865 -- did. The Component_Size is unknown for the string in a
866 -- pragma Warnings.
867 Set_Small_Size (T, Uint_0);
868 end if;
870 return True;
872 -- Unconstrained types never have known at compile time size
874 elsif not Is_Constrained (T) then
875 return False;
877 -- Don't do any recursion on type with error posted, since we may
878 -- have a malformed type that leads us into a loop.
880 elsif Error_Posted (T) then
881 return False;
883 -- Otherwise if component size unknown, then array size unknown
885 elsif not Size_Known (Component_Type (T)) then
886 return False;
887 end if;
889 -- Check for all indexes static, and also compute possible size
890 -- (in case it is not greater than System_Max_Integer_Size and
891 -- thus may be packable).
893 declare
894 Index : Entity_Id;
895 Low : Node_Id;
896 High : Node_Id;
897 Size : Uint := Component_Size (T);
898 Dim : Uint;
900 begin
901 -- See comment in Set_Small_Size above
903 if No (Size) then
904 Size := Uint_0;
905 end if;
907 Index := First_Index (T);
908 while Present (Index) loop
909 if Nkind (Index) = N_Range then
910 Get_Index_Bounds (Index, Low, High);
912 elsif Error_Posted (Scalar_Range (Etype (Index))) then
913 return False;
915 else
916 Low := Type_Low_Bound (Etype (Index));
917 High := Type_High_Bound (Etype (Index));
918 end if;
920 if not Compile_Time_Known_Value (Low)
921 or else not Compile_Time_Known_Value (High)
922 or else Etype (Index) = Any_Type
923 then
924 return False;
926 else
927 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
929 if Dim > Uint_0 then
930 Size := Size * Dim;
931 else
932 Size := Uint_0;
933 end if;
934 end if;
936 Next_Index (Index);
937 end loop;
939 Set_Small_Size (T, Size);
940 return True;
941 end;
943 -- For non-generic private types, go to underlying type if present
945 elsif Is_Private_Type (T)
946 and then not Is_Generic_Type (T)
947 and then Present (Underlying_Type (T))
948 then
949 -- Don't do any recursion on type with error posted, since we may
950 -- have a malformed type that leads us into a loop.
952 if Error_Posted (T) then
953 return False;
954 else
955 return Size_Known (Underlying_Type (T));
956 end if;
958 -- Record types
960 elsif Is_Record_Type (T) then
962 -- A subtype of a variant record must not have non-static
963 -- discriminated components.
965 if T /= Base_Type (T)
966 and then not Static_Discriminated_Components (T)
967 then
968 return False;
970 -- Don't do any recursion on type with error posted, since we may
971 -- have a malformed type that leads us into a loop.
973 elsif Error_Posted (T) then
974 return False;
975 end if;
977 -- Now look at the components of the record
979 declare
980 -- The following two variables are used to keep track of the
981 -- size of packed records if we can tell the size of the packed
982 -- record in the front end. Packed_Size_Known is True if so far
983 -- we can figure out the size. It is initialized to True for a
984 -- packed record, unless the record has either discriminants or
985 -- independent components, or is a strict-alignment type, since
986 -- it cannot be fully packed in this case.
988 -- The reason we eliminate the discriminated case is that
989 -- we don't know the way the back end lays out discriminated
990 -- packed records. If Packed_Size_Known is True, then
991 -- Packed_Size is the size in bits so far.
993 Packed_Size_Known : Boolean :=
994 Is_Packed (T)
995 and then not Has_Discriminants (T)
996 and then not Has_Independent_Components (T)
997 and then not Strict_Alignment (T);
999 Packed_Size : Uint := Uint_0;
1000 -- Size in bits so far
1002 begin
1003 -- Test for variant part present
1005 if Has_Discriminants (T)
1006 and then Present (Parent (T))
1007 and then Nkind (Parent (T)) = N_Full_Type_Declaration
1008 and then Nkind (Type_Definition (Parent (T))) =
1009 N_Record_Definition
1010 and then not Null_Present (Type_Definition (Parent (T)))
1011 and then
1012 Present (Variant_Part
1013 (Component_List (Type_Definition (Parent (T)))))
1014 then
1015 -- If variant part is present, and type is unconstrained,
1016 -- then we must have defaulted discriminants, or a size
1017 -- clause must be present for the type, or else the size
1018 -- is definitely not known at compile time.
1020 if not Is_Constrained (T)
1021 and then
1022 No (Discriminant_Default_Value (First_Discriminant (T)))
1023 and then not Known_RM_Size (T)
1024 and then not Known_Esize (T)
1025 then
1026 return False;
1027 end if;
1028 end if;
1030 -- Loop through components
1032 Comp := First_Component_Or_Discriminant (T);
1033 while Present (Comp) loop
1034 Ctyp := Etype (Comp);
1036 -- We do not know the packed size if there is a component
1037 -- clause present (we possibly could, but this would only
1038 -- help in the case of a record with partial rep clauses.
1039 -- That's because in the case of full rep clauses, the
1040 -- size gets figured out anyway by a different circuit).
1042 if Present (Component_Clause (Comp)) then
1043 Packed_Size_Known := False;
1044 end if;
1046 -- We do not know the packed size for an independent
1047 -- component or if it is of a strict-alignment type,
1048 -- since packing does not touch these (RM 13.2(7)).
1050 if Is_Independent (Comp)
1051 or else Is_Independent (Ctyp)
1052 or else Strict_Alignment (Ctyp)
1053 then
1054 Packed_Size_Known := False;
1055 end if;
1057 -- We need to identify a component that is an array where
1058 -- the index type is an enumeration type with non-standard
1059 -- representation, and some bound of the type depends on a
1060 -- discriminant.
1062 -- This is because gigi computes the size by doing a
1063 -- substitution of the appropriate discriminant value in
1064 -- the size expression for the base type, and gigi is not
1065 -- clever enough to evaluate the resulting expression (which
1066 -- involves a call to rep_to_pos) at compile time.
1068 -- It would be nice if gigi would either recognize that
1069 -- this expression can be computed at compile time, or
1070 -- alternatively figured out the size from the subtype
1071 -- directly, where all the information is at hand ???
1073 if Is_Array_Type (Etype (Comp))
1074 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
1075 then
1076 declare
1077 Ocomp : constant Entity_Id :=
1078 Original_Record_Component (Comp);
1079 OCtyp : constant Entity_Id := Etype (Ocomp);
1080 Ind : Node_Id;
1081 Indtyp : Entity_Id;
1082 Lo, Hi : Node_Id;
1084 begin
1085 Ind := First_Index (OCtyp);
1086 while Present (Ind) loop
1087 Indtyp := Etype (Ind);
1089 if Is_Enumeration_Type (Indtyp)
1090 and then Has_Non_Standard_Rep (Indtyp)
1091 then
1092 Lo := Type_Low_Bound (Indtyp);
1093 Hi := Type_High_Bound (Indtyp);
1095 if Is_Entity_Name (Lo)
1096 and then Ekind (Entity (Lo)) = E_Discriminant
1097 then
1098 return False;
1100 elsif Is_Entity_Name (Hi)
1101 and then Ekind (Entity (Hi)) = E_Discriminant
1102 then
1103 return False;
1104 end if;
1105 end if;
1107 Next_Index (Ind);
1108 end loop;
1109 end;
1110 end if;
1112 -- Clearly size of record is not known if the size of one of
1113 -- the components is not known.
1115 if not Size_Known (Ctyp) then
1116 return False;
1117 end if;
1119 -- Accumulate packed size if possible
1121 if Packed_Size_Known then
1123 -- We can deal with elementary types, small packed arrays
1124 -- if the representation is a modular type and also small
1125 -- record types as checked by Set_Small_Size.
1127 if Is_Elementary_Type (Ctyp)
1128 or else (Is_Array_Type (Ctyp)
1129 and then Present
1130 (Packed_Array_Impl_Type (Ctyp))
1131 and then Is_Modular_Integer_Type
1132 (Packed_Array_Impl_Type (Ctyp)))
1133 or else Is_Record_Type (Ctyp)
1134 then
1135 -- If RM_Size is known and static, then we can keep
1136 -- accumulating the packed size.
1138 if Known_Static_RM_Size (Ctyp) then
1140 Packed_Size := Packed_Size + RM_Size (Ctyp);
1142 -- If we have a field whose RM_Size is not known then
1143 -- we can't figure out the packed size here.
1145 else
1146 Packed_Size_Known := False;
1147 end if;
1149 -- For other types we can't figure out the packed size
1151 else
1152 Packed_Size_Known := False;
1153 end if;
1154 end if;
1156 Next_Component_Or_Discriminant (Comp);
1157 end loop;
1159 if Packed_Size_Known then
1160 Set_Small_Size (T, Packed_Size);
1161 end if;
1163 return True;
1164 end;
1166 -- All other cases, size not known at compile time
1168 else
1169 return False;
1170 end if;
1171 end Size_Known;
1173 -------------------------------------
1174 -- Static_Discriminated_Components --
1175 -------------------------------------
1177 function Static_Discriminated_Components
1178 (T : Entity_Id) return Boolean
1180 Constraint : Elmt_Id;
1182 begin
1183 if Has_Discriminants (T)
1184 and then Present (Discriminant_Constraint (T))
1185 and then Present (First_Component (T))
1186 then
1187 Constraint := First_Elmt (Discriminant_Constraint (T));
1188 while Present (Constraint) loop
1189 if not Compile_Time_Known_Value (Node (Constraint)) then
1190 return False;
1191 end if;
1193 Next_Elmt (Constraint);
1194 end loop;
1195 end if;
1197 return True;
1198 end Static_Discriminated_Components;
1200 -- Start of processing for Check_Compile_Time_Size
1202 begin
1203 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1204 end Check_Compile_Time_Size;
1206 -----------------------------------
1207 -- Check_Component_Storage_Order --
1208 -----------------------------------
1210 procedure Check_Component_Storage_Order
1211 (Encl_Type : Entity_Id;
1212 Comp : Entity_Id;
1213 ADC : Node_Id;
1214 Comp_ADC_Present : out Boolean)
1216 Comp_Base : Entity_Id;
1217 Comp_ADC : Node_Id;
1218 Encl_Base : Entity_Id;
1219 Err_Node : Node_Id;
1221 Component_Aliased : Boolean;
1223 Comp_Byte_Aligned : Boolean := False;
1224 -- Set for the record case, True if Comp is aligned on byte boundaries
1225 -- (in which case it is allowed to have different storage order).
1227 Comp_SSO_Differs : Boolean;
1228 -- Set True when the component is a nested composite, and it does not
1229 -- have the same scalar storage order as Encl_Type.
1231 begin
1232 -- Record case
1234 if Present (Comp) then
1235 Err_Node := Comp;
1236 Comp_Base := Etype (Comp);
1238 if Is_Tag (Comp) then
1239 Comp_Byte_Aligned := True;
1240 Component_Aliased := False;
1242 else
1243 -- If a component clause is present, check if the component starts
1244 -- and ends on byte boundaries. Otherwise conservatively assume it
1245 -- does so only in the case where the record is not packed.
1247 if Present (Component_Clause (Comp)) then
1248 Comp_Byte_Aligned :=
1249 Known_Normalized_First_Bit (Comp)
1250 and then
1251 Known_Esize (Comp)
1252 and then
1253 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0
1254 and then
1255 Esize (Comp) mod System_Storage_Unit = 0;
1256 else
1257 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1258 end if;
1260 Component_Aliased := Is_Aliased (Comp);
1261 end if;
1263 -- Array case
1265 else
1266 Err_Node := Encl_Type;
1267 Comp_Base := Component_Type (Encl_Type);
1269 Component_Aliased := Has_Aliased_Components (Encl_Type);
1270 end if;
1272 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1273 -- the attribute definition clause is attached to the first subtype.
1274 -- Also, if the base type is incomplete or private, go to full view
1275 -- if known
1277 Encl_Base := Base_Type (Encl_Type);
1278 if Present (Underlying_Type (Encl_Base)) then
1279 Encl_Base := Underlying_Type (Encl_Base);
1280 end if;
1282 Comp_Base := Base_Type (Comp_Base);
1283 if Present (Underlying_Type (Comp_Base)) then
1284 Comp_Base := Underlying_Type (Comp_Base);
1285 end if;
1287 Comp_ADC :=
1288 Get_Attribute_Definition_Clause
1289 (First_Subtype (Comp_Base), Attribute_Scalar_Storage_Order);
1290 Comp_ADC_Present := Present (Comp_ADC);
1292 -- Case of record or array component: check storage order compatibility.
1293 -- But, if the record has Complex_Representation, then it is treated as
1294 -- a scalar in the back end so the storage order is irrelevant.
1296 if (Is_Record_Type (Comp_Base)
1297 and then not Has_Complex_Representation (Comp_Base))
1298 or else Is_Array_Type (Comp_Base)
1299 then
1300 Comp_SSO_Differs :=
1301 Reverse_Storage_Order (Encl_Base) /=
1302 Reverse_Storage_Order (Comp_Base);
1304 -- Parent and extension must have same storage order
1306 if Present (Comp) and then Chars (Comp) = Name_uParent then
1307 if Comp_SSO_Differs then
1308 Error_Msg_N
1309 ("record extension must have same scalar storage order as "
1310 & "parent", Err_Node);
1311 end if;
1313 -- If component and composite SSO differs, check that component
1314 -- falls on byte boundaries and isn't bit packed.
1316 elsif Comp_SSO_Differs then
1318 -- Component SSO differs from enclosing composite:
1320 -- Reject if composite is a bit-packed array, as it is rewritten
1321 -- into an array of scalars.
1323 if Is_Bit_Packed_Array (Encl_Base) then
1324 Error_Msg_N
1325 ("type of packed array must have same scalar storage order "
1326 & "as component", Err_Node);
1328 -- Reject if not byte aligned
1330 elsif Is_Record_Type (Encl_Base)
1331 and then not Comp_Byte_Aligned
1332 then
1333 if Present (Component_Clause (Comp)) then
1334 Error_Msg_N
1335 ("type of non-byte-aligned component must have same scalar"
1336 & " storage order as enclosing record", Err_Node);
1337 else
1338 Error_Msg_N
1339 ("type of packed component must have same scalar"
1340 & " storage order as enclosing record", Err_Node);
1341 end if;
1343 -- Warn if specified only for the outer composite
1345 elsif Present (ADC) and then No (Comp_ADC) then
1346 Error_Msg_NE
1347 ("scalar storage order specified for & does not apply to "
1348 & "component?", Err_Node, Encl_Base);
1349 end if;
1350 end if;
1352 -- Enclosing type has explicit SSO: non-composite component must not
1353 -- be aliased.
1355 elsif Present (ADC) and then Component_Aliased then
1356 Error_Msg_N
1357 ("aliased component not permitted for type with explicit "
1358 & "Scalar_Storage_Order", Err_Node);
1359 end if;
1360 end Check_Component_Storage_Order;
1362 -----------------------------
1363 -- Check_Debug_Info_Needed --
1364 -----------------------------
1366 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1367 begin
1368 if Debug_Info_Off (T) then
1369 return;
1371 elsif Comes_From_Source (T)
1372 or else Debug_Generated_Code
1373 or else Debug_Flag_VV
1374 or else Needs_Debug_Info (T)
1375 then
1376 Set_Debug_Info_Needed (T);
1377 end if;
1378 end Check_Debug_Info_Needed;
1380 -------------------------------
1381 -- Check_Expression_Function --
1382 -------------------------------
1384 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1385 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1386 -- Function to search for deferred constant
1388 -------------------
1389 -- Find_Constant --
1390 -------------------
1392 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1393 begin
1394 -- When a constant is initialized with the result of a dispatching
1395 -- call, the constant declaration is rewritten as a renaming of the
1396 -- displaced function result. This scenario is not a premature use of
1397 -- a constant even though the Has_Completion flag is not set.
1399 if Is_Entity_Name (Nod)
1400 and then Present (Entity (Nod))
1401 and then Ekind (Entity (Nod)) = E_Constant
1402 and then Scope (Entity (Nod)) = Current_Scope
1403 and then Nkind (Declaration_Node (Entity (Nod))) =
1404 N_Object_Declaration
1405 and then not Is_Imported (Entity (Nod))
1406 and then not Has_Completion (Entity (Nod))
1407 and then not (Present (Full_View (Entity (Nod)))
1408 and then Has_Completion (Full_View (Entity (Nod))))
1409 then
1410 Error_Msg_NE
1411 ("premature use of& in call or instance", N, Entity (Nod));
1413 elsif Nkind (Nod) = N_Attribute_Reference then
1414 Analyze (Prefix (Nod));
1416 if Is_Entity_Name (Prefix (Nod))
1417 and then Is_Type (Entity (Prefix (Nod)))
1418 then
1419 if Expander_Active then
1420 Check_Fully_Declared (Entity (Prefix (Nod)), N);
1421 end if;
1423 Freeze_Before (N, Entity (Prefix (Nod)));
1424 end if;
1425 end if;
1427 return OK;
1428 end Find_Constant;
1430 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1432 -- Local variables
1434 Decl : Node_Id;
1436 -- Start of processing for Check_Expression_Function
1438 begin
1439 Decl := Original_Node (Unit_Declaration_Node (Nam));
1441 -- The subprogram body created for the expression function is not
1442 -- itself a freeze point.
1444 if Scope (Nam) = Current_Scope
1445 and then Nkind (Decl) = N_Expression_Function
1446 and then Nkind (N) /= N_Subprogram_Body
1447 then
1448 Check_Deferred (Expression (Decl));
1449 end if;
1450 end Check_Expression_Function;
1452 --------------------------------
1453 -- Check_Inherited_Conditions --
1454 --------------------------------
1456 procedure Check_Inherited_Conditions
1457 (R : Entity_Id;
1458 Late_Overriding : Boolean := False)
1460 Prim_Ops : constant Elist_Id := Primitive_Operations (R);
1461 Decls : List_Id;
1462 Op_Node : Elmt_Id;
1463 Par_Prim : Entity_Id;
1464 Prim : Entity_Id;
1466 type Wrapper_Kind is (No_Wrapper, LSP_Wrapper, Postcond_Wrapper);
1468 Wrapper_Needed : Wrapper_Kind;
1469 -- Kind of wrapper needed by a given inherited primitive of tagged
1470 -- type R:
1471 -- * No_Wrapper: No wrapper is needed.
1472 -- * LSP_Wrapper: Wrapper that handles inherited class-wide pre/post
1473 -- conditions that call overridden primitives.
1474 -- * Postcond_Wrapper: Wrapper that handles postconditions of interface
1475 -- primitives.
1477 function Build_DTW_Body
1478 (Loc : Source_Ptr;
1479 DTW_Spec : Node_Id;
1480 DTW_Decls : List_Id;
1481 Par_Prim : Entity_Id;
1482 Wrapped_Subp : Entity_Id) return Node_Id;
1483 -- Build the body of the dispatch table wrapper containing the given
1484 -- spec and declarations; the call to the wrapped subprogram includes
1485 -- the proper type conversion.
1487 function Build_DTW_Spec (Par_Prim : Entity_Id) return Node_Id;
1488 -- Build the spec of the dispatch table wrapper
1490 procedure Build_Inherited_Condition_Pragmas
1491 (Subp : Entity_Id;
1492 LSP_Wrapper_Needed : out Boolean);
1493 -- Build corresponding pragmas for an operation whose ancestor has
1494 -- class-wide pre/postconditions. If the operation is inherited then
1495 -- Wrapper_Needed is returned True to force the creation of a wrapper
1496 -- for the inherited operation. If the ancestor is being overridden,
1497 -- the pragmas are constructed only to verify their legality, in case
1498 -- they contain calls to other primitives that may have been overridden.
1500 procedure Check_Interface_Primitives_Strub_Mode;
1501 -- Called when R is an interface type to check strub mode compatibility
1502 -- all its primitives.
1504 function Needs_Wrapper
1505 (Class_Cond : Node_Id;
1506 Subp : Entity_Id;
1507 Par_Subp : Entity_Id) return Boolean;
1508 -- Checks whether the dispatch-table wrapper (DTW) for Subp must be
1509 -- built to evaluate the given class-wide condition.
1511 --------------------
1512 -- Build_DTW_Body --
1513 --------------------
1515 function Build_DTW_Body
1516 (Loc : Source_Ptr;
1517 DTW_Spec : Node_Id;
1518 DTW_Decls : List_Id;
1519 Par_Prim : Entity_Id;
1520 Wrapped_Subp : Entity_Id) return Node_Id
1522 Actuals : constant List_Id := Empty_List;
1523 Call : Node_Id;
1524 Formal : Entity_Id := First_Formal (Par_Prim);
1525 New_F_Spec : Entity_Id := First (Parameter_Specifications (DTW_Spec));
1526 New_Formal : Entity_Id;
1528 begin
1529 -- Build parameter association for call to wrapped subprogram
1531 while Present (Formal) loop
1532 New_Formal := Defining_Identifier (New_F_Spec);
1534 -- If the controlling argument is inherited, add conversion to
1535 -- parent type for the call.
1537 if Is_Controlling_Formal (Formal) then
1538 Append_To (Actuals,
1539 Make_Type_Conversion (Loc,
1540 New_Occurrence_Of (Etype (Formal), Loc),
1541 New_Occurrence_Of (New_Formal, Loc)));
1542 else
1543 Append_To (Actuals, New_Occurrence_Of (New_Formal, Loc));
1544 end if;
1546 Next_Formal (Formal);
1547 Next (New_F_Spec);
1548 end loop;
1550 if Ekind (Wrapped_Subp) = E_Procedure then
1551 Call :=
1552 Make_Procedure_Call_Statement (Loc,
1553 Name => New_Occurrence_Of (Wrapped_Subp, Loc),
1554 Parameter_Associations => Actuals);
1555 else
1556 Call :=
1557 Make_Simple_Return_Statement (Loc,
1558 Expression =>
1559 Make_Function_Call (Loc,
1560 Name => New_Occurrence_Of (Wrapped_Subp, Loc),
1561 Parameter_Associations => Actuals));
1562 end if;
1564 return
1565 Make_Subprogram_Body (Loc,
1566 Specification => Copy_Subprogram_Spec (DTW_Spec),
1567 Declarations => DTW_Decls,
1568 Handled_Statement_Sequence =>
1569 Make_Handled_Sequence_Of_Statements (Loc,
1570 Statements => New_List (Call),
1571 End_Label => Make_Identifier (Loc,
1572 Chars (Defining_Entity (DTW_Spec)))));
1573 end Build_DTW_Body;
1575 --------------------
1576 -- Build_DTW_Spec --
1577 --------------------
1579 function Build_DTW_Spec (Par_Prim : Entity_Id) return Node_Id is
1580 DTW_Id : Entity_Id;
1581 DTW_Spec : Node_Id;
1583 begin
1584 DTW_Spec := Build_Overriding_Spec (Par_Prim, R);
1585 DTW_Id := Defining_Entity (DTW_Spec);
1587 -- Clear the not-overriding indicator since the DTW wrapper overrides
1588 -- its wrapped subprogram; required because if present in the parent
1589 -- primitive, given that Build_Overriding_Spec inherits it, we report
1590 -- spurious errors.
1592 Set_Must_Not_Override (DTW_Spec, False);
1594 -- Add minimal decoration of fields
1596 Mutate_Ekind (DTW_Id, Ekind (Par_Prim));
1597 Set_Is_Dispatch_Table_Wrapper (DTW_Id);
1598 Set_Is_Wrapper (DTW_Id);
1600 -- The DTW wrapper is never a null procedure
1602 if Nkind (DTW_Spec) = N_Procedure_Specification then
1603 Set_Null_Present (DTW_Spec, False);
1604 end if;
1606 return DTW_Spec;
1607 end Build_DTW_Spec;
1609 ---------------------------------------
1610 -- Build_Inherited_Condition_Pragmas --
1611 ---------------------------------------
1613 procedure Build_Inherited_Condition_Pragmas
1614 (Subp : Entity_Id;
1615 LSP_Wrapper_Needed : out Boolean)
1617 Class_Pre : constant Node_Id :=
1618 Class_Preconditions (Ultimate_Alias (Subp));
1619 Class_Post : Node_Id := Class_Postconditions (Par_Prim);
1620 A_Post : Node_Id;
1621 New_Prag : Node_Id;
1623 begin
1624 LSP_Wrapper_Needed := False;
1626 if No (Class_Pre) and then No (Class_Post) then
1627 return;
1628 end if;
1630 -- For class-wide preconditions we just evaluate whether the wrapper
1631 -- is needed; there is no need to build the pragma since the check
1632 -- is performed on the caller side.
1634 if Present (Class_Pre)
1635 and then Needs_Wrapper (Class_Pre, Subp, Par_Prim)
1636 then
1637 LSP_Wrapper_Needed := True;
1638 end if;
1640 -- For class-wide postconditions we evaluate whether the wrapper is
1641 -- needed and we build the class-wide postcondition pragma to install
1642 -- it in the wrapper.
1644 if Present (Class_Post)
1645 and then Needs_Wrapper (Class_Post, Subp, Par_Prim)
1646 then
1647 LSP_Wrapper_Needed := True;
1649 -- Update the class-wide postcondition
1651 Class_Post := New_Copy_Tree (Class_Post);
1652 Build_Class_Wide_Expression
1653 (Pragma_Or_Expr => Class_Post,
1654 Subp => Subp,
1655 Par_Subp => Par_Prim,
1656 Adjust_Sloc => False);
1658 -- Install the updated class-wide postcondition in a copy of the
1659 -- pragma postcondition defined for the nearest ancestor.
1661 A_Post := Get_Class_Wide_Pragma (Par_Prim,
1662 Pragma_Postcondition);
1664 if No (A_Post) then
1665 declare
1666 Subps : constant Subprogram_List :=
1667 Inherited_Subprograms (Subp);
1668 begin
1669 for Index in Subps'Range loop
1670 A_Post := Get_Class_Wide_Pragma (Subps (Index),
1671 Pragma_Postcondition);
1672 exit when Present (A_Post);
1673 end loop;
1674 end;
1675 end if;
1677 -- A_Post can be null here if the postcondition was inlined in the
1678 -- called subprogram.
1680 if Present (A_Post) then
1681 New_Prag := New_Copy_Tree (A_Post);
1682 Rewrite
1683 (Expression (First (Pragma_Argument_Associations (New_Prag))),
1684 Class_Post);
1685 Append (New_Prag, Decls);
1686 end if;
1687 end if;
1688 end Build_Inherited_Condition_Pragmas;
1690 -------------------------------------------
1691 -- Check_Interface_Primitives_Strub_Mode --
1692 -------------------------------------------
1694 procedure Check_Interface_Primitives_Strub_Mode is
1695 Elmt : Elmt_Id;
1696 Iface_Elmt : Elmt_Id;
1697 Iface : Entity_Id;
1698 Iface_Prim : Entity_Id;
1699 Ifaces_List : Elist_Id;
1700 Op_Node : Elmt_Id;
1701 Prim : Entity_Id;
1702 Prim_Iface : Entity_Id;
1704 begin
1705 pragma Assert (Is_Interface (R));
1707 -- Collect interfaces extended by interface type R
1709 Collect_Interfaces (R, Ifaces_List);
1711 Op_Node := First_Elmt (Prim_Ops);
1712 while Present (Op_Node) loop
1713 Prim := Node (Op_Node);
1714 Prim_Iface := R;
1715 Par_Prim := Overridden_Operation (Prim);
1717 -- We only need to check entities defined in the sources
1719 -- Check that overrider and overridden primitives have the same
1720 -- strub mode.
1722 if Present (Par_Prim) then
1723 Check_Same_Strub_Mode (Prim, Par_Prim);
1725 -- No need to check internally added predefined primitives since
1726 -- they all have the same strub mode.
1728 elsif Is_Predefined_Dispatching_Operation (Prim)
1729 and then not Comes_From_Source (Prim)
1730 then
1731 null;
1733 -- Check strub mode of matching primitives of all the interface
1734 -- types, since several interface types may define primitives with
1735 -- the same profile that will be implemented by a single primitive
1736 -- of tagged types implementing R, and therefore must have the
1737 -- same strub mode.
1739 else
1740 -- If this interface primitive has been inherited this is an
1741 -- internal entity we rely on its renamed entity (which is the
1742 -- entity defined in the sources).
1744 if Present (Alias (Prim)) then
1745 Prim := Ultimate_Alias (Prim);
1746 Prim_Iface := Find_Dispatching_Type (Prim);
1747 end if;
1749 -- Search for primitives conformant with this one in the other
1750 -- interface types.
1752 Iface_Elmt := First_Elmt (Ifaces_List);
1753 while Present (Iface_Elmt) loop
1754 Iface := Node (Iface_Elmt);
1756 if Iface /= Prim_Iface then
1757 Elmt := First_Elmt (Primitive_Operations (Iface));
1758 while Present (Elmt) loop
1759 Iface_Prim := Node (Elmt);
1761 if Chars (Iface_Prim) = Chars (Prim)
1762 and then Comes_From_Source (Iface_Prim)
1763 and then Is_Interface_Conformant
1764 (Prim_Iface, Iface_Prim, Prim)
1765 then
1766 -- Check the strub mode passing the original
1767 -- primitive (instead of its alias); required
1768 -- to report the error at the right location.
1770 Check_Same_Strub_Mode (Node (Op_Node), Iface_Prim);
1771 end if;
1773 Next_Elmt (Elmt);
1774 end loop;
1775 end if;
1777 Next_Elmt (Iface_Elmt);
1778 end loop;
1779 end if;
1781 Next_Elmt (Op_Node);
1782 end loop;
1783 end Check_Interface_Primitives_Strub_Mode;
1785 -------------------
1786 -- Needs_Wrapper --
1787 -------------------
1789 function Needs_Wrapper
1790 (Class_Cond : Node_Id;
1791 Subp : Entity_Id;
1792 Par_Subp : Entity_Id) return Boolean
1794 Result : Boolean := False;
1796 function Check_Entity (N : Node_Id) return Traverse_Result;
1797 -- Check calls to overridden primitives
1799 --------------------
1800 -- Replace_Entity --
1801 --------------------
1803 function Check_Entity (N : Node_Id) return Traverse_Result is
1804 New_E : Entity_Id;
1806 begin
1807 if Nkind (N) = N_Identifier
1808 and then Present (Entity (N))
1809 and then
1810 (Is_Formal (Entity (N)) or else Is_Subprogram (Entity (N)))
1811 and then
1812 (Nkind (Parent (N)) /= N_Attribute_Reference
1813 or else Attribute_Name (Parent (N)) /= Name_Class)
1814 then
1815 -- Determine whether entity has a renaming
1817 New_E := Get_Mapped_Entity (Entity (N));
1819 -- If the entity is an overridden primitive and we are not
1820 -- in GNATprove mode, we must build a wrapper for the current
1821 -- inherited operation. If the reference is the prefix of an
1822 -- attribute such as 'Result (or others ???) there is no need
1823 -- for a wrapper: the condition is just rewritten in terms of
1824 -- the inherited subprogram.
1826 if Present (New_E)
1827 and then Comes_From_Source (New_E)
1828 and then Is_Subprogram (New_E)
1829 and then Nkind (Parent (N)) /= N_Attribute_Reference
1830 and then not GNATprove_Mode
1831 then
1832 Result := True;
1833 return Abandon;
1834 end if;
1835 end if;
1837 return OK;
1838 end Check_Entity;
1840 procedure Check_Condition_Entities is
1841 new Traverse_Proc (Check_Entity);
1843 -- Start of processing for Needs_Wrapper
1845 begin
1846 Update_Primitives_Mapping (Par_Subp, Subp);
1848 Map_Formals (Par_Subp, Subp);
1849 Check_Condition_Entities (Class_Cond);
1851 return Result;
1852 end Needs_Wrapper;
1854 Wrappers_List : Elist_Id := No_Elist;
1855 -- List containing identifiers of built wrappers. Used to defer building
1856 -- and analyzing their class-wide precondition subprograms.
1858 Postcond_Candidates_List : Elist_Id := No_Elist;
1859 -- List containing inherited primitives of tagged type R that implement
1860 -- interface primitives that have postconditions.
1862 -- Start of processing for Check_Inherited_Conditions
1864 begin
1865 if Late_Overriding then
1866 Op_Node := First_Elmt (Prim_Ops);
1867 while Present (Op_Node) loop
1868 Prim := Node (Op_Node);
1870 -- Map the overridden primitive to the overriding one
1872 if Present (Overridden_Operation (Prim))
1873 and then Comes_From_Source (Prim)
1874 then
1875 Par_Prim := Overridden_Operation (Prim);
1876 Update_Primitives_Mapping (Par_Prim, Prim);
1878 -- Force discarding previous mappings of its formals
1880 Map_Formals (Par_Prim, Prim, Force_Update => True);
1881 end if;
1883 Next_Elmt (Op_Node);
1884 end loop;
1885 end if;
1887 -- For interface types we only need to check strub mode compatibility
1888 -- of their primitives (since they don't have wrappers).
1890 if Is_Interface (R) then
1891 Check_Interface_Primitives_Strub_Mode;
1892 return;
1893 end if;
1895 -- Perform validity checks on the inherited conditions of overriding
1896 -- operations, for conformance with LSP, and apply SPARK-specific
1897 -- restrictions on inherited conditions.
1899 Op_Node := First_Elmt (Prim_Ops);
1900 while Present (Op_Node) loop
1901 Prim := Node (Op_Node);
1902 Par_Prim := Overridden_Operation (Prim);
1904 if Present (Par_Prim)
1905 and then Comes_From_Source (Prim)
1906 then
1907 -- When the primitive is an LSP wrapper we climb to the parent
1908 -- primitive that has the inherited contract.
1910 if Is_Wrapper (Par_Prim)
1911 and then Present (LSP_Subprogram (Par_Prim))
1912 then
1913 Par_Prim := LSP_Subprogram (Par_Prim);
1914 end if;
1916 -- Check that overrider and overridden operations have
1917 -- the same strub mode.
1919 Check_Same_Strub_Mode (Prim, Par_Prim);
1921 -- Analyze the contract items of the overridden operation, before
1922 -- they are rewritten as pragmas.
1924 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
1926 -- In GNATprove mode this is where we can collect the inherited
1927 -- conditions, because we do not create the Check pragmas that
1928 -- normally convey the modified class-wide conditions on
1929 -- overriding operations.
1931 if GNATprove_Mode then
1932 Collect_Inherited_Class_Wide_Conditions (Prim);
1933 end if;
1935 -- Check strub mode compatibility of primitives that implement
1936 -- interface primitives.
1938 elsif Present (Interface_Alias (Prim)) then
1939 Check_Same_Strub_Mode (Alias (Prim), Interface_Alias (Prim));
1940 end if;
1942 Next_Elmt (Op_Node);
1943 end loop;
1945 -- Collect inherited primitives that may need a wrapper to handle
1946 -- postconditions of interface primitives; done to improve the
1947 -- performance when checking if postcondition wrappers are needed.
1949 Op_Node := First_Elmt (Prim_Ops);
1950 while Present (Op_Node) loop
1951 Prim := Node (Op_Node);
1953 if Present (Interface_Alias (Prim))
1954 and then not Comes_From_Source (Alias (Prim))
1955 and then Present (Class_Postconditions (Interface_Alias (Prim)))
1956 then
1957 if No (Postcond_Candidates_List) then
1958 Postcond_Candidates_List := New_Elmt_List;
1959 end if;
1961 Append_Unique_Elmt (Alias (Prim), Postcond_Candidates_List);
1962 end if;
1964 Next_Elmt (Op_Node);
1965 end loop;
1967 -- Now examine the inherited operations to check whether they require
1968 -- a wrapper to handle inherited conditions that call other primitives,
1969 -- so that LSP can be verified/enforced.
1971 Op_Node := First_Elmt (Prim_Ops);
1973 while Present (Op_Node) loop
1974 Decls := Empty_List;
1975 Prim := Node (Op_Node);
1976 Wrapper_Needed := No_Wrapper;
1978 -- Skip internal entities built for mapping interface primitives
1980 if not Comes_From_Source (Prim)
1981 and then Present (Alias (Prim))
1982 and then No (Interface_Alias (Prim))
1983 then
1984 Par_Prim := Ultimate_Alias (Prim);
1986 -- When the primitive is an LSP wrapper we climb to the parent
1987 -- primitive that has the inherited contract.
1989 if Is_Wrapper (Par_Prim)
1990 and then Present (LSP_Subprogram (Par_Prim))
1991 then
1992 Par_Prim := LSP_Subprogram (Par_Prim);
1993 end if;
1995 -- Analyze the contract items of the parent operation, and
1996 -- determine whether this inherited primitive needs a LSP
1997 -- wrapper. This is determined when the condition is rewritten
1998 -- in sem_prag, using the mapping between overridden and
1999 -- overriding operations built in the loop above.
2001 declare
2002 LSP_Wrapper_Needed : Boolean;
2004 begin
2005 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
2006 Build_Inherited_Condition_Pragmas (Prim, LSP_Wrapper_Needed);
2008 if LSP_Wrapper_Needed then
2009 Wrapper_Needed := LSP_Wrapper;
2010 end if;
2011 end;
2013 -- If the LSP wrapper is not needed but the tagged type R
2014 -- implements additional interface types, and this inherited
2015 -- primitive covers an interface primitive of these additional
2016 -- interface types that has class-wide postconditions, then it
2017 -- requires a postconditions wrapper.
2019 if Wrapper_Needed = No_Wrapper
2020 and then Present (Interfaces (R))
2021 and then Present (Postcond_Candidates_List)
2022 and then Contains (Postcond_Candidates_List, Prim)
2023 then
2024 declare
2025 Elmt : Elmt_Id;
2026 Ent : Entity_Id;
2027 Iface : Entity_Id;
2028 Iface_Elmt : Elmt_Id;
2030 begin
2031 Elmt := First_Elmt (Prim_Ops);
2032 while Present (Elmt) loop
2033 Ent := Node (Elmt);
2035 -- Perform the search relying on the internal entities
2036 -- that link tagged type primitives with interface
2037 -- primitives.
2039 if Present (Interface_Alias (Ent))
2040 and then (Alias (Ent)) = Prim
2041 and then
2042 Present (Class_Postconditions (Interface_Alias (Ent)))
2043 then
2044 Iface := Find_Dispatching_Type (Interface_Alias (Ent));
2046 -- We only need to locate primitives of additional
2047 -- interfaces implemented by tagged type R (since
2048 -- inherited primitives of parent types that cover
2049 -- primitives of inherited interface types don't
2050 -- need a wrapper).
2052 Iface_Elmt := First_Elmt (Interfaces (R));
2053 while Present (Iface_Elmt) loop
2054 if Node (Iface_Elmt) = Iface then
2055 Wrapper_Needed := Postcond_Wrapper;
2056 exit;
2057 end if;
2059 Next_Elmt (Iface_Elmt);
2060 end loop;
2061 end if;
2063 Next_Elmt (Elmt);
2064 end loop;
2065 end;
2066 end if;
2067 end if;
2069 if Wrapper_Needed /= No_Wrapper
2070 and then not Is_Abstract_Subprogram (Par_Prim)
2071 and then Expander_Active
2072 then
2073 -- Build the dispatch-table wrapper (DTW). The support for
2074 -- AI12-0195 relies on two kind of wrappers: one for indirect
2075 -- calls (also used for AI12-0220), and one for putting in the
2076 -- dispatch table:
2078 -- 1) "indirect-call wrapper" (ICW) is needed anytime there are
2079 -- class-wide preconditions. Prim'Access will point directly
2080 -- at the ICW if any, or at the "pristine" body if Prim has
2081 -- no class-wide preconditions.
2083 -- 2) "dispatch-table wrapper" (DTW) is needed anytime the class
2084 -- wide preconditions *or* the class-wide postconditions are
2085 -- affected by overriding.
2087 -- The DTW holds a single statement that is a single call where
2088 -- the controlling actuals are conversions to the corresponding
2089 -- type in the parent primitive. If the primitive is a function
2090 -- the statement is a return statement with a call.
2092 declare
2093 Alias_Id : constant Entity_Id := Ultimate_Alias (Prim);
2094 Loc : constant Source_Ptr := Sloc (R);
2095 DTW_Body : Node_Id;
2096 DTW_Decl : Node_Id;
2097 DTW_Id : Entity_Id;
2098 DTW_Spec : Node_Id;
2100 Prim_Next_E : constant Entity_Id := Next_Entity (Prim);
2101 Prim_Prev_E : constant Entity_Id := Prev_Entity (Prim);
2103 begin
2104 DTW_Spec := Build_DTW_Spec (Par_Prim);
2105 DTW_Id := Defining_Entity (DTW_Spec);
2106 DTW_Decl := Make_Subprogram_Declaration (Loc,
2107 Specification => DTW_Spec);
2109 -- LSP wrappers reference the parent primitive that has the
2110 -- the class-wide pre/post condition that calls overridden
2111 -- primitives.
2113 if Wrapper_Needed = LSP_Wrapper then
2114 Set_LSP_Subprogram (DTW_Id, Par_Prim);
2115 end if;
2117 -- The spec of the wrapper has been built using the source
2118 -- location of its parent primitive; we must update it now
2119 -- (with the source location of the internal primitive built
2120 -- by Derive_Subprogram that will override this wrapper) to
2121 -- avoid inlining conflicts between internally built helpers
2122 -- for class-wide pre/postconditions of the parent and the
2123 -- helpers built for this wrapper.
2125 Set_Sloc (DTW_Id, Sloc (Prim));
2127 -- For inherited class-wide preconditions the DTW wrapper
2128 -- reuses the ICW of the parent (which checks the parent
2129 -- interpretation of the class-wide preconditions); the
2130 -- interpretation of the class-wide preconditions for the
2131 -- inherited subprogram is checked at the caller side.
2133 -- When the subprogram inherits class-wide postconditions
2134 -- the DTW also checks the interpretation of the class-wide
2135 -- postconditions for the inherited subprogram, and the body
2136 -- of the parent checks its interpretation of the parent for
2137 -- the class-wide postconditions.
2139 -- procedure Prim (F1 : T1; ...) is
2140 -- [ pragma Check (Postcondition, Expr); ]
2141 -- begin
2142 -- Par_Prim_ICW (Par_Type (F1), ...);
2143 -- end;
2145 if Present (Indirect_Call_Wrapper (Par_Prim)) then
2146 DTW_Body :=
2147 Build_DTW_Body (Loc,
2148 DTW_Spec => DTW_Spec,
2149 DTW_Decls => Decls,
2150 Par_Prim => Par_Prim,
2151 Wrapped_Subp => Indirect_Call_Wrapper (Par_Prim));
2153 -- For subprograms that only inherit class-wide postconditions
2154 -- the DTW wrapper calls the parent primitive (which on its
2155 -- body checks the interpretation of the class-wide post-
2156 -- conditions for the parent subprogram), and the DTW checks
2157 -- the interpretation of the class-wide postconditions for the
2158 -- inherited subprogram.
2160 -- procedure Prim (F1 : T1; ...) is
2161 -- pragma Check (Postcondition, Expr);
2162 -- begin
2163 -- Par_Prim (Par_Type (F1), ...);
2164 -- end;
2166 else
2167 DTW_Body :=
2168 Build_DTW_Body (Loc,
2169 DTW_Spec => DTW_Spec,
2170 DTW_Decls => Decls,
2171 Par_Prim => Par_Prim,
2172 Wrapped_Subp => Par_Prim);
2173 end if;
2175 -- Insert the declaration of the wrapper before the freezing
2176 -- node of the record type declaration to ensure that it will
2177 -- override the internal primitive built by Derive_Subprogram.
2179 if Late_Overriding then
2180 Ensure_Freeze_Node (R);
2181 Insert_Before_And_Analyze (Freeze_Node (R), DTW_Decl);
2182 else
2183 Append_Freeze_Action (R, DTW_Decl);
2184 Analyze (DTW_Decl);
2185 end if;
2187 -- The analyis of DTW_Decl has removed Prim from its scope
2188 -- chain and added DTW_Id at the end of the scope chain. Move
2189 -- DTW_Id to its correct place in the scope chain: the analysis
2190 -- of the wrapper declaration has just added DTW_Id at the end
2191 -- of the list of entities of its scope. However, given that
2192 -- this wrapper overrides Prim, we must move DTW_Id to the
2193 -- original place of Prim in its scope chain. This is required
2194 -- for wrappers of private type primitives to ensure their
2195 -- correct visibility since wrappers are built when the full
2196 -- tagged type declaration is frozen (in the private part of
2197 -- the package) but they may override primitives defined in the
2198 -- public part of the package.
2200 declare
2201 DTW_Prev_E : constant Entity_Id := Prev_Entity (DTW_Id);
2203 begin
2204 pragma Assert (Last_Entity (Current_Scope) = DTW_Id);
2205 pragma Assert
2206 (Ekind (Current_Scope) not in E_Package | E_Generic_Package
2207 or else No (First_Private_Entity (Current_Scope))
2208 or else First_Private_Entity (Current_Scope) /= DTW_Id);
2210 -- Remove DTW_Id from the end of the doubly-linked list of
2211 -- entities of this scope; no need to handle removing it
2212 -- from the beginning of the chain since such case can never
2213 -- occur for this entity.
2215 Set_Last_Entity (Current_Scope, DTW_Prev_E);
2216 Set_Next_Entity (DTW_Prev_E, Empty);
2218 -- Place DTW_Id back in the original place of its wrapped
2219 -- primitive in the list of entities of this scope.
2221 Link_Entities (Prim_Prev_E, DTW_Id);
2222 Link_Entities (DTW_Id, Prim_Next_E);
2223 end;
2225 -- Insert the body of the wrapper in the freeze actions of
2226 -- its record type declaration to ensure that it is placed
2227 -- in the scope of its declaration but not too early to cause
2228 -- premature freezing of other entities.
2230 Append_Freeze_Action (R, DTW_Body);
2231 Analyze (DTW_Body);
2233 -- Ensure correct decoration
2235 pragma Assert (Is_Dispatching_Operation (DTW_Id));
2236 pragma Assert (Present (Overridden_Operation (DTW_Id)));
2237 pragma Assert (Overridden_Operation (DTW_Id) = Alias_Id);
2239 -- Inherit dispatch table slot
2241 Set_DTC_Entity_Value (R, DTW_Id);
2242 Set_DT_Position (DTW_Id, DT_Position (Alias_Id));
2244 -- Register the wrapper in the dispatch table
2246 if Late_Overriding
2247 and then not Building_Static_DT (R)
2248 then
2249 Insert_List_After_And_Analyze (Freeze_Node (R),
2250 Register_Primitive (Loc, DTW_Id));
2251 end if;
2253 -- Defer building helpers and ICW for the DTW. Required to
2254 -- ensure uniqueness in their names because when building
2255 -- these wrappers for overlapped subprograms their homonym
2256 -- number is not definite until all these dispatch table
2257 -- wrappers of tagged type R have been analyzed.
2259 if Present (Indirect_Call_Wrapper (Par_Prim)) then
2260 Append_New_Elmt (DTW_Id, Wrappers_List);
2261 end if;
2262 end;
2263 end if;
2265 Next_Elmt (Op_Node);
2266 end loop;
2268 -- Build and analyze deferred class-wide precondition subprograms of
2269 -- built wrappers.
2271 if Present (Wrappers_List) then
2272 declare
2273 Body_N : Node_Id;
2274 CW_Subp : Entity_Id;
2275 Decl_N : Node_Id;
2276 DTW_Id : Entity_Id;
2277 Elmt : Elmt_Id;
2279 begin
2280 Elmt := First_Elmt (Wrappers_List);
2282 while Present (Elmt) loop
2283 DTW_Id := Node (Elmt);
2284 Next_Elmt (Elmt);
2286 Merge_Class_Conditions (DTW_Id);
2287 Make_Class_Precondition_Subps (DTW_Id, Late_Overriding);
2289 CW_Subp := Static_Call_Helper (DTW_Id);
2290 Decl_N := Unit_Declaration_Node (CW_Subp);
2291 Analyze (Decl_N);
2293 -- If the DTW was built for a late-overriding primitive
2294 -- its body must be analyzed now (since the tagged type
2295 -- is already frozen).
2297 if Late_Overriding then
2298 Body_N :=
2299 Unit_Declaration_Node (Corresponding_Body (Decl_N));
2300 Analyze (Body_N);
2301 end if;
2302 end loop;
2303 end;
2304 end if;
2305 end Check_Inherited_Conditions;
2307 ----------------------------
2308 -- Check_Strict_Alignment --
2309 ----------------------------
2311 procedure Check_Strict_Alignment (E : Entity_Id) is
2312 Comp : Entity_Id;
2314 begin
2315 -- Bit-packed array types do not require strict alignment, even if they
2316 -- are by-reference types, because they are accessed in a special way.
2318 if Is_By_Reference_Type (E) and then not Is_Bit_Packed_Array (E) then
2319 Set_Strict_Alignment (E);
2321 elsif Is_Array_Type (E) then
2322 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
2324 -- RM 13.2(7.1/4): Any component of a packed type that contains an
2325 -- aliased part shall be aligned according to the alignment of its
2326 -- subtype.
2328 -- Unfortunately this breaks Florist, which has had the bad habit
2329 -- of overaligning all the types it declares on 32-bit platforms,
2330 -- so make an exception if the component size is the storage unit.
2332 -- Other legacy codebases could also be affected because this was
2333 -- historically not enforced, so -gnatd_l can be used to disable it.
2335 if Has_Aliased_Components (E)
2336 and then not (Known_Component_Size (E)
2337 and then Component_Size (E) = System_Storage_Unit)
2338 and then not Debug_Flag_Underscore_L
2339 then
2340 Set_Strict_Alignment (E);
2341 end if;
2343 elsif Is_Record_Type (E) then
2344 Comp := First_Component (E);
2345 while Present (Comp) loop
2346 if not Is_Type (Comp)
2347 and then (Is_Aliased (Comp)
2348 or else Strict_Alignment (Etype (Comp)))
2349 then
2350 Set_Strict_Alignment (E);
2351 return;
2352 end if;
2354 Next_Component (Comp);
2355 end loop;
2356 end if;
2357 end Check_Strict_Alignment;
2359 -------------------------
2360 -- Check_Unsigned_Type --
2361 -------------------------
2363 procedure Check_Unsigned_Type (E : Entity_Id) is
2364 Ancestor : Entity_Id;
2365 Lo_Bound : Node_Id;
2366 Btyp : Entity_Id;
2368 begin
2369 if not Is_Discrete_Or_Fixed_Point_Type (E) then
2370 return;
2371 end if;
2373 -- Do not attempt to analyze case where range was in error
2375 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
2376 return;
2377 end if;
2379 -- The situation that is nontrivial is something like:
2381 -- subtype x1 is integer range -10 .. +10;
2382 -- subtype x2 is x1 range 0 .. V1;
2383 -- subtype x3 is x2 range V2 .. V3;
2384 -- subtype x4 is x3 range V4 .. V5;
2386 -- where Vn are variables. Here the base type is signed, but we still
2387 -- know that x4 is unsigned because of the lower bound of x2.
2389 -- The only way to deal with this is to look up the ancestor chain
2391 Ancestor := E;
2392 loop
2393 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
2394 return;
2395 end if;
2397 Lo_Bound := Type_Low_Bound (Ancestor);
2399 if Compile_Time_Known_Value (Lo_Bound) then
2400 if Expr_Rep_Value (Lo_Bound) >= 0 then
2401 Set_Is_Unsigned_Type (E, True);
2402 end if;
2404 return;
2406 else
2407 Ancestor := Ancestor_Subtype (Ancestor);
2409 -- If no ancestor had a static lower bound, go to base type
2411 if No (Ancestor) then
2413 -- Note: the reason we still check for a compile time known
2414 -- value for the base type is that at least in the case of
2415 -- generic formals, we can have bounds that fail this test,
2416 -- and there may be other cases in error situations.
2418 Btyp := Base_Type (E);
2420 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
2421 return;
2422 end if;
2424 Lo_Bound := Type_Low_Bound (Base_Type (E));
2426 if Compile_Time_Known_Value (Lo_Bound)
2427 and then Expr_Rep_Value (Lo_Bound) >= 0
2428 then
2429 Set_Is_Unsigned_Type (E, True);
2430 end if;
2432 return;
2433 end if;
2434 end if;
2435 end loop;
2436 end Check_Unsigned_Type;
2438 -----------------------------------------------
2439 -- Explode_Initialization_Compound_Statement --
2440 -----------------------------------------------
2442 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
2443 Init_Stmts : constant Node_Id := Initialization_Statements (E);
2445 begin
2446 if Present (Init_Stmts)
2447 and then Nkind (Init_Stmts) = N_Compound_Statement
2448 then
2449 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
2451 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
2452 -- just removing it, because Freeze_All may rely on this particular
2453 -- Node_Id still being present in the enclosing list to know where to
2454 -- stop freezing.
2456 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
2458 Set_Initialization_Statements (E, Empty);
2459 end if;
2460 end Explode_Initialization_Compound_Statement;
2462 ----------------
2463 -- Freeze_All --
2464 ----------------
2466 -- Note: the easy coding for this procedure would be to just build a
2467 -- single list of freeze nodes and then insert them and analyze them
2468 -- all at once. This won't work, because the analysis of earlier freeze
2469 -- nodes may recursively freeze types which would otherwise appear later
2470 -- on in the freeze list. So we must analyze and expand the freeze nodes
2471 -- as they are generated.
2473 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
2474 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
2475 -- This is the internal recursive routine that does freezing of entities
2476 -- (but NOT the analysis of default expressions, which should not be
2477 -- recursive, we don't want to analyze those till we are sure that ALL
2478 -- the types are frozen).
2480 --------------------
2481 -- Freeze_All_Ent --
2482 --------------------
2484 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
2485 E : Entity_Id;
2486 Flist : List_Id;
2488 procedure Process_Flist;
2489 -- If freeze nodes are present, insert and analyze, and reset cursor
2490 -- for next insertion.
2492 -------------------
2493 -- Process_Flist --
2494 -------------------
2496 procedure Process_Flist is
2497 Lastn : Node_Id;
2498 begin
2499 if Is_Non_Empty_List (Flist) then
2500 Lastn := Next (After);
2501 Insert_List_After_And_Analyze (After, Flist);
2503 if Present (Lastn) then
2504 After := Prev (Lastn);
2505 else
2506 After := Last (List_Containing (After));
2507 end if;
2508 end if;
2509 end Process_Flist;
2511 -- Start of processing for Freeze_All_Ent
2513 begin
2514 E := From;
2515 while Present (E) loop
2517 -- If the entity is an inner package which is not a package
2518 -- renaming, then its entities must be frozen at this point. Note
2519 -- that such entities do NOT get frozen at the end of the nested
2520 -- package itself (only library packages freeze).
2522 -- Same is true for task declarations, where anonymous records
2523 -- created for entry parameters must be frozen.
2525 if Ekind (E) = E_Package
2526 and then No (Renamed_Entity (E))
2527 and then not Is_Child_Unit (E)
2528 and then not Is_Frozen (E)
2529 then
2530 Push_Scope (E);
2532 Install_Visible_Declarations (E);
2533 Install_Private_Declarations (E);
2534 Freeze_All (First_Entity (E), After);
2536 End_Package_Scope (E);
2538 if Is_Generic_Instance (E)
2539 and then Has_Delayed_Freeze (E)
2540 then
2541 Set_Has_Delayed_Freeze (E, False);
2542 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
2543 end if;
2545 elsif Ekind (E) in Task_Kind
2546 and then Nkind (Parent (E)) in
2547 N_Single_Task_Declaration | N_Task_Type_Declaration
2548 then
2549 Push_Scope (E);
2550 Freeze_All (First_Entity (E), After);
2551 End_Scope;
2553 -- For a derived tagged type, we must ensure that all the
2554 -- primitive operations of the parent have been frozen, so that
2555 -- their addresses will be in the parent's dispatch table at the
2556 -- point it is inherited.
2558 elsif Ekind (E) = E_Record_Type
2559 and then Is_Tagged_Type (E)
2560 and then Is_Tagged_Type (Etype (E))
2561 and then Is_Derived_Type (E)
2562 then
2563 declare
2564 Prim_List : constant Elist_Id :=
2565 Primitive_Operations (Etype (E));
2567 Prim : Elmt_Id;
2568 Subp : Entity_Id;
2570 begin
2571 Prim := First_Elmt (Prim_List);
2572 while Present (Prim) loop
2573 Subp := Node (Prim);
2575 if Comes_From_Source (Subp)
2576 and then not Is_Frozen (Subp)
2577 then
2578 Flist := Freeze_Entity (Subp, After);
2579 Process_Flist;
2580 end if;
2582 Next_Elmt (Prim);
2583 end loop;
2584 end;
2585 end if;
2587 if not Is_Frozen (E) then
2588 Flist := Freeze_Entity (E, After);
2589 Process_Flist;
2591 -- If already frozen, and there are delayed aspects, this is where
2592 -- we do the visibility check for these aspects (see Sem_Ch13 spec
2593 -- for a description of how we handle aspect visibility).
2595 elsif Has_Delayed_Aspects (E) then
2596 Check_Aspects_At_End_Of_Declarations (E);
2597 end if;
2599 -- If an incomplete type is still not frozen, this may be a
2600 -- premature freezing because of a body declaration that follows.
2601 -- Indicate where the freezing took place. Freezing will happen
2602 -- if the body comes from source, but not if it is internally
2603 -- generated, for example as the body of a type invariant.
2605 -- If the freezing is caused by the end of the current declarative
2606 -- part, it is a Taft Amendment type, and there is no error.
2608 if not Is_Frozen (E)
2609 and then Ekind (E) = E_Incomplete_Type
2610 then
2611 declare
2612 Bod : constant Node_Id := Next (After);
2614 begin
2615 -- The presence of a body freezes all entities previously
2616 -- declared in the current list of declarations, but this
2617 -- does not apply if the body does not come from source.
2618 -- A type invariant is transformed into a subprogram body
2619 -- which is placed at the end of the private part of the
2620 -- current package, but this body does not freeze incomplete
2621 -- types that may be declared in this private part.
2623 if Comes_From_Source (Bod)
2624 and then Nkind (Bod) in N_Entry_Body
2625 | N_Package_Body
2626 | N_Protected_Body
2627 | N_Subprogram_Body
2628 | N_Task_Body
2629 | N_Body_Stub
2630 and then
2631 In_Same_List (After, Parent (E))
2632 then
2633 Error_Msg_Sloc := Sloc (Next (After));
2634 Error_Msg_NE
2635 ("type& is frozen# before its full declaration",
2636 Parent (E), E);
2637 end if;
2638 end;
2639 end if;
2641 Next_Entity (E);
2642 end loop;
2643 end Freeze_All_Ent;
2645 -- Local variables
2647 Decl : Node_Id;
2648 E : Entity_Id;
2649 Item : Entity_Id;
2651 -- Start of processing for Freeze_All
2653 begin
2654 Freeze_All_Ent (From, After);
2656 -- Now that all types are frozen, we can deal with default expressions
2657 -- that require us to build a default expression functions. This is the
2658 -- point at which such functions are constructed (after all types that
2659 -- might be used in such expressions have been frozen).
2661 -- For subprograms that are renaming_as_body, we create the wrapper
2662 -- bodies as needed.
2664 -- We also add finalization chains to access types whose designated
2665 -- types are controlled. This is normally done when freezing the type,
2666 -- but this misses recursive type definitions where the later members
2667 -- of the recursion introduce controlled components.
2669 -- Loop through entities
2671 E := From;
2672 while Present (E) loop
2673 if Is_Subprogram (E) then
2674 if not Default_Expressions_Processed (E) then
2675 Process_Default_Expressions (E, After);
2676 end if;
2678 -- Check subprogram renamings for the same strub-mode.
2679 -- Avoid rechecking dispatching operations, that's taken
2680 -- care of in Check_Inherited_Conditions, that covers
2681 -- inherited interface operations.
2683 Item := Alias (E);
2684 if Present (Item)
2685 and then not Is_Dispatching_Operation (E)
2686 then
2687 Check_Same_Strub_Mode (E, Item);
2688 end if;
2690 if not Has_Completion (E) then
2691 Decl := Unit_Declaration_Node (E);
2693 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
2694 if Error_Posted (Decl) then
2695 Set_Has_Completion (E);
2696 else
2697 Build_And_Analyze_Renamed_Body (Decl, E, After);
2698 end if;
2700 elsif Nkind (Decl) = N_Subprogram_Declaration
2701 and then Present (Corresponding_Body (Decl))
2702 and then
2703 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) =
2704 N_Subprogram_Renaming_Declaration
2705 then
2706 Build_And_Analyze_Renamed_Body
2707 (Decl, Corresponding_Body (Decl), After);
2708 end if;
2709 end if;
2711 -- Freeze the default expressions of entries, entry families, and
2712 -- protected subprograms.
2714 elsif Is_Concurrent_Type (E) then
2715 Item := First_Entity (E);
2716 while Present (Item) loop
2717 if Is_Subprogram_Or_Entry (Item)
2718 and then not Default_Expressions_Processed (Item)
2719 then
2720 Process_Default_Expressions (Item, After);
2721 end if;
2723 Next_Entity (Item);
2724 end loop;
2725 end if;
2727 -- Historical note: We used to create a finalization collection for
2728 -- access types whose designated type is not controlled, but contains
2729 -- private controlled compoments. This form of postprocessing is no
2730 -- longer needed because the finalization collection is now created
2731 -- when the access type is frozen (see Exp_Ch3.Freeze_Type).
2733 Next_Entity (E);
2734 end loop;
2735 end Freeze_All;
2737 -----------------------
2738 -- Freeze_And_Append --
2739 -----------------------
2741 procedure Freeze_And_Append
2742 (Ent : Entity_Id;
2743 N : Node_Id;
2744 Result : in out List_Id)
2746 -- Freezing an Expression_Function does not freeze its profile:
2747 -- the formals will have been frozen otherwise before the E_F
2748 -- can be called.
2750 L : constant List_Id :=
2751 Freeze_Entity
2752 (Ent, N, Do_Freeze_Profile => not Is_Expression_Function (Ent));
2753 begin
2754 if Is_Non_Empty_List (L) then
2755 if Result = No_List then
2756 Result := L;
2757 else
2758 Append_List (L, Result);
2759 end if;
2760 end if;
2761 end Freeze_And_Append;
2763 -------------------
2764 -- Freeze_Before --
2765 -------------------
2767 procedure Freeze_Before
2768 (N : Node_Id;
2769 T : Entity_Id;
2770 Do_Freeze_Profile : Boolean := True)
2772 -- Freeze T, then insert the generated Freeze nodes before the node N.
2773 -- Flag Freeze_Profile is used when T is an overloadable entity, and
2774 -- indicates whether its profile should be frozen at the same time.
2776 Freeze_Nodes : constant List_Id :=
2777 Freeze_Entity (T, N, Do_Freeze_Profile);
2778 Pack : constant Entity_Id := Scope (T);
2780 begin
2781 if Ekind (T) = E_Function then
2782 Check_Expression_Function (N, T);
2783 end if;
2785 if Is_Non_Empty_List (Freeze_Nodes) then
2787 -- If the entity is a type declared in an inner package, it may be
2788 -- frozen by an outer declaration before the package itself is
2789 -- frozen. Install the package scope to analyze the freeze nodes,
2790 -- which may include generated subprograms such as predicate
2791 -- functions, etc.
2793 if Is_Type (T) and then From_Nested_Package (T) then
2794 Push_Scope (Pack);
2795 Install_Visible_Declarations (Pack);
2796 Install_Private_Declarations (Pack);
2797 Insert_Actions (N, Freeze_Nodes);
2798 End_Package_Scope (Pack);
2800 else
2801 Insert_Actions (N, Freeze_Nodes);
2802 end if;
2803 end if;
2804 end Freeze_Before;
2806 -------------------
2807 -- Freeze_Entity --
2808 -------------------
2810 -- WARNING: This routine manages Ghost regions. Return statements must be
2811 -- replaced by gotos which jump to the end of the routine and restore the
2812 -- Ghost mode.
2814 function Freeze_Entity
2815 (E : Entity_Id;
2816 N : Node_Id;
2817 Do_Freeze_Profile : Boolean := True) return List_Id
2819 Loc : constant Source_Ptr := Sloc (N);
2821 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
2822 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
2823 -- Save the Ghost-related attributes to restore on exit
2825 Atype : Entity_Id;
2826 Comp : Entity_Id;
2827 F_Node : Node_Id;
2828 Formal : Entity_Id;
2829 Indx : Node_Id;
2831 Result : List_Id := No_List;
2832 -- List of freezing actions, left at No_List if none
2834 Test_E : Entity_Id := E;
2835 -- A local temporary used to test if freezing is necessary for E, since
2836 -- its value can be set to something other than E in certain cases. For
2837 -- example, E cannot be used directly in cases such as when it is an
2838 -- Itype defined within a record - since it is the location of record
2839 -- which matters.
2841 procedure Add_To_Result (Fnod : Node_Id);
2842 -- Add freeze action Fnod to list Result
2844 function After_Last_Declaration return Boolean;
2845 -- If Loc is a freeze_entity that appears after the last declaration
2846 -- in the scope, inhibit error messages on late completion.
2848 procedure Check_Current_Instance (Comp_Decl : Node_Id);
2849 -- Check that an Access or Unchecked_Access attribute with a prefix
2850 -- which is the current instance type can only be applied when the type
2851 -- is limited.
2853 procedure Check_No_Parts_Violations
2854 (Typ : Entity_Id; Aspect_No_Parts : Aspect_Id) with
2855 Pre => Aspect_No_Parts in
2856 Aspect_No_Controlled_Parts | Aspect_No_Task_Parts;
2857 -- Check that Typ does not violate the semantics of the specified
2858 -- Aspect_No_Parts (No_Controlled_Parts or No_Task_Parts) when it is
2859 -- specified on Typ or one of its ancestors.
2861 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id);
2862 -- Give a warning for pragma Convention with language C or C++ applied
2863 -- to a discriminated record type. This is suppressed for the unchecked
2864 -- union case, since the whole point in this case is interface C. We
2865 -- also do not generate this within instantiations, since we will have
2866 -- generated a message on the template.
2868 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
2869 -- Give warning for modulus of 8, 16, 32, 64 or 128 given as an explicit
2870 -- integer literal without an explicit corresponding size clause. The
2871 -- caller has checked that Utype is a modular integer type.
2873 procedure Freeze_Array_Type (Arr : Entity_Id);
2874 -- Freeze array type, including freezing index and component types
2876 procedure Freeze_Object_Declaration (E : Entity_Id);
2877 -- Perform checks and generate freeze node if needed for a constant or
2878 -- variable declared by an object declaration.
2880 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
2881 -- Create Freeze_Generic_Entity nodes for types declared in a generic
2882 -- package. Recurse on inner generic packages.
2884 function Freeze_Profile (E : Entity_Id) return Boolean;
2885 -- Freeze formals and return type of subprogram. If some type in the
2886 -- profile is incomplete and we are in an instance, freezing of the
2887 -- entity will take place elsewhere, and the function returns False.
2889 procedure Freeze_Record_Type (Rec : Entity_Id);
2890 -- Freeze record type, including freezing component types, and freezing
2891 -- primitive operations if this is a tagged type.
2893 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
2894 -- Determine whether an arbitrary entity is subject to Boolean aspect
2895 -- Import and its value is specified as True.
2897 procedure Inherit_Freeze_Node
2898 (Fnod : Node_Id;
2899 Typ : Entity_Id);
2900 -- Set type Typ's freeze node to refer to Fnode. This routine ensures
2901 -- that any attributes attached to Typ's original node are preserved.
2903 procedure Wrap_Imported_Subprogram (E : Entity_Id);
2904 -- If E is an entity for an imported subprogram with pre/post-conditions
2905 -- then this procedure will create a wrapper to ensure that proper run-
2906 -- time checking of the pre/postconditions. See body for details.
2908 -------------------
2909 -- Add_To_Result --
2910 -------------------
2912 procedure Add_To_Result (Fnod : Node_Id) is
2913 begin
2914 Append_New_To (Result, Fnod);
2915 end Add_To_Result;
2917 ----------------------------
2918 -- After_Last_Declaration --
2919 ----------------------------
2921 function After_Last_Declaration return Boolean is
2922 Spec : constant Node_Id := Parent (Current_Scope);
2924 begin
2925 if Nkind (Spec) = N_Package_Specification then
2926 if Present (Private_Declarations (Spec)) then
2927 return Loc >= Sloc (Last (Private_Declarations (Spec)));
2928 elsif Present (Visible_Declarations (Spec)) then
2929 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
2930 else
2931 return False;
2932 end if;
2934 else
2935 return False;
2936 end if;
2937 end After_Last_Declaration;
2939 ----------------------------
2940 -- Check_Current_Instance --
2941 ----------------------------
2943 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
2945 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
2946 -- Determine whether Typ is compatible with the rules for aliased
2947 -- views of types as defined in RM 3.10 in the various dialects.
2949 function Process (N : Node_Id) return Traverse_Result;
2950 -- Process routine to apply check to given node
2952 -----------------------------
2953 -- Is_Aliased_View_Of_Type --
2954 -----------------------------
2956 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
2957 Typ_Decl : constant Node_Id := Parent (Typ);
2959 begin
2960 -- Common case
2962 if Nkind (Typ_Decl) = N_Full_Type_Declaration
2963 and then Limited_Present (Type_Definition (Typ_Decl))
2964 then
2965 return True;
2967 -- The following paragraphs describe what a legal aliased view of
2968 -- a type is in the various dialects of Ada.
2970 -- Ada 95
2972 -- The current instance of a limited type, and a formal parameter
2973 -- or generic formal object of a tagged type.
2975 -- Ada 95 limited type
2976 -- * Type with reserved word "limited"
2977 -- * A protected or task type
2978 -- * A composite type with limited component
2980 elsif Ada_Version <= Ada_95 then
2981 return Is_Limited_Type (Typ);
2983 -- Ada 2005
2985 -- The current instance of a limited tagged type, a protected
2986 -- type, a task type, or a type that has the reserved word
2987 -- "limited" in its full definition ... a formal parameter or
2988 -- generic formal object of a tagged type.
2990 -- Ada 2005 limited type
2991 -- * Type with reserved word "limited", "synchronized", "task"
2992 -- or "protected"
2993 -- * A composite type with limited component
2994 -- * A derived type whose parent is a non-interface limited type
2996 elsif Ada_Version = Ada_2005 then
2997 return
2998 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2999 or else
3000 (Is_Derived_Type (Typ)
3001 and then not Is_Interface (Etype (Typ))
3002 and then Is_Limited_Type (Etype (Typ)));
3004 -- Ada 2012 and beyond
3006 -- The current instance of an immutably limited type ... a formal
3007 -- parameter or generic formal object of a tagged type.
3009 -- Ada 2012 limited type
3010 -- * Type with reserved word "limited", "synchronized", "task"
3011 -- or "protected"
3012 -- * A composite type with limited component
3013 -- * A derived type whose parent is a non-interface limited type
3014 -- * An incomplete view
3016 -- Ada 2012 immutably limited type
3017 -- * Explicitly limited record type
3018 -- * Record extension with "limited" present
3019 -- * Non-formal limited private type that is either tagged
3020 -- or has at least one access discriminant with a default
3021 -- expression
3022 -- * Task type, protected type or synchronized interface
3023 -- * Type derived from immutably limited type
3025 else
3026 return
3027 Is_Immutably_Limited_Type (Typ)
3028 or else Is_Incomplete_Type (Typ);
3029 end if;
3030 end Is_Aliased_View_Of_Type;
3032 -------------
3033 -- Process --
3034 -------------
3036 function Process (N : Node_Id) return Traverse_Result is
3037 begin
3038 case Nkind (N) is
3039 when N_Attribute_Reference =>
3040 if Attribute_Name (N) in Name_Access | Name_Unchecked_Access
3041 and then Is_Entity_Name (Prefix (N))
3042 and then Entity (Prefix (N)) = E
3043 then
3044 if Ada_Version < Ada_2012 then
3045 Error_Msg_N
3046 ("current instance must be a limited type",
3047 Prefix (N));
3048 else
3049 Error_Msg_N
3050 ("current instance must be an immutably limited "
3051 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
3052 end if;
3054 return Abandon;
3056 else
3057 return OK;
3058 end if;
3060 when others =>
3061 return OK;
3062 end case;
3063 end Process;
3065 procedure Traverse is new Traverse_Proc (Process);
3067 -- Local variables
3069 Rec_Type : constant Entity_Id :=
3070 Scope (Defining_Identifier (Comp_Decl));
3072 -- Start of processing for Check_Current_Instance
3074 begin
3075 if not Is_Aliased_View_Of_Type (Rec_Type) then
3076 Traverse (Comp_Decl);
3077 end if;
3078 end Check_Current_Instance;
3080 -------------------------------
3081 -- Check_No_Parts_Violations --
3082 -------------------------------
3084 procedure Check_No_Parts_Violations
3085 (Typ : Entity_Id; Aspect_No_Parts : Aspect_Id)
3088 function Find_Aspect_No_Parts
3089 (Typ : Entity_Id) return Node_Id;
3090 -- Search for Aspect_No_Parts on a given type. When
3091 -- the aspect is not explicity specified Empty is returned.
3093 function Get_Aspect_No_Parts_Value
3094 (Typ : Entity_Id) return Entity_Id;
3095 -- Obtain the value for the Aspect_No_Parts on a given
3096 -- type. When the aspect is not explicitly specified Empty is
3097 -- returned.
3099 function Has_Aspect_No_Parts
3100 (Typ : Entity_Id) return Boolean;
3101 -- Predicate function which identifies whether No_Parts
3102 -- is explicitly specified on a given type.
3104 -------------------------------------
3105 -- Find_Aspect_No_Parts --
3106 -------------------------------------
3108 function Find_Aspect_No_Parts
3109 (Typ : Entity_Id) return Node_Id
3111 Partial_View : constant Entity_Id :=
3112 Incomplete_Or_Partial_View (Typ);
3114 Aspect_Spec : Entity_Id :=
3115 Find_Aspect (Typ, Aspect_No_Parts);
3116 Curr_Aspect_Spec : Entity_Id;
3117 begin
3118 -- Examine Typ's associated node, when present, since aspect
3119 -- specifications do not get transferred when nodes get rewritten.
3121 -- For example, this can happen in the expansion of array types
3123 if No (Aspect_Spec)
3124 and then Present (Associated_Node_For_Itype (Typ))
3125 and then Nkind (Associated_Node_For_Itype (Typ))
3126 = N_Full_Type_Declaration
3127 then
3128 Aspect_Spec :=
3129 Find_Aspect
3130 (Id => Defining_Identifier
3131 (Associated_Node_For_Itype (Typ)),
3132 A => Aspect_No_Parts);
3133 end if;
3135 -- Examine aspects specifications on private type declarations
3137 -- Should Find_Aspect be improved to handle this case ???
3139 if No (Aspect_Spec)
3140 and then Present (Partial_View)
3141 and then Present
3142 (Aspect_Specifications
3143 (Declaration_Node
3144 (Partial_View)))
3145 then
3146 Curr_Aspect_Spec :=
3147 First
3148 (Aspect_Specifications
3149 (Declaration_Node
3150 (Partial_View)));
3152 -- Search through aspects present on the private type
3154 while Present (Curr_Aspect_Spec) loop
3155 if Get_Aspect_Id (Curr_Aspect_Spec) = Aspect_No_Parts then
3156 Aspect_Spec := Curr_Aspect_Spec;
3157 exit;
3158 end if;
3160 Next (Curr_Aspect_Spec);
3161 end loop;
3163 end if;
3165 -- When errors are posted on the aspect return Empty
3167 if Error_Posted (Aspect_Spec) then
3168 return Empty;
3169 end if;
3171 return Aspect_Spec;
3172 end Find_Aspect_No_Parts;
3174 ------------------------------------------
3175 -- Get_Aspect_No_Parts_Value --
3176 ------------------------------------------
3178 function Get_Aspect_No_Parts_Value
3179 (Typ : Entity_Id) return Entity_Id
3181 Aspect_Spec : constant Entity_Id :=
3182 Find_Aspect_No_Parts (Typ);
3183 begin
3184 -- Return the value of the aspect when present
3186 if Present (Aspect_Spec) then
3188 -- No expression is the same as True
3190 if No (Expression (Aspect_Spec)) then
3191 return Standard_True;
3192 end if;
3194 -- Assume its expression has already been constant folded into
3195 -- a Boolean value and return its value.
3197 return Entity (Expression (Aspect_Spec));
3198 end if;
3200 -- Otherwise, the aspect is not specified - so return Empty
3202 return Empty;
3203 end Get_Aspect_No_Parts_Value;
3205 ------------------------------------
3206 -- Has_Aspect_No_Parts --
3207 ------------------------------------
3209 function Has_Aspect_No_Parts
3210 (Typ : Entity_Id) return Boolean
3211 is (Present (Find_Aspect_No_Parts (Typ)));
3213 -- Generic instances
3215 -------------------------------------------
3216 -- Get_Generic_Formal_Types_In_Hierarchy --
3217 -------------------------------------------
3219 function Get_Generic_Formal_Types_In_Hierarchy
3220 is new Collect_Types_In_Hierarchy (Predicate => Is_Generic_Formal);
3221 -- Return a list of all types within a given type's hierarchy which
3222 -- are generic formals.
3224 ----------------------------------------
3225 -- Get_Types_With_Aspect_In_Hierarchy --
3226 ----------------------------------------
3228 function Get_Types_With_Aspect_In_Hierarchy
3229 is new Collect_Types_In_Hierarchy
3230 (Predicate => Has_Aspect_No_Parts);
3231 -- Returns a list of all types within a given type's hierarchy which
3232 -- have the Aspect_No_Parts specified.
3234 -- Local declarations
3236 Aspect_Value : Entity_Id;
3237 Curr_Value : Entity_Id;
3238 Curr_Typ_Elmt : Elmt_Id;
3239 Curr_Body_Elmt : Elmt_Id;
3240 Curr_Formal_Elmt : Elmt_Id;
3241 Gen_Bodies : Elist_Id;
3242 Gen_Formals : Elist_Id;
3243 Scop : Entity_Id;
3244 Types_With_Aspect : Elist_Id;
3246 -- Start of processing for Check_No_Parts_Violations
3248 begin
3249 -- Nothing to check if the type is elementary or artificial
3251 if Is_Elementary_Type (Typ) or else not Comes_From_Source (Typ) then
3252 return;
3253 end if;
3255 Types_With_Aspect := Get_Types_With_Aspect_In_Hierarchy (Typ);
3257 -- Nothing to check if there are no types with No_Parts specified
3259 if Is_Empty_Elmt_List (Types_With_Aspect) then
3260 return;
3261 end if;
3263 -- Set name for all errors below
3265 Error_Msg_Name_1 := Aspect_Names (Aspect_No_Parts);
3267 -- Obtain the aspect value for No_Parts for comparison
3269 Aspect_Value :=
3270 Get_Aspect_No_Parts_Value
3271 (Node (First_Elmt (Types_With_Aspect)));
3273 -- When the value is True and there are controlled/task parts or the
3274 -- type itself is controlled/task, trigger the appropriate error.
3276 if Aspect_Value = Standard_True then
3277 if Aspect_No_Parts = Aspect_No_Controlled_Parts then
3278 if Is_Controlled (Typ) or else Has_Controlled_Component (Typ)
3279 then
3280 Error_Msg_N
3281 ("aspect % applied to controlled type &", Typ);
3282 end if;
3284 elsif Aspect_No_Parts = Aspect_No_Task_Parts then
3285 if Has_Task (Typ) then
3286 Error_Msg_N
3287 ("aspect % applied to task type &", Typ);
3288 Error_Msg_N
3289 ("\replace task components with access-to-task-type "
3290 & "components", Typ);
3291 end if;
3293 else
3294 raise Program_Error;
3295 end if;
3296 end if;
3298 -- Move through Types_With_Aspect - checking that the value specified
3299 -- for their corresponding Aspect_No_Parts do not override each
3300 -- other.
3302 Curr_Typ_Elmt := First_Elmt (Types_With_Aspect);
3303 while Present (Curr_Typ_Elmt) loop
3304 Curr_Value :=
3305 Get_Aspect_No_Parts_Value (Node (Curr_Typ_Elmt));
3307 -- Compare the aspect value against the current type
3309 if Curr_Value /= Aspect_Value then
3310 Error_Msg_NE
3311 ("cannot override aspect % of "
3312 & "ancestor type &", Typ, Node (Curr_Typ_Elmt));
3313 return;
3314 end if;
3316 Next_Elmt (Curr_Typ_Elmt);
3317 end loop;
3319 -- Issue an error if the aspect applies to a type declared inside a
3320 -- generic body and if said type derives from or has a component
3321 -- of ageneric formal type - since those are considered to have
3322 -- controlled/task parts and have Aspect_No_Parts specified as
3323 -- False by default (RM H.4.1(4/5) is about the language-defined
3324 -- No_Controlled_Parts aspect, and we are using the same rules for
3325 -- No_Task_Parts).
3327 -- We do not check tagged types since deriving from a formal type
3328 -- within an enclosing generic unit is already illegal
3329 -- (RM 3.9.1 (4/2)).
3331 if Aspect_Value = Standard_True
3332 and then In_Generic_Body (Typ)
3333 and then not Is_Tagged_Type (Typ)
3334 then
3335 Gen_Bodies := New_Elmt_List;
3336 Gen_Formals :=
3337 Get_Generic_Formal_Types_In_Hierarchy
3338 (Typ => Typ,
3339 Examine_Components => True);
3341 -- Climb scopes collecting generic bodies
3343 Scop := Scope (Typ);
3344 while Present (Scop) and then Scop /= Standard_Standard loop
3346 -- Generic package body
3348 if Ekind (Scop) = E_Generic_Package
3349 and then In_Package_Body (Scop)
3350 then
3351 Append_Elmt (Scop, Gen_Bodies);
3353 -- Generic subprogram body
3355 elsif Is_Generic_Subprogram (Scop) then
3356 Append_Elmt (Scop, Gen_Bodies);
3357 end if;
3359 Scop := Scope (Scop);
3360 end loop;
3362 -- Warn about the improper use of Aspect_No_Parts on a type
3363 -- declaration deriving from or that has a component of a generic
3364 -- formal type within the formal type's corresponding generic
3365 -- body by moving through all formal types in Typ's hierarchy and
3366 -- checking if they are formals in any of the enclosing generic
3367 -- bodies.
3369 -- However, a special exception gets made for formal types which
3370 -- derive from a type which has Aspect_No_Parts True.
3372 -- For example:
3374 -- generic
3375 -- type Form is private;
3376 -- package G is
3377 -- type Type_A is new Form with No_Controlled_Parts; -- OK
3378 -- end;
3380 -- package body G is
3381 -- type Type_B is new Form with No_Controlled_Parts; -- ERROR
3382 -- end;
3384 -- generic
3385 -- type Form is private;
3386 -- package G is
3387 -- type Type_A is record C : Form; end record
3388 -- with No_Controlled_Parts; -- OK
3389 -- end;
3391 -- package body G is
3392 -- type Type_B is record C : Form; end record
3393 -- with No_Controlled_Parts; -- ERROR
3394 -- end;
3396 -- type Root is tagged null record with No_Controlled_Parts;
3398 -- generic
3399 -- type Form is new Root with private;
3400 -- package G is
3401 -- type Type_A is record C : Form; end record
3402 -- with No_Controlled_Parts; -- OK
3403 -- end;
3405 -- package body G is
3406 -- type Type_B is record C : Form; end record
3407 -- with No_Controlled_Parts; -- OK
3408 -- end;
3410 Curr_Formal_Elmt := First_Elmt (Gen_Formals);
3411 while Present (Curr_Formal_Elmt) loop
3413 Curr_Body_Elmt := First_Elmt (Gen_Bodies);
3414 while Present (Curr_Body_Elmt) loop
3416 -- Obtain types in the formal type's hierarchy which have
3417 -- the aspect specified.
3419 Types_With_Aspect :=
3420 Get_Types_With_Aspect_In_Hierarchy
3421 (Node (Curr_Formal_Elmt));
3423 -- We found a type declaration in a generic body where both
3424 -- Aspect_No_Parts is true and one of its ancestors is a
3425 -- generic formal type.
3427 if Scope (Node (Curr_Formal_Elmt)) =
3428 Node (Curr_Body_Elmt)
3430 -- Check that no ancestors of the formal type have
3431 -- Aspect_No_Parts True before issuing the error.
3433 and then (Is_Empty_Elmt_List (Types_With_Aspect)
3434 or else
3435 Get_Aspect_No_Parts_Value
3436 (Node (First_Elmt (Types_With_Aspect)))
3437 = Standard_False)
3438 then
3439 Error_Msg_Node_1 := Typ;
3440 Error_Msg_Node_2 := Node (Curr_Formal_Elmt);
3441 Error_Msg
3442 ("aspect % cannot be applied to "
3443 & "type & which has an ancestor or component of "
3444 & "formal type & within the formal type's "
3445 & "corresponding generic body", Sloc (Typ));
3446 end if;
3448 Next_Elmt (Curr_Body_Elmt);
3449 end loop;
3451 Next_Elmt (Curr_Formal_Elmt);
3452 end loop;
3453 end if;
3454 end Check_No_Parts_Violations;
3456 ---------------------------------
3457 -- Check_Suspicious_Convention --
3458 ---------------------------------
3460 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id) is
3461 begin
3462 if Has_Discriminants (Rec_Type)
3463 and then Is_Base_Type (Rec_Type)
3464 and then not Is_Unchecked_Union (Rec_Type)
3465 and then (Convention (Rec_Type) = Convention_C
3466 or else
3467 Convention (Rec_Type) = Convention_CPP)
3468 and then Comes_From_Source (Rec_Type)
3469 and then not In_Instance
3470 and then not Has_Warnings_Off (Rec_Type)
3471 then
3472 declare
3473 Cprag : constant Node_Id :=
3474 Get_Rep_Pragma (Rec_Type, Name_Convention);
3475 A2 : Node_Id;
3477 begin
3478 if Present (Cprag) then
3479 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
3481 if Convention (Rec_Type) = Convention_C then
3482 Error_Msg_N
3483 ("?x?discriminated record has no direct equivalent in "
3484 & "C", A2);
3485 else
3486 Error_Msg_N
3487 ("?x?discriminated record has no direct equivalent in "
3488 & "C++", A2);
3489 end if;
3491 Error_Msg_NE
3492 ("\?x?use of convention for type& is dubious",
3493 A2, Rec_Type);
3494 end if;
3495 end;
3496 end if;
3497 end Check_Suspicious_Convention;
3499 ------------------------------
3500 -- Check_Suspicious_Modulus --
3501 ------------------------------
3503 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
3504 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
3506 begin
3507 if not Warn_On_Suspicious_Modulus_Value then
3508 return;
3509 end if;
3511 if Nkind (Decl) = N_Full_Type_Declaration then
3512 declare
3513 Tdef : constant Node_Id := Type_Definition (Decl);
3515 begin
3516 if Nkind (Tdef) = N_Modular_Type_Definition then
3517 declare
3518 Modulus : constant Node_Id :=
3519 Original_Node (Expression (Tdef));
3521 begin
3522 if Nkind (Modulus) = N_Integer_Literal then
3523 declare
3524 Modv : constant Uint := Intval (Modulus);
3525 Sizv : constant Uint := RM_Size (Utype);
3527 begin
3528 -- First case, modulus and size are the same. This
3529 -- happens if you have something like mod 32, with
3530 -- an explicit size of 32, this is for sure a case
3531 -- where the warning is given, since it is seems
3532 -- very unlikely that someone would want e.g. a
3533 -- five bit type stored in 32 bits. It is much
3534 -- more likely they wanted a 32-bit type.
3536 if Modv = Sizv then
3537 null;
3539 -- Second case, the modulus is 32 or 64 and no
3540 -- size clause is present. This is a less clear
3541 -- case for giving the warning, but in the case
3542 -- of 32/64 (5-bit or 6-bit types) these seem rare
3543 -- enough that it is a likely error (and in any
3544 -- case using 2**5 or 2**6 in these cases seems
3545 -- clearer. We don't include 8 or 16 here, simply
3546 -- because in practice 3-bit and 4-bit types are
3547 -- more common and too many false positives if
3548 -- we warn in these cases.
3550 elsif not Has_Size_Clause (Utype)
3551 and then (Modv = Uint_32 or else Modv = Uint_64)
3552 then
3553 null;
3555 -- No warning needed
3557 else
3558 return;
3559 end if;
3561 -- If we fall through, give warning
3563 Error_Msg_Uint_1 := Modv;
3564 Error_Msg_N
3565 ("?.m?2 '*'*^' may have been intended here",
3566 Modulus);
3567 end;
3568 end if;
3569 end;
3570 end if;
3571 end;
3572 end if;
3573 end Check_Suspicious_Modulus;
3575 -----------------------
3576 -- Freeze_Array_Type --
3577 -----------------------
3579 procedure Freeze_Array_Type (Arr : Entity_Id) is
3580 FS : constant Entity_Id := First_Subtype (Arr);
3581 Ctyp : constant Entity_Id := Component_Type (Arr);
3583 Clause : Node_Id;
3584 -- Set to Component_Size clause or Atomic pragma, if any
3586 Non_Standard_Enum : Boolean := False;
3587 -- Set true if any of the index types is an enumeration type with a
3588 -- non-standard representation.
3590 begin
3591 Freeze_And_Append (Ctyp, N, Result);
3593 Indx := First_Index (Arr);
3594 while Present (Indx) loop
3595 Freeze_And_Append (Etype (Indx), N, Result);
3597 if Is_Enumeration_Type (Etype (Indx))
3598 and then Has_Non_Standard_Rep (Etype (Indx))
3599 then
3600 Non_Standard_Enum := True;
3601 end if;
3603 Next_Index (Indx);
3604 end loop;
3606 -- Processing that is done only for base types
3608 if Ekind (Arr) = E_Array_Type then
3610 -- Deal with default setting of reverse storage order
3612 Set_SSO_From_Default (Arr);
3614 -- Propagate flags from component type
3616 Propagate_Concurrent_Flags (Arr, Ctyp);
3617 Propagate_Controlled_Flags (Arr, Ctyp, Comp => True);
3619 if Has_Unchecked_Union (Ctyp) then
3620 Set_Has_Unchecked_Union (Arr);
3621 end if;
3623 -- The array type requires its own invariant procedure in order to
3624 -- verify the component invariant over all elements. In GNATprove
3625 -- mode, the component invariants are checked by other means. They
3626 -- should not be added to the array type invariant procedure, so
3627 -- that the procedure can be used to check the array type
3628 -- invariants if any.
3630 if Has_Invariants (Ctyp)
3631 and then not GNATprove_Mode
3632 then
3633 Set_Has_Own_Invariants (Arr);
3634 end if;
3636 -- Warn for pragma Pack overriding foreign convention
3638 if Has_Foreign_Convention (Ctyp)
3639 and then Has_Pragma_Pack (Arr)
3640 then
3641 declare
3642 CN : constant Name_Id :=
3643 Get_Convention_Name (Convention (Ctyp));
3644 PP : constant Node_Id :=
3645 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
3646 begin
3647 if Present (PP) then
3648 Error_Msg_Name_1 := CN;
3649 Error_Msg_Sloc := Sloc (Arr);
3650 Error_Msg_N
3651 ("pragma Pack affects convention % components #??", PP);
3652 Error_Msg_Name_1 := CN;
3653 Error_Msg_N
3654 ("\array components may not have % compatible "
3655 & "representation??", PP);
3656 end if;
3657 end;
3658 end if;
3660 -- Check for Aliased or Atomic or Full Access or Independent
3661 -- components with an unsuitable component size clause given.
3662 -- The main purpose is to give an error when bit packing would
3663 -- be required to honor the component size, because bit packing
3664 -- is incompatible with these aspects; when bit packing is not
3665 -- required, the final validation of the component size may be
3666 -- left to the back end.
3668 if Has_Component_Size_Clause (Arr) then
3669 CS_Check : declare
3670 procedure Complain_CS (T : String; Min : Boolean := False);
3671 -- Output an error message for an unsuitable component size
3672 -- clause for independent components (T is either "aliased"
3673 -- or "atomic" or "volatile full access" or "independent").
3675 -----------------
3676 -- Complain_CS --
3677 -----------------
3679 procedure Complain_CS (T : String; Min : Boolean := False) is
3680 begin
3681 Clause :=
3682 Get_Attribute_Definition_Clause
3683 (FS, Attribute_Component_Size);
3685 Error_Msg_N
3686 ("incorrect component size for " & T & " components",
3687 Clause);
3689 if Known_Static_Esize (Ctyp) then
3690 Error_Msg_Uint_1 := Esize (Ctyp);
3691 if Min then
3692 Error_Msg_N ("\minimum allowed value is^", Clause);
3693 else
3694 Error_Msg_N ("\only allowed value is^", Clause);
3695 end if;
3696 else
3697 Error_Msg_N
3698 ("\must be multiple of storage unit", Clause);
3699 end if;
3700 end Complain_CS;
3702 -- Start of processing for CS_Check
3704 begin
3705 -- OK if the component size and object size are equal, or
3706 -- if the component size is a multiple of the storage unit.
3708 if (if Known_Static_Esize (Ctyp)
3709 then Component_Size (Arr) = Esize (Ctyp)
3710 else Component_Size (Arr) mod System_Storage_Unit = 0)
3711 then
3712 null;
3714 elsif Has_Aliased_Components (Arr) then
3715 Complain_CS ("aliased");
3717 elsif Has_Atomic_Components (Arr)
3718 or else Is_Atomic (Ctyp)
3719 then
3720 Complain_CS ("atomic");
3722 elsif Is_Volatile_Full_Access (Ctyp) then
3723 Complain_CS ("volatile full access");
3725 -- For Independent a larger size is permitted
3727 elsif (Has_Independent_Components (Arr)
3728 or else Is_Independent (Ctyp))
3729 and then (not Known_Static_Esize (Ctyp)
3730 or else Component_Size (Arr) < Esize (Ctyp))
3731 then
3732 Complain_CS ("independent", Min => True);
3733 end if;
3734 end CS_Check;
3736 -- Check for Aliased or Atomic or Full Access or Independent
3737 -- components with an unsuitable aspect/pragma Pack given.
3738 -- The main purpose is to prevent bit packing from occurring,
3739 -- because bit packing is incompatible with these aspects; when
3740 -- bit packing cannot occur, the final handling of the packing
3741 -- may be left to the back end.
3743 elsif Is_Packed (Arr) and then Known_Static_RM_Size (Ctyp) then
3744 Pack_Check : declare
3746 procedure Complain_Pack (T : String);
3747 -- Output a warning message for an unsuitable aspect/pragma
3748 -- Pack for independent components (T is either "aliased" or
3749 -- "atomic" or "volatile full access" or "independent") and
3750 -- reset the Is_Packed flag on the array type.
3752 -------------------
3753 -- Complain_Pack --
3754 -------------------
3756 procedure Complain_Pack (T : String) is
3757 begin
3758 Error_Msg_N
3759 ("?cannot pack " & T & " components (RM 13.2(7))",
3760 Get_Rep_Pragma (FS, Name_Pack));
3762 Set_Is_Packed (Arr, False);
3763 end Complain_Pack;
3765 -- Start of processing for Pack_Check
3767 begin
3768 -- OK if the component size and object size are equal, or
3769 -- if the component size is a multiple of the storage unit.
3771 if (if Known_Static_Esize (Ctyp)
3772 then RM_Size (Ctyp) = Esize (Ctyp)
3773 else RM_Size (Ctyp) mod System_Storage_Unit = 0)
3774 then
3775 null;
3777 elsif Has_Aliased_Components (Arr) then
3778 Complain_Pack ("aliased");
3780 elsif Has_Atomic_Components (Arr)
3781 or else Is_Atomic (Ctyp)
3782 then
3783 Complain_Pack ("atomic");
3785 elsif Is_Volatile_Full_Access (Ctyp) then
3786 Complain_Pack ("volatile full access");
3788 elsif Has_Independent_Components (Arr)
3789 or else Is_Independent (Ctyp)
3790 then
3791 Complain_Pack ("independent");
3792 end if;
3793 end Pack_Check;
3794 end if;
3796 -- If packing was requested or if the component size was
3797 -- set explicitly, then see if bit packing is required. This
3798 -- processing is only done for base types, since all of the
3799 -- representation aspects involved are type-related.
3801 -- This is not just an optimization, if we start processing the
3802 -- subtypes, they interfere with the settings on the base type
3803 -- (this is because Is_Packed has a slightly different meaning
3804 -- before and after freezing).
3806 declare
3807 Csiz : Uint;
3808 Esiz : Uint;
3810 begin
3811 if Is_Packed (Arr)
3812 and then Known_Static_RM_Size (Ctyp)
3813 and then not Has_Component_Size_Clause (Arr)
3814 then
3815 Csiz := UI_Max (RM_Size (Ctyp), 1);
3817 elsif Known_Component_Size (Arr) then
3818 Csiz := Component_Size (Arr);
3820 elsif not Known_Static_Esize (Ctyp) then
3821 Csiz := Uint_0;
3823 else
3824 Esiz := Esize (Ctyp);
3826 -- We can set the component size if it is less than 16,
3827 -- rounding it up to the next storage unit size.
3829 if Esiz <= 8 then
3830 Csiz := Uint_8;
3831 elsif Esiz <= 16 then
3832 Csiz := Uint_16;
3833 else
3834 Csiz := Uint_0;
3835 end if;
3837 -- Set component size up to match alignment if it would
3838 -- otherwise be less than the alignment. This deals with
3839 -- cases of types whose alignment exceeds their size (the
3840 -- padded type cases).
3842 if Csiz /= 0 and then Known_Alignment (Ctyp) then
3843 declare
3844 A : constant Uint := Alignment_In_Bits (Ctyp);
3845 begin
3846 if Csiz < A then
3847 Csiz := A;
3848 end if;
3849 end;
3850 end if;
3851 end if;
3853 -- Case of component size that may result in bit packing
3855 if 1 <= Csiz and then Csiz <= System_Max_Integer_Size then
3856 declare
3857 Ent : constant Entity_Id :=
3858 First_Subtype (Arr);
3859 Pack_Pragma : constant Node_Id :=
3860 Get_Rep_Pragma (Ent, Name_Pack);
3861 Comp_Size_C : constant Node_Id :=
3862 Get_Attribute_Definition_Clause
3863 (Ent, Attribute_Component_Size);
3865 begin
3866 -- Warn if we have pack and component size so that the
3867 -- pack is ignored.
3869 -- Note: here we must check for the presence of a
3870 -- component size before checking for a Pack pragma to
3871 -- deal with the case where the array type is a derived
3872 -- type whose parent is currently private.
3874 if Present (Comp_Size_C)
3875 and then Has_Pragma_Pack (Ent)
3876 and then Warn_On_Redundant_Constructs
3877 then
3878 Error_Msg_Sloc := Sloc (Comp_Size_C);
3879 Error_Msg_NE
3880 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
3881 Error_Msg_N
3882 ("\?r?explicit component size given#!", Pack_Pragma);
3883 Set_Is_Packed (Base_Type (Ent), False);
3884 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
3885 end if;
3887 -- Set component size if not already set by a component
3888 -- size clause.
3890 if No (Comp_Size_C) then
3891 Set_Component_Size (Arr, Csiz);
3892 end if;
3894 -- Check for base type of 8, 16, 32 bits, where an
3895 -- unsigned subtype has a length one less than the
3896 -- base type (e.g. Natural subtype of Integer).
3898 -- In such cases, if a component size was not set
3899 -- explicitly, then generate a warning.
3901 if Has_Pragma_Pack (Arr)
3902 and then No (Comp_Size_C)
3903 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3904 and then Known_Esize (Base_Type (Ctyp))
3905 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3906 then
3907 Error_Msg_Uint_1 := Csiz;
3909 if Present (Pack_Pragma) then
3910 Error_Msg_N
3911 ("??pragma Pack causes component size to be ^!",
3912 Pack_Pragma);
3913 Error_Msg_N
3914 ("\??use Component_Size to set desired value!",
3915 Pack_Pragma);
3916 end if;
3917 end if;
3919 -- Bit packing is never needed for 8, 16, 32, 64 or 128
3921 if Addressable (Csiz) then
3923 -- If the Esize of the component is known and equal to
3924 -- the component size then even packing is not needed.
3926 if Known_Static_Esize (Ctyp)
3927 and then Esize (Ctyp) = Csiz
3928 then
3929 -- Here the array was requested to be packed, but
3930 -- the packing request had no effect whatsoever,
3931 -- so flag Is_Packed is reset.
3933 -- Note: semantically this means that we lose track
3934 -- of the fact that a derived type inherited pragma
3935 -- Pack that was non-effective, but that is fine.
3937 -- We regard a Pack pragma as a request to set a
3938 -- representation characteristic, and this request
3939 -- may be ignored.
3941 Set_Is_Packed (Base_Type (Arr), False);
3942 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
3943 else
3944 Set_Is_Packed (Base_Type (Arr), True);
3945 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
3946 end if;
3948 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
3950 -- Bit packing is not needed for multiples of the storage
3951 -- unit if the type is composite because the back end can
3952 -- byte pack composite types efficiently. That's not true
3953 -- for discrete types because every read would generate a
3954 -- lot of instructions, so we keep using the manipulation
3955 -- routines of the runtime for them.
3957 elsif Csiz mod System_Storage_Unit = 0
3958 and then Is_Composite_Type (Ctyp)
3959 then
3960 Set_Is_Packed (Base_Type (Arr), True);
3961 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
3962 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
3964 -- In all other cases, bit packing is needed
3966 else
3967 Set_Is_Packed (Base_Type (Arr), True);
3968 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
3969 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
3970 end if;
3971 end;
3972 end if;
3973 end;
3975 -- Warn for case of atomic type
3977 Clause := Get_Rep_Pragma (FS, Name_Atomic);
3979 if Present (Clause)
3980 and then not Addressable (Component_Size (FS))
3981 then
3982 Error_Msg_NE
3983 ("non-atomic components of type& may not be "
3984 & "accessible by separate tasks??", Clause, Arr);
3986 if Has_Component_Size_Clause (Arr) then
3987 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
3988 (FS, Attribute_Component_Size));
3989 Error_Msg_N ("\because of component size clause#??", Clause);
3991 elsif Has_Pragma_Pack (Arr) then
3992 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
3993 Error_Msg_N ("\because of pragma Pack#??", Clause);
3994 end if;
3995 end if;
3997 -- Check for scalar storage order
3999 declare
4000 Dummy : Boolean;
4001 begin
4002 Check_Component_Storage_Order
4003 (Encl_Type => Arr,
4004 Comp => Empty,
4005 ADC => Get_Attribute_Definition_Clause
4006 (First_Subtype (Arr),
4007 Attribute_Scalar_Storage_Order),
4008 Comp_ADC_Present => Dummy);
4009 end;
4011 -- Processing that is done only for subtypes
4013 else
4014 -- Acquire alignment from base type. Known_Alignment of the base
4015 -- type is False for Wide_String, for example.
4017 if not Known_Alignment (Arr)
4018 and then Known_Alignment (Base_Type (Arr))
4019 then
4020 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
4021 Adjust_Esize_Alignment (Arr);
4022 end if;
4023 end if;
4025 -- Specific checks for bit-packed arrays
4027 if Is_Bit_Packed_Array (Arr) then
4029 -- Check number of elements for bit-packed arrays that come from
4030 -- source and have compile time known ranges. The bit-packed
4031 -- arrays circuitry does not support arrays with more than
4032 -- Integer'Last + 1 elements, and when this restriction is
4033 -- violated, causes incorrect data access.
4035 -- For the case where this is not compile time known, a run-time
4036 -- check should be generated???
4038 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
4039 declare
4040 Elmts : Uint;
4041 Index : Node_Id;
4042 Ilen : Node_Id;
4043 Ityp : Entity_Id;
4045 begin
4046 Elmts := Uint_1;
4047 Index := First_Index (Arr);
4048 while Present (Index) loop
4049 Ityp := Etype (Index);
4051 -- Never generate an error if any index is of a generic
4052 -- type. We will check this in instances.
4054 if Is_Generic_Type (Ityp) then
4055 Elmts := Uint_0;
4056 exit;
4057 end if;
4059 Ilen :=
4060 Make_Attribute_Reference (Loc,
4061 Prefix => New_Occurrence_Of (Ityp, Loc),
4062 Attribute_Name => Name_Range_Length);
4063 Analyze_And_Resolve (Ilen);
4065 -- No attempt is made to check number of elements if not
4066 -- compile time known.
4068 if Nkind (Ilen) /= N_Integer_Literal then
4069 Elmts := Uint_0;
4070 exit;
4071 end if;
4073 Elmts := Elmts * Intval (Ilen);
4074 Next_Index (Index);
4075 end loop;
4077 if Elmts > Intval (High_Bound
4078 (Scalar_Range (Standard_Integer))) + 1
4079 then
4080 Error_Msg_N
4081 ("bit packed array type may not have "
4082 & "more than Integer''Last+1 elements", Arr);
4083 end if;
4084 end;
4085 end if;
4087 -- Check size
4089 if Known_RM_Size (Arr) then
4090 declare
4091 SizC : constant Node_Id := Size_Clause (Arr);
4092 Discard : Boolean;
4094 begin
4095 -- It is not clear if it is possible to have no size clause
4096 -- at this stage, but it is not worth worrying about. Post
4097 -- error on the entity name in the size clause if present,
4098 -- else on the type entity itself.
4100 if Present (SizC) then
4101 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
4102 else
4103 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
4104 end if;
4105 end;
4106 end if;
4107 end if;
4109 -- If any of the index types was an enumeration type with a non-
4110 -- standard rep clause, then we indicate that the array type is
4111 -- always packed (even if it is not bit-packed).
4113 if Non_Standard_Enum then
4114 Set_Has_Non_Standard_Rep (Base_Type (Arr));
4115 Set_Is_Packed (Base_Type (Arr));
4116 end if;
4118 Set_Component_Alignment_If_Not_Set (Arr);
4120 -- If the array is packed and bit-packed or packed to eliminate holes
4121 -- in the non-contiguous enumeration index types, we must create the
4122 -- packed array type to be used to actually implement the type. This
4123 -- is only needed for real array types (not for string literal types,
4124 -- since they are present only for the front end).
4126 if Is_Packed (Arr)
4127 and then (Is_Bit_Packed_Array (Arr) or else Non_Standard_Enum)
4128 and then Ekind (Arr) /= E_String_Literal_Subtype
4129 then
4130 Create_Packed_Array_Impl_Type (Arr);
4131 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
4133 -- Make sure that we have the necessary routines to implement the
4134 -- packing, and complain now if not. Note that we only test this
4135 -- for constrained array types.
4137 if Is_Constrained (Arr)
4138 and then Is_Bit_Packed_Array (Arr)
4139 and then Present (Packed_Array_Impl_Type (Arr))
4140 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
4141 then
4142 declare
4143 CS : constant Uint := Component_Size (Arr);
4144 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
4146 begin
4147 if RE /= RE_Null
4148 and then not RTE_Available (RE)
4149 then
4150 Error_Msg_CRT
4151 ("packing of " & UI_Image (CS) & "-bit components",
4152 First_Subtype (Etype (Arr)));
4154 -- Cancel the packing
4156 Set_Is_Packed (Base_Type (Arr), False);
4157 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
4158 Set_Packed_Array_Impl_Type (Arr, Empty);
4159 goto Skip_Packed;
4160 end if;
4161 end;
4162 end if;
4164 -- Size information of packed array type is copied to the array
4165 -- type, since this is really the representation. But do not
4166 -- override explicit existing size values. If the ancestor subtype
4167 -- is constrained the Packed_Array_Impl_Type will be inherited
4168 -- from it, but the size may have been provided already, and
4169 -- must not be overridden either.
4171 if not Has_Size_Clause (Arr)
4172 and then
4173 (No (Ancestor_Subtype (Arr))
4174 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
4175 then
4176 Copy_Esize (To => Arr, From => Packed_Array_Impl_Type (Arr));
4177 Copy_RM_Size (To => Arr, From => Packed_Array_Impl_Type (Arr));
4178 end if;
4180 if not Has_Alignment_Clause (Arr) then
4181 Copy_Alignment
4182 (To => Arr, From => Packed_Array_Impl_Type (Arr));
4183 end if;
4184 end if;
4186 <<Skip_Packed>>
4188 -- A Ghost type cannot have a component of protected or task type
4189 -- (SPARK RM 6.9(21)).
4191 if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then
4192 Error_Msg_N
4193 ("ghost array type & cannot have concurrent component type",
4194 Arr);
4195 end if;
4196 end Freeze_Array_Type;
4198 -------------------------------
4199 -- Freeze_Object_Declaration --
4200 -------------------------------
4202 procedure Freeze_Object_Declaration (E : Entity_Id) is
4203 procedure Check_Large_Modular_Array (Typ : Entity_Id);
4204 -- Check that the size of array type Typ can be computed without
4205 -- overflow, and generates a Storage_Error otherwise. This is only
4206 -- relevant for array types whose index is a modular type with
4207 -- Standard_Long_Long_Integer_Size bits: wrap-around arithmetic
4208 -- might yield a meaningless value for the length of the array,
4209 -- or its corresponding attribute.
4211 procedure Check_Pragma_Thread_Local_Storage (Var_Id : Entity_Id);
4212 -- Ensure that the initialization state of variable Var_Id subject
4213 -- to pragma Thread_Local_Storage agrees with the semantics of the
4214 -- pragma.
4216 function Has_Default_Initialization
4217 (Obj_Id : Entity_Id) return Boolean;
4218 -- Determine whether object Obj_Id default initialized
4220 -------------------------------
4221 -- Check_Large_Modular_Array --
4222 -------------------------------
4224 procedure Check_Large_Modular_Array (Typ : Entity_Id) is
4225 Obj_Loc : constant Source_Ptr := Sloc (E);
4226 Idx_Typ : Entity_Id;
4228 begin
4229 -- Nothing to do when expansion is disabled because this routine
4230 -- generates a runtime check.
4232 if not Expander_Active then
4233 return;
4235 -- Nothing to do for String literal subtypes because their index
4236 -- cannot be a modular type.
4238 elsif Ekind (Typ) = E_String_Literal_Subtype then
4239 return;
4241 -- Nothing to do for an imported object because the object will
4242 -- be created on the exporting side.
4244 elsif Is_Imported (E) then
4245 return;
4247 -- Nothing to do for unconstrained array types. This case arises
4248 -- when the object declaration is illegal.
4250 elsif not Is_Constrained (Typ) then
4251 return;
4252 end if;
4254 Idx_Typ := Etype (First_Index (Typ));
4256 -- To prevent arithmetic overflow with large values, we raise
4257 -- Storage_Error under the following guard:
4259 -- (Arr'Last / 2 - Arr'First / 2) > (2 ** 30)
4261 -- This takes care of the boundary case, but it is preferable to
4262 -- use a smaller limit, because even on 64-bit architectures an
4263 -- array of more than 2 ** 30 bytes is likely to raise
4264 -- Storage_Error.
4266 if Is_Modular_Integer_Type (Idx_Typ)
4267 and then RM_Size (Idx_Typ) = Standard_Long_Long_Integer_Size
4268 then
4269 -- Ensure that the type of the object is elaborated before
4270 -- the check itself is emitted to avoid elaboration issues
4271 -- in the code generator at the library level.
4273 if Is_Itype (Etype (E))
4274 and then In_Open_Scopes (Scope (Etype (E)))
4275 then
4276 declare
4277 Ref_Node : constant Node_Id :=
4278 Make_Itype_Reference (Obj_Loc);
4279 begin
4280 Set_Itype (Ref_Node, Etype (E));
4281 Insert_Action (Declaration_Node (E), Ref_Node);
4282 end;
4283 end if;
4285 Insert_Action (Declaration_Node (E),
4286 Make_Raise_Storage_Error (Obj_Loc,
4287 Condition =>
4288 Make_Op_Ge (Obj_Loc,
4289 Left_Opnd =>
4290 Make_Op_Subtract (Obj_Loc,
4291 Left_Opnd =>
4292 Make_Op_Divide (Obj_Loc,
4293 Left_Opnd =>
4294 Make_Attribute_Reference (Obj_Loc,
4295 Prefix =>
4296 New_Occurrence_Of (Typ, Obj_Loc),
4297 Attribute_Name => Name_Last),
4298 Right_Opnd =>
4299 Make_Integer_Literal (Obj_Loc, Uint_2)),
4300 Right_Opnd =>
4301 Make_Op_Divide (Obj_Loc,
4302 Left_Opnd =>
4303 Make_Attribute_Reference (Obj_Loc,
4304 Prefix =>
4305 New_Occurrence_Of (Typ, Obj_Loc),
4306 Attribute_Name => Name_First),
4307 Right_Opnd =>
4308 Make_Integer_Literal (Obj_Loc, Uint_2))),
4309 Right_Opnd =>
4310 Make_Integer_Literal (Obj_Loc, (Uint_2 ** 30))),
4311 Reason => SE_Object_Too_Large));
4312 end if;
4313 end Check_Large_Modular_Array;
4315 ---------------------------------------
4316 -- Check_Pragma_Thread_Local_Storage --
4317 ---------------------------------------
4319 procedure Check_Pragma_Thread_Local_Storage (Var_Id : Entity_Id) is
4320 function Has_Incompatible_Initialization
4321 (Var_Decl : Node_Id) return Boolean;
4322 -- Determine whether variable Var_Id with declaration Var_Decl is
4323 -- initialized with a value that violates the semantics of pragma
4324 -- Thread_Local_Storage.
4326 -------------------------------------
4327 -- Has_Incompatible_Initialization --
4328 -------------------------------------
4330 function Has_Incompatible_Initialization
4331 (Var_Decl : Node_Id) return Boolean
4333 Init_Expr : constant Node_Id := Expression (Var_Decl);
4335 begin
4336 -- The variable is default-initialized. This directly violates
4337 -- the semantics of the pragma.
4339 if Has_Default_Initialization (Var_Id) then
4340 return True;
4342 -- The variable has explicit initialization. In this case only
4343 -- a handful of values satisfy the semantics of the pragma.
4345 elsif Has_Init_Expression (Var_Decl)
4346 and then Present (Init_Expr)
4347 then
4348 -- "null" is a legal form of initialization
4350 if Nkind (Init_Expr) = N_Null then
4351 return False;
4353 -- A static expression is a legal form of initialization
4355 elsif Is_Static_Expression (Init_Expr) then
4356 return False;
4358 -- A static aggregate is a legal form of initialization
4360 elsif Nkind (Init_Expr) = N_Aggregate
4361 and then Compile_Time_Known_Aggregate (Init_Expr)
4362 then
4363 return False;
4365 -- All other initialization expressions violate the semantic
4366 -- of the pragma.
4368 else
4369 return True;
4370 end if;
4372 -- The variable lacks any kind of initialization, which agrees
4373 -- with the semantics of the pragma.
4375 else
4376 return False;
4377 end if;
4378 end Has_Incompatible_Initialization;
4380 -- Local declarations
4382 Var_Decl : constant Node_Id := Declaration_Node (Var_Id);
4384 -- Start of processing for Check_Pragma_Thread_Local_Storage
4386 begin
4387 -- A variable whose initialization is suppressed lacks any kind of
4388 -- initialization.
4390 if Suppress_Initialization (Var_Id) then
4391 null;
4393 -- The variable has default initialization, or is explicitly
4394 -- initialized to a value other than null, static expression,
4395 -- or a static aggregate.
4397 elsif Has_Incompatible_Initialization (Var_Decl) then
4398 Error_Msg_NE
4399 ("Thread_Local_Storage variable& is improperly initialized",
4400 Var_Decl, Var_Id);
4401 Error_Msg_NE
4402 ("\only allowed initialization is explicit NULL, static "
4403 & "expression or static aggregate", Var_Decl, Var_Id);
4404 end if;
4405 end Check_Pragma_Thread_Local_Storage;
4407 --------------------------------
4408 -- Has_Default_Initialization --
4409 --------------------------------
4411 function Has_Default_Initialization
4412 (Obj_Id : Entity_Id) return Boolean
4414 Obj_Decl : constant Node_Id := Declaration_Node (Obj_Id);
4415 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
4417 begin
4418 return
4419 Comes_From_Source (Obj_Id)
4420 and then not Is_Imported (Obj_Id)
4421 and then not Has_Init_Expression (Obj_Decl)
4422 and then
4423 ((Has_Non_Null_Base_Init_Proc (Obj_Typ)
4424 and then not No_Initialization (Obj_Decl)
4425 and then not Initialization_Suppressed (Obj_Typ))
4426 or else
4427 (Needs_Simple_Initialization (Obj_Typ)
4428 and then not Is_Internal (Obj_Id)));
4429 end Has_Default_Initialization;
4431 -- Local variables
4433 Typ : constant Entity_Id := Etype (E);
4434 Def : Node_Id;
4436 -- Start of processing for Freeze_Object_Declaration
4438 begin
4439 -- Abstract type allowed only for C++ imported variables or constants
4441 -- Note: we inhibit this check for objects that do not come from
4442 -- source because there is at least one case (the expansion of
4443 -- x'Class'Input where x is abstract) where we legitimately
4444 -- generate an abstract object.
4446 if Is_Abstract_Type (Typ)
4447 and then Comes_From_Source (Parent (E))
4448 and then not (Is_Imported (E) and then Is_CPP_Class (Typ))
4449 then
4450 Def := Object_Definition (Parent (E));
4452 Error_Msg_N ("type of object cannot be abstract", Def);
4454 if Is_CPP_Class (Etype (E)) then
4455 Error_Msg_NE ("\} may need a cpp_constructor", Def, Typ);
4457 elsif Present (Expression (Parent (E))) then
4458 Error_Msg_N -- CODEFIX
4459 ("\maybe a class-wide type was meant", Def);
4460 end if;
4461 end if;
4463 -- For object created by object declaration, perform required
4464 -- categorization (preelaborate and pure) checks. Defer these
4465 -- checks to freeze time since pragma Import inhibits default
4466 -- initialization and thus pragma Import affects these checks.
4468 Validate_Object_Declaration (Declaration_Node (E));
4470 -- If there is an address clause, check that it is valid and if need
4471 -- be move initialization to the freeze node.
4473 Check_Address_Clause (E);
4475 -- Similar processing is needed for aspects that may affect object
4476 -- layout, like Address, if there is an initialization expression.
4477 -- We don't do this if there is a pragma Linker_Section, because it
4478 -- would prevent the back end from statically initializing the
4479 -- object; we don't want elaboration code in that case.
4481 if Has_Delayed_Aspects (E)
4482 and then Expander_Active
4483 and then Is_Array_Type (Typ)
4484 and then Present (Expression (Declaration_Node (E)))
4485 and then No (Linker_Section_Pragma (E))
4486 then
4487 declare
4488 Decl : constant Node_Id := Declaration_Node (E);
4489 Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
4491 begin
4492 -- Capture initialization value at point of declaration, and
4493 -- make explicit assignment legal, because object may be a
4494 -- constant.
4496 Remove_Side_Effects (Expression (Decl));
4497 Set_Assignment_OK (Lhs);
4499 -- Move initialization to freeze actions
4501 Append_Freeze_Action (E,
4502 Make_Assignment_Statement (Loc,
4503 Name => Lhs,
4504 Expression => Expression (Decl)));
4506 Set_No_Initialization (Decl);
4507 -- Set_Is_Frozen (E, False);
4508 end;
4509 end if;
4511 -- Reset Is_True_Constant for non-constant aliased object. We
4512 -- consider that the fact that a non-constant object is aliased may
4513 -- indicate that some funny business is going on, e.g. an aliased
4514 -- object is passed by reference to a procedure which captures the
4515 -- address of the object, which is later used to assign a new value,
4516 -- even though the compiler thinks that it is not modified. Such
4517 -- code is highly dubious, but we choose to make it "work" for
4518 -- non-constant aliased objects.
4520 -- Note that we used to do this for all aliased objects, whether or
4521 -- not constant, but this caused anomalies down the line because we
4522 -- ended up with static objects that were not Is_True_Constant. Not
4523 -- resetting Is_True_Constant for (aliased) constant objects ensures
4524 -- that this anomaly never occurs.
4526 -- However, we don't do that for internal entities. We figure that if
4527 -- we deliberately set Is_True_Constant for an internal entity, e.g.
4528 -- a dispatch table entry, then we mean it.
4530 if Ekind (E) /= E_Constant
4531 and then (Is_Aliased (E) or else Is_Aliased (Typ))
4532 and then not Is_Internal_Name (Chars (E))
4533 then
4534 Set_Is_True_Constant (E, False);
4535 end if;
4537 -- If the object needs any kind of default initialization, an error
4538 -- must be issued if No_Default_Initialization applies. The check
4539 -- doesn't apply to imported objects, which are not ever default
4540 -- initialized, and is why the check is deferred until freezing, at
4541 -- which point we know if Import applies. Deferred constants are also
4542 -- exempted from this test because their completion is explicit, or
4543 -- through an import pragma.
4545 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
4546 null;
4548 elsif Has_Default_Initialization (E) then
4549 Check_Restriction
4550 (No_Default_Initialization, Declaration_Node (E));
4551 end if;
4553 -- Ensure that a variable subject to pragma Thread_Local_Storage
4555 -- * Lacks default initialization, or
4557 -- * The initialization expression is either "null", a static
4558 -- constant, or a compile-time known aggregate.
4560 if Has_Pragma_Thread_Local_Storage (E) then
4561 Check_Pragma_Thread_Local_Storage (E);
4562 end if;
4564 -- For imported objects, set Is_Public unless there is also an
4565 -- address clause, which means that there is no external symbol
4566 -- needed for the Import (Is_Public may still be set for other
4567 -- unrelated reasons). Note that we delayed this processing
4568 -- till freeze time so that we can be sure not to set the flag
4569 -- if there is an address clause. If there is such a clause,
4570 -- then the only purpose of the Import pragma is to suppress
4571 -- implicit initialization.
4573 if Is_Imported (E) and then No (Address_Clause (E)) then
4574 Set_Is_Public (E);
4575 end if;
4577 -- For source objects that are not Imported and are library level, if
4578 -- no linker section pragma was given inherit the appropriate linker
4579 -- section from the corresponding type.
4581 if Comes_From_Source (E)
4582 and then not Is_Imported (E)
4583 and then Is_Library_Level_Entity (E)
4584 and then No (Linker_Section_Pragma (E))
4585 then
4586 Set_Linker_Section_Pragma (E, Linker_Section_Pragma (Typ));
4587 end if;
4589 -- For convention C objects of an enumeration type, warn if the size
4590 -- is not integer size and no explicit size given. Skip warning for
4591 -- Boolean and Character, and assume programmer expects 8-bit sizes
4592 -- for these cases.
4594 if (Convention (E) = Convention_C
4595 or else
4596 Convention (E) = Convention_CPP)
4597 and then Is_Enumeration_Type (Typ)
4598 and then not Is_Character_Type (Typ)
4599 and then not Is_Boolean_Type (Typ)
4600 and then Esize (Typ) < Standard_Integer_Size
4601 and then not Has_Size_Clause (E)
4602 then
4603 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
4604 Error_Msg_N
4605 ("??convention C enumeration object has size less than ^", E);
4606 Error_Msg_N ("\??use explicit size clause to set size", E);
4607 end if;
4609 -- Declaring too big an array in disabled ghost code is OK
4611 if Is_Array_Type (Typ) and then not Is_Ignored_Ghost_Entity (E) then
4612 Check_Large_Modular_Array (Typ);
4613 end if;
4614 end Freeze_Object_Declaration;
4616 -----------------------------
4617 -- Freeze_Generic_Entities --
4618 -----------------------------
4620 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
4621 E : Entity_Id;
4622 F : Node_Id;
4623 Flist : List_Id;
4625 begin
4626 Flist := New_List;
4627 E := First_Entity (Pack);
4628 while Present (E) loop
4629 if Is_Type (E) and then not Is_Generic_Type (E) then
4630 F := Make_Freeze_Generic_Entity (Sloc (Pack));
4631 Set_Entity (F, E);
4632 Append_To (Flist, F);
4634 elsif Ekind (E) = E_Generic_Package then
4635 Append_List_To (Flist, Freeze_Generic_Entities (E));
4636 end if;
4638 Next_Entity (E);
4639 end loop;
4641 return Flist;
4642 end Freeze_Generic_Entities;
4644 --------------------
4645 -- Freeze_Profile --
4646 --------------------
4648 function Freeze_Profile (E : Entity_Id) return Boolean is
4649 F_Type : Entity_Id;
4650 R_Type : Entity_Id;
4651 Warn_Node : Node_Id;
4653 begin
4654 -- Loop through formals
4656 Formal := First_Formal (E);
4657 while Present (Formal) loop
4658 F_Type := Etype (Formal);
4660 -- AI05-0151: incomplete types can appear in a profile. By the
4661 -- time the entity is frozen, the full view must be available,
4662 -- unless it is a limited view.
4664 if Is_Incomplete_Type (F_Type)
4665 and then Present (Full_View (F_Type))
4666 and then not From_Limited_With (F_Type)
4667 then
4668 F_Type := Full_View (F_Type);
4669 Set_Etype (Formal, F_Type);
4670 end if;
4672 if not From_Limited_With (F_Type)
4673 and then Should_Freeze_Type (F_Type, E, N)
4674 then
4675 Freeze_And_Append (F_Type, N, Result);
4676 end if;
4678 if Is_Private_Type (F_Type)
4679 and then Is_Private_Type (Base_Type (F_Type))
4680 and then No (Full_View (Base_Type (F_Type)))
4681 and then not Is_Generic_Type (F_Type)
4682 and then not Is_Derived_Type (F_Type)
4683 then
4684 -- If the type of a formal is incomplete, subprogram is being
4685 -- frozen prematurely. Within an instance (but not within a
4686 -- wrapper package) this is an artifact of our need to regard
4687 -- the end of an instantiation as a freeze point. Otherwise it
4688 -- is a definite error.
4690 if In_Instance then
4691 Set_Is_Frozen (E, False);
4692 Result := No_List;
4693 return False;
4695 elsif not After_Last_Declaration then
4696 Error_Msg_NE
4697 ("type & must be fully defined before this point",
4699 F_Type);
4700 end if;
4701 end if;
4703 -- Check suspicious parameter for C function. These tests apply
4704 -- only to exported/imported subprograms.
4706 if Warn_On_Export_Import
4707 and then Comes_From_Source (E)
4708 and then Convention (E) in Convention_C_Family
4709 and then (Is_Imported (E) or else Is_Exported (E))
4710 and then Convention (E) /= Convention (Formal)
4711 and then not Has_Warnings_Off (E)
4712 and then not Has_Warnings_Off (F_Type)
4713 and then not Has_Warnings_Off (Formal)
4714 then
4715 -- Qualify mention of formals with subprogram name
4717 Error_Msg_Qual_Level := 1;
4719 -- Check suspicious use of fat C pointer, but do not emit
4720 -- a warning on an access to subprogram when unnesting is
4721 -- active.
4723 if Is_Access_Type (F_Type)
4724 and then Known_Esize (F_Type)
4725 and then Esize (F_Type) > Ttypes.System_Address_Size
4726 and then (not Unnest_Subprogram_Mode
4727 or else not Is_Access_Subprogram_Type (F_Type))
4728 then
4729 Error_Msg_N
4730 ("?x?type of & does not correspond to C pointer!", Formal);
4732 -- Check suspicious return of boolean
4734 elsif Root_Type (F_Type) = Standard_Boolean
4735 and then Convention (F_Type) = Convention_Ada
4736 and then not Has_Warnings_Off (F_Type)
4737 and then not Has_Size_Clause (F_Type)
4738 then
4739 Error_Msg_N
4740 ("& is an 8-bit Ada Boolean?x?", Formal);
4741 Error_Msg_N
4742 ("\use appropriate corresponding type in C "
4743 & "(e.g. char)?x?", Formal);
4745 -- Check suspicious tagged type
4747 elsif (Is_Tagged_Type (F_Type)
4748 or else
4749 (Is_Access_Type (F_Type)
4750 and then Is_Tagged_Type (Designated_Type (F_Type))))
4751 and then Convention (E) = Convention_C
4752 then
4753 Error_Msg_N
4754 ("?x?& involves a tagged type which does not "
4755 & "correspond to any C type!", Formal);
4757 -- Check wrong convention subprogram pointer
4759 elsif Ekind (F_Type) = E_Access_Subprogram_Type
4760 and then not Has_Foreign_Convention (F_Type)
4761 then
4762 Error_Msg_N
4763 ("?x?subprogram pointer & should "
4764 & "have foreign convention!", Formal);
4765 Error_Msg_Sloc := Sloc (F_Type);
4766 Error_Msg_NE
4767 ("\?x?add Convention pragma to declaration of &#",
4768 Formal, F_Type);
4769 end if;
4771 -- Turn off name qualification after message output
4773 Error_Msg_Qual_Level := 0;
4774 end if;
4776 -- Check for unconstrained array in exported foreign convention
4777 -- case.
4779 if Has_Foreign_Convention (E)
4780 and then not Is_Imported (E)
4781 and then Is_Array_Type (F_Type)
4782 and then not Is_Constrained (F_Type)
4783 and then Warn_On_Export_Import
4784 then
4785 Error_Msg_Qual_Level := 1;
4787 -- If this is an inherited operation, place the warning on
4788 -- the derived type declaration, rather than on the original
4789 -- subprogram.
4791 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
4792 then
4793 Warn_Node := Parent (E);
4795 if Formal = First_Formal (E) then
4796 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
4797 end if;
4798 else
4799 Warn_Node := Formal;
4800 end if;
4802 Error_Msg_NE ("?x?type of argument& is unconstrained array",
4803 Warn_Node, Formal);
4804 Error_Msg_N ("\?x?foreign caller must pass bounds explicitly",
4805 Warn_Node);
4806 Error_Msg_Qual_Level := 0;
4807 end if;
4809 if not From_Limited_With (F_Type) then
4810 if Is_Access_Type (F_Type) then
4811 F_Type := Designated_Type (F_Type);
4812 end if;
4813 end if;
4815 Next_Formal (Formal);
4816 end loop;
4818 -- Case of function: similar checks on return type
4820 if Ekind (E) = E_Function then
4822 -- Freeze return type
4824 R_Type := Etype (E);
4826 -- AI05-0151: the return type may have been incomplete at the
4827 -- point of declaration. Replace it with the full view, unless the
4828 -- current type is a limited view. In that case the full view is
4829 -- in a different unit, and gigi finds the non-limited view after
4830 -- the other unit is elaborated.
4832 if Ekind (R_Type) = E_Incomplete_Type
4833 and then Present (Full_View (R_Type))
4834 and then not From_Limited_With (R_Type)
4835 then
4836 R_Type := Full_View (R_Type);
4837 Set_Etype (E, R_Type);
4838 end if;
4840 if Should_Freeze_Type (R_Type, E, N) then
4841 Freeze_And_Append (R_Type, N, Result);
4842 end if;
4844 -- Check suspicious return type for C function
4846 if Warn_On_Export_Import
4847 and then Comes_From_Source (E)
4848 and then Convention (E) in Convention_C_Family
4849 and then (Is_Imported (E) or else Is_Exported (E))
4850 then
4851 -- Check suspicious return of fat C pointer
4853 if Is_Access_Type (R_Type)
4854 and then Known_Esize (R_Type)
4855 and then Esize (R_Type) > Ttypes.System_Address_Size
4856 and then not Has_Warnings_Off (E)
4857 and then not Has_Warnings_Off (R_Type)
4858 then
4859 Error_Msg_N
4860 ("?x?return type of& does not correspond to C pointer!",
4863 -- Check suspicious return of boolean
4865 elsif Root_Type (R_Type) = Standard_Boolean
4866 and then Convention (R_Type) = Convention_Ada
4867 and then not Has_Warnings_Off (E)
4868 and then not Has_Warnings_Off (R_Type)
4869 and then not Has_Size_Clause (R_Type)
4870 then
4871 declare
4872 N : constant Node_Id :=
4873 Result_Definition (Declaration_Node (E));
4874 begin
4875 Error_Msg_NE
4876 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
4877 Error_Msg_NE
4878 ("\use appropriate corresponding type in C "
4879 & "(e.g. char)?x?", N, E);
4880 end;
4882 -- Check suspicious return tagged type
4884 elsif (Is_Tagged_Type (R_Type)
4885 or else (Is_Access_Type (R_Type)
4886 and then
4887 Is_Tagged_Type
4888 (Designated_Type (R_Type))))
4889 and then Convention (E) = Convention_C
4890 and then not Has_Warnings_Off (E)
4891 and then not Has_Warnings_Off (R_Type)
4892 then
4893 Error_Msg_N ("?x?return type of & does not "
4894 & "correspond to C type!", E);
4896 -- Check return of wrong convention subprogram pointer
4898 elsif Ekind (R_Type) = E_Access_Subprogram_Type
4899 and then not Has_Foreign_Convention (R_Type)
4900 and then not Has_Warnings_Off (E)
4901 and then not Has_Warnings_Off (R_Type)
4902 then
4903 Error_Msg_N ("?x?& should return a foreign "
4904 & "convention subprogram pointer", E);
4905 Error_Msg_Sloc := Sloc (R_Type);
4906 Error_Msg_NE
4907 ("\?x?add Convention pragma to declaration of& #",
4908 E, R_Type);
4909 end if;
4910 end if;
4912 -- Give warning for suspicious return of a result of an
4913 -- unconstrained array type in a foreign convention function.
4915 if Has_Foreign_Convention (E)
4917 -- We are looking for a return of unconstrained array
4919 and then Is_Array_Type (R_Type)
4920 and then not Is_Constrained (R_Type)
4922 -- Exclude imported routines, the warning does not belong on
4923 -- the import, but rather on the routine definition.
4925 and then not Is_Imported (E)
4927 -- Check that general warning is enabled, and that it is not
4928 -- suppressed for this particular case.
4930 and then Warn_On_Export_Import
4931 and then not Has_Warnings_Off (E)
4932 and then not Has_Warnings_Off (R_Type)
4933 then
4934 Error_Msg_N
4935 ("?x?foreign convention function& should not return "
4936 & "unconstrained array!", E);
4937 end if;
4938 end if;
4940 -- Check suspicious use of Import in pure unit (cases where the RM
4941 -- allows calls to be omitted).
4943 if Is_Imported (E)
4945 -- It might be suspicious if the compilation unit has the Pure
4946 -- aspect/pragma.
4948 and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit))
4950 -- The RM allows omission of calls only in the case of
4951 -- library-level subprograms (see RM-10.2.1(18)).
4953 and then Is_Library_Level_Entity (E)
4955 -- Ignore internally generated entity. This happens in some cases
4956 -- of subprograms in specs, where we generate an implied body.
4958 and then Comes_From_Source (Import_Pragma (E))
4960 -- Assume run-time knows what it is doing
4962 and then not GNAT_Mode
4964 -- Assume explicit Pure_Function means import is pure
4966 and then not Has_Pragma_Pure_Function (E)
4968 -- Don't need warning in relaxed semantics mode
4970 and then not Relaxed_RM_Semantics
4972 -- Assume convention Intrinsic is OK, since this is specialized.
4973 -- This deals with the DEC unit current_exception.ads
4975 and then Convention (E) /= Convention_Intrinsic
4977 -- Assume that ASM interface knows what it is doing
4979 and then Convention (E) /= Convention_Assembler
4980 then
4981 Error_Msg_N
4982 ("pragma Import in Pure unit??", Import_Pragma (E));
4983 Error_Msg_NE
4984 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
4985 Import_Pragma (E), E);
4986 end if;
4988 return True;
4989 end Freeze_Profile;
4991 ------------------------
4992 -- Freeze_Record_Type --
4993 ------------------------
4995 procedure Freeze_Record_Type (Rec : Entity_Id) is
4996 ADC : Node_Id;
4997 Comp : Entity_Id;
4998 IR : Node_Id;
4999 Prev : Entity_Id;
5001 Junk : Boolean;
5002 pragma Warnings (Off, Junk);
5004 Aliased_Component : Boolean := False;
5005 -- Set True if we find at least one component which is aliased. This
5006 -- is used to prevent Implicit_Packing of the record, since packing
5007 -- cannot modify the size of alignment of an aliased component.
5009 All_Elem_Components : Boolean := True;
5010 -- True if all components are of a type whose underlying type is
5011 -- elementary.
5013 All_Sized_Components : Boolean := True;
5014 -- True if all components have a known RM_Size
5016 All_Storage_Unit_Components : Boolean := True;
5017 -- True if all components have an RM_Size that is a multiple of the
5018 -- storage unit.
5020 Elem_Component_Total_Esize : Uint := Uint_0;
5021 -- Accumulates total Esize values of all elementary components. Used
5022 -- for processing of Implicit_Packing.
5024 Final_Storage_Only : Boolean := True;
5025 -- Used to compute the Finalize_Storage_Only flag
5027 Placed_Component : Boolean := False;
5028 -- Set True if we find at least one component with a component
5029 -- clause (used to warn about useless Bit_Order pragmas, and also
5030 -- to detect cases where Implicit_Packing may have an effect).
5032 Relaxed_Finalization : Boolean := True;
5033 -- Used to compute the Has_Relaxed_Finalization flag
5035 Sized_Component_Total_RM_Size : Uint := Uint_0;
5036 -- Accumulates total RM_Size values of all sized components. Used
5037 -- for processing of Implicit_Packing.
5039 Sized_Component_Total_Round_RM_Size : Uint := Uint_0;
5040 -- Accumulates total RM_Size values of all sized components, rounded
5041 -- individually to a multiple of the storage unit.
5043 SSO_ADC : Node_Id;
5044 -- Scalar_Storage_Order attribute definition clause for the record
5046 SSO_ADC_Component : Boolean := False;
5047 -- Set True if we find at least one component whose type has a
5048 -- Scalar_Storage_Order attribute definition clause.
5050 Unplaced_Component : Boolean := False;
5051 -- Set True if we find at least one component with no component
5052 -- clause (used to warn about useless Pack pragmas).
5054 procedure Check_Itype (Typ : Entity_Id);
5055 -- If the component subtype is an access to a constrained subtype of
5056 -- an already frozen type, make the subtype frozen as well. It might
5057 -- otherwise be frozen in the wrong scope, and a freeze node on
5058 -- subtype has no effect. Similarly, if the component subtype is a
5059 -- regular (not protected) access to subprogram, set the anonymous
5060 -- subprogram type to frozen as well, to prevent an out-of-scope
5061 -- freeze node at some eventual point of call. Protected operations
5062 -- are handled elsewhere.
5064 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
5065 -- Make sure that all types mentioned in Discrete_Choices of the
5066 -- variants referenceed by the Variant_Part VP are frozen. This is
5067 -- a recursive routine to deal with nested variants.
5069 procedure Warn_If_Implicitly_Inherited_Aspects (Tag_Typ : Entity_Id);
5070 -- Report a warning for Tag_Typ when it implicitly inherits the
5071 -- First_Controlling_Parameter aspect but does not explicitly
5072 -- specify it.
5074 -----------------
5075 -- Check_Itype --
5076 -----------------
5078 procedure Check_Itype (Typ : Entity_Id) is
5079 Desig : constant Entity_Id := Designated_Type (Typ);
5081 begin
5082 if not Is_Frozen (Desig)
5083 and then Is_Frozen (Base_Type (Desig))
5084 then
5085 Set_Is_Frozen (Desig);
5087 -- In addition, add an Itype_Reference to ensure that the
5088 -- access subtype is elaborated early enough. This cannot be
5089 -- done if the subtype may depend on discriminants.
5091 if Ekind (Comp) = E_Component
5092 and then Is_Itype (Etype (Comp))
5093 and then not Has_Discriminants (Rec)
5094 then
5095 IR := Make_Itype_Reference (Sloc (Comp));
5096 Set_Itype (IR, Desig);
5097 Add_To_Result (IR);
5098 end if;
5100 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
5101 and then Convention (Desig) /= Convention_Protected
5102 then
5103 Set_Is_Frozen (Desig);
5104 Create_Extra_Formals (Desig);
5105 end if;
5106 end Check_Itype;
5108 ------------------------------------
5109 -- Freeze_Choices_In_Variant_Part --
5110 ------------------------------------
5112 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
5113 pragma Assert (Nkind (VP) = N_Variant_Part);
5115 Variant : Node_Id;
5116 Choice : Node_Id;
5117 CL : Node_Id;
5119 begin
5120 -- Loop through variants
5122 Variant := First_Non_Pragma (Variants (VP));
5123 while Present (Variant) loop
5125 -- Loop through choices, checking that all types are frozen
5127 Choice := First_Non_Pragma (Discrete_Choices (Variant));
5128 while Present (Choice) loop
5129 if Nkind (Choice) in N_Has_Etype
5130 and then Present (Etype (Choice))
5131 then
5132 Freeze_And_Append (Etype (Choice), N, Result);
5133 end if;
5135 Next_Non_Pragma (Choice);
5136 end loop;
5138 -- Check for nested variant part to process
5140 CL := Component_List (Variant);
5142 if not Null_Present (CL) then
5143 if Present (Variant_Part (CL)) then
5144 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
5145 end if;
5146 end if;
5148 Next_Non_Pragma (Variant);
5149 end loop;
5150 end Freeze_Choices_In_Variant_Part;
5152 ------------------------------------------
5153 -- Warn_If_Implicitly_Inherited_Aspects --
5154 ------------------------------------------
5156 procedure Warn_If_Implicitly_Inherited_Aspects (Tag_Typ : Entity_Id)
5158 function Has_First_Ctrl_Param_Aspect return Boolean;
5159 -- Determines if Tag_Typ explicitly has the aspect/pragma
5160 -- First_Controlling_Parameter.
5162 ---------------------------------
5163 -- Has_First_Ctrl_Param_Aspect --
5164 ---------------------------------
5166 function Has_First_Ctrl_Param_Aspect return Boolean is
5167 Decl_Nod : constant Node_Id := Parent (Tag_Typ);
5168 Asp_Nod : Node_Id;
5169 Nod : Node_Id;
5170 Pragma_Arg : Node_Id;
5171 Pragma_Ent : Entity_Id;
5173 begin
5174 pragma Assert (Nkind (Decl_Nod) = N_Full_Type_Declaration);
5176 if Present (Aspect_Specifications (Decl_Nod)) then
5177 Asp_Nod := First (Aspect_Specifications (Decl_Nod));
5178 while Present (Asp_Nod) loop
5179 if Chars (Identifier (Asp_Nod))
5180 = Name_First_Controlling_Parameter
5181 then
5182 return True;
5183 end if;
5185 Next (Asp_Nod);
5186 end loop;
5187 end if;
5189 -- Search for the occurrence of the pragma
5191 Nod := Next (Decl_Nod);
5192 while Present (Nod) loop
5193 if Nkind (Nod) = N_Pragma
5194 and then Chars (Pragma_Identifier (Nod))
5195 = Name_First_Controlling_Parameter
5196 and then Present (Pragma_Argument_Associations (Nod))
5197 then
5198 Pragma_Arg :=
5199 Expression (First (Pragma_Argument_Associations (Nod)));
5201 if Nkind (Pragma_Arg) = N_Identifier
5202 and then Present (Entity (Pragma_Arg))
5203 then
5204 Pragma_Ent := Entity (Pragma_Arg);
5206 if Pragma_Ent = Tag_Typ
5207 or else
5208 (Is_Concurrent_Type (Pragma_Ent)
5209 and then
5210 Corresponding_Record_Type (Pragma_Ent)
5211 = Tag_Typ)
5212 then
5213 return True;
5214 end if;
5215 end if;
5216 end if;
5218 Next (Nod);
5219 end loop;
5221 return False;
5222 end Has_First_Ctrl_Param_Aspect;
5224 -- Local Variables
5226 Has_Aspect_First_Ctrl_Param : constant Boolean :=
5227 Has_First_Ctrl_Param_Aspect;
5229 -- Start of processing for Warn_Implicitly_Inherited_Aspects
5231 begin
5232 -- Handle cases where reporting the warning is not needed
5234 if not Warn_On_Non_Dispatching_Primitives then
5235 return;
5237 -- No check needed when this is the full view of a private type
5238 -- declaration since the pragma/aspect must be placed and checked
5239 -- in the partial view, and it is implicitly propagated to the
5240 -- full view.
5242 elsif Has_Private_Declaration (Tag_Typ)
5243 and then Is_Tagged_Type (Incomplete_Or_Partial_View (Tag_Typ))
5244 then
5245 return;
5247 -- Similar case but applied to concurrent types
5249 elsif Is_Concurrent_Record_Type (Tag_Typ)
5250 and then Has_Private_Declaration
5251 (Corresponding_Concurrent_Type (Tag_Typ))
5252 and then Is_Tagged_Type
5253 (Incomplete_Or_Partial_View
5254 (Corresponding_Concurrent_Type (Tag_Typ)))
5255 then
5256 return;
5257 end if;
5259 if Etype (Tag_Typ) /= Tag_Typ
5260 and then Has_First_Controlling_Parameter_Aspect (Etype (Tag_Typ))
5261 then
5262 -- The attribute was implicitly inherited
5263 pragma Assert
5264 (Has_First_Controlling_Parameter_Aspect (Tag_Typ));
5266 -- No warning needed when the current tagged type is not
5267 -- an interface type since by definition the aspect is
5268 -- implicitly propagated from its parent type; the warning
5269 -- is reported on interface types since it may not be so
5270 -- clear when some implemented interface types have the
5271 -- aspect and other interface types don't have it. For
5272 -- interface types, we don't report the warning when the
5273 -- interface type is an extension of a single interface
5274 -- type (for similarity with the behavior with regular
5275 -- tagged types).
5277 if not Has_Aspect_First_Ctrl_Param
5278 and then Is_Interface (Tag_Typ)
5279 and then not Is_Empty_Elmt_List (Interfaces (Tag_Typ))
5280 then
5281 Error_Msg_N
5282 ("?_j?implicitly inherits aspect 'First_'Controlling_'"
5283 & "Parameter!", Tag_Typ);
5284 Error_Msg_NE
5285 ("\?_j?from & and must be confirmed explicitly!",
5286 Tag_Typ, Etype (Tag_Typ));
5287 end if;
5289 elsif Present (Interfaces (Tag_Typ))
5290 and then not Is_Empty_Elmt_List (Interfaces (Tag_Typ))
5291 then
5292 -- To maintain consistency with the behavior when the aspect
5293 -- is implicitly inherited from its parent type, we do not
5294 -- report a warning for concurrent record types that implement
5295 -- a single interface type. By definition, the aspect is
5296 -- propagated from that interface type as if it were the parent
5297 -- type. For example:
5299 -- type Iface is interface with First_Controlling_Parameter;
5300 -- task type T is new Iface with ...
5302 if Is_Concurrent_Record_Type (Tag_Typ)
5303 and then No (Next_Elmt (First_Elmt (Interfaces (Tag_Typ))))
5304 then
5305 null;
5307 else
5308 declare
5309 Elmt : Elmt_Id := First_Elmt (Interfaces (Tag_Typ));
5310 Iface : Entity_Id;
5312 begin
5313 while Present (Elmt) loop
5314 Iface := Node (Elmt);
5315 pragma Assert (Present (Iface));
5317 if Has_First_Controlling_Parameter_Aspect (Iface)
5318 and then not Has_Aspect_First_Ctrl_Param
5319 then
5320 pragma Assert
5321 (Has_First_Controlling_Parameter_Aspect
5322 (Tag_Typ));
5323 Error_Msg_N
5324 ("?_j?implicitly inherits aspect 'First_'"
5325 & "Controlling_'Parameter", Tag_Typ);
5326 Error_Msg_NE
5327 ("\?_j?from & and must be confirmed explicitly!",
5328 Tag_Typ, Iface);
5329 exit;
5330 end if;
5332 Next_Elmt (Elmt);
5333 end loop;
5334 end;
5335 end if;
5336 end if;
5337 end Warn_If_Implicitly_Inherited_Aspects;
5339 -- Start of processing for Freeze_Record_Type
5341 begin
5342 -- Freeze components and embedded subtypes
5344 Comp := First_Entity (Rec);
5345 Prev := Empty;
5346 while Present (Comp) loop
5347 if Is_Aliased (Comp) then
5348 Aliased_Component := True;
5349 end if;
5351 -- Handle the component and discriminant case
5353 if Ekind (Comp) in E_Component | E_Discriminant then
5354 declare
5355 CC : constant Node_Id := Component_Clause (Comp);
5357 begin
5358 -- Freezing a record type freezes the type of each of its
5359 -- components. However, if the type of the component is
5360 -- part of this record, we do not want or need a separate
5361 -- Freeze_Node. Note that Is_Itype is wrong because that's
5362 -- also set in private type cases. We also can't check for
5363 -- the Scope being exactly Rec because of private types and
5364 -- record extensions.
5366 if Is_Itype (Etype (Comp))
5367 and then Is_Record_Type (Underlying_Type
5368 (Scope (Etype (Comp))))
5369 then
5370 Undelay_Type (Etype (Comp));
5371 end if;
5373 Freeze_And_Append (Etype (Comp), N, Result);
5375 -- Warn for pragma Pack overriding foreign convention
5377 if Has_Foreign_Convention (Etype (Comp))
5378 and then Has_Pragma_Pack (Rec)
5380 -- Don't warn for aliased components, since override
5381 -- cannot happen in that case.
5383 and then not Is_Aliased (Comp)
5384 then
5385 declare
5386 CN : constant Name_Id :=
5387 Get_Convention_Name (Convention (Etype (Comp)));
5388 PP : constant Node_Id :=
5389 Get_Pragma (Rec, Pragma_Pack);
5390 begin
5391 if Present (PP) then
5392 Error_Msg_Name_1 := CN;
5393 Error_Msg_Sloc := Sloc (Comp);
5394 Error_Msg_N
5395 ("pragma Pack affects convention % component#??",
5396 PP);
5397 Error_Msg_Name_1 := CN;
5398 Error_Msg_NE
5399 ("\component & may not have % compatible "
5400 & "representation??", PP, Comp);
5401 end if;
5402 end;
5403 end if;
5405 -- Check for error of component clause given for variable
5406 -- sized type. We have to delay this test till this point,
5407 -- since the component type has to be frozen for us to know
5408 -- if it is variable length.
5410 if Present (CC) then
5411 Placed_Component := True;
5413 -- We omit this test in a generic context, it will be
5414 -- applied at instantiation time.
5416 if Inside_A_Generic then
5417 null;
5419 -- Also omit this test in CodePeer mode, since we do not
5420 -- have sufficient info on size and rep clauses.
5422 elsif CodePeer_Mode then
5423 null;
5425 -- Do the check
5427 elsif not
5428 Size_Known_At_Compile_Time
5429 (Underlying_Type (Etype (Comp)))
5430 then
5431 Error_Msg_N
5432 ("component clause not allowed for variable " &
5433 "length component", CC);
5434 end if;
5436 else
5437 Unplaced_Component := True;
5438 end if;
5440 -- Case of component requires byte alignment
5442 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
5444 -- Set the enclosing record to also require byte align
5446 Set_Must_Be_On_Byte_Boundary (Rec);
5448 -- Check for component clause that is inconsistent with
5449 -- the required byte boundary alignment.
5451 if Present (CC)
5452 and then Normalized_First_Bit (Comp) mod
5453 System_Storage_Unit /= 0
5454 then
5455 Error_Msg_N
5456 ("component & must be byte aligned",
5457 Component_Name (Component_Clause (Comp)));
5458 end if;
5459 end if;
5460 end;
5461 end if;
5463 -- Gather data for possible Implicit_Packing later. Note that at
5464 -- this stage we might be dealing with a real component, or with
5465 -- an implicit subtype declaration.
5467 if Known_Static_RM_Size (Etype (Comp)) then
5468 declare
5469 Comp_Type : constant Entity_Id := Etype (Comp);
5470 Comp_Size : constant Uint := RM_Size (Comp_Type);
5471 SSU : constant Int := Ttypes.System_Storage_Unit;
5473 begin
5474 Sized_Component_Total_RM_Size :=
5475 Sized_Component_Total_RM_Size + Comp_Size;
5477 Sized_Component_Total_Round_RM_Size :=
5478 Sized_Component_Total_Round_RM_Size +
5479 (Comp_Size + SSU - 1) / SSU * SSU;
5481 if Present (Underlying_Type (Comp_Type))
5482 and then Is_Elementary_Type (Underlying_Type (Comp_Type))
5483 then
5484 Elem_Component_Total_Esize :=
5485 Elem_Component_Total_Esize + Esize (Comp_Type);
5486 else
5487 All_Elem_Components := False;
5489 if Comp_Size mod SSU /= 0 then
5490 All_Storage_Unit_Components := False;
5491 end if;
5492 end if;
5493 end;
5494 else
5495 All_Sized_Components := False;
5496 end if;
5498 -- If the component is an Itype with Delayed_Freeze and is either
5499 -- a record or array subtype and its base type has not yet been
5500 -- frozen, we must remove this from the entity list of this record
5501 -- and put it on the entity list of the scope of its base type.
5502 -- Note that we know that this is not the type of a component
5503 -- since we cleared Has_Delayed_Freeze for it in the previous
5504 -- loop. Thus this must be the Designated_Type of an access type,
5505 -- which is the type of a component.
5507 if Is_Itype (Comp)
5508 and then Is_Type (Scope (Comp))
5509 and then Is_Composite_Type (Comp)
5510 and then Base_Type (Comp) /= Comp
5511 and then Has_Delayed_Freeze (Comp)
5512 and then not Is_Frozen (Base_Type (Comp))
5513 then
5514 declare
5515 Will_Be_Frozen : Boolean := False;
5516 S : Entity_Id;
5518 begin
5519 -- We have a difficult case to handle here. Suppose Rec is
5520 -- subtype being defined in a subprogram that's created as
5521 -- part of the freezing of Rec'Base. In that case, we know
5522 -- that Comp'Base must have already been frozen by the time
5523 -- we get to elaborate this because Gigi doesn't elaborate
5524 -- any bodies until it has elaborated all of the declarative
5525 -- part. But Is_Frozen will not be set at this point because
5526 -- we are processing code in lexical order.
5528 -- We detect this case by going up the Scope chain of Rec
5529 -- and seeing if we have a subprogram scope before reaching
5530 -- the top of the scope chain or that of Comp'Base. If we
5531 -- do, then mark that Comp'Base will actually be frozen. If
5532 -- so, we merely undelay it.
5534 S := Scope (Rec);
5535 while Present (S) loop
5536 if Is_Subprogram (S) then
5537 Will_Be_Frozen := True;
5538 exit;
5539 elsif S = Scope (Base_Type (Comp)) then
5540 exit;
5541 end if;
5543 S := Scope (S);
5544 end loop;
5546 if Will_Be_Frozen then
5547 Undelay_Type (Comp);
5549 else
5550 if Present (Prev) then
5551 Link_Entities (Prev, Next_Entity (Comp));
5552 else
5553 Set_First_Entity (Rec, Next_Entity (Comp));
5554 end if;
5556 -- Insert in entity list of scope of base type (which
5557 -- must be an enclosing scope, because still unfrozen).
5559 Append_Entity (Comp, Scope (Base_Type (Comp)));
5560 end if;
5561 end;
5563 -- If the component is an access type with an allocator as default
5564 -- value, the designated type will be frozen by the corresponding
5565 -- expression in init_proc. In order to place the freeze node for
5566 -- the designated type before that for the current record type,
5567 -- freeze it now.
5569 -- Same process if the component is an array of access types,
5570 -- initialized with an aggregate. If the designated type is
5571 -- private, it cannot contain allocators, and it is premature
5572 -- to freeze the type, so we check for this as well.
5574 elsif Is_Access_Type (Etype (Comp))
5575 and then Present (Parent (Comp))
5576 and then
5577 Nkind (Parent (Comp))
5578 in N_Component_Declaration | N_Discriminant_Specification
5579 and then Present (Expression (Parent (Comp)))
5580 then
5581 declare
5582 Alloc : constant Node_Id :=
5583 Unqualify (Expression (Parent (Comp)));
5585 begin
5586 if Nkind (Alloc) = N_Allocator then
5588 -- If component is pointer to a class-wide type, freeze
5589 -- the specific type in the expression being allocated.
5590 -- The expression may be a subtype indication, in which
5591 -- case freeze the subtype mark.
5593 if Is_Class_Wide_Type (Designated_Type (Etype (Comp)))
5594 then
5595 if Is_Entity_Name (Expression (Alloc)) then
5596 Freeze_And_Append
5597 (Entity (Expression (Alloc)), N, Result);
5599 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
5600 then
5601 Freeze_And_Append
5602 (Entity (Subtype_Mark (Expression (Alloc))),
5603 N, Result);
5604 end if;
5605 elsif Is_Itype (Designated_Type (Etype (Comp))) then
5606 Check_Itype (Etype (Comp));
5607 else
5608 Freeze_And_Append
5609 (Designated_Type (Etype (Comp)), N, Result);
5610 end if;
5611 end if;
5612 end;
5613 elsif Is_Access_Type (Etype (Comp))
5614 and then Is_Itype (Designated_Type (Etype (Comp)))
5615 then
5616 Check_Itype (Etype (Comp));
5618 -- Freeze the designated type when initializing a component with
5619 -- an aggregate in case the aggregate contains allocators.
5621 -- type T is ...;
5622 -- type T_Ptr is access all T;
5623 -- type T_Array is array ... of T_Ptr;
5625 -- type Rec is record
5626 -- Comp : T_Array := (others => ...);
5627 -- end record;
5629 elsif Is_Array_Type (Etype (Comp))
5630 and then Is_Access_Type (Component_Type (Etype (Comp)))
5631 then
5632 declare
5633 Comp_Par : constant Node_Id := Parent (Comp);
5634 Desig_Typ : constant Entity_Id :=
5635 Designated_Type
5636 (Component_Type (Etype (Comp)));
5638 begin
5639 -- The only case when this sort of freezing is not done is
5640 -- when the designated type is class-wide and the root type
5641 -- is the record owning the component. This scenario results
5642 -- in a circularity because the class-wide type requires
5643 -- primitives that have not been created yet as the root
5644 -- type is in the process of being frozen.
5646 -- type Rec is tagged;
5647 -- type Rec_Ptr is access all Rec'Class;
5648 -- type Rec_Array is array ... of Rec_Ptr;
5650 -- type Rec is record
5651 -- Comp : Rec_Array := (others => ...);
5652 -- end record;
5654 if Is_Class_Wide_Type (Desig_Typ)
5655 and then Root_Type (Desig_Typ) = Rec
5656 then
5657 null;
5659 elsif Is_Fully_Defined (Desig_Typ)
5660 and then Present (Comp_Par)
5661 and then Nkind (Comp_Par) = N_Component_Declaration
5662 and then Present (Expression (Comp_Par))
5663 and then Nkind (Expression (Comp_Par)) = N_Aggregate
5664 then
5665 Freeze_And_Append (Desig_Typ, N, Result);
5666 end if;
5667 end;
5668 end if;
5670 Prev := Comp;
5671 Next_Entity (Comp);
5672 end loop;
5674 SSO_ADC :=
5675 Get_Attribute_Definition_Clause
5676 (Rec, Attribute_Scalar_Storage_Order);
5678 -- If the record type has Complex_Representation, then it is treated
5679 -- as a scalar in the back end so the storage order is irrelevant.
5681 if Has_Complex_Representation (Rec) then
5682 if Present (SSO_ADC) then
5683 Error_Msg_N
5684 ("??storage order has no effect with Complex_Representation",
5685 SSO_ADC);
5686 end if;
5688 else
5689 -- Deal with default setting of reverse storage order
5691 Set_SSO_From_Default (Rec);
5693 -- Check consistent attribute setting on component types
5695 declare
5696 Comp_ADC_Present : Boolean;
5697 begin
5698 Comp := First_Component (Rec);
5699 while Present (Comp) loop
5700 Check_Component_Storage_Order
5701 (Encl_Type => Rec,
5702 Comp => Comp,
5703 ADC => SSO_ADC,
5704 Comp_ADC_Present => Comp_ADC_Present);
5705 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
5706 Next_Component (Comp);
5707 end loop;
5708 end;
5710 -- Now deal with reverse storage order/bit order issues
5712 if Present (SSO_ADC) then
5714 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
5715 -- if the former is specified.
5717 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
5719 -- Note: report error on Rec, not on SSO_ADC, as ADC may
5720 -- apply to some ancestor type.
5722 Error_Msg_Sloc := Sloc (SSO_ADC);
5723 Error_Msg_N
5724 ("scalar storage order for& specified# inconsistent with "
5725 & "bit order", Rec);
5726 end if;
5728 -- Warn if there is a Scalar_Storage_Order attribute definition
5729 -- clause but no component clause, no component that itself has
5730 -- such an attribute definition, and no pragma Pack.
5732 if not (Placed_Component
5733 or else
5734 SSO_ADC_Component
5735 or else
5736 Is_Packed (Rec))
5737 then
5738 Error_Msg_N
5739 ("??scalar storage order specified but no component "
5740 & "clause", SSO_ADC);
5741 end if;
5742 end if;
5743 end if;
5745 -- Deal with Bit_Order aspect
5747 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
5749 if Present (ADC) and then Base_Type (Rec) = Rec then
5750 if not (Placed_Component
5751 or else Present (SSO_ADC)
5752 or else Is_Packed (Rec))
5753 then
5754 -- Warn if clause has no effect when no component clause is
5755 -- present, but suppress warning if the Bit_Order is required
5756 -- due to the presence of a Scalar_Storage_Order attribute.
5758 Error_Msg_N
5759 ("??bit order specification has no effect", ADC);
5760 Error_Msg_N
5761 ("\??since no component clauses were specified", ADC);
5763 -- Here is where we do the processing to adjust component clauses
5764 -- for reversed bit order, when not using reverse SSO. If an error
5765 -- has been reported on Rec already (such as SSO incompatible with
5766 -- bit order), don't bother adjusting as this may generate extra
5767 -- noise.
5769 elsif Reverse_Bit_Order (Rec)
5770 and then not Reverse_Storage_Order (Rec)
5771 and then not Error_Posted (Rec)
5772 then
5773 Adjust_Record_For_Reverse_Bit_Order (Rec);
5775 -- Case where we have both an explicit Bit_Order and the same
5776 -- Scalar_Storage_Order: leave record untouched, the back-end
5777 -- will take care of required layout conversions.
5779 else
5780 null;
5782 end if;
5783 end if;
5785 -- Check for useless pragma Pack when all components placed. We only
5786 -- do this check for record types, not subtypes, since a subtype may
5787 -- have all its components placed, and it still makes perfectly good
5788 -- sense to pack other subtypes or the parent type. We do not give
5789 -- this warning if Optimize_Alignment is set to Space, since the
5790 -- pragma Pack does have an effect in this case (it always resets
5791 -- the alignment to one).
5793 if Ekind (Rec) = E_Record_Type
5794 and then Is_Packed (Rec)
5795 and then not Unplaced_Component
5796 and then Optimize_Alignment /= 'S'
5797 then
5798 -- Reset packed status. Probably not necessary, but we do it so
5799 -- that there is no chance of the back end doing something strange
5800 -- with this redundant indication of packing.
5802 Set_Is_Packed (Rec, False);
5804 -- Give warning if redundant constructs warnings on
5806 if Warn_On_Redundant_Constructs then
5807 Error_Msg_N -- CODEFIX
5808 ("?r?pragma Pack has no effect, no unplaced components",
5809 Get_Rep_Pragma (Rec, Name_Pack));
5810 end if;
5811 end if;
5813 -- If this is the record corresponding to a remote type, freeze the
5814 -- remote type here since that is what we are semantically freezing.
5815 -- This prevents the freeze node for that type in an inner scope.
5817 if Ekind (Rec) = E_Record_Type then
5818 if Present (Corresponding_Remote_Type (Rec)) then
5819 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
5820 end if;
5822 -- Check for tasks, protected and controlled components, unchecked
5823 -- unions, and type invariants.
5825 Comp := First_Component (Rec);
5826 while Present (Comp) loop
5827 Propagate_Concurrent_Flags (Rec, Etype (Comp));
5829 -- Do not set Has_Controlled_Component on a class-wide
5830 -- equivalent type. See Make_CW_Equivalent_Type.
5832 if not Is_Class_Wide_Equivalent_Type (Rec)
5833 and then
5834 (Has_Controlled_Component (Etype (Comp))
5835 or else
5836 (Chars (Comp) /= Name_uParent
5837 and then Is_Controlled (Etype (Comp)))
5838 or else
5839 (Is_Protected_Type (Etype (Comp))
5840 and then
5841 Present (Corresponding_Record_Type (Etype (Comp)))
5842 and then
5843 Has_Controlled_Component
5844 (Corresponding_Record_Type (Etype (Comp)))))
5845 then
5846 Set_Has_Controlled_Component (Rec);
5847 Final_Storage_Only :=
5848 Final_Storage_Only
5849 and then Finalize_Storage_Only (Etype (Comp));
5850 Relaxed_Finalization :=
5851 Relaxed_Finalization
5852 and then Has_Relaxed_Finalization (Etype (Comp));
5853 end if;
5855 if Has_Unchecked_Union (Etype (Comp)) then
5856 Set_Has_Unchecked_Union (Rec);
5857 end if;
5859 -- The record type requires its own invariant procedure in
5860 -- order to verify the invariant of each individual component.
5861 -- Do not consider internal components such as _parent because
5862 -- parent class-wide invariants are always inherited.
5863 -- In GNATprove mode, the component invariants are checked by
5864 -- other means. They should not be added to the record type
5865 -- invariant procedure, so that the procedure can be used to
5866 -- check the recordy type invariants if any.
5868 if Comes_From_Source (Comp)
5869 and then Has_Invariants (Etype (Comp))
5870 and then not GNATprove_Mode
5871 then
5872 Set_Has_Own_Invariants (Rec);
5873 end if;
5875 -- Scan component declaration for likely misuses of current
5876 -- instance, either in a constraint or a default expression.
5878 if Has_Per_Object_Constraint (Comp) then
5879 Check_Current_Instance (Parent (Comp));
5880 end if;
5882 Next_Component (Comp);
5883 end loop;
5885 -- For a type that is not directly controlled but has controlled
5886 -- components, Finalize_Storage_Only is set if all the controlled
5887 -- components are Finalize_Storage_Only. The same processing is
5888 -- appled to Has_Relaxed_Finalization.
5890 if not Is_Controlled (Rec) and then Has_Controlled_Component (Rec)
5891 then
5892 Set_Finalize_Storage_Only (Rec, Final_Storage_Only);
5893 Set_Has_Relaxed_Finalization (Rec, Relaxed_Finalization);
5894 end if;
5895 end if;
5897 -- Enforce the restriction that access attributes with a current
5898 -- instance prefix can only apply to limited types. This comment
5899 -- is floating here, but does not seem to belong here???
5901 -- Set component alignment if not otherwise already set
5903 Set_Component_Alignment_If_Not_Set (Rec);
5905 -- For first subtypes, check if there are any fixed-point fields with
5906 -- component clauses, where we must check the size. This is not done
5907 -- till the freeze point since for fixed-point types, we do not know
5908 -- the size until the type is frozen. Similar processing applies to
5909 -- bit-packed arrays.
5911 if Is_First_Subtype (Rec) then
5912 Comp := First_Component (Rec);
5913 while Present (Comp) loop
5914 if Present (Component_Clause (Comp))
5915 and then (Is_Fixed_Point_Type (Etype (Comp))
5916 or else Is_Bit_Packed_Array (Etype (Comp)))
5917 then
5918 Check_Size
5919 (Component_Name (Component_Clause (Comp)),
5920 Etype (Comp),
5921 Esize (Comp),
5922 Junk);
5923 end if;
5925 Next_Component (Comp);
5926 end loop;
5927 end if;
5929 -- See if Size is too small as is (and implicit packing might help)
5931 if not Is_Packed (Rec)
5933 -- No implicit packing if even one component is explicitly placed
5935 and then not Placed_Component
5937 -- Or even one component is aliased
5939 and then not Aliased_Component
5941 -- Must have size clause and all sized components
5943 and then Has_Size_Clause (Rec)
5944 and then All_Sized_Components
5946 -- Do not try implicit packing on records with discriminants, too
5947 -- complicated, especially in the variant record case.
5949 and then not Has_Discriminants (Rec)
5951 -- We want to implicitly pack if the specified size of the record
5952 -- is less than the sum of the object sizes (no point in packing
5953 -- if this is not the case), if we can compute it, i.e. if we have
5954 -- only elementary components. Otherwise, we have at least one
5955 -- composite component and we want to implicitly pack only if bit
5956 -- packing is required for it, as we are sure in this case that
5957 -- the back end cannot do the expected layout without packing.
5959 and then
5960 ((All_Elem_Components
5961 and then RM_Size (Rec) < Elem_Component_Total_Esize)
5962 or else
5963 (not All_Elem_Components
5964 and then not All_Storage_Unit_Components
5965 and then RM_Size (Rec) < Sized_Component_Total_Round_RM_Size))
5967 -- And the total RM size cannot be greater than the specified size
5968 -- since otherwise packing will not get us where we have to be.
5970 and then Sized_Component_Total_RM_Size <= RM_Size (Rec)
5972 -- Never do implicit packing in CodePeer or SPARK modes since
5973 -- we don't do any packing in these modes, since this generates
5974 -- over-complex code that confuses static analysis, and in
5975 -- general, neither CodePeer not GNATprove care about the
5976 -- internal representation of objects.
5978 and then not (CodePeer_Mode or GNATprove_Mode)
5979 then
5980 -- If implicit packing enabled, do it
5982 if Implicit_Packing then
5983 Set_Is_Packed (Rec);
5985 -- Otherwise flag the size clause
5987 else
5988 declare
5989 Sz : constant Node_Id := Size_Clause (Rec);
5990 begin
5991 Error_Msg_NE -- CODEFIX
5992 ("size given for& too small", Sz, Rec);
5993 Error_Msg_N -- CODEFIX
5994 ("\use explicit pragma Pack "
5995 & "or use pragma Implicit_Packing", Sz);
5996 end;
5997 end if;
5998 end if;
6000 -- Make sure that if we have an iterator aspect, then we have
6001 -- either Constant_Indexing or Variable_Indexing.
6003 declare
6004 Iterator_Aspect : Node_Id;
6006 begin
6007 Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element);
6009 if No (Iterator_Aspect) then
6010 Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator);
6011 end if;
6013 if Present (Iterator_Aspect) then
6014 if Has_Aspect (Rec, Aspect_Constant_Indexing)
6015 or else
6016 Has_Aspect (Rec, Aspect_Variable_Indexing)
6017 then
6018 null;
6019 else
6020 Error_Msg_N
6021 ("Iterator_Element requires indexing aspect",
6022 Iterator_Aspect);
6023 end if;
6024 end if;
6025 end;
6027 -- All done if not a full record definition
6029 if Ekind (Rec) /= E_Record_Type then
6030 return;
6031 end if;
6033 -- Finally we need to check the variant part to make sure that
6034 -- all types within choices are properly frozen as part of the
6035 -- freezing of the record type.
6037 Check_Variant_Part : declare
6038 D : constant Node_Id := Declaration_Node (Rec);
6039 T : Node_Id;
6040 C : Node_Id;
6042 begin
6043 -- Find component list
6045 C := Empty;
6047 if Nkind (D) = N_Full_Type_Declaration then
6048 T := Type_Definition (D);
6050 if Nkind (T) = N_Record_Definition then
6051 C := Component_List (T);
6053 elsif Nkind (T) = N_Derived_Type_Definition
6054 and then Present (Record_Extension_Part (T))
6055 then
6056 C := Component_List (Record_Extension_Part (T));
6057 end if;
6058 end if;
6060 -- Case of variant part present
6062 if Present (C) and then Present (Variant_Part (C)) then
6063 Freeze_Choices_In_Variant_Part (Variant_Part (C));
6064 end if;
6066 -- Note: we used to call Check_Choices here, but it is too early,
6067 -- since predicated subtypes are frozen here, but their freezing
6068 -- actions are in Analyze_Freeze_Entity, which has not been called
6069 -- yet for entities frozen within this procedure, so we moved that
6070 -- call to the Analyze_Freeze_Entity for the record type.
6072 end Check_Variant_Part;
6074 -- Check that all the primitives of an interface type are abstract
6075 -- or null procedures.
6077 if Is_Interface (Rec)
6078 and then not Error_Posted (Parent (Rec))
6079 then
6080 declare
6081 Elmt : Elmt_Id;
6082 Subp : Entity_Id;
6084 begin
6085 Elmt := First_Elmt (Primitive_Operations (Rec));
6086 while Present (Elmt) loop
6087 Subp := Node (Elmt);
6089 if not Is_Abstract_Subprogram (Subp)
6091 -- Avoid reporting the error on inherited primitives
6093 and then Comes_From_Source (Subp)
6094 then
6095 Error_Msg_Name_1 := Chars (Subp);
6097 if Ekind (Subp) = E_Procedure then
6098 if not Null_Present (Parent (Subp)) then
6099 Error_Msg_N
6100 ("interface procedure % must be abstract or null",
6101 Parent (Subp));
6102 end if;
6103 else
6104 Error_Msg_N
6105 ("interface function % must be abstract",
6106 Parent (Subp));
6107 end if;
6108 end if;
6110 Next_Elmt (Elmt);
6111 end loop;
6112 end;
6113 end if;
6115 -- For tagged types, warn on an implicitly inherited aspect/pragma
6116 -- First_Controlling_Parameter that is not explicitly set.
6118 if Is_Tagged_Type (Rec) then
6119 Warn_If_Implicitly_Inherited_Aspects (Rec);
6120 end if;
6121 end Freeze_Record_Type;
6123 -------------------------------
6124 -- Has_Boolean_Aspect_Import --
6125 -------------------------------
6127 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
6128 Decl : constant Node_Id := Declaration_Node (E);
6129 Asp : Node_Id;
6130 Expr : Node_Id;
6132 begin
6133 if Has_Aspects (Decl) then
6134 Asp := First (Aspect_Specifications (Decl));
6135 while Present (Asp) loop
6136 Expr := Expression (Asp);
6138 -- The value of aspect Import is True when the expression is
6139 -- either missing or it is explicitly set to True.
6141 if Get_Aspect_Id (Asp) = Aspect_Import
6142 and then (No (Expr)
6143 or else (Compile_Time_Known_Value (Expr)
6144 and then Is_True (Expr_Value (Expr))))
6145 then
6146 return True;
6147 end if;
6149 Next (Asp);
6150 end loop;
6151 end if;
6153 return False;
6154 end Has_Boolean_Aspect_Import;
6156 -------------------------
6157 -- Inherit_Freeze_Node --
6158 -------------------------
6160 procedure Inherit_Freeze_Node
6161 (Fnod : Node_Id;
6162 Typ : Entity_Id)
6164 Typ_Fnod : constant Node_Id := Freeze_Node (Typ);
6166 begin
6167 Set_Freeze_Node (Typ, Fnod);
6168 Set_Entity (Fnod, Typ);
6170 -- The input type had an existing node. Propagate relevant attributes
6171 -- from the old freeze node to the inherited freeze node.
6173 -- ??? if both freeze nodes have attributes, would they differ?
6175 if Present (Typ_Fnod) then
6177 -- Attribute Access_Types_To_Process
6179 if Present (Access_Types_To_Process (Typ_Fnod))
6180 and then No (Access_Types_To_Process (Fnod))
6181 then
6182 Set_Access_Types_To_Process (Fnod,
6183 Access_Types_To_Process (Typ_Fnod));
6184 end if;
6186 -- Attribute Actions
6188 if Present (Actions (Typ_Fnod)) and then No (Actions (Fnod)) then
6189 Set_Actions (Fnod, Actions (Typ_Fnod));
6190 end if;
6192 -- Attribute First_Subtype_Link
6194 if Present (First_Subtype_Link (Typ_Fnod))
6195 and then No (First_Subtype_Link (Fnod))
6196 then
6197 Set_First_Subtype_Link (Fnod, First_Subtype_Link (Typ_Fnod));
6198 end if;
6200 -- Attribute TSS_Elist
6202 if Present (TSS_Elist (Typ_Fnod))
6203 and then No (TSS_Elist (Fnod))
6204 then
6205 Set_TSS_Elist (Fnod, TSS_Elist (Typ_Fnod));
6206 end if;
6207 end if;
6208 end Inherit_Freeze_Node;
6210 ------------------------------
6211 -- Wrap_Imported_Subprogram --
6212 ------------------------------
6214 -- The issue here is that our normal approach of checking preconditions
6215 -- and postconditions does not work for imported procedures, since we
6216 -- are not generating code for the body. To get around this we create
6217 -- a wrapper, as shown by the following example:
6219 -- procedure K (A : Integer);
6220 -- pragma Import (C, K);
6222 -- The spec is rewritten by removing the effects of pragma Import, but
6223 -- leaving the convention unchanged, as though the source had said:
6225 -- procedure K (A : Integer);
6226 -- pragma Convention (C, K);
6228 -- and we create a body, added to the entity K freeze actions, which
6229 -- looks like:
6231 -- procedure K (A : Integer) is
6232 -- procedure K (A : Integer);
6233 -- pragma Import (C, K);
6234 -- begin
6235 -- K (A);
6236 -- end K;
6238 -- Now the contract applies in the normal way to the outer procedure,
6239 -- and the inner procedure has no contracts, so there is no problem
6240 -- in just calling it to get the original effect.
6242 -- In the case of a function, we create an appropriate return statement
6243 -- for the subprogram body that calls the inner procedure.
6245 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
6246 function Copy_Import_Pragma return Node_Id;
6247 -- Obtain a copy of the Import_Pragma which belongs to subprogram E
6249 ------------------------
6250 -- Copy_Import_Pragma --
6251 ------------------------
6253 function Copy_Import_Pragma return Node_Id is
6255 -- The subprogram should have an import pragma, otherwise it does
6256 -- need a wrapper.
6258 Prag : constant Node_Id := Import_Pragma (E);
6259 pragma Assert (Present (Prag));
6261 -- Save all semantic fields of the pragma
6263 Save_Asp : constant Node_Id := Corresponding_Aspect (Prag);
6264 Save_From : constant Boolean := From_Aspect_Specification (Prag);
6265 Save_Prag : constant Node_Id := Next_Pragma (Prag);
6266 Save_Rep : constant Node_Id := Next_Rep_Item (Prag);
6268 Result : Node_Id;
6270 begin
6271 -- Reset all semantic fields. This avoids a potential infinite
6272 -- loop when the pragma comes from an aspect as the duplication
6273 -- will copy the aspect, then copy the corresponding pragma and
6274 -- so on.
6276 Set_Corresponding_Aspect (Prag, Empty);
6277 Set_From_Aspect_Specification (Prag, False);
6278 Set_Next_Pragma (Prag, Empty);
6279 Set_Next_Rep_Item (Prag, Empty);
6281 Result := Copy_Separate_Tree (Prag);
6283 -- Restore the original semantic fields
6285 Set_Corresponding_Aspect (Prag, Save_Asp);
6286 Set_From_Aspect_Specification (Prag, Save_From);
6287 Set_Next_Pragma (Prag, Save_Prag);
6288 Set_Next_Rep_Item (Prag, Save_Rep);
6290 return Result;
6291 end Copy_Import_Pragma;
6293 -- Local variables
6295 Loc : constant Source_Ptr := Sloc (E);
6296 CE : constant Name_Id := Chars (E);
6297 Bod : Node_Id;
6298 Forml : Entity_Id;
6299 Parms : List_Id;
6300 Prag : Node_Id;
6301 Spec : Node_Id;
6302 Stmt : Node_Id;
6304 -- Start of processing for Wrap_Imported_Subprogram
6306 begin
6307 -- Nothing to do if not imported
6309 if not Is_Imported (E) then
6310 return;
6312 -- Test enabling conditions for wrapping
6314 elsif Is_Subprogram (E)
6315 and then Present (Contract (E))
6316 and then Present (Pre_Post_Conditions (Contract (E)))
6317 and then not GNATprove_Mode
6318 then
6319 -- Here we do the wrap
6321 Prag := Copy_Import_Pragma;
6323 -- Fix up spec so it is no longer imported and has convention Ada
6325 Set_Has_Completion (E, False);
6326 Set_Import_Pragma (E, Empty);
6327 Set_Interface_Name (E, Empty);
6328 Set_Is_Imported (E, False);
6329 Set_Convention (E, Convention_Ada);
6331 -- Grab the subprogram declaration and specification
6333 Spec := Declaration_Node (E);
6335 -- Build parameter list that we need
6337 Parms := New_List;
6338 Forml := First_Formal (E);
6339 while Present (Forml) loop
6340 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
6341 Next_Formal (Forml);
6342 end loop;
6344 -- Build the call
6346 -- An imported function whose result type is anonymous access
6347 -- creates a new anonymous access type when it is relocated into
6348 -- the declarations of the body generated below. As a result, the
6349 -- accessibility level of these two anonymous access types may not
6350 -- be compatible even though they are essentially the same type.
6351 -- Use an unchecked type conversion to reconcile this case. Note
6352 -- that the conversion is safe because in the named access type
6353 -- case, both the body and imported function utilize the same
6354 -- type.
6356 if Ekind (E) in E_Function | E_Generic_Function then
6357 Stmt :=
6358 Make_Simple_Return_Statement (Loc,
6359 Expression =>
6360 Unchecked_Convert_To (Etype (E),
6361 Make_Function_Call (Loc,
6362 Name => Make_Identifier (Loc, CE),
6363 Parameter_Associations => Parms)));
6365 else
6366 Stmt :=
6367 Make_Procedure_Call_Statement (Loc,
6368 Name => Make_Identifier (Loc, CE),
6369 Parameter_Associations => Parms);
6370 end if;
6372 -- Now build the body
6374 Bod :=
6375 Make_Subprogram_Body (Loc,
6376 Specification => Copy_Subprogram_Spec (Spec),
6377 Declarations => New_List (
6378 Make_Subprogram_Declaration (Loc,
6379 Specification => Copy_Subprogram_Spec (Spec)),
6380 Prag),
6381 Handled_Statement_Sequence =>
6382 Make_Handled_Sequence_Of_Statements (Loc,
6383 Statements => New_List (Stmt),
6384 End_Label => Make_Identifier (Loc, CE)));
6386 -- Append the body to freeze result
6388 Add_To_Result (Bod);
6389 return;
6391 -- Case of imported subprogram that does not get wrapped
6393 else
6394 -- Set Is_Public. All imported entities need an external symbol
6395 -- created for them since they are always referenced from another
6396 -- object file. Note this used to be set when we set Is_Imported
6397 -- back in Sem_Prag, but now we delay it to this point, since we
6398 -- don't want to set this flag if we wrap an imported subprogram.
6400 Set_Is_Public (E);
6401 end if;
6402 end Wrap_Imported_Subprogram;
6404 -- Start of processing for Freeze_Entity
6406 begin
6407 -- The entity being frozen may be subject to pragma Ghost. Set the mode
6408 -- now to ensure that any nodes generated during freezing are properly
6409 -- flagged as Ghost.
6411 Set_Ghost_Mode (E);
6413 -- We are going to test for various reasons why this entity need not be
6414 -- frozen here, but in the case of an Itype that's defined within a
6415 -- record, that test actually applies to the record.
6417 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
6418 Test_E := Scope (E);
6420 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
6421 and then Is_Record_Type (Underlying_Type (Scope (E)))
6422 then
6423 Test_E := Underlying_Type (Scope (E));
6424 end if;
6426 -- Do not freeze if already frozen since we only need one freeze node
6428 if Is_Frozen (E) then
6430 if Is_Itype (E)
6431 and then not Is_Base_Type (E)
6432 and then not Is_Frozen (Etype (E))
6433 then
6434 -- If a frozen subtype of an unfrozen type seems impossible
6435 -- then see Analyze_Protected_Definition.Undelay_Itypes.
6437 Result := Freeze_Entity
6438 (Etype (E), N, Do_Freeze_Profile => Do_Freeze_Profile);
6439 else
6440 Result := No_List;
6441 end if;
6443 goto Leave;
6445 -- Do not freeze if we are preanalyzing without freezing
6447 elsif Inside_Preanalysis_Without_Freezing > 0 then
6448 Result := No_List;
6449 goto Leave;
6451 elsif Ekind (E) = E_Generic_Package then
6452 Result := Freeze_Generic_Entities (E);
6453 goto Leave;
6455 -- It is improper to freeze an external entity within a generic because
6456 -- its freeze node will appear in a non-valid context. The entity will
6457 -- be frozen in the proper scope after the current generic is analyzed.
6458 -- However, aspects must be analyzed because they may be queried later
6459 -- within the generic itself, and the corresponding pragma or attribute
6460 -- definition has not been analyzed yet. After this, indicate that the
6461 -- entity has no further delayed aspects, to prevent a later aspect
6462 -- analysis out of the scope of the generic.
6464 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
6465 if Has_Delayed_Aspects (E) then
6466 Analyze_Aspects_At_Freeze_Point (E);
6467 Set_Has_Delayed_Aspects (E, False);
6468 end if;
6470 Result := No_List;
6471 goto Leave;
6473 -- AI05-0213: A formal incomplete type does not freeze the actual. In
6474 -- the instance, the same applies to the subtype renaming the actual.
6476 elsif Is_Private_Type (E)
6477 and then Is_Generic_Actual_Type (E)
6478 and then No (Full_View (Base_Type (E)))
6479 and then Ada_Version >= Ada_2012
6480 then
6481 Result := No_List;
6482 goto Leave;
6484 -- Formal subprograms are never frozen
6486 elsif Is_Formal_Subprogram (E) then
6487 Result := No_List;
6488 goto Leave;
6490 -- Generic types are never frozen as they lack delayed semantic checks
6492 elsif Is_Generic_Type (E) then
6493 Result := No_List;
6494 goto Leave;
6496 -- Do not freeze a global entity within an inner scope created during
6497 -- expansion. A call to subprogram E within some internal procedure
6498 -- (a stream attribute for example) might require freezing E, but the
6499 -- freeze node must appear in the same declarative part as E itself.
6500 -- The two-pass elaboration mechanism in gigi guarantees that E will
6501 -- be frozen before the inner call is elaborated. We exclude constants
6502 -- from this test, because deferred constants may be frozen early, and
6503 -- must be diagnosed (e.g. in the case of a deferred constant being used
6504 -- in a default expression). If the enclosing subprogram comes from
6505 -- source, or is a generic instance, then the freeze point is the one
6506 -- mandated by the language, and we freeze the entity. A subprogram that
6507 -- is a child unit body that acts as a spec does not have a spec that
6508 -- comes from source, but can only come from source.
6510 elsif In_Open_Scopes (Scope (Test_E))
6511 and then Scope (Test_E) /= Current_Scope
6512 and then Ekind (Test_E) /= E_Constant
6513 then
6514 -- Here we deal with the special case of the expansion of
6515 -- postconditions. Previously this was handled by the loop below,
6516 -- since these postcondition checks got isolated to a separate,
6517 -- internally generated, subprogram. Now, however, the postcondition
6518 -- checks get contained within their corresponding subprogram
6519 -- directly.
6521 if not Comes_From_Source (N)
6522 and then Nkind (N) = N_Pragma
6523 and then From_Aspect_Specification (N)
6524 and then Is_Valid_Assertion_Kind (Original_Aspect_Pragma_Name (N))
6526 -- Now, verify the placement of the pragma is within an expanded
6527 -- subprogram which contains postcondition expansion - detected
6528 -- through the presence of the "Wrapped_Statements" field.
6530 and then Present (Enclosing_Subprogram (Current_Scope))
6531 and then Present (Wrapped_Statements
6532 (Enclosing_Subprogram (Current_Scope)))
6533 then
6534 goto Leave;
6535 end if;
6537 -- Otherwise, loop through scopes checking if an enclosing scope
6538 -- comes from source or is a generic. Note that, for the purpose
6539 -- of this test, we need to consider that the internally generated
6540 -- subprogram described above comes from source too if the original
6541 -- subprogram itself does.
6543 declare
6544 S : Entity_Id;
6546 begin
6547 S := Current_Scope;
6548 while Present (S) loop
6549 if Is_Overloadable (S) then
6550 if Comes_From_Source (S)
6551 or else (Chars (S) = Name_uWrapped_Statements
6552 and then Comes_From_Source (Scope (S)))
6553 or else Is_Generic_Instance (S)
6554 or else Is_Child_Unit (S)
6555 then
6556 exit;
6557 else
6558 Result := No_List;
6559 goto Leave;
6560 end if;
6561 end if;
6563 S := Scope (S);
6564 end loop;
6565 end;
6567 -- Similarly, an inlined instance body may make reference to global
6568 -- entities, but these references cannot be the proper freezing point
6569 -- for them, and in the absence of inlining freezing will take place in
6570 -- their own scope. Normally instance bodies are analyzed after the
6571 -- enclosing compilation, and everything has been frozen at the proper
6572 -- place, but with front-end inlining an instance body is compiled
6573 -- before the end of the enclosing scope, and as a result out-of-order
6574 -- freezing must be prevented.
6576 elsif Front_End_Inlining
6577 and then In_Instance_Body
6578 and then Present (Scope (Test_E))
6579 then
6580 declare
6581 S : Entity_Id;
6583 begin
6584 S := Scope (Test_E);
6585 while Present (S) loop
6586 if Is_Generic_Instance (S) then
6587 exit;
6588 else
6589 S := Scope (S);
6590 end if;
6591 end loop;
6593 if No (S) then
6594 Result := No_List;
6595 goto Leave;
6596 end if;
6597 end;
6598 end if;
6600 -- Add checks to detect proper initialization of scalars that may appear
6601 -- as subprogram parameters.
6603 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
6604 Apply_Parameter_Validity_Checks (E);
6605 end if;
6607 -- Deal with delayed aspect specifications. The analysis of the aspect
6608 -- is required to be delayed to the freeze point, thus we analyze the
6609 -- pragma or attribute definition clause in the tree at this point. We
6610 -- also analyze the aspect specification node at the freeze point when
6611 -- the aspect doesn't correspond to pragma/attribute definition clause.
6612 -- In addition, a derived type may have inherited aspects that were
6613 -- delayed in the parent, so these must also be captured now.
6615 -- For a record type, we deal with the delayed aspect specifications on
6616 -- components first, which is consistent with the non-delayed case and
6617 -- makes it possible to have a single processing to detect conflicts.
6619 if Is_Record_Type (E) then
6620 declare
6621 Comp : Entity_Id;
6623 Rec_Pushed : Boolean := False;
6624 -- Set True if the record type E has been pushed on the scope
6625 -- stack. Needed for the analysis of delayed aspects specified
6626 -- to the components of Rec.
6628 begin
6629 Comp := First_Component (E);
6630 while Present (Comp) loop
6631 if Has_Delayed_Aspects (Comp) then
6632 if not Rec_Pushed then
6633 Push_Scope (E);
6634 Rec_Pushed := True;
6636 -- The visibility to the discriminants must be restored
6637 -- in order to properly analyze the aspects.
6639 if Has_Discriminants (E) then
6640 Install_Discriminants (E);
6641 end if;
6642 end if;
6644 Analyze_Aspects_At_Freeze_Point (Comp);
6645 end if;
6647 Next_Component (Comp);
6648 end loop;
6650 -- Pop the scope if Rec scope has been pushed on the scope stack
6651 -- during the delayed aspect analysis process.
6653 if Rec_Pushed then
6654 if Has_Discriminants (E) then
6655 Uninstall_Discriminants (E);
6656 end if;
6658 Pop_Scope;
6659 end if;
6660 end;
6661 end if;
6663 if Has_Delayed_Aspects (E) then
6664 Analyze_Aspects_At_Freeze_Point (E);
6665 end if;
6667 -- Here to freeze the entity
6669 Set_Is_Frozen (E);
6671 -- Case of entity being frozen is other than a type
6673 if not Is_Type (E) then
6675 -- If entity is exported or imported and does not have an external
6676 -- name, now is the time to provide the appropriate default name.
6677 -- Skip this if the entity is stubbed, since we don't need a name
6678 -- for any stubbed routine. For the case on intrinsics, if no
6679 -- external name is specified, then calls will be handled in
6680 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
6681 -- external name is provided, then Expand_Intrinsic_Call leaves
6682 -- calls in place for expansion by GIGI.
6684 if (Is_Imported (E) or else Is_Exported (E))
6685 and then No (Interface_Name (E))
6686 and then Convention (E) /= Convention_Stubbed
6687 and then Convention (E) /= Convention_Intrinsic
6688 then
6689 Set_Encoded_Interface_Name
6690 (E, Get_Default_External_Name (E));
6691 end if;
6693 -- Subprogram case
6695 if Is_Subprogram (E) then
6697 -- Check for needing to wrap imported subprogram
6699 if not Inside_A_Generic then
6700 Wrap_Imported_Subprogram (E);
6701 end if;
6703 -- Freeze all parameter types and the return type (RM 13.14(14)).
6704 -- However skip this for internal subprograms. This is also where
6705 -- any extra formal parameters are created since we now know
6706 -- whether the subprogram will use a foreign convention.
6708 -- In Ada 2012, freezing a subprogram does not always freeze the
6709 -- corresponding profile (see AI05-019). An attribute reference
6710 -- is not a freezing point of the profile. Similarly, we do not
6711 -- freeze the profile of primitives of a library-level tagged type
6712 -- when we are building its dispatch table. Flag Do_Freeze_Profile
6713 -- indicates whether the profile should be frozen now.
6715 -- This processing doesn't apply to internal entities (see below)
6717 if not Is_Internal (E) and then Do_Freeze_Profile then
6718 if not Freeze_Profile (E) then
6719 goto Leave;
6720 end if;
6721 end if;
6723 -- Must freeze its parent first if it is a derived subprogram
6725 if Present (Alias (E)) then
6726 Freeze_And_Append (Alias (E), N, Result);
6727 end if;
6729 -- We don't freeze internal subprograms, because we don't normally
6730 -- want addition of extra formals or mechanism setting to happen
6731 -- for those. However we do pass through predefined dispatching
6732 -- cases, since extra formals may be needed in some cases, such as
6733 -- for the stream 'Input function (build-in-place formals).
6735 if not Is_Internal (E)
6736 or else Is_Predefined_Dispatching_Operation (E)
6737 then
6738 Freeze_Subprogram (E);
6739 end if;
6741 -- If warning on suspicious contracts then check for the case of
6742 -- a postcondition other than False for a No_Return subprogram.
6744 if No_Return (E)
6745 and then Warn_On_Suspicious_Contract
6746 and then Present (Contract (E))
6747 then
6748 declare
6749 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
6750 Exp : Node_Id;
6752 begin
6753 while Present (Prag) loop
6754 if Pragma_Name_Unmapped (Prag) in Name_Post
6755 | Name_Postcondition
6756 | Name_Refined_Post
6757 then
6758 Exp :=
6759 Expression
6760 (First (Pragma_Argument_Associations (Prag)));
6762 if Nkind (Exp) /= N_Identifier
6763 or else Chars (Exp) /= Name_False
6764 then
6765 Error_Msg_NE
6766 ("useless postcondition, & is marked "
6767 & "No_Return?.t?", Exp, E);
6768 end if;
6769 end if;
6771 Prag := Next_Pragma (Prag);
6772 end loop;
6773 end;
6774 end if;
6776 -- Here for other than a subprogram or type
6778 else
6779 -- If entity has a type declared in the current scope, and it is
6780 -- not a generic unit, then freeze it first.
6782 if Present (Etype (E))
6783 and then Ekind (E) /= E_Generic_Function
6784 and then Within_Scope (Etype (E), Current_Scope)
6785 then
6786 Freeze_And_Append (Etype (E), N, Result);
6788 -- For an object of an anonymous array type, aspects on the
6789 -- object declaration apply to the type itself. This is the
6790 -- case for Atomic_Components, Volatile_Components, and
6791 -- Independent_Components. In these cases analysis of the
6792 -- generated pragma will mark the anonymous types accordingly,
6793 -- and the object itself does not require a freeze node.
6795 if Ekind (E) = E_Variable
6796 and then Is_Itype (Etype (E))
6797 and then Is_Array_Type (Etype (E))
6798 and then Has_Delayed_Aspects (E)
6799 then
6800 Set_Has_Delayed_Aspects (E, False);
6801 Set_Has_Delayed_Freeze (E, False);
6802 Set_Freeze_Node (E, Empty);
6803 end if;
6804 end if;
6806 -- Special processing for objects created by object declaration;
6807 -- we protect the call to Declaration_Node against entities of
6808 -- expressions replaced by the frontend with an N_Raise_CE node.
6810 if Ekind (E) in E_Constant | E_Variable
6811 and then Nkind (Declaration_Node (E)) = N_Object_Declaration
6812 then
6813 Freeze_Object_Declaration (E);
6814 end if;
6816 -- Check that a constant which has a pragma Volatile[_Components]
6817 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
6819 -- Note: Atomic[_Components] also sets Volatile[_Components]
6821 if Ekind (E) = E_Constant
6822 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
6823 and then not Is_Imported (E)
6824 and then not Has_Boolean_Aspect_Import (E)
6825 then
6826 -- Make sure we actually have a pragma, and have not merely
6827 -- inherited the indication from elsewhere (e.g. an address
6828 -- clause, which is not good enough in RM terms).
6830 if Has_Rep_Pragma (E, Name_Atomic)
6831 or else
6832 Has_Rep_Pragma (E, Name_Atomic_Components)
6833 then
6834 Error_Msg_N
6835 ("standalone atomic constant must be " &
6836 "imported (RM C.6(13))", E);
6838 elsif Has_Rep_Pragma (E, Name_Volatile)
6839 or else
6840 Has_Rep_Pragma (E, Name_Volatile_Components)
6841 then
6842 Error_Msg_N
6843 ("standalone volatile constant must be " &
6844 "imported (RM C.6(13))", E);
6845 end if;
6846 end if;
6848 -- Static objects require special handling
6850 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
6851 and then Is_Statically_Allocated (E)
6852 then
6853 Freeze_Static_Object (E);
6854 end if;
6856 -- Remaining step is to layout objects
6858 if Ekind (E) in E_Variable | E_Constant | E_Loop_Parameter
6859 or else Is_Formal (E)
6860 then
6861 Layout_Object (E);
6862 end if;
6864 -- For an object that does not have delayed freezing, and whose
6865 -- initialization actions have been captured in a compound
6866 -- statement, move them back now directly within the enclosing
6867 -- statement sequence.
6869 if Ekind (E) in E_Constant | E_Variable
6870 and then not Has_Delayed_Freeze (E)
6871 then
6872 Explode_Initialization_Compound_Statement (E);
6873 end if;
6875 -- Do not generate a freeze node for a generic unit
6877 if Is_Generic_Unit (E) then
6878 Result := No_List;
6879 goto Leave;
6880 end if;
6881 end if;
6883 -- Case of a type or subtype being frozen
6885 else
6886 -- Verify several SPARK legality rules related to Ghost types now
6887 -- that the type is frozen.
6889 Check_Ghost_Type (E);
6891 -- We used to check here that a full type must have preelaborable
6892 -- initialization if it completes a private type specified with
6893 -- pragma Preelaborable_Initialization, but that missed cases where
6894 -- the types occur within a generic package, since the freezing
6895 -- that occurs within a containing scope generally skips traversal
6896 -- of a generic unit's declarations (those will be frozen within
6897 -- instances). This check was moved to Analyze_Package_Specification.
6899 -- The type may be defined in a generic unit. This can occur when
6900 -- freezing a generic function that returns the type (which is
6901 -- defined in a parent unit). It is clearly meaningless to freeze
6902 -- this type. However, if it is a subtype, its size may be determi-
6903 -- nable and used in subsequent checks, so might as well try to
6904 -- compute it.
6906 -- In Ada 2012, Freeze_Entities is also used in the front end to
6907 -- trigger the analysis of aspect expressions, so in this case we
6908 -- want to continue the freezing process.
6910 -- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead
6911 -- In_Generic_Scope (E)???
6913 if Present (Scope (E))
6914 and then Is_Generic_Unit (Scope (E))
6915 and then
6916 (not Has_Predicates (E)
6917 and then not Has_Delayed_Freeze (E))
6918 then
6919 Check_Compile_Time_Size (E);
6920 Result := No_List;
6921 goto Leave;
6922 end if;
6924 -- Check for error of Type_Invariant'Class applied to an untagged
6925 -- type (check delayed to freeze time when full type is available).
6927 declare
6928 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
6929 begin
6930 if Present (Prag)
6931 and then Class_Present (Prag)
6932 and then not Is_Tagged_Type (E)
6933 then
6934 Error_Msg_NE
6935 ("Type_Invariant''Class cannot be specified for &", Prag, E);
6936 Error_Msg_N
6937 ("\can only be specified for a tagged type", Prag);
6938 end if;
6939 end;
6941 -- Deal with special cases of freezing for subtype
6943 if E /= Base_Type (E) then
6945 -- Before we do anything else, a specific test for the case of a
6946 -- size given for an array where the array would need to be packed
6947 -- in order for the size to be honored, but is not. This is the
6948 -- case where implicit packing may apply. The reason we do this so
6949 -- early is that, if we have implicit packing, the layout of the
6950 -- base type is affected, so we must do this before we freeze the
6951 -- base type.
6953 -- We could do this processing only if implicit packing is enabled
6954 -- since in all other cases, the error would be caught by the back
6955 -- end. However, we choose to do the check even if we do not have
6956 -- implicit packing enabled, since this allows us to give a more
6957 -- useful error message (advising use of pragma Implicit_Packing
6958 -- or pragma Pack).
6960 if Is_Array_Type (E) then
6961 declare
6962 Ctyp : constant Entity_Id := Component_Type (E);
6963 Rsiz : constant Uint :=
6964 (if Known_RM_Size (Ctyp) then RM_Size (Ctyp) else Uint_0);
6965 SZ : constant Node_Id := Size_Clause (E);
6966 Btyp : constant Entity_Id := Base_Type (E);
6968 Lo : Node_Id;
6969 Hi : Node_Id;
6970 Indx : Node_Id;
6972 Dim : Uint;
6973 Num_Elmts : Uint := Uint_1;
6974 -- Number of elements in array
6976 begin
6977 -- Check enabling conditions. These are straightforward
6978 -- except for the test for a limited composite type. This
6979 -- eliminates the rare case of a array of limited components
6980 -- where there are issues of whether or not we can go ahead
6981 -- and pack the array (since we can't freely pack and unpack
6982 -- arrays if they are limited).
6984 -- Note that we check the root type explicitly because the
6985 -- whole point is we are doing this test before we have had
6986 -- a chance to freeze the base type (and it is that freeze
6987 -- action that causes stuff to be inherited).
6989 -- The conditions on the size are identical to those used in
6990 -- Freeze_Array_Type to set the Is_Packed flag.
6992 if Has_Size_Clause (E)
6993 and then Known_Static_RM_Size (E)
6994 and then not Is_Packed (E)
6995 and then not Has_Pragma_Pack (E)
6996 and then not Has_Component_Size_Clause (E)
6997 and then Known_Static_RM_Size (Ctyp)
6998 and then Rsiz <= System_Max_Integer_Size
6999 and then not (Addressable (Rsiz)
7000 and then Known_Static_Esize (Ctyp)
7001 and then Esize (Ctyp) = Rsiz)
7002 and then not (Rsiz mod System_Storage_Unit = 0
7003 and then Is_Composite_Type (Ctyp))
7004 and then not Is_Limited_Composite (E)
7005 and then not Is_Packed (Root_Type (E))
7006 and then not Has_Component_Size_Clause (Root_Type (E))
7007 and then not (CodePeer_Mode or GNATprove_Mode)
7008 then
7009 -- Compute number of elements in array
7011 Indx := First_Index (E);
7012 while Present (Indx) loop
7013 Get_Index_Bounds (Indx, Lo, Hi);
7015 if not (Compile_Time_Known_Value (Lo)
7016 and then
7017 Compile_Time_Known_Value (Hi))
7018 then
7019 goto No_Implicit_Packing;
7020 end if;
7022 Dim := Expr_Value (Hi) - Expr_Value (Lo) + 1;
7024 if Dim > Uint_0 then
7025 Num_Elmts := Num_Elmts * Dim;
7026 else
7027 Num_Elmts := Uint_0;
7028 end if;
7030 Next_Index (Indx);
7031 end loop;
7033 -- What we are looking for here is the situation where
7034 -- the RM_Size given would be exactly right if there was
7035 -- a pragma Pack, resulting in the component size being
7036 -- the RM_Size of the component type.
7038 if RM_Size (E) = Num_Elmts * Rsiz then
7040 -- For implicit packing mode, just set the component
7041 -- size and Freeze_Array_Type will do the rest.
7043 if Implicit_Packing then
7044 Set_Component_Size (Btyp, Rsiz);
7046 -- Otherwise give an error message, except that if the
7047 -- specified Size is zero, there is no need for pragma
7048 -- Pack. Note that size zero is not considered
7049 -- Addressable.
7051 elsif RM_Size (E) /= Uint_0 then
7052 Error_Msg_NE
7053 ("size given for& too small", SZ, E);
7054 Error_Msg_N -- CODEFIX
7055 ("\use explicit pragma Pack or use pragma "
7056 & "Implicit_Packing", SZ);
7057 end if;
7058 end if;
7059 end if;
7060 end;
7061 end if;
7063 <<No_Implicit_Packing>>
7065 -- If ancestor subtype present, freeze that first. Note that this
7066 -- will also get the base type frozen. Need RM reference ???
7068 Atype := Ancestor_Subtype (E);
7070 if Present (Atype) then
7071 Freeze_And_Append (Atype, N, Result);
7073 -- No ancestor subtype present
7075 else
7076 -- See if we have a nearest ancestor that has a predicate.
7077 -- That catches the case of derived type with a predicate.
7078 -- Need RM reference here ???
7080 Atype := Nearest_Ancestor (E);
7082 if Present (Atype) and then Has_Predicates (Atype) then
7083 Freeze_And_Append (Atype, N, Result);
7084 end if;
7086 -- Freeze base type before freezing the entity (RM 13.14(15))
7088 if E /= Base_Type (E) then
7089 Freeze_And_Append (Base_Type (E), N, Result);
7090 end if;
7091 end if;
7093 -- A subtype inherits all the type-related representation aspects
7094 -- from its parents (RM 13.1(8)).
7096 if May_Inherit_Delayed_Rep_Aspects (E) then
7097 Inherit_Delayed_Rep_Aspects (E);
7098 end if;
7100 Inherit_Aspects_At_Freeze_Point (E);
7102 -- For a derived type, freeze its parent type first (RM 13.14(15))
7104 elsif Is_Derived_Type (E) then
7105 Freeze_And_Append (Etype (E), N, Result);
7107 -- A derived type inherits each type-related representation aspect
7108 -- of its parent type that was directly specified before the
7109 -- declaration of the derived type (RM 13.1(15)).
7111 if May_Inherit_Delayed_Rep_Aspects (E) then
7112 Inherit_Delayed_Rep_Aspects (E);
7113 end if;
7115 Inherit_Aspects_At_Freeze_Point (E);
7116 end if;
7118 -- Case of array type
7120 if Is_Array_Type (E) then
7121 Freeze_Array_Type (E);
7122 end if;
7124 -- Check for incompatible size and alignment for array/record type
7126 if Warn_On_Size_Alignment
7127 and then (Is_Array_Type (E) or else Is_Record_Type (E))
7128 and then Has_Size_Clause (E)
7129 and then Has_Alignment_Clause (E)
7131 -- If explicit Object_Size clause given assume that the programmer
7132 -- knows what he is doing, and expects the compiler behavior.
7134 and then not Has_Object_Size_Clause (E)
7136 -- It does not really make sense to warn for the minimum alignment
7137 -- since the programmer could not get rid of the warning.
7139 and then Alignment (E) > 1
7141 -- Check for size not a multiple of alignment
7143 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
7144 then
7145 declare
7146 SC : constant Node_Id := Size_Clause (E);
7147 AC : constant Node_Id := Alignment_Clause (E);
7148 Loc : Node_Id;
7149 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
7151 begin
7152 if Present (SC) and then Present (AC) then
7154 -- Give a warning
7156 if Sloc (SC) > Sloc (AC) then
7157 Loc := SC;
7158 Error_Msg_NE
7159 ("?.z?size is not a multiple of alignment for &",
7160 Loc, E);
7161 Error_Msg_Sloc := Sloc (AC);
7162 Error_Msg_Uint_1 := Alignment (E);
7163 Error_Msg_N ("\?.z?alignment of ^ specified #", Loc);
7165 else
7166 Loc := AC;
7167 Error_Msg_NE
7168 ("?.z?size is not a multiple of alignment for &",
7169 Loc, E);
7170 Error_Msg_Sloc := Sloc (SC);
7171 Error_Msg_Uint_1 := RM_Size (E);
7172 Error_Msg_N ("\?.z?size of ^ specified #", Loc);
7173 end if;
7175 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
7176 Error_Msg_N ("\?.z?Object_Size will be increased to ^", Loc);
7177 end if;
7178 end;
7179 end if;
7181 -- For a class-wide type, the corresponding specific type is
7182 -- frozen as well (RM 13.14(15))
7184 if Is_Class_Wide_Type (E) then
7185 Freeze_And_Append (Root_Type (E), N, Result);
7187 -- If the base type of the class-wide type is still incomplete,
7188 -- the class-wide remains unfrozen as well. This is legal when
7189 -- E is the formal of a primitive operation of some other type
7190 -- which is being frozen.
7192 if not Is_Frozen (Root_Type (E)) then
7193 Set_Is_Frozen (E, False);
7194 goto Leave;
7195 end if;
7197 -- The equivalent type associated with a class-wide subtype needs
7198 -- to be frozen to ensure that its layout is done.
7200 if Ekind (E) = E_Class_Wide_Subtype
7201 and then Present (Equivalent_Type (E))
7202 then
7203 Freeze_And_Append (Equivalent_Type (E), N, Result);
7204 end if;
7206 -- Generate an itype reference for a library-level class-wide type
7207 -- at the freeze point. Otherwise the first explicit reference to
7208 -- the type may appear in an inner scope which will be rejected by
7209 -- the back-end.
7211 if Is_Itype (E)
7212 and then Is_Compilation_Unit (Scope (E))
7213 then
7214 declare
7215 Ref : constant Node_Id := Make_Itype_Reference (Loc);
7217 begin
7218 Set_Itype (Ref, E);
7220 -- From a gigi point of view, a class-wide subtype derives
7221 -- from its record equivalent type. As a result, the itype
7222 -- reference must appear after the freeze node of the
7223 -- equivalent type or gigi will reject the reference.
7225 if Ekind (E) = E_Class_Wide_Subtype
7226 and then Present (Equivalent_Type (E))
7227 then
7228 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
7229 else
7230 Add_To_Result (Ref);
7231 end if;
7232 end;
7233 end if;
7235 -- For a record type or record subtype, freeze all component types
7236 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
7237 -- using Is_Record_Type, because we don't want to attempt the freeze
7238 -- for the case of a private type with record extension (we will do
7239 -- that later when the full type is frozen).
7241 elsif Ekind (E) in E_Record_Type | E_Record_Subtype then
7242 if not In_Generic_Scope (E) then
7243 Freeze_Record_Type (E);
7244 end if;
7246 -- Report a warning if a discriminated record base type has a
7247 -- convention with language C or C++ applied to it. This check is
7248 -- done even within generic scopes (but not in instantiations),
7249 -- which is why we don't do it as part of Freeze_Record_Type.
7251 Check_Suspicious_Convention (E);
7253 -- For a concurrent type, freeze corresponding record type. This does
7254 -- not correspond to any specific rule in the RM, but the record type
7255 -- is essentially part of the concurrent type. Also freeze all local
7256 -- entities. This includes record types created for entry parameter
7257 -- blocks and whatever local entities may appear in the private part.
7259 elsif Is_Concurrent_Type (E) then
7260 if Present (Corresponding_Record_Type (E)) then
7261 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
7262 end if;
7264 Comp := First_Entity (E);
7265 while Present (Comp) loop
7266 if Is_Type (Comp) then
7267 Freeze_And_Append (Comp, N, Result);
7269 elsif Ekind (Comp) /= E_Function then
7271 -- The guard on the presence of the Etype seems to be needed
7272 -- for some CodePeer (-gnatcC) cases, but not clear why???
7274 if Present (Etype (Comp)) then
7275 if Is_Itype (Etype (Comp))
7276 and then Underlying_Type (Scope (Etype (Comp))) = E
7277 then
7278 Undelay_Type (Etype (Comp));
7279 end if;
7281 Freeze_And_Append (Etype (Comp), N, Result);
7282 end if;
7283 end if;
7285 Next_Entity (Comp);
7286 end loop;
7288 -- Private types are required to point to the same freeze node as
7289 -- their corresponding full views. The freeze node itself has to
7290 -- point to the partial view of the entity (because from the partial
7291 -- view, we can retrieve the full view, but not the reverse).
7292 -- However, in order to freeze correctly, we need to freeze the full
7293 -- view. If we are freezing at the end of a scope (or within the
7294 -- scope) of the private type, the partial and full views will have
7295 -- been swapped, the full view appears first in the entity chain and
7296 -- the swapping mechanism ensures that the pointers are properly set
7297 -- (on scope exit).
7299 -- If we encounter the partial view before the full view (e.g. when
7300 -- freezing from another scope), we freeze the full view, and then
7301 -- set the pointers appropriately since we cannot rely on swapping to
7302 -- fix things up (subtypes in an outer scope might not get swapped).
7304 -- If the full view is itself private, the above requirements apply
7305 -- to the underlying full view instead of the full view. But there is
7306 -- no swapping mechanism for the underlying full view so we need to
7307 -- set the pointers appropriately in both cases.
7309 elsif Is_Incomplete_Or_Private_Type (E)
7310 and then not Is_Generic_Type (E)
7311 then
7312 -- The construction of the dispatch table associated with library
7313 -- level tagged types forces freezing of all the primitives of the
7314 -- type, which may cause premature freezing of the partial view.
7315 -- For example:
7317 -- package Pkg is
7318 -- type T is tagged private;
7319 -- type DT is new T with private;
7320 -- procedure Prim (X : in out T; Y : in out DT'Class);
7321 -- private
7322 -- type T is tagged null record;
7323 -- Obj : T;
7324 -- type DT is new T with null record;
7325 -- end;
7327 -- In this case the type will be frozen later by the usual
7328 -- mechanism: an object declaration, an instantiation, or the
7329 -- end of a declarative part.
7331 if Is_Library_Level_Tagged_Type (E)
7332 and then No (Full_View (E))
7333 then
7334 Set_Is_Frozen (E, False);
7335 goto Leave;
7337 -- Case of full view present
7339 elsif Present (Full_View (E)) then
7341 -- If full view has already been frozen, then no further
7342 -- processing is required
7344 if Is_Frozen (Full_View (E)) then
7345 Set_Has_Delayed_Freeze (E, False);
7346 Set_Freeze_Node (E, Empty);
7348 -- Otherwise freeze full view and patch the pointers so that
7349 -- the freeze node will elaborate both views in the back end.
7350 -- However, if full view is itself private, freeze underlying
7351 -- full view instead and patch the pointers so that the freeze
7352 -- node will elaborate the three views in the back end.
7354 else
7355 declare
7356 Full : Entity_Id := Full_View (E);
7358 begin
7359 if Is_Private_Type (Full)
7360 and then Present (Underlying_Full_View (Full))
7361 then
7362 Full := Underlying_Full_View (Full);
7363 end if;
7365 Freeze_And_Append (Full, N, Result);
7367 if Full /= Full_View (E)
7368 and then Has_Delayed_Freeze (Full_View (E))
7369 then
7370 F_Node := Freeze_Node (Full);
7372 if Present (F_Node) then
7373 Inherit_Freeze_Node
7374 (Fnod => F_Node, Typ => Full_View (E));
7375 else
7376 Set_Has_Delayed_Freeze (Full_View (E), False);
7377 Set_Freeze_Node (Full_View (E), Empty);
7378 end if;
7379 end if;
7381 if Has_Delayed_Freeze (E) then
7382 F_Node := Freeze_Node (Full_View (E));
7384 if Present (F_Node) then
7385 Inherit_Freeze_Node (Fnod => F_Node, Typ => E);
7386 else
7387 -- {Incomplete,Private}_Subtypes with Full_Views
7388 -- constrained by discriminants.
7390 Set_Has_Delayed_Freeze (E, False);
7391 Set_Freeze_Node (E, Empty);
7392 end if;
7393 end if;
7394 end;
7395 end if;
7397 Check_Debug_Info_Needed (E);
7399 -- AI95-117 requires that the convention of a partial view be
7400 -- the same as the convention of the full view. Note that this
7401 -- is a recognized breach of privacy, but it's essential for
7402 -- logical consistency of representation, and the lack of a
7403 -- rule in RM95 was an oversight.
7405 Set_Convention (E, Convention (Full_View (E)));
7407 Set_Size_Known_At_Compile_Time (E,
7408 Size_Known_At_Compile_Time (Full_View (E)));
7410 -- Size information is copied from the full view to the
7411 -- incomplete or private view for consistency.
7413 -- We skip this is the full view is not a type. This is very
7414 -- strange of course, and can only happen as a result of
7415 -- certain illegalities, such as a premature attempt to derive
7416 -- from an incomplete type.
7418 if Is_Type (Full_View (E)) then
7419 Set_Size_Info (E, Full_View (E));
7420 Copy_RM_Size (To => E, From => Full_View (E));
7421 end if;
7423 goto Leave;
7425 -- Case of underlying full view present
7427 elsif Is_Private_Type (E)
7428 and then Present (Underlying_Full_View (E))
7429 then
7430 if not Is_Frozen (Underlying_Full_View (E)) then
7431 Freeze_And_Append (Underlying_Full_View (E), N, Result);
7432 end if;
7434 -- Patch the pointers so that the freeze node will elaborate
7435 -- both views in the back end.
7437 if Has_Delayed_Freeze (E) then
7438 F_Node := Freeze_Node (Underlying_Full_View (E));
7440 if Present (F_Node) then
7441 Inherit_Freeze_Node
7442 (Fnod => F_Node,
7443 Typ => E);
7444 else
7445 Set_Has_Delayed_Freeze (E, False);
7446 Set_Freeze_Node (E, Empty);
7447 end if;
7448 end if;
7450 Check_Debug_Info_Needed (E);
7452 goto Leave;
7454 -- Case of no full view present. If entity is subtype or derived,
7455 -- it is safe to freeze, correctness depends on the frozen status
7456 -- of parent. Otherwise it is either premature usage, or a Taft
7457 -- amendment type, so diagnosis is at the point of use and the
7458 -- type might be frozen later.
7460 elsif E /= Base_Type (E) then
7461 declare
7462 Btyp : constant Entity_Id := Base_Type (E);
7464 begin
7465 -- However, if the base type is itself private and has no
7466 -- (underlying) full view either, wait until the full type
7467 -- declaration is seen and all the full views are created.
7469 if Is_Private_Type (Btyp)
7470 and then No (Full_View (Btyp))
7471 and then No (Underlying_Full_View (Btyp))
7472 and then Has_Delayed_Freeze (Btyp)
7473 and then No (Freeze_Node (Btyp))
7474 then
7475 Set_Is_Frozen (E, False);
7476 Result := No_List;
7477 goto Leave;
7478 end if;
7479 end;
7481 elsif Is_Derived_Type (E) then
7482 null;
7484 else
7485 Set_Is_Frozen (E, False);
7486 Result := No_List;
7487 goto Leave;
7488 end if;
7490 -- For access subprogram, freeze types of all formals, the return
7491 -- type was already frozen, since it is the Etype of the function.
7492 -- Formal types can be tagged Taft amendment types, but otherwise
7493 -- they cannot be incomplete.
7495 elsif Ekind (E) = E_Subprogram_Type then
7496 Formal := First_Formal (E);
7497 while Present (Formal) loop
7498 if Ekind (Etype (Formal)) = E_Incomplete_Type
7499 and then No (Full_View (Etype (Formal)))
7500 then
7501 if Is_Tagged_Type (Etype (Formal)) then
7502 null;
7504 -- AI05-151: Incomplete types are allowed in access to
7505 -- subprogram specifications.
7507 elsif Ada_Version < Ada_2012 then
7508 Error_Msg_NE
7509 ("invalid use of incomplete type&", E, Etype (Formal));
7510 end if;
7511 end if;
7513 Freeze_And_Append (Etype (Formal), N, Result);
7514 Next_Formal (Formal);
7515 end loop;
7517 Freeze_Subprogram (E);
7519 -- For access to a protected subprogram, freeze the equivalent type
7520 -- (however this is not set if we are not generating code or if this
7521 -- is an anonymous type used just for resolution).
7523 elsif Is_Access_Protected_Subprogram_Type (E) then
7524 if Present (Equivalent_Type (E)) then
7525 Freeze_And_Append (Equivalent_Type (E), N, Result);
7526 end if;
7527 end if;
7529 -- Generic types are never seen by the back-end, and are also not
7530 -- processed by the expander (since the expander is turned off for
7531 -- generic processing), so we never need freeze nodes for them.
7533 if Is_Generic_Type (E) then
7534 goto Leave;
7535 end if;
7537 -- Some special processing for non-generic types to complete
7538 -- representation details not known till the freeze point.
7540 if Is_Fixed_Point_Type (E) then
7541 Freeze_Fixed_Point_Type (E);
7543 elsif Is_Enumeration_Type (E) then
7544 Freeze_Enumeration_Type (E);
7546 elsif Is_Integer_Type (E) then
7547 Adjust_Esize_For_Alignment (E);
7549 if Is_Modular_Integer_Type (E) then
7550 -- Standard_Address has been built with the assumption that its
7551 -- modulus was System_Address_Size, but this is not a universal
7552 -- property and may need to be corrected.
7554 if Is_RTE (E, RE_Address) then
7555 Set_Modulus (Standard_Address, Modulus (E));
7556 Set_Intval
7557 (High_Bound (Scalar_Range (Standard_Address)),
7558 Modulus (E) - 1);
7560 elsif Warn_On_Suspicious_Modulus_Value then
7561 Check_Suspicious_Modulus (E);
7562 end if;
7563 end if;
7565 -- The pool applies to named and anonymous access types, but not
7566 -- to subprogram and to internal types generated for 'Access
7567 -- references.
7569 elsif Is_Access_Object_Type (E)
7570 and then Ekind (E) /= E_Access_Attribute_Type
7571 then
7572 -- If a pragma Default_Storage_Pool applies, and this type has no
7573 -- Storage_Pool or Storage_Size clause (which must have occurred
7574 -- before the freezing point), then use the default. This applies
7575 -- only to base types.
7577 -- None of this applies to access to subprograms, for which there
7578 -- are clearly no pools.
7580 if Present (Default_Pool)
7581 and then Is_Base_Type (E)
7582 and then not Has_Storage_Size_Clause (E)
7583 and then No (Associated_Storage_Pool (E))
7584 then
7585 -- Case of pragma Default_Storage_Pool (null)
7587 if Nkind (Default_Pool) = N_Null then
7588 Set_No_Pool_Assigned (E);
7590 -- Case of pragma Default_Storage_Pool (Standard)
7592 elsif Entity (Default_Pool) = Standard_Standard then
7593 Set_Associated_Storage_Pool (E, RTE (RE_Global_Pool_Object));
7595 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
7597 else
7598 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
7599 end if;
7600 end if;
7602 -- Check restriction for standard storage pool
7604 if No (Associated_Storage_Pool (E)) then
7605 Check_Restriction (No_Standard_Storage_Pools, E);
7606 end if;
7608 -- Deal with error message for pure access type. This is not an
7609 -- error in Ada 2005 if there is no pool (see AI-366).
7611 if Is_Pure_Unit_Access_Type (E)
7612 and then (Ada_Version < Ada_2005
7613 or else not No_Pool_Assigned (E))
7614 and then not Is_Generic_Unit (Scope (E))
7615 then
7616 Error_Msg_N ("named access type not allowed in pure unit", E);
7618 if Ada_Version >= Ada_2005 then
7619 Error_Msg_N
7620 ("\would be legal if Storage_Size of 0 given", E);
7622 elsif No_Pool_Assigned (E) then
7623 Error_Msg_N
7624 ("\would be legal in Ada 2005", E);
7626 else
7627 Error_Msg_N
7628 ("\would be legal in Ada 2005 if "
7629 & "Storage_Size of 0 given", E);
7630 end if;
7631 end if;
7632 end if;
7634 -- Case of composite types
7636 if Is_Composite_Type (E) then
7638 -- AI95-117 requires that all new primitives of a tagged type
7639 -- must inherit the convention of the full view of the
7640 -- type. Inherited and overriding operations are defined to
7641 -- inherit the convention of their parent or overridden
7642 -- subprogram (also specified in AI-117), which will have
7643 -- occurred earlier (in Derive_Subprogram and
7644 -- New_Overloaded_Entity). Here we set the convention of
7645 -- primitives that are still convention Ada, which will ensure
7646 -- that any new primitives inherit the type's convention. We
7647 -- don't do this for primitives that are internal to avoid
7648 -- potential problems in the case of nested subprograms and
7649 -- convention C. In addition, class-wide types can have a
7650 -- foreign convention inherited from their specific type, but
7651 -- are excluded from this since they don't have any associated
7652 -- primitives.
7654 if Is_Tagged_Type (E)
7655 and then not Is_Class_Wide_Type (E)
7656 and then Convention (E) /= Convention_Ada
7657 then
7658 declare
7659 Prim_List : constant Elist_Id := Primitive_Operations (E);
7660 Prim : Elmt_Id;
7662 begin
7663 Prim := First_Elmt (Prim_List);
7664 while Present (Prim) loop
7665 if Convention (Node (Prim)) = Convention_Ada
7666 and then Comes_From_Source (Node (Prim))
7667 then
7668 Set_Convention (Node (Prim), Convention (E));
7669 end if;
7671 Next_Elmt (Prim);
7672 end loop;
7673 end;
7674 end if;
7676 -- If the type is a simple storage pool type, then this is where
7677 -- we attempt to locate and validate its Allocate, Deallocate, and
7678 -- Storage_Size operations (the first is required, and the latter
7679 -- two are optional). We also verify that the full type for a
7680 -- private type is allowed to be a simple storage pool type.
7682 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
7683 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
7684 then
7685 -- If the type is marked Has_Private_Declaration, then this is
7686 -- a full type for a private type that was specified with the
7687 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
7688 -- pragma is allowed for the full type (for example, it can't
7689 -- be an array type, or a nonlimited record type).
7691 if Has_Private_Declaration (E) then
7692 if (not Is_Record_Type (E)
7693 or else not Is_Inherently_Limited_Type (E))
7694 and then not Is_Private_Type (E)
7695 then
7696 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
7697 Error_Msg_N
7698 ("pragma% can only apply to full type that is an " &
7699 "explicitly limited type", E);
7700 end if;
7701 end if;
7703 Validate_Simple_Pool_Ops : declare
7704 Pool_Type : Entity_Id renames E;
7705 Address_Type : constant Entity_Id := RTE (RE_Address);
7706 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
7708 procedure Validate_Simple_Pool_Op_Formal
7709 (Pool_Op : Entity_Id;
7710 Pool_Op_Formal : in out Entity_Id;
7711 Expected_Mode : Formal_Kind;
7712 Expected_Type : Entity_Id;
7713 Formal_Name : String;
7714 OK_Formal : in out Boolean);
7715 -- Validate one formal Pool_Op_Formal of the candidate pool
7716 -- operation Pool_Op. The formal must be of Expected_Type
7717 -- and have mode Expected_Mode. OK_Formal will be set to
7718 -- False if the formal doesn't match. If OK_Formal is False
7719 -- on entry, then the formal will effectively be ignored
7720 -- (because validation of the pool op has already failed).
7721 -- Upon return, Pool_Op_Formal will be updated to the next
7722 -- formal, if any.
7724 procedure Validate_Simple_Pool_Operation
7725 (Op_Name : Name_Id);
7726 -- Search for and validate a simple pool operation with the
7727 -- name Op_Name. If the name is Allocate, then there must be
7728 -- exactly one such primitive operation for the simple pool
7729 -- type. If the name is Deallocate or Storage_Size, then
7730 -- there can be at most one such primitive operation. The
7731 -- profile of the located primitive must conform to what
7732 -- is expected for each operation.
7734 ------------------------------------
7735 -- Validate_Simple_Pool_Op_Formal --
7736 ------------------------------------
7738 procedure Validate_Simple_Pool_Op_Formal
7739 (Pool_Op : Entity_Id;
7740 Pool_Op_Formal : in out Entity_Id;
7741 Expected_Mode : Formal_Kind;
7742 Expected_Type : Entity_Id;
7743 Formal_Name : String;
7744 OK_Formal : in out Boolean)
7746 begin
7747 -- If OK_Formal is False on entry, then simply ignore
7748 -- the formal, because an earlier formal has already
7749 -- been flagged.
7751 if not OK_Formal then
7752 return;
7754 -- If no formal is passed in, then issue an error for a
7755 -- missing formal.
7757 elsif No (Pool_Op_Formal) then
7758 Error_Msg_NE
7759 ("simple storage pool op missing formal " &
7760 Formal_Name & " of type&", Pool_Op, Expected_Type);
7761 OK_Formal := False;
7763 return;
7764 end if;
7766 if Etype (Pool_Op_Formal) /= Expected_Type then
7768 -- If the pool type was expected for this formal, then
7769 -- this will not be considered a candidate operation
7770 -- for the simple pool, so we unset OK_Formal so that
7771 -- the op and any later formals will be ignored.
7773 if Expected_Type = Pool_Type then
7774 OK_Formal := False;
7776 return;
7778 else
7779 Error_Msg_NE
7780 ("wrong type for formal " & Formal_Name &
7781 " of simple storage pool op; expected type&",
7782 Pool_Op_Formal, Expected_Type);
7783 end if;
7784 end if;
7786 -- Issue error if formal's mode is not the expected one
7788 if Ekind (Pool_Op_Formal) /= Expected_Mode then
7789 Error_Msg_N
7790 ("wrong mode for formal of simple storage pool op",
7791 Pool_Op_Formal);
7792 end if;
7794 -- Advance to the next formal
7796 Next_Formal (Pool_Op_Formal);
7797 end Validate_Simple_Pool_Op_Formal;
7799 ------------------------------------
7800 -- Validate_Simple_Pool_Operation --
7801 ------------------------------------
7803 procedure Validate_Simple_Pool_Operation
7804 (Op_Name : Name_Id)
7806 Op : Entity_Id;
7807 Found_Op : Entity_Id := Empty;
7808 Formal : Entity_Id;
7809 Is_OK : Boolean;
7811 begin
7812 pragma Assert
7813 (Op_Name in Name_Allocate
7814 | Name_Deallocate
7815 | Name_Storage_Size);
7817 Error_Msg_Name_1 := Op_Name;
7819 -- For each homonym declared immediately in the scope
7820 -- of the simple storage pool type, determine whether
7821 -- the homonym is an operation of the pool type, and,
7822 -- if so, check that its profile is as expected for
7823 -- a simple pool operation of that name.
7825 Op := Get_Name_Entity_Id (Op_Name);
7826 while Present (Op) loop
7827 if Ekind (Op) in E_Function | E_Procedure
7828 and then Scope (Op) = Current_Scope
7829 then
7830 Formal := First_Entity (Op);
7832 Is_OK := True;
7834 -- The first parameter must be of the pool type
7835 -- in order for the operation to qualify.
7837 if Op_Name = Name_Storage_Size then
7838 Validate_Simple_Pool_Op_Formal
7839 (Op, Formal, E_In_Parameter, Pool_Type,
7840 "Pool", Is_OK);
7841 else
7842 Validate_Simple_Pool_Op_Formal
7843 (Op, Formal, E_In_Out_Parameter, Pool_Type,
7844 "Pool", Is_OK);
7845 end if;
7847 -- If another operation with this name has already
7848 -- been located for the type, then flag an error,
7849 -- since we only allow the type to have a single
7850 -- such primitive.
7852 if Present (Found_Op) and then Is_OK then
7853 Error_Msg_NE
7854 ("only one % operation allowed for " &
7855 "simple storage pool type&", Op, Pool_Type);
7856 end if;
7858 -- In the case of Allocate and Deallocate, a formal
7859 -- of type System.Address is required.
7861 if Op_Name = Name_Allocate then
7862 Validate_Simple_Pool_Op_Formal
7863 (Op, Formal, E_Out_Parameter,
7864 Address_Type, "Storage_Address", Is_OK);
7866 elsif Op_Name = Name_Deallocate then
7867 Validate_Simple_Pool_Op_Formal
7868 (Op, Formal, E_In_Parameter,
7869 Address_Type, "Storage_Address", Is_OK);
7870 end if;
7872 -- In the case of Allocate and Deallocate, formals
7873 -- of type Storage_Count are required as the third
7874 -- and fourth parameters.
7876 if Op_Name /= Name_Storage_Size then
7877 Validate_Simple_Pool_Op_Formal
7878 (Op, Formal, E_In_Parameter,
7879 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
7880 Validate_Simple_Pool_Op_Formal
7881 (Op, Formal, E_In_Parameter,
7882 Stg_Cnt_Type, "Alignment", Is_OK);
7883 end if;
7885 -- If no mismatched formals have been found (Is_OK)
7886 -- and no excess formals are present, then this
7887 -- operation has been validated, so record it.
7889 if No (Formal) and then Is_OK then
7890 Found_Op := Op;
7891 end if;
7892 end if;
7894 Op := Homonym (Op);
7895 end loop;
7897 -- There must be a valid Allocate operation for the type,
7898 -- so issue an error if none was found.
7900 if Op_Name = Name_Allocate
7901 and then No (Found_Op)
7902 then
7903 Error_Msg_N ("missing % operation for simple " &
7904 "storage pool type", Pool_Type);
7906 elsif Present (Found_Op) then
7908 -- Simple pool operations can't be abstract
7910 if Is_Abstract_Subprogram (Found_Op) then
7911 Error_Msg_N
7912 ("simple storage pool operation must not be " &
7913 "abstract", Found_Op);
7914 end if;
7916 -- The Storage_Size operation must be a function with
7917 -- Storage_Count as its result type.
7919 if Op_Name = Name_Storage_Size then
7920 if Ekind (Found_Op) = E_Procedure then
7921 Error_Msg_N
7922 ("% operation must be a function", Found_Op);
7924 elsif Etype (Found_Op) /= Stg_Cnt_Type then
7925 Error_Msg_NE
7926 ("wrong result type for%, expected type&",
7927 Found_Op, Stg_Cnt_Type);
7928 end if;
7930 -- Allocate and Deallocate must be procedures
7932 elsif Ekind (Found_Op) = E_Function then
7933 Error_Msg_N
7934 ("% operation must be a procedure", Found_Op);
7935 end if;
7936 end if;
7937 end Validate_Simple_Pool_Operation;
7939 -- Start of processing for Validate_Simple_Pool_Ops
7941 begin
7942 Validate_Simple_Pool_Operation (Name_Allocate);
7943 Validate_Simple_Pool_Operation (Name_Deallocate);
7944 Validate_Simple_Pool_Operation (Name_Storage_Size);
7945 end Validate_Simple_Pool_Ops;
7946 end if;
7947 end if;
7949 -- Now that all types from which E may depend are frozen, see if
7950 -- strict alignment is required, a component clause on a record
7951 -- is correct, the size is known at compile time and if it must
7952 -- be unsigned, in that order.
7954 if Base_Type (E) = E then
7955 Check_Strict_Alignment (E);
7956 end if;
7958 if Ekind (E) in E_Record_Type | E_Record_Subtype then
7959 declare
7960 RC : constant Node_Id := Get_Record_Representation_Clause (E);
7961 begin
7962 if Present (RC) then
7963 Check_Record_Representation_Clause (RC);
7964 end if;
7965 end;
7966 end if;
7968 Check_Compile_Time_Size (E);
7970 Check_Unsigned_Type (E);
7972 -- Do not allow a size clause for a type which does not have a size
7973 -- that is known at compile time
7975 if (Has_Size_Clause (E) or else Has_Object_Size_Clause (E))
7976 and then not Size_Known_At_Compile_Time (E)
7977 and then not Is_Mutably_Tagged_Type (E)
7978 then
7979 -- Suppress this message if errors posted on E, even if we are
7980 -- in all errors mode, since this is often a junk message
7982 if not Error_Posted (E) then
7983 Error_Msg_N
7984 ("size clause not allowed for variable length type",
7985 Size_Clause (E));
7986 end if;
7987 end if;
7989 -- Now we set/verify the representation information, in particular
7990 -- the size and alignment values. This processing is not required for
7991 -- generic types, since generic types do not play any part in code
7992 -- generation, and so the size and alignment values for such types
7993 -- are irrelevant. Ditto for types declared within a generic unit,
7994 -- which may have components that depend on generic parameters, and
7995 -- that will be recreated in an instance.
7997 if Inside_A_Generic then
7998 null;
8000 -- Otherwise we call the layout procedure
8002 else
8003 Layout_Type (E);
8004 end if;
8006 -- If this is an access to subprogram whose designated type is itself
8007 -- a subprogram type, the return type of this anonymous subprogram
8008 -- type must be decorated as well.
8010 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
8011 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
8012 then
8013 Layout_Type (Etype (Designated_Type (E)));
8014 end if;
8016 -- If the type has a Defaut_Value/Default_Component_Value aspect,
8017 -- this is where we analyze the expression (after the type is frozen,
8018 -- since in the case of Default_Value, we are analyzing with the
8019 -- type itself, and we treat Default_Component_Value similarly for
8020 -- the sake of uniformity).
8022 -- But for an inherited Default_Value aspect specification, the type
8023 -- of the aspect remains the parent type. RM 3.3.1(11.1), a dynamic
8024 -- semantics rule, says "The implicit initial value for a scalar
8025 -- subtype that has the Default_Value aspect specified is the value
8026 -- of that aspect converted to the nominal subtype". For an inherited
8027 -- Default_Value aspect specification, no conversion is evaluated at
8028 -- the point of the derived type declaration.
8030 if Is_First_Subtype (E)
8031 and then Has_Default_Aspect (E)
8032 and then
8033 (not Is_Scalar_Type (E)
8034 or else
8035 not Is_Derived_Type (E)
8036 or else
8037 Default_Aspect_Value (E)
8038 /= Default_Aspect_Value (Etype (Base_Type (E))))
8039 then
8040 declare
8041 Nam : Name_Id;
8042 Exp : Node_Id;
8043 Typ : Entity_Id;
8045 begin
8046 if Is_Scalar_Type (E) then
8047 Nam := Name_Default_Value;
8048 Typ := E;
8049 Exp := Default_Aspect_Value (Typ);
8050 else
8051 Nam := Name_Default_Component_Value;
8052 Typ := Component_Type (E);
8053 Exp := Default_Aspect_Component_Value (E);
8054 end if;
8056 Analyze_And_Resolve (Exp, Typ);
8058 if Etype (Exp) /= Any_Type then
8059 if not Is_OK_Static_Expression (Exp) then
8060 Error_Msg_Name_1 := Nam;
8061 Flag_Non_Static_Expr
8062 ("aspect% requires static expression", Exp);
8063 end if;
8064 end if;
8065 end;
8066 end if;
8068 -- Verify at this point that No_Controlled_Parts and No_Task_Parts,
8069 -- when specified on the current type or one of its ancestors, has
8070 -- not been overridden and that no violation of the aspect has
8071 -- occurred.
8073 -- It is important that we perform the checks here after the type has
8074 -- been processed because if said type depended on a private type it
8075 -- will not have been marked controlled or having tasks.
8077 Check_No_Parts_Violations (E, Aspect_No_Controlled_Parts);
8078 Check_No_Parts_Violations (E, Aspect_No_Task_Parts);
8080 -- End of freeze processing for type entities
8081 end if;
8083 -- Here is where we logically freeze the current entity. If it has a
8084 -- freeze node, then this is the point at which the freeze node is
8085 -- linked into the result list.
8087 if Has_Delayed_Freeze (E) then
8089 -- If a freeze node is already allocated, use it, otherwise allocate
8090 -- a new one. The preallocation happens in the case of anonymous base
8091 -- types, where we preallocate so that we can set First_Subtype_Link.
8092 -- Note that we reset the Sloc to the current freeze location.
8094 if Present (Freeze_Node (E)) then
8095 F_Node := Freeze_Node (E);
8096 Set_Sloc (F_Node, Loc);
8098 else
8099 F_Node := New_Node (N_Freeze_Entity, Loc);
8100 Set_Freeze_Node (E, F_Node);
8101 Set_Access_Types_To_Process (F_Node, No_Elist);
8102 Set_TSS_Elist (F_Node, No_Elist);
8103 Set_Actions (F_Node, No_List);
8104 end if;
8106 Set_Entity (F_Node, E);
8107 Add_To_Result (F_Node);
8109 -- A final pass over record types with discriminants. If the type
8110 -- has an incomplete declaration, there may be constrained access
8111 -- subtypes declared elsewhere, which do not depend on the discrimi-
8112 -- nants of the type, and which are used as component types (i.e.
8113 -- the full view is a recursive type). The designated types of these
8114 -- subtypes can only be elaborated after the type itself, and they
8115 -- need an itype reference.
8117 if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
8118 declare
8119 Comp : Entity_Id;
8120 IR : Node_Id;
8121 Typ : Entity_Id;
8123 begin
8124 Comp := First_Component (E);
8125 while Present (Comp) loop
8126 Typ := Etype (Comp);
8128 if Is_Access_Type (Typ)
8129 and then Scope (Typ) /= E
8130 and then Base_Type (Designated_Type (Typ)) = E
8131 and then Is_Itype (Designated_Type (Typ))
8132 then
8133 IR := Make_Itype_Reference (Sloc (Comp));
8134 Set_Itype (IR, Designated_Type (Typ));
8135 Append (IR, Result);
8136 end if;
8138 Next_Component (Comp);
8139 end loop;
8140 end;
8141 end if;
8142 end if;
8144 -- When a type is frozen, the first subtype of the type is frozen as
8145 -- well (RM 13.14(15)). This has to be done after freezing the type,
8146 -- since obviously the first subtype depends on its own base type.
8148 if Is_Type (E) then
8149 Freeze_And_Append (First_Subtype (E), N, Result);
8151 -- If we just froze a tagged non-class-wide record, then freeze the
8152 -- corresponding class-wide type. This must be done after the tagged
8153 -- type itself is frozen, because the class-wide type refers to the
8154 -- tagged type which generates the class.
8156 -- For a tagged type, freeze explicitly those primitive operations
8157 -- that are expression functions, which otherwise have no clear
8158 -- freeze point: these have to be frozen before the dispatch table
8159 -- for the type is built, and before any explicit call to the
8160 -- primitive, which would otherwise be the freeze point for it.
8162 if Is_Tagged_Type (E)
8163 and then not Is_Class_Wide_Type (E)
8164 and then Present (Class_Wide_Type (E))
8165 then
8166 Freeze_And_Append (Class_Wide_Type (E), N, Result);
8168 declare
8169 Ops : constant Elist_Id := Primitive_Operations (E);
8171 Elmt : Elmt_Id;
8172 Subp : Entity_Id;
8174 begin
8175 if Ops /= No_Elist then
8176 Elmt := First_Elmt (Ops);
8177 while Present (Elmt) loop
8178 Subp := Node (Elmt);
8179 if Is_Expression_Function (Subp) then
8180 Freeze_And_Append (Subp, N, Result);
8181 end if;
8183 Next_Elmt (Elmt);
8184 end loop;
8185 end if;
8186 end;
8187 end if;
8188 end if;
8190 Check_Debug_Info_Needed (E);
8192 -- If subprogram has address clause then reset Is_Public flag, since we
8193 -- do not want the backend to generate external references.
8195 if Is_Subprogram (E)
8196 and then Present (Address_Clause (E))
8197 and then not Is_Library_Level_Entity (E)
8198 then
8199 Set_Is_Public (E, False);
8200 end if;
8202 -- The Ghost mode of the enclosing context is ignored, while the
8203 -- entity being frozen is living. Insert the freezing action prior
8204 -- to the start of the enclosing ignored Ghost region. As a result
8205 -- the freezeing action will be preserved when the ignored Ghost
8206 -- context is eliminated. The insertion must take place even when
8207 -- the context is a spec expression, otherwise "Handling of Default
8208 -- and Per-Object Expressions" will suppress the insertion, and the
8209 -- freeze node will be dropped on the floor.
8211 if Saved_GM = Ignore
8212 and then Ghost_Mode /= Ignore
8213 and then Present (Ignored_Ghost_Region)
8214 then
8215 Insert_Actions
8216 (Assoc_Node => Ignored_Ghost_Region,
8217 Ins_Actions => Result,
8218 Spec_Expr_OK => True);
8220 Result := No_List;
8221 end if;
8223 <<Leave>>
8224 Restore_Ghost_Region (Saved_GM, Saved_IGR);
8226 return Result;
8227 end Freeze_Entity;
8229 -----------------------------
8230 -- Freeze_Enumeration_Type --
8231 -----------------------------
8233 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
8234 begin
8235 -- By default, if no size clause is present, an enumeration type with
8236 -- Convention C is assumed to interface to a C enum and has integer
8237 -- size, except for a boolean type because it is assumed to interface
8238 -- to _Bool introduced in C99. This applies to types. For subtypes,
8239 -- verify that its base type has no size clause either. Treat other
8240 -- foreign conventions in the same way, and also make sure alignment
8241 -- is set right.
8243 if Has_Foreign_Convention (Typ)
8244 and then not Is_Boolean_Type (Typ)
8245 and then not Has_Size_Clause (Typ)
8246 and then not Has_Size_Clause (Base_Type (Typ))
8247 and then Esize (Typ) < Standard_Integer_Size
8249 -- Don't do this if Short_Enums on target
8251 and then not Target_Short_Enums
8252 then
8253 Set_Esize (Typ, UI_From_Int (Standard_Integer_Size));
8254 Set_Alignment (Typ, Alignment (Standard_Integer));
8256 -- Normal Ada case or size clause present or not Long_C_Enums on target
8258 else
8259 -- If the enumeration type interfaces to C, and it has a size clause
8260 -- that is smaller than the size of int, it warrants a warning. The
8261 -- user may intend the C type to be a boolean or a char, so this is
8262 -- not by itself an error that the Ada compiler can detect, but it
8263 -- is worth a heads-up. For Boolean and Character types we
8264 -- assume that the programmer has the proper C type in mind.
8265 -- For explicit sizes larger than int, assume the user knows what
8266 -- he is doing and that the code is intentional.
8268 if Convention (Typ) = Convention_C
8269 and then Has_Size_Clause (Typ)
8270 and then Esize (Typ) < Standard_Integer_Size
8271 and then not Is_Boolean_Type (Typ)
8272 and then not Is_Character_Type (Typ)
8274 -- Don't do this if Short_Enums on target
8276 and then not Target_Short_Enums
8277 then
8278 Error_Msg_N
8279 ("??the size of enums in C is implementation-defined",
8280 Size_Clause (Typ));
8281 Error_Msg_N
8282 ("\??check that the C counterpart has size of " &
8283 UI_Image (Esize (Typ)),
8284 Size_Clause (Typ));
8285 end if;
8287 Adjust_Esize_For_Alignment (Typ);
8288 end if;
8290 -- Reject a very large size on a type with a non-standard representation
8291 -- because Expand_Freeze_Enumeration_Type cannot deal with it.
8293 if Has_Non_Standard_Rep (Typ)
8294 and then Known_Esize (Typ)
8295 and then Esize (Typ) > System_Max_Integer_Size
8296 then
8297 Error_Msg_N
8298 ("enumeration type with representation clause too large", Typ);
8299 Error_Msg_Uint_1 := UI_From_Int (System_Max_Integer_Size);
8300 Error_Msg_N
8301 ("\the size of such a type cannot exceed ^ bits", Typ);
8302 end if;
8303 end Freeze_Enumeration_Type;
8305 -----------------------
8306 -- Freeze_Expression --
8307 -----------------------
8309 procedure Freeze_Expression (N : Node_Id) is
8311 function Declared_In_Expanded_Body
8312 (N : Node_Id;
8313 Typ : Entity_Id;
8314 Nam : Entity_Id) return Boolean;
8315 -- Given the N_Handled_Sequence_Of_Statements node of an expander
8316 -- generated subprogram body, determines if the frozen entity is
8317 -- declared inside this body. This is recognized locating the
8318 -- enclosing subprogram of the entity Name or its Type and
8319 -- checking if it is this subprogram body.
8321 function Find_Aggregate_Component_Desig_Type return Entity_Id;
8322 -- If the expression is an array aggregate, the type of the component
8323 -- expressions is also frozen. If the component type is an access type
8324 -- and the expressions include allocators, the designed type is frozen
8325 -- as well.
8327 function In_Expanded_Body (N : Node_Id) return Boolean;
8328 -- Given an N_Handled_Sequence_Of_Statements node, determines whether it
8329 -- is the statement sequence of an expander-generated subprogram: body
8330 -- created for an expression function, for a predicate function, an init
8331 -- proc, a stream subprogram, or a renaming as body. If so, this is not
8332 -- a freezing context and the entity will be frozen at a later point.
8334 function Has_Decl_In_List
8335 (E : Entity_Id;
8336 N : Node_Id;
8337 L : List_Id) return Boolean;
8338 -- Determines whether an entity E referenced in node N is declared in
8339 -- the list L.
8341 -------------------------------
8342 -- Declared_In_Expanded_Body --
8343 -------------------------------
8345 function Declared_In_Expanded_Body
8346 (N : Node_Id;
8347 Typ : Entity_Id;
8348 Nam : Entity_Id) return Boolean
8350 pragma Assert (In_Expanded_Body (N));
8352 Subp_Body : constant Node_Id := Parent (N);
8353 Subp_Id : Entity_Id;
8354 Scop : Entity_Id;
8356 begin
8357 if Acts_As_Spec (Subp_Body) then
8358 Subp_Id := Unique_Defining_Entity (Specification (Subp_Body));
8359 else
8360 Subp_Id := Corresponding_Spec (Subp_Body);
8361 end if;
8363 if Present (Typ) then
8364 Scop := Scope (Typ);
8365 elsif Present (Nam) then
8366 Scop := Scope (Nam);
8367 else
8368 Scop := Standard_Standard;
8369 end if;
8371 while Scop /= Standard_Standard
8372 and then not Is_Subprogram (Scop)
8373 loop
8374 Scop := Scope (Scop);
8375 end loop;
8377 return Scop = Subp_Id;
8378 end Declared_In_Expanded_Body;
8380 -----------------------------------------
8381 -- Find_Aggregate_Component_Desig_Type --
8382 -----------------------------------------
8384 function Find_Aggregate_Component_Desig_Type return Entity_Id is
8385 Assoc : Node_Id;
8386 Exp : Node_Id;
8388 begin
8389 if Present (Expressions (N)) then
8390 Exp := First (Expressions (N));
8391 while Present (Exp) loop
8392 if Nkind (Exp) = N_Allocator then
8393 return Designated_Type (Component_Type (Etype (N)));
8394 end if;
8396 Next (Exp);
8397 end loop;
8398 end if;
8400 if Present (Component_Associations (N)) then
8401 Assoc := First (Component_Associations (N));
8402 while Present (Assoc) loop
8403 if Nkind (Expression (Assoc)) = N_Allocator then
8404 return Designated_Type (Component_Type (Etype (N)));
8405 end if;
8407 Next (Assoc);
8408 end loop;
8409 end if;
8411 return Empty;
8412 end Find_Aggregate_Component_Desig_Type;
8414 ----------------------
8415 -- In_Expanded_Body --
8416 ----------------------
8418 function In_Expanded_Body (N : Node_Id) return Boolean is
8419 P : constant Node_Id := Parent (N);
8420 Id : Entity_Id;
8422 begin
8423 if Nkind (P) /= N_Subprogram_Body then
8424 return False;
8426 -- Treat the generated body of an expression function like other
8427 -- bodies generated during expansion (e.g. stream subprograms) so
8428 -- that those bodies are not treated as freezing points.
8430 elsif Was_Expression_Function (P) then
8431 pragma Assert (not Comes_From_Source (P));
8432 return True;
8434 -- This is the body of a generated predicate function
8436 elsif Present (Corresponding_Spec (P))
8437 and then Is_Predicate_Function (Corresponding_Spec (P))
8438 then
8439 return True;
8441 else
8442 Id := Defining_Unit_Name (Specification (P));
8444 -- The following are expander-created bodies, or bodies that
8445 -- are not freeze points.
8447 if Nkind (Id) = N_Defining_Identifier
8448 and then (Is_Init_Proc (Id)
8449 or else Is_TSS (Id, TSS_Stream_Input)
8450 or else Is_TSS (Id, TSS_Stream_Output)
8451 or else Is_TSS (Id, TSS_Stream_Read)
8452 or else Is_TSS (Id, TSS_Stream_Write)
8453 or else Is_TSS (Id, TSS_Put_Image)
8454 or else Nkind (Original_Node (P)) =
8455 N_Subprogram_Renaming_Declaration)
8456 then
8457 return True;
8458 else
8459 return False;
8460 end if;
8461 end if;
8462 end In_Expanded_Body;
8464 ----------------------
8465 -- Has_Decl_In_List --
8466 ----------------------
8468 function Has_Decl_In_List
8469 (E : Entity_Id;
8470 N : Node_Id;
8471 L : List_Id) return Boolean
8473 Decl_Node : Node_Id;
8475 begin
8476 -- If E is an itype, pretend that it is declared in N except for a
8477 -- class-wide subtype with an equivalent type, because this latter
8478 -- type comes with a bona-fide declaration node.
8480 if Is_Itype (E) then
8481 if Ekind (E) = E_Class_Wide_Subtype
8482 and then Present (Equivalent_Type (E))
8483 then
8484 Decl_Node := Declaration_Node (Equivalent_Type (E));
8485 else
8486 Decl_Node := N;
8487 end if;
8489 else
8490 Decl_Node := Declaration_Node (E);
8491 end if;
8493 return Is_List_Member (Decl_Node)
8494 and then List_Containing (Decl_Node) = L;
8495 end Has_Decl_In_List;
8497 -- Local variables
8499 In_Spec_Exp : constant Boolean := In_Spec_Expression;
8501 Desig_Typ : Entity_Id;
8502 Nam : Entity_Id;
8503 P : Node_Id;
8504 Parent_P : Node_Id;
8505 Typ : Entity_Id;
8507 Allocator_Typ : Entity_Id := Empty;
8509 Freeze_Outside_Subp : Entity_Id := Empty;
8510 -- This entity is set if we are inside a subprogram body and the frozen
8511 -- entity is defined in the enclosing scope of this subprogram. In such
8512 -- case we must skip the subprogram body when climbing the parents chain
8513 -- to locate the correct placement for the freezing node.
8515 -- Start of processing for Freeze_Expression
8517 begin
8518 -- Immediate return if freezing is inhibited. This flag is set by the
8519 -- analyzer to stop freezing on generated expressions that would cause
8520 -- freezing if they were in the source program, but which are not
8521 -- supposed to freeze, since they are created.
8523 if Must_Not_Freeze (N) then
8524 return;
8525 end if;
8527 -- If expression is non-static, then it does not freeze in a default
8528 -- expression, see section "Handling of Default Expressions" in the
8529 -- spec of package Sem for further details. Note that we have to make
8530 -- sure that we actually have a real expression (if we have a subtype
8531 -- indication, we can't test Is_OK_Static_Expression). However, we
8532 -- exclude the case of the prefix of an attribute of a static scalar
8533 -- subtype from this early return, because static subtype attributes
8534 -- should always cause freezing, even in default expressions, but
8535 -- the attribute may not have been marked as static yet (because in
8536 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
8537 -- Freeze_Expression on the prefix).
8539 if In_Spec_Exp
8540 and then Nkind (N) in N_Subexpr
8541 and then not Is_OK_Static_Expression (N)
8542 and then (Nkind (Parent (N)) /= N_Attribute_Reference
8543 or else not (Is_Entity_Name (N)
8544 and then Is_Type (Entity (N))
8545 and then Is_OK_Static_Subtype (Entity (N))))
8546 then
8547 return;
8548 end if;
8550 -- Freeze type of expression if not frozen already
8552 Typ := Empty;
8554 if Nkind (N) in N_Has_Etype and then Present (Etype (N)) then
8555 if not Is_Frozen (Etype (N)) then
8556 Typ := Etype (N);
8558 -- Base type may be an derived numeric type that is frozen at the
8559 -- point of declaration, but first_subtype is still unfrozen.
8561 elsif not Is_Frozen (First_Subtype (Etype (N))) then
8562 Typ := First_Subtype (Etype (N));
8563 end if;
8564 end if;
8566 -- For entity name, freeze entity if not frozen already. A special
8567 -- exception occurs for an identifier that did not come from source.
8568 -- We don't let such identifiers freeze a non-internal entity, i.e.
8569 -- an entity that did come from source, since such an identifier was
8570 -- generated by the expander, and cannot have any semantic effect on
8571 -- the freezing semantics. For example, this stops the parameter of
8572 -- an initialization procedure from freezing the variable.
8574 if Is_Entity_Name (N)
8575 and then Present (Entity (N))
8576 and then not Is_Frozen (Entity (N))
8577 and then (Nkind (N) /= N_Identifier
8578 or else Comes_From_Source (N)
8579 or else not Comes_From_Source (Entity (N)))
8580 then
8581 Nam := Entity (N);
8583 if Present (Nam) and then Ekind (Nam) = E_Function then
8584 Check_Expression_Function (N, Nam);
8585 end if;
8587 else
8588 Nam := Empty;
8589 end if;
8591 -- For an allocator freeze designated type if not frozen already
8593 -- For an aggregate whose component type is an access type, freeze the
8594 -- designated type now, so that its freeze does not appear within the
8595 -- loop that might be created in the expansion of the aggregate. If the
8596 -- designated type is a private type without full view, the expression
8597 -- cannot contain an allocator, so the type is not frozen.
8599 -- For a function, we freeze the entity when the subprogram declaration
8600 -- is frozen, but a function call may appear in an initialization proc.
8601 -- before the declaration is frozen. We need to generate the extra
8602 -- formals, if any, to ensure that the expansion of the call includes
8603 -- the proper actuals. This only applies to Ada subprograms, not to
8604 -- imported ones.
8606 Desig_Typ := Empty;
8608 case Nkind (N) is
8609 when N_Allocator =>
8610 Desig_Typ := Designated_Type (Etype (N));
8612 if Nkind (Expression (N)) = N_Qualified_Expression then
8613 Allocator_Typ := Entity (Subtype_Mark (Expression (N)));
8614 end if;
8616 when N_Aggregate =>
8617 if Is_Array_Type (Etype (N))
8618 and then Is_Access_Type (Component_Type (Etype (N)))
8619 then
8620 -- Check whether aggregate includes allocators
8622 Desig_Typ := Find_Aggregate_Component_Desig_Type;
8623 end if;
8625 when N_Indexed_Component
8626 | N_Selected_Component
8627 | N_Slice
8629 if Is_Access_Type (Etype (Prefix (N))) then
8630 Desig_Typ := Designated_Type (Etype (Prefix (N)));
8631 end if;
8633 when N_Identifier =>
8634 if Present (Nam)
8635 and then Ekind (Nam) = E_Function
8636 and then Nkind (Parent (N)) = N_Function_Call
8637 and then not Has_Foreign_Convention (Nam)
8638 then
8639 Create_Extra_Formals (Nam);
8640 end if;
8642 when others =>
8643 null;
8644 end case;
8646 if Desig_Typ /= Empty
8647 and then (Is_Frozen (Desig_Typ)
8648 or else not Is_Fully_Defined (Desig_Typ))
8649 then
8650 Desig_Typ := Empty;
8651 end if;
8653 -- All done if nothing needs freezing
8655 if No (Typ)
8656 and then No (Nam)
8657 and then No (Desig_Typ)
8658 and then No (Allocator_Typ)
8659 then
8660 return;
8661 end if;
8663 -- Check if we are inside a subprogram body and the frozen entity is
8664 -- defined in the enclosing scope of this subprogram. In such case we
8665 -- must skip the subprogram when climbing the parents chain to locate
8666 -- the correct placement for the freezing node.
8668 -- This is not needed for default expressions and other spec expressions
8669 -- in generic units since the Move_Freeze_Nodes mechanism (sem_ch12.adb)
8670 -- takes care of placing them at the proper place, after the generic
8671 -- unit.
8673 if Present (Nam)
8674 and then Scope (Nam) /= Current_Scope
8675 and then not (In_Spec_Exp and then Inside_A_Generic)
8676 then
8677 declare
8678 S : Entity_Id := Current_Scope;
8680 begin
8681 while Present (S)
8682 and then In_Same_Source_Unit (Nam, S)
8683 loop
8684 if Scope (S) = Scope (Nam) then
8685 if Is_Subprogram (S) and then Has_Completion (S) then
8686 Freeze_Outside_Subp := S;
8687 end if;
8689 exit;
8690 end if;
8692 S := Scope (S);
8693 end loop;
8694 end;
8695 end if;
8697 -- Examine the enclosing context by climbing the parent chain
8699 -- If we identified that we must freeze the entity outside of a given
8700 -- subprogram then we just climb up to that subprogram checking if some
8701 -- enclosing node is marked as Must_Not_Freeze (since in such case we
8702 -- must not freeze yet this entity).
8704 P := N;
8706 if Present (Freeze_Outside_Subp) then
8707 loop
8708 -- Do not freeze the current expression if another expression in
8709 -- the chain of parents must not be frozen.
8711 if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then
8712 return;
8713 end if;
8715 Parent_P := Parent (P);
8717 -- If we don't have a parent, then we are not in a well-formed
8718 -- tree. This is an unusual case, but there are some legitimate
8719 -- situations in which this occurs, notably when the expressions
8720 -- in the range of a type declaration are resolved. We simply
8721 -- ignore the freeze request in this case.
8723 if No (Parent_P) then
8724 return;
8725 end if;
8727 -- If the parent is a subprogram body, the candidate insertion
8728 -- point is just ahead of it.
8730 if Nkind (Parent_P) = N_Subprogram_Body
8731 and then Unique_Defining_Entity (Parent_P) =
8732 Freeze_Outside_Subp
8733 then
8734 P := Parent_P;
8735 exit;
8736 end if;
8738 P := Parent_P;
8739 end loop;
8741 -- Otherwise the traversal serves two purposes - to detect scenarios
8742 -- where freezeing is not needed and to find the proper insertion point
8743 -- for the freeze nodes. Although somewhat similar to Insert_Actions,
8744 -- this traversal is freezing semantics-sensitive. Inserting freeze
8745 -- nodes blindly in the tree may result in types being frozen too early.
8747 else
8748 loop
8749 -- Do not freeze the current expression if another expression in
8750 -- the chain of parents must not be frozen.
8752 if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then
8753 return;
8754 end if;
8756 Parent_P := Parent (P);
8758 -- If we don't have a parent, then we are not in a well-formed
8759 -- tree. This is an unusual case, but there are some legitimate
8760 -- situations in which this occurs, notably when the expressions
8761 -- in the range of a type declaration are resolved. We simply
8762 -- ignore the freeze request in this case.
8764 if No (Parent_P) then
8765 return;
8766 end if;
8768 -- See if we have got to an appropriate point in the tree
8770 case Nkind (Parent_P) is
8772 -- A special test for the exception of (RM 13.14(8)) for the
8773 -- case of per-object expressions (RM 3.8(18)) occurring in
8774 -- component definition or a discrete subtype definition. Note
8775 -- that we test for a component declaration which includes both
8776 -- cases we are interested in, and furthermore the tree does
8777 -- not have explicit nodes for either of these two constructs.
8779 when N_Component_Declaration =>
8781 -- The case we want to test for here is an identifier that
8782 -- is a per-object expression, this is either a discriminant
8783 -- that appears in a context other than the component
8784 -- declaration or it is a reference to the type of the
8785 -- enclosing construct.
8787 -- For either of these cases, we skip the freezing
8789 if not In_Spec_Expression
8790 and then Nkind (N) = N_Identifier
8791 and then Present (Entity (N))
8792 then
8793 -- We recognize the discriminant case by just looking for
8794 -- a reference to a discriminant. It can only be one for
8795 -- the enclosing construct. Skip freezing in this case.
8797 if Ekind (Entity (N)) = E_Discriminant then
8798 return;
8800 -- For the case of a reference to the enclosing record,
8801 -- (or task or protected type), we look for a type that
8802 -- matches the current scope.
8804 elsif Entity (N) = Current_Scope then
8805 return;
8806 end if;
8807 end if;
8809 -- If we have an enumeration literal that appears as the choice
8810 -- in the aggregate of an enumeration representation clause,
8811 -- then freezing does not occur (RM 13.14(10)).
8813 when N_Enumeration_Representation_Clause =>
8815 -- The case we are looking for is an enumeration literal
8817 if Nkind (N) in N_Identifier | N_Character_Literal
8818 and then Is_Enumeration_Type (Etype (N))
8819 then
8820 -- If enumeration literal appears directly as the choice,
8821 -- do not freeze (this is the normal non-overloaded case)
8823 if Nkind (Parent (N)) = N_Component_Association
8824 and then First (Choices (Parent (N))) = N
8825 then
8826 return;
8828 -- If enumeration literal appears as the name of function
8829 -- which is the choice, then also do not freeze. This
8830 -- happens in the overloaded literal case, where the
8831 -- enumeration literal is temporarily changed to a
8832 -- function call for overloading analysis purposes.
8834 elsif Nkind (Parent (N)) = N_Function_Call
8835 and then Nkind (Parent (Parent (N))) =
8836 N_Component_Association
8837 and then First (Choices (Parent (Parent (N)))) =
8838 Parent (N)
8839 then
8840 return;
8841 end if;
8842 end if;
8844 -- Normally if the parent is a handled sequence of statements,
8845 -- then the current node must be a statement, and that is an
8846 -- appropriate place to insert a freeze node.
8848 when N_Handled_Sequence_Of_Statements =>
8850 -- An exception occurs when the sequence of statements is
8851 -- for an expander generated body that did not do the usual
8852 -- freeze all operation. In this case we usually want to
8853 -- freeze outside this body, not inside it, unless the
8854 -- entity is declared inside this expander generated body.
8856 exit when not In_Expanded_Body (Parent_P)
8857 or else Declared_In_Expanded_Body (Parent_P, Typ, Nam);
8859 -- If parent is a body or a spec or a block, then the current
8860 -- node is a statement or declaration and we can insert the
8861 -- freeze node before it.
8863 when N_Block_Statement
8864 | N_Entry_Body
8865 | N_Package_Body
8866 | N_Package_Specification
8867 | N_Protected_Body
8868 | N_Subprogram_Body
8869 | N_Task_Body
8871 exit;
8873 -- The expander is allowed to define types in any statements
8874 -- list, so any of the following parent nodes also mark a
8875 -- freezing point if the actual node is in a list of
8876 -- statements or declarations.
8878 when N_Abortable_Part
8879 | N_Accept_Alternative
8880 | N_Case_Statement_Alternative
8881 | N_Compilation_Unit_Aux
8882 | N_Conditional_Entry_Call
8883 | N_Delay_Alternative
8884 | N_Elsif_Part
8885 | N_Entry_Call_Alternative
8886 | N_Exception_Handler
8887 | N_Extended_Return_Statement
8888 | N_Freeze_Entity
8889 | N_If_Statement
8890 | N_Selective_Accept
8891 | N_Triggering_Alternative
8893 if No (Current_Subprogram) then
8894 exit when Is_List_Member (P);
8896 -- Check exceptional case documented above for an enclosing
8897 -- handled sequence of statements.
8899 else
8900 declare
8901 Par : Node_Id := Parent (Parent_P);
8903 begin
8904 while Present (Par)
8905 and then
8906 Nkind (Par) /= N_Handled_Sequence_Of_Statements
8907 and then Nkind (Parent (Par)) /= N_Subprogram_Body
8908 loop
8909 Par := Parent (Par);
8910 end loop;
8912 -- If we don't have a parent, then we are not in a
8913 -- well-formed tree and we ignore the freeze request.
8914 -- See previous comment in the enclosing loop.
8916 if No (Par) then
8917 return;
8918 end if;
8920 exit when not In_Expanded_Body (Par)
8921 or else Declared_In_Expanded_Body (Par, Typ, Nam);
8922 end;
8923 end if;
8925 -- The freeze nodes produced by an expression coming from the
8926 -- Actions list of an N_Expression_With_Actions, short-circuit
8927 -- expression or N_Case_Expression_Alternative node must remain
8928 -- within the Actions list if they freeze an entity declared in
8929 -- this list, as inserting the freeze nodes further up the tree
8930 -- may lead to use before declaration issues for the entity.
8932 when N_Case_Expression_Alternative
8933 | N_Expression_With_Actions
8934 | N_Short_Circuit
8936 exit when (Present (Nam)
8937 and then
8938 Has_Decl_In_List (Nam, P, Actions (Parent_P)))
8939 or else (Present (Typ)
8940 and then
8941 Has_Decl_In_List (Typ, P, Actions (Parent_P)));
8943 -- Likewise for an N_If_Expression and its two Actions list
8945 when N_If_Expression =>
8946 declare
8947 L1 : constant List_Id := Then_Actions (Parent_P);
8948 L2 : constant List_Id := Else_Actions (Parent_P);
8950 begin
8951 exit when (Present (Nam)
8952 and then
8953 Has_Decl_In_List (Nam, P, L1))
8954 or else (Present (Typ)
8955 and then
8956 Has_Decl_In_List (Typ, P, L1))
8957 or else (Present (Nam)
8958 and then
8959 Has_Decl_In_List (Nam, P, L2))
8960 or else (Present (Typ)
8961 and then
8962 Has_Decl_In_List (Typ, P, L2));
8963 end;
8965 -- N_Loop_Statement is a special case: a type that appears in
8966 -- the source can never be frozen in a loop (this occurs only
8967 -- because of a loop expanded by the expander), so we keep on
8968 -- going. Otherwise we terminate the search. Same is true of
8969 -- any entity which comes from source (if it has a predefined
8970 -- type, this type does not appear to come from source, but the
8971 -- entity should not be frozen here).
8973 when N_Loop_Statement =>
8974 exit when not Comes_From_Source (Etype (N))
8975 and then (No (Nam) or else not Comes_From_Source (Nam));
8977 -- For all other cases, keep looking at parents
8979 when others =>
8980 null;
8981 end case;
8983 -- We fall through the case if we did not yet find the proper
8984 -- place in the tree for inserting the freeze node, so climb.
8986 P := Parent_P;
8987 end loop;
8988 end if;
8990 -- If the expression appears in a record or an initialization procedure,
8991 -- the freeze nodes are collected and attached to the current scope, to
8992 -- be inserted and analyzed on exit from the scope, to insure that
8993 -- generated entities appear in the correct scope. If the expression is
8994 -- a default for a discriminant specification, the scope is still void.
8995 -- The expression can also appear in the discriminant part of a private
8996 -- or concurrent type.
8998 -- If the expression appears in a constrained subcomponent of an
8999 -- enclosing record declaration, the freeze nodes must be attached to
9000 -- the outer record type so they can eventually be placed in the
9001 -- enclosing declaration list.
9003 -- The other case requiring this special handling is if we are in a
9004 -- default expression, since in that case we are about to freeze a
9005 -- static type, and the freeze scope needs to be the outer scope, not
9006 -- the scope of the subprogram with the default parameter.
9008 -- For default expressions and other spec expressions in generic units,
9009 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
9010 -- placing them at the proper place, after the generic unit.
9012 if (In_Spec_Exp and not Inside_A_Generic)
9013 or else (Is_Type (Current_Scope)
9014 and then (not Is_Concurrent_Type (Current_Scope)
9015 or else not Has_Completion (Current_Scope)))
9016 or else Ekind (Current_Scope) = E_Void
9017 then
9018 declare
9019 Freeze_Nodes : List_Id := No_List;
9020 Pos : Int := Scope_Stack.Last;
9022 begin
9023 if Present (Desig_Typ) then
9024 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
9025 end if;
9027 if Present (Typ) then
9028 Freeze_And_Append (Typ, N, Freeze_Nodes);
9029 end if;
9031 if Present (Nam) then
9032 Freeze_And_Append (Nam, N, Freeze_Nodes);
9033 end if;
9035 -- The current scope may be that of a constrained component of
9036 -- an enclosing record declaration, or a block of an enclosing
9037 -- declare expression in Ada 2022, or of a loop of an enclosing
9038 -- quantified expression or aggregate with an iterated component
9039 -- in Ada 2022, which is above the current scope in the scope
9040 -- stack. Indeed in the context of a quantified expression or
9041 -- an aggregate with an iterated component, an internal scope is
9042 -- created and pushed above the current scope in order to emulate
9043 -- the loop-like behavior of the construct.
9044 -- If the expression is within a top-level pragma, as for a pre-
9045 -- condition on a library-level subprogram, nothing to do.
9047 if not Is_Compilation_Unit (Current_Scope)
9048 and then (Is_Record_Type (Scope (Current_Scope))
9049 or else (Ekind (Current_Scope) in E_Block | E_Loop
9050 and then Is_Internal (Current_Scope)))
9051 then
9052 Pos := Pos - 1;
9053 end if;
9055 if Is_Non_Empty_List (Freeze_Nodes) then
9057 -- When the current scope is transient, insert the freeze nodes
9058 -- prior to the expression that produced them. Transient scopes
9059 -- may create additional declarations when finalizing objects
9060 -- or managing the secondary stack. Inserting the freeze nodes
9061 -- of those constructs prior to the scope would result in a
9062 -- freeze-before-declaration, therefore the freeze node must
9063 -- remain interleaved with their constructs.
9065 if Scope_Is_Transient then
9066 Insert_Actions (N, Freeze_Nodes);
9068 elsif No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
9069 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
9070 Freeze_Nodes;
9071 else
9072 Append_List (Freeze_Nodes,
9073 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
9074 end if;
9075 end if;
9076 end;
9078 return;
9079 end if;
9081 -- Now we have the right place to do the freezing. First, a special
9082 -- adjustment, if we are in spec-expression analysis mode, these freeze
9083 -- actions must not be thrown away (normally all inserted actions are
9084 -- thrown away in this mode). However, the freeze actions are from
9085 -- static expressions and one of the important reasons we are doing this
9086 -- special analysis is to get these freeze actions. Therefore we turn
9087 -- off the In_Spec_Expression mode to propagate these freeze actions.
9088 -- This also means they get properly analyzed and expanded.
9090 In_Spec_Expression := False;
9092 -- Freeze the subtype mark before a qualified expression on an
9093 -- allocator as per AARM 13.14(4.a). This is needed in particular to
9094 -- generate predicate functions.
9096 if Present (Allocator_Typ) then
9097 Freeze_Before (P, Allocator_Typ);
9098 end if;
9100 -- Freeze the designated type of an allocator (RM 13.14(13))
9102 if Present (Desig_Typ) then
9103 Freeze_Before (P, Desig_Typ);
9104 end if;
9106 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
9107 -- the enumeration representation clause exception in the loop above.
9109 if Present (Typ) then
9110 Freeze_Before (P, Typ);
9111 end if;
9113 -- Freeze name if one is present (RM 13.14(11))
9115 if Present (Nam) then
9116 Freeze_Before (P, Nam);
9117 end if;
9119 -- Restore In_Spec_Expression flag
9121 In_Spec_Expression := In_Spec_Exp;
9122 end Freeze_Expression;
9124 -----------------------
9125 -- Freeze_Expr_Types --
9126 -----------------------
9128 procedure Freeze_Expr_Types
9129 (Def_Id : Entity_Id;
9130 Typ : Entity_Id;
9131 Expr : Node_Id;
9132 N : Node_Id)
9134 function Cloned_Expression return Node_Id;
9135 -- Build a duplicate of the expression of the return statement that has
9136 -- no defining entities shared with the original expression.
9138 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
9139 -- Freeze all types referenced in the subtree rooted at Node
9141 -----------------------
9142 -- Cloned_Expression --
9143 -----------------------
9145 function Cloned_Expression return Node_Id is
9146 function Clone_Id (Node : Node_Id) return Traverse_Result;
9147 -- Tree traversal routine that clones the defining identifier of
9148 -- iterator and loop parameter specification nodes.
9150 --------------
9151 -- Clone_Id --
9152 --------------
9154 function Clone_Id (Node : Node_Id) return Traverse_Result is
9155 begin
9156 if Nkind (Node) in
9157 N_Iterator_Specification | N_Loop_Parameter_Specification
9158 then
9159 Set_Defining_Identifier
9160 (Node, New_Copy (Defining_Identifier (Node)));
9161 end if;
9163 return OK;
9164 end Clone_Id;
9166 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
9168 -- Local variable
9170 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
9172 -- Start of processing for Cloned_Expression
9174 begin
9175 -- We must duplicate the expression with semantic information to
9176 -- inherit the decoration of global entities in generic instances.
9177 -- Set the parent of the new node to be the parent of the original
9178 -- to get the proper context, which is needed for complete error
9179 -- reporting and for semantic analysis.
9181 Set_Parent (Dup_Expr, Parent (Expr));
9183 -- Replace the defining identifier of iterators and loop param
9184 -- specifications by a clone to ensure that the cloned expression
9185 -- and the original expression don't have shared identifiers;
9186 -- otherwise, as part of the preanalysis of the expression, these
9187 -- shared identifiers may be left decorated with itypes which
9188 -- will not be available in the tree passed to the backend.
9190 Clone_Def_Ids (Dup_Expr);
9192 return Dup_Expr;
9193 end Cloned_Expression;
9195 ----------------------
9196 -- Freeze_Type_Refs --
9197 ----------------------
9199 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
9200 procedure Check_And_Freeze_Type (Typ : Entity_Id);
9201 -- Check that Typ is fully declared and freeze it if so
9203 ---------------------------
9204 -- Check_And_Freeze_Type --
9205 ---------------------------
9207 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
9208 begin
9209 -- Skip Itypes created by the preanalysis, and itypes whose
9210 -- scope is another type (i.e. component subtypes that depend
9211 -- on a discriminant),
9213 if Is_Itype (Typ)
9214 and then (Scope_Within_Or_Same (Scope (Typ), Def_Id)
9215 or else Is_Type (Scope (Typ)))
9216 then
9217 return;
9218 end if;
9220 -- This provides a better error message than generating primitives
9221 -- whose compilation fails much later. Refine the error message if
9222 -- possible.
9224 Check_Fully_Declared (Typ, Node);
9226 if Error_Posted (Node) then
9227 if Has_Private_Component (Typ)
9228 and then not Is_Private_Type (Typ)
9229 then
9230 Error_Msg_NE ("\type& has private component", Node, Typ);
9231 end if;
9233 else
9234 Freeze_Before (N, Typ);
9235 end if;
9236 end Check_And_Freeze_Type;
9238 -- Start of processing for Freeze_Type_Refs
9240 begin
9241 -- Check that a type referenced by an entity can be frozen
9243 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
9244 -- The entity itself may be a type, as in a membership test
9245 -- or an attribute reference. Freezing its own type would be
9246 -- incomplete if the entity is derived or an extension.
9248 if Is_Type (Entity (Node)) then
9249 Check_And_Freeze_Type (Entity (Node));
9251 else
9252 Check_And_Freeze_Type (Etype (Entity (Node)));
9253 end if;
9255 -- Check that the enclosing record type can be frozen
9257 if Ekind (Entity (Node)) in E_Component | E_Discriminant then
9258 Check_And_Freeze_Type (Scope (Entity (Node)));
9259 end if;
9261 -- Freezing an access type does not freeze the designated type, but
9262 -- freezing conversions between access to interfaces requires that
9263 -- the interface types themselves be frozen, so that dispatch table
9264 -- entities are properly created.
9266 -- Unclear whether a more general rule is needed ???
9268 elsif Nkind (Node) = N_Type_Conversion
9269 and then Is_Access_Type (Etype (Node))
9270 and then Is_Interface (Designated_Type (Etype (Node)))
9271 then
9272 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
9273 end if;
9275 -- An implicit dereference freezes the designated type. In the case
9276 -- of a dispatching call whose controlling argument is an access
9277 -- type, the dereference is not made explicit, so we must check for
9278 -- such a call and freeze the designated type.
9280 if Nkind (Node) in N_Has_Etype
9281 and then Present (Etype (Node))
9282 and then Is_Access_Type (Etype (Node))
9283 then
9284 if Nkind (Parent (Node)) = N_Function_Call
9285 and then Node = Controlling_Argument (Parent (Node))
9286 then
9287 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
9289 -- An explicit dereference freezes the designated type as well,
9290 -- even though that type is not attached to an entity in the
9291 -- expression.
9293 elsif Nkind (Parent (Node)) = N_Explicit_Dereference then
9294 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
9295 end if;
9297 -- An iterator specification freezes the iterator type, even though
9298 -- that type is not attached to an entity in the construct.
9300 elsif Nkind (Node) in N_Has_Etype
9301 and then Present (Etype (Node))
9302 and then Nkind (Parent (Node)) = N_Iterator_Specification
9303 and then Node = Name (Parent (Node))
9304 then
9305 declare
9306 Iter : constant Node_Id :=
9307 Find_Value_Of_Aspect (Etype (Node), Aspect_Default_Iterator);
9309 begin
9310 if Present (Iter) then
9311 Check_And_Freeze_Type (Etype (Iter));
9312 end if;
9313 end;
9314 end if;
9316 -- No point in posting several errors on the same expression
9318 if Serious_Errors_Detected > 0 then
9319 return Abandon;
9320 else
9321 return OK;
9322 end if;
9323 end Freeze_Type_Refs;
9325 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
9327 -- Local variables
9329 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
9330 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
9331 Dup_Expr : constant Node_Id := Cloned_Expression;
9333 -- Start of processing for Freeze_Expr_Types
9335 begin
9336 -- Preanalyze a duplicate of the expression to have available the
9337 -- minimum decoration needed to locate referenced unfrozen types
9338 -- without adding any decoration to the function expression.
9340 -- This routine is also applied to expressions in the contract for
9341 -- the subprogram. If that happens when expanding the code for
9342 -- pre/postconditions during expansion of the subprogram body, the
9343 -- subprogram is already installed.
9345 if Def_Id /= Current_Scope then
9346 Push_Scope (Def_Id);
9347 Install_Formals (Def_Id);
9349 Preanalyze_Spec_Expression (Dup_Expr, Typ);
9350 End_Scope;
9351 else
9352 Preanalyze_Spec_Expression (Dup_Expr, Typ);
9353 end if;
9355 -- Restore certain attributes of Def_Id since the preanalysis may
9356 -- have introduced itypes to this scope, thus modifying attributes
9357 -- First_Entity and Last_Entity.
9359 Set_First_Entity (Def_Id, Saved_First_Entity);
9360 Set_Last_Entity (Def_Id, Saved_Last_Entity);
9362 if Present (Last_Entity (Def_Id)) then
9363 Set_Next_Entity (Last_Entity (Def_Id), Empty);
9364 end if;
9366 -- Freeze all types referenced in the expression
9368 Freeze_References (Dup_Expr);
9369 end Freeze_Expr_Types;
9371 -----------------------------
9372 -- Freeze_Fixed_Point_Type --
9373 -----------------------------
9375 -- Certain fixed-point types and subtypes, including implicit base types
9376 -- and declared first subtypes, have not yet set up a range. This is
9377 -- because the range cannot be set until the Small and Size values are
9378 -- known, and these are not known till the type is frozen.
9380 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
9381 -- whose bounds are unanalyzed real literals. This routine will recognize
9382 -- this case, and transform this range node into a properly typed range
9383 -- with properly analyzed and resolved values.
9385 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
9386 Rng : constant Node_Id := Scalar_Range (Typ);
9387 Lo : constant Node_Id := Low_Bound (Rng);
9388 Hi : constant Node_Id := High_Bound (Rng);
9389 Btyp : constant Entity_Id := Base_Type (Typ);
9390 Brng : constant Node_Id := Scalar_Range (Btyp);
9391 BLo : constant Node_Id := Low_Bound (Brng);
9392 BHi : constant Node_Id := High_Bound (Brng);
9393 Ftyp : constant Entity_Id := Underlying_Type (First_Subtype (Typ));
9395 Small : Ureal;
9396 Loval : Ureal;
9397 Hival : Ureal;
9398 Atype : Entity_Id;
9400 Orig_Lo : Ureal;
9401 Orig_Hi : Ureal;
9402 -- Save original bounds (for shaving tests)
9404 Actual_Size : Int;
9405 -- Actual size chosen
9407 function Fsize (Lov, Hiv : Ureal) return Int;
9408 -- Returns size of type with given bounds. Also leaves these
9409 -- bounds set as the current bounds of the Typ.
9411 function Larger (A, B : Ureal) return Boolean;
9412 -- Returns true if A > B with a margin of Typ'Small
9414 function Smaller (A, B : Ureal) return Boolean;
9415 -- Returns true if A < B with a margin of Typ'Small
9417 -----------
9418 -- Fsize --
9419 -----------
9421 function Fsize (Lov, Hiv : Ureal) return Int is
9422 begin
9423 Set_Realval (Lo, Lov);
9424 Set_Realval (Hi, Hiv);
9425 return Minimum_Size (Typ);
9426 end Fsize;
9428 ------------
9429 -- Larger --
9430 ------------
9432 function Larger (A, B : Ureal) return Boolean is
9433 begin
9434 return A > B and then A - Small_Value (Typ) > B;
9435 end Larger;
9437 -------------
9438 -- Smaller --
9439 -------------
9441 function Smaller (A, B : Ureal) return Boolean is
9442 begin
9443 return A < B and then A + Small_Value (Typ) < B;
9444 end Smaller;
9446 -- Start of processing for Freeze_Fixed_Point_Type
9448 begin
9449 -- The type, or its first subtype if we are freezing the anonymous
9450 -- base, may have a delayed Small aspect. It must be analyzed now,
9451 -- so that all characteristics of the type (size, bounds) can be
9452 -- computed and validated in the call to Minimum_Size that follows.
9454 if Has_Delayed_Aspects (Ftyp) then
9455 Analyze_Aspects_At_Freeze_Point (Ftyp);
9456 Set_Has_Delayed_Aspects (Ftyp, False);
9457 end if;
9459 if May_Inherit_Delayed_Rep_Aspects (Ftyp) then
9460 Inherit_Delayed_Rep_Aspects (Ftyp);
9461 Set_May_Inherit_Delayed_Rep_Aspects (Ftyp, False);
9462 end if;
9464 -- Inherit the Small value from the first subtype in any case
9466 if Typ /= Ftyp then
9467 Set_Small_Value (Typ, Small_Value (Ftyp));
9468 end if;
9470 -- If Esize of a subtype has not previously been set, set it now
9472 if not Known_Esize (Typ) then
9473 Atype := Ancestor_Subtype (Typ);
9475 if Present (Atype) then
9476 Set_Esize (Typ, Esize (Atype));
9477 else
9478 Copy_Esize (To => Typ, From => Btyp);
9479 end if;
9480 end if;
9482 -- Immediate return if the range is already analyzed. This means that
9483 -- the range is already set, and does not need to be computed by this
9484 -- routine.
9486 if Analyzed (Rng) then
9487 return;
9488 end if;
9490 -- Immediate return if either of the bounds raises Constraint_Error
9492 if Raises_Constraint_Error (Lo)
9493 or else Raises_Constraint_Error (Hi)
9494 then
9495 return;
9496 end if;
9498 Small := Small_Value (Typ);
9499 Loval := Realval (Lo);
9500 Hival := Realval (Hi);
9502 Orig_Lo := Loval;
9503 Orig_Hi := Hival;
9505 -- Ordinary fixed-point case
9507 if Is_Ordinary_Fixed_Point_Type (Typ) then
9509 -- For the ordinary fixed-point case, we are allowed to fudge the
9510 -- end-points up or down by small. Generally we prefer to fudge up,
9511 -- i.e. widen the bounds for non-model numbers so that the end points
9512 -- are included. However there are cases in which this cannot be
9513 -- done, and indeed cases in which we may need to narrow the bounds.
9514 -- The following circuit makes the decision.
9516 -- Note: our terminology here is that Incl_EP means that the bounds
9517 -- are widened by Small if necessary to include the end points, and
9518 -- Excl_EP means that the bounds are narrowed by Small to exclude the
9519 -- end-points if this reduces the size.
9521 -- Note that in the Incl case, all we care about is including the
9522 -- end-points. In the Excl case, we want to narrow the bounds as
9523 -- much as permitted by the RM, to give the smallest possible size.
9525 Fudge : declare
9526 Loval_Incl_EP : Ureal;
9527 Hival_Incl_EP : Ureal;
9529 Loval_Excl_EP : Ureal;
9530 Hival_Excl_EP : Ureal;
9532 Size_Incl_EP : Int;
9533 Size_Excl_EP : Int;
9535 Model_Num : Ureal;
9536 Actual_Lo : Ureal;
9537 Actual_Hi : Ureal;
9539 begin
9540 -- First step. Base types are required to be symmetrical. Right
9541 -- now, the base type range is a copy of the first subtype range.
9542 -- This will be corrected before we are done, but right away we
9543 -- need to deal with the case where both bounds are non-negative.
9544 -- In this case, we set the low bound to the negative of the high
9545 -- bound, to make sure that the size is computed to include the
9546 -- required sign. Note that we do not need to worry about the
9547 -- case of both bounds negative, because the sign will be dealt
9548 -- with anyway. Furthermore we can't just go making such a bound
9549 -- symmetrical, since in a twos-complement system, there is an
9550 -- extra negative value which could not be accommodated on the
9551 -- positive side.
9553 if Typ = Btyp
9554 and then not UR_Is_Negative (Loval)
9555 and then Hival > Loval
9556 then
9557 Loval := -Hival;
9558 Set_Realval (Lo, Loval);
9559 end if;
9561 -- Compute the fudged bounds. If the bound is a model number, (or
9562 -- greater if given low bound, smaller if high bound) then we do
9563 -- nothing to include it, but we are allowed to backoff to the
9564 -- next adjacent model number when we exclude it. If it is not a
9565 -- model number then we straddle the two values with the model
9566 -- numbers on either side.
9568 Model_Num := UR_Trunc (Loval / Small) * Small;
9570 if UR_Ge (Loval, Model_Num) then
9571 Loval_Incl_EP := Model_Num;
9572 else
9573 Loval_Incl_EP := Model_Num - Small;
9574 end if;
9576 -- The low value excluding the end point is Small greater, but
9577 -- we do not do this exclusion if the low value is positive,
9578 -- since it can't help the size and could actually hurt by
9579 -- crossing the high bound.
9581 if UR_Is_Negative (Loval_Incl_EP) then
9582 Loval_Excl_EP := Loval_Incl_EP + Small;
9584 -- If the value went from negative to zero, then we have the
9585 -- case where Loval_Incl_EP is the model number just below
9586 -- zero, so we want to stick to the negative value for the
9587 -- base type to maintain the condition that the size will
9588 -- include signed values.
9590 if Typ = Btyp
9591 and then UR_Is_Zero (Loval_Excl_EP)
9592 then
9593 Loval_Excl_EP := Loval_Incl_EP;
9594 end if;
9596 else
9597 Loval_Excl_EP := Loval_Incl_EP;
9598 end if;
9600 -- Similar processing for upper bound and high value
9602 Model_Num := UR_Trunc (Hival / Small) * Small;
9604 if UR_Le (Hival, Model_Num) then
9605 Hival_Incl_EP := Model_Num;
9606 else
9607 Hival_Incl_EP := Model_Num + Small;
9608 end if;
9610 if UR_Is_Positive (Hival_Incl_EP) then
9611 Hival_Excl_EP := Hival_Incl_EP - Small;
9612 else
9613 Hival_Excl_EP := Hival_Incl_EP;
9614 end if;
9616 -- One further adjustment is needed. In the case of subtypes, we
9617 -- cannot go outside the range of the base type, or we get
9618 -- peculiarities, and the base type range is already set. This
9619 -- only applies to the Incl values, since clearly the Excl values
9620 -- are already as restricted as they are allowed to be.
9622 if Typ /= Btyp then
9623 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
9624 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
9625 end if;
9627 -- Get size including and excluding end points
9629 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
9630 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
9632 -- No need to exclude end-points if it does not reduce size
9634 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
9635 Loval_Excl_EP := Loval_Incl_EP;
9636 end if;
9638 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
9639 Hival_Excl_EP := Hival_Incl_EP;
9640 end if;
9642 -- Now we set the actual size to be used. We want to use the
9643 -- bounds fudged up to include the end-points but only if this
9644 -- can be done without violating a specifically given size
9645 -- size clause or causing an unacceptable increase in size.
9647 -- Case of size clause given
9649 if Has_Size_Clause (Typ) then
9651 -- Use the inclusive size only if it is consistent with
9652 -- the explicitly specified size.
9654 if Size_Incl_EP <= RM_Size (Typ) then
9655 Actual_Lo := Loval_Incl_EP;
9656 Actual_Hi := Hival_Incl_EP;
9657 Actual_Size := Size_Incl_EP;
9659 -- If the inclusive size is too large, we try excluding
9660 -- the end-points (will be caught later if does not work).
9662 else
9663 Actual_Lo := Loval_Excl_EP;
9664 Actual_Hi := Hival_Excl_EP;
9665 Actual_Size := Size_Excl_EP;
9666 end if;
9668 -- Case of size clause not given
9670 else
9671 -- If we have a base type whose corresponding first subtype
9672 -- has an explicit size that is large enough to include our
9673 -- end-points, then do so. There is no point in working hard
9674 -- to get a base type whose size is smaller than the specified
9675 -- size of the first subtype.
9677 if Has_Size_Clause (Ftyp)
9678 and then Size_Incl_EP <= Esize (Ftyp)
9679 then
9680 Actual_Size := Size_Incl_EP;
9681 Actual_Lo := Loval_Incl_EP;
9682 Actual_Hi := Hival_Incl_EP;
9684 -- If excluding the end-points makes the size smaller and
9685 -- results in a size of 8,16,32,64, then we take the smaller
9686 -- size. For the 64 case, this is compulsory. For the other
9687 -- cases, it seems reasonable. We like to include end points
9688 -- if we can, but not at the expense of moving to the next
9689 -- natural boundary of size.
9691 elsif Size_Incl_EP /= Size_Excl_EP
9692 and then Addressable (Size_Excl_EP)
9693 then
9694 Actual_Size := Size_Excl_EP;
9695 Actual_Lo := Loval_Excl_EP;
9696 Actual_Hi := Hival_Excl_EP;
9698 -- Otherwise we can definitely include the end points
9700 else
9701 Actual_Size := Size_Incl_EP;
9702 Actual_Lo := Loval_Incl_EP;
9703 Actual_Hi := Hival_Incl_EP;
9704 end if;
9706 -- One pathological case: normally we never fudge a low bound
9707 -- down, since it would seem to increase the size (if it has
9708 -- any effect), but for ranges containing single value, or no
9709 -- values, the high bound can be small too large. Consider:
9711 -- type t is delta 2.0**(-14)
9712 -- range 131072.0 .. 0;
9714 -- That lower bound is *just* outside the range of 32 bits, and
9715 -- does need fudging down in this case. Note that the bounds
9716 -- will always have crossed here, since the high bound will be
9717 -- fudged down if necessary, as in the case of:
9719 -- type t is delta 2.0**(-14)
9720 -- range 131072.0 .. 131072.0;
9722 -- So we detect the situation by looking for crossed bounds,
9723 -- and if the bounds are crossed, and the low bound is greater
9724 -- than zero, we will always back it off by small, since this
9725 -- is completely harmless.
9727 if Actual_Lo > Actual_Hi then
9728 if UR_Is_Positive (Actual_Lo) then
9729 Actual_Lo := Loval_Incl_EP - Small;
9730 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
9732 -- And of course, we need to do exactly the same parallel
9733 -- fudge for flat ranges in the negative region.
9735 elsif UR_Is_Negative (Actual_Hi) then
9736 Actual_Hi := Hival_Incl_EP + Small;
9737 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
9738 end if;
9739 end if;
9740 end if;
9742 Set_Realval (Lo, Actual_Lo);
9743 Set_Realval (Hi, Actual_Hi);
9744 end Fudge;
9746 -- Enforce some limitations for ordinary fixed-point types. They come
9747 -- from an exact algorithm used to implement Text_IO.Fixed_IO and the
9748 -- Fore, Image and Value attributes. The requirement on the Small is
9749 -- to lie in the range 2**(-(Siz - 1)) .. 2**(Siz - 1) for a type of
9750 -- Siz bits (Siz=32,64,128) and the requirement on the bounds is to
9751 -- be smaller in magnitude than 10.0**N * 2**(Siz - 1), where N is
9752 -- given by the formula N = floor ((Siz - 1) * log 2 / log 10).
9754 -- If the bounds of a 32-bit type are too large, force 64-bit type
9756 if Actual_Size <= 32
9757 and then Small <= Ureal_2_31
9758 and then (Smaller (Expr_Value_R (Lo), Ureal_M_2_10_18)
9759 or else Larger (Expr_Value_R (Hi), Ureal_2_10_18))
9760 then
9761 Actual_Size := 33;
9762 end if;
9764 -- If the bounds of a 64-bit type are too large, force 128-bit type
9766 if System_Max_Integer_Size = 128
9767 and then Actual_Size <= 64
9768 and then Small <= Ureal_2_63
9769 and then (Smaller (Expr_Value_R (Lo), Ureal_M_9_10_36)
9770 or else Larger (Expr_Value_R (Hi), Ureal_9_10_36))
9771 then
9772 Actual_Size := 65;
9773 end if;
9775 -- Give error messages for first subtypes and not base types, as the
9776 -- bounds of base types are always maximum for their size, see below.
9778 if System_Max_Integer_Size < 128 and then Typ /= Btyp then
9780 -- See the 128-bit case below for the reason why we cannot test
9781 -- against the 2**(-63) .. 2**63 range. This quirk should have
9782 -- been kludged around as in the 128-bit case below, but it was
9783 -- not and we end up with a ludicrous range as a result???
9785 if Small < Ureal_2_M_80 then
9786 Error_Msg_Name_1 := Name_Small;
9787 Error_Msg_N
9788 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", Typ);
9790 elsif Small > Ureal_2_80 then
9791 Error_Msg_Name_1 := Name_Small;
9792 Error_Msg_N
9793 ("`&''%` too large, maximum allowed is 2.0'*'*80", Typ);
9794 end if;
9796 if Smaller (Expr_Value_R (Lo), Ureal_M_9_10_36) then
9797 Error_Msg_Name_1 := Name_First;
9798 Error_Msg_N
9799 ("`&''%` too small, minimum allowed is -9.0E+36", Typ);
9800 end if;
9802 if Larger (Expr_Value_R (Hi), Ureal_9_10_36) then
9803 Error_Msg_Name_1 := Name_Last;
9804 Error_Msg_N
9805 ("`&''%` too large, maximum allowed is 9.0E+36", Typ);
9806 end if;
9808 elsif System_Max_Integer_Size = 128 and then Typ /= Btyp then
9810 -- ACATS c35902d tests a delta equal to 2**(-(Max_Mantissa + 1))
9811 -- but we cannot really support anything smaller than Fine_Delta
9812 -- because of the way we implement I/O for fixed point types???
9814 if Small = Ureal_2_M_128 then
9815 null;
9817 elsif Small < Ureal_2_M_127 then
9818 Error_Msg_Name_1 := Name_Small;
9819 Error_Msg_N
9820 ("`&''%` too small, minimum allowed is 2.0'*'*(-127)", Typ);
9822 elsif Small > Ureal_2_127 then
9823 Error_Msg_Name_1 := Name_Small;
9824 Error_Msg_N
9825 ("`&''%` too large, maximum allowed is 2.0'*'*127", Typ);
9826 end if;
9828 if Actual_Size > 64
9829 and then (Norm_Num (Small) > Uint_2 ** 127
9830 or else Norm_Den (Small) > Uint_2 ** 127)
9831 and then Small /= Ureal_2_M_128
9832 then
9833 Error_Msg_Name_1 := Name_Small;
9834 Error_Msg_N
9835 ("`&''%` not the ratio of two 128-bit integers", Typ);
9836 end if;
9838 if Smaller (Expr_Value_R (Lo), Ureal_M_10_76) then
9839 Error_Msg_Name_1 := Name_First;
9840 Error_Msg_N
9841 ("`&''%` too small, minimum allowed is -1.0E+76", Typ);
9842 end if;
9844 if Larger (Expr_Value_R (Hi), Ureal_10_76) then
9845 Error_Msg_Name_1 := Name_Last;
9846 Error_Msg_N
9847 ("`&''%` too large, maximum allowed is 1.0E+76", Typ);
9848 end if;
9849 end if;
9851 -- For the decimal case, none of this fudging is required, since there
9852 -- are no end-point problems in the decimal case (the end-points are
9853 -- always included).
9855 else
9856 Actual_Size := Fsize (Loval, Hival);
9857 end if;
9859 -- At this stage, the actual size has been calculated and the proper
9860 -- required bounds are stored in the low and high bounds.
9862 if Actual_Size > System_Max_Integer_Size then
9863 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
9864 Error_Msg_Uint_2 := UI_From_Int (System_Max_Integer_Size);
9865 Error_Msg_N
9866 ("size required (^) for type& too large, maximum allowed is ^",
9867 Typ);
9868 Actual_Size := System_Max_Integer_Size;
9869 end if;
9871 -- Check size against explicit given size
9873 if Has_Size_Clause (Typ) then
9874 if Actual_Size > RM_Size (Typ) then
9875 Error_Msg_Uint_1 := RM_Size (Typ);
9876 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
9877 Error_Msg_NE
9878 ("size given (^) for type& too small, minimum allowed is ^",
9879 Size_Clause (Typ), Typ);
9881 else
9882 Actual_Size := UI_To_Int (Esize (Typ));
9883 end if;
9885 -- Increase size to next natural boundary if no size clause given
9887 else
9888 if Actual_Size <= 8 then
9889 Actual_Size := 8;
9890 elsif Actual_Size <= 16 then
9891 Actual_Size := 16;
9892 elsif Actual_Size <= 32 then
9893 Actual_Size := 32;
9894 elsif Actual_Size <= 64 then
9895 Actual_Size := 64;
9896 else
9897 Actual_Size := 128;
9898 end if;
9900 Set_Esize (Typ, UI_From_Int (Actual_Size));
9901 Adjust_Esize_For_Alignment (Typ);
9902 end if;
9904 -- If we have a base type, then expand the bounds so that they extend to
9905 -- the full width of the allocated size in bits, to avoid junk range
9906 -- checks on intermediate computations.
9908 if Typ = Btyp then
9909 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
9910 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
9911 end if;
9913 -- Final step is to reanalyze the bounds using the proper type
9914 -- and set the Corresponding_Integer_Value fields of the literals.
9916 Set_Etype (Lo, Empty);
9917 Set_Analyzed (Lo, False);
9918 Analyze (Lo);
9920 -- Resolve with universal fixed if the base type, and with the base
9921 -- type if we are freezing a subtype. Note we can't resolve the base
9922 -- type with itself, that would be a reference before definition.
9923 -- The resolution of the bounds of a subtype, if they are given by real
9924 -- literals, includes the setting of the Corresponding_Integer_Value,
9925 -- as for other literals of a fixed-point type.
9927 if Typ = Btyp then
9928 Resolve (Lo, Universal_Fixed);
9929 Set_Corresponding_Integer_Value
9930 (Lo, UR_To_Uint (Realval (Lo) / Small));
9931 else
9932 Resolve (Lo, Btyp);
9933 end if;
9935 -- Similar processing for high bound
9937 Set_Etype (Hi, Empty);
9938 Set_Analyzed (Hi, False);
9939 Analyze (Hi);
9941 if Typ = Btyp then
9942 Resolve (Hi, Universal_Fixed);
9943 Set_Corresponding_Integer_Value
9944 (Hi, UR_To_Uint (Realval (Hi) / Small));
9945 else
9946 Resolve (Hi, Btyp);
9947 end if;
9949 -- Set type of range to correspond to bounds
9951 Set_Etype (Rng, Etype (Lo));
9953 -- Set Esize to calculated size if not set already
9955 if not Known_Esize (Typ) then
9956 Set_Esize (Typ, UI_From_Int (Actual_Size));
9957 end if;
9959 -- Set RM_Size if not already set. If already set, check value
9961 declare
9962 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
9964 begin
9965 if Known_RM_Size (Typ) then
9966 if RM_Size (Typ) < Minsiz then
9967 Error_Msg_Uint_1 := RM_Size (Typ);
9968 Error_Msg_Uint_2 := Minsiz;
9969 Error_Msg_NE
9970 ("size given (^) for type& too small, minimum allowed is ^",
9971 Size_Clause (Typ), Typ);
9972 end if;
9974 else
9975 Set_RM_Size (Typ, Minsiz);
9976 end if;
9977 end;
9979 -- Check for shaving
9981 if Comes_From_Source (Typ) then
9983 -- In SPARK mode the given bounds must be strictly representable
9985 if SPARK_Mode = On then
9986 if Orig_Lo < Expr_Value_R (Lo) then
9987 Error_Msg_NE
9988 ("declared low bound of type & is outside type range",
9989 Lo, Typ);
9990 end if;
9992 if Orig_Hi > Expr_Value_R (Hi) then
9993 Error_Msg_NE
9994 ("declared high bound of type & is outside type range",
9995 Hi, Typ);
9996 end if;
9998 else
9999 if Orig_Lo < Expr_Value_R (Lo) then
10000 Error_Msg_N
10001 ("declared low bound of type & is outside type range??", Typ);
10002 Error_Msg_N
10003 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
10004 end if;
10006 if Orig_Hi > Expr_Value_R (Hi) then
10007 Error_Msg_N
10008 ("declared high bound of type & is outside type range??",
10009 Typ);
10010 Error_Msg_N
10011 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
10012 end if;
10013 end if;
10014 end if;
10015 end Freeze_Fixed_Point_Type;
10017 ------------------
10018 -- Freeze_Itype --
10019 ------------------
10021 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
10022 L : List_Id;
10024 begin
10025 Set_Has_Delayed_Freeze (T);
10026 L := Freeze_Entity (T, N);
10028 Insert_Actions (N, L);
10029 end Freeze_Itype;
10031 --------------------------
10032 -- Freeze_Static_Object --
10033 --------------------------
10035 procedure Freeze_Static_Object (E : Entity_Id) is
10037 Cannot_Be_Static : exception;
10038 -- Exception raised if the type of a static object cannot be made
10039 -- static. This happens if the type depends on non-global objects.
10041 procedure Ensure_Expression_Is_SA (N : Node_Id);
10042 -- Called to ensure that an expression used as part of a type definition
10043 -- is statically allocatable, which means that the expression type is
10044 -- statically allocatable, and the expression is either static, or a
10045 -- reference to a library level constant.
10047 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
10048 -- Called to mark a type as static, checking that it is possible
10049 -- to set the type as static. If it is not possible, then the
10050 -- exception Cannot_Be_Static is raised.
10052 -----------------------------
10053 -- Ensure_Expression_Is_SA --
10054 -----------------------------
10056 procedure Ensure_Expression_Is_SA (N : Node_Id) is
10057 Ent : Entity_Id;
10059 begin
10060 Ensure_Type_Is_SA (Etype (N));
10062 if Is_OK_Static_Expression (N) then
10063 return;
10065 elsif Nkind (N) = N_Identifier then
10066 Ent := Entity (N);
10068 if Present (Ent)
10069 and then Ekind (Ent) = E_Constant
10070 and then Is_Library_Level_Entity (Ent)
10071 then
10072 return;
10073 end if;
10074 end if;
10076 raise Cannot_Be_Static;
10077 end Ensure_Expression_Is_SA;
10079 -----------------------
10080 -- Ensure_Type_Is_SA --
10081 -----------------------
10083 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
10084 N : Node_Id;
10085 C : Entity_Id;
10087 begin
10088 -- If type is library level, we are all set
10090 if Is_Library_Level_Entity (Typ) then
10091 return;
10092 end if;
10094 -- We are also OK if the type already marked as statically allocated,
10095 -- which means we processed it before.
10097 if Is_Statically_Allocated (Typ) then
10098 return;
10099 end if;
10101 -- Mark type as statically allocated
10103 Set_Is_Statically_Allocated (Typ);
10105 -- Check that it is safe to statically allocate this type
10107 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
10108 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
10109 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
10111 elsif Is_Array_Type (Typ) then
10112 N := First_Index (Typ);
10113 while Present (N) loop
10114 Ensure_Type_Is_SA (Etype (N));
10115 Next_Index (N);
10116 end loop;
10118 Ensure_Type_Is_SA (Component_Type (Typ));
10120 elsif Is_Access_Type (Typ) then
10121 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
10123 declare
10124 F : Entity_Id;
10125 T : constant Entity_Id := Etype (Designated_Type (Typ));
10127 begin
10128 if T /= Standard_Void_Type then
10129 Ensure_Type_Is_SA (T);
10130 end if;
10132 F := First_Formal (Designated_Type (Typ));
10133 while Present (F) loop
10134 Ensure_Type_Is_SA (Etype (F));
10135 Next_Formal (F);
10136 end loop;
10137 end;
10139 else
10140 Ensure_Type_Is_SA (Designated_Type (Typ));
10141 end if;
10143 elsif Is_Record_Type (Typ) then
10144 C := First_Entity (Typ);
10145 while Present (C) loop
10146 if Ekind (C) = E_Discriminant
10147 or else Ekind (C) = E_Component
10148 then
10149 Ensure_Type_Is_SA (Etype (C));
10151 elsif Is_Type (C) then
10152 Ensure_Type_Is_SA (C);
10153 end if;
10155 Next_Entity (C);
10156 end loop;
10158 elsif Ekind (Typ) = E_Subprogram_Type then
10159 Ensure_Type_Is_SA (Etype (Typ));
10161 C := First_Formal (Typ);
10162 while Present (C) loop
10163 Ensure_Type_Is_SA (Etype (C));
10164 Next_Formal (C);
10165 end loop;
10167 else
10168 raise Cannot_Be_Static;
10169 end if;
10170 end Ensure_Type_Is_SA;
10172 -- Start of processing for Freeze_Static_Object
10174 begin
10175 Ensure_Type_Is_SA (Etype (E));
10177 exception
10178 when Cannot_Be_Static =>
10180 -- If the object that cannot be static is imported or exported, then
10181 -- issue an error message saying that this object cannot be imported
10182 -- or exported. If it has an address clause it is an overlay in the
10183 -- current partition and the static requirement is not relevant.
10184 -- Do not issue any error message when ignoring rep clauses.
10186 if Ignore_Rep_Clauses then
10187 null;
10189 elsif Is_Imported (E) then
10190 if No (Address_Clause (E)) then
10191 Error_Msg_N
10192 ("& cannot be imported (local type is not constant)", E);
10193 end if;
10195 -- Otherwise must be exported, something is wrong if compiler
10196 -- is marking something as statically allocated which cannot be).
10198 else pragma Assert (Is_Exported (E));
10199 Error_Msg_N
10200 ("& cannot be exported (local type is not constant)", E);
10201 end if;
10202 end Freeze_Static_Object;
10204 -----------------------
10205 -- Freeze_Subprogram --
10206 -----------------------
10208 procedure Freeze_Subprogram (E : Entity_Id) is
10210 procedure Set_Profile_Convention (Subp_Id : Entity_Id);
10211 -- Set the conventions of all anonymous access-to-subprogram formals and
10212 -- result subtype of subprogram Subp_Id to the convention of Subp_Id.
10214 ----------------------------
10215 -- Set_Profile_Convention --
10216 ----------------------------
10218 procedure Set_Profile_Convention (Subp_Id : Entity_Id) is
10219 Conv : constant Convention_Id := Convention (Subp_Id);
10221 procedure Set_Type_Convention (Typ : Entity_Id);
10222 -- Set the convention of anonymous access-to-subprogram type Typ and
10223 -- its designated type to Conv.
10225 -------------------------
10226 -- Set_Type_Convention --
10227 -------------------------
10229 procedure Set_Type_Convention (Typ : Entity_Id) is
10230 begin
10231 -- Set the convention on both the anonymous access-to-subprogram
10232 -- type and the subprogram type it points to because both types
10233 -- participate in conformance-related checks.
10235 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
10236 Set_Convention (Typ, Conv);
10237 Set_Convention (Designated_Type (Typ), Conv);
10238 end if;
10239 end Set_Type_Convention;
10241 -- Local variables
10243 Formal : Entity_Id;
10245 -- Start of processing for Set_Profile_Convention
10247 begin
10248 Formal := First_Formal (Subp_Id);
10249 while Present (Formal) loop
10250 Set_Type_Convention (Etype (Formal));
10251 Next_Formal (Formal);
10252 end loop;
10254 if Ekind (Subp_Id) = E_Function then
10255 Set_Type_Convention (Etype (Subp_Id));
10256 end if;
10257 end Set_Profile_Convention;
10259 -- Local variables
10261 F : Entity_Id;
10262 Retype : Entity_Id;
10264 -- Start of processing for Freeze_Subprogram
10266 begin
10267 -- Subprogram may not have an address clause unless it is imported
10269 if Present (Address_Clause (E)) then
10270 if not Is_Imported (E) then
10271 Error_Msg_N
10272 ("address clause can only be given for imported subprogram",
10273 Name (Address_Clause (E)));
10274 end if;
10275 end if;
10277 -- Reset the Pure indication on an imported subprogram unless an
10278 -- explicit Pure_Function pragma was present or the subprogram is an
10279 -- intrinsic. We do this because otherwise it is an insidious error
10280 -- to call a non-pure function from pure unit and have calls
10281 -- mysteriously optimized away. What happens here is that the Import
10282 -- can bypass the normal check to ensure that pure units call only pure
10283 -- subprograms.
10285 -- The reason for the intrinsic exception is that in general, intrinsic
10286 -- functions (such as shifts) are pure anyway. The only exceptions are
10287 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
10288 -- in any case, so no problem arises.
10290 if Is_Imported (E)
10291 and then Is_Pure (E)
10292 and then not Has_Pragma_Pure_Function (E)
10293 and then not Is_Intrinsic_Subprogram (E)
10294 then
10295 Set_Is_Pure (E, False);
10296 end if;
10298 -- For C++ constructors check that their external name has been given
10299 -- (either in pragma CPP_Constructor or in a pragma import).
10301 if Is_Constructor (E)
10302 and then Convention (E) = Convention_CPP
10303 and then
10304 (No (Interface_Name (E))
10305 or else String_Equal
10306 (L => Strval (Interface_Name (E)),
10307 R => Strval (Get_Default_External_Name (E))))
10308 then
10309 Error_Msg_N
10310 ("'C++ constructor must have external name or link name", E);
10311 end if;
10313 -- We also reset the Pure indication on a subprogram with an Address
10314 -- parameter, because the parameter may be used as a pointer and the
10315 -- referenced data may change even if the address value does not.
10317 -- Note that if the programmer gave an explicit Pure_Function pragma,
10318 -- then we believe the programmer, and leave the subprogram Pure. We
10319 -- also suppress this check on run-time files.
10321 if Is_Pure (E)
10322 and then Is_Subprogram (E)
10323 and then not Has_Pragma_Pure_Function (E)
10324 and then not Is_Internal_Unit (Current_Sem_Unit)
10325 then
10326 Check_Function_With_Address_Parameter (E);
10327 end if;
10329 -- Ensure that all anonymous access-to-subprogram types inherit the
10330 -- convention of their related subprogram (RM 6.3.1(13.1/5)). This is
10331 -- not done for a defaulted convention Ada because those types also
10332 -- default to Ada. Convention Protected must not be propagated when
10333 -- the subprogram is an entry because this would be illegal. The only
10334 -- way to force convention Protected on these kinds of types is to
10335 -- include keyword "protected" in the access definition. Conventions
10336 -- Entry and Intrinsic are also not propagated (specified by AI12-0207).
10338 if Convention (E) /= Convention_Ada
10339 and then Convention (E) /= Convention_Protected
10340 and then Convention (E) /= Convention_Entry
10341 and then Convention (E) /= Convention_Intrinsic
10342 then
10343 Set_Profile_Convention (E);
10344 end if;
10346 -- For non-foreign convention subprograms, this is where we create
10347 -- the extra formals (for accessibility level and constrained bit
10348 -- information). We delay this till the freeze point precisely so
10349 -- that we know the convention.
10351 if not Has_Foreign_Convention (E) then
10353 -- Extra formals of dispatching operations are added later by
10354 -- Expand_Freeze_Record_Type, which also adds extra formals to
10355 -- internal entities built to handle interface types.
10357 if not Is_Dispatching_Operation (E) then
10358 Create_Extra_Formals (E);
10360 pragma Assert
10361 ((Ekind (E) = E_Subprogram_Type
10362 and then Extra_Formals_OK (E))
10363 or else
10364 (Is_Subprogram (E)
10365 and then Extra_Formals_OK (E)
10366 and then
10367 (No (Overridden_Operation (E))
10368 or else Extra_Formals_Match_OK (E,
10369 Ultimate_Alias (Overridden_Operation (E))))));
10370 end if;
10372 Set_Mechanisms (E);
10374 -- If this is convention Ada and a Valued_Procedure, that's odd
10376 if Ekind (E) = E_Procedure
10377 and then Is_Valued_Procedure (E)
10378 and then Convention (E) = Convention_Ada
10379 and then Warn_On_Export_Import
10380 then
10381 Error_Msg_N
10382 ("??Valued_Procedure has no effect for convention Ada", E);
10383 Set_Is_Valued_Procedure (E, False);
10384 end if;
10386 -- Case of foreign convention
10388 else
10389 Set_Mechanisms (E);
10391 -- For foreign conventions, warn about return of unconstrained array
10393 if Ekind (E) = E_Function then
10394 Retype := Underlying_Type (Etype (E));
10396 -- If no return type, probably some other error, e.g. a
10397 -- missing full declaration, so ignore.
10399 if No (Retype) then
10400 null;
10402 -- If the return type is generic, we have emitted a warning
10403 -- earlier on, and there is nothing else to check here. Specific
10404 -- instantiations may lead to erroneous behavior.
10406 elsif Is_Generic_Type (Etype (E)) then
10407 null;
10409 -- Display warning if returning unconstrained array
10411 elsif Is_Array_Type (Retype)
10412 and then not Is_Constrained (Retype)
10414 -- Check appropriate warning is enabled (should we check for
10415 -- Warnings (Off) on specific entities here, probably so???)
10417 and then Warn_On_Export_Import
10418 then
10419 Error_Msg_N
10420 ("?x?foreign convention function& should not return " &
10421 "unconstrained array", E);
10422 return;
10423 end if;
10424 end if;
10426 -- If any of the formals for an exported foreign convention
10427 -- subprogram have defaults, then emit an appropriate warning since
10428 -- this is odd (default cannot be used from non-Ada code)
10430 if Is_Exported (E) then
10431 F := First_Formal (E);
10432 while Present (F) loop
10433 if Warn_On_Export_Import
10434 and then Present (Default_Value (F))
10435 then
10436 Error_Msg_N
10437 ("?x?parameter cannot be defaulted in non-Ada call",
10438 Default_Value (F));
10439 end if;
10441 Next_Formal (F);
10442 end loop;
10443 end if;
10444 end if;
10446 -- Pragma Inline_Always is disallowed for dispatching subprograms
10447 -- because the address of such subprograms is saved in the dispatch
10448 -- table to support dispatching calls, and dispatching calls cannot
10449 -- be inlined. This is consistent with the restriction against using
10450 -- 'Access or 'Address on an Inline_Always subprogram.
10452 if Is_Dispatching_Operation (E)
10453 and then Has_Pragma_Inline_Always (E)
10454 then
10455 Error_Msg_N
10456 ("pragma Inline_Always not allowed for dispatching subprograms", E);
10457 end if;
10459 if Is_Dispatching_Operation (E)
10460 and then Present (Overridden_Operation (E))
10461 then
10462 Local_Restrict.Check_Overriding
10463 (Overrider_Op => E, Overridden_Op => Overridden_Operation (E));
10464 end if;
10466 -- Because of the implicit representation of inherited predefined
10467 -- operators in the front-end, the overriding status of the operation
10468 -- may be affected when a full view of a type is analyzed, and this is
10469 -- not captured by the analysis of the corresponding type declaration.
10470 -- Therefore the correctness of a not-overriding indicator must be
10471 -- rechecked when the subprogram is frozen.
10473 if Nkind (E) = N_Defining_Operator_Symbol
10474 and then not Error_Posted (Parent (E))
10475 then
10476 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
10477 end if;
10479 -- Check illegal subprograms of tagged types and interface types that
10480 -- have aspect/pragma First_Controlling_Parameter.
10482 if Comes_From_Source (E)
10483 and then Is_Abstract_Subprogram (E)
10484 then
10485 if Is_Dispatching_Operation (E) then
10486 if Ekind (E) = E_Function
10487 and then Is_Interface (Etype (E))
10488 and then not Is_Class_Wide_Type (Etype (E))
10489 and then Has_First_Controlling_Parameter_Aspect
10490 (Find_Dispatching_Type (E))
10491 then
10492 Error_Msg_NE
10493 ("'First_'Controlling_'Parameter disallows returning a "
10494 & "non-class-wide interface type",
10495 E, Etype (E));
10496 end if;
10498 else
10499 -- The type of the formals cannot be an interface type
10501 if Present (First_Formal (E)) then
10502 declare
10503 Formal : Entity_Id := First_Formal (E);
10504 Has_Aspect : Boolean := False;
10506 begin
10507 -- Check if some formal has the aspect
10509 while Present (Formal) loop
10510 if Is_Tagged_Type (Etype (Formal))
10511 and then
10512 Has_First_Controlling_Parameter_Aspect
10513 (Etype (Formal))
10514 then
10515 Has_Aspect := True;
10516 end if;
10518 Next_Formal (Formal);
10519 end loop;
10521 -- If the aspect is present then report the error
10523 if Has_Aspect then
10524 Formal := First_Formal (E);
10526 while Present (Formal) loop
10527 if Is_Interface (Etype (Formal))
10528 and then not Is_Class_Wide_Type (Etype (Formal))
10529 then
10530 Error_Msg_NE
10531 ("not a dispatching primitive of interface type&",
10532 E, Etype (Formal));
10533 Error_Msg_N
10534 ("\disallowed by 'First_'Controlling_'Parameter "
10535 & "aspect", E);
10536 end if;
10538 Next_Formal (Formal);
10539 end loop;
10540 end if;
10541 end;
10542 end if;
10544 if Ekind (E) = E_Function
10545 and then Is_Interface (Etype (E))
10546 and then not Is_Class_Wide_Type (Etype (E))
10547 and then Has_First_Controlling_Parameter_Aspect (Etype (E))
10548 then
10549 Error_Msg_NE
10550 ("not a dispatching primitive of interface type&",
10551 E, Etype (E));
10552 Error_Msg_N
10553 ("\disallowed by 'First_'Controlling_'Parameter "
10554 & "aspect", E);
10555 end if;
10556 end if;
10557 end if;
10558 end Freeze_Subprogram;
10560 ----------------------
10561 -- Is_Fully_Defined --
10562 ----------------------
10564 function Is_Fully_Defined (T : Entity_Id) return Boolean is
10565 begin
10566 if Ekind (T) = E_Class_Wide_Type then
10567 return Is_Fully_Defined (Etype (T));
10569 elsif Is_Array_Type (T) then
10570 return Is_Fully_Defined (Component_Type (T));
10572 elsif Is_Record_Type (T)
10573 and not Is_Private_Type (T)
10574 then
10575 -- Verify that the record type has no components with private types
10576 -- without completion.
10578 declare
10579 Comp : Entity_Id;
10581 begin
10582 Comp := First_Component (T);
10583 while Present (Comp) loop
10584 if not Is_Fully_Defined (Etype (Comp)) then
10585 return False;
10586 end if;
10588 Next_Component (Comp);
10589 end loop;
10590 return True;
10591 end;
10593 -- For the designated type of an access to subprogram, all types in
10594 -- the profile must be fully defined.
10596 elsif Ekind (T) = E_Subprogram_Type then
10597 declare
10598 F : Entity_Id;
10600 begin
10601 F := First_Formal (T);
10602 while Present (F) loop
10603 if not Is_Fully_Defined (Etype (F)) then
10604 return False;
10605 end if;
10607 Next_Formal (F);
10608 end loop;
10610 return Is_Fully_Defined (Etype (T));
10611 end;
10613 else
10614 return not Is_Private_Type (T)
10615 or else Present (Full_View (Base_Type (T)));
10616 end if;
10617 end Is_Fully_Defined;
10619 ---------------------------------
10620 -- Process_Default_Expressions --
10621 ---------------------------------
10623 procedure Process_Default_Expressions
10624 (E : Entity_Id;
10625 After : in out Node_Id)
10627 Loc : constant Source_Ptr := Sloc (E);
10628 Dbody : Node_Id;
10629 Formal : Node_Id;
10630 Dcopy : Node_Id;
10631 Dnam : Entity_Id;
10633 begin
10634 Set_Default_Expressions_Processed (E);
10636 -- A subprogram instance and its associated anonymous subprogram share
10637 -- their signature. The default expression functions are defined in the
10638 -- wrapper packages for the anonymous subprogram, and should not be
10639 -- generated again for the instance.
10641 if Is_Generic_Instance (E)
10642 and then Present (Alias (E))
10643 and then Default_Expressions_Processed (Alias (E))
10644 then
10645 return;
10646 end if;
10648 Formal := First_Formal (E);
10649 while Present (Formal) loop
10650 if Present (Default_Value (Formal)) then
10652 -- We work with a copy of the default expression because we
10653 -- do not want to disturb the original, since this would mess
10654 -- up the conformance checking.
10656 Dcopy := New_Copy_Tree (Default_Value (Formal));
10658 -- The analysis of the expression may generate insert actions,
10659 -- which of course must not be executed. We wrap those actions
10660 -- in a procedure that is not called, and later on eliminated.
10661 -- The following cases have no side effects, and are analyzed
10662 -- directly.
10664 if Nkind (Dcopy) = N_Identifier
10665 or else Nkind (Dcopy) in N_Expanded_Name
10666 | N_Integer_Literal
10667 | N_Character_Literal
10668 | N_String_Literal
10669 | N_Real_Literal
10670 or else (Nkind (Dcopy) = N_Attribute_Reference
10671 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
10672 or else Known_Null (Dcopy)
10673 then
10674 -- If there is no default function, we must still do a full
10675 -- analyze call on the default value, to ensure that all error
10676 -- checks are performed, e.g. those associated with static
10677 -- evaluation. Note: this branch will always be taken if the
10678 -- analyzer is turned off (but we still need the error checks).
10680 -- Note: the setting of parent here is to meet the requirement
10681 -- that we can only analyze the expression while attached to
10682 -- the tree. Really the requirement is that the parent chain
10683 -- be set, we don't actually need to be in the tree.
10685 Set_Parent (Dcopy, Declaration_Node (Formal));
10686 Analyze (Dcopy);
10688 -- Default expressions are resolved with their own type if the
10689 -- context is generic, to avoid anomalies with private types.
10691 if Ekind (Scope (E)) = E_Generic_Package then
10692 Resolve (Dcopy);
10693 else
10694 Resolve (Dcopy, Etype (Formal));
10695 end if;
10697 -- If that resolved expression will raise constraint error,
10698 -- then flag the default value as raising constraint error.
10699 -- This allows a proper error message on the calls.
10701 if Raises_Constraint_Error (Dcopy) then
10702 Set_Raises_Constraint_Error (Default_Value (Formal));
10703 end if;
10705 -- If the default is a parameterless call, we use the name of
10706 -- the called function directly, and there is no body to build.
10708 elsif Nkind (Dcopy) = N_Function_Call
10709 and then No (Parameter_Associations (Dcopy))
10710 then
10711 null;
10713 -- Else construct and analyze the body of a wrapper procedure
10714 -- that contains an object declaration to hold the expression.
10715 -- Given that this is done only to complete the analysis, it is
10716 -- simpler to build a procedure than a function which might
10717 -- involve secondary stack expansion.
10719 else
10720 Dnam := Make_Temporary (Loc, 'D');
10722 Dbody :=
10723 Make_Subprogram_Body (Loc,
10724 Specification =>
10725 Make_Procedure_Specification (Loc,
10726 Defining_Unit_Name => Dnam),
10728 Declarations => New_List (
10729 Make_Object_Declaration (Loc,
10730 Defining_Identifier => Make_Temporary (Loc, 'T'),
10731 Object_Definition =>
10732 New_Occurrence_Of (Etype (Formal), Loc),
10733 Expression => New_Copy_Tree (Dcopy))),
10735 Handled_Statement_Sequence =>
10736 Make_Handled_Sequence_Of_Statements (Loc,
10737 Statements => Empty_List));
10739 Set_Scope (Dnam, Scope (E));
10740 Set_Assignment_OK (First (Declarations (Dbody)));
10741 Set_Is_Eliminated (Dnam);
10742 Insert_After (After, Dbody);
10743 Analyze (Dbody);
10744 After := Dbody;
10745 end if;
10746 end if;
10748 Next_Formal (Formal);
10749 end loop;
10750 end Process_Default_Expressions;
10752 ----------------------------------------
10753 -- Set_Component_Alignment_If_Not_Set --
10754 ----------------------------------------
10756 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
10757 begin
10758 -- Ignore if not base type, subtypes don't need anything
10760 if Typ /= Base_Type (Typ) then
10761 return;
10762 end if;
10764 -- Do not override existing representation
10766 if Is_Packed (Typ) then
10767 return;
10769 elsif Has_Specified_Layout (Typ) then
10770 return;
10772 elsif Component_Alignment (Typ) /= Calign_Default then
10773 return;
10775 else
10776 Set_Component_Alignment
10777 (Typ, Scope_Stack.Table
10778 (Scope_Stack.Last).Component_Alignment_Default);
10779 end if;
10780 end Set_Component_Alignment_If_Not_Set;
10782 --------------------------
10783 -- Set_SSO_From_Default --
10784 --------------------------
10786 procedure Set_SSO_From_Default (T : Entity_Id) is
10787 Reversed : Boolean;
10789 begin
10790 -- Set default SSO for an array or record base type, except in case of
10791 -- a type extension (which always inherits the SSO of its parent type).
10793 if Is_Base_Type (T)
10794 and then (Is_Array_Type (T)
10795 or else (Is_Record_Type (T)
10796 and then not (Is_Tagged_Type (T)
10797 and then Is_Derived_Type (T))))
10798 then
10799 Reversed :=
10800 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
10801 or else
10802 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
10804 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
10806 -- For a record type, if bit order is specified explicitly,
10807 -- then do not set SSO from default if not consistent. Note that
10808 -- we do not want to look at a Bit_Order attribute definition
10809 -- for a parent: if we were to inherit Bit_Order, then both
10810 -- SSO_Set_*_By_Default flags would have been cleared already
10811 -- (by Inherit_Aspects_At_Freeze_Point).
10813 and then not
10814 (Is_Record_Type (T)
10815 and then
10816 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
10817 and then Reverse_Bit_Order (T) /= Reversed)
10818 then
10819 -- If flags cause reverse storage order, then set the result. Note
10820 -- that we would have ignored the pragma setting the non default
10821 -- storage order in any case, hence the assertion at this point.
10823 pragma Assert
10824 (not Reversed or else Support_Nondefault_SSO_On_Target);
10826 Set_Reverse_Storage_Order (T, Reversed);
10828 -- For a record type, also set reversed bit order. Note: if a bit
10829 -- order has been specified explicitly, then this is a no-op.
10831 if Is_Record_Type (T) then
10832 Set_Reverse_Bit_Order (T, Reversed);
10833 end if;
10834 end if;
10835 end if;
10836 end Set_SSO_From_Default;
10838 ------------------------
10839 -- Should_Freeze_Type --
10840 ------------------------
10842 function Should_Freeze_Type
10843 (Typ : Entity_Id;
10844 E : Entity_Id;
10845 N : Node_Id) return Boolean
10847 Decl : constant Node_Id := Original_Node (Unit_Declaration_Node (E));
10849 function Is_Dispatching_Call_Or_Tagged_Result_Or_Aggregate
10850 (N : Node_Id) return Traverse_Result;
10851 -- Return Abandon if N is a dispatching call to a subprogram
10852 -- declared in the same scope as Typ, or a tagged result that
10853 -- needs specific expansion, or an aggregate whose type is Typ.
10855 function Check_Freezing is new
10856 Traverse_Func (Is_Dispatching_Call_Or_Tagged_Result_Or_Aggregate);
10857 -- Return Abandon if the input expression requires freezing Typ
10859 function Within_Simple_Return_Statement (N : Node_Id) return Boolean;
10860 -- Determine whether N is the expression of a simple return statement,
10861 -- or the dependent expression of a conditional expression which is
10862 -- the expression of a simple return statement, including recursively.
10864 -------------------------------------------------------
10865 -- Is_Dispatching_Call_Or_Tagged_Result_Or_Aggregate --
10866 -------------------------------------------------------
10868 function Is_Dispatching_Call_Or_Tagged_Result_Or_Aggregate
10869 (N : Node_Id) return Traverse_Result
10871 begin
10872 if Nkind (N) = N_Function_Call
10873 and then Present (Controlling_Argument (N))
10874 and then Scope (Entity (Original_Node (Name (N)))) = Scope (Typ)
10875 then
10876 return Abandon;
10878 -- The expansion done in Expand_Simple_Function_Return will assign
10879 -- the tag to the result in this case.
10881 elsif Is_Conversion_Or_Reference_To_Formal (N)
10882 and then Within_Simple_Return_Statement (N)
10883 and then Etype (N) = Typ
10884 and then Is_Tagged_Type (Typ)
10885 and then not Is_Class_Wide_Type (Typ)
10886 then
10887 return Abandon;
10889 elsif Nkind (N) in N_Aggregate
10890 | N_Delta_Aggregate
10891 | N_Extension_Aggregate
10892 and then Base_Type (Etype (N)) = Base_Type (Typ)
10893 then
10894 return Abandon;
10896 else
10897 return OK;
10898 end if;
10899 end Is_Dispatching_Call_Or_Tagged_Result_Or_Aggregate;
10901 ------------------------------------
10902 -- Within_Simple_Return_Statement --
10903 ------------------------------------
10905 function Within_Simple_Return_Statement (N : Node_Id) return Boolean is
10906 Par : constant Node_Id := Parent (N);
10908 begin
10909 if Nkind (Par) = N_Simple_Return_Statement then
10910 return True;
10912 elsif Nkind (Par) = N_Case_Expression_Alternative then
10913 return Within_Simple_Return_Statement (Parent (Par));
10915 elsif Nkind (Par) = N_If_Expression
10916 and then N /= First (Expressions (Par))
10917 then
10918 return Within_Simple_Return_Statement (Par);
10920 else
10921 return False;
10922 end if;
10923 end Within_Simple_Return_Statement;
10925 -- Start of processing for Should_Freeze_Type
10927 begin
10928 return Within_Scope (Typ, Current_Scope)
10929 or else (Nkind (N) = N_Subprogram_Renaming_Declaration
10930 and then Present (Corresponding_Formal_Spec (N)))
10931 or else (Present (Decl)
10932 and then Nkind (Decl) = N_Expression_Function
10933 and then Check_Freezing (Expression (Decl)) = Abandon);
10934 end Should_Freeze_Type;
10936 ------------------
10937 -- Undelay_Type --
10938 ------------------
10940 procedure Undelay_Type (T : Entity_Id) is
10941 begin
10942 Set_Has_Delayed_Freeze (T, False);
10943 Set_Freeze_Node (T, Empty);
10945 -- Since we don't want T to have a Freeze_Node, we don't want its
10946 -- Full_View or Corresponding_Record_Type to have one either.
10948 -- ??? Fundamentally, this whole handling is unpleasant. What we really
10949 -- want is to be sure that for an Itype that's part of record R and is a
10950 -- subtype of type T, that it's frozen after the later of the freeze
10951 -- points of R and T. We have no way of doing that directly, so what we
10952 -- do is force most such Itypes to be frozen as part of freezing R via
10953 -- this procedure and only delay the ones that need to be delayed
10954 -- (mostly the designated types of access types that are defined as part
10955 -- of the record).
10957 if Is_Private_Type (T)
10958 and then Present (Full_View (T))
10959 and then Is_Itype (Full_View (T))
10960 and then Is_Record_Type (Scope (Full_View (T)))
10961 then
10962 Undelay_Type (Full_View (T));
10963 end if;
10965 if Is_Concurrent_Type (T)
10966 and then Present (Corresponding_Record_Type (T))
10967 and then Is_Itype (Corresponding_Record_Type (T))
10968 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
10969 then
10970 Undelay_Type (Corresponding_Record_Type (T));
10971 end if;
10972 end Undelay_Type;
10974 ------------------
10975 -- Warn_Overlay --
10976 ------------------
10978 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id) is
10979 Ent : constant Entity_Id := Entity (Nam);
10980 -- The object to which the address clause applies
10982 Init : Node_Id;
10983 Old : Entity_Id := Empty;
10984 Decl : Node_Id;
10986 begin
10987 -- No warning if address clause overlay warnings are off
10989 if not Address_Clause_Overlay_Warnings then
10990 return;
10991 end if;
10993 -- No warning if there is an explicit initialization
10995 Init := Original_Node (Expression (Declaration_Node (Ent)));
10997 if Present (Init) and then Comes_From_Source (Init) then
10998 return;
10999 end if;
11001 -- We only give the warning for non-imported entities of a type for
11002 -- which a non-null base init proc is defined, or for objects of access
11003 -- types with implicit null initialization, or when Normalize_Scalars
11004 -- applies and the type is scalar or a string type (the latter being
11005 -- tested for because predefined String types are initialized by inline
11006 -- code rather than by an init_proc). Note that we do not give the
11007 -- warning for Initialize_Scalars, since we suppressed initialization
11008 -- in this case. Also, do not warn if Suppress_Initialization is set
11009 -- either on the type, or on the object via pragma or aspect.
11011 if Present (Expr)
11012 and then not Is_Imported (Ent)
11013 and then not Initialization_Suppressed (Typ)
11014 and then not (Ekind (Ent) = E_Variable
11015 and then Initialization_Suppressed (Ent))
11016 and then (Has_Non_Null_Base_Init_Proc (Typ)
11017 or else Is_Access_Type (Typ)
11018 or else (Normalize_Scalars
11019 and then (Is_Scalar_Type (Typ)
11020 or else Is_String_Type (Typ))))
11021 then
11022 if Nkind (Expr) = N_Attribute_Reference
11023 and then Is_Entity_Name (Prefix (Expr))
11024 then
11025 Old := Entity (Prefix (Expr));
11027 elsif Is_Entity_Name (Expr)
11028 and then Ekind (Entity (Expr)) = E_Constant
11029 then
11030 Decl := Declaration_Node (Entity (Expr));
11032 if Nkind (Decl) = N_Object_Declaration
11033 and then Present (Expression (Decl))
11034 and then Nkind (Expression (Decl)) = N_Attribute_Reference
11035 and then Is_Entity_Name (Prefix (Expression (Decl)))
11036 then
11037 Old := Entity (Prefix (Expression (Decl)));
11039 elsif Nkind (Expr) = N_Function_Call then
11040 return;
11041 end if;
11043 -- A function call (most likely to To_Address) is probably not an
11044 -- overlay, so skip warning. Ditto if the function call was inlined
11045 -- and transformed into an entity.
11047 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
11048 return;
11049 end if;
11051 -- If a pragma Import follows, we assume that it is for the current
11052 -- target of the address clause, and skip the warning. There may be
11053 -- a source pragma or an aspect that specifies import and generates
11054 -- the corresponding pragma. These will indicate that the entity is
11055 -- imported and that is checked above so that the spurious warning
11056 -- (generated when the entity is frozen) will be suppressed. The
11057 -- pragma may be attached to the aspect, so it is not yet a list
11058 -- member.
11060 if Is_List_Member (Parent (Expr)) then
11061 Decl := Next (Parent (Expr));
11063 if Present (Decl)
11064 and then Nkind (Decl) = N_Pragma
11065 and then Pragma_Name (Decl) = Name_Import
11066 then
11067 return;
11068 end if;
11069 end if;
11071 -- Otherwise give warning message
11073 if Present (Old) then
11074 Error_Msg_Node_2 := Old;
11075 Error_Msg_N
11076 ("default initialization of & may modify &?o?",
11077 Nam);
11078 else
11079 Error_Msg_N
11080 ("default initialization of & may modify overlaid storage?o?",
11081 Nam);
11082 end if;
11084 -- Add friendly warning if initialization comes from a packed array
11085 -- component.
11087 if Is_Record_Type (Typ) then
11088 declare
11089 Comp : Entity_Id;
11091 begin
11092 Comp := First_Component (Typ);
11093 while Present (Comp) loop
11094 if Nkind (Parent (Comp)) = N_Component_Declaration
11095 and then Present (Expression (Parent (Comp)))
11096 then
11097 exit;
11098 elsif Is_Array_Type (Etype (Comp))
11099 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
11100 then
11101 Error_Msg_NE
11102 ("\packed array component& " &
11103 "will be initialized to zero?o?",
11104 Nam, Comp);
11105 exit;
11106 else
11107 Next_Component (Comp);
11108 end if;
11109 end loop;
11110 end;
11111 end if;
11113 Error_Msg_N
11114 ("\use pragma Import for & to " &
11115 "suppress initialization (RM B.1(24))?o?",
11116 Nam);
11117 end if;
11118 end Warn_Overlay;
11120 end Freeze;