* config/mips/mips.h (READONLY_DATA_SECTION_ASM_OP): Define
[official-gcc.git] / gcc / config / mips / mips.h
blob2a740684af220bc07dd78aeabbbb63e978e896f2
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by A. Lichnewsky (lich@inria.inria.fr).
5 Changed by Michael Meissner (meissner@osf.org).
6 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7 Brendan Eich (brendan@microunity.com).
9 This file is part of GNU CC.
11 GNU CC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
16 GNU CC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GNU CC; see the file COPYING. If not, write to
23 the Free Software Foundation, 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
27 /* Standard GCC variables that we reference. */
29 extern char *asm_file_name;
30 extern char call_used_regs[];
31 extern int may_call_alloca;
32 extern char **save_argv;
33 extern int target_flags;
35 /* MIPS external variables defined in mips.c. */
37 /* comparison type */
38 enum cmp_type {
39 CMP_SI, /* compare four byte integers */
40 CMP_DI, /* compare eight byte integers */
41 CMP_SF, /* compare single precision floats */
42 CMP_DF, /* compare double precision floats */
43 CMP_MAX /* max comparison type */
46 /* types of delay slot */
47 enum delay_type {
48 DELAY_NONE, /* no delay slot */
49 DELAY_LOAD, /* load from memory delay */
50 DELAY_HILO, /* move from/to hi/lo registers */
51 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
54 /* Which processor to schedule for. Since there is no difference between
55 a R2000 and R3000 in terms of the scheduler, we collapse them into
56 just an R3000. The elements of the enumeration must match exactly
57 the cpu attribute in the mips.md machine description. */
59 enum processor_type {
60 PROCESSOR_DEFAULT,
61 PROCESSOR_R3000,
62 PROCESSOR_R3900,
63 PROCESSOR_R6000,
64 PROCESSOR_R4000,
65 PROCESSOR_R4100,
66 PROCESSOR_R4300,
67 PROCESSOR_R4600,
68 PROCESSOR_R4650,
69 PROCESSOR_R5000,
70 PROCESSOR_R8000,
71 PROCESSOR_R4KC,
72 PROCESSOR_R5KC,
73 PROCESSOR_R20KC
76 /* Recast the cpu class to be the cpu attribute. */
77 #define mips_cpu_attr ((enum attr_cpu)mips_tune)
79 /* Which ABI to use. These are constants because abi64.h must check their
80 value at preprocessing time.
82 ABI_32 (original 32, or o32), ABI_N32 (n32), ABI_64 (n64) are all
83 defined by SGI. ABI_O64 is o32 extended to work on a 64 bit machine. */
85 #define ABI_32 0
86 #define ABI_N32 1
87 #define ABI_64 2
88 #define ABI_EABI 3
89 #define ABI_O64 4
90 /* MEABI is gcc's internal name for MIPS' new EABI (defined by MIPS)
91 which is not the same as the above EABI (defined by Cygnus,
92 Greenhills, and Toshiba?). MEABI is not yet complete or published,
93 but at this point it looks like N32 as far as calling conventions go,
94 but allows for either 32 or 64 bit registers.
96 Currently MIPS is calling their EABI "the" MIPS EABI, and Cygnus'
97 EABI the legacy EABI. In the end we may end up calling both ABI's
98 EABI but give them different version numbers, but for now I'm going
99 with different names. */
100 #define ABI_MEABI 5
102 /* Whether to emit abicalls code sequences or not. */
104 enum mips_abicalls_type {
105 MIPS_ABICALLS_NO,
106 MIPS_ABICALLS_YES
109 /* Recast the abicalls class to be the abicalls attribute. */
110 #define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
112 /* Which type of block move to do (whether or not the last store is
113 split out so it can fill a branch delay slot). */
115 enum block_move_type {
116 BLOCK_MOVE_NORMAL, /* generate complete block move */
117 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
118 BLOCK_MOVE_LAST /* generate just the last store */
121 extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
122 extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
123 extern const char *current_function_file; /* filename current function is in */
124 extern int num_source_filenames; /* current .file # */
125 extern int inside_function; /* != 0 if inside of a function */
126 extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
127 extern int file_in_function_warning; /* warning given about .file in func */
128 extern int sdb_label_count; /* block start/end next label # */
129 extern int sdb_begin_function_line; /* Starting Line of current function */
130 extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
131 extern int g_switch_value; /* value of the -G xx switch */
132 extern int g_switch_set; /* whether -G xx was passed. */
133 extern int sym_lineno; /* sgi next label # for each stmt */
134 extern int set_noreorder; /* # of nested .set noreorder's */
135 extern int set_nomacro; /* # of nested .set nomacro's */
136 extern int set_noat; /* # of nested .set noat's */
137 extern int set_volatile; /* # of nested .set volatile's */
138 extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
139 extern int mips_dbx_regno[]; /* Map register # to debug register # */
140 extern struct rtx_def *branch_cmp[2]; /* operands for compare */
141 extern enum cmp_type branch_type; /* what type of branch to use */
142 extern enum processor_type mips_arch; /* which cpu to codegen for */
143 extern enum processor_type mips_tune; /* which cpu to schedule for */
144 extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
145 extern int mips_isa; /* architectural level */
146 extern int mips16; /* whether generating mips16 code */
147 extern int mips16_hard_float; /* mips16 without -msoft-float */
148 extern int mips_entry; /* generate entry/exit for mips16 */
149 extern const char *mips_cpu_string; /* for -mcpu=<xxx> */
150 extern const char *mips_arch_string; /* for -march=<xxx> */
151 extern const char *mips_tune_string; /* for -mtune=<xxx> */
152 extern const char *mips_isa_string; /* for -mips{1,2,3,4} */
153 extern const char *mips_abi_string; /* for -mabi={32,n32,64} */
154 extern const char *mips_entry_string; /* for -mentry */
155 extern const char *mips_no_mips16_string;/* for -mno-mips16 */
156 extern const char *mips_explicit_type_size_string;/* for -mexplicit-type-size */
157 extern const char *mips_cache_flush_func;/* for -mflush-func= and -mno-flush-func */
158 extern int mips_split_addresses; /* perform high/lo_sum support */
159 extern int dslots_load_total; /* total # load related delay slots */
160 extern int dslots_load_filled; /* # filled load delay slots */
161 extern int dslots_jump_total; /* total # jump related delay slots */
162 extern int dslots_jump_filled; /* # filled jump delay slots */
163 extern int dslots_number_nops; /* # of nops needed by previous insn */
164 extern int num_refs[3]; /* # 1/2/3 word references */
165 extern struct rtx_def *mips_load_reg; /* register to check for load delay */
166 extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
167 extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
168 extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
169 extern int mips_string_length; /* length of strings for mips16 */
171 /* Functions to change what output section we are using. */
172 extern void sdata_section PARAMS ((void));
173 extern void sbss_section PARAMS ((void));
175 /* Stubs for half-pic support if not OSF/1 reference platform. */
177 #ifndef HALF_PIC_P
178 #define HALF_PIC_P() 0
179 #define HALF_PIC_NUMBER_PTRS 0
180 #define HALF_PIC_NUMBER_REFS 0
181 #define HALF_PIC_ENCODE(DECL)
182 #define HALF_PIC_DECLARE(NAME)
183 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it")
184 #define HALF_PIC_ADDRESS_P(X) 0
185 #define HALF_PIC_PTR(X) X
186 #define HALF_PIC_FINISH(STREAM)
187 #endif
189 /* Macros to silence warnings about numbers being signed in traditional
190 C and unsigned in ISO C when compiled on 32-bit hosts. */
192 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
193 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
194 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
197 /* Run-time compilation parameters selecting different hardware subsets. */
199 /* Macros used in the machine description to test the flags. */
201 /* Bits for real switches */
202 #define MASK_INT64 0x00000001 /* ints are 64 bits */
203 #define MASK_LONG64 0x00000002 /* longs are 64 bits */
204 #define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
205 #define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
206 #define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
207 #define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
208 #define MASK_STATS 0x00000040 /* print statistics to stderr */
209 #define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
210 #define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
211 #define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
212 #define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
213 #define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
214 #define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
215 #define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
216 #define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
217 #define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
218 #define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
219 #define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
220 #define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
221 #define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
222 #define MASK_MIPS16 0x00100000 /* Generate mips16 code */
223 #define MASK_NO_CHECK_ZERO_DIV \
224 0x00200000 /* divide by zero checking */
225 #define MASK_CHECK_RANGE_DIV \
226 0x00400000 /* divide result range checking */
227 #define MASK_UNINIT_CONST_IN_RODATA \
228 0x00800000 /* Store uninitialized
229 consts in rodata */
230 #define MASK_NO_FUSED_MADD 0x01000000 /* Don't generate floating point
231 multiply-add operations. */
233 /* Debug switches, not documented */
234 #define MASK_DEBUG 0 /* unused */
235 #define MASK_DEBUG_A 0 /* don't allow <label>($reg) addrs */
236 #define MASK_DEBUG_B 0 /* GO_IF_LEGITIMATE_ADDRESS debug */
237 #define MASK_DEBUG_C 0 /* don't expand seq, etc. */
238 #define MASK_DEBUG_D 0 /* don't do define_split's */
239 #define MASK_DEBUG_E 0 /* function_arg debug */
240 #define MASK_DEBUG_F 0 /* ??? */
241 #define MASK_DEBUG_G 0 /* don't support 64 bit arithmetic */
242 #define MASK_DEBUG_H 0 /* allow ints in FP registers */
243 #define MASK_DEBUG_I 0 /* unused */
245 /* Dummy switches used only in specs */
246 #define MASK_MIPS_TFILE 0 /* flag for mips-tfile usage */
248 /* r4000 64 bit sizes */
249 #define TARGET_INT64 (target_flags & MASK_INT64)
250 #define TARGET_LONG64 (target_flags & MASK_LONG64)
251 #define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
252 #define TARGET_64BIT (target_flags & MASK_64BIT)
254 /* Mips vs. GNU linker */
255 #define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
257 /* Mips vs. GNU assembler */
258 #define TARGET_GAS (target_flags & MASK_GAS)
259 #define TARGET_MIPS_AS (!TARGET_GAS)
261 /* Debug Modes */
262 #define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
263 #define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
264 #define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
265 #define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
266 #define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
267 #define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
268 #define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
269 #define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
270 #define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
271 #define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
273 /* Reg. Naming in .s ($21 vs. $a0) */
274 #define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
276 /* Optimize for Sdata/Sbss */
277 #define TARGET_GP_OPT (target_flags & MASK_GPOPT)
279 /* print program statistics */
280 #define TARGET_STATS (target_flags & MASK_STATS)
282 /* call memcpy instead of inline code */
283 #define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
285 /* .abicalls, etc from Pyramid V.4 */
286 #define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
288 /* OSF pic references to externs */
289 #define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
291 /* software floating point */
292 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
293 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
295 /* always call through a register */
296 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
298 /* generate embedded PIC code;
299 requires gas. */
300 #define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
302 /* for embedded systems, optimize for
303 reduced RAM space instead of for
304 fastest code. */
305 #define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
307 /* always store uninitialized const
308 variables in rodata, requires
309 TARGET_EMBEDDED_DATA. */
310 #define TARGET_UNINIT_CONST_IN_RODATA (target_flags & MASK_UNINIT_CONST_IN_RODATA)
312 /* generate big endian code. */
313 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
315 #define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
316 #define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
318 #define TARGET_MAD (target_flags & MASK_MAD)
320 #define TARGET_FUSED_MADD (! (target_flags & MASK_NO_FUSED_MADD))
322 #define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
324 #define TARGET_NO_CHECK_ZERO_DIV (target_flags & MASK_NO_CHECK_ZERO_DIV)
325 #define TARGET_CHECK_RANGE_DIV (target_flags & MASK_CHECK_RANGE_DIV)
327 /* This is true if we must enable the assembly language file switching
328 code. */
330 #define TARGET_FILE_SWITCHING \
331 (TARGET_GP_OPT && ! TARGET_GAS && ! TARGET_MIPS16)
333 /* We must disable the function end stabs when doing the file switching trick,
334 because the Lscope stabs end up in the wrong place, making it impossible
335 to debug the resulting code. */
336 #define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
338 /* Generate mips16 code */
339 #define TARGET_MIPS16 (target_flags & MASK_MIPS16)
341 /* Architecture target defines. */
342 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
343 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
344 #define TARGET_MIPS4100 (mips_arch == PROCESSOR_R4100)
345 #define TARGET_MIPS4300 (mips_arch == PROCESSOR_R4300)
346 #define TARGET_MIPS4KC (mips_arch == PROCESSOR_R4KC)
347 #define TARGET_MIPS5KC (mips_arch == PROCESSOR_R5KC)
349 /* Scheduling target defines. */
350 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
351 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
352 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
353 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
354 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
356 /* Macro to define tables used to set the flags.
357 This is a list in braces of pairs in braces,
358 each pair being { "NAME", VALUE }
359 where VALUE is the bits to set or minus the bits to clear.
360 An empty string NAME is used to identify the default VALUE. */
362 #define TARGET_SWITCHES \
364 {"no-crt0", 0, \
365 N_("No default crt0.o") }, \
366 {"int64", MASK_INT64 | MASK_LONG64, \
367 N_("Use 64-bit int type")}, \
368 {"long64", MASK_LONG64, \
369 N_("Use 64-bit long type")}, \
370 {"long32", -(MASK_LONG64 | MASK_INT64), \
371 N_("Use 32-bit long type")}, \
372 {"split-addresses", MASK_SPLIT_ADDR, \
373 N_("Optimize lui/addiu address loads")}, \
374 {"no-split-addresses", -MASK_SPLIT_ADDR, \
375 N_("Don't optimize lui/addiu address loads")}, \
376 {"mips-as", -MASK_GAS, \
377 N_("Use MIPS as")}, \
378 {"gas", MASK_GAS, \
379 N_("Use GNU as")}, \
380 {"rnames", MASK_NAME_REGS, \
381 N_("Use symbolic register names")}, \
382 {"no-rnames", -MASK_NAME_REGS, \
383 N_("Don't use symbolic register names")}, \
384 {"gpOPT", MASK_GPOPT, \
385 N_("Use GP relative sdata/sbss sections")}, \
386 {"gpopt", MASK_GPOPT, \
387 N_("Use GP relative sdata/sbss sections")}, \
388 {"no-gpOPT", -MASK_GPOPT, \
389 N_("Don't use GP relative sdata/sbss sections")}, \
390 {"no-gpopt", -MASK_GPOPT, \
391 N_("Don't use GP relative sdata/sbss sections")}, \
392 {"stats", MASK_STATS, \
393 N_("Output compiler statistics")}, \
394 {"no-stats", -MASK_STATS, \
395 N_("Don't output compiler statistics")}, \
396 {"memcpy", MASK_MEMCPY, \
397 N_("Don't optimize block moves")}, \
398 {"no-memcpy", -MASK_MEMCPY, \
399 N_("Optimize block moves")}, \
400 {"mips-tfile", MASK_MIPS_TFILE, \
401 N_("Use mips-tfile asm postpass")}, \
402 {"no-mips-tfile", -MASK_MIPS_TFILE, \
403 N_("Don't use mips-tfile asm postpass")}, \
404 {"soft-float", MASK_SOFT_FLOAT, \
405 N_("Use software floating point")}, \
406 {"hard-float", -MASK_SOFT_FLOAT, \
407 N_("Use hardware floating point")}, \
408 {"fp64", MASK_FLOAT64, \
409 N_("Use 64-bit FP registers")}, \
410 {"fp32", -MASK_FLOAT64, \
411 N_("Use 32-bit FP registers")}, \
412 {"gp64", MASK_64BIT, \
413 N_("Use 64-bit general registers")}, \
414 {"gp32", -MASK_64BIT, \
415 N_("Use 32-bit general registers")}, \
416 {"abicalls", MASK_ABICALLS, \
417 N_("Use Irix PIC")}, \
418 {"no-abicalls", -MASK_ABICALLS, \
419 N_("Don't use Irix PIC")}, \
420 {"half-pic", MASK_HALF_PIC, \
421 N_("Use OSF PIC")}, \
422 {"no-half-pic", -MASK_HALF_PIC, \
423 N_("Don't use OSF PIC")}, \
424 {"long-calls", MASK_LONG_CALLS, \
425 N_("Use indirect calls")}, \
426 {"no-long-calls", -MASK_LONG_CALLS, \
427 N_("Don't use indirect calls")}, \
428 {"embedded-pic", MASK_EMBEDDED_PIC, \
429 N_("Use embedded PIC")}, \
430 {"no-embedded-pic", -MASK_EMBEDDED_PIC, \
431 N_("Don't use embedded PIC")}, \
432 {"embedded-data", MASK_EMBEDDED_DATA, \
433 N_("Use ROM instead of RAM")}, \
434 {"no-embedded-data", -MASK_EMBEDDED_DATA, \
435 N_("Don't use ROM instead of RAM")}, \
436 {"uninit-const-in-rodata", MASK_UNINIT_CONST_IN_RODATA, \
437 N_("Put uninitialized constants in ROM (needs -membedded-data)")}, \
438 {"no-uninit-const-in-rodata", -MASK_UNINIT_CONST_IN_RODATA, \
439 N_("Don't put uninitialized constants in ROM")}, \
440 {"eb", MASK_BIG_ENDIAN, \
441 N_("Use big-endian byte order")}, \
442 {"el", -MASK_BIG_ENDIAN, \
443 N_("Use little-endian byte order")}, \
444 {"single-float", MASK_SINGLE_FLOAT, \
445 N_("Use single (32-bit) FP only")}, \
446 {"double-float", -MASK_SINGLE_FLOAT, \
447 N_("Don't use single (32-bit) FP only")}, \
448 {"mad", MASK_MAD, \
449 N_("Use multiply accumulate")}, \
450 {"no-mad", -MASK_MAD, \
451 N_("Don't use multiply accumulate")}, \
452 {"no-fused-madd", MASK_NO_FUSED_MADD, \
453 N_("Don't generate fused multiply/add instructions")}, \
454 {"fused-madd", -MASK_NO_FUSED_MADD, \
455 N_("Generate fused multiply/add instructions")}, \
456 {"fix4300", MASK_4300_MUL_FIX, \
457 N_("Work around early 4300 hardware bug")}, \
458 {"no-fix4300", -MASK_4300_MUL_FIX, \
459 N_("Don't work around early 4300 hardware bug")}, \
460 {"3900", 0, \
461 N_("Optimize for 3900")}, \
462 {"4650", 0, \
463 N_("Optimize for 4650")}, \
464 {"check-zero-division",-MASK_NO_CHECK_ZERO_DIV, \
465 N_("Trap on integer divide by zero")}, \
466 {"no-check-zero-division", MASK_NO_CHECK_ZERO_DIV, \
467 N_("Don't trap on integer divide by zero")}, \
468 {"check-range-division",MASK_CHECK_RANGE_DIV, \
469 N_("Trap on integer divide overflow")}, \
470 {"no-check-range-division",-MASK_CHECK_RANGE_DIV, \
471 N_("Don't trap on integer divide overflow")}, \
472 {"debug", MASK_DEBUG, \
473 NULL}, \
474 {"debuga", MASK_DEBUG_A, \
475 NULL}, \
476 {"debugb", MASK_DEBUG_B, \
477 NULL}, \
478 {"debugc", MASK_DEBUG_C, \
479 NULL}, \
480 {"debugd", MASK_DEBUG_D, \
481 NULL}, \
482 {"debuge", MASK_DEBUG_E, \
483 NULL}, \
484 {"debugf", MASK_DEBUG_F, \
485 NULL}, \
486 {"debugg", MASK_DEBUG_G, \
487 NULL}, \
488 {"debugh", MASK_DEBUG_H, \
489 NULL}, \
490 {"debugi", MASK_DEBUG_I, \
491 NULL}, \
492 {"", (TARGET_DEFAULT \
493 | TARGET_CPU_DEFAULT \
494 | TARGET_ENDIAN_DEFAULT), \
495 NULL}, \
498 /* Default target_flags if no switches are specified */
500 #ifndef TARGET_DEFAULT
501 #define TARGET_DEFAULT 0
502 #endif
504 #ifndef TARGET_CPU_DEFAULT
505 #define TARGET_CPU_DEFAULT 0
506 #endif
508 #ifndef TARGET_ENDIAN_DEFAULT
509 #ifndef DECSTATION
510 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
511 #else
512 #define TARGET_ENDIAN_DEFAULT 0
513 #endif
514 #endif
516 #ifndef MIPS_ISA_DEFAULT
517 #define MIPS_ISA_DEFAULT 1
518 #endif
520 #ifdef IN_LIBGCC2
521 #undef TARGET_64BIT
522 /* Make this compile time constant for libgcc2 */
523 #ifdef __mips64
524 #define TARGET_64BIT 1
525 #else
526 #define TARGET_64BIT 0
527 #endif
528 #endif /* IN_LIBGCC2 */
530 #ifndef MULTILIB_ENDIAN_DEFAULT
531 #if TARGET_ENDIAN_DEFAULT == 0
532 #define MULTILIB_ENDIAN_DEFAULT "EL"
533 #else
534 #define MULTILIB_ENDIAN_DEFAULT "EB"
535 #endif
536 #endif
538 #ifndef MULTILIB_ISA_DEFAULT
539 # if MIPS_ISA_DEFAULT == 1
540 # define MULTILIB_ISA_DEFAULT "mips1"
541 # else
542 # if MIPS_ISA_DEFAULT == 2
543 # define MULTILIB_ISA_DEFAULT "mips2"
544 # else
545 # if MIPS_ISA_DEFAULT == 3
546 # define MULTILIB_ISA_DEFAULT "mips3"
547 # else
548 # if MIPS_ISA_DEFAULT == 4
549 # define MULTILIB_ISA_DEFAULT "mips4"
550 # else
551 # if MIPS_ISA_DEFAULT == 32
552 # define MULTILIB_ISA_DEFAULT "mips32"
553 # else
554 # if MIPS_ISA_DEFAULT == 64
555 # define MULTILIB_ISA_DEFAULT "mips64"
556 # else
557 # define MULTILIB_ISA_DEFAULT "mips1"
558 # endif
559 # endif
560 # endif
561 # endif
562 # endif
563 # endif
564 #endif
566 #ifndef MULTILIB_DEFAULTS
567 #define MULTILIB_DEFAULTS { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT }
568 #endif
570 /* We must pass -EL to the linker by default for little endian embedded
571 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
572 linker will default to using big-endian output files. The OUTPUT_FORMAT
573 line must be in the linker script, otherwise -EB/-EL will not work. */
575 #ifndef ENDIAN_SPEC
576 #if TARGET_ENDIAN_DEFAULT == 0
577 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
578 #else
579 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
580 #endif
581 #endif
583 #define TARGET_OPTIONS \
585 SUBTARGET_TARGET_OPTIONS \
586 { "cpu=", &mips_cpu_string, \
587 N_("Specify CPU for scheduling purposes")}, \
588 { "tune=", &mips_tune_string, \
589 N_("Specify CPU for scheduling purposes")}, \
590 { "arch=", &mips_arch_string, \
591 N_("Specify CPU for code generation purposes")}, \
592 { "ips", &mips_isa_string, \
593 N_("Specify a Standard MIPS ISA")}, \
594 { "entry", &mips_entry_string, \
595 N_("Use mips16 entry/exit psuedo ops")}, \
596 { "no-mips16", &mips_no_mips16_string, \
597 N_("Don't use MIPS16 instructions")}, \
598 { "explicit-type-size", &mips_explicit_type_size_string, \
599 NULL}, \
600 { "no-flush-func", &mips_cache_flush_func, \
601 N_("Don't call any cache flush functions")}, \
602 { "flush-func=", &mips_cache_flush_func, \
603 N_("Specify cache flush function")}, \
606 /* This is meant to be redefined in the host dependent files. */
607 #define SUBTARGET_TARGET_OPTIONS
609 #define GENERATE_BRANCHLIKELY (!TARGET_MIPS16 && ISA_HAS_BRANCHLIKELY)
611 /* Generate three-operand multiply instructions for SImode. */
612 #define GENERATE_MULT3_SI ((TARGET_MIPS3900 \
613 || mips_isa == 32 \
614 || mips_isa == 64) \
615 && !TARGET_MIPS16)
617 /* Generate three-operand multiply instructions for DImode. */
618 #define GENERATE_MULT3_DI ((TARGET_MIPS3900) \
619 && !TARGET_MIPS16)
621 /* Macros to decide whether certain features are available or not,
622 depending on the instruction set architecture level. */
624 #define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
625 #define HAVE_SQRT_P() (mips_isa != 1)
627 /* ISA has instructions for managing 64 bit fp and gp regs (eg. mips3). */
628 #define ISA_HAS_64BIT_REGS (mips_isa == 3 \
629 || mips_isa == 4 \
630 || mips_isa == 64)
632 /* ISA has branch likely instructions (eg. mips2). */
633 /* Disable branchlikely for tx39 until compare rewrite. They haven't
634 been generated up to this point. */
635 #define ISA_HAS_BRANCHLIKELY (mips_isa != 1 \
636 && ! TARGET_MIPS16)
638 /* ISA has the conditional move instructions introduced in mips4. */
639 #define ISA_HAS_CONDMOVE ((mips_isa == 4 \
640 || mips_isa == 32 \
641 || mips_isa == 64) \
642 && ! TARGET_MIPS16)
644 /* ISA has just the integer condition move instructions (movn,movz) */
645 #define ISA_HAS_INT_CONDMOVE 0
647 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
648 branch on CC, and move (both FP and non-FP) on CC. */
649 #define ISA_HAS_8CC (mips_isa == 4 \
650 || mips_isa == 32 \
651 || mips_isa == 64)
653 /* This is a catch all for the other new mips4 instructions: indexed load and
654 indexed prefetch instructions, the FP madd,msub,nmadd, and nmsub instructions,
655 and the FP recip and recip sqrt instructions */
656 #define ISA_HAS_FP4 (mips_isa == 4 \
657 && ! TARGET_MIPS16)
659 /* ISA has conditional trap instructions. */
660 #define ISA_HAS_COND_TRAP (mips_isa >= 2 \
661 && ! TARGET_MIPS16)
663 /* ISA has multiply-accumulate instructions, madd and msub. */
664 #define ISA_HAS_MADD_MSUB ((mips_isa == 32 \
665 || mips_isa == 64 \
666 ) && ! TARGET_MIPS16)
668 /* ISA has nmadd and nmsub instructions. */
669 #define ISA_HAS_NMADD_NMSUB (mips_isa == 4 \
670 && ! TARGET_MIPS16)
672 /* ISA has count leading zeroes/ones instruction (not implemented). */
673 #define ISA_HAS_CLZ_CLO ((mips_isa == 32 \
674 || mips_isa == 64 \
675 ) && ! TARGET_MIPS16)
677 /* ISA has double-word count leading zeroes/ones instruction (not
678 implemented). */
679 #define ISA_HAS_DCLZ_DCLO (mips_isa == 64 \
680 && ! TARGET_MIPS16)
682 /* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
683 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
684 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
685 target_flags, and -mgp64 sets MASK_64BIT.
687 Setting MASK_64BIT in target_flags will cause gcc to assume that
688 registers are 64 bits wide. int, long and void * will be 32 bit;
689 this may be changed with -mint64 or -mlong64.
691 The gen* programs link code that refers to MASK_64BIT. They don't
692 actually use the information in target_flags; they just refer to
693 it. */
695 /* Switch Recognition by gcc.c. Add -G xx support */
697 #undef SWITCH_TAKES_ARG
698 #define SWITCH_TAKES_ARG(CHAR) \
699 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
701 /* Sometimes certain combinations of command options do not make sense
702 on a particular target machine. You can define a macro
703 `OVERRIDE_OPTIONS' to take account of this. This macro, if
704 defined, is executed once just after all the command options have
705 been parsed.
707 On the MIPS, it is used to handle -G. We also use it to set up all
708 of the tables referenced in the other macros. */
710 #define OVERRIDE_OPTIONS override_options ()
712 /* Zero or more C statements that may conditionally modify two
713 variables `fixed_regs' and `call_used_regs' (both of type `char
714 []') after they have been initialized from the two preceding
715 macros.
717 This is necessary in case the fixed or call-clobbered registers
718 depend on target flags.
720 You need not define this macro if it has no work to do.
722 If the usage of an entire class of registers depends on the target
723 flags, you may indicate this to GCC by using this macro to modify
724 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
725 the classes which should not be used by GCC. Also define the macro
726 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
727 letter for a class that shouldn't be used.
729 (However, if this class is not included in `GENERAL_REGS' and all
730 of the insn patterns whose constraints permit this class are
731 controlled by target switches, then GCC will automatically avoid
732 using these registers when the target switches are opposed to
733 them.) */
735 #define CONDITIONAL_REGISTER_USAGE \
736 do \
738 if (!TARGET_HARD_FLOAT) \
740 int regno; \
742 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
743 fixed_regs[regno] = call_used_regs[regno] = 1; \
744 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
745 fixed_regs[regno] = call_used_regs[regno] = 1; \
747 else if (! ISA_HAS_8CC) \
749 int regno; \
751 /* We only have a single condition code register. We \
752 implement this by hiding all the condition code registers, \
753 and generating RTL that refers directly to ST_REG_FIRST. */ \
754 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
755 fixed_regs[regno] = call_used_regs[regno] = 1; \
757 /* In mips16 mode, we permit the $t temporary registers to be used \
758 for reload. We prohibit the unused $s registers, since they \
759 are caller saved, and saving them via a mips16 register would \
760 probably waste more time than just reloading the value. */ \
761 if (TARGET_MIPS16) \
763 fixed_regs[18] = call_used_regs[18] = 1; \
764 fixed_regs[19] = call_used_regs[19] = 1; \
765 fixed_regs[20] = call_used_regs[20] = 1; \
766 fixed_regs[21] = call_used_regs[21] = 1; \
767 fixed_regs[22] = call_used_regs[22] = 1; \
768 fixed_regs[23] = call_used_regs[23] = 1; \
769 fixed_regs[26] = call_used_regs[26] = 1; \
770 fixed_regs[27] = call_used_regs[27] = 1; \
771 fixed_regs[30] = call_used_regs[30] = 1; \
773 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
775 while (0)
777 /* This is meant to be redefined in the host dependent files. */
778 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
780 /* Show we can debug even without a frame pointer. */
781 #define CAN_DEBUG_WITHOUT_FP
783 /* Complain about missing specs and predefines that should be defined in each
784 of the target tm files to override the defaults. This is mostly a place-
785 holder until I can get each of the files updated [mm]. */
787 #if defined(OSF_OS) \
788 || defined(DECSTATION) \
789 || defined(SGI_TARGET) \
790 || defined(MIPS_NEWS) \
791 || defined(MIPS_SYSV) \
792 || defined(MIPS_SVR4) \
793 || defined(MIPS_BSD43)
795 #ifndef CPP_PREDEFINES
796 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
797 #endif
799 #ifndef LIB_SPEC
800 #error "Define LIB_SPEC in the appropriate tm.h file"
801 #endif
803 #ifndef STARTFILE_SPEC
804 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
805 #endif
807 #ifndef MACHINE_TYPE
808 #error "Define MACHINE_TYPE in the appropriate tm.h file"
809 #endif
810 #endif
812 /* Tell collect what flags to pass to nm. */
813 #ifndef NM_FLAGS
814 #define NM_FLAGS "-Bn"
815 #endif
818 /* Names to predefine in the preprocessor for this target machine. */
820 #ifndef CPP_PREDEFINES
821 #define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
822 -D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
823 -Asystem=unix -Asystem=bsd -Acpu=mips -Amachine=mips"
824 #endif
826 /* Assembler specs. */
828 /* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
829 than gas. */
831 #define MIPS_AS_ASM_SPEC "\
832 %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
833 %{pipe: %e-pipe is not supported} \
834 %{K} %(subtarget_mips_as_asm_spec)"
836 /* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
837 rather than gas. It may be overridden by subtargets. */
839 #ifndef SUBTARGET_MIPS_AS_ASM_SPEC
840 #define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
841 #endif
843 /* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
844 assembler. */
846 #define GAS_ASM_SPEC "%{march=*} %{mtune=*} %{mcpu=*} %{m4650} %{mmad:-m4650} %{m3900} %{v} %{mgp32} %{mgp64} %(abi_gas_asm_spec) %{mabi=32:%{!mips*:-mips1}}"
849 extern int mips_abi;
851 #ifndef MIPS_ABI_DEFAULT
852 #define MIPS_ABI_DEFAULT ABI_32
853 #endif
855 #ifndef ABI_GAS_ASM_SPEC
856 #define ABI_GAS_ASM_SPEC ""
857 #endif
859 /* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
860 GAS_ASM_SPEC as the default, depending upon the value of
861 TARGET_DEFAULT. */
863 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
864 /* GAS */
866 #define TARGET_ASM_SPEC "\
867 %{mmips-as: %(mips_as_asm_spec)} \
868 %{!mmips-as: %(gas_asm_spec)}"
870 #else /* not GAS */
872 #define TARGET_ASM_SPEC "\
873 %{!mgas: %(mips_as_asm_spec)} \
874 %{mgas: %(gas_asm_spec)}"
876 #endif /* not GAS */
878 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
879 to the assembler. It may be overridden by subtargets. */
880 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
881 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
882 %{noasmopt:-O0} \
883 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
884 #endif
886 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
887 the assembler. It may be overridden by subtargets. */
888 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
889 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
890 %{g} %{g0} %{g1} %{g2} %{g3} \
891 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
892 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
893 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
894 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3}"
895 #endif
897 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
898 overridden by subtargets. */
900 #ifndef SUBTARGET_ASM_SPEC
901 #define SUBTARGET_ASM_SPEC ""
902 #endif
904 /* ASM_SPEC is the set of arguments to pass to the assembler. */
906 #undef ASM_SPEC
907 #define ASM_SPEC "\
908 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64}\
909 %{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
910 %(subtarget_asm_optimizing_spec) \
911 %(subtarget_asm_debugging_spec) \
912 %{membedded-pic} \
913 %{mabi=32:-32}%{mabi=o32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
914 %(target_asm_spec) \
915 %(subtarget_asm_spec)"
917 /* Specify to run a post-processor, mips-tfile after the assembler
918 has run to stuff the mips debug information into the object file.
919 This is needed because the $#!%^ MIPS assembler provides no way
920 of specifying such information in the assembly file. If we are
921 cross compiling, disable mips-tfile unless the user specifies
922 -mmips-tfile. */
924 #ifndef ASM_FINAL_SPEC
925 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
926 /* GAS */
927 #define ASM_FINAL_SPEC "\
928 %{mmips-as: %{!mno-mips-tfile: \
929 \n mips-tfile %{v*: -v} \
930 %{K: -I %b.o~} \
931 %{!K: %{save-temps: -I %b.o~}} \
932 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
933 %{.s:%i} %{!.s:%g.s}}}"
935 #else
936 /* not GAS */
937 #define ASM_FINAL_SPEC "\
938 %{!mgas: %{!mno-mips-tfile: \
939 \n mips-tfile %{v*: -v} \
940 %{K: -I %b.o~} \
941 %{!K: %{save-temps: -I %b.o~}} \
942 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
943 %{.s:%i} %{!.s:%g.s}}}"
945 #endif
946 #endif /* ASM_FINAL_SPEC */
948 /* Redefinition of libraries used. Mips doesn't support normal
949 UNIX style profiling via calling _mcount. It does offer
950 profiling that samples the PC, so do what we can... */
952 #ifndef LIB_SPEC
953 #define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
954 #endif
956 /* Extra switches sometimes passed to the linker. */
957 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
958 will interpret it as a -b option. */
960 #ifndef LINK_SPEC
961 #define LINK_SPEC "\
962 %(endian_spec) \
963 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64} \
964 %{bestGnum} %{shared} %{non_shared}"
965 #endif /* LINK_SPEC defined */
968 /* Specs for the compiler proper */
970 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
971 overridden by subtargets. */
972 #ifndef SUBTARGET_CC1_SPEC
973 #define SUBTARGET_CC1_SPEC ""
974 #endif
976 /* Deal with historic options. */
977 #ifndef CC1_CPU_SPEC
978 #define CC1_CPU_SPEC "\
979 %{!mcpu*: \
980 %{m3900:-march=r3900 -mips1 -mfp32 -mgp32 \
981 %n`-m3900' is deprecated. Use `-march=r3900' instead.\n} \
982 %{m4650:-march=r4650 -mmad -msingle-float \
983 %n`-m4650' is deprecated. Use `-march=r4650' instead.\n}}"
984 #endif
986 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
987 /* Note, we will need to adjust the following if we ever find a MIPS variant
988 that has 32-bit GPRs and 64-bit FPRs as well as fix all of the reload bugs
989 that show up in this case. */
991 #ifndef CC1_SPEC
992 #define CC1_SPEC "\
993 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
994 %{mips1:-mfp32 -mgp32} %{mips2:-mfp32 -mgp32}\
995 %{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
996 %{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
997 %{mips32:-mfp32 -mgp32} \
998 %{mips64:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
999 %{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
1000 %{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
1001 %{mint64|mlong64|mlong32:-mexplicit-type-size }\
1002 %{mgp32: %{mfp64:%emay not use both -mgp32 and -mfp64} %{!mfp32: -mfp32}} \
1003 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1004 %{pic-none: -mno-half-pic} \
1005 %{pic-lib: -mhalf-pic} \
1006 %{pic-extern: -mhalf-pic} \
1007 %{pic-calls: -mhalf-pic} \
1008 %{save-temps: } \
1009 %(subtarget_cc1_spec) \
1010 %(cc1_cpu_spec)"
1011 #endif
1013 /* Preprocessor specs. */
1015 /* Rules for SIZE_TYPE and PTRDIFF_TYPE are:
1017 both gp64 and long64 (not the options, but the corresponding flags,
1018 so defaults came into play) are required in order to have `long' in
1019 SIZE_TYPE and PTRDIFF_TYPE.
1021 on eabi, -mips1, -mips2 and -mips32 disable gp64, whereas mips3,
1022 -mips4, -mips5 and -mips64 enable it.
1024 on other ABIs, -mips* options do not affect gp32/64, but the
1025 default ISA affects the default gp size.
1027 -mgp32 disables gp64, whereas -mgp64 enables it.
1029 on eabi, gp64 implies long64.
1031 -mlong64, and -mabi=64 are the only other ways to enable long64.
1035 #if MIPS_ISA_DEFAULT != 3 && MIPS_ISA_DEFAULT != 4 && MIPS_ISA_DEFAULT != 5 && MIPS_ISA_DEFAULT != 64
1037 /* 32-bit cases first. */
1039 #if MIPS_ABI_DEFAULT == ABI_EABI
1040 #define LONG_MAX_SPEC "\
1041 %{mlong64:-D__LONG_MAX__=9223372036854775807L}\
1042 %{!mlong64:\
1043 %{mabi=eabi|!mabi=*:\
1044 %{!mips1:%{!mips2:%{!mips32:%{!mgp32:%{!mlong32: \
1045 %{mips3|mips4|mips5|mips64|mgp64: \
1046 -D__LONG_MAX__=9223372036854775807L}}}}}}}} \
1048 #else /* ABI_DEFAULT != ABI_EABI */
1049 #define LONG_MAX_SPEC "\
1050 %{mlong64:-D__LONG_MAX__=9223372036854775807L}\
1051 %{!mlong64:\
1052 %{mabi=eabi:\
1053 %{!mips1:%{!mips2:%{!mips32:%{!mgp32:%{!mlong32: \
1054 %{mips3|mips4|mips5|mips64|mgp64: \
1055 -D__LONG_MAX__=9223372036854775807L}}}}}}}} \
1057 #endif
1059 #else
1061 /* 64-bit default ISA. */
1062 #if MIPS_ABI_DEFAULT == ABI_EABI
1063 #define LONG_MAX_SPEC "\
1064 %{mlong64:-D__LONG_MAX__=9223372036854775807L}\
1065 %{!mlong64:\
1066 %{mabi=eabi|!mabi=*:\
1067 %{!mips1:%{!mips2:%{!mips32:%{!mgp32:%{!mlong32: \
1068 -D__LONG_MAX__=9223372036854775807L}}}}}}}\
1070 #else /* ABI_DEFAULT != ABI_EABI */
1071 #define LONG_MAX_SPEC "\
1072 %{mlong64:-D__LONG_MAX__=9223372036854775807L}\
1073 %{!mlong64:\
1074 %{mabi=eabi:\
1075 %{!mips1:%{!mips2:%{!mips32:%{!mgp32:%{!mlong32: \
1076 -D__LONG_MAX__=9223372036854775807L}}}}}}}\
1078 #endif
1080 #endif
1082 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1083 overridden by subtargets. */
1084 #ifndef SUBTARGET_CPP_SPEC
1085 #define SUBTARGET_CPP_SPEC ""
1086 #endif
1088 /* Define appropriate macros for fpr register size. */
1089 #ifndef CPP_FPR_SPEC
1090 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_FLOAT64)
1091 #define CPP_FPR_SPEC "-D__mips_fpr=64"
1092 #else
1093 #define CPP_FPR_SPEC "-D__mips_fpr=32"
1094 #endif
1095 #endif
1097 /* For C++ we need to ensure that _LANGUAGE_C_PLUS_PLUS is defined independent
1098 of the source file extension. */
1099 #undef CPLUSPLUS_CPP_SPEC
1100 #define CPLUSPLUS_CPP_SPEC "\
1101 -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS \
1102 %(cpp) \
1104 /* CPP_SPEC is the set of arguments to pass to the preprocessor. */
1106 #ifndef CPP_SPEC
1107 #define CPP_SPEC "\
1108 %{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C -D__LANGUAGE_C -D_LANGUAGE_C} \
1109 %{.S|.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
1110 %{!.S: %{!.s: %{!.cc: %{!.cxx: %{!.cpp: %{!.cp: %{!.c++: %{!.C: %{!.m: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}}}}}}}}} \
1111 %(subtarget_cpp_size_spec) \
1112 %{mips3:-U__mips -D__mips=3 -D__mips64} \
1113 %{mips4:-U__mips -D__mips=4 -D__mips64} \
1114 %{mips32:-U__mips -D__mips=32} \
1115 %{mips64:-U__mips -D__mips=64 -D__mips64} \
1116 %{mgp32:-U__mips64} %{mgp64:-D__mips64} \
1117 %{mfp32:-D__mips_fpr=32} %{mfp64:-D__mips_fpr=64} %{!mfp32: %{!mfp64: %{mgp32:-D__mips_fpr=32} %{!mgp32: %(cpp_fpr_spec)}}} \
1118 %{msingle-float:%{!msoft-float:-D__mips_single_float}} \
1119 %{m4650:%{!msoft-float:-D__mips_single_float}} \
1120 %{msoft-float:-D__mips_soft_float} \
1121 %{mabi=eabi:-D__mips_eabi} \
1122 %{mips16:%{!mno-mips16:-D__mips16}} \
1123 %{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
1124 %{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}} \
1125 %(long_max_spec) \
1126 %(subtarget_cpp_spec) "
1127 #endif
1129 /* This macro defines names of additional specifications to put in the specs
1130 that can be used in various specifications like CC1_SPEC. Its definition
1131 is an initializer with a subgrouping for each command option.
1133 Each subgrouping contains a string constant, that defines the
1134 specification name, and a string constant that used by the GNU CC driver
1135 program.
1137 Do not define this macro if it does not need to do anything. */
1139 #define EXTRA_SPECS \
1140 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1141 { "cc1_cpu_spec", CC1_CPU_SPEC}, \
1142 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1143 { "long_max_spec", LONG_MAX_SPEC }, \
1144 { "cpp_fpr_spec", CPP_FPR_SPEC }, \
1145 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
1146 { "gas_asm_spec", GAS_ASM_SPEC }, \
1147 { "abi_gas_asm_spec", ABI_GAS_ASM_SPEC }, \
1148 { "target_asm_spec", TARGET_ASM_SPEC }, \
1149 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
1150 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1151 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1152 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1153 { "endian_spec", ENDIAN_SPEC }, \
1154 SUBTARGET_EXTRA_SPECS
1156 #ifndef SUBTARGET_EXTRA_SPECS
1157 #define SUBTARGET_EXTRA_SPECS
1158 #endif
1160 /* If defined, this macro is an additional prefix to try after
1161 `STANDARD_EXEC_PREFIX'. */
1163 #ifndef MD_EXEC_PREFIX
1164 #define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
1165 #endif
1167 #ifndef MD_STARTFILE_PREFIX
1168 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
1169 #endif
1172 /* Print subsidiary information on the compiler version in use. */
1174 #define MIPS_VERSION "[AL 1.1, MM 40]"
1176 #ifndef MACHINE_TYPE
1177 #define MACHINE_TYPE "BSD Mips"
1178 #endif
1180 #ifndef TARGET_VERSION_INTERNAL
1181 #define TARGET_VERSION_INTERNAL(STREAM) \
1182 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
1183 #endif
1185 #ifndef TARGET_VERSION
1186 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
1187 #endif
1190 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1191 #define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
1192 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1194 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1195 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1196 #endif
1198 /* By default, turn on GDB extensions. */
1199 #define DEFAULT_GDB_EXTENSIONS 1
1201 /* If we are passing smuggling stabs through the MIPS ECOFF object
1202 format, put a comment in front of the .stab<x> operation so
1203 that the MIPS assembler does not choke. The mips-tfile program
1204 will correctly put the stab into the object file. */
1206 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1207 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1208 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1210 /* Local compiler-generated symbols must have a prefix that the assembler
1211 understands. By default, this is $, although some targets (e.g.,
1212 NetBSD-ELF) need to override this. */
1214 #ifndef LOCAL_LABEL_PREFIX
1215 #define LOCAL_LABEL_PREFIX "$"
1216 #endif
1218 /* By default on the mips, external symbols do not have an underscore
1219 prepended, but some targets (e.g., NetBSD) require this. */
1221 #ifndef USER_LABEL_PREFIX
1222 #define USER_LABEL_PREFIX ""
1223 #endif
1225 /* Forward references to tags are allowed. */
1226 #define SDB_ALLOW_FORWARD_REFERENCES
1228 /* Unknown tags are also allowed. */
1229 #define SDB_ALLOW_UNKNOWN_REFERENCES
1231 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1232 since the length can run past this up to a continuation point. */
1233 #undef DBX_CONTIN_LENGTH
1234 #define DBX_CONTIN_LENGTH 1500
1236 /* How to renumber registers for dbx and gdb. */
1237 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
1239 /* The mapping from gcc register number to DWARF 2 CFA column number.
1240 This mapping does not allow for tracking register 0, since SGI's broken
1241 dwarf reader thinks column 0 is used for the frame address, but since
1242 register 0 is fixed this is not a problem. */
1243 #define DWARF_FRAME_REGNUM(REG) \
1244 (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
1246 /* The DWARF 2 CFA column which tracks the return address. */
1247 #define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
1249 /* Before the prologue, RA lives in r31. */
1250 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
1252 /* Describe how we implement __builtin_eh_return. */
1253 #define EH_RETURN_DATA_REGNO(N) ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1254 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1256 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1257 The default for this in 64-bit mode is 8, which causes problems with
1258 SFmode register saves. */
1259 #define DWARF_CIE_DATA_ALIGNMENT 4
1261 /* Overrides for the COFF debug format. */
1262 #define PUT_SDB_SCL(a) \
1263 do { \
1264 extern FILE *asm_out_text_file; \
1265 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
1266 } while (0)
1268 #define PUT_SDB_INT_VAL(a) \
1269 do { \
1270 extern FILE *asm_out_text_file; \
1271 fprintf (asm_out_text_file, "\t.val\t"); \
1272 fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
1273 fprintf (asm_out_text_file, ";"); \
1274 } while (0)
1276 #define PUT_SDB_VAL(a) \
1277 do { \
1278 extern FILE *asm_out_text_file; \
1279 fputs ("\t.val\t", asm_out_text_file); \
1280 output_addr_const (asm_out_text_file, (a)); \
1281 fputc (';', asm_out_text_file); \
1282 } while (0)
1284 #define PUT_SDB_DEF(a) \
1285 do { \
1286 extern FILE *asm_out_text_file; \
1287 fprintf (asm_out_text_file, "\t%s.def\t", \
1288 (TARGET_GAS) ? "" : "#"); \
1289 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1290 fputc (';', asm_out_text_file); \
1291 } while (0)
1293 #define PUT_SDB_PLAIN_DEF(a) \
1294 do { \
1295 extern FILE *asm_out_text_file; \
1296 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
1297 (TARGET_GAS) ? "" : "#", (a)); \
1298 } while (0)
1300 #define PUT_SDB_ENDEF \
1301 do { \
1302 extern FILE *asm_out_text_file; \
1303 fprintf (asm_out_text_file, "\t.endef\n"); \
1304 } while (0)
1306 #define PUT_SDB_TYPE(a) \
1307 do { \
1308 extern FILE *asm_out_text_file; \
1309 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
1310 } while (0)
1312 #define PUT_SDB_SIZE(a) \
1313 do { \
1314 extern FILE *asm_out_text_file; \
1315 fprintf (asm_out_text_file, "\t.size\t"); \
1316 fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
1317 fprintf (asm_out_text_file, ";"); \
1318 } while (0)
1320 #define PUT_SDB_DIM(a) \
1321 do { \
1322 extern FILE *asm_out_text_file; \
1323 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
1324 } while (0)
1326 #ifndef PUT_SDB_START_DIM
1327 #define PUT_SDB_START_DIM \
1328 do { \
1329 extern FILE *asm_out_text_file; \
1330 fprintf (asm_out_text_file, "\t.dim\t"); \
1331 } while (0)
1332 #endif
1334 #ifndef PUT_SDB_NEXT_DIM
1335 #define PUT_SDB_NEXT_DIM(a) \
1336 do { \
1337 extern FILE *asm_out_text_file; \
1338 fprintf (asm_out_text_file, "%d,", a); \
1339 } while (0)
1340 #endif
1342 #ifndef PUT_SDB_LAST_DIM
1343 #define PUT_SDB_LAST_DIM(a) \
1344 do { \
1345 extern FILE *asm_out_text_file; \
1346 fprintf (asm_out_text_file, "%d;", a); \
1347 } while (0)
1348 #endif
1350 #define PUT_SDB_TAG(a) \
1351 do { \
1352 extern FILE *asm_out_text_file; \
1353 fprintf (asm_out_text_file, "\t.tag\t"); \
1354 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1355 fputc (';', asm_out_text_file); \
1356 } while (0)
1358 /* For block start and end, we create labels, so that
1359 later we can figure out where the correct offset is.
1360 The normal .ent/.end serve well enough for functions,
1361 so those are just commented out. */
1363 #define PUT_SDB_BLOCK_START(LINE) \
1364 do { \
1365 extern FILE *asm_out_text_file; \
1366 fprintf (asm_out_text_file, \
1367 "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
1368 LOCAL_LABEL_PREFIX, \
1369 sdb_label_count, \
1370 (TARGET_GAS) ? "" : "#", \
1371 LOCAL_LABEL_PREFIX, \
1372 sdb_label_count, \
1373 (LINE)); \
1374 sdb_label_count++; \
1375 } while (0)
1377 #define PUT_SDB_BLOCK_END(LINE) \
1378 do { \
1379 extern FILE *asm_out_text_file; \
1380 fprintf (asm_out_text_file, \
1381 "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
1382 LOCAL_LABEL_PREFIX, \
1383 sdb_label_count, \
1384 (TARGET_GAS) ? "" : "#", \
1385 LOCAL_LABEL_PREFIX, \
1386 sdb_label_count, \
1387 (LINE)); \
1388 sdb_label_count++; \
1389 } while (0)
1391 #define PUT_SDB_FUNCTION_START(LINE)
1393 #define PUT_SDB_FUNCTION_END(LINE) \
1394 do { \
1395 extern FILE *asm_out_text_file; \
1396 ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
1397 } while (0)
1399 #define PUT_SDB_EPILOGUE_END(NAME)
1401 #define PUT_SDB_SRC_FILE(FILENAME) \
1402 do { \
1403 extern FILE *asm_out_text_file; \
1404 output_file_directive (asm_out_text_file, (FILENAME)); \
1405 } while (0)
1407 #define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
1408 sprintf ((BUFFER), ".%dfake", (NUMBER));
1410 /* Correct the offset of automatic variables and arguments. Note that
1411 the MIPS debug format wants all automatic variables and arguments
1412 to be in terms of the virtual frame pointer (stack pointer before
1413 any adjustment in the function), while the MIPS 3.0 linker wants
1414 the frame pointer to be the stack pointer after the initial
1415 adjustment. */
1417 #define DEBUGGER_AUTO_OFFSET(X) \
1418 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1419 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1420 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1422 /* Tell collect that the object format is ECOFF */
1423 #ifndef OBJECT_FORMAT_ROSE
1424 #define OBJECT_FORMAT_COFF /* Object file looks like COFF */
1425 #define EXTENDED_COFF /* ECOFF, not normal coff */
1426 #endif
1428 /* Target machine storage layout */
1430 /* Define this if most significant bit is lowest numbered
1431 in instructions that operate on numbered bit-fields.
1433 #define BITS_BIG_ENDIAN 0
1435 /* Define this if most significant byte of a word is the lowest numbered. */
1436 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1438 /* Define this if most significant word of a multiword number is the lowest. */
1439 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1441 /* Define this to set the endianness to use in libgcc2.c, which can
1442 not depend on target_flags. */
1443 #if !defined(MIPSEL) && !defined(__MIPSEL__)
1444 #define LIBGCC2_WORDS_BIG_ENDIAN 1
1445 #else
1446 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1447 #endif
1449 #define MAX_BITS_PER_WORD 64
1451 /* Width of a word, in units (bytes). */
1452 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1453 #define MIN_UNITS_PER_WORD 4
1455 /* For MIPS, width of a floating point register. */
1456 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1458 /* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1459 the next available register. */
1460 #define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1462 /* The largest size of value that can be held in floating-point registers. */
1463 #define UNITS_PER_FPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1465 /* The number of bytes in a double. */
1466 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1468 /* A C expression for the size in bits of the type `int' on the
1469 target machine. If you don't define this, the default is one
1470 word. */
1471 #define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
1473 /* Tell the preprocessor the maximum size of wchar_t. */
1474 #ifndef MAX_WCHAR_TYPE_SIZE
1475 #ifndef WCHAR_TYPE_SIZE
1476 #define MAX_WCHAR_TYPE_SIZE 64
1477 #endif
1478 #endif
1480 /* A C expression for the size in bits of the type `short' on the
1481 target machine. If you don't define this, the default is half a
1482 word. (If this would be less than one storage unit, it is
1483 rounded up to one unit.) */
1484 #define SHORT_TYPE_SIZE 16
1486 /* A C expression for the size in bits of the type `long' on the
1487 target machine. If you don't define this, the default is one
1488 word. */
1489 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1490 #define MAX_LONG_TYPE_SIZE 64
1492 /* A C expression for the size in bits of the type `long long' on the
1493 target machine. If you don't define this, the default is two
1494 words. */
1495 #define LONG_LONG_TYPE_SIZE 64
1497 /* A C expression for the size in bits of the type `float' on the
1498 target machine. If you don't define this, the default is one
1499 word. */
1500 #define FLOAT_TYPE_SIZE 32
1502 /* A C expression for the size in bits of the type `double' on the
1503 target machine. If you don't define this, the default is two
1504 words. */
1505 #define DOUBLE_TYPE_SIZE 64
1507 /* A C expression for the size in bits of the type `long double' on
1508 the target machine. If you don't define this, the default is two
1509 words. */
1510 #define LONG_DOUBLE_TYPE_SIZE 64
1512 /* Width in bits of a pointer.
1513 See also the macro `Pmode' defined below. */
1514 #ifndef POINTER_SIZE
1515 #define POINTER_SIZE (Pmode == DImode ? 64 : 32)
1516 #endif
1518 /* Allocation boundary (in *bits*) for storing pointers in memory. */
1519 #define POINTER_BOUNDARY (Pmode == DImode ? 64 : 32)
1521 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1522 #define PARM_BOUNDARY ((mips_abi == ABI_O64 || mips_abi == ABI_N32 \
1523 || mips_abi == ABI_64 \
1524 || (mips_abi == ABI_EABI && TARGET_64BIT)) ? 64 : 32)
1526 /* Allocation boundary (in *bits*) for the code of a function. */
1527 #define FUNCTION_BOUNDARY 32
1529 /* Alignment of field after `int : 0' in a structure. */
1530 #define EMPTY_FIELD_BOUNDARY 32
1532 /* Every structure's size must be a multiple of this. */
1533 /* 8 is observed right on a DECstation and on riscos 4.02. */
1534 #define STRUCTURE_SIZE_BOUNDARY 8
1536 /* There is no point aligning anything to a rounder boundary than this. */
1537 #define BIGGEST_ALIGNMENT 64
1539 /* Set this nonzero if move instructions will actually fail to work
1540 when given unaligned data. */
1541 #define STRICT_ALIGNMENT 1
1543 /* Define this if you wish to imitate the way many other C compilers
1544 handle alignment of bitfields and the structures that contain
1545 them.
1547 The behavior is that the type written for a bitfield (`int',
1548 `short', or other integer type) imposes an alignment for the
1549 entire structure, as if the structure really did contain an
1550 ordinary field of that type. In addition, the bitfield is placed
1551 within the structure so that it would fit within such a field,
1552 not crossing a boundary for it.
1554 Thus, on most machines, a bitfield whose type is written as `int'
1555 would not cross a four-byte boundary, and would force four-byte
1556 alignment for the whole structure. (The alignment used may not
1557 be four bytes; it is controlled by the other alignment
1558 parameters.)
1560 If the macro is defined, its definition should be a C expression;
1561 a nonzero value for the expression enables this behavior. */
1563 #define PCC_BITFIELD_TYPE_MATTERS 1
1565 /* If defined, a C expression to compute the alignment given to a
1566 constant that is being placed in memory. CONSTANT is the constant
1567 and ALIGN is the alignment that the object would ordinarily have.
1568 The value of this macro is used instead of that alignment to align
1569 the object.
1571 If this macro is not defined, then ALIGN is used.
1573 The typical use of this macro is to increase alignment for string
1574 constants to be word aligned so that `strcpy' calls that copy
1575 constants can be done inline. */
1577 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1578 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1579 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1581 /* If defined, a C expression to compute the alignment for a static
1582 variable. TYPE is the data type, and ALIGN is the alignment that
1583 the object would ordinarily have. The value of this macro is used
1584 instead of that alignment to align the object.
1586 If this macro is not defined, then ALIGN is used.
1588 One use of this macro is to increase alignment of medium-size
1589 data to make it all fit in fewer cache lines. Another is to
1590 cause character arrays to be word-aligned so that `strcpy' calls
1591 that copy constants to character arrays can be done inline. */
1593 #undef DATA_ALIGNMENT
1594 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1595 ((((ALIGN) < BITS_PER_WORD) \
1596 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1597 || TREE_CODE (TYPE) == UNION_TYPE \
1598 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1601 /* Force right-alignment for small varargs in 32 bit little_endian mode */
1603 #define PAD_VARARGS_DOWN (TARGET_64BIT \
1604 || mips_abi == ABI_MEABI \
1605 ? BYTES_BIG_ENDIAN : !BYTES_BIG_ENDIAN)
1607 /* Define this macro if an argument declared as `char' or `short' in a
1608 prototype should actually be passed as an `int'. In addition to
1609 avoiding errors in certain cases of mismatch, it also makes for
1610 better code on certain machines. */
1612 #define PROMOTE_PROTOTYPES 1
1614 /* Define if operations between registers always perform the operation
1615 on the full register even if a narrower mode is specified. */
1616 #define WORD_REGISTER_OPERATIONS
1618 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1619 will either zero-extend or sign-extend. The value of this macro should
1620 be the code that says which one of the two operations is implicitly
1621 done, NIL if none.
1623 When in 64 bit mode, mips_move_1word will sign extend SImode and CCmode
1624 moves. All other referces are zero extended. */
1625 #define LOAD_EXTEND_OP(MODE) \
1626 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1627 ? SIGN_EXTEND : ZERO_EXTEND)
1629 /* Define this macro if it is advisable to hold scalars in registers
1630 in a wider mode than that declared by the program. In such cases,
1631 the value is constrained to be within the bounds of the declared
1632 type, but kept valid in the wider mode. The signedness of the
1633 extension may differ from that of the type.
1635 We promote any value smaller than SImode up to SImode. We don't
1636 want to promote to DImode when in 64 bit mode, because that would
1637 prevent us from using the faster SImode multiply and divide
1638 instructions. */
1640 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1641 if (GET_MODE_CLASS (MODE) == MODE_INT \
1642 && GET_MODE_SIZE (MODE) < 4) \
1643 (MODE) = SImode;
1645 /* Define this if function arguments should also be promoted using the above
1646 procedure. */
1648 #define PROMOTE_FUNCTION_ARGS
1650 /* Likewise, if the function return value is promoted. */
1652 #define PROMOTE_FUNCTION_RETURN
1654 /* Standard register usage. */
1656 /* Number of actual hardware registers.
1657 The hardware registers are assigned numbers for the compiler
1658 from 0 to just below FIRST_PSEUDO_REGISTER.
1659 All registers that the compiler knows about must be given numbers,
1660 even those that are not normally considered general registers.
1662 On the Mips, we have 32 integer registers, 32 floating point
1663 registers, 8 condition code registers, and the special registers
1664 hi, lo, hilo, and rap. Afetr that we have 32 COP0 registers, 32
1665 COP2 registers, and 32 COp3 registers. (COP1 is the floating-point
1666 processor.) The 8 condition code registers are only used if
1667 mips_isa >= 4. The hilo register is only used in 64 bit mode. It
1668 represents a 64 bit value stored as two 32 bit values in the hi and
1669 lo registers; this is the result of the mult instruction. rap is a
1670 pointer to the stack where the return address reg ($31) was stored.
1671 This is needed for C++ exception handling. */
1673 #define FIRST_PSEUDO_REGISTER 176
1675 /* 1 for registers that have pervasive standard uses
1676 and are not available for the register allocator.
1678 On the MIPS, see conventions, page D-2 */
1680 /* Regarding coprocessor registers: without evidence to the contrary,
1681 it's best to assume that each coprocessor register has a unique
1682 use. This can be overridden, in, e.g., override_options() or
1683 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1684 for a particular target. */
1686 #define FIXED_REGISTERS \
1688 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1689 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1690 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1691 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1692 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, \
1693 /* COP0 registers */ \
1694 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1695 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1696 /* COP2 registers */ \
1697 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1698 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1699 /* COP3 registers */ \
1700 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1701 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1705 /* 1 for registers not available across function calls.
1706 These must include the FIXED_REGISTERS and also any
1707 registers that can be used without being saved.
1708 The latter must include the registers where values are returned
1709 and the register where structure-value addresses are passed.
1710 Aside from that, you can include as many other registers as you like. */
1712 #define CALL_USED_REGISTERS \
1714 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1715 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1716 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1717 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1718 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
1719 /* COP0 registers */ \
1720 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1721 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1722 /* COP2 registers */ \
1723 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1724 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1725 /* COP3 registers */ \
1726 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1727 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1730 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
1731 problem which makes CALL_USED_REGISTERS *always* include
1732 all the FIXED_REGISTERS. Until this problem has been
1733 resolved this macro can be used to overcome this situation.
1734 In particular, block_propagate() requires this list
1735 be acurate, or we can remove registers which should be live.
1736 This macro is used in regs_invalidated_by_call. */
1739 #define CALL_REALLY_USED_REGISTERS \
1740 { /* General registers. */ \
1741 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1742 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, \
1743 /* Floating-point registers. */ \
1744 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1745 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1746 /* Others. */ \
1747 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
1748 /* COP0 registers */ \
1749 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1750 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1751 /* COP2 registers */ \
1752 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1753 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1754 /* COP3 registers */ \
1755 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1756 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
1759 /* Internal macros to classify a register number as to whether it's a
1760 general purpose register, a floating point register, a
1761 multiply/divide register, or a status register. */
1763 #define GP_REG_FIRST 0
1764 #define GP_REG_LAST 31
1765 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1766 #define GP_DBX_FIRST 0
1768 #define FP_REG_FIRST 32
1769 #define FP_REG_LAST 63
1770 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1771 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1773 #define MD_REG_FIRST 64
1774 #define MD_REG_LAST 66
1775 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1777 #define ST_REG_FIRST 67
1778 #define ST_REG_LAST 74
1779 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1781 #define RAP_REG_NUM 75
1783 #define COP0_REG_FIRST 80
1784 #define COP0_REG_LAST 111
1785 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1787 #define COP2_REG_FIRST 112
1788 #define COP2_REG_LAST 143
1789 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1791 #define COP3_REG_FIRST 144
1792 #define COP3_REG_LAST 175
1793 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1794 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1795 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1797 #define AT_REGNUM (GP_REG_FIRST + 1)
1798 #define HI_REGNUM (MD_REG_FIRST + 0)
1799 #define LO_REGNUM (MD_REG_FIRST + 1)
1800 #define HILO_REGNUM (MD_REG_FIRST + 2)
1802 /* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
1803 mips_isa >= 4, it should not be used, and an arbitrary ST_REG
1804 should be used instead. */
1805 #define FPSW_REGNUM ST_REG_FIRST
1807 #define GP_REG_P(REGNO) \
1808 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1809 #define M16_REG_P(REGNO) \
1810 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1811 #define FP_REG_P(REGNO) \
1812 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1813 #define MD_REG_P(REGNO) \
1814 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1815 #define ST_REG_P(REGNO) \
1816 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1817 #define COP0_REG_P(REGNO) \
1818 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1819 #define COP2_REG_P(REGNO) \
1820 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1821 #define COP3_REG_P(REGNO) \
1822 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1823 #define ALL_COP_REG_P(REGNO) \
1824 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1826 /* Return coprocessor number from register number. */
1828 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1829 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1830 : COP3_REG_P (REGNO) ? '3' : '?')
1832 /* Return number of consecutive hard regs needed starting at reg REGNO
1833 to hold something of mode MODE.
1834 This is ordinarily the length in words of a value of mode MODE
1835 but can be less for certain modes in special long registers.
1837 On the MIPS, all general registers are one word long. Except on
1838 the R4000 with the FR bit set, the floating point uses register
1839 pairs, with the second register not being allocable. */
1841 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1843 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1844 MODE. In 32 bit mode, require that DImode and DFmode be in even
1845 registers. For DImode, this makes some of the insns easier to
1846 write, since you don't have to worry about a DImode value in
1847 registers 3 & 4, producing a result in 4 & 5.
1849 To make the code simpler HARD_REGNO_MODE_OK now just references an
1850 array built in override_options. Because machmodes.h is not yet
1851 included before this file is processed, the MODE bound can't be
1852 expressed here. */
1854 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1856 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1857 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1859 /* Value is 1 if it is a good idea to tie two pseudo registers
1860 when one has mode MODE1 and one has mode MODE2.
1861 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1862 for any hard reg, then this must be 0 for correct output. */
1863 #define MODES_TIEABLE_P(MODE1, MODE2) \
1864 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1865 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1866 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1867 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1869 /* MIPS pc is not overloaded on a register. */
1870 /* #define PC_REGNUM xx */
1872 /* Register to use for pushing function arguments. */
1873 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1875 /* Offset from the stack pointer to the first available location. Use
1876 the default value zero. */
1877 /* #define STACK_POINTER_OFFSET 0 */
1879 /* Base register for access to local variables of the function. We
1880 pretend that the frame pointer is $1, and then eliminate it to
1881 HARD_FRAME_POINTER_REGNUM. We can get away with this because $1 is
1882 a fixed register, and will not be used for anything else. */
1883 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
1885 /* Temporary scratch register for use by the assembler. */
1886 #define ASSEMBLER_SCRATCH_REGNUM (GP_REG_FIRST + 1)
1888 /* $30 is not available on the mips16, so we use $17 as the frame
1889 pointer. */
1890 #define HARD_FRAME_POINTER_REGNUM \
1891 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1893 /* Value should be nonzero if functions must have frame pointers.
1894 Zero means the frame pointer need not be set up (and parms
1895 may be accessed via the stack pointer) in functions that seem suitable.
1896 This is computed in `reload', in reload1.c. */
1897 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1899 /* Base register for access to arguments of the function. */
1900 #define ARG_POINTER_REGNUM GP_REG_FIRST
1902 /* Fake register that holds the address on the stack of the
1903 current function's return address. */
1904 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
1906 /* Register in which static-chain is passed to a function. */
1907 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1909 /* If the structure value address is passed in a register, then
1910 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1911 /* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1913 /* If the structure value address is not passed in a register, define
1914 `STRUCT_VALUE' as an expression returning an RTX for the place
1915 where the address is passed. If it returns 0, the address is
1916 passed as an "invisible" first argument. */
1917 #define STRUCT_VALUE 0
1919 /* Mips registers used in prologue/epilogue code when the stack frame
1920 is larger than 32K bytes. These registers must come from the
1921 scratch register set, and not used for passing and returning
1922 arguments and any other information used in the calling sequence
1923 (such as pic). Must start at 12, since t0/t3 are parameter passing
1924 registers in the 64 bit ABI. */
1926 #define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1927 #define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
1929 /* Define this macro if it is as good or better to call a constant
1930 function address than to call an address kept in a register. */
1931 #define NO_FUNCTION_CSE 1
1933 /* Define this macro if it is as good or better for a function to
1934 call itself with an explicit address than to call an address
1935 kept in a register. */
1936 #define NO_RECURSIVE_FUNCTION_CSE 1
1938 /* The register number of the register used to address a table of
1939 static data addresses in memory. In some cases this register is
1940 defined by a processor's "application binary interface" (ABI).
1941 When this macro is defined, RTL is generated for this register
1942 once, as with the stack pointer and frame pointer registers. If
1943 this macro is not defined, it is up to the machine-dependent
1944 files to allocate such a register (if necessary). */
1945 #define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
1947 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1949 /* Define the classes of registers for register constraints in the
1950 machine description. Also define ranges of constants.
1952 One of the classes must always be named ALL_REGS and include all hard regs.
1953 If there is more than one class, another class must be named NO_REGS
1954 and contain no registers.
1956 The name GENERAL_REGS must be the name of a class (or an alias for
1957 another name such as ALL_REGS). This is the class of registers
1958 that is allowed by "g" or "r" in a register constraint.
1959 Also, registers outside this class are allocated only when
1960 instructions express preferences for them.
1962 The classes must be numbered in nondecreasing order; that is,
1963 a larger-numbered class must never be contained completely
1964 in a smaller-numbered class.
1966 For any two classes, it is very desirable that there be another
1967 class that represents their union. */
1969 enum reg_class
1971 NO_REGS, /* no registers in set */
1972 M16_NA_REGS, /* mips16 regs not used to pass args */
1973 M16_REGS, /* mips16 directly accessible registers */
1974 T_REG, /* mips16 T register ($24) */
1975 M16_T_REGS, /* mips16 registers plus T register */
1976 GR_REGS, /* integer registers */
1977 FP_REGS, /* floating point registers */
1978 HI_REG, /* hi register */
1979 LO_REG, /* lo register */
1980 HILO_REG, /* hilo register pair for 64 bit mode mult */
1981 MD_REGS, /* multiply/divide registers (hi/lo) */
1982 COP0_REGS, /* generic coprocessor classes */
1983 COP2_REGS,
1984 COP3_REGS,
1985 HI_AND_GR_REGS, /* union classes */
1986 LO_AND_GR_REGS,
1987 HILO_AND_GR_REGS,
1988 HI_AND_FP_REGS,
1989 COP0_AND_GR_REGS,
1990 COP2_AND_GR_REGS,
1991 COP3_AND_GR_REGS,
1992 ALL_COP_REGS,
1993 ALL_COP_AND_GR_REGS,
1994 ST_REGS, /* status registers (fp status) */
1995 ALL_REGS, /* all registers */
1996 LIM_REG_CLASSES /* max value + 1 */
1999 #define N_REG_CLASSES (int) LIM_REG_CLASSES
2001 #define GENERAL_REGS GR_REGS
2003 /* An initializer containing the names of the register classes as C
2004 string constants. These names are used in writing some of the
2005 debugging dumps. */
2007 #define REG_CLASS_NAMES \
2009 "NO_REGS", \
2010 "M16_NA_REGS", \
2011 "M16_REGS", \
2012 "T_REG", \
2013 "M16_T_REGS", \
2014 "GR_REGS", \
2015 "FP_REGS", \
2016 "HI_REG", \
2017 "LO_REG", \
2018 "HILO_REG", \
2019 "MD_REGS", \
2020 /* coprocessor registers */ \
2021 "COP0_REGS", \
2022 "COP2_REGS", \
2023 "COP3_REGS", \
2024 "HI_AND_GR_REGS", \
2025 "LO_AND_GR_REGS", \
2026 "HILO_AND_GR_REGS", \
2027 "HI_AND_FP_REGS", \
2028 "COP0_AND_GR_REGS", \
2029 "COP2_AND_GR_REGS", \
2030 "COP3_AND_GR_REGS", \
2031 "ALL_COP_REGS", \
2032 "ALL_COP_AND_GR_REGS", \
2033 "ST_REGS", \
2034 "ALL_REGS" \
2037 /* An initializer containing the contents of the register classes,
2038 as integers which are bit masks. The Nth integer specifies the
2039 contents of class N. The way the integer MASK is interpreted is
2040 that register R is in the class if `MASK & (1 << R)' is 1.
2042 When the machine has more than 32 registers, an integer does not
2043 suffice. Then the integers are replaced by sub-initializers,
2044 braced groupings containing several integers. Each
2045 sub-initializer must be suitable as an initializer for the type
2046 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
2048 #define REG_CLASS_CONTENTS \
2050 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
2051 { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
2052 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
2053 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
2054 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
2055 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
2056 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
2057 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
2058 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
2059 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 }, /* hilo register */ \
2060 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
2061 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
2062 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
2063 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
2064 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
2065 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
2066 { 0xffffffff, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 }, \
2067 { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
2068 { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
2069 { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
2070 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
2071 { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
2072 { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
2073 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
2074 { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0000ffff } /* all registers */ \
2078 /* A C expression whose value is a register class containing hard
2079 register REGNO. In general there is more that one such class;
2080 choose a class which is "minimal", meaning that no smaller class
2081 also contains the register. */
2083 extern const enum reg_class mips_regno_to_class[];
2085 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2087 /* A macro whose definition is the name of the class to which a
2088 valid base register must belong. A base register is one used in
2089 an address which is the register value plus a displacement. */
2091 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
2093 /* A macro whose definition is the name of the class to which a
2094 valid index register must belong. An index register is one used
2095 in an address where its value is either multiplied by a scale
2096 factor or added to another register (as well as added to a
2097 displacement). */
2099 #define INDEX_REG_CLASS NO_REGS
2101 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
2102 registers explicitly used in the rtl to be used as spill registers
2103 but prevents the compiler from extending the lifetime of these
2104 registers. */
2106 #define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
2108 /* This macro is used later on in the file. */
2109 #define GR_REG_CLASS_P(CLASS) \
2110 ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
2111 || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS)
2113 /* This macro is also used later on in the file. */
2114 #define COP_REG_CLASS_P(CLASS) \
2115 ((CLASS) == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
2117 /* REG_ALLOC_ORDER is to order in which to allocate registers. This
2118 is the default value (allocate the registers in numeric order). We
2119 define it just so that we can override it for the mips16 target in
2120 ORDER_REGS_FOR_LOCAL_ALLOC. */
2122 #define REG_ALLOC_ORDER \
2123 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2124 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
2125 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2126 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2127 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2128 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2129 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2130 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2131 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2132 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2133 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 \
2136 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
2137 to be rearranged based on a particular function. On the mips16, we
2138 want to allocate $24 (T_REG) before other registers for
2139 instructions for which it is possible. */
2141 #define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
2143 /* REGISTER AND CONSTANT CLASSES */
2145 /* Get reg_class from a letter such as appears in the machine
2146 description.
2148 DEFINED REGISTER CLASSES:
2150 'd' General (aka integer) registers
2151 Normally this is GR_REGS, but in mips16 mode this is M16_REGS
2152 'y' General registers (in both mips16 and non mips16 mode)
2153 'e' mips16 non argument registers (M16_NA_REGS)
2154 't' mips16 temporary register ($24)
2155 'f' Floating point registers
2156 'h' Hi register
2157 'l' Lo register
2158 'x' Multiply/divide registers
2159 'a' HILO_REG
2160 'z' FP Status register
2161 'B' Cop0 register
2162 'C' Cop2 register
2163 'D' Cop3 register
2164 'b' All registers */
2166 extern enum reg_class mips_char_to_class[256];
2168 #define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
2170 /* The letters I, J, K, L, M, N, O, and P in a register constraint
2171 string can be used to stand for particular ranges of immediate
2172 operands. This macro defines what the ranges are. C is the
2173 letter, and VALUE is a constant value. Return 1 if VALUE is
2174 in the range specified by C. */
2176 /* For MIPS:
2178 `I' is used for the range of constants an arithmetic insn can
2179 actually contain (16 bits signed integers).
2181 `J' is used for the range which is just zero (ie, $r0).
2183 `K' is used for the range of constants a logical insn can actually
2184 contain (16 bit zero-extended integers).
2186 `L' is used for the range of constants that be loaded with lui
2187 (ie, the bottom 16 bits are zero).
2189 `M' is used for the range of constants that take two words to load
2190 (ie, not matched by `I', `K', and `L').
2192 `N' is used for negative 16 bit constants other than -65536.
2194 `O' is a 15 bit signed integer.
2196 `P' is used for positive 16 bit constants. */
2198 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
2199 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
2201 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
2202 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
2203 : (C) == 'J' ? ((VALUE) == 0) \
2204 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
2205 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
2206 && (((VALUE) & ~2147483647) == 0 \
2207 || ((VALUE) & ~2147483647) == ~2147483647)) \
2208 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
2209 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
2210 && (((VALUE) & 0x0000ffff) != 0 \
2211 || (((VALUE) & ~2147483647) != 0 \
2212 && ((VALUE) & ~2147483647) != ~2147483647))) \
2213 : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
2214 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
2215 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
2216 : 0)
2218 /* Similar, but for floating constants, and defining letters G and H.
2219 Here VALUE is the CONST_DOUBLE rtx itself. */
2221 /* For Mips
2223 'G' : Floating point 0 */
2225 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2226 ((C) == 'G' \
2227 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
2229 /* Letters in the range `Q' through `U' may be defined in a
2230 machine-dependent fashion to stand for arbitrary operand types.
2231 The machine description macro `EXTRA_CONSTRAINT' is passed the
2232 operand as its first argument and the constraint letter as its
2233 second operand.
2235 `Q' is for mips16 GP relative constants
2236 `R' is for memory references which take 1 word for the instruction.
2237 `S' is for references to extern items which are PIC for OSF/rose.
2238 `T' is for memory addresses that can be used to load two words. */
2240 #define EXTRA_CONSTRAINT(OP,CODE) \
2241 (((CODE) == 'T') ? double_memory_operand (OP, GET_MODE (OP)) \
2242 : ((CODE) == 'Q') ? (GET_CODE (OP) == CONST \
2243 && mips16_gp_offset_p (OP)) \
2244 : (GET_CODE (OP) != MEM) ? FALSE \
2245 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
2246 : ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
2247 && HALF_PIC_ADDRESS_P (OP)) \
2248 : FALSE)
2250 /* Given an rtx X being reloaded into a reg required to be
2251 in class CLASS, return the class of reg to actually use.
2252 In general this is just CLASS; but on some machines
2253 in some cases it is preferable to use a more restrictive class. */
2255 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
2256 ((CLASS) != ALL_REGS \
2257 ? (! TARGET_MIPS16 \
2258 ? (CLASS) \
2259 : ((CLASS) != GR_REGS \
2260 ? (CLASS) \
2261 : M16_REGS)) \
2262 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2263 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
2264 ? (TARGET_SOFT_FLOAT \
2265 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
2266 : FP_REGS) \
2267 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
2268 || GET_MODE (X) == VOIDmode) \
2269 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
2270 : (CLASS))))
2272 /* Certain machines have the property that some registers cannot be
2273 copied to some other registers without using memory. Define this
2274 macro on those machines to be a C expression that is non-zero if
2275 objects of mode MODE in registers of CLASS1 can only be copied to
2276 registers of class CLASS2 by storing a register of CLASS1 into
2277 memory and loading that memory location into a register of CLASS2.
2279 Do not define this macro if its value would always be zero. */
2280 #if 0
2281 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
2282 ((!TARGET_DEBUG_H_MODE \
2283 && GET_MODE_CLASS (MODE) == MODE_INT \
2284 && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
2285 || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
2286 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
2287 && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
2288 || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
2289 #endif
2290 /* The HI and LO registers can only be reloaded via the general
2291 registers. Condition code registers can only be loaded to the
2292 general registers, and from the floating point registers. */
2294 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2295 mips_secondary_reload_class (CLASS, MODE, X, 1)
2296 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2297 mips_secondary_reload_class (CLASS, MODE, X, 0)
2299 /* Return the maximum number of consecutive registers
2300 needed to represent mode MODE in a register of class CLASS. */
2302 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2304 /* If defined, gives a class of registers that cannot be used as the
2305 operand of a SUBREG that changes the mode of the object illegally.
2306 When FP regs are larger than integer regs... Er, anyone remember what
2307 goes wrong?
2309 In little-endian mode, the hi-lo registers are numbered backwards,
2310 so (subreg:SI (reg:DI hi) 0) gets the high word instead of the low
2311 word as intended. */
2313 #define CLASS_CANNOT_CHANGE_MODE \
2314 (TARGET_BIG_ENDIAN \
2315 ? (TARGET_FLOAT64 && ! TARGET_64BIT ? FP_REGS : NO_REGS) \
2316 : (TARGET_FLOAT64 && ! TARGET_64BIT ? HI_AND_FP_REGS : HI_REG))
2318 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
2320 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
2321 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
2323 /* Stack layout; function entry, exit and calling. */
2325 /* Define this if pushing a word on the stack
2326 makes the stack pointer a smaller address. */
2327 #define STACK_GROWS_DOWNWARD
2329 /* Define this if the nominal address of the stack frame
2330 is at the high-address end of the local variables;
2331 that is, each additional local variable allocated
2332 goes at a more negative offset in the frame. */
2333 /* #define FRAME_GROWS_DOWNWARD */
2335 /* Offset within stack frame to start allocating local variables at.
2336 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
2337 first local allocated. Otherwise, it is the offset to the BEGINNING
2338 of the first local allocated. */
2339 #define STARTING_FRAME_OFFSET \
2340 (current_function_outgoing_args_size \
2341 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
2343 /* Offset from the stack pointer register to an item dynamically
2344 allocated on the stack, e.g., by `alloca'.
2346 The default value for this macro is `STACK_POINTER_OFFSET' plus the
2347 length of the outgoing arguments. The default is correct for most
2348 machines. See `function.c' for details.
2350 The MIPS ABI states that functions which dynamically allocate the
2351 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
2352 we are trying to create a second frame pointer to the function, so
2353 allocate some stack space to make it happy.
2355 However, the linker currently complains about linking any code that
2356 dynamically allocates stack space, and there seems to be a bug in
2357 STACK_DYNAMIC_OFFSET, so don't define this right now. */
2359 #if 0
2360 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
2361 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
2362 ? 4*UNITS_PER_WORD \
2363 : current_function_outgoing_args_size)
2364 #endif
2366 /* The return address for the current frame is in r31 is this is a leaf
2367 function. Otherwise, it is on the stack. It is at a variable offset
2368 from sp/fp/ap, so we define a fake hard register rap which is a
2369 poiner to the return address on the stack. This always gets eliminated
2370 during reload to be either the frame pointer or the stack pointer plus
2371 an offset. */
2373 /* ??? This definition fails for leaf functions. There is currently no
2374 general solution for this problem. */
2376 /* ??? There appears to be no way to get the return address of any previous
2377 frame except by disassembling instructions in the prologue/epilogue.
2378 So currently we support only the current frame. */
2380 #define RETURN_ADDR_RTX(count, frame) \
2381 (((count) == 0) \
2382 ? (leaf_function_p () \
2383 ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31) \
2384 : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, \
2385 RETURN_ADDRESS_POINTER_REGNUM))) \
2386 : (rtx) 0)
2388 /* Since the mips16 ISA mode is encoded in the least-significant bit
2389 of the address, mask it off return addresses for purposes of
2390 finding exception handling regions. */
2392 #define MASK_RETURN_ADDR GEN_INT (-2)
2394 /* Similarly, don't use the least-significant bit to tell pointers to
2395 code from vtable index. */
2397 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2399 /* Structure to be filled in by compute_frame_size with register
2400 save masks, and offsets for the current function. */
2402 struct mips_frame_info
2404 long total_size; /* # bytes that the entire frame takes up */
2405 long var_size; /* # bytes that variables take up */
2406 long args_size; /* # bytes that outgoing arguments take up */
2407 long extra_size; /* # bytes of extra gunk */
2408 int gp_reg_size; /* # bytes needed to store gp regs */
2409 int fp_reg_size; /* # bytes needed to store fp regs */
2410 long mask; /* mask of saved gp registers */
2411 long fmask; /* mask of saved fp registers */
2412 long gp_save_offset; /* offset from vfp to store gp registers */
2413 long fp_save_offset; /* offset from vfp to store fp registers */
2414 long gp_sp_offset; /* offset from new sp to store gp registers */
2415 long fp_sp_offset; /* offset from new sp to store fp registers */
2416 int initialized; /* != 0 if frame size already calculated */
2417 int num_gp; /* number of gp registers saved */
2418 int num_fp; /* number of fp registers saved */
2419 long insns_len; /* length of insns; mips16 only */
2422 extern struct mips_frame_info current_frame_info;
2424 /* If defined, this macro specifies a table of register pairs used to
2425 eliminate unneeded registers that point into the stack frame. If
2426 it is not defined, the only elimination attempted by the compiler
2427 is to replace references to the frame pointer with references to
2428 the stack pointer.
2430 The definition of this macro is a list of structure
2431 initializations, each of which specifies an original and
2432 replacement register.
2434 On some machines, the position of the argument pointer is not
2435 known until the compilation is completed. In such a case, a
2436 separate hard register must be used for the argument pointer.
2437 This register can be eliminated by replacing it with either the
2438 frame pointer or the argument pointer, depending on whether or not
2439 the frame pointer has been eliminated.
2441 In this case, you might specify:
2442 #define ELIMINABLE_REGS \
2443 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2444 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
2445 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
2447 Note that the elimination of the argument pointer with the stack
2448 pointer is specified first since that is the preferred elimination.
2450 The eliminations to $17 are only used on the mips16. See the
2451 definition of HARD_FRAME_POINTER_REGNUM. */
2453 #define ELIMINABLE_REGS \
2454 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2455 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2456 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2457 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2458 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2459 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2460 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2461 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2462 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2464 /* A C expression that returns non-zero if the compiler is allowed to
2465 try to replace register number FROM-REG with register number
2466 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
2467 defined, and will usually be the constant 1, since most of the
2468 cases preventing register elimination are things that the compiler
2469 already knows about.
2471 When not in mips16 and mips64, we can always eliminate to the
2472 frame pointer. We can eliminate to the stack pointer unless
2473 a frame pointer is needed. In mips16 mode, we need a frame
2474 pointer for a large frame; otherwise, reload may be unable
2475 to compute the address of a local variable, since there is
2476 no way to add a large constant to the stack pointer
2477 without using a temporary register.
2479 In mips16, for some instructions (eg lwu), we can't eliminate the
2480 frame pointer for the stack pointer. These instructions are
2481 only generated in TARGET_64BIT mode.
2484 #define CAN_ELIMINATE(FROM, TO) \
2485 (((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
2486 && (((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed) \
2487 || (TO) == HARD_FRAME_POINTER_REGNUM)) \
2488 || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM \
2489 && ((TO) == HARD_FRAME_POINTER_REGNUM \
2490 || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed \
2491 && ! (TARGET_MIPS16 && TARGET_64BIT) \
2492 && (! TARGET_MIPS16 \
2493 || compute_frame_size (get_frame_size ()) < 32768)))))
2495 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
2496 specifies the initial difference between the specified pair of
2497 registers. This macro must be defined if `ELIMINABLE_REGS' is
2498 defined. */
2500 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2501 { compute_frame_size (get_frame_size ()); \
2502 if (TARGET_MIPS16 && (FROM) == FRAME_POINTER_REGNUM \
2503 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2504 (OFFSET) = - current_function_outgoing_args_size; \
2505 else if ((FROM) == FRAME_POINTER_REGNUM) \
2506 (OFFSET) = 0; \
2507 else if (TARGET_MIPS16 && (FROM) == ARG_POINTER_REGNUM \
2508 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2509 (OFFSET) = (current_frame_info.total_size \
2510 - current_function_outgoing_args_size \
2511 - ((mips_abi != ABI_32 \
2512 && mips_abi != ABI_O64 \
2513 && mips_abi != ABI_EABI) \
2514 ? current_function_pretend_args_size \
2515 : 0)); \
2516 else if ((FROM) == ARG_POINTER_REGNUM) \
2517 (OFFSET) = (current_frame_info.total_size \
2518 - ((mips_abi != ABI_32 \
2519 && mips_abi != ABI_O64 \
2520 && mips_abi != ABI_EABI) \
2521 ? current_function_pretend_args_size \
2522 : 0)); \
2523 /* Some ABIs store 64 bits to the stack, but Pmode is 32 bits, \
2524 so we must add 4 bytes to the offset to get the right value. */ \
2525 else if ((FROM) == RETURN_ADDRESS_POINTER_REGNUM) \
2527 (OFFSET) = current_frame_info.gp_sp_offset \
2528 + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)) \
2529 * (BYTES_BIG_ENDIAN != 0)); \
2530 if (TARGET_MIPS16 && (TO) != STACK_POINTER_REGNUM) \
2531 (OFFSET) -= current_function_outgoing_args_size; \
2533 else \
2534 abort(); \
2537 /* If we generate an insn to push BYTES bytes,
2538 this says how many the stack pointer really advances by.
2539 On the VAX, sp@- in a byte insn really pushes a word. */
2541 /* #define PUSH_ROUNDING(BYTES) 0 */
2543 /* If defined, the maximum amount of space required for outgoing
2544 arguments will be computed and placed into the variable
2545 `current_function_outgoing_args_size'. No space will be pushed
2546 onto the stack for each call; instead, the function prologue
2547 should increase the stack frame size by this amount.
2549 It is not proper to define both `PUSH_ROUNDING' and
2550 `ACCUMULATE_OUTGOING_ARGS'. */
2551 #define ACCUMULATE_OUTGOING_ARGS 1
2553 /* Offset from the argument pointer register to the first argument's
2554 address. On some machines it may depend on the data type of the
2555 function.
2557 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
2558 the first argument's address.
2560 On the MIPS, we must skip the first argument position if we are
2561 returning a structure or a union, to account for its address being
2562 passed in $4. However, at the current time, this produces a compiler
2563 that can't bootstrap, so comment it out for now. */
2565 #if 0
2566 #define FIRST_PARM_OFFSET(FNDECL) \
2567 (FNDECL != 0 \
2568 && TREE_TYPE (FNDECL) != 0 \
2569 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
2570 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
2571 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
2572 ? UNITS_PER_WORD \
2573 : 0)
2574 #else
2575 #define FIRST_PARM_OFFSET(FNDECL) 0
2576 #endif
2578 /* When a parameter is passed in a register, stack space is still
2579 allocated for it. For the MIPS, stack space must be allocated, cf
2580 Asm Lang Prog Guide page 7-8.
2582 BEWARE that some space is also allocated for non existing arguments
2583 in register. In case an argument list is of form GF used registers
2584 are a0 (a2,a3), but we should push over a1... */
2586 #define REG_PARM_STACK_SPACE(FNDECL) \
2587 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
2589 /* Define this if it is the responsibility of the caller to
2590 allocate the area reserved for arguments passed in registers.
2591 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2592 of this macro is to determine whether the space is included in
2593 `current_function_outgoing_args_size'. */
2594 #define OUTGOING_REG_PARM_STACK_SPACE
2596 /* Align stack frames on 64 bits (Double Word ). */
2597 #ifndef STACK_BOUNDARY
2598 #define STACK_BOUNDARY 64
2599 #endif
2601 /* Make sure 4 words are always allocated on the stack. */
2603 #ifndef STACK_ARGS_ADJUST
2604 #define STACK_ARGS_ADJUST(SIZE) \
2606 if (SIZE.constant < 4 * UNITS_PER_WORD) \
2607 SIZE.constant = 4 * UNITS_PER_WORD; \
2609 #endif
2612 /* A C expression that should indicate the number of bytes of its
2613 own arguments that a function pops on returning, or 0
2614 if the function pops no arguments and the caller must therefore
2615 pop them all after the function returns.
2617 FUNDECL is the declaration node of the function (as a tree).
2619 FUNTYPE is a C variable whose value is a tree node that
2620 describes the function in question. Normally it is a node of
2621 type `FUNCTION_TYPE' that describes the data type of the function.
2622 From this it is possible to obtain the data types of the value
2623 and arguments (if known).
2625 When a call to a library function is being considered, FUNTYPE
2626 will contain an identifier node for the library function. Thus,
2627 if you need to distinguish among various library functions, you
2628 can do so by their names. Note that "library function" in this
2629 context means a function used to perform arithmetic, whose name
2630 is known specially in the compiler and was not mentioned in the
2631 C code being compiled.
2633 STACK-SIZE is the number of bytes of arguments passed on the
2634 stack. If a variable number of bytes is passed, it is zero, and
2635 argument popping will always be the responsibility of the
2636 calling function. */
2638 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
2641 /* Symbolic macros for the registers used to return integer and floating
2642 point values. */
2644 #define GP_RETURN (GP_REG_FIRST + 2)
2645 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2647 /* Symbolic macros for the first/last argument registers. */
2649 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2650 #define GP_ARG_LAST (GP_REG_FIRST + 7)
2651 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2652 #define FP_ARG_LAST (FP_REG_FIRST + 15)
2654 #define MAX_ARGS_IN_REGISTERS 4
2656 /* Define how to find the value returned by a library function
2657 assuming the value has mode MODE. Because we define
2658 PROMOTE_FUNCTION_RETURN, we must promote the mode just as
2659 PROMOTE_MODE does. */
2661 #define LIBCALL_VALUE(MODE) \
2662 mips_function_value (NULL_TREE, NULL, (MODE))
2664 /* Define how to find the value returned by a function.
2665 VALTYPE is the data type of the value (as a tree).
2666 If the precise function being called is known, FUNC is its FUNCTION_DECL;
2667 otherwise, FUNC is 0. */
2669 #define FUNCTION_VALUE(VALTYPE, FUNC) \
2670 mips_function_value ((VALTYPE), (FUNC), VOIDmode)
2672 /* 1 if N is a possible register number for a function value.
2673 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2674 Currently, R2 and F0 are only implemented here (C has no complex type) */
2676 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
2678 /* 1 if N is a possible register number for function argument passing.
2679 We have no FP argument registers when soft-float. When FP registers
2680 are 32 bits, we can't directly reference the odd numbered ones. */
2681 /* For o64 we should be checking the mode for SFmode as well. */
2683 #define FUNCTION_ARG_REGNO_P(N) \
2684 ((((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
2685 || ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST \
2686 && (((N) % FP_INC) == 0 \
2687 && (! mips_abi == ABI_O64))) \
2688 && !fixed_regs[N]))
2690 /* A C expression which can inhibit the returning of certain function
2691 values in registers, based on the type of value. A nonzero value says
2692 to return the function value in memory, just as large structures are
2693 always returned. Here TYPE will be a C expression of type
2694 `tree', representing the data type of the value.
2696 Note that values of mode `BLKmode' must be explicitly
2697 handled by this macro. Also, the option `-fpcc-struct-return'
2698 takes effect regardless of this macro. On most systems, it is
2699 possible to leave the macro undefined; this causes a default
2700 definition to be used, whose value is the constant 1 for BLKmode
2701 values, and 0 otherwise.
2703 GCC normally converts 1 byte structures into chars, 2 byte
2704 structs into shorts, and 4 byte structs into ints, and returns
2705 them this way. Defining the following macro overrides this,
2706 to give us MIPS cc compatibility. */
2708 #define RETURN_IN_MEMORY(TYPE) \
2709 mips_return_in_memory (TYPE)
2711 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
2712 (PRETEND_SIZE) = mips_setup_incoming_varargs (&(CUM), (MODE), \
2713 (TYPE), (NO_RTL))
2716 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
2719 /* Define a data type for recording info about an argument list
2720 during the scan of that argument list. This data type should
2721 hold all necessary information about the function itself
2722 and about the args processed so far, enough to enable macros
2723 such as FUNCTION_ARG to determine where the next arg should go.
2725 This structure has to cope with two different argument allocation
2726 schemes. Most MIPS ABIs view the arguments as a struct, of which the
2727 first N words go in registers and the rest go on the stack. If I < N,
2728 the Ith word might go in Ith integer argument register or the
2729 Ith floating-point one. In some cases, it has to go in both (see
2730 function_arg). For these ABIs, we only need to remember the number
2731 of words passed so far.
2733 The EABI instead allocates the integer and floating-point arguments
2734 separately. The first N words of FP arguments go in FP registers,
2735 the rest go on the stack. Likewise, the first N words of the other
2736 arguments go in integer registers, and the rest go on the stack. We
2737 need to maintain three counts: the number of integer registers used,
2738 the number of floating-point registers used, and the number of words
2739 passed on the stack.
2741 We could keep separate information for the two ABIs (a word count for
2742 the standard ABIs, and three separate counts for the EABI). But it
2743 seems simpler to view the standard ABIs as forms of EABI that do not
2744 allocate floating-point registers.
2746 So for the standard ABIs, the first N words are allocated to integer
2747 registers, and function_arg decides on an argument-by-argument basis
2748 whether that argument should really go in an integer register, or in
2749 a floating-point one. */
2751 typedef struct mips_args {
2752 /* Always true for varargs functions. Otherwise true if at least
2753 one argument has been passed in an integer register. */
2754 int gp_reg_found;
2756 /* The number of arguments seen so far. */
2757 unsigned int arg_number;
2759 /* For EABI, the number of integer registers used so far. For other
2760 ABIs, the number of words passed in registers (whether integer
2761 or floating-point). */
2762 unsigned int num_gprs;
2764 /* For EABI, the number of floating-point registers used so far. */
2765 unsigned int num_fprs;
2767 /* The number of words passed on the stack. */
2768 unsigned int stack_words;
2770 /* On the mips16, we need to keep track of which floating point
2771 arguments were passed in general registers, but would have been
2772 passed in the FP regs if this were a 32 bit function, so that we
2773 can move them to the FP regs if we wind up calling a 32 bit
2774 function. We record this information in fp_code, encoded in base
2775 four. A zero digit means no floating point argument, a one digit
2776 means an SFmode argument, and a two digit means a DFmode argument,
2777 and a three digit is not used. The low order digit is the first
2778 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2779 an SFmode argument. ??? A more sophisticated approach will be
2780 needed if MIPS_ABI != ABI_32. */
2781 int fp_code;
2783 /* True if the function has a prototype. */
2784 int prototype;
2786 /* When a structure does not take up a full register, the argument
2787 should sometimes be shifted left so that it occupies the high part
2788 of the register. These two fields describe an array of ashl
2789 patterns for doing this. See function_arg_advance, which creates
2790 the shift patterns, and function_arg, which returns them when given
2791 a VOIDmode argument. */
2792 unsigned int num_adjusts;
2793 struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS];
2794 } CUMULATIVE_ARGS;
2796 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2797 for a call to a function whose data type is FNTYPE.
2798 For a library call, FNTYPE is 0.
2802 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
2803 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2805 /* Update the data in CUM to advance over an argument
2806 of mode MODE and data type TYPE.
2807 (TYPE is null for libcalls where that information may not be available.) */
2809 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2810 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2812 /* Determine where to put an argument to a function.
2813 Value is zero to push the argument on the stack,
2814 or a hard register in which to store the argument.
2816 MODE is the argument's machine mode.
2817 TYPE is the data type of the argument (as a tree).
2818 This is null for libcalls where that information may
2819 not be available.
2820 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2821 the preceding args and about the function being called.
2822 NAMED is nonzero if this argument is a named parameter
2823 (otherwise it is an extra parameter matching an ellipsis). */
2825 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2826 function_arg( &CUM, MODE, TYPE, NAMED)
2828 /* For an arg passed partly in registers and partly in memory,
2829 this is the number of registers used.
2830 For args passed entirely in registers or entirely in memory, zero. */
2832 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2833 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2835 /* If defined, a C expression that gives the alignment boundary, in
2836 bits, of an argument with the specified mode and type. If it is
2837 not defined, `PARM_BOUNDARY' is used for all arguments. */
2839 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2840 (((TYPE) != 0) \
2841 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
2842 ? PARM_BOUNDARY \
2843 : TYPE_ALIGN(TYPE)) \
2844 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2845 ? PARM_BOUNDARY \
2846 : GET_MODE_ALIGNMENT(MODE)))
2848 /* True if using EABI and varargs can be passed in floating-point
2849 registers. Under these conditions, we need a more complex form
2850 of va_list, which tracks GPR, FPR and stack arguments separately. */
2851 #define EABI_FLOAT_VARARGS_P \
2852 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2855 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
2857 #define MUST_SAVE_REGISTER(regno) \
2858 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2859 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
2860 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
2862 /* ALIGN FRAMES on double word boundaries */
2863 #ifndef MIPS_STACK_ALIGN
2864 #define MIPS_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
2865 #endif
2868 /* Define the `__builtin_va_list' type for the ABI. */
2869 #define BUILD_VA_LIST_TYPE(VALIST) \
2870 (VALIST) = mips_build_va_list ()
2872 /* Implement `va_start' for varargs and stdarg. */
2873 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2874 mips_va_start (stdarg, valist, nextarg)
2876 /* Implement `va_arg'. */
2877 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2878 mips_va_arg (valist, type)
2880 /* Output assembler code to FILE to increment profiler label # LABELNO
2881 for profiling a function entry. */
2883 #define FUNCTION_PROFILER(FILE, LABELNO) \
2885 if (TARGET_MIPS16) \
2886 sorry ("mips16 function profiling"); \
2887 fprintf (FILE, "\t.set\tnoat\n"); \
2888 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2889 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2890 fprintf (FILE, \
2891 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2892 TARGET_64BIT ? "dsubu" : "subu", \
2893 reg_names[STACK_POINTER_REGNUM], \
2894 reg_names[STACK_POINTER_REGNUM], \
2895 Pmode == DImode ? 16 : 8); \
2896 fprintf (FILE, "\tjal\t_mcount\n"); \
2897 fprintf (FILE, "\t.set\tat\n"); \
2900 /* Define this macro if the code for function profiling should come
2901 before the function prologue. Normally, the profiling code comes
2902 after. */
2904 /* #define PROFILE_BEFORE_PROLOGUE */
2906 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2907 the stack pointer does not matter. The value is tested only in
2908 functions that have frame pointers.
2909 No definition is equivalent to always zero. */
2911 #define EXIT_IGNORE_STACK 1
2914 /* A C statement to output, on the stream FILE, assembler code for a
2915 block of data that contains the constant parts of a trampoline.
2916 This code should not include a label--the label is taken care of
2917 automatically. */
2919 #define TRAMPOLINE_TEMPLATE(STREAM) \
2921 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2922 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2923 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2924 if (Pmode == DImode) \
2926 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2927 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2929 else \
2931 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2932 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2934 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
2935 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2936 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2937 if (Pmode == DImode) \
2939 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2940 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2942 else \
2944 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2945 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2949 /* A C expression for the size in bytes of the trampoline, as an
2950 integer. */
2952 #define TRAMPOLINE_SIZE (32 + (Pmode == DImode ? 16 : 8))
2954 /* Alignment required for trampolines, in bits. */
2956 #define TRAMPOLINE_ALIGNMENT (Pmode == DImode ? 64 : 32)
2958 /* INITIALIZE_TRAMPOLINE calls this library function to flush
2959 program and data caches. */
2961 #ifndef CACHE_FLUSH_FUNC
2962 #define CACHE_FLUSH_FUNC "_flush_cache"
2963 #endif
2965 /* A C statement to initialize the variable parts of a trampoline.
2966 ADDR is an RTX for the address of the trampoline; FNADDR is an
2967 RTX for the address of the nested function; STATIC_CHAIN is an
2968 RTX for the static chain value that should be passed to the
2969 function when it is called. */
2971 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2973 rtx addr = ADDR; \
2974 if (Pmode == DImode) \
2976 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 32)), FUNC); \
2977 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 40)), CHAIN);\
2979 else \
2981 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
2982 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
2985 /* Flush both caches. We need to flush the data cache in case \
2986 the system has a write-back cache. */ \
2987 /* ??? Should check the return value for errors. */ \
2988 if (mips_cache_flush_func && mips_cache_flush_func[0]) \
2989 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2990 0, VOIDmode, 3, addr, Pmode, \
2991 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2992 GEN_INT (3), TYPE_MODE (integer_type_node)); \
2995 /* Addressing modes, and classification of registers for them. */
2997 /* #define HAVE_POST_INCREMENT 0 */
2998 /* #define HAVE_POST_DECREMENT 0 */
3000 /* #define HAVE_PRE_DECREMENT 0 */
3001 /* #define HAVE_PRE_INCREMENT 0 */
3003 /* These assume that REGNO is a hard or pseudo reg number.
3004 They give nonzero only if REGNO is a hard reg of the suitable class
3005 or a pseudo reg currently allocated to a suitable hard reg.
3006 These definitions are NOT overridden anywhere. */
3008 #define BASE_REG_P(regno, mode) \
3009 (TARGET_MIPS16 \
3010 ? (M16_REG_P (regno) \
3011 || (regno) == FRAME_POINTER_REGNUM \
3012 || (regno) == ARG_POINTER_REGNUM \
3013 || ((regno) == STACK_POINTER_REGNUM \
3014 && (GET_MODE_SIZE (mode) == 4 \
3015 || GET_MODE_SIZE (mode) == 8))) \
3016 : GP_REG_P (regno))
3018 #define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
3019 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? (int) regno : reg_renumber[regno], \
3020 (mode))
3022 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
3023 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
3025 #define REGNO_OK_FOR_INDEX_P(regno) 0
3026 #define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
3027 GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
3029 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
3030 and check its validity for a certain class.
3031 We have two alternate definitions for each of them.
3032 The usual definition accepts all pseudo regs; the other rejects them all.
3033 The symbol REG_OK_STRICT causes the latter definition to be used.
3035 Most source files want to accept pseudo regs in the hope that
3036 they will get allocated to the class that the insn wants them to be in.
3037 Some source files that are used after register allocation
3038 need to be strict. */
3040 #ifndef REG_OK_STRICT
3041 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
3042 mips_reg_mode_ok_for_base_p (X, MODE, 0)
3043 #else
3044 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
3045 mips_reg_mode_ok_for_base_p (X, MODE, 1)
3046 #endif
3048 #define REG_OK_FOR_INDEX_P(X) 0
3051 /* Maximum number of registers that can appear in a valid memory address. */
3053 #define MAX_REGS_PER_ADDRESS 1
3055 /* A C compound statement with a conditional `goto LABEL;' executed
3056 if X (an RTX) is a legitimate memory address on the target
3057 machine for a memory operand of mode MODE. */
3059 #if 1
3060 #define GO_PRINTF(x) fprintf(stderr, (x))
3061 #define GO_PRINTF2(x,y) fprintf(stderr, (x), (y))
3062 #define GO_DEBUG_RTX(x) debug_rtx(x)
3064 #else
3065 #define GO_PRINTF(x)
3066 #define GO_PRINTF2(x,y)
3067 #define GO_DEBUG_RTX(x)
3068 #endif
3070 #ifdef REG_OK_STRICT
3071 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
3073 if (mips_legitimate_address_p (MODE, X, 1)) \
3074 goto ADDR; \
3076 #else
3077 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
3079 if (mips_legitimate_address_p (MODE, X, 0)) \
3080 goto ADDR; \
3082 #endif
3084 /* A C expression that is 1 if the RTX X is a constant which is a
3085 valid address. This is defined to be the same as `CONSTANT_P (X)',
3086 but rejecting CONST_DOUBLE. */
3087 /* When pic, we must reject addresses of the form symbol+large int.
3088 This is because an instruction `sw $4,s+70000' needs to be converted
3089 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
3090 assembler would use $at as a temp to load in the large offset. In this
3091 case $at is already in use. We convert such problem addresses to
3092 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
3093 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
3094 #define CONSTANT_ADDRESS_P(X) \
3095 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
3096 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
3097 || (GET_CODE (X) == CONST \
3098 && ! (flag_pic && pic_address_needs_scratch (X)) \
3099 && (mips_abi == ABI_32 \
3100 || mips_abi == ABI_O64 \
3101 || mips_abi == ABI_EABI))) \
3102 && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
3104 /* Define this, so that when PIC, reload won't try to reload invalid
3105 addresses which require two reload registers. */
3107 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
3109 /* Nonzero if the constant value X is a legitimate general operand.
3110 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
3112 At present, GAS doesn't understand li.[sd], so don't allow it
3113 to be generated at present. Also, the MIPS assembler does not
3114 grok li.d Infinity. */
3116 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them.
3117 Note that the Irix 6 assembler problem may already be fixed.
3118 Note also that the GET_CODE (X) == CONST test catches the mips16
3119 gp pseudo reg (see mips16_gp_pseudo_reg) deciding it is not
3120 a LEGITIMATE_CONSTANT. If we ever want mips16 and ABI_N32 or
3121 ABI_64 to work together, we'll need to fix this. */
3122 #define LEGITIMATE_CONSTANT_P(X) \
3123 ((GET_CODE (X) != CONST_DOUBLE \
3124 || mips_const_double_ok (X, GET_MODE (X))) \
3125 && ! (GET_CODE (X) == CONST \
3126 && ! TARGET_GAS \
3127 && (mips_abi == ABI_N32 \
3128 || mips_abi == ABI_64)) \
3129 && (! TARGET_MIPS16 || mips16_constant (X, GET_MODE (X), 0, 0)))
3131 /* A C compound statement that attempts to replace X with a valid
3132 memory address for an operand of mode MODE. WIN will be a C
3133 statement label elsewhere in the code; the macro definition may
3136 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
3138 to avoid further processing if the address has become legitimate.
3140 X will always be the result of a call to `break_out_memory_refs',
3141 and OLDX will be the operand that was given to that function to
3142 produce X.
3144 The code generated by this macro should not alter the
3145 substructure of X. If it transforms X into a more legitimate
3146 form, it should assign X (which will always be a C variable) a
3147 new value.
3149 It is not necessary for this macro to come up with a legitimate
3150 address. The compiler has standard ways of doing so in all
3151 cases. In fact, it is safe for this macro to do nothing. But
3152 often a machine-dependent strategy can generate better code.
3154 For the MIPS, transform:
3156 memory(X + <large int>)
3158 into:
3160 Y = <large int> & ~0x7fff;
3161 Z = X + Y
3162 memory (Z + (<large int> & 0x7fff));
3164 This is for CSE to find several similar references, and only use one Z.
3166 When PIC, convert addresses of the form memory (symbol+large int) to
3167 memory (reg+large int). */
3170 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
3172 register rtx xinsn = (X); \
3174 if (TARGET_DEBUG_B_MODE) \
3176 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
3177 GO_DEBUG_RTX (xinsn); \
3180 if (mips_split_addresses && mips_check_split (X, MODE)) \
3182 /* ??? Is this ever executed? */ \
3183 X = gen_rtx_LO_SUM (Pmode, \
3184 copy_to_mode_reg (Pmode, \
3185 gen_rtx (HIGH, Pmode, X)), \
3186 X); \
3187 goto WIN; \
3190 if (GET_CODE (xinsn) == CONST \
3191 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
3192 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
3193 || (mips_abi != ABI_32 \
3194 && mips_abi != ABI_O64 \
3195 && mips_abi != ABI_EABI))) \
3197 rtx ptr_reg = gen_reg_rtx (Pmode); \
3198 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
3200 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
3202 X = gen_rtx_PLUS (Pmode, ptr_reg, constant); \
3203 if (SMALL_INT (constant)) \
3204 goto WIN; \
3205 /* Otherwise we fall through so the code below will fix the \
3206 constant. */ \
3207 xinsn = X; \
3210 if (GET_CODE (xinsn) == PLUS) \
3212 register rtx xplus0 = XEXP (xinsn, 0); \
3213 register rtx xplus1 = XEXP (xinsn, 1); \
3214 register enum rtx_code code0 = GET_CODE (xplus0); \
3215 register enum rtx_code code1 = GET_CODE (xplus1); \
3217 if (code0 != REG && code1 == REG) \
3219 xplus0 = XEXP (xinsn, 1); \
3220 xplus1 = XEXP (xinsn, 0); \
3221 code0 = GET_CODE (xplus0); \
3222 code1 = GET_CODE (xplus1); \
3225 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
3226 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
3228 rtx int_reg = gen_reg_rtx (Pmode); \
3229 rtx ptr_reg = gen_reg_rtx (Pmode); \
3231 emit_move_insn (int_reg, \
3232 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
3234 emit_insn (gen_rtx_SET (VOIDmode, \
3235 ptr_reg, \
3236 gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
3238 X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); \
3239 goto WIN; \
3243 if (TARGET_DEBUG_B_MODE) \
3244 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
3248 /* A C statement or compound statement with a conditional `goto
3249 LABEL;' executed if memory address X (an RTX) can have different
3250 meanings depending on the machine mode of the memory reference it
3251 is used for.
3253 Autoincrement and autodecrement addresses typically have
3254 mode-dependent effects because the amount of the increment or
3255 decrement is the size of the operand being addressed. Some
3256 machines have other mode-dependent addresses. Many RISC machines
3257 have no mode-dependent addresses.
3259 You may assume that ADDR is a valid address for the machine. */
3261 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
3263 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
3264 'the start of the function that this code is output in'. */
3266 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
3267 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
3268 asm_fprintf ((FILE), "%U%s", \
3269 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
3270 else \
3271 asm_fprintf ((FILE), "%U%s", (NAME))
3273 /* The mips16 wants the constant pool to be after the function,
3274 because the PC relative load instructions use unsigned offsets. */
3276 #define CONSTANT_POOL_BEFORE_FUNCTION (! TARGET_MIPS16)
3278 #define ASM_OUTPUT_POOL_EPILOGUE(FILE, FNNAME, FNDECL, SIZE) \
3279 mips_string_length = 0;
3281 #if 0
3282 /* In mips16 mode, put most string constants after the function. */
3283 #define CONSTANT_AFTER_FUNCTION_P(tree) \
3284 (TARGET_MIPS16 && mips16_constant_after_function_p (tree))
3285 #endif
3287 /* Specify the machine mode that this machine uses
3288 for the index in the tablejump instruction.
3289 ??? Using HImode in mips16 mode can cause overflow. However, the
3290 overflow is no more likely than the overflow in a branch
3291 instruction. Large functions can currently break in both ways. */
3292 #define CASE_VECTOR_MODE \
3293 (TARGET_MIPS16 ? HImode : Pmode == DImode ? DImode : SImode)
3295 /* Define as C expression which evaluates to nonzero if the tablejump
3296 instruction expects the table to contain offsets from the address of the
3297 table.
3298 Do not define this if the table should contain absolute addresses. */
3299 #define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
3301 /* Define this as 1 if `char' should by default be signed; else as 0. */
3302 #ifndef DEFAULT_SIGNED_CHAR
3303 #define DEFAULT_SIGNED_CHAR 1
3304 #endif
3306 /* Max number of bytes we can move from memory to memory
3307 in one reasonably fast instruction. */
3308 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
3309 #define MAX_MOVE_MAX 8
3311 /* Define this macro as a C expression which is nonzero if
3312 accessing less than a word of memory (i.e. a `char' or a
3313 `short') is no faster than accessing a word of memory, i.e., if
3314 such access require more than one instruction or if there is no
3315 difference in cost between byte and (aligned) word loads.
3317 On RISC machines, it tends to generate better code to define
3318 this as 1, since it avoids making a QI or HI mode register. */
3319 #define SLOW_BYTE_ACCESS 1
3321 /* We assume that the store-condition-codes instructions store 0 for false
3322 and some other value for true. This is the value stored for true. */
3324 #define STORE_FLAG_VALUE 1
3326 /* Define this to be nonzero if shift instructions ignore all but the low-order
3327 few bits. */
3328 #define SHIFT_COUNT_TRUNCATED 1
3330 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
3331 is done just by pretending it is already truncated. */
3332 /* In 64 bit mode, 32 bit instructions require that register values be properly
3333 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
3334 converts a value >32 bits to a value <32 bits. */
3335 /* ??? This results in inefficient code for 64 bit to 32 conversions.
3336 Something needs to be done about this. Perhaps not use any 32 bit
3337 instructions? Perhaps use PROMOTE_MODE? */
3338 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
3339 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
3341 /* Specify the machine mode that pointers have.
3342 After generation of rtl, the compiler makes no further distinction
3343 between pointers and any other objects of this machine mode.
3345 For MIPS we make pointers are the smaller of longs and gp-registers. */
3347 #ifndef Pmode
3348 #define Pmode ((TARGET_LONG64 && TARGET_64BIT) ? DImode : SImode)
3349 #endif
3351 /* A function address in a call instruction
3352 is a word address (for indexing purposes)
3353 so give the MEM rtx a words's mode. */
3355 #define FUNCTION_MODE (Pmode == DImode ? DImode : SImode)
3357 /* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
3358 memset, instead of the BSD functions bcopy and bzero. */
3360 #if defined(MIPS_SYSV) || defined(OSF_OS)
3361 #define TARGET_MEM_FUNCTIONS
3362 #endif
3365 /* A part of a C `switch' statement that describes the relative
3366 costs of constant RTL expressions. It must contain `case'
3367 labels for expression codes `const_int', `const', `symbol_ref',
3368 `label_ref' and `const_double'. Each case must ultimately reach
3369 a `return' statement to return the relative cost of the use of
3370 that kind of constant value in an expression. The cost may
3371 depend on the precise value of the constant, which is available
3372 for examination in X.
3374 CODE is the expression code--redundant, since it can be obtained
3375 with `GET_CODE (X)'. */
3377 #define CONST_COSTS(X,CODE,OUTER_CODE) \
3378 case CONST_INT: \
3379 if (! TARGET_MIPS16) \
3381 /* Always return 0, since we don't have different sized \
3382 instructions, hence different costs according to Richard \
3383 Kenner */ \
3384 return 0; \
3386 if ((OUTER_CODE) == SET) \
3388 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3389 return 0; \
3390 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3391 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3392 return COSTS_N_INSNS (1); \
3393 else \
3394 return COSTS_N_INSNS (2); \
3396 /* A PLUS could be an address. We don't want to force an address \
3397 to use a register, so accept any signed 16 bit value without \
3398 complaint. */ \
3399 if ((OUTER_CODE) == PLUS \
3400 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3401 return 0; \
3402 /* A number between 1 and 8 inclusive is efficient for a shift. \
3403 Otherwise, we will need an extended instruction. */ \
3404 if ((OUTER_CODE) == ASHIFT || (OUTER_CODE) == ASHIFTRT \
3405 || (OUTER_CODE) == LSHIFTRT) \
3407 if (INTVAL (X) >= 1 && INTVAL (X) <= 8) \
3408 return 0; \
3409 return COSTS_N_INSNS (1); \
3411 /* We can use cmpi for an xor with an unsigned 16 bit value. */ \
3412 if ((OUTER_CODE) == XOR \
3413 && INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3414 return 0; \
3415 /* We may be able to use slt or sltu for a comparison with a \
3416 signed 16 bit value. (The boundary conditions aren't quite \
3417 right, but this is just a heuristic anyhow.) */ \
3418 if (((OUTER_CODE) == LT || (OUTER_CODE) == LE \
3419 || (OUTER_CODE) == GE || (OUTER_CODE) == GT \
3420 || (OUTER_CODE) == LTU || (OUTER_CODE) == LEU \
3421 || (OUTER_CODE) == GEU || (OUTER_CODE) == GTU) \
3422 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3423 return 0; \
3424 /* Equality comparisons with 0 are cheap. */ \
3425 if (((OUTER_CODE) == EQ || (OUTER_CODE) == NE) \
3426 && INTVAL (X) == 0) \
3427 return 0; \
3429 /* Otherwise, work out the cost to load the value into a \
3430 register. */ \
3431 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3432 return COSTS_N_INSNS (1); \
3433 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3434 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3435 return COSTS_N_INSNS (2); \
3436 else \
3437 return COSTS_N_INSNS (3); \
3439 case LABEL_REF: \
3440 return COSTS_N_INSNS (2); \
3442 case CONST: \
3444 rtx offset = const0_rtx; \
3445 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
3447 if (TARGET_MIPS16 && mips16_gp_offset_p (X)) \
3449 /* Treat this like a signed 16 bit CONST_INT. */ \
3450 if ((OUTER_CODE) == PLUS) \
3451 return 0; \
3452 else if ((OUTER_CODE) == SET) \
3453 return COSTS_N_INSNS (1); \
3454 else \
3455 return COSTS_N_INSNS (2); \
3458 if (GET_CODE (symref) == LABEL_REF) \
3459 return COSTS_N_INSNS (2); \
3461 if (GET_CODE (symref) != SYMBOL_REF) \
3462 return COSTS_N_INSNS (4); \
3464 /* let's be paranoid.... */ \
3465 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
3466 return COSTS_N_INSNS (2); \
3468 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
3471 case SYMBOL_REF: \
3472 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
3474 case CONST_DOUBLE: \
3476 rtx high, low; \
3477 if (TARGET_MIPS16) \
3478 return COSTS_N_INSNS (4); \
3479 split_double (X, &high, &low); \
3480 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
3481 || low == CONST0_RTX (GET_MODE (low))) \
3482 ? 2 : 4); \
3485 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
3486 This can be used, for example, to indicate how costly a multiply
3487 instruction is. In writing this macro, you can use the construct
3488 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
3490 This macro is optional; do not define it if the default cost
3491 assumptions are adequate for the target machine.
3493 If -mdebugd is used, change the multiply cost to 2, so multiply by
3494 a constant isn't converted to a series of shifts. This helps
3495 strength reduction, and also makes it easier to identify what the
3496 compiler is doing. */
3498 /* ??? Fix this to be right for the R8000. */
3499 #define RTX_COSTS(X,CODE,OUTER_CODE) \
3500 case MEM: \
3502 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
3503 if (simple_memory_operand (X, GET_MODE (X))) \
3504 return COSTS_N_INSNS (num_words); \
3506 return COSTS_N_INSNS (2*num_words); \
3509 case FFS: \
3510 return COSTS_N_INSNS (6); \
3512 case NOT: \
3513 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
3515 case AND: \
3516 case IOR: \
3517 case XOR: \
3518 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3519 return COSTS_N_INSNS (2); \
3521 break; \
3523 case ASHIFT: \
3524 case ASHIFTRT: \
3525 case LSHIFTRT: \
3526 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3527 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
3529 break; \
3531 case ABS: \
3533 enum machine_mode xmode = GET_MODE (X); \
3534 if (xmode == SFmode || xmode == DFmode) \
3535 return COSTS_N_INSNS (1); \
3537 return COSTS_N_INSNS (4); \
3540 case PLUS: \
3541 case MINUS: \
3543 enum machine_mode xmode = GET_MODE (X); \
3544 if (xmode == SFmode || xmode == DFmode) \
3546 if (TUNE_MIPS3000 \
3547 || TUNE_MIPS3900) \
3548 return COSTS_N_INSNS (2); \
3549 else if (TUNE_MIPS6000) \
3550 return COSTS_N_INSNS (3); \
3551 else \
3552 return COSTS_N_INSNS (6); \
3555 if (xmode == DImode && !TARGET_64BIT) \
3556 return COSTS_N_INSNS (4); \
3558 break; \
3561 case NEG: \
3562 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3563 return 4; \
3565 break; \
3567 case MULT: \
3569 enum machine_mode xmode = GET_MODE (X); \
3570 if (xmode == SFmode) \
3572 if (TUNE_MIPS3000 \
3573 || TUNE_MIPS3900 \
3574 || TUNE_MIPS5000) \
3575 return COSTS_N_INSNS (4); \
3576 else if (TUNE_MIPS6000) \
3577 return COSTS_N_INSNS (5); \
3578 else \
3579 return COSTS_N_INSNS (7); \
3582 if (xmode == DFmode) \
3584 if (TUNE_MIPS3000 \
3585 || TUNE_MIPS3900 \
3586 || TUNE_MIPS5000) \
3587 return COSTS_N_INSNS (5); \
3588 else if (TUNE_MIPS6000) \
3589 return COSTS_N_INSNS (6); \
3590 else \
3591 return COSTS_N_INSNS (8); \
3594 if (TUNE_MIPS3000) \
3595 return COSTS_N_INSNS (12); \
3596 else if (TUNE_MIPS3900) \
3597 return COSTS_N_INSNS (2); \
3598 else if (TUNE_MIPS6000) \
3599 return COSTS_N_INSNS (17); \
3600 else if (TUNE_MIPS5000) \
3601 return COSTS_N_INSNS (5); \
3602 else \
3603 return COSTS_N_INSNS (10); \
3606 case DIV: \
3607 case MOD: \
3609 enum machine_mode xmode = GET_MODE (X); \
3610 if (xmode == SFmode) \
3612 if (TUNE_MIPS3000 \
3613 || TUNE_MIPS3900) \
3614 return COSTS_N_INSNS (12); \
3615 else if (TUNE_MIPS6000) \
3616 return COSTS_N_INSNS (15); \
3617 else \
3618 return COSTS_N_INSNS (23); \
3621 if (xmode == DFmode) \
3623 if (TUNE_MIPS3000 \
3624 || TUNE_MIPS3900) \
3625 return COSTS_N_INSNS (19); \
3626 else if (TUNE_MIPS6000) \
3627 return COSTS_N_INSNS (16); \
3628 else \
3629 return COSTS_N_INSNS (36); \
3632 /* fall through */ \
3634 case UDIV: \
3635 case UMOD: \
3636 if (TUNE_MIPS3000 \
3637 || TUNE_MIPS3900) \
3638 return COSTS_N_INSNS (35); \
3639 else if (TUNE_MIPS6000) \
3640 return COSTS_N_INSNS (38); \
3641 else if (TUNE_MIPS5000) \
3642 return COSTS_N_INSNS (36); \
3643 else \
3644 return COSTS_N_INSNS (69); \
3646 case SIGN_EXTEND: \
3647 /* A sign extend from SImode to DImode in 64 bit mode is often \
3648 zero instructions, because the result can often be used \
3649 directly by another instruction; we'll call it one. */ \
3650 if (TARGET_64BIT && GET_MODE (X) == DImode \
3651 && GET_MODE (XEXP (X, 0)) == SImode) \
3652 return COSTS_N_INSNS (1); \
3653 else \
3654 return COSTS_N_INSNS (2); \
3656 case ZERO_EXTEND: \
3657 if (TARGET_64BIT && GET_MODE (X) == DImode \
3658 && GET_MODE (XEXP (X, 0)) == SImode) \
3659 return COSTS_N_INSNS (2); \
3660 else \
3661 return COSTS_N_INSNS (1);
3663 /* An expression giving the cost of an addressing mode that
3664 contains ADDRESS. If not defined, the cost is computed from the
3665 form of the ADDRESS expression and the `CONST_COSTS' values.
3667 For most CISC machines, the default cost is a good approximation
3668 of the true cost of the addressing mode. However, on RISC
3669 machines, all instructions normally have the same length and
3670 execution time. Hence all addresses will have equal costs.
3672 In cases where more than one form of an address is known, the
3673 form with the lowest cost will be used. If multiple forms have
3674 the same, lowest, cost, the one that is the most complex will be
3675 used.
3677 For example, suppose an address that is equal to the sum of a
3678 register and a constant is used twice in the same basic block.
3679 When this macro is not defined, the address will be computed in
3680 a register and memory references will be indirect through that
3681 register. On machines where the cost of the addressing mode
3682 containing the sum is no higher than that of a simple indirect
3683 reference, this will produce an additional instruction and
3684 possibly require an additional register. Proper specification
3685 of this macro eliminates this overhead for such machines.
3687 Similar use of this macro is made in strength reduction of loops.
3689 ADDRESS need not be valid as an address. In such a case, the
3690 cost is not relevant and can be any value; invalid addresses
3691 need not be assigned a different cost.
3693 On machines where an address involving more than one register is
3694 as cheap as an address computation involving only one register,
3695 defining `ADDRESS_COST' to reflect this can cause two registers
3696 to be live over a region of code where only one would have been
3697 if `ADDRESS_COST' were not defined in that manner. This effect
3698 should be considered in the definition of this macro.
3699 Equivalent costs should probably only be given to addresses with
3700 different numbers of registers on machines with lots of registers.
3702 This macro will normally either not be defined or be defined as
3703 a constant. */
3705 #define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
3707 /* A C expression for the cost of moving data from a register in
3708 class FROM to one in class TO. The classes are expressed using
3709 the enumeration values such as `GENERAL_REGS'. A value of 2 is
3710 the default; other values are interpreted relative to that.
3712 It is not required that the cost always equal 2 when FROM is the
3713 same as TO; on some machines it is expensive to move between
3714 registers if they are not general registers.
3716 If reload sees an insn consisting of a single `set' between two
3717 hard registers, and if `REGISTER_MOVE_COST' applied to their
3718 classes returns a value of 2, reload does not check to ensure
3719 that the constraints of the insn are met. Setting a cost of
3720 other than 2 will allow reload to verify that the constraints are
3721 met. You should do this if the `movM' pattern's constraints do
3722 not allow such copying. */
3724 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
3725 mips_register_move_cost (MODE, FROM, TO)
3727 /* ??? Fix this to be right for the R8000. */
3728 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
3729 (((TUNE_MIPS4000 || TUNE_MIPS6000) ? 6 : 4) \
3730 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
3732 /* Define if copies to/from condition code registers should be avoided.
3734 This is needed for the MIPS because reload_outcc is not complete;
3735 it needs to handle cases where the source is a general or another
3736 condition code register. */
3737 #define AVOID_CCMODE_COPIES
3739 /* A C expression for the cost of a branch instruction. A value of
3740 1 is the default; other values are interpreted relative to that. */
3742 /* ??? Fix this to be right for the R8000. */
3743 #define BRANCH_COST \
3744 ((! TARGET_MIPS16 \
3745 && (TUNE_MIPS4000 || TUNE_MIPS6000)) \
3746 ? 2 : 1)
3748 /* If defined, modifies the length assigned to instruction INSN as a
3749 function of the context in which it is used. LENGTH is an lvalue
3750 that contains the initially computed length of the insn and should
3751 be updated with the correct length of the insn. */
3752 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
3753 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
3756 /* Optionally define this if you have added predicates to
3757 `MACHINE.c'. This macro is called within an initializer of an
3758 array of structures. The first field in the structure is the
3759 name of a predicate and the second field is an array of rtl
3760 codes. For each predicate, list all rtl codes that can be in
3761 expressions matched by the predicate. The list should have a
3762 trailing comma. Here is an example of two entries in the list
3763 for a typical RISC machine:
3765 #define PREDICATE_CODES \
3766 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3767 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3769 Defining this macro does not affect the generated code (however,
3770 incorrect definitions that omit an rtl code that may be matched
3771 by the predicate can cause the compiler to malfunction).
3772 Instead, it allows the table built by `genrecog' to be more
3773 compact and efficient, thus speeding up the compiler. The most
3774 important predicates to include in the list specified by this
3775 macro are thoses used in the most insn patterns. */
3777 #define PREDICATE_CODES \
3778 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
3779 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
3780 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
3781 {"reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
3782 {"true_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
3783 {"small_int", { CONST_INT }}, \
3784 {"large_int", { CONST_INT }}, \
3785 {"mips_const_double_ok", { CONST_DOUBLE }}, \
3786 {"const_float_1_operand", { CONST_DOUBLE }}, \
3787 {"simple_memory_operand", { MEM, SUBREG }}, \
3788 {"equality_op", { EQ, NE }}, \
3789 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
3790 LTU, LEU }}, \
3791 {"trap_cmp_op", { EQ, NE, GE, GEU, LT, LTU }}, \
3792 {"pc_or_label_operand", { PC, LABEL_REF }}, \
3793 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
3794 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3795 SYMBOL_REF, LABEL_REF, SUBREG, \
3796 REG, MEM}}, \
3797 {"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3798 SYMBOL_REF, LABEL_REF, SUBREG, REG, \
3799 MEM, SIGN_EXTEND }}, \
3800 {"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
3801 {"se_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG, \
3802 SIGN_EXTEND }}, \
3803 {"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
3804 SIGN_EXTEND }}, \
3805 {"se_arith_operand", { REG, CONST_INT, SUBREG, \
3806 SIGN_EXTEND }}, \
3807 {"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3808 SYMBOL_REF, LABEL_REF, SUBREG, \
3809 REG, SIGN_EXTEND }}, \
3810 {"se_nonimmediate_operand", { SUBREG, REG, MEM, SIGN_EXTEND }}, \
3811 {"consttable_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
3812 CONST_DOUBLE, CONST }}, \
3813 {"extend_operator", { SIGN_EXTEND, ZERO_EXTEND }}, \
3814 {"highpart_shift_operator", { ASHIFTRT, LSHIFTRT, ROTATERT, ROTATE }},
3816 /* A list of predicates that do special things with modes, and so
3817 should not elicit warnings for VOIDmode match_operand. */
3819 #define SPECIAL_MODE_PREDICATES \
3820 "pc_or_label_operand",
3823 /* If defined, a C statement to be executed just prior to the
3824 output of assembler code for INSN, to modify the extracted
3825 operands so they will be output differently.
3827 Here the argument OPVEC is the vector containing the operands
3828 extracted from INSN, and NOPERANDS is the number of elements of
3829 the vector which contain meaningful data for this insn. The
3830 contents of this vector are what will be used to convert the
3831 insn template into assembler code, so you can change the
3832 assembler output by changing the contents of the vector.
3834 We use it to check if the current insn needs a nop in front of it
3835 because of load delays, and also to update the delay slot
3836 statistics. */
3838 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3839 final_prescan_insn (INSN, OPVEC, NOPERANDS)
3842 /* Control the assembler format that we output. */
3844 /* Output at beginning of assembler file.
3845 If we are optimizing to use the global pointer, create a temporary
3846 file to hold all of the text stuff, and write it out to the end.
3847 This is needed because the MIPS assembler is evidently one pass,
3848 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3849 declaration when the code is processed, it generates a two
3850 instruction sequence. */
3852 #undef ASM_FILE_START
3853 #define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3855 /* Output to assembler file text saying following lines
3856 may contain character constants, extra white space, comments, etc. */
3858 #ifndef ASM_APP_ON
3859 #define ASM_APP_ON " #APP\n"
3860 #endif
3862 /* Output to assembler file text saying following lines
3863 no longer contain unusual constructs. */
3865 #ifndef ASM_APP_OFF
3866 #define ASM_APP_OFF " #NO_APP\n"
3867 #endif
3869 /* How to refer to registers in assembler output.
3870 This sequence is indexed by compiler's hard-register-number (see above).
3872 In order to support the two different conventions for register names,
3873 we use the name of a table set up in mips.c, which is overwritten
3874 if -mrnames is used. */
3876 #define REGISTER_NAMES \
3878 &mips_reg_names[ 0][0], \
3879 &mips_reg_names[ 1][0], \
3880 &mips_reg_names[ 2][0], \
3881 &mips_reg_names[ 3][0], \
3882 &mips_reg_names[ 4][0], \
3883 &mips_reg_names[ 5][0], \
3884 &mips_reg_names[ 6][0], \
3885 &mips_reg_names[ 7][0], \
3886 &mips_reg_names[ 8][0], \
3887 &mips_reg_names[ 9][0], \
3888 &mips_reg_names[10][0], \
3889 &mips_reg_names[11][0], \
3890 &mips_reg_names[12][0], \
3891 &mips_reg_names[13][0], \
3892 &mips_reg_names[14][0], \
3893 &mips_reg_names[15][0], \
3894 &mips_reg_names[16][0], \
3895 &mips_reg_names[17][0], \
3896 &mips_reg_names[18][0], \
3897 &mips_reg_names[19][0], \
3898 &mips_reg_names[20][0], \
3899 &mips_reg_names[21][0], \
3900 &mips_reg_names[22][0], \
3901 &mips_reg_names[23][0], \
3902 &mips_reg_names[24][0], \
3903 &mips_reg_names[25][0], \
3904 &mips_reg_names[26][0], \
3905 &mips_reg_names[27][0], \
3906 &mips_reg_names[28][0], \
3907 &mips_reg_names[29][0], \
3908 &mips_reg_names[30][0], \
3909 &mips_reg_names[31][0], \
3910 &mips_reg_names[32][0], \
3911 &mips_reg_names[33][0], \
3912 &mips_reg_names[34][0], \
3913 &mips_reg_names[35][0], \
3914 &mips_reg_names[36][0], \
3915 &mips_reg_names[37][0], \
3916 &mips_reg_names[38][0], \
3917 &mips_reg_names[39][0], \
3918 &mips_reg_names[40][0], \
3919 &mips_reg_names[41][0], \
3920 &mips_reg_names[42][0], \
3921 &mips_reg_names[43][0], \
3922 &mips_reg_names[44][0], \
3923 &mips_reg_names[45][0], \
3924 &mips_reg_names[46][0], \
3925 &mips_reg_names[47][0], \
3926 &mips_reg_names[48][0], \
3927 &mips_reg_names[49][0], \
3928 &mips_reg_names[50][0], \
3929 &mips_reg_names[51][0], \
3930 &mips_reg_names[52][0], \
3931 &mips_reg_names[53][0], \
3932 &mips_reg_names[54][0], \
3933 &mips_reg_names[55][0], \
3934 &mips_reg_names[56][0], \
3935 &mips_reg_names[57][0], \
3936 &mips_reg_names[58][0], \
3937 &mips_reg_names[59][0], \
3938 &mips_reg_names[60][0], \
3939 &mips_reg_names[61][0], \
3940 &mips_reg_names[62][0], \
3941 &mips_reg_names[63][0], \
3942 &mips_reg_names[64][0], \
3943 &mips_reg_names[65][0], \
3944 &mips_reg_names[66][0], \
3945 &mips_reg_names[67][0], \
3946 &mips_reg_names[68][0], \
3947 &mips_reg_names[69][0], \
3948 &mips_reg_names[70][0], \
3949 &mips_reg_names[71][0], \
3950 &mips_reg_names[72][0], \
3951 &mips_reg_names[73][0], \
3952 &mips_reg_names[74][0], \
3953 &mips_reg_names[75][0], \
3954 &mips_reg_names[76][0], \
3955 &mips_reg_names[77][0], \
3956 &mips_reg_names[78][0], \
3957 &mips_reg_names[79][0], \
3958 &mips_reg_names[80][0], \
3959 &mips_reg_names[81][0], \
3960 &mips_reg_names[82][0], \
3961 &mips_reg_names[83][0], \
3962 &mips_reg_names[84][0], \
3963 &mips_reg_names[85][0], \
3964 &mips_reg_names[86][0], \
3965 &mips_reg_names[87][0], \
3966 &mips_reg_names[88][0], \
3967 &mips_reg_names[89][0], \
3968 &mips_reg_names[90][0], \
3969 &mips_reg_names[91][0], \
3970 &mips_reg_names[92][0], \
3971 &mips_reg_names[93][0], \
3972 &mips_reg_names[94][0], \
3973 &mips_reg_names[95][0], \
3974 &mips_reg_names[96][0], \
3975 &mips_reg_names[97][0], \
3976 &mips_reg_names[98][0], \
3977 &mips_reg_names[99][0], \
3978 &mips_reg_names[100][0], \
3979 &mips_reg_names[101][0], \
3980 &mips_reg_names[102][0], \
3981 &mips_reg_names[103][0], \
3982 &mips_reg_names[104][0], \
3983 &mips_reg_names[105][0], \
3984 &mips_reg_names[106][0], \
3985 &mips_reg_names[107][0], \
3986 &mips_reg_names[108][0], \
3987 &mips_reg_names[109][0], \
3988 &mips_reg_names[110][0], \
3989 &mips_reg_names[111][0], \
3990 &mips_reg_names[112][0], \
3991 &mips_reg_names[113][0], \
3992 &mips_reg_names[114][0], \
3993 &mips_reg_names[115][0], \
3994 &mips_reg_names[116][0], \
3995 &mips_reg_names[117][0], \
3996 &mips_reg_names[118][0], \
3997 &mips_reg_names[119][0], \
3998 &mips_reg_names[120][0], \
3999 &mips_reg_names[121][0], \
4000 &mips_reg_names[122][0], \
4001 &mips_reg_names[123][0], \
4002 &mips_reg_names[124][0], \
4003 &mips_reg_names[125][0], \
4004 &mips_reg_names[126][0], \
4005 &mips_reg_names[127][0], \
4006 &mips_reg_names[128][0], \
4007 &mips_reg_names[129][0], \
4008 &mips_reg_names[130][0], \
4009 &mips_reg_names[131][0], \
4010 &mips_reg_names[132][0], \
4011 &mips_reg_names[133][0], \
4012 &mips_reg_names[134][0], \
4013 &mips_reg_names[135][0], \
4014 &mips_reg_names[136][0], \
4015 &mips_reg_names[137][0], \
4016 &mips_reg_names[138][0], \
4017 &mips_reg_names[139][0], \
4018 &mips_reg_names[140][0], \
4019 &mips_reg_names[141][0], \
4020 &mips_reg_names[142][0], \
4021 &mips_reg_names[143][0], \
4022 &mips_reg_names[144][0], \
4023 &mips_reg_names[145][0], \
4024 &mips_reg_names[146][0], \
4025 &mips_reg_names[147][0], \
4026 &mips_reg_names[148][0], \
4027 &mips_reg_names[149][0], \
4028 &mips_reg_names[150][0], \
4029 &mips_reg_names[151][0], \
4030 &mips_reg_names[152][0], \
4031 &mips_reg_names[153][0], \
4032 &mips_reg_names[154][0], \
4033 &mips_reg_names[155][0], \
4034 &mips_reg_names[156][0], \
4035 &mips_reg_names[157][0], \
4036 &mips_reg_names[158][0], \
4037 &mips_reg_names[159][0], \
4038 &mips_reg_names[160][0], \
4039 &mips_reg_names[161][0], \
4040 &mips_reg_names[162][0], \
4041 &mips_reg_names[163][0], \
4042 &mips_reg_names[164][0], \
4043 &mips_reg_names[165][0], \
4044 &mips_reg_names[166][0], \
4045 &mips_reg_names[167][0], \
4046 &mips_reg_names[168][0], \
4047 &mips_reg_names[169][0], \
4048 &mips_reg_names[170][0], \
4049 &mips_reg_names[171][0], \
4050 &mips_reg_names[172][0], \
4051 &mips_reg_names[173][0], \
4052 &mips_reg_names[174][0], \
4053 &mips_reg_names[175][0] \
4056 /* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
4057 So define this for it. */
4058 #define DEBUG_REGISTER_NAMES \
4060 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
4061 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
4062 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
4063 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
4064 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
4065 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
4066 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
4067 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
4068 "hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
4069 "$fcc5","$fcc6","$fcc7","$rap", "", "", "", "", \
4070 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",\
4071 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15",\
4072 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23",\
4073 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31",\
4074 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",\
4075 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15",\
4076 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23",\
4077 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31",\
4078 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",\
4079 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15",\
4080 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23",\
4081 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31"\
4084 /* If defined, a C initializer for an array of structures
4085 containing a name and a register number. This macro defines
4086 additional names for hard registers, thus allowing the `asm'
4087 option in declarations to refer to registers using alternate
4088 names.
4090 We define both names for the integer registers here. */
4092 #define ADDITIONAL_REGISTER_NAMES \
4094 { "$0", 0 + GP_REG_FIRST }, \
4095 { "$1", 1 + GP_REG_FIRST }, \
4096 { "$2", 2 + GP_REG_FIRST }, \
4097 { "$3", 3 + GP_REG_FIRST }, \
4098 { "$4", 4 + GP_REG_FIRST }, \
4099 { "$5", 5 + GP_REG_FIRST }, \
4100 { "$6", 6 + GP_REG_FIRST }, \
4101 { "$7", 7 + GP_REG_FIRST }, \
4102 { "$8", 8 + GP_REG_FIRST }, \
4103 { "$9", 9 + GP_REG_FIRST }, \
4104 { "$10", 10 + GP_REG_FIRST }, \
4105 { "$11", 11 + GP_REG_FIRST }, \
4106 { "$12", 12 + GP_REG_FIRST }, \
4107 { "$13", 13 + GP_REG_FIRST }, \
4108 { "$14", 14 + GP_REG_FIRST }, \
4109 { "$15", 15 + GP_REG_FIRST }, \
4110 { "$16", 16 + GP_REG_FIRST }, \
4111 { "$17", 17 + GP_REG_FIRST }, \
4112 { "$18", 18 + GP_REG_FIRST }, \
4113 { "$19", 19 + GP_REG_FIRST }, \
4114 { "$20", 20 + GP_REG_FIRST }, \
4115 { "$21", 21 + GP_REG_FIRST }, \
4116 { "$22", 22 + GP_REG_FIRST }, \
4117 { "$23", 23 + GP_REG_FIRST }, \
4118 { "$24", 24 + GP_REG_FIRST }, \
4119 { "$25", 25 + GP_REG_FIRST }, \
4120 { "$26", 26 + GP_REG_FIRST }, \
4121 { "$27", 27 + GP_REG_FIRST }, \
4122 { "$28", 28 + GP_REG_FIRST }, \
4123 { "$29", 29 + GP_REG_FIRST }, \
4124 { "$30", 30 + GP_REG_FIRST }, \
4125 { "$31", 31 + GP_REG_FIRST }, \
4126 { "$sp", 29 + GP_REG_FIRST }, \
4127 { "$fp", 30 + GP_REG_FIRST }, \
4128 { "at", 1 + GP_REG_FIRST }, \
4129 { "v0", 2 + GP_REG_FIRST }, \
4130 { "v1", 3 + GP_REG_FIRST }, \
4131 { "a0", 4 + GP_REG_FIRST }, \
4132 { "a1", 5 + GP_REG_FIRST }, \
4133 { "a2", 6 + GP_REG_FIRST }, \
4134 { "a3", 7 + GP_REG_FIRST }, \
4135 { "t0", 8 + GP_REG_FIRST }, \
4136 { "t1", 9 + GP_REG_FIRST }, \
4137 { "t2", 10 + GP_REG_FIRST }, \
4138 { "t3", 11 + GP_REG_FIRST }, \
4139 { "t4", 12 + GP_REG_FIRST }, \
4140 { "t5", 13 + GP_REG_FIRST }, \
4141 { "t6", 14 + GP_REG_FIRST }, \
4142 { "t7", 15 + GP_REG_FIRST }, \
4143 { "s0", 16 + GP_REG_FIRST }, \
4144 { "s1", 17 + GP_REG_FIRST }, \
4145 { "s2", 18 + GP_REG_FIRST }, \
4146 { "s3", 19 + GP_REG_FIRST }, \
4147 { "s4", 20 + GP_REG_FIRST }, \
4148 { "s5", 21 + GP_REG_FIRST }, \
4149 { "s6", 22 + GP_REG_FIRST }, \
4150 { "s7", 23 + GP_REG_FIRST }, \
4151 { "t8", 24 + GP_REG_FIRST }, \
4152 { "t9", 25 + GP_REG_FIRST }, \
4153 { "k0", 26 + GP_REG_FIRST }, \
4154 { "k1", 27 + GP_REG_FIRST }, \
4155 { "gp", 28 + GP_REG_FIRST }, \
4156 { "sp", 29 + GP_REG_FIRST }, \
4157 { "fp", 30 + GP_REG_FIRST }, \
4158 { "ra", 31 + GP_REG_FIRST }, \
4159 { "$sp", 29 + GP_REG_FIRST }, \
4160 { "$fp", 30 + GP_REG_FIRST } \
4161 ALL_COP_ADDITIONAL_REGISTER_NAMES \
4164 /* This is meant to be redefined in the host dependent files. It is a
4165 set of alternative names and regnums for mips coprocessors. */
4167 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
4169 /* A C compound statement to output to stdio stream STREAM the
4170 assembler syntax for an instruction operand X. X is an RTL
4171 expression.
4173 CODE is a value that can be used to specify one of several ways
4174 of printing the operand. It is used when identical operands
4175 must be printed differently depending on the context. CODE
4176 comes from the `%' specification that was used to request
4177 printing of the operand. If the specification was just `%DIGIT'
4178 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4179 is the ASCII code for LTR.
4181 If X is a register, this macro should print the register's name.
4182 The names can be found in an array `reg_names' whose type is
4183 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4185 When the machine description has a specification `%PUNCT' (a `%'
4186 followed by a punctuation character), this macro is called with
4187 a null pointer for X and the punctuation character for CODE.
4189 See mips.c for the MIPS specific codes. */
4191 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
4193 /* A C expression which evaluates to true if CODE is a valid
4194 punctuation character for use in the `PRINT_OPERAND' macro. If
4195 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
4196 punctuation characters (except for the standard one, `%') are
4197 used in this way. */
4199 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
4201 /* A C compound statement to output to stdio stream STREAM the
4202 assembler syntax for an instruction operand that is a memory
4203 reference whose address is ADDR. ADDR is an RTL expression. */
4205 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
4208 /* A C statement, to be executed after all slot-filler instructions
4209 have been output. If necessary, call `dbr_sequence_length' to
4210 determine the number of slots filled in a sequence (zero if not
4211 currently outputting a sequence), to decide how many no-ops to
4212 output, or whatever.
4214 Don't define this macro if it has nothing to do, but it is
4215 helpful in reading assembly output if the extent of the delay
4216 sequence is made explicit (e.g. with white space).
4218 Note that output routines for instructions with delay slots must
4219 be prepared to deal with not being output as part of a sequence
4220 (i.e. when the scheduling pass is not run, or when no slot
4221 fillers could be found.) The variable `final_sequence' is null
4222 when not processing a sequence, otherwise it contains the
4223 `sequence' rtx being output. */
4225 #define DBR_OUTPUT_SEQEND(STREAM) \
4226 do \
4228 if (set_nomacro > 0 && --set_nomacro == 0) \
4229 fputs ("\t.set\tmacro\n", STREAM); \
4231 if (set_noreorder > 0 && --set_noreorder == 0) \
4232 fputs ("\t.set\treorder\n", STREAM); \
4234 dslots_jump_filled++; \
4235 fputs ("\n", STREAM); \
4237 while (0)
4240 /* How to tell the debugger about changes of source files. Note, the
4241 mips ECOFF format cannot deal with changes of files inside of
4242 functions, which means the output of parser generators like bison
4243 is generally not debuggable without using the -l switch. Lose,
4244 lose, lose. Silicon graphics seems to want all .file's hardwired
4245 to 1. */
4247 #ifndef SET_FILE_NUMBER
4248 #define SET_FILE_NUMBER() ++num_source_filenames
4249 #endif
4251 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
4252 mips_output_filename (STREAM, NAME)
4254 /* This is defined so that it can be overridden in iris6.h. */
4255 #define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
4256 do \
4258 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
4259 output_quoted_string (STREAM, NAME); \
4260 fputs ("\n", STREAM); \
4262 while (0)
4264 /* This is how to output a note the debugger telling it the line number
4265 to which the following sequence of instructions corresponds.
4266 Silicon graphics puts a label after each .loc. */
4268 #ifndef LABEL_AFTER_LOC
4269 #define LABEL_AFTER_LOC(STREAM)
4270 #endif
4272 #ifndef ASM_OUTPUT_SOURCE_LINE
4273 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
4274 mips_output_lineno (STREAM, LINE)
4275 #endif
4277 /* The MIPS implementation uses some labels for its own purpose. The
4278 following lists what labels are created, and are all formed by the
4279 pattern $L[a-z].*. The machine independent portion of GCC creates
4280 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
4282 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
4283 $Lb[0-9]+ Begin blocks for MIPS debug support
4284 $Lc[0-9]+ Label for use in s<xx> operation.
4285 $Le[0-9]+ End blocks for MIPS debug support
4286 $Lp\..+ Half-pic labels. */
4288 /* This is how to output the definition of a user-level label named NAME,
4289 such as the label on a static function or variable NAME.
4291 If we are optimizing the gp, remember that this label has been put
4292 out, so we know not to emit an .extern for it in mips_asm_file_end.
4293 We use one of the common bits in the IDENTIFIER tree node for this,
4294 since those bits seem to be unused, and we don't have any method
4295 of getting the decl nodes from the name. */
4297 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
4298 do { \
4299 assemble_name (STREAM, NAME); \
4300 fputs (":\n", STREAM); \
4301 } while (0)
4304 /* A C statement (sans semicolon) to output to the stdio stream
4305 STREAM any text necessary for declaring the name NAME of an
4306 initialized variable which is being defined. This macro must
4307 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
4308 The argument DECL is the `VAR_DECL' tree node representing the
4309 variable.
4311 If this macro is not defined, then the variable name is defined
4312 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
4314 #undef ASM_DECLARE_OBJECT_NAME
4315 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
4316 do \
4318 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
4319 HALF_PIC_DECLARE (NAME); \
4321 while (0)
4324 /* This is how to output a command to make the user-level label named NAME
4325 defined for reference from other files. */
4327 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
4328 do { \
4329 fputs ("\t.globl\t", STREAM); \
4330 assemble_name (STREAM, NAME); \
4331 fputs ("\n", STREAM); \
4332 } while (0)
4334 /* This says how to define a global common symbol. */
4336 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(STREAM, DECL, NAME, SIZE, ALIGN) \
4337 do { \
4338 /* If the target wants uninitialized const declarations in \
4339 .rdata then don't put them in .comm */ \
4340 if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA \
4341 && TREE_CODE (DECL) == VAR_DECL && TREE_READONLY (DECL) \
4342 && (DECL_INITIAL (DECL) == 0 \
4343 || DECL_INITIAL (DECL) == error_mark_node)) \
4345 if (TREE_PUBLIC (DECL) && DECL_NAME (DECL)) \
4346 ASM_GLOBALIZE_LABEL (STREAM, NAME); \
4348 readonly_data_section (); \
4349 ASM_OUTPUT_ALIGN (STREAM, floor_log2 (ALIGN / BITS_PER_UNIT)); \
4350 mips_declare_object (STREAM, NAME, "", ":\n\t.space\t%u\n", \
4351 (SIZE)); \
4353 else \
4354 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", \
4355 (SIZE)); \
4356 } while (0)
4359 /* This says how to define a local common symbol (ie, not visible to
4360 linker). */
4362 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
4363 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
4366 /* This says how to output an external. It would be possible not to
4367 output anything and let undefined symbol become external. However
4368 the assembler uses length information on externals to allocate in
4369 data/sdata bss/sbss, thereby saving exec time. */
4371 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
4372 mips_output_external(STREAM,DECL,NAME)
4374 /* This says what to print at the end of the assembly file */
4375 #undef ASM_FILE_END
4376 #define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
4379 /* Play switch file games if we're optimizing the global pointer. */
4381 #undef TEXT_SECTION
4382 #define TEXT_SECTION() \
4383 do { \
4384 extern FILE *asm_out_text_file; \
4385 if (TARGET_FILE_SWITCHING) \
4386 asm_out_file = asm_out_text_file; \
4387 fputs (TEXT_SECTION_ASM_OP, asm_out_file); \
4388 fputc ('\n', asm_out_file); \
4389 } while (0)
4392 /* This is how to declare a function name. The actual work of
4393 emitting the label is moved to function_prologue, so that we can
4394 get the line number correctly emitted before the .ent directive,
4395 and after any .file directives. */
4397 #undef ASM_DECLARE_FUNCTION_NAME
4398 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
4399 HALF_PIC_DECLARE (NAME)
4401 /* This is how to output an internal numbered label where
4402 PREFIX is the class of label and NUM is the number within the class. */
4404 #undef ASM_OUTPUT_INTERNAL_LABEL
4405 #define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
4406 fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
4408 /* This is how to store into the string LABEL
4409 the symbol_ref name of an internal numbered label where
4410 PREFIX is the class of label and NUM is the number within the class.
4411 This is suitable for output with `assemble_name'. */
4413 #undef ASM_GENERATE_INTERNAL_LABEL
4414 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
4415 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
4417 /* This is how to output an element of a case-vector that is absolute. */
4419 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
4420 fprintf (STREAM, "\t%s\t%sL%d\n", \
4421 Pmode == DImode ? ".dword" : ".word", \
4422 LOCAL_LABEL_PREFIX, \
4423 VALUE)
4425 /* This is how to output an element of a case-vector that is relative.
4426 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
4427 TARGET_EMBEDDED_PIC). */
4429 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
4430 do { \
4431 if (TARGET_MIPS16) \
4432 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
4433 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4434 else if (TARGET_EMBEDDED_PIC) \
4435 fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
4436 Pmode == DImode ? ".dword" : ".word", \
4437 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4438 else if (mips_abi == ABI_32 || mips_abi == ABI_O64) \
4439 fprintf (STREAM, "\t%s\t%sL%d\n", \
4440 Pmode == DImode ? ".gpdword" : ".gpword", \
4441 LOCAL_LABEL_PREFIX, VALUE); \
4442 else \
4443 fprintf (STREAM, "\t%s\t%sL%d\n", \
4444 Pmode == DImode ? ".dword" : ".word", \
4445 LOCAL_LABEL_PREFIX, VALUE); \
4446 } while (0)
4448 /* When generating embedded PIC or mips16 code we want to put the jump
4449 table in the .text section. In all other cases, we want to put the
4450 jump table in the .rdata section. Unfortunately, we can't use
4451 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
4452 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
4453 section if appropriate. */
4454 #undef ASM_OUTPUT_CASE_LABEL
4455 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
4456 do { \
4457 if (TARGET_EMBEDDED_PIC || TARGET_MIPS16) \
4458 function_section (current_function_decl); \
4459 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
4460 } while (0)
4462 /* This is how to output an assembler line
4463 that says to advance the location counter
4464 to a multiple of 2**LOG bytes. */
4466 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
4467 fprintf (STREAM, "\t.align\t%d\n", (LOG))
4469 /* This is how to output an assembler line to advance the location
4470 counter by SIZE bytes. */
4472 #undef ASM_OUTPUT_SKIP
4473 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
4474 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
4476 /* This is how to output a string. */
4477 #undef ASM_OUTPUT_ASCII
4478 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
4479 mips_output_ascii (STREAM, STRING, LEN)
4481 /* Handle certain cpp directives used in header files on sysV. */
4482 #define SCCS_DIRECTIVE
4484 /* Output #ident as a in the read-only data section. */
4485 #undef ASM_OUTPUT_IDENT
4486 #define ASM_OUTPUT_IDENT(FILE, STRING) \
4488 const char *p = STRING; \
4489 int size = strlen (p) + 1; \
4490 readonly_data_section (); \
4491 assemble_string (p, size); \
4494 /* Default to -G 8 */
4495 #ifndef MIPS_DEFAULT_GVALUE
4496 #define MIPS_DEFAULT_GVALUE 8
4497 #endif
4499 /* Define the strings to put out for each section in the object file. */
4500 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
4501 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
4502 #define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
4503 #ifndef READONLY_DATA_SECTION_ASM_OP
4504 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
4505 #endif
4506 #define SMALL_DATA_SECTION sdata_section
4508 /* What other sections we support other than the normal .data/.text. */
4510 #undef EXTRA_SECTIONS
4511 #define EXTRA_SECTIONS in_sdata
4513 /* Define the additional functions to select our additional sections. */
4515 /* on the MIPS it is not a good idea to put constants in the text
4516 section, since this defeats the sdata/data mechanism. This is
4517 especially true when -O is used. In this case an effort is made to
4518 address with faster (gp) register relative addressing, which can
4519 only get at sdata and sbss items (there is no stext !!) However,
4520 if the constant is too large for sdata, and it's readonly, it
4521 will go into the .rdata section. */
4523 #undef EXTRA_SECTION_FUNCTIONS
4524 #define EXTRA_SECTION_FUNCTIONS \
4525 void \
4526 sdata_section () \
4528 if (in_section != in_sdata) \
4530 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
4531 in_section = in_sdata; \
4535 /* Given a decl node or constant node, choose the section to output it in
4536 and select that section. */
4538 #undef TARGET_ASM_SELECT_SECTION
4539 #define TARGET_ASM_SELECT_SECTION mips_select_section
4541 /* Store in OUTPUT a string (made with alloca) containing
4542 an assembler-name for a local static variable named NAME.
4543 LABELNO is an integer which is different for each call. */
4545 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
4546 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
4547 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
4549 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
4550 do \
4552 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
4553 TARGET_64BIT ? "dsubu" : "subu", \
4554 reg_names[STACK_POINTER_REGNUM], \
4555 reg_names[STACK_POINTER_REGNUM], \
4556 TARGET_64BIT ? "sd" : "sw", \
4557 reg_names[REGNO], \
4558 reg_names[STACK_POINTER_REGNUM]); \
4560 while (0)
4562 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
4563 do \
4565 if (! set_noreorder) \
4566 fprintf (STREAM, "\t.set\tnoreorder\n"); \
4568 dslots_load_total++; \
4569 dslots_load_filled++; \
4570 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
4571 TARGET_64BIT ? "ld" : "lw", \
4572 reg_names[REGNO], \
4573 reg_names[STACK_POINTER_REGNUM], \
4574 TARGET_64BIT ? "daddu" : "addu", \
4575 reg_names[STACK_POINTER_REGNUM], \
4576 reg_names[STACK_POINTER_REGNUM]); \
4578 if (! set_noreorder) \
4579 fprintf (STREAM, "\t.set\treorder\n"); \
4581 while (0)
4583 /* How to start an assembler comment.
4584 The leading space is important (the mips native assembler requires it). */
4585 #ifndef ASM_COMMENT_START
4586 #define ASM_COMMENT_START " #"
4587 #endif
4590 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
4591 and mips-tdump.c to print them out.
4593 These must match the corresponding definitions in gdb/mipsread.c.
4594 Unfortunately, gcc and gdb do not currently share any directories. */
4596 #define CODE_MASK 0x8F300
4597 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
4598 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
4599 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
4602 /* Default definitions for size_t and ptrdiff_t. */
4604 #ifndef SIZE_TYPE
4605 #define SIZE_TYPE (Pmode == DImode ? "long unsigned int" : "unsigned int")
4606 #endif
4608 #ifndef PTRDIFF_TYPE
4609 #define PTRDIFF_TYPE (Pmode == DImode ? "long int" : "int")
4610 #endif
4612 /* See mips_expand_prologue's use of loadgp for when this should be
4613 true. */
4615 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS \
4616 && mips_abi != ABI_32 \
4617 && mips_abi != ABI_O64)
4619 /* In mips16 mode, we need to look through the function to check for
4620 PC relative loads that are out of range. */
4621 #define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg (X)
4623 /* We need to use a special set of functions to handle hard floating
4624 point code in mips16 mode. */
4626 #ifndef INIT_SUBTARGET_OPTABS
4627 #define INIT_SUBTARGET_OPTABS
4628 #endif
4630 #define INIT_TARGET_OPTABS \
4631 do \
4633 if (! TARGET_MIPS16 || ! mips16_hard_float) \
4634 INIT_SUBTARGET_OPTABS; \
4635 else \
4637 add_optab->handlers[(int) SFmode].libfunc = \
4638 init_one_libfunc ("__mips16_addsf3"); \
4639 sub_optab->handlers[(int) SFmode].libfunc = \
4640 init_one_libfunc ("__mips16_subsf3"); \
4641 smul_optab->handlers[(int) SFmode].libfunc = \
4642 init_one_libfunc ("__mips16_mulsf3"); \
4643 sdiv_optab->handlers[(int) SFmode].libfunc = \
4644 init_one_libfunc ("__mips16_divsf3"); \
4646 eqsf2_libfunc = init_one_libfunc ("__mips16_eqsf2"); \
4647 nesf2_libfunc = init_one_libfunc ("__mips16_nesf2"); \
4648 gtsf2_libfunc = init_one_libfunc ("__mips16_gtsf2"); \
4649 gesf2_libfunc = init_one_libfunc ("__mips16_gesf2"); \
4650 ltsf2_libfunc = init_one_libfunc ("__mips16_ltsf2"); \
4651 lesf2_libfunc = init_one_libfunc ("__mips16_lesf2"); \
4653 floatsisf_libfunc = \
4654 init_one_libfunc ("__mips16_floatsisf"); \
4655 fixsfsi_libfunc = \
4656 init_one_libfunc ("__mips16_fixsfsi"); \
4658 if (TARGET_DOUBLE_FLOAT) \
4660 add_optab->handlers[(int) DFmode].libfunc = \
4661 init_one_libfunc ("__mips16_adddf3"); \
4662 sub_optab->handlers[(int) DFmode].libfunc = \
4663 init_one_libfunc ("__mips16_subdf3"); \
4664 smul_optab->handlers[(int) DFmode].libfunc = \
4665 init_one_libfunc ("__mips16_muldf3"); \
4666 sdiv_optab->handlers[(int) DFmode].libfunc = \
4667 init_one_libfunc ("__mips16_divdf3"); \
4669 extendsfdf2_libfunc = \
4670 init_one_libfunc ("__mips16_extendsfdf2"); \
4671 truncdfsf2_libfunc = \
4672 init_one_libfunc ("__mips16_truncdfsf2"); \
4674 eqdf2_libfunc = \
4675 init_one_libfunc ("__mips16_eqdf2"); \
4676 nedf2_libfunc = \
4677 init_one_libfunc ("__mips16_nedf2"); \
4678 gtdf2_libfunc = \
4679 init_one_libfunc ("__mips16_gtdf2"); \
4680 gedf2_libfunc = \
4681 init_one_libfunc ("__mips16_gedf2"); \
4682 ltdf2_libfunc = \
4683 init_one_libfunc ("__mips16_ltdf2"); \
4684 ledf2_libfunc = \
4685 init_one_libfunc ("__mips16_ledf2"); \
4687 floatsidf_libfunc = \
4688 init_one_libfunc ("__mips16_floatsidf"); \
4689 fixdfsi_libfunc = \
4690 init_one_libfunc ("__mips16_fixdfsi"); \
4694 while (0)
4696 #define DFMODE_NAN \
4697 unsigned short DFbignan[4] = {0x7ff7, 0xffff, 0xffff, 0xffff}; \
4698 unsigned short DFlittlenan[4] = {0xffff, 0xffff, 0xffff, 0xfff7}
4699 #define SFMODE_NAN \
4700 unsigned short SFbignan[2] = {0x7fbf, 0xffff}; \
4701 unsigned short SFlittlenan[2] = {0xffff, 0xffbf}