1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Casing
; use Casing
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Eval_Fat
; use Eval_Fat
;
32 with Exp_Ch11
; use Exp_Ch11
;
33 with Exp_Ch2
; use Exp_Ch2
;
34 with Exp_Ch4
; use Exp_Ch4
;
35 with Exp_Pakd
; use Exp_Pakd
;
36 with Exp_Util
; use Exp_Util
;
37 with Expander
; use Expander
;
38 with Freeze
; use Freeze
;
40 with Nlists
; use Nlists
;
41 with Nmake
; use Nmake
;
43 with Output
; use Output
;
44 with Restrict
; use Restrict
;
45 with Rident
; use Rident
;
46 with Rtsfind
; use Rtsfind
;
48 with Sem_Aux
; use Sem_Aux
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch8
; use Sem_Ch8
;
51 with Sem_Eval
; use Sem_Eval
;
52 with Sem_Res
; use Sem_Res
;
53 with Sem_Util
; use Sem_Util
;
54 with Sem_Warn
; use Sem_Warn
;
55 with Sinfo
; use Sinfo
;
56 with Sinput
; use Sinput
;
57 with Snames
; use Snames
;
58 with Sprint
; use Sprint
;
59 with Stand
; use Stand
;
60 with Stringt
; use Stringt
;
61 with Targparm
; use Targparm
;
62 with Tbuild
; use Tbuild
;
63 with Ttypes
; use Ttypes
;
64 with Validsw
; use Validsw
;
66 package body Checks
is
68 -- General note: many of these routines are concerned with generating
69 -- checking code to make sure that constraint error is raised at runtime.
70 -- Clearly this code is only needed if the expander is active, since
71 -- otherwise we will not be generating code or going into the runtime
74 -- We therefore disconnect most of these checks if the expander is
75 -- inactive. This has the additional benefit that we do not need to
76 -- worry about the tree being messed up by previous errors (since errors
77 -- turn off expansion anyway).
79 -- There are a few exceptions to the above rule. For instance routines
80 -- such as Apply_Scalar_Range_Check that do not insert any code can be
81 -- safely called even when the Expander is inactive (but Errors_Detected
82 -- is 0). The benefit of executing this code when expansion is off, is
83 -- the ability to emit constraint error warning for static expressions
84 -- even when we are not generating code.
86 -- The above is modified in gnatprove mode to ensure that proper check
87 -- flags are always placed, even if expansion is off.
89 -------------------------------------
90 -- Suppression of Redundant Checks --
91 -------------------------------------
93 -- This unit implements a limited circuit for removal of redundant
94 -- checks. The processing is based on a tracing of simple sequential
95 -- flow. For any sequence of statements, we save expressions that are
96 -- marked to be checked, and then if the same expression appears later
97 -- with the same check, then under certain circumstances, the second
98 -- check can be suppressed.
100 -- Basically, we can suppress the check if we know for certain that
101 -- the previous expression has been elaborated (together with its
102 -- check), and we know that the exception frame is the same, and that
103 -- nothing has happened to change the result of the exception.
105 -- Let us examine each of these three conditions in turn to describe
106 -- how we ensure that this condition is met.
108 -- First, we need to know for certain that the previous expression has
109 -- been executed. This is done principally by the mechanism of calling
110 -- Conditional_Statements_Begin at the start of any statement sequence
111 -- and Conditional_Statements_End at the end. The End call causes all
112 -- checks remembered since the Begin call to be discarded. This does
113 -- miss a few cases, notably the case of a nested BEGIN-END block with
114 -- no exception handlers. But the important thing is to be conservative.
115 -- The other protection is that all checks are discarded if a label
116 -- is encountered, since then the assumption of sequential execution
117 -- is violated, and we don't know enough about the flow.
119 -- Second, we need to know that the exception frame is the same. We
120 -- do this by killing all remembered checks when we enter a new frame.
121 -- Again, that's over-conservative, but generally the cases we can help
122 -- with are pretty local anyway (like the body of a loop for example).
124 -- Third, we must be sure to forget any checks which are no longer valid.
125 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
126 -- used to note any changes to local variables. We only attempt to deal
127 -- with checks involving local variables, so we do not need to worry
128 -- about global variables. Second, a call to any non-global procedure
129 -- causes us to abandon all stored checks, since such a all may affect
130 -- the values of any local variables.
132 -- The following define the data structures used to deal with remembering
133 -- checks so that redundant checks can be eliminated as described above.
135 -- Right now, the only expressions that we deal with are of the form of
136 -- simple local objects (either declared locally, or IN parameters) or
137 -- such objects plus/minus a compile time known constant. We can do
138 -- more later on if it seems worthwhile, but this catches many simple
139 -- cases in practice.
141 -- The following record type reflects a single saved check. An entry
142 -- is made in the stack of saved checks if and only if the expression
143 -- has been elaborated with the indicated checks.
145 type Saved_Check
is record
147 -- Set True if entry is killed by Kill_Checks
150 -- The entity involved in the expression that is checked
153 -- A compile time value indicating the result of adding or
154 -- subtracting a compile time value. This value is to be
155 -- added to the value of the Entity. A value of zero is
156 -- used for the case of a simple entity reference.
158 Check_Type
: Character;
159 -- This is set to 'R' for a range check (in which case Target_Type
160 -- is set to the target type for the range check) or to 'O' for an
161 -- overflow check (in which case Target_Type is set to Empty).
163 Target_Type
: Entity_Id
;
164 -- Used only if Do_Range_Check is set. Records the target type for
165 -- the check. We need this, because a check is a duplicate only if
166 -- it has the same target type (or more accurately one with a
167 -- range that is smaller or equal to the stored target type of a
171 -- The following table keeps track of saved checks. Rather than use an
172 -- extensible table, we just use a table of fixed size, and we discard
173 -- any saved checks that do not fit. That's very unlikely to happen and
174 -- this is only an optimization in any case.
176 Saved_Checks
: array (Int
range 1 .. 200) of Saved_Check
;
177 -- Array of saved checks
179 Num_Saved_Checks
: Nat
:= 0;
180 -- Number of saved checks
182 -- The following stack keeps track of statement ranges. It is treated
183 -- as a stack. When Conditional_Statements_Begin is called, an entry
184 -- is pushed onto this stack containing the value of Num_Saved_Checks
185 -- at the time of the call. Then when Conditional_Statements_End is
186 -- called, this value is popped off and used to reset Num_Saved_Checks.
188 -- Note: again, this is a fixed length stack with a size that should
189 -- always be fine. If the value of the stack pointer goes above the
190 -- limit, then we just forget all saved checks.
192 Saved_Checks_Stack
: array (Int
range 1 .. 100) of Nat
;
193 Saved_Checks_TOS
: Nat
:= 0;
195 -----------------------
196 -- Local Subprograms --
197 -----------------------
199 procedure Apply_Arithmetic_Overflow_Strict
(N
: Node_Id
);
200 -- Used to apply arithmetic overflow checks for all cases except operators
201 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
202 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
203 -- signed integer arithmetic operator (but not an if or case expression).
204 -- It is also called for types other than signed integers.
206 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated
(Op
: Node_Id
);
207 -- Used to apply arithmetic overflow checks for the case where the overflow
208 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
209 -- arithmetic op (which includes the case of if and case expressions). Note
210 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
211 -- we have work to do even if overflow checking is suppressed.
213 procedure Apply_Division_Check
218 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
219 -- division checks as required if the Do_Division_Check flag is set.
220 -- Rlo and Rhi give the possible range of the right operand, these values
221 -- can be referenced and trusted only if ROK is set True.
223 procedure Apply_Float_Conversion_Check
225 Target_Typ
: Entity_Id
);
226 -- The checks on a conversion from a floating-point type to an integer
227 -- type are delicate. They have to be performed before conversion, they
228 -- have to raise an exception when the operand is a NaN, and rounding must
229 -- be taken into account to determine the safe bounds of the operand.
231 procedure Apply_Selected_Length_Checks
233 Target_Typ
: Entity_Id
;
234 Source_Typ
: Entity_Id
;
235 Do_Static
: Boolean);
236 -- This is the subprogram that does all the work for Apply_Length_Check
237 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
238 -- described for the above routines. The Do_Static flag indicates that
239 -- only a static check is to be done.
241 procedure Apply_Selected_Range_Checks
243 Target_Typ
: Entity_Id
;
244 Source_Typ
: Entity_Id
;
245 Do_Static
: Boolean);
246 -- This is the subprogram that does all the work for Apply_Range_Check.
247 -- Expr, Target_Typ and Source_Typ are as described for the above
248 -- routine. The Do_Static flag indicates that only a static check is
251 type Check_Type
is new Check_Id
range Access_Check
.. Division_Check
;
252 function Check_Needed
(Nod
: Node_Id
; Check
: Check_Type
) return Boolean;
253 -- This function is used to see if an access or division by zero check is
254 -- needed. The check is to be applied to a single variable appearing in the
255 -- source, and N is the node for the reference. If N is not of this form,
256 -- True is returned with no further processing. If N is of the right form,
257 -- then further processing determines if the given Check is needed.
259 -- The particular circuit is to see if we have the case of a check that is
260 -- not needed because it appears in the right operand of a short circuited
261 -- conditional where the left operand guards the check. For example:
263 -- if Var = 0 or else Q / Var > 12 then
267 -- In this example, the division check is not required. At the same time
268 -- we can issue warnings for suspicious use of non-short-circuited forms,
271 -- if Var = 0 or Q / Var > 12 then
277 Check_Type
: Character;
278 Target_Type
: Entity_Id
;
279 Entry_OK
: out Boolean;
283 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
284 -- to see if a check is of the form for optimization, and if so, to see
285 -- if it has already been performed. Expr is the expression to check,
286 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
287 -- Target_Type is the target type for a range check, and Empty for an
288 -- overflow check. If the entry is not of the form for optimization,
289 -- then Entry_OK is set to False, and the remaining out parameters
290 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
291 -- entity and offset from the expression. Check_Num is the number of
292 -- a matching saved entry in Saved_Checks, or zero if no such entry
295 function Get_Discriminal
(E
: Entity_Id
; Bound
: Node_Id
) return Node_Id
;
296 -- If a discriminal is used in constraining a prival, Return reference
297 -- to the discriminal of the protected body (which renames the parameter
298 -- of the enclosing protected operation). This clumsy transformation is
299 -- needed because privals are created too late and their actual subtypes
300 -- are not available when analysing the bodies of the protected operations.
301 -- This function is called whenever the bound is an entity and the scope
302 -- indicates a protected operation. If the bound is an in-parameter of
303 -- a protected operation that is not a prival, the function returns the
305 -- To be cleaned up???
307 function Guard_Access
310 Ck_Node
: Node_Id
) return Node_Id
;
311 -- In the access type case, guard the test with a test to ensure
312 -- that the access value is non-null, since the checks do not
313 -- not apply to null access values.
315 procedure Install_Static_Check
(R_Cno
: Node_Id
; Loc
: Source_Ptr
);
316 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
317 -- Constraint_Error node.
319 function Is_Signed_Integer_Arithmetic_Op
(N
: Node_Id
) return Boolean;
320 -- Returns True if node N is for an arithmetic operation with signed
321 -- integer operands. This includes unary and binary operators, and also
322 -- if and case expression nodes where the dependent expressions are of
323 -- a signed integer type. These are the kinds of nodes for which special
324 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
326 function Range_Or_Validity_Checks_Suppressed
327 (Expr
: Node_Id
) return Boolean;
328 -- Returns True if either range or validity checks or both are suppressed
329 -- for the type of the given expression, or, if the expression is the name
330 -- of an entity, if these checks are suppressed for the entity.
332 function Selected_Length_Checks
334 Target_Typ
: Entity_Id
;
335 Source_Typ
: Entity_Id
;
336 Warn_Node
: Node_Id
) return Check_Result
;
337 -- Like Apply_Selected_Length_Checks, except it doesn't modify
338 -- anything, just returns a list of nodes as described in the spec of
339 -- this package for the Range_Check function.
341 function Selected_Range_Checks
343 Target_Typ
: Entity_Id
;
344 Source_Typ
: Entity_Id
;
345 Warn_Node
: Node_Id
) return Check_Result
;
346 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
347 -- just returns a list of nodes as described in the spec of this package
348 -- for the Range_Check function.
350 ------------------------------
351 -- Access_Checks_Suppressed --
352 ------------------------------
354 function Access_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
356 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
357 return Is_Check_Suppressed
(E
, Access_Check
);
359 return Scope_Suppress
.Suppress
(Access_Check
);
361 end Access_Checks_Suppressed
;
363 -------------------------------------
364 -- Accessibility_Checks_Suppressed --
365 -------------------------------------
367 function Accessibility_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
369 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
370 return Is_Check_Suppressed
(E
, Accessibility_Check
);
372 return Scope_Suppress
.Suppress
(Accessibility_Check
);
374 end Accessibility_Checks_Suppressed
;
376 -----------------------------
377 -- Activate_Division_Check --
378 -----------------------------
380 procedure Activate_Division_Check
(N
: Node_Id
) is
382 Set_Do_Division_Check
(N
, True);
383 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
384 end Activate_Division_Check
;
386 -----------------------------
387 -- Activate_Overflow_Check --
388 -----------------------------
390 procedure Activate_Overflow_Check
(N
: Node_Id
) is
391 Typ
: constant Entity_Id
:= Etype
(N
);
394 -- Floating-point case. If Etype is not set (this can happen when we
395 -- activate a check on a node that has not yet been analyzed), then
396 -- we assume we do not have a floating-point type (as per our spec).
398 if Present
(Typ
) and then Is_Floating_Point_Type
(Typ
) then
400 -- Ignore call if we have no automatic overflow checks on the target
401 -- and Check_Float_Overflow mode is not set. These are the cases in
402 -- which we expect to generate infinities and NaN's with no check.
404 if not (Machine_Overflows_On_Target
or Check_Float_Overflow
) then
407 -- Ignore for unary operations ("+", "-", abs) since these can never
408 -- result in overflow for floating-point cases.
410 elsif Nkind
(N
) in N_Unary_Op
then
413 -- Otherwise we will set the flag
422 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
423 -- for zero-divide is a divide check, not an overflow check).
425 if Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
, N_Op_Plus
) then
430 -- Fall through for cases where we do set the flag
432 Set_Do_Overflow_Check
(N
, True);
433 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
434 end Activate_Overflow_Check
;
436 --------------------------
437 -- Activate_Range_Check --
438 --------------------------
440 procedure Activate_Range_Check
(N
: Node_Id
) is
442 Set_Do_Range_Check
(N
, True);
443 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
444 end Activate_Range_Check
;
446 ---------------------------------
447 -- Alignment_Checks_Suppressed --
448 ---------------------------------
450 function Alignment_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
452 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
453 return Is_Check_Suppressed
(E
, Alignment_Check
);
455 return Scope_Suppress
.Suppress
(Alignment_Check
);
457 end Alignment_Checks_Suppressed
;
459 ----------------------------------
460 -- Allocation_Checks_Suppressed --
461 ----------------------------------
463 -- Note: at the current time there are no calls to this function, because
464 -- the relevant check is in the run-time, so it is not a check that the
465 -- compiler can suppress anyway, but we still have to recognize the check
466 -- name Allocation_Check since it is part of the standard.
468 function Allocation_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
470 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
471 return Is_Check_Suppressed
(E
, Allocation_Check
);
473 return Scope_Suppress
.Suppress
(Allocation_Check
);
475 end Allocation_Checks_Suppressed
;
477 -------------------------
478 -- Append_Range_Checks --
479 -------------------------
481 procedure Append_Range_Checks
482 (Checks
: Check_Result
;
484 Suppress_Typ
: Entity_Id
;
485 Static_Sloc
: Source_Ptr
;
488 Internal_Flag_Node
: constant Node_Id
:= Flag_Node
;
489 Internal_Static_Sloc
: constant Source_Ptr
:= Static_Sloc
;
491 Checks_On
: constant Boolean :=
492 (not Index_Checks_Suppressed
(Suppress_Typ
))
493 or else (not Range_Checks_Suppressed
(Suppress_Typ
));
496 -- For now we just return if Checks_On is false, however this should
497 -- be enhanced to check for an always True value in the condition
498 -- and to generate a compilation warning???
500 if not Checks_On
then
505 exit when No
(Checks
(J
));
507 if Nkind
(Checks
(J
)) = N_Raise_Constraint_Error
508 and then Present
(Condition
(Checks
(J
)))
510 if not Has_Dynamic_Range_Check
(Internal_Flag_Node
) then
511 Append_To
(Stmts
, Checks
(J
));
512 Set_Has_Dynamic_Range_Check
(Internal_Flag_Node
);
518 Make_Raise_Constraint_Error
(Internal_Static_Sloc
,
519 Reason
=> CE_Range_Check_Failed
));
522 end Append_Range_Checks
;
524 ------------------------
525 -- Apply_Access_Check --
526 ------------------------
528 procedure Apply_Access_Check
(N
: Node_Id
) is
529 P
: constant Node_Id
:= Prefix
(N
);
532 -- We do not need checks if we are not generating code (i.e. the
533 -- expander is not active). This is not just an optimization, there
534 -- are cases (e.g. with pragma Debug) where generating the checks
535 -- can cause real trouble).
537 if not Expander_Active
then
541 -- No check if short circuiting makes check unnecessary
543 if not Check_Needed
(P
, Access_Check
) then
547 -- No check if accessing the Offset_To_Top component of a dispatch
548 -- table. They are safe by construction.
550 if Tagged_Type_Expansion
551 and then Present
(Etype
(P
))
552 and then RTU_Loaded
(Ada_Tags
)
553 and then RTE_Available
(RE_Offset_To_Top_Ptr
)
554 and then Etype
(P
) = RTE
(RE_Offset_To_Top_Ptr
)
559 -- Otherwise go ahead and install the check
561 Install_Null_Excluding_Check
(P
);
562 end Apply_Access_Check
;
564 -------------------------------
565 -- Apply_Accessibility_Check --
566 -------------------------------
568 procedure Apply_Accessibility_Check
571 Insert_Node
: Node_Id
)
573 Loc
: constant Source_Ptr
:= Sloc
(N
);
574 Param_Ent
: Entity_Id
:= Param_Entity
(N
);
575 Param_Level
: Node_Id
;
576 Type_Level
: Node_Id
;
579 if Ada_Version
>= Ada_2012
580 and then not Present
(Param_Ent
)
581 and then Is_Entity_Name
(N
)
582 and then Ekind_In
(Entity
(N
), E_Constant
, E_Variable
)
583 and then Present
(Effective_Extra_Accessibility
(Entity
(N
)))
585 Param_Ent
:= Entity
(N
);
586 while Present
(Renamed_Object
(Param_Ent
)) loop
588 -- Renamed_Object must return an Entity_Name here
589 -- because of preceding "Present (E_E_A (...))" test.
591 Param_Ent
:= Entity
(Renamed_Object
(Param_Ent
));
595 if Inside_A_Generic
then
598 -- Only apply the run-time check if the access parameter has an
599 -- associated extra access level parameter and when the level of the
600 -- type is less deep than the level of the access parameter, and
601 -- accessibility checks are not suppressed.
603 elsif Present
(Param_Ent
)
604 and then Present
(Extra_Accessibility
(Param_Ent
))
605 and then UI_Gt
(Object_Access_Level
(N
),
606 Deepest_Type_Access_Level
(Typ
))
607 and then not Accessibility_Checks_Suppressed
(Param_Ent
)
608 and then not Accessibility_Checks_Suppressed
(Typ
)
611 New_Occurrence_Of
(Extra_Accessibility
(Param_Ent
), Loc
);
614 Make_Integer_Literal
(Loc
, Deepest_Type_Access_Level
(Typ
));
616 -- Raise Program_Error if the accessibility level of the access
617 -- parameter is deeper than the level of the target access type.
619 Insert_Action
(Insert_Node
,
620 Make_Raise_Program_Error
(Loc
,
623 Left_Opnd
=> Param_Level
,
624 Right_Opnd
=> Type_Level
),
625 Reason
=> PE_Accessibility_Check_Failed
));
627 Analyze_And_Resolve
(N
);
629 end Apply_Accessibility_Check
;
631 --------------------------------
632 -- Apply_Address_Clause_Check --
633 --------------------------------
635 procedure Apply_Address_Clause_Check
(E
: Entity_Id
; N
: Node_Id
) is
636 pragma Assert
(Nkind
(N
) = N_Freeze_Entity
);
638 AC
: constant Node_Id
:= Address_Clause
(E
);
639 Loc
: constant Source_Ptr
:= Sloc
(AC
);
640 Typ
: constant Entity_Id
:= Etype
(E
);
641 Aexp
: constant Node_Id
:= Expression
(AC
);
644 -- Address expression (not necessarily the same as Aexp, for example
645 -- when Aexp is a reference to a constant, in which case Expr gets
646 -- reset to reference the value expression of the constant).
648 procedure Compile_Time_Bad_Alignment
;
649 -- Post error warnings when alignment is known to be incompatible. Note
650 -- that we do not go as far as inserting a raise of Program_Error since
651 -- this is an erroneous case, and it may happen that we are lucky and an
652 -- underaligned address turns out to be OK after all.
654 --------------------------------
655 -- Compile_Time_Bad_Alignment --
656 --------------------------------
658 procedure Compile_Time_Bad_Alignment
is
660 if Address_Clause_Overlay_Warnings
then
662 ("?o?specified address for& may be inconsistent with alignment",
665 ("\?o?program execution may be erroneous (RM 13.3(27))",
667 Set_Address_Warning_Posted
(AC
);
669 end Compile_Time_Bad_Alignment
;
671 -- Start of processing for Apply_Address_Clause_Check
674 -- See if alignment check needed. Note that we never need a check if the
675 -- maximum alignment is one, since the check will always succeed.
677 -- Note: we do not check for checks suppressed here, since that check
678 -- was done in Sem_Ch13 when the address clause was processed. We are
679 -- only called if checks were not suppressed. The reason for this is
680 -- that we have to delay the call to Apply_Alignment_Check till freeze
681 -- time (so that all types etc are elaborated), but we have to check
682 -- the status of check suppressing at the point of the address clause.
685 or else not Check_Address_Alignment
(AC
)
686 or else Maximum_Alignment
= 1
691 -- Obtain expression from address clause
693 Expr
:= Expression
(AC
);
695 -- The following loop digs for the real expression to use in the check
698 -- For constant, get constant expression
700 if Is_Entity_Name
(Expr
)
701 and then Ekind
(Entity
(Expr
)) = E_Constant
703 Expr
:= Constant_Value
(Entity
(Expr
));
705 -- For unchecked conversion, get result to convert
707 elsif Nkind
(Expr
) = N_Unchecked_Type_Conversion
then
708 Expr
:= Expression
(Expr
);
710 -- For (common case) of To_Address call, get argument
712 elsif Nkind
(Expr
) = N_Function_Call
713 and then Is_Entity_Name
(Name
(Expr
))
714 and then Is_RTE
(Entity
(Name
(Expr
)), RE_To_Address
)
716 Expr
:= First
(Parameter_Associations
(Expr
));
718 if Nkind
(Expr
) = N_Parameter_Association
then
719 Expr
:= Explicit_Actual_Parameter
(Expr
);
722 -- We finally have the real expression
729 -- See if we know that Expr has a bad alignment at compile time
731 if Compile_Time_Known_Value
(Expr
)
732 and then (Known_Alignment
(E
) or else Known_Alignment
(Typ
))
735 AL
: Uint
:= Alignment
(Typ
);
738 -- The object alignment might be more restrictive than the
741 if Known_Alignment
(E
) then
745 if Expr_Value
(Expr
) mod AL
/= 0 then
746 Compile_Time_Bad_Alignment
;
752 -- If the expression has the form X'Address, then we can find out if the
753 -- object X has an alignment that is compatible with the object E. If it
754 -- hasn't or we don't know, we defer issuing the warning until the end
755 -- of the compilation to take into account back end annotations.
757 elsif Nkind
(Expr
) = N_Attribute_Reference
758 and then Attribute_Name
(Expr
) = Name_Address
760 Has_Compatible_Alignment
(E
, Prefix
(Expr
), False) = Known_Compatible
765 -- Here we do not know if the value is acceptable. Strictly we don't
766 -- have to do anything, since if the alignment is bad, we have an
767 -- erroneous program. However we are allowed to check for erroneous
768 -- conditions and we decide to do this by default if the check is not
771 -- However, don't do the check if elaboration code is unwanted
773 if Restriction_Active
(No_Elaboration_Code
) then
776 -- Generate a check to raise PE if alignment may be inappropriate
779 -- If the original expression is a non-static constant, use the
780 -- name of the constant itself rather than duplicating its
781 -- defining expression, which was extracted above.
783 -- Note: Expr is empty if the address-clause is applied to in-mode
784 -- actuals (allowed by 13.1(22)).
786 if not Present
(Expr
)
788 (Is_Entity_Name
(Expression
(AC
))
789 and then Ekind
(Entity
(Expression
(AC
))) = E_Constant
790 and then Nkind
(Parent
(Entity
(Expression
(AC
))))
791 = N_Object_Declaration
)
793 Expr
:= New_Copy_Tree
(Expression
(AC
));
795 Remove_Side_Effects
(Expr
);
798 if No
(Actions
(N
)) then
799 Set_Actions
(N
, New_List
);
802 Prepend_To
(Actions
(N
),
803 Make_Raise_Program_Error
(Loc
,
810 (RTE
(RE_Integer_Address
), Expr
),
812 Make_Attribute_Reference
(Loc
,
813 Prefix
=> New_Occurrence_Of
(E
, Loc
),
814 Attribute_Name
=> Name_Alignment
)),
815 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
816 Reason
=> PE_Misaligned_Address_Value
));
818 Warning_Msg
:= No_Error_Msg
;
819 Analyze
(First
(Actions
(N
)), Suppress
=> All_Checks
);
821 -- If the address clause generated a warning message (for example,
822 -- from Warn_On_Non_Local_Exception mode with the active restriction
823 -- No_Exception_Propagation).
825 if Warning_Msg
/= No_Error_Msg
then
827 -- If the expression has a known at compile time value, then
828 -- once we know the alignment of the type, we can check if the
829 -- exception will be raised or not, and if not, we don't need
830 -- the warning so we will kill the warning later on.
832 if Compile_Time_Known_Value
(Expr
) then
833 Alignment_Warnings
.Append
834 ((E
=> E
, A
=> Expr_Value
(Expr
), W
=> Warning_Msg
));
837 -- Add explanation of the warning that is generated by the check
840 ("\address value may be incompatible with alignment "
841 & "of object?X?", AC
);
848 -- If we have some missing run time component in configurable run time
849 -- mode then just skip the check (it is not required in any case).
851 when RE_Not_Available
=>
853 end Apply_Address_Clause_Check
;
855 -------------------------------------
856 -- Apply_Arithmetic_Overflow_Check --
857 -------------------------------------
859 procedure Apply_Arithmetic_Overflow_Check
(N
: Node_Id
) is
861 -- Use old routine in almost all cases (the only case we are treating
862 -- specially is the case of a signed integer arithmetic op with the
863 -- overflow checking mode set to MINIMIZED or ELIMINATED).
865 if Overflow_Check_Mode
= Strict
866 or else not Is_Signed_Integer_Arithmetic_Op
(N
)
868 Apply_Arithmetic_Overflow_Strict
(N
);
870 -- Otherwise use the new routine for the case of a signed integer
871 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
872 -- mode is MINIMIZED or ELIMINATED.
875 Apply_Arithmetic_Overflow_Minimized_Eliminated
(N
);
877 end Apply_Arithmetic_Overflow_Check
;
879 --------------------------------------
880 -- Apply_Arithmetic_Overflow_Strict --
881 --------------------------------------
883 -- This routine is called only if the type is an integer type, and a
884 -- software arithmetic overflow check may be needed for op (add, subtract,
885 -- or multiply). This check is performed only if Software_Overflow_Checking
886 -- is enabled and Do_Overflow_Check is set. In this case we expand the
887 -- operation into a more complex sequence of tests that ensures that
888 -- overflow is properly caught.
890 -- This is used in CHECKED modes. It is identical to the code for this
891 -- cases before the big overflow earthquake, thus ensuring that in this
892 -- modes we have compatible behavior (and reliability) to what was there
893 -- before. It is also called for types other than signed integers, and if
894 -- the Do_Overflow_Check flag is off.
896 -- Note: we also call this routine if we decide in the MINIMIZED case
897 -- to give up and just generate an overflow check without any fuss.
899 procedure Apply_Arithmetic_Overflow_Strict
(N
: Node_Id
) is
900 Loc
: constant Source_Ptr
:= Sloc
(N
);
901 Typ
: constant Entity_Id
:= Etype
(N
);
902 Rtyp
: constant Entity_Id
:= Root_Type
(Typ
);
905 -- Nothing to do if Do_Overflow_Check not set or overflow checks
908 if not Do_Overflow_Check
(N
) then
912 -- An interesting special case. If the arithmetic operation appears as
913 -- the operand of a type conversion:
917 -- and all the following conditions apply:
919 -- arithmetic operation is for a signed integer type
920 -- target type type1 is a static integer subtype
921 -- range of x and y are both included in the range of type1
922 -- range of x op y is included in the range of type1
923 -- size of type1 is at least twice the result size of op
925 -- then we don't do an overflow check in any case. Instead, we transform
926 -- the operation so that we end up with:
928 -- type1 (type1 (x) op type1 (y))
930 -- This avoids intermediate overflow before the conversion. It is
931 -- explicitly permitted by RM 3.5.4(24):
933 -- For the execution of a predefined operation of a signed integer
934 -- type, the implementation need not raise Constraint_Error if the
935 -- result is outside the base range of the type, so long as the
936 -- correct result is produced.
938 -- It's hard to imagine that any programmer counts on the exception
939 -- being raised in this case, and in any case it's wrong coding to
940 -- have this expectation, given the RM permission. Furthermore, other
941 -- Ada compilers do allow such out of range results.
943 -- Note that we do this transformation even if overflow checking is
944 -- off, since this is precisely about giving the "right" result and
945 -- avoiding the need for an overflow check.
947 -- Note: this circuit is partially redundant with respect to the similar
948 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
949 -- with cases that do not come through here. We still need the following
950 -- processing even with the Exp_Ch4 code in place, since we want to be
951 -- sure not to generate the arithmetic overflow check in these cases
952 -- (Exp_Ch4 would have a hard time removing them once generated).
954 if Is_Signed_Integer_Type
(Typ
)
955 and then Nkind
(Parent
(N
)) = N_Type_Conversion
957 Conversion_Optimization
: declare
958 Target_Type
: constant Entity_Id
:=
959 Base_Type
(Entity
(Subtype_Mark
(Parent
(N
))));
973 if Is_Integer_Type
(Target_Type
)
974 and then RM_Size
(Root_Type
(Target_Type
)) >= 2 * RM_Size
(Rtyp
)
976 Tlo
:= Expr_Value
(Type_Low_Bound
(Target_Type
));
977 Thi
:= Expr_Value
(Type_High_Bound
(Target_Type
));
980 (Left_Opnd
(N
), LOK
, Llo
, Lhi
, Assume_Valid
=> True);
982 (Right_Opnd
(N
), ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
985 and then Tlo
<= Llo
and then Lhi
<= Thi
986 and then Tlo
<= Rlo
and then Rhi
<= Thi
988 Determine_Range
(N
, VOK
, Vlo
, Vhi
, Assume_Valid
=> True);
990 if VOK
and then Tlo
<= Vlo
and then Vhi
<= Thi
then
991 Rewrite
(Left_Opnd
(N
),
992 Make_Type_Conversion
(Loc
,
993 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
994 Expression
=> Relocate_Node
(Left_Opnd
(N
))));
996 Rewrite
(Right_Opnd
(N
),
997 Make_Type_Conversion
(Loc
,
998 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
999 Expression
=> Relocate_Node
(Right_Opnd
(N
))));
1001 -- Rewrite the conversion operand so that the original
1002 -- node is retained, in order to avoid the warning for
1003 -- redundant conversions in Resolve_Type_Conversion.
1005 Rewrite
(N
, Relocate_Node
(N
));
1007 Set_Etype
(N
, Target_Type
);
1009 Analyze_And_Resolve
(Left_Opnd
(N
), Target_Type
);
1010 Analyze_And_Resolve
(Right_Opnd
(N
), Target_Type
);
1012 -- Given that the target type is twice the size of the
1013 -- source type, overflow is now impossible, so we can
1014 -- safely kill the overflow check and return.
1016 Set_Do_Overflow_Check
(N
, False);
1021 end Conversion_Optimization
;
1024 -- Now see if an overflow check is required
1027 Siz
: constant Int
:= UI_To_Int
(Esize
(Rtyp
));
1028 Dsiz
: constant Int
:= Siz
* 2;
1035 -- Skip check if back end does overflow checks, or the overflow flag
1036 -- is not set anyway, or we are not doing code expansion, or the
1037 -- parent node is a type conversion whose operand is an arithmetic
1038 -- operation on signed integers on which the expander can promote
1039 -- later the operands to type Integer (see Expand_N_Type_Conversion).
1041 if Backend_Overflow_Checks_On_Target
1042 or else not Do_Overflow_Check
(N
)
1043 or else not Expander_Active
1044 or else (Present
(Parent
(N
))
1045 and then Nkind
(Parent
(N
)) = N_Type_Conversion
1046 and then Integer_Promotion_Possible
(Parent
(N
)))
1051 -- Otherwise, generate the full general code for front end overflow
1052 -- detection, which works by doing arithmetic in a larger type:
1058 -- Typ (Checktyp (x) op Checktyp (y));
1060 -- where Typ is the type of the original expression, and Checktyp is
1061 -- an integer type of sufficient length to hold the largest possible
1064 -- If the size of check type exceeds the size of Long_Long_Integer,
1065 -- we use a different approach, expanding to:
1067 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
1069 -- where xxx is Add, Multiply or Subtract as appropriate
1071 -- Find check type if one exists
1073 if Dsiz
<= Standard_Integer_Size
then
1074 Ctyp
:= Standard_Integer
;
1076 elsif Dsiz
<= Standard_Long_Long_Integer_Size
then
1077 Ctyp
:= Standard_Long_Long_Integer
;
1079 -- No check type exists, use runtime call
1082 if Nkind
(N
) = N_Op_Add
then
1083 Cent
:= RE_Add_With_Ovflo_Check
;
1085 elsif Nkind
(N
) = N_Op_Multiply
then
1086 Cent
:= RE_Multiply_With_Ovflo_Check
;
1089 pragma Assert
(Nkind
(N
) = N_Op_Subtract
);
1090 Cent
:= RE_Subtract_With_Ovflo_Check
;
1095 Make_Function_Call
(Loc
,
1096 Name
=> New_Occurrence_Of
(RTE
(Cent
), Loc
),
1097 Parameter_Associations
=> New_List
(
1098 OK_Convert_To
(RTE
(RE_Integer_64
), Left_Opnd
(N
)),
1099 OK_Convert_To
(RTE
(RE_Integer_64
), Right_Opnd
(N
))))));
1101 Analyze_And_Resolve
(N
, Typ
);
1105 -- If we fall through, we have the case where we do the arithmetic
1106 -- in the next higher type and get the check by conversion. In these
1107 -- cases Ctyp is set to the type to be used as the check type.
1109 Opnod
:= Relocate_Node
(N
);
1111 Opnd
:= OK_Convert_To
(Ctyp
, Left_Opnd
(Opnod
));
1114 Set_Etype
(Opnd
, Ctyp
);
1115 Set_Analyzed
(Opnd
, True);
1116 Set_Left_Opnd
(Opnod
, Opnd
);
1118 Opnd
:= OK_Convert_To
(Ctyp
, Right_Opnd
(Opnod
));
1121 Set_Etype
(Opnd
, Ctyp
);
1122 Set_Analyzed
(Opnd
, True);
1123 Set_Right_Opnd
(Opnod
, Opnd
);
1125 -- The type of the operation changes to the base type of the check
1126 -- type, and we reset the overflow check indication, since clearly no
1127 -- overflow is possible now that we are using a double length type.
1128 -- We also set the Analyzed flag to avoid a recursive attempt to
1131 Set_Etype
(Opnod
, Base_Type
(Ctyp
));
1132 Set_Do_Overflow_Check
(Opnod
, False);
1133 Set_Analyzed
(Opnod
, True);
1135 -- Now build the outer conversion
1137 Opnd
:= OK_Convert_To
(Typ
, Opnod
);
1139 Set_Etype
(Opnd
, Typ
);
1141 -- In the discrete type case, we directly generate the range check
1142 -- for the outer operand. This range check will implement the
1143 -- required overflow check.
1145 if Is_Discrete_Type
(Typ
) then
1147 Generate_Range_Check
1148 (Expression
(N
), Typ
, CE_Overflow_Check_Failed
);
1150 -- For other types, we enable overflow checking on the conversion,
1151 -- after setting the node as analyzed to prevent recursive attempts
1152 -- to expand the conversion node.
1155 Set_Analyzed
(Opnd
, True);
1156 Enable_Overflow_Check
(Opnd
);
1161 when RE_Not_Available
=>
1164 end Apply_Arithmetic_Overflow_Strict
;
1166 ----------------------------------------------------
1167 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1168 ----------------------------------------------------
1170 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated
(Op
: Node_Id
) is
1171 pragma Assert
(Is_Signed_Integer_Arithmetic_Op
(Op
));
1173 Loc
: constant Source_Ptr
:= Sloc
(Op
);
1174 P
: constant Node_Id
:= Parent
(Op
);
1176 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
1177 -- Operands and results are of this type when we convert
1179 Result_Type
: constant Entity_Id
:= Etype
(Op
);
1180 -- Original result type
1182 Check_Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
1183 pragma Assert
(Check_Mode
in Minimized_Or_Eliminated
);
1186 -- Ranges of values for result
1189 -- Nothing to do if our parent is one of the following:
1191 -- Another signed integer arithmetic op
1192 -- A membership operation
1193 -- A comparison operation
1195 -- In all these cases, we will process at the higher level (and then
1196 -- this node will be processed during the downwards recursion that
1197 -- is part of the processing in Minimize_Eliminate_Overflows).
1199 if Is_Signed_Integer_Arithmetic_Op
(P
)
1200 or else Nkind
(P
) in N_Membership_Test
1201 or else Nkind
(P
) in N_Op_Compare
1203 -- This is also true for an alternative in a case expression
1205 or else Nkind
(P
) = N_Case_Expression_Alternative
1207 -- This is also true for a range operand in a membership test
1209 or else (Nkind
(P
) = N_Range
1210 and then Nkind
(Parent
(P
)) in N_Membership_Test
)
1212 -- If_Expressions and Case_Expressions are treated as arithmetic
1213 -- ops, but if they appear in an assignment or similar contexts
1214 -- there is no overflow check that starts from that parent node,
1215 -- so apply check now.
1217 if Nkind_In
(P
, N_If_Expression
, N_Case_Expression
)
1218 and then not Is_Signed_Integer_Arithmetic_Op
(Parent
(P
))
1226 -- Otherwise, we have a top level arithmetic operation node, and this
1227 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1228 -- modes. This is the case where we tell the machinery not to move into
1229 -- Bignum mode at this top level (of course the top level operation
1230 -- will still be in Bignum mode if either of its operands are of type
1233 Minimize_Eliminate_Overflows
(Op
, Lo
, Hi
, Top_Level
=> True);
1235 -- That call may but does not necessarily change the result type of Op.
1236 -- It is the job of this routine to undo such changes, so that at the
1237 -- top level, we have the proper type. This "undoing" is a point at
1238 -- which a final overflow check may be applied.
1240 -- If the result type was not fiddled we are all set. We go to base
1241 -- types here because things may have been rewritten to generate the
1242 -- base type of the operand types.
1244 if Base_Type
(Etype
(Op
)) = Base_Type
(Result_Type
) then
1249 elsif Is_RTE
(Etype
(Op
), RE_Bignum
) then
1251 -- We need a sequence that looks like:
1253 -- Rnn : Result_Type;
1256 -- M : Mark_Id := SS_Mark;
1258 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1262 -- This block is inserted (using Insert_Actions), and then the node
1263 -- is replaced with a reference to Rnn.
1265 -- If our parent is a conversion node then there is no point in
1266 -- generating a conversion to Result_Type. Instead, we let the parent
1267 -- handle this. Note that this special case is not just about
1268 -- optimization. Consider
1272 -- X := Long_Long_Integer'Base (A * (B ** C));
1274 -- Now the product may fit in Long_Long_Integer but not in Integer.
1275 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1276 -- overflow exception for this intermediate value.
1279 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
1280 Rnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R', Op
);
1286 RHS
:= Convert_From_Bignum
(Op
);
1288 if Nkind
(P
) /= N_Type_Conversion
then
1289 Convert_To_And_Rewrite
(Result_Type
, RHS
);
1290 Rtype
:= Result_Type
;
1292 -- Interesting question, do we need a check on that conversion
1293 -- operation. Answer, not if we know the result is in range.
1294 -- At the moment we are not taking advantage of this. To be
1295 -- looked at later ???
1302 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
1303 Make_Assignment_Statement
(Loc
,
1304 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
1305 Expression
=> RHS
));
1307 Insert_Actions
(Op
, New_List
(
1308 Make_Object_Declaration
(Loc
,
1309 Defining_Identifier
=> Rnn
,
1310 Object_Definition
=> New_Occurrence_Of
(Rtype
, Loc
)),
1313 Rewrite
(Op
, New_Occurrence_Of
(Rnn
, Loc
));
1314 Analyze_And_Resolve
(Op
);
1317 -- Here we know the result is Long_Long_Integer'Base, or that it has
1318 -- been rewritten because the parent operation is a conversion. See
1319 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1323 (Etype
(Op
) = LLIB
or else Nkind
(Parent
(Op
)) = N_Type_Conversion
);
1325 -- All we need to do here is to convert the result to the proper
1326 -- result type. As explained above for the Bignum case, we can
1327 -- omit this if our parent is a type conversion.
1329 if Nkind
(P
) /= N_Type_Conversion
then
1330 Convert_To_And_Rewrite
(Result_Type
, Op
);
1333 Analyze_And_Resolve
(Op
);
1335 end Apply_Arithmetic_Overflow_Minimized_Eliminated
;
1337 ----------------------------
1338 -- Apply_Constraint_Check --
1339 ----------------------------
1341 procedure Apply_Constraint_Check
1344 No_Sliding
: Boolean := False)
1346 Desig_Typ
: Entity_Id
;
1349 -- No checks inside a generic (check the instantiations)
1351 if Inside_A_Generic
then
1355 -- Apply required constraint checks
1357 if Is_Scalar_Type
(Typ
) then
1358 Apply_Scalar_Range_Check
(N
, Typ
);
1360 elsif Is_Array_Type
(Typ
) then
1362 -- A useful optimization: an aggregate with only an others clause
1363 -- always has the right bounds.
1365 if Nkind
(N
) = N_Aggregate
1366 and then No
(Expressions
(N
))
1368 (First
(Choices
(First
(Component_Associations
(N
)))))
1374 if Is_Constrained
(Typ
) then
1375 Apply_Length_Check
(N
, Typ
);
1378 Apply_Range_Check
(N
, Typ
);
1381 Apply_Range_Check
(N
, Typ
);
1384 elsif (Is_Record_Type
(Typ
) or else Is_Private_Type
(Typ
))
1385 and then Has_Discriminants
(Base_Type
(Typ
))
1386 and then Is_Constrained
(Typ
)
1388 Apply_Discriminant_Check
(N
, Typ
);
1390 elsif Is_Access_Type
(Typ
) then
1392 Desig_Typ
:= Designated_Type
(Typ
);
1394 -- No checks necessary if expression statically null
1396 if Known_Null
(N
) then
1397 if Can_Never_Be_Null
(Typ
) then
1398 Install_Null_Excluding_Check
(N
);
1401 -- No sliding possible on access to arrays
1403 elsif Is_Array_Type
(Desig_Typ
) then
1404 if Is_Constrained
(Desig_Typ
) then
1405 Apply_Length_Check
(N
, Typ
);
1408 Apply_Range_Check
(N
, Typ
);
1410 elsif Has_Discriminants
(Base_Type
(Desig_Typ
))
1411 and then Is_Constrained
(Desig_Typ
)
1413 Apply_Discriminant_Check
(N
, Typ
);
1416 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1417 -- this check if the constraint node is illegal, as shown by having
1418 -- an error posted. This additional guard prevents cascaded errors
1419 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1421 if Can_Never_Be_Null
(Typ
)
1422 and then not Can_Never_Be_Null
(Etype
(N
))
1423 and then not Error_Posted
(N
)
1425 Install_Null_Excluding_Check
(N
);
1428 end Apply_Constraint_Check
;
1430 ------------------------------
1431 -- Apply_Discriminant_Check --
1432 ------------------------------
1434 procedure Apply_Discriminant_Check
1437 Lhs
: Node_Id
:= Empty
)
1439 Loc
: constant Source_Ptr
:= Sloc
(N
);
1440 Do_Access
: constant Boolean := Is_Access_Type
(Typ
);
1441 S_Typ
: Entity_Id
:= Etype
(N
);
1445 function Denotes_Explicit_Dereference
(Obj
: Node_Id
) return Boolean;
1446 -- A heap object with an indefinite subtype is constrained by its
1447 -- initial value, and assigning to it requires a constraint_check.
1448 -- The target may be an explicit dereference, or a renaming of one.
1450 function Is_Aliased_Unconstrained_Component
return Boolean;
1451 -- It is possible for an aliased component to have a nominal
1452 -- unconstrained subtype (through instantiation). If this is a
1453 -- discriminated component assigned in the expansion of an aggregate
1454 -- in an initialization, the check must be suppressed. This unusual
1455 -- situation requires a predicate of its own.
1457 ----------------------------------
1458 -- Denotes_Explicit_Dereference --
1459 ----------------------------------
1461 function Denotes_Explicit_Dereference
(Obj
: Node_Id
) return Boolean is
1464 Nkind
(Obj
) = N_Explicit_Dereference
1466 (Is_Entity_Name
(Obj
)
1467 and then Present
(Renamed_Object
(Entity
(Obj
)))
1468 and then Nkind
(Renamed_Object
(Entity
(Obj
))) =
1469 N_Explicit_Dereference
);
1470 end Denotes_Explicit_Dereference
;
1472 ----------------------------------------
1473 -- Is_Aliased_Unconstrained_Component --
1474 ----------------------------------------
1476 function Is_Aliased_Unconstrained_Component
return Boolean is
1481 if Nkind
(Lhs
) /= N_Selected_Component
then
1484 Comp
:= Entity
(Selector_Name
(Lhs
));
1485 Pref
:= Prefix
(Lhs
);
1488 if Ekind
(Comp
) /= E_Component
1489 or else not Is_Aliased
(Comp
)
1494 return not Comes_From_Source
(Pref
)
1495 and then In_Instance
1496 and then not Is_Constrained
(Etype
(Comp
));
1497 end Is_Aliased_Unconstrained_Component
;
1499 -- Start of processing for Apply_Discriminant_Check
1503 T_Typ
:= Designated_Type
(Typ
);
1508 -- Nothing to do if discriminant checks are suppressed or else no code
1509 -- is to be generated
1511 if not Expander_Active
1512 or else Discriminant_Checks_Suppressed
(T_Typ
)
1517 -- No discriminant checks necessary for an access when expression is
1518 -- statically Null. This is not only an optimization, it is fundamental
1519 -- because otherwise discriminant checks may be generated in init procs
1520 -- for types containing an access to a not-yet-frozen record, causing a
1521 -- deadly forward reference.
1523 -- Also, if the expression is of an access type whose designated type is
1524 -- incomplete, then the access value must be null and we suppress the
1527 if Known_Null
(N
) then
1530 elsif Is_Access_Type
(S_Typ
) then
1531 S_Typ
:= Designated_Type
(S_Typ
);
1533 if Ekind
(S_Typ
) = E_Incomplete_Type
then
1538 -- If an assignment target is present, then we need to generate the
1539 -- actual subtype if the target is a parameter or aliased object with
1540 -- an unconstrained nominal subtype.
1542 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1543 -- subtype to the parameter and dereference cases, since other aliased
1544 -- objects are unconstrained (unless the nominal subtype is explicitly
1548 and then (Present
(Param_Entity
(Lhs
))
1549 or else (Ada_Version
< Ada_2005
1550 and then not Is_Constrained
(T_Typ
)
1551 and then Is_Aliased_View
(Lhs
)
1552 and then not Is_Aliased_Unconstrained_Component
)
1553 or else (Ada_Version
>= Ada_2005
1554 and then not Is_Constrained
(T_Typ
)
1555 and then Denotes_Explicit_Dereference
(Lhs
)
1556 and then Nkind
(Original_Node
(Lhs
)) /=
1559 T_Typ
:= Get_Actual_Subtype
(Lhs
);
1562 -- Nothing to do if the type is unconstrained (this is the case where
1563 -- the actual subtype in the RM sense of N is unconstrained and no check
1566 if not Is_Constrained
(T_Typ
) then
1569 -- Ada 2005: nothing to do if the type is one for which there is a
1570 -- partial view that is constrained.
1572 elsif Ada_Version
>= Ada_2005
1573 and then Object_Type_Has_Constrained_Partial_View
1574 (Typ
=> Base_Type
(T_Typ
),
1575 Scop
=> Current_Scope
)
1580 -- Nothing to do if the type is an Unchecked_Union
1582 if Is_Unchecked_Union
(Base_Type
(T_Typ
)) then
1586 -- Suppress checks if the subtypes are the same. The check must be
1587 -- preserved in an assignment to a formal, because the constraint is
1588 -- given by the actual.
1590 if Nkind
(Original_Node
(N
)) /= N_Allocator
1592 or else not Is_Entity_Name
(Lhs
)
1593 or else No
(Param_Entity
(Lhs
)))
1596 or else (Do_Access
and then Designated_Type
(Typ
) = S_Typ
))
1597 and then not Is_Aliased_View
(Lhs
)
1602 -- We can also eliminate checks on allocators with a subtype mark that
1603 -- coincides with the context type. The context type may be a subtype
1604 -- without a constraint (common case, a generic actual).
1606 elsif Nkind
(Original_Node
(N
)) = N_Allocator
1607 and then Is_Entity_Name
(Expression
(Original_Node
(N
)))
1610 Alloc_Typ
: constant Entity_Id
:=
1611 Entity
(Expression
(Original_Node
(N
)));
1614 if Alloc_Typ
= T_Typ
1615 or else (Nkind
(Parent
(T_Typ
)) = N_Subtype_Declaration
1616 and then Is_Entity_Name
(
1617 Subtype_Indication
(Parent
(T_Typ
)))
1618 and then Alloc_Typ
= Base_Type
(T_Typ
))
1626 -- See if we have a case where the types are both constrained, and all
1627 -- the constraints are constants. In this case, we can do the check
1628 -- successfully at compile time.
1630 -- We skip this check for the case where the node is rewritten as
1631 -- an allocator, because it already carries the context subtype,
1632 -- and extracting the discriminants from the aggregate is messy.
1634 if Is_Constrained
(S_Typ
)
1635 and then Nkind
(Original_Node
(N
)) /= N_Allocator
1645 -- S_Typ may not have discriminants in the case where it is a
1646 -- private type completed by a default discriminated type. In that
1647 -- case, we need to get the constraints from the underlying type.
1648 -- If the underlying type is unconstrained (i.e. has no default
1649 -- discriminants) no check is needed.
1651 if Has_Discriminants
(S_Typ
) then
1652 Discr
:= First_Discriminant
(S_Typ
);
1653 DconS
:= First_Elmt
(Discriminant_Constraint
(S_Typ
));
1656 Discr
:= First_Discriminant
(Underlying_Type
(S_Typ
));
1659 (Discriminant_Constraint
(Underlying_Type
(S_Typ
)));
1665 -- A further optimization: if T_Typ is derived from S_Typ
1666 -- without imposing a constraint, no check is needed.
1668 if Nkind
(Original_Node
(Parent
(T_Typ
))) =
1669 N_Full_Type_Declaration
1672 Type_Def
: constant Node_Id
:=
1673 Type_Definition
(Original_Node
(Parent
(T_Typ
)));
1675 if Nkind
(Type_Def
) = N_Derived_Type_Definition
1676 and then Is_Entity_Name
(Subtype_Indication
(Type_Def
))
1677 and then Entity
(Subtype_Indication
(Type_Def
)) = S_Typ
1685 -- Constraint may appear in full view of type
1687 if Ekind
(T_Typ
) = E_Private_Subtype
1688 and then Present
(Full_View
(T_Typ
))
1691 First_Elmt
(Discriminant_Constraint
(Full_View
(T_Typ
)));
1694 First_Elmt
(Discriminant_Constraint
(T_Typ
));
1697 while Present
(Discr
) loop
1698 ItemS
:= Node
(DconS
);
1699 ItemT
:= Node
(DconT
);
1701 -- For a discriminated component type constrained by the
1702 -- current instance of an enclosing type, there is no
1703 -- applicable discriminant check.
1705 if Nkind
(ItemT
) = N_Attribute_Reference
1706 and then Is_Access_Type
(Etype
(ItemT
))
1707 and then Is_Entity_Name
(Prefix
(ItemT
))
1708 and then Is_Type
(Entity
(Prefix
(ItemT
)))
1713 -- If the expressions for the discriminants are identical
1714 -- and it is side-effect free (for now just an entity),
1715 -- this may be a shared constraint, e.g. from a subtype
1716 -- without a constraint introduced as a generic actual.
1717 -- Examine other discriminants if any.
1720 and then Is_Entity_Name
(ItemS
)
1724 elsif not Is_OK_Static_Expression
(ItemS
)
1725 or else not Is_OK_Static_Expression
(ItemT
)
1729 elsif Expr_Value
(ItemS
) /= Expr_Value
(ItemT
) then
1730 if Do_Access
then -- needs run-time check.
1733 Apply_Compile_Time_Constraint_Error
1734 (N
, "incorrect value for discriminant&??",
1735 CE_Discriminant_Check_Failed
, Ent
=> Discr
);
1742 Next_Discriminant
(Discr
);
1751 -- Here we need a discriminant check. First build the expression
1752 -- for the comparisons of the discriminants:
1754 -- (n.disc1 /= typ.disc1) or else
1755 -- (n.disc2 /= typ.disc2) or else
1757 -- (n.discn /= typ.discn)
1759 Cond
:= Build_Discriminant_Checks
(N
, T_Typ
);
1761 -- If Lhs is set and is a parameter, then the condition is guarded by:
1762 -- lhs'constrained and then (condition built above)
1764 if Present
(Param_Entity
(Lhs
)) then
1768 Make_Attribute_Reference
(Loc
,
1769 Prefix
=> New_Occurrence_Of
(Param_Entity
(Lhs
), Loc
),
1770 Attribute_Name
=> Name_Constrained
),
1771 Right_Opnd
=> Cond
);
1775 Cond
:= Guard_Access
(Cond
, Loc
, N
);
1779 Make_Raise_Constraint_Error
(Loc
,
1781 Reason
=> CE_Discriminant_Check_Failed
));
1782 end Apply_Discriminant_Check
;
1784 -------------------------
1785 -- Apply_Divide_Checks --
1786 -------------------------
1788 procedure Apply_Divide_Checks
(N
: Node_Id
) is
1789 Loc
: constant Source_Ptr
:= Sloc
(N
);
1790 Typ
: constant Entity_Id
:= Etype
(N
);
1791 Left
: constant Node_Id
:= Left_Opnd
(N
);
1792 Right
: constant Node_Id
:= Right_Opnd
(N
);
1794 Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
1795 -- Current overflow checking mode
1805 pragma Warnings
(Off
, Lhi
);
1806 -- Don't actually use this value
1809 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1810 -- operating on signed integer types, then the only thing this routine
1811 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1812 -- procedure will (possibly later on during recursive downward calls),
1813 -- ensure that any needed overflow/division checks are properly applied.
1815 if Mode
in Minimized_Or_Eliminated
1816 and then Is_Signed_Integer_Type
(Typ
)
1818 Apply_Arithmetic_Overflow_Minimized_Eliminated
(N
);
1822 -- Proceed here in SUPPRESSED or CHECKED modes
1825 and then not Backend_Divide_Checks_On_Target
1826 and then Check_Needed
(Right
, Division_Check
)
1828 Determine_Range
(Right
, ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
1830 -- Deal with division check
1832 if Do_Division_Check
(N
)
1833 and then not Division_Checks_Suppressed
(Typ
)
1835 Apply_Division_Check
(N
, Rlo
, Rhi
, ROK
);
1838 -- Deal with overflow check
1840 if Do_Overflow_Check
(N
)
1841 and then not Overflow_Checks_Suppressed
(Etype
(N
))
1843 Set_Do_Overflow_Check
(N
, False);
1845 -- Test for extremely annoying case of xxx'First divided by -1
1846 -- for division of signed integer types (only overflow case).
1848 if Nkind
(N
) = N_Op_Divide
1849 and then Is_Signed_Integer_Type
(Typ
)
1851 Determine_Range
(Left
, LOK
, Llo
, Lhi
, Assume_Valid
=> True);
1852 LLB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
1854 if ((not ROK
) or else (Rlo
<= (-1) and then (-1) <= Rhi
))
1856 ((not LOK
) or else (Llo
= LLB
))
1859 Make_Raise_Constraint_Error
(Loc
,
1865 Duplicate_Subexpr_Move_Checks
(Left
),
1866 Right_Opnd
=> Make_Integer_Literal
(Loc
, LLB
)),
1870 Left_Opnd
=> Duplicate_Subexpr
(Right
),
1871 Right_Opnd
=> Make_Integer_Literal
(Loc
, -1))),
1873 Reason
=> CE_Overflow_Check_Failed
));
1878 end Apply_Divide_Checks
;
1880 --------------------------
1881 -- Apply_Division_Check --
1882 --------------------------
1884 procedure Apply_Division_Check
1890 pragma Assert
(Do_Division_Check
(N
));
1892 Loc
: constant Source_Ptr
:= Sloc
(N
);
1893 Right
: constant Node_Id
:= Right_Opnd
(N
);
1897 and then not Backend_Divide_Checks_On_Target
1898 and then Check_Needed
(Right
, Division_Check
)
1900 -- See if division by zero possible, and if so generate test. This
1901 -- part of the test is not controlled by the -gnato switch, since
1902 -- it is a Division_Check and not an Overflow_Check.
1904 if Do_Division_Check
(N
) then
1905 Set_Do_Division_Check
(N
, False);
1907 if (not ROK
) or else (Rlo
<= 0 and then 0 <= Rhi
) then
1909 Make_Raise_Constraint_Error
(Loc
,
1912 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Right
),
1913 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
1914 Reason
=> CE_Divide_By_Zero
));
1918 end Apply_Division_Check
;
1920 ----------------------------------
1921 -- Apply_Float_Conversion_Check --
1922 ----------------------------------
1924 -- Let F and I be the source and target types of the conversion. The RM
1925 -- specifies that a floating-point value X is rounded to the nearest
1926 -- integer, with halfway cases being rounded away from zero. The rounded
1927 -- value of X is checked against I'Range.
1929 -- The catch in the above paragraph is that there is no good way to know
1930 -- whether the round-to-integer operation resulted in overflow. A remedy is
1931 -- to perform a range check in the floating-point domain instead, however:
1933 -- (1) The bounds may not be known at compile time
1934 -- (2) The check must take into account rounding or truncation.
1935 -- (3) The range of type I may not be exactly representable in F.
1936 -- (4) For the rounding case, The end-points I'First - 0.5 and
1937 -- I'Last + 0.5 may or may not be in range, depending on the
1938 -- sign of I'First and I'Last.
1939 -- (5) X may be a NaN, which will fail any comparison
1941 -- The following steps correctly convert X with rounding:
1943 -- (1) If either I'First or I'Last is not known at compile time, use
1944 -- I'Base instead of I in the next three steps and perform a
1945 -- regular range check against I'Range after conversion.
1946 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1947 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1948 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1949 -- In other words, take one of the closest floating-point numbers
1950 -- (which is an integer value) to I'First, and see if it is in
1952 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1953 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1954 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1955 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1956 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1958 -- For the truncating case, replace steps (2) and (3) as follows:
1959 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1960 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1962 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1963 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1966 procedure Apply_Float_Conversion_Check
1968 Target_Typ
: Entity_Id
)
1970 LB
: constant Node_Id
:= Type_Low_Bound
(Target_Typ
);
1971 HB
: constant Node_Id
:= Type_High_Bound
(Target_Typ
);
1972 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
1973 Expr_Type
: constant Entity_Id
:= Base_Type
(Etype
(Ck_Node
));
1974 Target_Base
: constant Entity_Id
:=
1975 Implementation_Base_Type
(Target_Typ
);
1977 Par
: constant Node_Id
:= Parent
(Ck_Node
);
1978 pragma Assert
(Nkind
(Par
) = N_Type_Conversion
);
1979 -- Parent of check node, must be a type conversion
1981 Truncate
: constant Boolean := Float_Truncate
(Par
);
1982 Max_Bound
: constant Uint
:=
1984 (Machine_Radix_Value
(Expr_Type
),
1985 Machine_Mantissa_Value
(Expr_Type
) - 1) - 1;
1987 -- Largest bound, so bound plus or minus half is a machine number of F
1989 Ifirst
, Ilast
: Uint
;
1990 -- Bounds of integer type
1993 -- Bounds to check in floating-point domain
1995 Lo_OK
, Hi_OK
: Boolean;
1996 -- True iff Lo resp. Hi belongs to I'Range
1998 Lo_Chk
, Hi_Chk
: Node_Id
;
1999 -- Expressions that are False iff check fails
2001 Reason
: RT_Exception_Code
;
2004 -- We do not need checks if we are not generating code (i.e. the full
2005 -- expander is not active). In SPARK mode, we specifically don't want
2006 -- the frontend to expand these checks, which are dealt with directly
2007 -- in the formal verification backend.
2009 if not Expander_Active
then
2013 if not Compile_Time_Known_Value
(LB
)
2014 or not Compile_Time_Known_Value
(HB
)
2017 -- First check that the value falls in the range of the base type,
2018 -- to prevent overflow during conversion and then perform a
2019 -- regular range check against the (dynamic) bounds.
2021 pragma Assert
(Target_Base
/= Target_Typ
);
2023 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', Par
);
2026 Apply_Float_Conversion_Check
(Ck_Node
, Target_Base
);
2027 Set_Etype
(Temp
, Target_Base
);
2029 Insert_Action
(Parent
(Par
),
2030 Make_Object_Declaration
(Loc
,
2031 Defining_Identifier
=> Temp
,
2032 Object_Definition
=> New_Occurrence_Of
(Target_Typ
, Loc
),
2033 Expression
=> New_Copy_Tree
(Par
)),
2034 Suppress
=> All_Checks
);
2037 Make_Raise_Constraint_Error
(Loc
,
2040 Left_Opnd
=> New_Occurrence_Of
(Temp
, Loc
),
2041 Right_Opnd
=> New_Occurrence_Of
(Target_Typ
, Loc
)),
2042 Reason
=> CE_Range_Check_Failed
));
2043 Rewrite
(Par
, New_Occurrence_Of
(Temp
, Loc
));
2049 -- Get the (static) bounds of the target type
2051 Ifirst
:= Expr_Value
(LB
);
2052 Ilast
:= Expr_Value
(HB
);
2054 -- A simple optimization: if the expression is a universal literal,
2055 -- we can do the comparison with the bounds and the conversion to
2056 -- an integer type statically. The range checks are unchanged.
2058 if Nkind
(Ck_Node
) = N_Real_Literal
2059 and then Etype
(Ck_Node
) = Universal_Real
2060 and then Is_Integer_Type
(Target_Typ
)
2061 and then Nkind
(Parent
(Ck_Node
)) = N_Type_Conversion
2064 Int_Val
: constant Uint
:= UR_To_Uint
(Realval
(Ck_Node
));
2067 if Int_Val
<= Ilast
and then Int_Val
>= Ifirst
then
2069 -- Conversion is safe
2071 Rewrite
(Parent
(Ck_Node
),
2072 Make_Integer_Literal
(Loc
, UI_To_Int
(Int_Val
)));
2073 Analyze_And_Resolve
(Parent
(Ck_Node
), Target_Typ
);
2079 -- Check against lower bound
2081 if Truncate
and then Ifirst
> 0 then
2082 Lo
:= Pred
(Expr_Type
, UR_From_Uint
(Ifirst
));
2086 Lo
:= Succ
(Expr_Type
, UR_From_Uint
(Ifirst
- 1));
2089 elsif abs (Ifirst
) < Max_Bound
then
2090 Lo
:= UR_From_Uint
(Ifirst
) - Ureal_Half
;
2091 Lo_OK
:= (Ifirst
> 0);
2094 Lo
:= Machine
(Expr_Type
, UR_From_Uint
(Ifirst
), Round_Even
, Ck_Node
);
2095 Lo_OK
:= (Lo
>= UR_From_Uint
(Ifirst
));
2100 -- Lo_Chk := (X >= Lo)
2102 Lo_Chk
:= Make_Op_Ge
(Loc
,
2103 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2104 Right_Opnd
=> Make_Real_Literal
(Loc
, Lo
));
2107 -- Lo_Chk := (X > Lo)
2109 Lo_Chk
:= Make_Op_Gt
(Loc
,
2110 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2111 Right_Opnd
=> Make_Real_Literal
(Loc
, Lo
));
2114 -- Check against higher bound
2116 if Truncate
and then Ilast
< 0 then
2117 Hi
:= Succ
(Expr_Type
, UR_From_Uint
(Ilast
));
2121 Hi
:= Pred
(Expr_Type
, UR_From_Uint
(Ilast
+ 1));
2124 elsif abs (Ilast
) < Max_Bound
then
2125 Hi
:= UR_From_Uint
(Ilast
) + Ureal_Half
;
2126 Hi_OK
:= (Ilast
< 0);
2128 Hi
:= Machine
(Expr_Type
, UR_From_Uint
(Ilast
), Round_Even
, Ck_Node
);
2129 Hi_OK
:= (Hi
<= UR_From_Uint
(Ilast
));
2134 -- Hi_Chk := (X <= Hi)
2136 Hi_Chk
:= Make_Op_Le
(Loc
,
2137 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2138 Right_Opnd
=> Make_Real_Literal
(Loc
, Hi
));
2141 -- Hi_Chk := (X < Hi)
2143 Hi_Chk
:= Make_Op_Lt
(Loc
,
2144 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2145 Right_Opnd
=> Make_Real_Literal
(Loc
, Hi
));
2148 -- If the bounds of the target type are the same as those of the base
2149 -- type, the check is an overflow check as a range check is not
2150 -- performed in these cases.
2152 if Expr_Value
(Type_Low_Bound
(Target_Base
)) = Ifirst
2153 and then Expr_Value
(Type_High_Bound
(Target_Base
)) = Ilast
2155 Reason
:= CE_Overflow_Check_Failed
;
2157 Reason
:= CE_Range_Check_Failed
;
2160 -- Raise CE if either conditions does not hold
2162 Insert_Action
(Ck_Node
,
2163 Make_Raise_Constraint_Error
(Loc
,
2164 Condition
=> Make_Op_Not
(Loc
, Make_And_Then
(Loc
, Lo_Chk
, Hi_Chk
)),
2166 end Apply_Float_Conversion_Check
;
2168 ------------------------
2169 -- Apply_Length_Check --
2170 ------------------------
2172 procedure Apply_Length_Check
2174 Target_Typ
: Entity_Id
;
2175 Source_Typ
: Entity_Id
:= Empty
)
2178 Apply_Selected_Length_Checks
2179 (Ck_Node
, Target_Typ
, Source_Typ
, Do_Static
=> False);
2180 end Apply_Length_Check
;
2182 -------------------------------------
2183 -- Apply_Parameter_Aliasing_Checks --
2184 -------------------------------------
2186 procedure Apply_Parameter_Aliasing_Checks
2190 Loc
: constant Source_Ptr
:= Sloc
(Call
);
2192 function May_Cause_Aliasing
2193 (Formal_1
: Entity_Id
;
2194 Formal_2
: Entity_Id
) return Boolean;
2195 -- Determine whether two formal parameters can alias each other
2196 -- depending on their modes.
2198 function Original_Actual
(N
: Node_Id
) return Node_Id
;
2199 -- The expander may replace an actual with a temporary for the sake of
2200 -- side effect removal. The temporary may hide a potential aliasing as
2201 -- it does not share the address of the actual. This routine attempts
2202 -- to retrieve the original actual.
2204 procedure Overlap_Check
2205 (Actual_1
: Node_Id
;
2207 Formal_1
: Entity_Id
;
2208 Formal_2
: Entity_Id
;
2209 Check
: in out Node_Id
);
2210 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2211 -- If detailed exception messages are enabled, the check is augmented to
2212 -- provide information about the names of the corresponding formals. See
2213 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2214 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2215 -- Check contains all and-ed simple tests generated so far or remains
2216 -- unchanged in the case of detailed exception messaged.
2218 ------------------------
2219 -- May_Cause_Aliasing --
2220 ------------------------
2222 function May_Cause_Aliasing
2223 (Formal_1
: Entity_Id
;
2224 Formal_2
: Entity_Id
) return Boolean
2227 -- The following combination cannot lead to aliasing
2229 -- Formal 1 Formal 2
2232 if Ekind
(Formal_1
) = E_In_Parameter
2234 Ekind
(Formal_2
) = E_In_Parameter
2238 -- The following combinations may lead to aliasing
2240 -- Formal 1 Formal 2
2250 end May_Cause_Aliasing
;
2252 ---------------------
2253 -- Original_Actual --
2254 ---------------------
2256 function Original_Actual
(N
: Node_Id
) return Node_Id
is
2258 if Nkind
(N
) = N_Type_Conversion
then
2259 return Expression
(N
);
2261 -- The expander created a temporary to capture the result of a type
2262 -- conversion where the expression is the real actual.
2264 elsif Nkind
(N
) = N_Identifier
2265 and then Present
(Original_Node
(N
))
2266 and then Nkind
(Original_Node
(N
)) = N_Type_Conversion
2268 return Expression
(Original_Node
(N
));
2272 end Original_Actual
;
2278 procedure Overlap_Check
2279 (Actual_1
: Node_Id
;
2281 Formal_1
: Entity_Id
;
2282 Formal_2
: Entity_Id
;
2283 Check
: in out Node_Id
)
2286 ID_Casing
: constant Casing_Type
:=
2287 Identifier_Casing
(Source_Index
(Current_Sem_Unit
));
2291 -- Actual_1'Overlaps_Storage (Actual_2)
2294 Make_Attribute_Reference
(Loc
,
2295 Prefix
=> New_Copy_Tree
(Original_Actual
(Actual_1
)),
2296 Attribute_Name
=> Name_Overlaps_Storage
,
2298 New_List
(New_Copy_Tree
(Original_Actual
(Actual_2
))));
2300 -- Generate the following check when detailed exception messages are
2303 -- if Actual_1'Overlaps_Storage (Actual_2) then
2304 -- raise Program_Error with <detailed message>;
2307 if Exception_Extra_Info
then
2310 -- Do not generate location information for internal calls
2312 if Comes_From_Source
(Call
) then
2313 Store_String_Chars
(Build_Location_String
(Loc
));
2314 Store_String_Char
(' ');
2317 Store_String_Chars
("aliased parameters, actuals for """);
2319 Get_Name_String
(Chars
(Formal_1
));
2320 Set_Casing
(ID_Casing
);
2321 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
2323 Store_String_Chars
(""" and """);
2325 Get_Name_String
(Chars
(Formal_2
));
2326 Set_Casing
(ID_Casing
);
2327 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
2329 Store_String_Chars
(""" overlap");
2331 Insert_Action
(Call
,
2332 Make_If_Statement
(Loc
,
2334 Then_Statements
=> New_List
(
2335 Make_Raise_Statement
(Loc
,
2337 New_Occurrence_Of
(Standard_Program_Error
, Loc
),
2338 Expression
=> Make_String_Literal
(Loc
, End_String
)))));
2340 -- Create a sequence of overlapping checks by and-ing them all
2350 Right_Opnd
=> Cond
);
2360 Formal_1
: Entity_Id
;
2361 Formal_2
: Entity_Id
;
2363 -- Start of processing for Apply_Parameter_Aliasing_Checks
2368 Actual_1
:= First_Actual
(Call
);
2369 Formal_1
:= First_Formal
(Subp
);
2370 while Present
(Actual_1
) and then Present
(Formal_1
) loop
2372 -- Ensure that the actual is an object that is not passed by value.
2373 -- Elementary types are always passed by value, therefore actuals of
2374 -- such types cannot lead to aliasing. An aggregate is an object in
2375 -- Ada 2012, but an actual that is an aggregate cannot overlap with
2378 if Nkind
(Original_Actual
(Actual_1
)) = N_Aggregate
2380 (Nkind
(Original_Actual
(Actual_1
)) = N_Qualified_Expression
2381 and then Nkind
(Expression
(Original_Actual
(Actual_1
))) =
2386 elsif Is_Object_Reference
(Original_Actual
(Actual_1
))
2387 and then not Is_Elementary_Type
(Etype
(Original_Actual
(Actual_1
)))
2389 Actual_2
:= Next_Actual
(Actual_1
);
2390 Formal_2
:= Next_Formal
(Formal_1
);
2391 while Present
(Actual_2
) and then Present
(Formal_2
) loop
2393 -- The other actual we are testing against must also denote
2394 -- a non pass-by-value object. Generate the check only when
2395 -- the mode of the two formals may lead to aliasing.
2397 if Is_Object_Reference
(Original_Actual
(Actual_2
))
2399 Is_Elementary_Type
(Etype
(Original_Actual
(Actual_2
)))
2400 and then May_Cause_Aliasing
(Formal_1
, Formal_2
)
2403 (Actual_1
=> Actual_1
,
2404 Actual_2
=> Actual_2
,
2405 Formal_1
=> Formal_1
,
2406 Formal_2
=> Formal_2
,
2410 Next_Actual
(Actual_2
);
2411 Next_Formal
(Formal_2
);
2415 Next_Actual
(Actual_1
);
2416 Next_Formal
(Formal_1
);
2419 -- Place a simple check right before the call
2421 if Present
(Check
) and then not Exception_Extra_Info
then
2422 Insert_Action
(Call
,
2423 Make_Raise_Program_Error
(Loc
,
2425 Reason
=> PE_Aliased_Parameters
));
2427 end Apply_Parameter_Aliasing_Checks
;
2429 -------------------------------------
2430 -- Apply_Parameter_Validity_Checks --
2431 -------------------------------------
2433 procedure Apply_Parameter_Validity_Checks
(Subp
: Entity_Id
) is
2434 Subp_Decl
: Node_Id
;
2436 procedure Add_Validity_Check
2437 (Formal
: Entity_Id
;
2439 For_Result
: Boolean := False);
2440 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2441 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
2442 -- Set flag For_Result when to verify the result of a function.
2444 ------------------------
2445 -- Add_Validity_Check --
2446 ------------------------
2448 procedure Add_Validity_Check
2449 (Formal
: Entity_Id
;
2451 For_Result
: Boolean := False)
2453 procedure Build_Pre_Post_Condition
(Expr
: Node_Id
);
2454 -- Create a pre/postcondition pragma that tests expression Expr
2456 ------------------------------
2457 -- Build_Pre_Post_Condition --
2458 ------------------------------
2460 procedure Build_Pre_Post_Condition
(Expr
: Node_Id
) is
2461 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
2468 Pragma_Identifier
=>
2469 Make_Identifier
(Loc
, Prag_Nam
),
2470 Pragma_Argument_Associations
=> New_List
(
2471 Make_Pragma_Argument_Association
(Loc
,
2472 Chars
=> Name_Check
,
2473 Expression
=> Expr
)));
2475 -- Add a message unless exception messages are suppressed
2477 if not Exception_Locations_Suppressed
then
2478 Append_To
(Pragma_Argument_Associations
(Prag
),
2479 Make_Pragma_Argument_Association
(Loc
,
2480 Chars
=> Name_Message
,
2482 Make_String_Literal
(Loc
,
2484 & Get_Name_String
(Prag_Nam
)
2486 & Build_Location_String
(Loc
))));
2489 -- Insert the pragma in the tree
2491 if Nkind
(Parent
(Subp_Decl
)) = N_Compilation_Unit
then
2492 Add_Global_Declaration
(Prag
);
2495 -- PPC pragmas associated with subprogram bodies must be inserted
2496 -- in the declarative part of the body.
2498 elsif Nkind
(Subp_Decl
) = N_Subprogram_Body
then
2499 Decls
:= Declarations
(Subp_Decl
);
2503 Set_Declarations
(Subp_Decl
, Decls
);
2506 Prepend_To
(Decls
, Prag
);
2509 -- For subprogram declarations insert the PPC pragma right after
2510 -- the declarative node.
2513 Insert_After_And_Analyze
(Subp_Decl
, Prag
);
2515 end Build_Pre_Post_Condition
;
2519 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
2520 Typ
: constant Entity_Id
:= Etype
(Formal
);
2524 -- Start of processing for Add_Validity_Check
2527 -- For scalars, generate 'Valid test
2529 if Is_Scalar_Type
(Typ
) then
2532 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2534 elsif Scalar_Part_Present
(Typ
) then
2535 Nam
:= Name_Valid_Scalars
;
2537 -- No test needed for other cases (no scalars to test)
2543 -- Step 1: Create the expression to verify the validity of the
2546 Check
:= New_Occurrence_Of
(Formal
, Loc
);
2548 -- When processing a function result, use 'Result. Generate
2553 Make_Attribute_Reference
(Loc
,
2555 Attribute_Name
=> Name_Result
);
2559 -- Context['Result]'Valid[_Scalars]
2562 Make_Attribute_Reference
(Loc
,
2564 Attribute_Name
=> Nam
);
2566 -- Step 2: Create a pre or post condition pragma
2568 Build_Pre_Post_Condition
(Check
);
2569 end Add_Validity_Check
;
2574 Subp_Spec
: Node_Id
;
2576 -- Start of processing for Apply_Parameter_Validity_Checks
2579 -- Extract the subprogram specification and declaration nodes
2581 Subp_Spec
:= Parent
(Subp
);
2583 if Nkind
(Subp_Spec
) = N_Defining_Program_Unit_Name
then
2584 Subp_Spec
:= Parent
(Subp_Spec
);
2587 Subp_Decl
:= Parent
(Subp_Spec
);
2589 if not Comes_From_Source
(Subp
)
2591 -- Do not process formal subprograms because the corresponding actual
2592 -- will receive the proper checks when the instance is analyzed.
2594 or else Is_Formal_Subprogram
(Subp
)
2596 -- Do not process imported subprograms since pre and postconditions
2597 -- are never verified on routines coming from a different language.
2599 or else Is_Imported
(Subp
)
2600 or else Is_Intrinsic_Subprogram
(Subp
)
2602 -- The PPC pragmas generated by this routine do not correspond to
2603 -- source aspects, therefore they cannot be applied to abstract
2606 or else Nkind
(Subp_Decl
) = N_Abstract_Subprogram_Declaration
2608 -- Do not consider subprogram renaminds because the renamed entity
2609 -- already has the proper PPC pragmas.
2611 or else Nkind
(Subp_Decl
) = N_Subprogram_Renaming_Declaration
2613 -- Do not process null procedures because there is no benefit of
2614 -- adding the checks to a no action routine.
2616 or else (Nkind
(Subp_Spec
) = N_Procedure_Specification
2617 and then Null_Present
(Subp_Spec
))
2622 -- Inspect all the formals applying aliasing and scalar initialization
2623 -- checks where applicable.
2625 Formal
:= First_Formal
(Subp
);
2626 while Present
(Formal
) loop
2628 -- Generate the following scalar initialization checks for each
2629 -- formal parameter:
2631 -- mode IN - Pre => Formal'Valid[_Scalars]
2632 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2633 -- mode OUT - Post => Formal'Valid[_Scalars]
2635 if Check_Validity_Of_Parameters
then
2636 if Ekind_In
(Formal
, E_In_Parameter
, E_In_Out_Parameter
) then
2637 Add_Validity_Check
(Formal
, Name_Precondition
, False);
2640 if Ekind_In
(Formal
, E_In_Out_Parameter
, E_Out_Parameter
) then
2641 Add_Validity_Check
(Formal
, Name_Postcondition
, False);
2645 Next_Formal
(Formal
);
2648 -- Generate following scalar initialization check for function result:
2650 -- Post => Subp'Result'Valid[_Scalars]
2652 if Check_Validity_Of_Parameters
and then Ekind
(Subp
) = E_Function
then
2653 Add_Validity_Check
(Subp
, Name_Postcondition
, True);
2655 end Apply_Parameter_Validity_Checks
;
2657 ---------------------------
2658 -- Apply_Predicate_Check --
2659 ---------------------------
2661 procedure Apply_Predicate_Check
(N
: Node_Id
; Typ
: Entity_Id
) is
2665 if Present
(Predicate_Function
(Typ
)) then
2668 while Present
(S
) and then not Is_Subprogram
(S
) loop
2672 -- A predicate check does not apply within internally generated
2673 -- subprograms, such as TSS functions.
2675 if Within_Internal_Subprogram
then
2678 -- If the check appears within the predicate function itself, it
2679 -- means that the user specified a check whose formal is the
2680 -- predicated subtype itself, rather than some covering type. This
2681 -- is likely to be a common error, and thus deserves a warning.
2683 elsif Present
(S
) and then S
= Predicate_Function
(Typ
) then
2685 ("predicate check includes a function call that "
2686 & "requires a predicate check??", Parent
(N
));
2688 ("\this will result in infinite recursion??", Parent
(N
));
2690 Make_Raise_Storage_Error
(Sloc
(N
),
2691 Reason
=> SE_Infinite_Recursion
));
2693 -- Here for normal case of predicate active
2696 -- If the type has a static predicate and the expression is known
2697 -- at compile time, see if the expression satisfies the predicate.
2699 Check_Expression_Against_Static_Predicate
(N
, Typ
);
2702 Make_Predicate_Check
(Typ
, Duplicate_Subexpr
(N
)));
2705 end Apply_Predicate_Check
;
2707 -----------------------
2708 -- Apply_Range_Check --
2709 -----------------------
2711 procedure Apply_Range_Check
2713 Target_Typ
: Entity_Id
;
2714 Source_Typ
: Entity_Id
:= Empty
)
2717 Apply_Selected_Range_Checks
2718 (Ck_Node
, Target_Typ
, Source_Typ
, Do_Static
=> False);
2719 end Apply_Range_Check
;
2721 ------------------------------
2722 -- Apply_Scalar_Range_Check --
2723 ------------------------------
2725 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2726 -- off if it is already set on.
2728 procedure Apply_Scalar_Range_Check
2730 Target_Typ
: Entity_Id
;
2731 Source_Typ
: Entity_Id
:= Empty
;
2732 Fixed_Int
: Boolean := False)
2734 Parnt
: constant Node_Id
:= Parent
(Expr
);
2736 Arr
: Node_Id
:= Empty
; -- initialize to prevent warning
2737 Arr_Typ
: Entity_Id
:= Empty
; -- initialize to prevent warning
2740 Is_Subscr_Ref
: Boolean;
2741 -- Set true if Expr is a subscript
2743 Is_Unconstrained_Subscr_Ref
: Boolean;
2744 -- Set true if Expr is a subscript of an unconstrained array. In this
2745 -- case we do not attempt to do an analysis of the value against the
2746 -- range of the subscript, since we don't know the actual subtype.
2749 -- Set to True if Expr should be regarded as a real value even though
2750 -- the type of Expr might be discrete.
2752 procedure Bad_Value
;
2753 -- Procedure called if value is determined to be out of range
2759 procedure Bad_Value
is
2761 Apply_Compile_Time_Constraint_Error
2762 (Expr
, "value not in range of}??", CE_Range_Check_Failed
,
2767 -- Start of processing for Apply_Scalar_Range_Check
2770 -- Return if check obviously not needed
2773 -- Not needed inside generic
2777 -- Not needed if previous error
2779 or else Target_Typ
= Any_Type
2780 or else Nkind
(Expr
) = N_Error
2782 -- Not needed for non-scalar type
2784 or else not Is_Scalar_Type
(Target_Typ
)
2786 -- Not needed if we know node raises CE already
2788 or else Raises_Constraint_Error
(Expr
)
2793 -- Now, see if checks are suppressed
2796 Is_List_Member
(Expr
) and then Nkind
(Parnt
) = N_Indexed_Component
;
2798 if Is_Subscr_Ref
then
2799 Arr
:= Prefix
(Parnt
);
2800 Arr_Typ
:= Get_Actual_Subtype_If_Available
(Arr
);
2802 if Is_Access_Type
(Arr_Typ
) then
2803 Arr_Typ
:= Designated_Type
(Arr_Typ
);
2807 if not Do_Range_Check
(Expr
) then
2809 -- Subscript reference. Check for Index_Checks suppressed
2811 if Is_Subscr_Ref
then
2813 -- Check array type and its base type
2815 if Index_Checks_Suppressed
(Arr_Typ
)
2816 or else Index_Checks_Suppressed
(Base_Type
(Arr_Typ
))
2820 -- Check array itself if it is an entity name
2822 elsif Is_Entity_Name
(Arr
)
2823 and then Index_Checks_Suppressed
(Entity
(Arr
))
2827 -- Check expression itself if it is an entity name
2829 elsif Is_Entity_Name
(Expr
)
2830 and then Index_Checks_Suppressed
(Entity
(Expr
))
2835 -- All other cases, check for Range_Checks suppressed
2838 -- Check target type and its base type
2840 if Range_Checks_Suppressed
(Target_Typ
)
2841 or else Range_Checks_Suppressed
(Base_Type
(Target_Typ
))
2845 -- Check expression itself if it is an entity name
2847 elsif Is_Entity_Name
(Expr
)
2848 and then Range_Checks_Suppressed
(Entity
(Expr
))
2852 -- If Expr is part of an assignment statement, then check left
2853 -- side of assignment if it is an entity name.
2855 elsif Nkind
(Parnt
) = N_Assignment_Statement
2856 and then Is_Entity_Name
(Name
(Parnt
))
2857 and then Range_Checks_Suppressed
(Entity
(Name
(Parnt
)))
2864 -- Do not set range checks if they are killed
2866 if Nkind
(Expr
) = N_Unchecked_Type_Conversion
2867 and then Kill_Range_Check
(Expr
)
2872 -- Do not set range checks for any values from System.Scalar_Values
2873 -- since the whole idea of such values is to avoid checking them.
2875 if Is_Entity_Name
(Expr
)
2876 and then Is_RTU
(Scope
(Entity
(Expr
)), System_Scalar_Values
)
2881 -- Now see if we need a check
2883 if No
(Source_Typ
) then
2884 S_Typ
:= Etype
(Expr
);
2886 S_Typ
:= Source_Typ
;
2889 if not Is_Scalar_Type
(S_Typ
) or else S_Typ
= Any_Type
then
2893 Is_Unconstrained_Subscr_Ref
:=
2894 Is_Subscr_Ref
and then not Is_Constrained
(Arr_Typ
);
2896 -- Special checks for floating-point type
2898 if Is_Floating_Point_Type
(S_Typ
) then
2900 -- Always do a range check if the source type includes infinities and
2901 -- the target type does not include infinities. We do not do this if
2902 -- range checks are killed.
2903 -- If the expression is a literal and the bounds of the type are
2904 -- static constants it may be possible to optimize the check.
2906 if Has_Infinities
(S_Typ
)
2907 and then not Has_Infinities
(Target_Typ
)
2909 -- If the expression is a literal and the bounds of the type are
2910 -- static constants it may be possible to optimize the check.
2912 if Nkind
(Expr
) = N_Real_Literal
then
2914 Tlo
: constant Node_Id
:= Type_Low_Bound
(Target_Typ
);
2915 Thi
: constant Node_Id
:= Type_High_Bound
(Target_Typ
);
2918 if Compile_Time_Known_Value
(Tlo
)
2919 and then Compile_Time_Known_Value
(Thi
)
2920 and then Expr_Value_R
(Expr
) >= Expr_Value_R
(Tlo
)
2921 and then Expr_Value_R
(Expr
) <= Expr_Value_R
(Thi
)
2925 Enable_Range_Check
(Expr
);
2930 Enable_Range_Check
(Expr
);
2935 -- Return if we know expression is definitely in the range of the target
2936 -- type as determined by Determine_Range. Right now we only do this for
2937 -- discrete types, and not fixed-point or floating-point types.
2939 -- The additional less-precise tests below catch these cases
2941 -- Note: skip this if we are given a source_typ, since the point of
2942 -- supplying a Source_Typ is to stop us looking at the expression.
2943 -- We could sharpen this test to be out parameters only ???
2945 if Is_Discrete_Type
(Target_Typ
)
2946 and then Is_Discrete_Type
(Etype
(Expr
))
2947 and then not Is_Unconstrained_Subscr_Ref
2948 and then No
(Source_Typ
)
2951 Tlo
: constant Node_Id
:= Type_Low_Bound
(Target_Typ
);
2952 Thi
: constant Node_Id
:= Type_High_Bound
(Target_Typ
);
2957 if Compile_Time_Known_Value
(Tlo
)
2958 and then Compile_Time_Known_Value
(Thi
)
2961 Lov
: constant Uint
:= Expr_Value
(Tlo
);
2962 Hiv
: constant Uint
:= Expr_Value
(Thi
);
2965 -- If range is null, we for sure have a constraint error
2966 -- (we don't even need to look at the value involved,
2967 -- since all possible values will raise CE).
2971 -- In GNATprove mode, do not issue a message in that case
2972 -- (which would be an error stopping analysis), as this
2973 -- likely corresponds to deactivated code based on a
2974 -- given configuration (say, dead code inside a loop over
2975 -- the empty range). Instead, we enable the range check
2976 -- so that GNATprove will issue a message if it cannot be
2979 if GNATprove_Mode
then
2980 Enable_Range_Check
(Expr
);
2988 -- Otherwise determine range of value
2990 Determine_Range
(Expr
, OK
, Lo
, Hi
, Assume_Valid
=> True);
2994 -- If definitely in range, all OK
2996 if Lo
>= Lov
and then Hi
<= Hiv
then
2999 -- If definitely not in range, warn
3001 elsif Lov
> Hi
or else Hiv
< Lo
then
3005 -- Otherwise we don't know
3017 Is_Floating_Point_Type
(S_Typ
)
3018 or else (Is_Fixed_Point_Type
(S_Typ
) and then not Fixed_Int
);
3020 -- Check if we can determine at compile time whether Expr is in the
3021 -- range of the target type. Note that if S_Typ is within the bounds
3022 -- of Target_Typ then this must be the case. This check is meaningful
3023 -- only if this is not a conversion between integer and real types.
3025 if not Is_Unconstrained_Subscr_Ref
3026 and then Is_Discrete_Type
(S_Typ
) = Is_Discrete_Type
(Target_Typ
)
3028 (In_Subrange_Of
(S_Typ
, Target_Typ
, Fixed_Int
)
3030 -- Also check if the expression itself is in the range of the
3031 -- target type if it is a known at compile time value. We skip
3032 -- this test if S_Typ is set since for OUT and IN OUT parameters
3033 -- the Expr itself is not relevant to the checking.
3037 and then Is_In_Range
(Expr
, Target_Typ
,
3038 Assume_Valid
=> True,
3039 Fixed_Int
=> Fixed_Int
,
3040 Int_Real
=> Int_Real
)))
3044 elsif Is_Out_Of_Range
(Expr
, Target_Typ
,
3045 Assume_Valid
=> True,
3046 Fixed_Int
=> Fixed_Int
,
3047 Int_Real
=> Int_Real
)
3052 -- Floating-point case
3053 -- In the floating-point case, we only do range checks if the type is
3054 -- constrained. We definitely do NOT want range checks for unconstrained
3055 -- types, since we want to have infinities
3057 elsif Is_Floating_Point_Type
(S_Typ
) then
3059 -- Normally, we only do range checks if the type is constrained. We do
3060 -- NOT want range checks for unconstrained types, since we want to have
3063 if Is_Constrained
(S_Typ
) then
3064 Enable_Range_Check
(Expr
);
3067 -- For all other cases we enable a range check unconditionally
3070 Enable_Range_Check
(Expr
);
3073 end Apply_Scalar_Range_Check
;
3075 ----------------------------------
3076 -- Apply_Selected_Length_Checks --
3077 ----------------------------------
3079 procedure Apply_Selected_Length_Checks
3081 Target_Typ
: Entity_Id
;
3082 Source_Typ
: Entity_Id
;
3083 Do_Static
: Boolean)
3086 R_Result
: Check_Result
;
3089 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
3090 Checks_On
: constant Boolean :=
3091 (not Index_Checks_Suppressed
(Target_Typ
))
3092 or else (not Length_Checks_Suppressed
(Target_Typ
));
3095 -- Note: this means that we lose some useful warnings if the expander
3096 -- is not active, and we also lose these warnings in SPARK mode ???
3098 if not Expander_Active
then
3103 Selected_Length_Checks
(Ck_Node
, Target_Typ
, Source_Typ
, Empty
);
3105 for J
in 1 .. 2 loop
3106 R_Cno
:= R_Result
(J
);
3107 exit when No
(R_Cno
);
3109 -- A length check may mention an Itype which is attached to a
3110 -- subsequent node. At the top level in a package this can cause
3111 -- an order-of-elaboration problem, so we make sure that the itype
3112 -- is referenced now.
3114 if Ekind
(Current_Scope
) = E_Package
3115 and then Is_Compilation_Unit
(Current_Scope
)
3117 Ensure_Defined
(Target_Typ
, Ck_Node
);
3119 if Present
(Source_Typ
) then
3120 Ensure_Defined
(Source_Typ
, Ck_Node
);
3122 elsif Is_Itype
(Etype
(Ck_Node
)) then
3123 Ensure_Defined
(Etype
(Ck_Node
), Ck_Node
);
3127 -- If the item is a conditional raise of constraint error, then have
3128 -- a look at what check is being performed and ???
3130 if Nkind
(R_Cno
) = N_Raise_Constraint_Error
3131 and then Present
(Condition
(R_Cno
))
3133 Cond
:= Condition
(R_Cno
);
3135 -- Case where node does not now have a dynamic check
3137 if not Has_Dynamic_Length_Check
(Ck_Node
) then
3139 -- If checks are on, just insert the check
3142 Insert_Action
(Ck_Node
, R_Cno
);
3144 if not Do_Static
then
3145 Set_Has_Dynamic_Length_Check
(Ck_Node
);
3148 -- If checks are off, then analyze the length check after
3149 -- temporarily attaching it to the tree in case the relevant
3150 -- condition can be evaluated at compile time. We still want a
3151 -- compile time warning in this case.
3154 Set_Parent
(R_Cno
, Ck_Node
);
3159 -- Output a warning if the condition is known to be True
3161 if Is_Entity_Name
(Cond
)
3162 and then Entity
(Cond
) = Standard_True
3164 Apply_Compile_Time_Constraint_Error
3165 (Ck_Node
, "wrong length for array of}??",
3166 CE_Length_Check_Failed
,
3170 -- If we were only doing a static check, or if checks are not
3171 -- on, then we want to delete the check, since it is not needed.
3172 -- We do this by replacing the if statement by a null statement
3174 elsif Do_Static
or else not Checks_On
then
3175 Remove_Warning_Messages
(R_Cno
);
3176 Rewrite
(R_Cno
, Make_Null_Statement
(Loc
));
3180 Install_Static_Check
(R_Cno
, Loc
);
3183 end Apply_Selected_Length_Checks
;
3185 ---------------------------------
3186 -- Apply_Selected_Range_Checks --
3187 ---------------------------------
3189 procedure Apply_Selected_Range_Checks
3191 Target_Typ
: Entity_Id
;
3192 Source_Typ
: Entity_Id
;
3193 Do_Static
: Boolean)
3195 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
3196 Checks_On
: constant Boolean :=
3197 not Index_Checks_Suppressed
(Target_Typ
)
3199 not Range_Checks_Suppressed
(Target_Typ
);
3203 R_Result
: Check_Result
;
3206 if not Expander_Active
or not Checks_On
then
3211 Selected_Range_Checks
(Ck_Node
, Target_Typ
, Source_Typ
, Empty
);
3213 for J
in 1 .. 2 loop
3214 R_Cno
:= R_Result
(J
);
3215 exit when No
(R_Cno
);
3217 -- The range check requires runtime evaluation. Depending on what its
3218 -- triggering condition is, the check may be converted into a compile
3219 -- time constraint check.
3221 if Nkind
(R_Cno
) = N_Raise_Constraint_Error
3222 and then Present
(Condition
(R_Cno
))
3224 Cond
:= Condition
(R_Cno
);
3226 -- Insert the range check before the related context. Note that
3227 -- this action analyses the triggering condition.
3229 Insert_Action
(Ck_Node
, R_Cno
);
3231 -- This old code doesn't make sense, why is the context flagged as
3232 -- requiring dynamic range checks now in the middle of generating
3235 if not Do_Static
then
3236 Set_Has_Dynamic_Range_Check
(Ck_Node
);
3239 -- The triggering condition evaluates to True, the range check
3240 -- can be converted into a compile time constraint check.
3242 if Is_Entity_Name
(Cond
)
3243 and then Entity
(Cond
) = Standard_True
3245 -- Since an N_Range is technically not an expression, we have
3246 -- to set one of the bounds to C_E and then just flag the
3247 -- N_Range. The warning message will point to the lower bound
3248 -- and complain about a range, which seems OK.
3250 if Nkind
(Ck_Node
) = N_Range
then
3251 Apply_Compile_Time_Constraint_Error
3252 (Low_Bound
(Ck_Node
),
3253 "static range out of bounds of}??",
3254 CE_Range_Check_Failed
,
3258 Set_Raises_Constraint_Error
(Ck_Node
);
3261 Apply_Compile_Time_Constraint_Error
3263 "static value out of range of}??",
3264 CE_Range_Check_Failed
,
3269 -- If we were only doing a static check, or if checks are not
3270 -- on, then we want to delete the check, since it is not needed.
3271 -- We do this by replacing the if statement by a null statement
3273 -- Why are we even generating checks if checks are turned off ???
3275 elsif Do_Static
or else not Checks_On
then
3276 Remove_Warning_Messages
(R_Cno
);
3277 Rewrite
(R_Cno
, Make_Null_Statement
(Loc
));
3280 -- The range check raises Constraint_Error explicitly
3283 Install_Static_Check
(R_Cno
, Loc
);
3286 end Apply_Selected_Range_Checks
;
3288 -------------------------------
3289 -- Apply_Static_Length_Check --
3290 -------------------------------
3292 procedure Apply_Static_Length_Check
3294 Target_Typ
: Entity_Id
;
3295 Source_Typ
: Entity_Id
:= Empty
)
3298 Apply_Selected_Length_Checks
3299 (Expr
, Target_Typ
, Source_Typ
, Do_Static
=> True);
3300 end Apply_Static_Length_Check
;
3302 -------------------------------------
3303 -- Apply_Subscript_Validity_Checks --
3304 -------------------------------------
3306 procedure Apply_Subscript_Validity_Checks
(Expr
: Node_Id
) is
3310 pragma Assert
(Nkind
(Expr
) = N_Indexed_Component
);
3312 -- Loop through subscripts
3314 Sub
:= First
(Expressions
(Expr
));
3315 while Present
(Sub
) loop
3317 -- Check one subscript. Note that we do not worry about enumeration
3318 -- type with holes, since we will convert the value to a Pos value
3319 -- for the subscript, and that convert will do the necessary validity
3322 Ensure_Valid
(Sub
, Holes_OK
=> True);
3324 -- Move to next subscript
3328 end Apply_Subscript_Validity_Checks
;
3330 ----------------------------------
3331 -- Apply_Type_Conversion_Checks --
3332 ----------------------------------
3334 procedure Apply_Type_Conversion_Checks
(N
: Node_Id
) is
3335 Target_Type
: constant Entity_Id
:= Etype
(N
);
3336 Target_Base
: constant Entity_Id
:= Base_Type
(Target_Type
);
3337 Expr
: constant Node_Id
:= Expression
(N
);
3339 Expr_Type
: constant Entity_Id
:= Underlying_Type
(Etype
(Expr
));
3340 -- Note: if Etype (Expr) is a private type without discriminants, its
3341 -- full view might have discriminants with defaults, so we need the
3342 -- full view here to retrieve the constraints.
3345 if Inside_A_Generic
then
3348 -- Skip these checks if serious errors detected, there are some nasty
3349 -- situations of incomplete trees that blow things up.
3351 elsif Serious_Errors_Detected
> 0 then
3354 -- Never generate discriminant checks for Unchecked_Union types
3356 elsif Present
(Expr_Type
)
3357 and then Is_Unchecked_Union
(Expr_Type
)
3361 -- Scalar type conversions of the form Target_Type (Expr) require a
3362 -- range check if we cannot be sure that Expr is in the base type of
3363 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3364 -- are not quite the same condition from an implementation point of
3365 -- view, but clearly the second includes the first.
3367 elsif Is_Scalar_Type
(Target_Type
) then
3369 Conv_OK
: constant Boolean := Conversion_OK
(N
);
3370 -- If the Conversion_OK flag on the type conversion is set and no
3371 -- floating-point type is involved in the type conversion then
3372 -- fixed-point values must be read as integral values.
3374 Float_To_Int
: constant Boolean :=
3375 Is_Floating_Point_Type
(Expr_Type
)
3376 and then Is_Integer_Type
(Target_Type
);
3379 if not Overflow_Checks_Suppressed
(Target_Base
)
3380 and then not Overflow_Checks_Suppressed
(Target_Type
)
3382 In_Subrange_Of
(Expr_Type
, Target_Base
, Fixed_Int
=> Conv_OK
)
3383 and then not Float_To_Int
3385 Activate_Overflow_Check
(N
);
3388 if not Range_Checks_Suppressed
(Target_Type
)
3389 and then not Range_Checks_Suppressed
(Expr_Type
)
3391 if Float_To_Int
then
3392 Apply_Float_Conversion_Check
(Expr
, Target_Type
);
3394 Apply_Scalar_Range_Check
3395 (Expr
, Target_Type
, Fixed_Int
=> Conv_OK
);
3397 -- If the target type has predicates, we need to indicate
3398 -- the need for a check, even if Determine_Range finds that
3399 -- the value is within bounds. This may be the case e.g for
3400 -- a division with a constant denominator.
3402 if Has_Predicates
(Target_Type
) then
3403 Enable_Range_Check
(Expr
);
3409 elsif Comes_From_Source
(N
)
3410 and then not Discriminant_Checks_Suppressed
(Target_Type
)
3411 and then Is_Record_Type
(Target_Type
)
3412 and then Is_Derived_Type
(Target_Type
)
3413 and then not Is_Tagged_Type
(Target_Type
)
3414 and then not Is_Constrained
(Target_Type
)
3415 and then Present
(Stored_Constraint
(Target_Type
))
3417 -- An unconstrained derived type may have inherited discriminant.
3418 -- Build an actual discriminant constraint list using the stored
3419 -- constraint, to verify that the expression of the parent type
3420 -- satisfies the constraints imposed by the (unconstrained) derived
3421 -- type. This applies to value conversions, not to view conversions
3425 Loc
: constant Source_Ptr
:= Sloc
(N
);
3427 Constraint
: Elmt_Id
;
3428 Discr_Value
: Node_Id
;
3431 New_Constraints
: constant Elist_Id
:= New_Elmt_List
;
3432 Old_Constraints
: constant Elist_Id
:=
3433 Discriminant_Constraint
(Expr_Type
);
3436 Constraint
:= First_Elmt
(Stored_Constraint
(Target_Type
));
3437 while Present
(Constraint
) loop
3438 Discr_Value
:= Node
(Constraint
);
3440 if Is_Entity_Name
(Discr_Value
)
3441 and then Ekind
(Entity
(Discr_Value
)) = E_Discriminant
3443 Discr
:= Corresponding_Discriminant
(Entity
(Discr_Value
));
3446 and then Scope
(Discr
) = Base_Type
(Expr_Type
)
3448 -- Parent is constrained by new discriminant. Obtain
3449 -- Value of original discriminant in expression. If the
3450 -- new discriminant has been used to constrain more than
3451 -- one of the stored discriminants, this will provide the
3452 -- required consistency check.
3455 (Make_Selected_Component
(Loc
,
3457 Duplicate_Subexpr_No_Checks
3458 (Expr
, Name_Req
=> True),
3460 Make_Identifier
(Loc
, Chars
(Discr
))),
3464 -- Discriminant of more remote ancestor ???
3469 -- Derived type definition has an explicit value for this
3470 -- stored discriminant.
3474 (Duplicate_Subexpr_No_Checks
(Discr_Value
),
3478 Next_Elmt
(Constraint
);
3481 -- Use the unconstrained expression type to retrieve the
3482 -- discriminants of the parent, and apply momentarily the
3483 -- discriminant constraint synthesized above.
3485 Set_Discriminant_Constraint
(Expr_Type
, New_Constraints
);
3486 Cond
:= Build_Discriminant_Checks
(Expr
, Expr_Type
);
3487 Set_Discriminant_Constraint
(Expr_Type
, Old_Constraints
);
3490 Make_Raise_Constraint_Error
(Loc
,
3492 Reason
=> CE_Discriminant_Check_Failed
));
3495 -- For arrays, checks are set now, but conversions are applied during
3496 -- expansion, to take into accounts changes of representation. The
3497 -- checks become range checks on the base type or length checks on the
3498 -- subtype, depending on whether the target type is unconstrained or
3499 -- constrained. Note that the range check is put on the expression of a
3500 -- type conversion, while the length check is put on the type conversion
3503 elsif Is_Array_Type
(Target_Type
) then
3504 if Is_Constrained
(Target_Type
) then
3505 Set_Do_Length_Check
(N
);
3507 Set_Do_Range_Check
(Expr
);
3510 end Apply_Type_Conversion_Checks
;
3512 ----------------------------------------------
3513 -- Apply_Universal_Integer_Attribute_Checks --
3514 ----------------------------------------------
3516 procedure Apply_Universal_Integer_Attribute_Checks
(N
: Node_Id
) is
3517 Loc
: constant Source_Ptr
:= Sloc
(N
);
3518 Typ
: constant Entity_Id
:= Etype
(N
);
3521 if Inside_A_Generic
then
3524 -- Nothing to do if checks are suppressed
3526 elsif Range_Checks_Suppressed
(Typ
)
3527 and then Overflow_Checks_Suppressed
(Typ
)
3531 -- Nothing to do if the attribute does not come from source. The
3532 -- internal attributes we generate of this type do not need checks,
3533 -- and furthermore the attempt to check them causes some circular
3534 -- elaboration orders when dealing with packed types.
3536 elsif not Comes_From_Source
(N
) then
3539 -- If the prefix is a selected component that depends on a discriminant
3540 -- the check may improperly expose a discriminant instead of using
3541 -- the bounds of the object itself. Set the type of the attribute to
3542 -- the base type of the context, so that a check will be imposed when
3543 -- needed (e.g. if the node appears as an index).
3545 elsif Nkind
(Prefix
(N
)) = N_Selected_Component
3546 and then Ekind
(Typ
) = E_Signed_Integer_Subtype
3547 and then Depends_On_Discriminant
(Scalar_Range
(Typ
))
3549 Set_Etype
(N
, Base_Type
(Typ
));
3551 -- Otherwise, replace the attribute node with a type conversion node
3552 -- whose expression is the attribute, retyped to universal integer, and
3553 -- whose subtype mark is the target type. The call to analyze this
3554 -- conversion will set range and overflow checks as required for proper
3555 -- detection of an out of range value.
3558 Set_Etype
(N
, Universal_Integer
);
3559 Set_Analyzed
(N
, True);
3562 Make_Type_Conversion
(Loc
,
3563 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
3564 Expression
=> Relocate_Node
(N
)));
3566 Analyze_And_Resolve
(N
, Typ
);
3569 end Apply_Universal_Integer_Attribute_Checks
;
3571 -------------------------------------
3572 -- Atomic_Synchronization_Disabled --
3573 -------------------------------------
3575 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3576 -- using a bogus check called Atomic_Synchronization. This is to make it
3577 -- more convenient to get exactly the same semantics as [Un]Suppress.
3579 function Atomic_Synchronization_Disabled
(E
: Entity_Id
) return Boolean is
3581 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3582 -- looks enabled, since it is never disabled.
3584 if Debug_Flag_Dot_E
then
3587 -- If debug flag d.d is set then always return True, i.e. all atomic
3588 -- sync looks disabled, since it always tests True.
3590 elsif Debug_Flag_Dot_D
then
3593 -- If entity present, then check result for that entity
3595 elsif Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
3596 return Is_Check_Suppressed
(E
, Atomic_Synchronization
);
3598 -- Otherwise result depends on current scope setting
3601 return Scope_Suppress
.Suppress
(Atomic_Synchronization
);
3603 end Atomic_Synchronization_Disabled
;
3605 -------------------------------
3606 -- Build_Discriminant_Checks --
3607 -------------------------------
3609 function Build_Discriminant_Checks
3611 T_Typ
: Entity_Id
) return Node_Id
3613 Loc
: constant Source_Ptr
:= Sloc
(N
);
3616 Disc_Ent
: Entity_Id
;
3620 function Aggregate_Discriminant_Val
(Disc
: Entity_Id
) return Node_Id
;
3622 ----------------------------------
3623 -- Aggregate_Discriminant_Value --
3624 ----------------------------------
3626 function Aggregate_Discriminant_Val
(Disc
: Entity_Id
) return Node_Id
is
3630 -- The aggregate has been normalized with named associations. We use
3631 -- the Chars field to locate the discriminant to take into account
3632 -- discriminants in derived types, which carry the same name as those
3635 Assoc
:= First
(Component_Associations
(N
));
3636 while Present
(Assoc
) loop
3637 if Chars
(First
(Choices
(Assoc
))) = Chars
(Disc
) then
3638 return Expression
(Assoc
);
3644 -- Discriminant must have been found in the loop above
3646 raise Program_Error
;
3647 end Aggregate_Discriminant_Val
;
3649 -- Start of processing for Build_Discriminant_Checks
3652 -- Loop through discriminants evolving the condition
3655 Disc
:= First_Elmt
(Discriminant_Constraint
(T_Typ
));
3657 -- For a fully private type, use the discriminants of the parent type
3659 if Is_Private_Type
(T_Typ
)
3660 and then No
(Full_View
(T_Typ
))
3662 Disc_Ent
:= First_Discriminant
(Etype
(Base_Type
(T_Typ
)));
3664 Disc_Ent
:= First_Discriminant
(T_Typ
);
3667 while Present
(Disc
) loop
3668 Dval
:= Node
(Disc
);
3670 if Nkind
(Dval
) = N_Identifier
3671 and then Ekind
(Entity
(Dval
)) = E_Discriminant
3673 Dval
:= New_Occurrence_Of
(Discriminal
(Entity
(Dval
)), Loc
);
3675 Dval
:= Duplicate_Subexpr_No_Checks
(Dval
);
3678 -- If we have an Unchecked_Union node, we can infer the discriminants
3681 if Is_Unchecked_Union
(Base_Type
(T_Typ
)) then
3683 Get_Discriminant_Value
(
3684 First_Discriminant
(T_Typ
),
3686 Stored_Constraint
(T_Typ
)));
3688 elsif Nkind
(N
) = N_Aggregate
then
3690 Duplicate_Subexpr_No_Checks
3691 (Aggregate_Discriminant_Val
(Disc_Ent
));
3695 Make_Selected_Component
(Loc
,
3697 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
3698 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Disc_Ent
)));
3700 Set_Is_In_Discriminant_Check
(Dref
);
3703 Evolve_Or_Else
(Cond
,
3706 Right_Opnd
=> Dval
));
3709 Next_Discriminant
(Disc_Ent
);
3713 end Build_Discriminant_Checks
;
3719 function Check_Needed
(Nod
: Node_Id
; Check
: Check_Type
) return Boolean is
3726 function Left_Expression
(Op
: Node_Id
) return Node_Id
;
3727 -- Return the relevant expression from the left operand of the given
3728 -- short circuit form: this is LO itself, except if LO is a qualified
3729 -- expression, a type conversion, or an expression with actions, in
3730 -- which case this is Left_Expression (Expression (LO)).
3732 ---------------------
3733 -- Left_Expression --
3734 ---------------------
3736 function Left_Expression
(Op
: Node_Id
) return Node_Id
is
3737 LE
: Node_Id
:= Left_Opnd
(Op
);
3739 while Nkind_In
(LE
, N_Qualified_Expression
,
3741 N_Expression_With_Actions
)
3743 LE
:= Expression
(LE
);
3747 end Left_Expression
;
3749 -- Start of processing for Check_Needed
3752 -- Always check if not simple entity
3754 if Nkind
(Nod
) not in N_Has_Entity
3755 or else not Comes_From_Source
(Nod
)
3760 -- Look up tree for short circuit
3767 -- Done if out of subexpression (note that we allow generated stuff
3768 -- such as itype declarations in this context, to keep the loop going
3769 -- since we may well have generated such stuff in complex situations.
3770 -- Also done if no parent (probably an error condition, but no point
3771 -- in behaving nasty if we find it).
3774 or else (K
not in N_Subexpr
and then Comes_From_Source
(P
))
3778 -- Or/Or Else case, where test is part of the right operand, or is
3779 -- part of one of the actions associated with the right operand, and
3780 -- the left operand is an equality test.
3782 elsif K
= N_Op_Or
then
3783 exit when N
= Right_Opnd
(P
)
3784 and then Nkind
(Left_Expression
(P
)) = N_Op_Eq
;
3786 elsif K
= N_Or_Else
then
3787 exit when (N
= Right_Opnd
(P
)
3790 and then List_Containing
(N
) = Actions
(P
)))
3791 and then Nkind
(Left_Expression
(P
)) = N_Op_Eq
;
3793 -- Similar test for the And/And then case, where the left operand
3794 -- is an inequality test.
3796 elsif K
= N_Op_And
then
3797 exit when N
= Right_Opnd
(P
)
3798 and then Nkind
(Left_Expression
(P
)) = N_Op_Ne
;
3800 elsif K
= N_And_Then
then
3801 exit when (N
= Right_Opnd
(P
)
3804 and then List_Containing
(N
) = Actions
(P
)))
3805 and then Nkind
(Left_Expression
(P
)) = N_Op_Ne
;
3811 -- If we fall through the loop, then we have a conditional with an
3812 -- appropriate test as its left operand, so look further.
3814 L
:= Left_Expression
(P
);
3816 -- L is an "=" or "/=" operator: extract its operands
3818 R
:= Right_Opnd
(L
);
3821 -- Left operand of test must match original variable
3823 if Nkind
(L
) not in N_Has_Entity
or else Entity
(L
) /= Entity
(Nod
) then
3827 -- Right operand of test must be key value (zero or null)
3830 when Access_Check
=>
3831 if not Known_Null
(R
) then
3835 when Division_Check
=>
3836 if not Compile_Time_Known_Value
(R
)
3837 or else Expr_Value
(R
) /= Uint_0
3843 raise Program_Error
;
3846 -- Here we have the optimizable case, warn if not short-circuited
3848 if K
= N_Op_And
or else K
= N_Op_Or
then
3849 Error_Msg_Warn
:= SPARK_Mode
/= On
;
3852 when Access_Check
=>
3853 if GNATprove_Mode
then
3855 ("Constraint_Error might have been raised (access check)",
3859 ("Constraint_Error may be raised (access check)??",
3863 when Division_Check
=>
3864 if GNATprove_Mode
then
3866 ("Constraint_Error might have been raised (zero divide)",
3870 ("Constraint_Error may be raised (zero divide)??",
3875 raise Program_Error
;
3878 if K
= N_Op_And
then
3879 Error_Msg_N
-- CODEFIX
3880 ("use `AND THEN` instead of AND??", P
);
3882 Error_Msg_N
-- CODEFIX
3883 ("use `OR ELSE` instead of OR??", P
);
3886 -- If not short-circuited, we need the check
3890 -- If short-circuited, we can omit the check
3897 -----------------------------------
3898 -- Check_Valid_Lvalue_Subscripts --
3899 -----------------------------------
3901 procedure Check_Valid_Lvalue_Subscripts
(Expr
: Node_Id
) is
3903 -- Skip this if range checks are suppressed
3905 if Range_Checks_Suppressed
(Etype
(Expr
)) then
3908 -- Only do this check for expressions that come from source. We assume
3909 -- that expander generated assignments explicitly include any necessary
3910 -- checks. Note that this is not just an optimization, it avoids
3911 -- infinite recursions.
3913 elsif not Comes_From_Source
(Expr
) then
3916 -- For a selected component, check the prefix
3918 elsif Nkind
(Expr
) = N_Selected_Component
then
3919 Check_Valid_Lvalue_Subscripts
(Prefix
(Expr
));
3922 -- Case of indexed component
3924 elsif Nkind
(Expr
) = N_Indexed_Component
then
3925 Apply_Subscript_Validity_Checks
(Expr
);
3927 -- Prefix may itself be or contain an indexed component, and these
3928 -- subscripts need checking as well.
3930 Check_Valid_Lvalue_Subscripts
(Prefix
(Expr
));
3932 end Check_Valid_Lvalue_Subscripts
;
3934 ----------------------------------
3935 -- Null_Exclusion_Static_Checks --
3936 ----------------------------------
3938 procedure Null_Exclusion_Static_Checks
(N
: Node_Id
) is
3939 Error_Node
: Node_Id
;
3941 Has_Null
: constant Boolean := Has_Null_Exclusion
(N
);
3942 K
: constant Node_Kind
:= Nkind
(N
);
3947 (Nkind_In
(K
, N_Component_Declaration
,
3948 N_Discriminant_Specification
,
3949 N_Function_Specification
,
3950 N_Object_Declaration
,
3951 N_Parameter_Specification
));
3953 if K
= N_Function_Specification
then
3954 Typ
:= Etype
(Defining_Entity
(N
));
3956 Typ
:= Etype
(Defining_Identifier
(N
));
3960 when N_Component_Declaration
=>
3961 if Present
(Access_Definition
(Component_Definition
(N
))) then
3962 Error_Node
:= Component_Definition
(N
);
3964 Error_Node
:= Subtype_Indication
(Component_Definition
(N
));
3967 when N_Discriminant_Specification
=>
3968 Error_Node
:= Discriminant_Type
(N
);
3970 when N_Function_Specification
=>
3971 Error_Node
:= Result_Definition
(N
);
3973 when N_Object_Declaration
=>
3974 Error_Node
:= Object_Definition
(N
);
3976 when N_Parameter_Specification
=>
3977 Error_Node
:= Parameter_Type
(N
);
3980 raise Program_Error
;
3985 -- Enforce legality rule 3.10 (13): A null exclusion can only be
3986 -- applied to an access [sub]type.
3988 if not Is_Access_Type
(Typ
) then
3990 ("`NOT NULL` allowed only for an access type", Error_Node
);
3992 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
3993 -- be applied to a [sub]type that does not exclude null already.
3995 elsif Can_Never_Be_Null
(Typ
)
3996 and then Comes_From_Source
(Typ
)
3999 ("`NOT NULL` not allowed (& already excludes null)",
4004 -- Check that null-excluding objects are always initialized, except for
4005 -- deferred constants, for which the expression will appear in the full
4008 if K
= N_Object_Declaration
4009 and then No
(Expression
(N
))
4010 and then not Constant_Present
(N
)
4011 and then not No_Initialization
(N
)
4013 -- Add an expression that assigns null. This node is needed by
4014 -- Apply_Compile_Time_Constraint_Error, which will replace this with
4015 -- a Constraint_Error node.
4017 Set_Expression
(N
, Make_Null
(Sloc
(N
)));
4018 Set_Etype
(Expression
(N
), Etype
(Defining_Identifier
(N
)));
4020 Apply_Compile_Time_Constraint_Error
4021 (N
=> Expression
(N
),
4023 "(Ada 2005) null-excluding objects must be initialized??",
4024 Reason
=> CE_Null_Not_Allowed
);
4027 -- Check that a null-excluding component, formal or object is not being
4028 -- assigned a null value. Otherwise generate a warning message and
4029 -- replace Expression (N) by an N_Constraint_Error node.
4031 if K
/= N_Function_Specification
then
4032 Expr
:= Expression
(N
);
4034 if Present
(Expr
) and then Known_Null
(Expr
) then
4036 when N_Component_Declaration |
4037 N_Discriminant_Specification
=>
4038 Apply_Compile_Time_Constraint_Error
4040 Msg
=> "(Ada 2005) null not allowed "
4041 & "in null-excluding components??",
4042 Reason
=> CE_Null_Not_Allowed
);
4044 when N_Object_Declaration
=>
4045 Apply_Compile_Time_Constraint_Error
4047 Msg
=> "(Ada 2005) null not allowed "
4048 & "in null-excluding objects??",
4049 Reason
=> CE_Null_Not_Allowed
);
4051 when N_Parameter_Specification
=>
4052 Apply_Compile_Time_Constraint_Error
4054 Msg
=> "(Ada 2005) null not allowed "
4055 & "in null-excluding formals??",
4056 Reason
=> CE_Null_Not_Allowed
);
4063 end Null_Exclusion_Static_Checks
;
4065 ----------------------------------
4066 -- Conditional_Statements_Begin --
4067 ----------------------------------
4069 procedure Conditional_Statements_Begin
is
4071 Saved_Checks_TOS
:= Saved_Checks_TOS
+ 1;
4073 -- If stack overflows, kill all checks, that way we know to simply reset
4074 -- the number of saved checks to zero on return. This should never occur
4077 if Saved_Checks_TOS
> Saved_Checks_Stack
'Last then
4080 -- In the normal case, we just make a new stack entry saving the current
4081 -- number of saved checks for a later restore.
4084 Saved_Checks_Stack
(Saved_Checks_TOS
) := Num_Saved_Checks
;
4086 if Debug_Flag_CC
then
4087 w
("Conditional_Statements_Begin: Num_Saved_Checks = ",
4091 end Conditional_Statements_Begin
;
4093 --------------------------------
4094 -- Conditional_Statements_End --
4095 --------------------------------
4097 procedure Conditional_Statements_End
is
4099 pragma Assert
(Saved_Checks_TOS
> 0);
4101 -- If the saved checks stack overflowed, then we killed all checks, so
4102 -- setting the number of saved checks back to zero is correct. This
4103 -- should never occur in practice.
4105 if Saved_Checks_TOS
> Saved_Checks_Stack
'Last then
4106 Num_Saved_Checks
:= 0;
4108 -- In the normal case, restore the number of saved checks from the top
4112 Num_Saved_Checks
:= Saved_Checks_Stack
(Saved_Checks_TOS
);
4114 if Debug_Flag_CC
then
4115 w
("Conditional_Statements_End: Num_Saved_Checks = ",
4120 Saved_Checks_TOS
:= Saved_Checks_TOS
- 1;
4121 end Conditional_Statements_End
;
4123 -------------------------
4124 -- Convert_From_Bignum --
4125 -------------------------
4127 function Convert_From_Bignum
(N
: Node_Id
) return Node_Id
is
4128 Loc
: constant Source_Ptr
:= Sloc
(N
);
4131 pragma Assert
(Is_RTE
(Etype
(N
), RE_Bignum
));
4133 -- Construct call From Bignum
4136 Make_Function_Call
(Loc
,
4138 New_Occurrence_Of
(RTE
(RE_From_Bignum
), Loc
),
4139 Parameter_Associations
=> New_List
(Relocate_Node
(N
)));
4140 end Convert_From_Bignum
;
4142 -----------------------
4143 -- Convert_To_Bignum --
4144 -----------------------
4146 function Convert_To_Bignum
(N
: Node_Id
) return Node_Id
is
4147 Loc
: constant Source_Ptr
:= Sloc
(N
);
4150 -- Nothing to do if Bignum already except call Relocate_Node
4152 if Is_RTE
(Etype
(N
), RE_Bignum
) then
4153 return Relocate_Node
(N
);
4155 -- Otherwise construct call to To_Bignum, converting the operand to the
4156 -- required Long_Long_Integer form.
4159 pragma Assert
(Is_Signed_Integer_Type
(Etype
(N
)));
4161 Make_Function_Call
(Loc
,
4163 New_Occurrence_Of
(RTE
(RE_To_Bignum
), Loc
),
4164 Parameter_Associations
=> New_List
(
4165 Convert_To
(Standard_Long_Long_Integer
, Relocate_Node
(N
))));
4167 end Convert_To_Bignum
;
4169 ---------------------
4170 -- Determine_Range --
4171 ---------------------
4173 Cache_Size
: constant := 2 ** 10;
4174 type Cache_Index
is range 0 .. Cache_Size
- 1;
4175 -- Determine size of below cache (power of 2 is more efficient)
4177 Determine_Range_Cache_N
: array (Cache_Index
) of Node_Id
;
4178 Determine_Range_Cache_V
: array (Cache_Index
) of Boolean;
4179 Determine_Range_Cache_Lo
: array (Cache_Index
) of Uint
;
4180 Determine_Range_Cache_Hi
: array (Cache_Index
) of Uint
;
4181 Determine_Range_Cache_Lo_R
: array (Cache_Index
) of Ureal
;
4182 Determine_Range_Cache_Hi_R
: array (Cache_Index
) of Ureal
;
4183 -- The above arrays are used to implement a small direct cache for
4184 -- Determine_Range and Determine_Range_R calls. Because of the way these
4185 -- subprograms recursively traces subexpressions, and because overflow
4186 -- checking calls the routine on the way up the tree, a quadratic behavior
4187 -- can otherwise be encountered in large expressions. The cache entry for
4188 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4189 -- by checking the actual node value stored there. The Range_Cache_V array
4190 -- records the setting of Assume_Valid for the cache entry.
4192 procedure Determine_Range
4197 Assume_Valid
: Boolean := False)
4199 Typ
: Entity_Id
:= Etype
(N
);
4200 -- Type to use, may get reset to base type for possibly invalid entity
4204 -- Lo and Hi bounds of left operand
4208 -- Lo and Hi bounds of right (or only) operand
4211 -- Temp variable used to hold a bound node
4214 -- High bound of base type of expression
4218 -- Refined values for low and high bounds, after tightening
4221 -- Used in lower level calls to indicate if call succeeded
4223 Cindex
: Cache_Index
;
4224 -- Used to search cache
4229 function OK_Operands
return Boolean;
4230 -- Used for binary operators. Determines the ranges of the left and
4231 -- right operands, and if they are both OK, returns True, and puts
4232 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4238 function OK_Operands
return Boolean is
4241 (Left_Opnd
(N
), OK1
, Lo_Left
, Hi_Left
, Assume_Valid
);
4248 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
4252 -- Start of processing for Determine_Range
4255 -- Prevent junk warnings by initializing range variables
4262 -- For temporary constants internally generated to remove side effects
4263 -- we must use the corresponding expression to determine the range of
4264 -- the expression. But note that the expander can also generate
4265 -- constants in other cases, including deferred constants.
4267 if Is_Entity_Name
(N
)
4268 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
4269 and then Ekind
(Entity
(N
)) = E_Constant
4270 and then Is_Internal_Name
(Chars
(Entity
(N
)))
4272 if Present
(Expression
(Parent
(Entity
(N
)))) then
4274 (Expression
(Parent
(Entity
(N
))), OK
, Lo
, Hi
, Assume_Valid
);
4276 elsif Present
(Full_View
(Entity
(N
))) then
4278 (Expression
(Parent
(Full_View
(Entity
(N
)))),
4279 OK
, Lo
, Hi
, Assume_Valid
);
4287 -- If type is not defined, we can't determine its range
4291 -- We don't deal with anything except discrete types
4293 or else not Is_Discrete_Type
(Typ
)
4295 -- Ignore type for which an error has been posted, since range in
4296 -- this case may well be a bogosity deriving from the error. Also
4297 -- ignore if error posted on the reference node.
4299 or else Error_Posted
(N
) or else Error_Posted
(Typ
)
4305 -- For all other cases, we can determine the range
4309 -- If value is compile time known, then the possible range is the one
4310 -- value that we know this expression definitely has.
4312 if Compile_Time_Known_Value
(N
) then
4313 Lo
:= Expr_Value
(N
);
4318 -- Return if already in the cache
4320 Cindex
:= Cache_Index
(N
mod Cache_Size
);
4322 if Determine_Range_Cache_N
(Cindex
) = N
4324 Determine_Range_Cache_V
(Cindex
) = Assume_Valid
4326 Lo
:= Determine_Range_Cache_Lo
(Cindex
);
4327 Hi
:= Determine_Range_Cache_Hi
(Cindex
);
4331 -- Otherwise, start by finding the bounds of the type of the expression,
4332 -- the value cannot be outside this range (if it is, then we have an
4333 -- overflow situation, which is a separate check, we are talking here
4334 -- only about the expression value).
4336 -- First a check, never try to find the bounds of a generic type, since
4337 -- these bounds are always junk values, and it is only valid to look at
4338 -- the bounds in an instance.
4340 if Is_Generic_Type
(Typ
) then
4345 -- First step, change to use base type unless we know the value is valid
4347 if (Is_Entity_Name
(N
) and then Is_Known_Valid
(Entity
(N
)))
4348 or else Assume_No_Invalid_Values
4349 or else Assume_Valid
4353 Typ
:= Underlying_Type
(Base_Type
(Typ
));
4356 -- Retrieve the base type. Handle the case where the base type is a
4357 -- private enumeration type.
4359 Btyp
:= Base_Type
(Typ
);
4361 if Is_Private_Type
(Btyp
) and then Present
(Full_View
(Btyp
)) then
4362 Btyp
:= Full_View
(Btyp
);
4365 -- We use the actual bound unless it is dynamic, in which case use the
4366 -- corresponding base type bound if possible. If we can't get a bound
4367 -- then we figure we can't determine the range (a peculiar case, that
4368 -- perhaps cannot happen, but there is no point in bombing in this
4369 -- optimization circuit.
4371 -- First the low bound
4373 Bound
:= Type_Low_Bound
(Typ
);
4375 if Compile_Time_Known_Value
(Bound
) then
4376 Lo
:= Expr_Value
(Bound
);
4378 elsif Compile_Time_Known_Value
(Type_Low_Bound
(Btyp
)) then
4379 Lo
:= Expr_Value
(Type_Low_Bound
(Btyp
));
4386 -- Now the high bound
4388 Bound
:= Type_High_Bound
(Typ
);
4390 -- We need the high bound of the base type later on, and this should
4391 -- always be compile time known. Again, it is not clear that this
4392 -- can ever be false, but no point in bombing.
4394 if Compile_Time_Known_Value
(Type_High_Bound
(Btyp
)) then
4395 Hbound
:= Expr_Value
(Type_High_Bound
(Btyp
));
4403 -- If we have a static subtype, then that may have a tighter bound so
4404 -- use the upper bound of the subtype instead in this case.
4406 if Compile_Time_Known_Value
(Bound
) then
4407 Hi
:= Expr_Value
(Bound
);
4410 -- We may be able to refine this value in certain situations. If any
4411 -- refinement is possible, then Lor and Hir are set to possibly tighter
4412 -- bounds, and OK1 is set to True.
4416 -- For unary plus, result is limited by range of operand
4420 (Right_Opnd
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
4422 -- For unary minus, determine range of operand, and negate it
4426 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
4433 -- For binary addition, get range of each operand and do the
4434 -- addition to get the result range.
4438 Lor
:= Lo_Left
+ Lo_Right
;
4439 Hir
:= Hi_Left
+ Hi_Right
;
4442 -- Division is tricky. The only case we consider is where the right
4443 -- operand is a positive constant, and in this case we simply divide
4444 -- the bounds of the left operand
4448 if Lo_Right
= Hi_Right
4449 and then Lo_Right
> 0
4451 Lor
:= Lo_Left
/ Lo_Right
;
4452 Hir
:= Hi_Left
/ Lo_Right
;
4458 -- For binary subtraction, get range of each operand and do the worst
4459 -- case subtraction to get the result range.
4461 when N_Op_Subtract
=>
4463 Lor
:= Lo_Left
- Hi_Right
;
4464 Hir
:= Hi_Left
- Lo_Right
;
4467 -- For MOD, if right operand is a positive constant, then result must
4468 -- be in the allowable range of mod results.
4472 if Lo_Right
= Hi_Right
4473 and then Lo_Right
/= 0
4475 if Lo_Right
> 0 then
4477 Hir
:= Lo_Right
- 1;
4479 else -- Lo_Right < 0
4480 Lor
:= Lo_Right
+ 1;
4489 -- For REM, if right operand is a positive constant, then result must
4490 -- be in the allowable range of mod results.
4494 if Lo_Right
= Hi_Right
4495 and then Lo_Right
/= 0
4498 Dval
: constant Uint
:= (abs Lo_Right
) - 1;
4501 -- The sign of the result depends on the sign of the
4502 -- dividend (but not on the sign of the divisor, hence
4503 -- the abs operation above).
4523 -- Attribute reference cases
4525 when N_Attribute_Reference
=>
4526 case Attribute_Name
(N
) is
4528 -- For Pos/Val attributes, we can refine the range using the
4529 -- possible range of values of the attribute expression.
4531 when Name_Pos | Name_Val
=>
4533 (First
(Expressions
(N
)), OK1
, Lor
, Hir
, Assume_Valid
);
4535 -- For Length attribute, use the bounds of the corresponding
4536 -- index type to refine the range.
4540 Atyp
: Entity_Id
:= Etype
(Prefix
(N
));
4548 if Is_Access_Type
(Atyp
) then
4549 Atyp
:= Designated_Type
(Atyp
);
4552 -- For string literal, we know exact value
4554 if Ekind
(Atyp
) = E_String_Literal_Subtype
then
4556 Lo
:= String_Literal_Length
(Atyp
);
4557 Hi
:= String_Literal_Length
(Atyp
);
4561 -- Otherwise check for expression given
4563 if No
(Expressions
(N
)) then
4567 UI_To_Int
(Expr_Value
(First
(Expressions
(N
))));
4570 Indx
:= First_Index
(Atyp
);
4571 for J
in 2 .. Inum
loop
4572 Indx
:= Next_Index
(Indx
);
4575 -- If the index type is a formal type or derived from
4576 -- one, the bounds are not static.
4578 if Is_Generic_Type
(Root_Type
(Etype
(Indx
))) then
4584 (Type_Low_Bound
(Etype
(Indx
)), OK1
, LL
, LU
,
4589 (Type_High_Bound
(Etype
(Indx
)), OK1
, UL
, UU
,
4594 -- The maximum value for Length is the biggest
4595 -- possible gap between the values of the bounds.
4596 -- But of course, this value cannot be negative.
4598 Hir
:= UI_Max
(Uint_0
, UU
- LL
+ 1);
4600 -- For constrained arrays, the minimum value for
4601 -- Length is taken from the actual value of the
4602 -- bounds, since the index will be exactly of this
4605 if Is_Constrained
(Atyp
) then
4606 Lor
:= UI_Max
(Uint_0
, UL
- LU
+ 1);
4608 -- For an unconstrained array, the minimum value
4609 -- for length is always zero.
4618 -- No special handling for other attributes
4619 -- Probably more opportunities exist here???
4626 -- For type conversion from one discrete type to another, we can
4627 -- refine the range using the converted value.
4629 when N_Type_Conversion
=>
4630 Determine_Range
(Expression
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
4632 -- Nothing special to do for all other expression kinds
4640 -- At this stage, if OK1 is true, then we know that the actual result of
4641 -- the computed expression is in the range Lor .. Hir. We can use this
4642 -- to restrict the possible range of results.
4646 -- If the refined value of the low bound is greater than the type
4647 -- low bound, then reset it to the more restrictive value. However,
4648 -- we do NOT do this for the case of a modular type where the
4649 -- possible upper bound on the value is above the base type high
4650 -- bound, because that means the result could wrap.
4653 and then not (Is_Modular_Integer_Type
(Typ
) and then Hir
> Hbound
)
4658 -- Similarly, if the refined value of the high bound is less than the
4659 -- value so far, then reset it to the more restrictive value. Again,
4660 -- we do not do this if the refined low bound is negative for a
4661 -- modular type, since this would wrap.
4664 and then not (Is_Modular_Integer_Type
(Typ
) and then Lor
< Uint_0
)
4670 -- Set cache entry for future call and we are all done
4672 Determine_Range_Cache_N
(Cindex
) := N
;
4673 Determine_Range_Cache_V
(Cindex
) := Assume_Valid
;
4674 Determine_Range_Cache_Lo
(Cindex
) := Lo
;
4675 Determine_Range_Cache_Hi
(Cindex
) := Hi
;
4678 -- If any exception occurs, it means that we have some bug in the compiler,
4679 -- possibly triggered by a previous error, or by some unforeseen peculiar
4680 -- occurrence. However, this is only an optimization attempt, so there is
4681 -- really no point in crashing the compiler. Instead we just decide, too
4682 -- bad, we can't figure out a range in this case after all.
4687 -- Debug flag K disables this behavior (useful for debugging)
4689 if Debug_Flag_K
then
4697 end Determine_Range
;
4699 -----------------------
4700 -- Determine_Range_R --
4701 -----------------------
4703 procedure Determine_Range_R
4708 Assume_Valid
: Boolean := False)
4710 Typ
: Entity_Id
:= Etype
(N
);
4711 -- Type to use, may get reset to base type for possibly invalid entity
4715 -- Lo and Hi bounds of left operand
4719 -- Lo and Hi bounds of right (or only) operand
4722 -- Temp variable used to hold a bound node
4725 -- High bound of base type of expression
4729 -- Refined values for low and high bounds, after tightening
4732 -- Used in lower level calls to indicate if call succeeded
4734 Cindex
: Cache_Index
;
4735 -- Used to search cache
4740 function OK_Operands
return Boolean;
4741 -- Used for binary operators. Determines the ranges of the left and
4742 -- right operands, and if they are both OK, returns True, and puts
4743 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4745 function Round_Machine
(B
: Ureal
) return Ureal
;
4746 -- B is a real bound. Round it using mode Round_Even.
4752 function OK_Operands
return Boolean is
4755 (Left_Opnd
(N
), OK1
, Lo_Left
, Hi_Left
, Assume_Valid
);
4762 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
4770 function Round_Machine
(B
: Ureal
) return Ureal
is
4772 return Machine
(Typ
, B
, Round_Even
, N
);
4775 -- Start of processing for Determine_Range_R
4778 -- Prevent junk warnings by initializing range variables
4785 -- For temporary constants internally generated to remove side effects
4786 -- we must use the corresponding expression to determine the range of
4787 -- the expression. But note that the expander can also generate
4788 -- constants in other cases, including deferred constants.
4790 if Is_Entity_Name
(N
)
4791 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
4792 and then Ekind
(Entity
(N
)) = E_Constant
4793 and then Is_Internal_Name
(Chars
(Entity
(N
)))
4795 if Present
(Expression
(Parent
(Entity
(N
)))) then
4797 (Expression
(Parent
(Entity
(N
))), OK
, Lo
, Hi
, Assume_Valid
);
4799 elsif Present
(Full_View
(Entity
(N
))) then
4801 (Expression
(Parent
(Full_View
(Entity
(N
)))),
4802 OK
, Lo
, Hi
, Assume_Valid
);
4811 -- If type is not defined, we can't determine its range
4815 -- We don't deal with anything except IEEE floating-point types
4817 or else not Is_Floating_Point_Type
(Typ
)
4818 or else Float_Rep
(Typ
) /= IEEE_Binary
4820 -- Ignore type for which an error has been posted, since range in
4821 -- this case may well be a bogosity deriving from the error. Also
4822 -- ignore if error posted on the reference node.
4824 or else Error_Posted
(N
) or else Error_Posted
(Typ
)
4830 -- For all other cases, we can determine the range
4834 -- If value is compile time known, then the possible range is the one
4835 -- value that we know this expression definitely has.
4837 if Compile_Time_Known_Value
(N
) then
4838 Lo
:= Expr_Value_R
(N
);
4843 -- Return if already in the cache
4845 Cindex
:= Cache_Index
(N
mod Cache_Size
);
4847 if Determine_Range_Cache_N
(Cindex
) = N
4849 Determine_Range_Cache_V
(Cindex
) = Assume_Valid
4851 Lo
:= Determine_Range_Cache_Lo_R
(Cindex
);
4852 Hi
:= Determine_Range_Cache_Hi_R
(Cindex
);
4856 -- Otherwise, start by finding the bounds of the type of the expression,
4857 -- the value cannot be outside this range (if it is, then we have an
4858 -- overflow situation, which is a separate check, we are talking here
4859 -- only about the expression value).
4861 -- First a check, never try to find the bounds of a generic type, since
4862 -- these bounds are always junk values, and it is only valid to look at
4863 -- the bounds in an instance.
4865 if Is_Generic_Type
(Typ
) then
4870 -- First step, change to use base type unless we know the value is valid
4872 if (Is_Entity_Name
(N
) and then Is_Known_Valid
(Entity
(N
)))
4873 or else Assume_No_Invalid_Values
4874 or else Assume_Valid
4878 Typ
:= Underlying_Type
(Base_Type
(Typ
));
4881 -- Retrieve the base type. Handle the case where the base type is a
4884 Btyp
:= Base_Type
(Typ
);
4886 if Is_Private_Type
(Btyp
) and then Present
(Full_View
(Btyp
)) then
4887 Btyp
:= Full_View
(Btyp
);
4890 -- We use the actual bound unless it is dynamic, in which case use the
4891 -- corresponding base type bound if possible. If we can't get a bound
4892 -- then we figure we can't determine the range (a peculiar case, that
4893 -- perhaps cannot happen, but there is no point in bombing in this
4894 -- optimization circuit).
4896 -- First the low bound
4898 Bound
:= Type_Low_Bound
(Typ
);
4900 if Compile_Time_Known_Value
(Bound
) then
4901 Lo
:= Expr_Value_R
(Bound
);
4903 elsif Compile_Time_Known_Value
(Type_Low_Bound
(Btyp
)) then
4904 Lo
:= Expr_Value_R
(Type_Low_Bound
(Btyp
));
4911 -- Now the high bound
4913 Bound
:= Type_High_Bound
(Typ
);
4915 -- We need the high bound of the base type later on, and this should
4916 -- always be compile time known. Again, it is not clear that this
4917 -- can ever be false, but no point in bombing.
4919 if Compile_Time_Known_Value
(Type_High_Bound
(Btyp
)) then
4920 Hbound
:= Expr_Value_R
(Type_High_Bound
(Btyp
));
4928 -- If we have a static subtype, then that may have a tighter bound so
4929 -- use the upper bound of the subtype instead in this case.
4931 if Compile_Time_Known_Value
(Bound
) then
4932 Hi
:= Expr_Value_R
(Bound
);
4935 -- We may be able to refine this value in certain situations. If any
4936 -- refinement is possible, then Lor and Hir are set to possibly tighter
4937 -- bounds, and OK1 is set to True.
4941 -- For unary plus, result is limited by range of operand
4945 (Right_Opnd
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
4947 -- For unary minus, determine range of operand, and negate it
4951 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
4958 -- For binary addition, get range of each operand and do the
4959 -- addition to get the result range.
4963 Lor
:= Round_Machine
(Lo_Left
+ Lo_Right
);
4964 Hir
:= Round_Machine
(Hi_Left
+ Hi_Right
);
4967 -- For binary subtraction, get range of each operand and do the worst
4968 -- case subtraction to get the result range.
4970 when N_Op_Subtract
=>
4972 Lor
:= Round_Machine
(Lo_Left
- Hi_Right
);
4973 Hir
:= Round_Machine
(Hi_Left
- Lo_Right
);
4976 -- For multiplication, get range of each operand and do the
4977 -- four multiplications to get the result range.
4979 when N_Op_Multiply
=>
4982 M1
: constant Ureal
:= Round_Machine
(Lo_Left
* Lo_Right
);
4983 M2
: constant Ureal
:= Round_Machine
(Lo_Left
* Hi_Right
);
4984 M3
: constant Ureal
:= Round_Machine
(Hi_Left
* Lo_Right
);
4985 M4
: constant Ureal
:= Round_Machine
(Hi_Left
* Hi_Right
);
4987 Lor
:= UR_Min
(UR_Min
(M1
, M2
), UR_Min
(M3
, M4
));
4988 Hir
:= UR_Max
(UR_Max
(M1
, M2
), UR_Max
(M3
, M4
));
4992 -- For division, consider separately the cases where the right
4993 -- operand is positive or negative. Otherwise, the right operand
4994 -- can be arbitrarily close to zero, so the result is likely to
4995 -- be unbounded in one direction, do not attempt to compute it.
5000 -- Right operand is positive
5002 if Lo_Right
> Ureal_0
then
5004 -- If the low bound of the left operand is negative, obtain
5005 -- the overall low bound by dividing it by the smallest
5006 -- value of the right operand, and otherwise by the largest
5007 -- value of the right operand.
5009 if Lo_Left
< Ureal_0
then
5010 Lor
:= Round_Machine
(Lo_Left
/ Lo_Right
);
5012 Lor
:= Round_Machine
(Lo_Left
/ Hi_Right
);
5015 -- If the high bound of the left operand is negative, obtain
5016 -- the overall high bound by dividing it by the largest
5017 -- value of the right operand, and otherwise by the
5018 -- smallest value of the right operand.
5020 if Hi_Left
< Ureal_0
then
5021 Hir
:= Round_Machine
(Hi_Left
/ Hi_Right
);
5023 Hir
:= Round_Machine
(Hi_Left
/ Lo_Right
);
5026 -- Right operand is negative
5028 elsif Hi_Right
< Ureal_0
then
5030 -- If the low bound of the left operand is negative, obtain
5031 -- the overall low bound by dividing it by the largest
5032 -- value of the right operand, and otherwise by the smallest
5033 -- value of the right operand.
5035 if Lo_Left
< Ureal_0
then
5036 Lor
:= Round_Machine
(Lo_Left
/ Hi_Right
);
5038 Lor
:= Round_Machine
(Lo_Left
/ Lo_Right
);
5041 -- If the high bound of the left operand is negative, obtain
5042 -- the overall high bound by dividing it by the smallest
5043 -- value of the right operand, and otherwise by the
5044 -- largest value of the right operand.
5046 if Hi_Left
< Ureal_0
then
5047 Hir
:= Round_Machine
(Hi_Left
/ Lo_Right
);
5049 Hir
:= Round_Machine
(Hi_Left
/ Hi_Right
);
5057 -- For type conversion from one floating-point type to another, we
5058 -- can refine the range using the converted value.
5060 when N_Type_Conversion
=>
5061 Determine_Range_R
(Expression
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
5063 -- Nothing special to do for all other expression kinds
5071 -- At this stage, if OK1 is true, then we know that the actual result of
5072 -- the computed expression is in the range Lor .. Hir. We can use this
5073 -- to restrict the possible range of results.
5077 -- If the refined value of the low bound is greater than the type
5078 -- low bound, then reset it to the more restrictive value.
5084 -- Similarly, if the refined value of the high bound is less than the
5085 -- value so far, then reset it to the more restrictive value.
5092 -- Set cache entry for future call and we are all done
5094 Determine_Range_Cache_N
(Cindex
) := N
;
5095 Determine_Range_Cache_V
(Cindex
) := Assume_Valid
;
5096 Determine_Range_Cache_Lo_R
(Cindex
) := Lo
;
5097 Determine_Range_Cache_Hi_R
(Cindex
) := Hi
;
5100 -- If any exception occurs, it means that we have some bug in the compiler,
5101 -- possibly triggered by a previous error, or by some unforeseen peculiar
5102 -- occurrence. However, this is only an optimization attempt, so there is
5103 -- really no point in crashing the compiler. Instead we just decide, too
5104 -- bad, we can't figure out a range in this case after all.
5109 -- Debug flag K disables this behavior (useful for debugging)
5111 if Debug_Flag_K
then
5119 end Determine_Range_R
;
5121 ------------------------------------
5122 -- Discriminant_Checks_Suppressed --
5123 ------------------------------------
5125 function Discriminant_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5128 if Is_Unchecked_Union
(E
) then
5130 elsif Checks_May_Be_Suppressed
(E
) then
5131 return Is_Check_Suppressed
(E
, Discriminant_Check
);
5135 return Scope_Suppress
.Suppress
(Discriminant_Check
);
5136 end Discriminant_Checks_Suppressed
;
5138 --------------------------------
5139 -- Division_Checks_Suppressed --
5140 --------------------------------
5142 function Division_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5144 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
5145 return Is_Check_Suppressed
(E
, Division_Check
);
5147 return Scope_Suppress
.Suppress
(Division_Check
);
5149 end Division_Checks_Suppressed
;
5151 --------------------------------------
5152 -- Duplicated_Tag_Checks_Suppressed --
5153 --------------------------------------
5155 function Duplicated_Tag_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5157 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
5158 return Is_Check_Suppressed
(E
, Duplicated_Tag_Check
);
5160 return Scope_Suppress
.Suppress
(Duplicated_Tag_Check
);
5162 end Duplicated_Tag_Checks_Suppressed
;
5164 -----------------------------------
5165 -- Elaboration_Checks_Suppressed --
5166 -----------------------------------
5168 function Elaboration_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5170 -- The complication in this routine is that if we are in the dynamic
5171 -- model of elaboration, we also check All_Checks, since All_Checks
5172 -- does not set Elaboration_Check explicitly.
5175 if Kill_Elaboration_Checks
(E
) then
5178 elsif Checks_May_Be_Suppressed
(E
) then
5179 if Is_Check_Suppressed
(E
, Elaboration_Check
) then
5181 elsif Dynamic_Elaboration_Checks
then
5182 return Is_Check_Suppressed
(E
, All_Checks
);
5189 if Scope_Suppress
.Suppress
(Elaboration_Check
) then
5191 elsif Dynamic_Elaboration_Checks
then
5192 return Scope_Suppress
.Suppress
(All_Checks
);
5196 end Elaboration_Checks_Suppressed
;
5198 ---------------------------
5199 -- Enable_Overflow_Check --
5200 ---------------------------
5202 procedure Enable_Overflow_Check
(N
: Node_Id
) is
5203 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
5204 Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
5212 Do_Ovflow_Check
: Boolean;
5215 if Debug_Flag_CC
then
5216 w
("Enable_Overflow_Check for node ", Int
(N
));
5217 Write_Str
(" Source location = ");
5222 -- No check if overflow checks suppressed for type of node
5224 if Overflow_Checks_Suppressed
(Etype
(N
)) then
5227 -- Nothing to do for unsigned integer types, which do not overflow
5229 elsif Is_Modular_Integer_Type
(Typ
) then
5233 -- This is the point at which processing for STRICT mode diverges
5234 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5235 -- probably more extreme that it needs to be, but what is going on here
5236 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
5237 -- to leave the processing for STRICT mode untouched. There were
5238 -- two reasons for this. First it avoided any incompatible change of
5239 -- behavior. Second, it guaranteed that STRICT mode continued to be
5242 -- The big difference is that in STRICT mode there is a fair amount of
5243 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5244 -- know that no check is needed. We skip all that in the two new modes,
5245 -- since really overflow checking happens over a whole subtree, and we
5246 -- do the corresponding optimizations later on when applying the checks.
5248 if Mode
in Minimized_Or_Eliminated
then
5249 if not (Overflow_Checks_Suppressed
(Etype
(N
)))
5250 and then not (Is_Entity_Name
(N
)
5251 and then Overflow_Checks_Suppressed
(Entity
(N
)))
5253 Activate_Overflow_Check
(N
);
5256 if Debug_Flag_CC
then
5257 w
("Minimized/Eliminated mode");
5263 -- Remainder of processing is for STRICT case, and is unchanged from
5264 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
5266 -- Nothing to do if the range of the result is known OK. We skip this
5267 -- for conversions, since the caller already did the check, and in any
5268 -- case the condition for deleting the check for a type conversion is
5271 if Nkind
(N
) /= N_Type_Conversion
then
5272 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> True);
5274 -- Note in the test below that we assume that the range is not OK
5275 -- if a bound of the range is equal to that of the type. That's not
5276 -- quite accurate but we do this for the following reasons:
5278 -- a) The way that Determine_Range works, it will typically report
5279 -- the bounds of the value as being equal to the bounds of the
5280 -- type, because it either can't tell anything more precise, or
5281 -- does not think it is worth the effort to be more precise.
5283 -- b) It is very unusual to have a situation in which this would
5284 -- generate an unnecessary overflow check (an example would be
5285 -- a subtype with a range 0 .. Integer'Last - 1 to which the
5286 -- literal value one is added).
5288 -- c) The alternative is a lot of special casing in this routine
5289 -- which would partially duplicate Determine_Range processing.
5292 Do_Ovflow_Check
:= True;
5294 -- Note that the following checks are quite deliberately > and <
5295 -- rather than >= and <= as explained above.
5297 if Lo
> Expr_Value
(Type_Low_Bound
(Typ
))
5299 Hi
< Expr_Value
(Type_High_Bound
(Typ
))
5301 Do_Ovflow_Check
:= False;
5303 -- Despite the comments above, it is worth dealing specially with
5304 -- division specially. The only case where integer division can
5305 -- overflow is (largest negative number) / (-1). So we will do
5306 -- an extra range analysis to see if this is possible.
5308 elsif Nkind
(N
) = N_Op_Divide
then
5310 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5312 if OK
and then Lo
> Expr_Value
(Type_Low_Bound
(Typ
)) then
5313 Do_Ovflow_Check
:= False;
5317 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5319 if OK
and then (Lo
> Uint_Minus_1
5323 Do_Ovflow_Check
:= False;
5328 -- If no overflow check required, we are done
5330 if not Do_Ovflow_Check
then
5331 if Debug_Flag_CC
then
5332 w
("No overflow check required");
5340 -- If not in optimizing mode, set flag and we are done. We are also done
5341 -- (and just set the flag) if the type is not a discrete type, since it
5342 -- is not worth the effort to eliminate checks for other than discrete
5343 -- types. In addition, we take this same path if we have stored the
5344 -- maximum number of checks possible already (a very unlikely situation,
5345 -- but we do not want to blow up).
5347 if Optimization_Level
= 0
5348 or else not Is_Discrete_Type
(Etype
(N
))
5349 or else Num_Saved_Checks
= Saved_Checks
'Last
5351 Activate_Overflow_Check
(N
);
5353 if Debug_Flag_CC
then
5354 w
("Optimization off");
5360 -- Otherwise evaluate and check the expression
5365 Target_Type
=> Empty
,
5371 if Debug_Flag_CC
then
5372 w
("Called Find_Check");
5376 w
(" Check_Num = ", Chk
);
5377 w
(" Ent = ", Int
(Ent
));
5378 Write_Str
(" Ofs = ");
5383 -- If check is not of form to optimize, then set flag and we are done
5386 Activate_Overflow_Check
(N
);
5390 -- If check is already performed, then return without setting flag
5393 if Debug_Flag_CC
then
5394 w
("Check suppressed!");
5400 -- Here we will make a new entry for the new check
5402 Activate_Overflow_Check
(N
);
5403 Num_Saved_Checks
:= Num_Saved_Checks
+ 1;
5404 Saved_Checks
(Num_Saved_Checks
) :=
5409 Target_Type
=> Empty
);
5411 if Debug_Flag_CC
then
5412 w
("Make new entry, check number = ", Num_Saved_Checks
);
5413 w
(" Entity = ", Int
(Ent
));
5414 Write_Str
(" Offset = ");
5416 w
(" Check_Type = O");
5417 w
(" Target_Type = Empty");
5420 -- If we get an exception, then something went wrong, probably because of
5421 -- an error in the structure of the tree due to an incorrect program. Or
5422 -- it may be a bug in the optimization circuit. In either case the safest
5423 -- thing is simply to set the check flag unconditionally.
5427 Activate_Overflow_Check
(N
);
5429 if Debug_Flag_CC
then
5430 w
(" exception occurred, overflow flag set");
5434 end Enable_Overflow_Check
;
5436 ------------------------
5437 -- Enable_Range_Check --
5438 ------------------------
5440 procedure Enable_Range_Check
(N
: Node_Id
) is
5449 -- Return if unchecked type conversion with range check killed. In this
5450 -- case we never set the flag (that's what Kill_Range_Check is about).
5452 if Nkind
(N
) = N_Unchecked_Type_Conversion
5453 and then Kill_Range_Check
(N
)
5458 -- Do not set range check flag if parent is assignment statement or
5459 -- object declaration with Suppress_Assignment_Checks flag set
5461 if Nkind_In
(Parent
(N
), N_Assignment_Statement
, N_Object_Declaration
)
5462 and then Suppress_Assignment_Checks
(Parent
(N
))
5467 -- Check for various cases where we should suppress the range check
5469 -- No check if range checks suppressed for type of node
5471 if Present
(Etype
(N
)) and then Range_Checks_Suppressed
(Etype
(N
)) then
5474 -- No check if node is an entity name, and range checks are suppressed
5475 -- for this entity, or for the type of this entity.
5477 elsif Is_Entity_Name
(N
)
5478 and then (Range_Checks_Suppressed
(Entity
(N
))
5479 or else Range_Checks_Suppressed
(Etype
(Entity
(N
))))
5483 -- No checks if index of array, and index checks are suppressed for
5484 -- the array object or the type of the array.
5486 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
then
5488 Pref
: constant Node_Id
:= Prefix
(Parent
(N
));
5490 if Is_Entity_Name
(Pref
)
5491 and then Index_Checks_Suppressed
(Entity
(Pref
))
5494 elsif Index_Checks_Suppressed
(Etype
(Pref
)) then
5500 -- Debug trace output
5502 if Debug_Flag_CC
then
5503 w
("Enable_Range_Check for node ", Int
(N
));
5504 Write_Str
(" Source location = ");
5509 -- If not in optimizing mode, set flag and we are done. We are also done
5510 -- (and just set the flag) if the type is not a discrete type, since it
5511 -- is not worth the effort to eliminate checks for other than discrete
5512 -- types. In addition, we take this same path if we have stored the
5513 -- maximum number of checks possible already (a very unlikely situation,
5514 -- but we do not want to blow up).
5516 if Optimization_Level
= 0
5517 or else No
(Etype
(N
))
5518 or else not Is_Discrete_Type
(Etype
(N
))
5519 or else Num_Saved_Checks
= Saved_Checks
'Last
5521 Activate_Range_Check
(N
);
5523 if Debug_Flag_CC
then
5524 w
("Optimization off");
5530 -- Otherwise find out the target type
5534 -- For assignment, use left side subtype
5536 if Nkind
(P
) = N_Assignment_Statement
5537 and then Expression
(P
) = N
5539 Ttyp
:= Etype
(Name
(P
));
5541 -- For indexed component, use subscript subtype
5543 elsif Nkind
(P
) = N_Indexed_Component
then
5550 Atyp
:= Etype
(Prefix
(P
));
5552 if Is_Access_Type
(Atyp
) then
5553 Atyp
:= Designated_Type
(Atyp
);
5555 -- If the prefix is an access to an unconstrained array,
5556 -- perform check unconditionally: it depends on the bounds of
5557 -- an object and we cannot currently recognize whether the test
5558 -- may be redundant.
5560 if not Is_Constrained
(Atyp
) then
5561 Activate_Range_Check
(N
);
5565 -- Ditto if prefix is simply an unconstrained array. We used
5566 -- to think this case was OK, if the prefix was not an explicit
5567 -- dereference, but we have now seen a case where this is not
5568 -- true, so it is safer to just suppress the optimization in this
5569 -- case. The back end is getting better at eliminating redundant
5570 -- checks in any case, so the loss won't be important.
5572 elsif Is_Array_Type
(Atyp
)
5573 and then not Is_Constrained
(Atyp
)
5575 Activate_Range_Check
(N
);
5579 Indx
:= First_Index
(Atyp
);
5580 Subs
:= First
(Expressions
(P
));
5583 Ttyp
:= Etype
(Indx
);
5592 -- For now, ignore all other cases, they are not so interesting
5595 if Debug_Flag_CC
then
5596 w
(" target type not found, flag set");
5599 Activate_Range_Check
(N
);
5603 -- Evaluate and check the expression
5608 Target_Type
=> Ttyp
,
5614 if Debug_Flag_CC
then
5615 w
("Called Find_Check");
5616 w
("Target_Typ = ", Int
(Ttyp
));
5620 w
(" Check_Num = ", Chk
);
5621 w
(" Ent = ", Int
(Ent
));
5622 Write_Str
(" Ofs = ");
5627 -- If check is not of form to optimize, then set flag and we are done
5630 if Debug_Flag_CC
then
5631 w
(" expression not of optimizable type, flag set");
5634 Activate_Range_Check
(N
);
5638 -- If check is already performed, then return without setting flag
5641 if Debug_Flag_CC
then
5642 w
("Check suppressed!");
5648 -- Here we will make a new entry for the new check
5650 Activate_Range_Check
(N
);
5651 Num_Saved_Checks
:= Num_Saved_Checks
+ 1;
5652 Saved_Checks
(Num_Saved_Checks
) :=
5657 Target_Type
=> Ttyp
);
5659 if Debug_Flag_CC
then
5660 w
("Make new entry, check number = ", Num_Saved_Checks
);
5661 w
(" Entity = ", Int
(Ent
));
5662 Write_Str
(" Offset = ");
5664 w
(" Check_Type = R");
5665 w
(" Target_Type = ", Int
(Ttyp
));
5666 pg
(Union_Id
(Ttyp
));
5669 -- If we get an exception, then something went wrong, probably because of
5670 -- an error in the structure of the tree due to an incorrect program. Or
5671 -- it may be a bug in the optimization circuit. In either case the safest
5672 -- thing is simply to set the check flag unconditionally.
5676 Activate_Range_Check
(N
);
5678 if Debug_Flag_CC
then
5679 w
(" exception occurred, range flag set");
5683 end Enable_Range_Check
;
5689 procedure Ensure_Valid
5691 Holes_OK
: Boolean := False;
5692 Related_Id
: Entity_Id
:= Empty
;
5693 Is_Low_Bound
: Boolean := False;
5694 Is_High_Bound
: Boolean := False)
5696 Typ
: constant Entity_Id
:= Etype
(Expr
);
5699 -- Ignore call if we are not doing any validity checking
5701 if not Validity_Checks_On
then
5704 -- Ignore call if range or validity checks suppressed on entity or type
5706 elsif Range_Or_Validity_Checks_Suppressed
(Expr
) then
5709 -- No check required if expression is from the expander, we assume the
5710 -- expander will generate whatever checks are needed. Note that this is
5711 -- not just an optimization, it avoids infinite recursions.
5713 -- Unchecked conversions must be checked, unless they are initialized
5714 -- scalar values, as in a component assignment in an init proc.
5716 -- In addition, we force a check if Force_Validity_Checks is set
5718 elsif not Comes_From_Source
(Expr
)
5719 and then not Force_Validity_Checks
5720 and then (Nkind
(Expr
) /= N_Unchecked_Type_Conversion
5721 or else Kill_Range_Check
(Expr
))
5725 -- No check required if expression is known to have valid value
5727 elsif Expr_Known_Valid
(Expr
) then
5730 -- Ignore case of enumeration with holes where the flag is set not to
5731 -- worry about holes, since no special validity check is needed
5733 elsif Is_Enumeration_Type
(Typ
)
5734 and then Has_Non_Standard_Rep
(Typ
)
5739 -- No check required on the left-hand side of an assignment
5741 elsif Nkind
(Parent
(Expr
)) = N_Assignment_Statement
5742 and then Expr
= Name
(Parent
(Expr
))
5746 -- No check on a universal real constant. The context will eventually
5747 -- convert it to a machine number for some target type, or report an
5750 elsif Nkind
(Expr
) = N_Real_Literal
5751 and then Etype
(Expr
) = Universal_Real
5755 -- If the expression denotes a component of a packed boolean array,
5756 -- no possible check applies. We ignore the old ACATS chestnuts that
5757 -- involve Boolean range True..True.
5759 -- Note: validity checks are generated for expressions that yield a
5760 -- scalar type, when it is possible to create a value that is outside of
5761 -- the type. If this is a one-bit boolean no such value exists. This is
5762 -- an optimization, and it also prevents compiler blowing up during the
5763 -- elaboration of improperly expanded packed array references.
5765 elsif Nkind
(Expr
) = N_Indexed_Component
5766 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Expr
)))
5767 and then Root_Type
(Etype
(Expr
)) = Standard_Boolean
5771 -- For an expression with actions, we want to insert the validity check
5772 -- on the final Expression.
5774 elsif Nkind
(Expr
) = N_Expression_With_Actions
then
5775 Ensure_Valid
(Expression
(Expr
));
5778 -- An annoying special case. If this is an out parameter of a scalar
5779 -- type, then the value is not going to be accessed, therefore it is
5780 -- inappropriate to do any validity check at the call site.
5783 -- Only need to worry about scalar types
5785 if Is_Scalar_Type
(Typ
) then
5795 -- Find actual argument (which may be a parameter association)
5796 -- and the parent of the actual argument (the call statement)
5801 if Nkind
(P
) = N_Parameter_Association
then
5806 -- Only need to worry if we are argument of a procedure call
5807 -- since functions don't have out parameters. If this is an
5808 -- indirect or dispatching call, get signature from the
5811 if Nkind
(P
) = N_Procedure_Call_Statement
then
5812 L
:= Parameter_Associations
(P
);
5814 if Is_Entity_Name
(Name
(P
)) then
5815 E
:= Entity
(Name
(P
));
5817 pragma Assert
(Nkind
(Name
(P
)) = N_Explicit_Dereference
);
5818 E
:= Etype
(Name
(P
));
5821 -- Only need to worry if there are indeed actuals, and if
5822 -- this could be a procedure call, otherwise we cannot get a
5823 -- match (either we are not an argument, or the mode of the
5824 -- formal is not OUT). This test also filters out the
5827 if Is_Non_Empty_List
(L
) and then Is_Subprogram
(E
) then
5829 -- This is the loop through parameters, looking for an
5830 -- OUT parameter for which we are the argument.
5832 F
:= First_Formal
(E
);
5834 while Present
(F
) loop
5835 if Ekind
(F
) = E_Out_Parameter
and then A
= N
then
5848 -- If this is a boolean expression, only its elementary operands need
5849 -- checking: if they are valid, a boolean or short-circuit operation
5850 -- with them will be valid as well.
5852 if Base_Type
(Typ
) = Standard_Boolean
5854 (Nkind
(Expr
) in N_Op
or else Nkind
(Expr
) in N_Short_Circuit
)
5859 -- If we fall through, a validity check is required
5861 Insert_Valid_Check
(Expr
, Related_Id
, Is_Low_Bound
, Is_High_Bound
);
5863 if Is_Entity_Name
(Expr
)
5864 and then Safe_To_Capture_Value
(Expr
, Entity
(Expr
))
5866 Set_Is_Known_Valid
(Entity
(Expr
));
5870 ----------------------
5871 -- Expr_Known_Valid --
5872 ----------------------
5874 function Expr_Known_Valid
(Expr
: Node_Id
) return Boolean is
5875 Typ
: constant Entity_Id
:= Etype
(Expr
);
5878 -- Non-scalar types are always considered valid, since they never give
5879 -- rise to the issues of erroneous or bounded error behavior that are
5880 -- the concern. In formal reference manual terms the notion of validity
5881 -- only applies to scalar types. Note that even when packed arrays are
5882 -- represented using modular types, they are still arrays semantically,
5883 -- so they are also always valid (in particular, the unused bits can be
5884 -- random rubbish without affecting the validity of the array value).
5886 if not Is_Scalar_Type
(Typ
) or else Is_Packed_Array_Impl_Type
(Typ
) then
5889 -- If no validity checking, then everything is considered valid
5891 elsif not Validity_Checks_On
then
5894 -- Floating-point types are considered valid unless floating-point
5895 -- validity checks have been specifically turned on.
5897 elsif Is_Floating_Point_Type
(Typ
)
5898 and then not Validity_Check_Floating_Point
5902 -- If the expression is the value of an object that is known to be
5903 -- valid, then clearly the expression value itself is valid.
5905 elsif Is_Entity_Name
(Expr
)
5906 and then Is_Known_Valid
(Entity
(Expr
))
5908 -- Exclude volatile variables
5910 and then not Treat_As_Volatile
(Entity
(Expr
))
5914 -- References to discriminants are always considered valid. The value
5915 -- of a discriminant gets checked when the object is built. Within the
5916 -- record, we consider it valid, and it is important to do so, since
5917 -- otherwise we can try to generate bogus validity checks which
5918 -- reference discriminants out of scope. Discriminants of concurrent
5919 -- types are excluded for the same reason.
5921 elsif Is_Entity_Name
(Expr
)
5922 and then Denotes_Discriminant
(Expr
, Check_Concurrent
=> True)
5926 -- If the type is one for which all values are known valid, then we are
5927 -- sure that the value is valid except in the slightly odd case where
5928 -- the expression is a reference to a variable whose size has been
5929 -- explicitly set to a value greater than the object size.
5931 elsif Is_Known_Valid
(Typ
) then
5932 if Is_Entity_Name
(Expr
)
5933 and then Ekind
(Entity
(Expr
)) = E_Variable
5934 and then Esize
(Entity
(Expr
)) > Esize
(Typ
)
5941 -- Integer and character literals always have valid values, where
5942 -- appropriate these will be range checked in any case.
5944 elsif Nkind_In
(Expr
, N_Integer_Literal
, N_Character_Literal
) then
5947 -- If we have a type conversion or a qualification of a known valid
5948 -- value, then the result will always be valid.
5950 elsif Nkind_In
(Expr
, N_Type_Conversion
, N_Qualified_Expression
) then
5951 return Expr_Known_Valid
(Expression
(Expr
));
5953 -- Case of expression is a non-floating-point operator. In this case we
5954 -- can assume the result is valid the generated code for the operator
5955 -- will include whatever checks are needed (e.g. range checks) to ensure
5956 -- validity. This assumption does not hold for the floating-point case,
5957 -- since floating-point operators can generate Infinite or NaN results
5958 -- which are considered invalid.
5960 -- Historical note: in older versions, the exemption of floating-point
5961 -- types from this assumption was done only in cases where the parent
5962 -- was an assignment, function call or parameter association. Presumably
5963 -- the idea was that in other contexts, the result would be checked
5964 -- elsewhere, but this list of cases was missing tests (at least the
5965 -- N_Object_Declaration case, as shown by a reported missing validity
5966 -- check), and it is not clear why function calls but not procedure
5967 -- calls were tested for. It really seems more accurate and much
5968 -- safer to recognize that expressions which are the result of a
5969 -- floating-point operator can never be assumed to be valid.
5971 elsif Nkind
(Expr
) in N_Op
and then not Is_Floating_Point_Type
(Typ
) then
5974 -- The result of a membership test is always valid, since it is true or
5975 -- false, there are no other possibilities.
5977 elsif Nkind
(Expr
) in N_Membership_Test
then
5980 -- For all other cases, we do not know the expression is valid
5985 end Expr_Known_Valid
;
5991 procedure Find_Check
5993 Check_Type
: Character;
5994 Target_Type
: Entity_Id
;
5995 Entry_OK
: out Boolean;
5996 Check_Num
: out Nat
;
5997 Ent
: out Entity_Id
;
6000 function Within_Range_Of
6001 (Target_Type
: Entity_Id
;
6002 Check_Type
: Entity_Id
) return Boolean;
6003 -- Given a requirement for checking a range against Target_Type, and
6004 -- and a range Check_Type against which a check has already been made,
6005 -- determines if the check against check type is sufficient to ensure
6006 -- that no check against Target_Type is required.
6008 ---------------------
6009 -- Within_Range_Of --
6010 ---------------------
6012 function Within_Range_Of
6013 (Target_Type
: Entity_Id
;
6014 Check_Type
: Entity_Id
) return Boolean
6017 if Target_Type
= Check_Type
then
6022 Tlo
: constant Node_Id
:= Type_Low_Bound
(Target_Type
);
6023 Thi
: constant Node_Id
:= Type_High_Bound
(Target_Type
);
6024 Clo
: constant Node_Id
:= Type_Low_Bound
(Check_Type
);
6025 Chi
: constant Node_Id
:= Type_High_Bound
(Check_Type
);
6029 or else (Compile_Time_Known_Value
(Tlo
)
6031 Compile_Time_Known_Value
(Clo
)
6033 Expr_Value
(Clo
) >= Expr_Value
(Tlo
)))
6036 or else (Compile_Time_Known_Value
(Thi
)
6038 Compile_Time_Known_Value
(Chi
)
6040 Expr_Value
(Chi
) <= Expr_Value
(Clo
)))
6048 end Within_Range_Of
;
6050 -- Start of processing for Find_Check
6053 -- Establish default, in case no entry is found
6057 -- Case of expression is simple entity reference
6059 if Is_Entity_Name
(Expr
) then
6060 Ent
:= Entity
(Expr
);
6063 -- Case of expression is entity + known constant
6065 elsif Nkind
(Expr
) = N_Op_Add
6066 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
6067 and then Is_Entity_Name
(Left_Opnd
(Expr
))
6069 Ent
:= Entity
(Left_Opnd
(Expr
));
6070 Ofs
:= Expr_Value
(Right_Opnd
(Expr
));
6072 -- Case of expression is entity - known constant
6074 elsif Nkind
(Expr
) = N_Op_Subtract
6075 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
6076 and then Is_Entity_Name
(Left_Opnd
(Expr
))
6078 Ent
:= Entity
(Left_Opnd
(Expr
));
6079 Ofs
:= UI_Negate
(Expr_Value
(Right_Opnd
(Expr
)));
6081 -- Any other expression is not of the right form
6090 -- Come here with expression of appropriate form, check if entity is an
6091 -- appropriate one for our purposes.
6093 if (Ekind
(Ent
) = E_Variable
6094 or else Is_Constant_Object
(Ent
))
6095 and then not Is_Library_Level_Entity
(Ent
)
6103 -- See if there is matching check already
6105 for J
in reverse 1 .. Num_Saved_Checks
loop
6107 SC
: Saved_Check
renames Saved_Checks
(J
);
6109 if SC
.Killed
= False
6110 and then SC
.Entity
= Ent
6111 and then SC
.Offset
= Ofs
6112 and then SC
.Check_Type
= Check_Type
6113 and then Within_Range_Of
(Target_Type
, SC
.Target_Type
)
6121 -- If we fall through entry was not found
6126 ---------------------------------
6127 -- Generate_Discriminant_Check --
6128 ---------------------------------
6130 -- Note: the code for this procedure is derived from the
6131 -- Emit_Discriminant_Check Routine in trans.c.
6133 procedure Generate_Discriminant_Check
(N
: Node_Id
) is
6134 Loc
: constant Source_Ptr
:= Sloc
(N
);
6135 Pref
: constant Node_Id
:= Prefix
(N
);
6136 Sel
: constant Node_Id
:= Selector_Name
(N
);
6138 Orig_Comp
: constant Entity_Id
:=
6139 Original_Record_Component
(Entity
(Sel
));
6140 -- The original component to be checked
6142 Discr_Fct
: constant Entity_Id
:=
6143 Discriminant_Checking_Func
(Orig_Comp
);
6144 -- The discriminant checking function
6147 -- One discriminant to be checked in the type
6149 Real_Discr
: Entity_Id
;
6150 -- Actual discriminant in the call
6152 Pref_Type
: Entity_Id
;
6153 -- Type of relevant prefix (ignoring private/access stuff)
6156 -- List of arguments for function call
6159 -- Keep track of the formal corresponding to the actual we build for
6160 -- each discriminant, in order to be able to perform the necessary type
6164 -- Selected component reference for checking function argument
6167 Pref_Type
:= Etype
(Pref
);
6169 -- Force evaluation of the prefix, so that it does not get evaluated
6170 -- twice (once for the check, once for the actual reference). Such a
6171 -- double evaluation is always a potential source of inefficiency, and
6172 -- is functionally incorrect in the volatile case, or when the prefix
6173 -- may have side-effects. A non-volatile entity or a component of a
6174 -- non-volatile entity requires no evaluation.
6176 if Is_Entity_Name
(Pref
) then
6177 if Treat_As_Volatile
(Entity
(Pref
)) then
6178 Force_Evaluation
(Pref
, Name_Req
=> True);
6181 elsif Treat_As_Volatile
(Etype
(Pref
)) then
6182 Force_Evaluation
(Pref
, Name_Req
=> True);
6184 elsif Nkind
(Pref
) = N_Selected_Component
6185 and then Is_Entity_Name
(Prefix
(Pref
))
6190 Force_Evaluation
(Pref
, Name_Req
=> True);
6193 -- For a tagged type, use the scope of the original component to
6194 -- obtain the type, because ???
6196 if Is_Tagged_Type
(Scope
(Orig_Comp
)) then
6197 Pref_Type
:= Scope
(Orig_Comp
);
6199 -- For an untagged derived type, use the discriminants of the parent
6200 -- which have been renamed in the derivation, possibly by a one-to-many
6201 -- discriminant constraint. For untagged type, initially get the Etype
6205 if Is_Derived_Type
(Pref_Type
)
6206 and then Number_Discriminants
(Pref_Type
) /=
6207 Number_Discriminants
(Etype
(Base_Type
(Pref_Type
)))
6209 Pref_Type
:= Etype
(Base_Type
(Pref_Type
));
6213 -- We definitely should have a checking function, This routine should
6214 -- not be called if no discriminant checking function is present.
6216 pragma Assert
(Present
(Discr_Fct
));
6218 -- Create the list of the actual parameters for the call. This list
6219 -- is the list of the discriminant fields of the record expression to
6220 -- be discriminant checked.
6223 Formal
:= First_Formal
(Discr_Fct
);
6224 Discr
:= First_Discriminant
(Pref_Type
);
6225 while Present
(Discr
) loop
6227 -- If we have a corresponding discriminant field, and a parent
6228 -- subtype is present, then we want to use the corresponding
6229 -- discriminant since this is the one with the useful value.
6231 if Present
(Corresponding_Discriminant
(Discr
))
6232 and then Ekind
(Pref_Type
) = E_Record_Type
6233 and then Present
(Parent_Subtype
(Pref_Type
))
6235 Real_Discr
:= Corresponding_Discriminant
(Discr
);
6237 Real_Discr
:= Discr
;
6240 -- Construct the reference to the discriminant
6243 Make_Selected_Component
(Loc
,
6245 Unchecked_Convert_To
(Pref_Type
,
6246 Duplicate_Subexpr
(Pref
)),
6247 Selector_Name
=> New_Occurrence_Of
(Real_Discr
, Loc
));
6249 -- Manually analyze and resolve this selected component. We really
6250 -- want it just as it appears above, and do not want the expander
6251 -- playing discriminal games etc with this reference. Then we append
6252 -- the argument to the list we are gathering.
6254 Set_Etype
(Scomp
, Etype
(Real_Discr
));
6255 Set_Analyzed
(Scomp
, True);
6256 Append_To
(Args
, Convert_To
(Etype
(Formal
), Scomp
));
6258 Next_Formal_With_Extras
(Formal
);
6259 Next_Discriminant
(Discr
);
6262 -- Now build and insert the call
6265 Make_Raise_Constraint_Error
(Loc
,
6267 Make_Function_Call
(Loc
,
6268 Name
=> New_Occurrence_Of
(Discr_Fct
, Loc
),
6269 Parameter_Associations
=> Args
),
6270 Reason
=> CE_Discriminant_Check_Failed
));
6271 end Generate_Discriminant_Check
;
6273 ---------------------------
6274 -- Generate_Index_Checks --
6275 ---------------------------
6277 procedure Generate_Index_Checks
(N
: Node_Id
) is
6279 function Entity_Of_Prefix
return Entity_Id
;
6280 -- Returns the entity of the prefix of N (or Empty if not found)
6282 ----------------------
6283 -- Entity_Of_Prefix --
6284 ----------------------
6286 function Entity_Of_Prefix
return Entity_Id
is
6291 while not Is_Entity_Name
(P
) loop
6292 if not Nkind_In
(P
, N_Selected_Component
,
6293 N_Indexed_Component
)
6302 end Entity_Of_Prefix
;
6306 Loc
: constant Source_Ptr
:= Sloc
(N
);
6307 A
: constant Node_Id
:= Prefix
(N
);
6308 A_Ent
: constant Entity_Id
:= Entity_Of_Prefix
;
6311 -- Start of processing for Generate_Index_Checks
6314 -- Ignore call if the prefix is not an array since we have a serious
6315 -- error in the sources. Ignore it also if index checks are suppressed
6316 -- for array object or type.
6318 if not Is_Array_Type
(Etype
(A
))
6319 or else (Present
(A_Ent
) and then Index_Checks_Suppressed
(A_Ent
))
6320 or else Index_Checks_Suppressed
(Etype
(A
))
6324 -- The indexed component we are dealing with contains 'Loop_Entry in its
6325 -- prefix. This case arises when analysis has determined that constructs
6328 -- Prefix'Loop_Entry (Expr)
6329 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6331 -- require rewriting for error detection purposes. A side effect of this
6332 -- action is the generation of index checks that mention 'Loop_Entry.
6333 -- Delay the generation of the check until 'Loop_Entry has been properly
6334 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6336 elsif Nkind
(Prefix
(N
)) = N_Attribute_Reference
6337 and then Attribute_Name
(Prefix
(N
)) = Name_Loop_Entry
6342 -- Generate a raise of constraint error with the appropriate reason and
6343 -- a condition of the form:
6345 -- Base_Type (Sub) not in Array'Range (Subscript)
6347 -- Note that the reason we generate the conversion to the base type here
6348 -- is that we definitely want the range check to take place, even if it
6349 -- looks like the subtype is OK. Optimization considerations that allow
6350 -- us to omit the check have already been taken into account in the
6351 -- setting of the Do_Range_Check flag earlier on.
6353 Sub
:= First
(Expressions
(N
));
6355 -- Handle string literals
6357 if Ekind
(Etype
(A
)) = E_String_Literal_Subtype
then
6358 if Do_Range_Check
(Sub
) then
6359 Set_Do_Range_Check
(Sub
, False);
6361 -- For string literals we obtain the bounds of the string from the
6362 -- associated subtype.
6365 Make_Raise_Constraint_Error
(Loc
,
6369 Convert_To
(Base_Type
(Etype
(Sub
)),
6370 Duplicate_Subexpr_Move_Checks
(Sub
)),
6372 Make_Attribute_Reference
(Loc
,
6373 Prefix
=> New_Occurrence_Of
(Etype
(A
), Loc
),
6374 Attribute_Name
=> Name_Range
)),
6375 Reason
=> CE_Index_Check_Failed
));
6382 A_Idx
: Node_Id
:= Empty
;
6389 A_Idx
:= First_Index
(Etype
(A
));
6391 while Present
(Sub
) loop
6392 if Do_Range_Check
(Sub
) then
6393 Set_Do_Range_Check
(Sub
, False);
6395 -- Force evaluation except for the case of a simple name of
6396 -- a non-volatile entity.
6398 if not Is_Entity_Name
(Sub
)
6399 or else Treat_As_Volatile
(Entity
(Sub
))
6401 Force_Evaluation
(Sub
);
6404 if Nkind
(A_Idx
) = N_Range
then
6407 elsif Nkind
(A_Idx
) = N_Identifier
6408 or else Nkind
(A_Idx
) = N_Expanded_Name
6410 A_Range
:= Scalar_Range
(Entity
(A_Idx
));
6412 else pragma Assert
(Nkind
(A_Idx
) = N_Subtype_Indication
);
6413 A_Range
:= Range_Expression
(Constraint
(A_Idx
));
6416 -- For array objects with constant bounds we can generate
6417 -- the index check using the bounds of the type of the index
6420 and then Ekind
(A_Ent
) = E_Variable
6421 and then Is_Constant_Bound
(Low_Bound
(A_Range
))
6422 and then Is_Constant_Bound
(High_Bound
(A_Range
))
6425 Make_Attribute_Reference
(Loc
,
6427 New_Occurrence_Of
(Etype
(A_Idx
), Loc
),
6428 Attribute_Name
=> Name_Range
);
6430 -- For arrays with non-constant bounds we cannot generate
6431 -- the index check using the bounds of the type of the index
6432 -- since it may reference discriminants of some enclosing
6433 -- type. We obtain the bounds directly from the prefix
6440 Num
:= New_List
(Make_Integer_Literal
(Loc
, Ind
));
6444 Make_Attribute_Reference
(Loc
,
6446 Duplicate_Subexpr_Move_Checks
(A
, Name_Req
=> True),
6447 Attribute_Name
=> Name_Range
,
6448 Expressions
=> Num
);
6452 Make_Raise_Constraint_Error
(Loc
,
6456 Convert_To
(Base_Type
(Etype
(Sub
)),
6457 Duplicate_Subexpr_Move_Checks
(Sub
)),
6458 Right_Opnd
=> Range_N
),
6459 Reason
=> CE_Index_Check_Failed
));
6462 A_Idx
:= Next_Index
(A_Idx
);
6468 end Generate_Index_Checks
;
6470 --------------------------
6471 -- Generate_Range_Check --
6472 --------------------------
6474 procedure Generate_Range_Check
6476 Target_Type
: Entity_Id
;
6477 Reason
: RT_Exception_Code
)
6479 Loc
: constant Source_Ptr
:= Sloc
(N
);
6480 Source_Type
: constant Entity_Id
:= Etype
(N
);
6481 Source_Base_Type
: constant Entity_Id
:= Base_Type
(Source_Type
);
6482 Target_Base_Type
: constant Entity_Id
:= Base_Type
(Target_Type
);
6484 procedure Convert_And_Check_Range
;
6485 -- Convert the conversion operand to the target base type and save in
6486 -- a temporary. Then check the converted value against the range of the
6489 -----------------------------
6490 -- Convert_And_Check_Range --
6491 -----------------------------
6493 procedure Convert_And_Check_Range
is
6494 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
6497 -- We make a temporary to hold the value of the converted value
6498 -- (converted to the base type), and then do the test against this
6499 -- temporary. The conversion itself is replaced by an occurrence of
6500 -- Tnn and followed by the explicit range check. Note that checks
6501 -- are suppressed for this code, since we don't want a recursive
6502 -- range check popping up.
6504 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6505 -- [constraint_error when Tnn not in Target_Type]
6507 Insert_Actions
(N
, New_List
(
6508 Make_Object_Declaration
(Loc
,
6509 Defining_Identifier
=> Tnn
,
6510 Object_Definition
=> New_Occurrence_Of
(Target_Base_Type
, Loc
),
6511 Constant_Present
=> True,
6513 Make_Type_Conversion
(Loc
,
6514 Subtype_Mark
=> New_Occurrence_Of
(Target_Base_Type
, Loc
),
6515 Expression
=> Duplicate_Subexpr
(N
))),
6517 Make_Raise_Constraint_Error
(Loc
,
6520 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
6521 Right_Opnd
=> New_Occurrence_Of
(Target_Type
, Loc
)),
6523 Suppress
=> All_Checks
);
6525 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
6527 -- Set the type of N, because the declaration for Tnn might not
6528 -- be analyzed yet, as is the case if N appears within a record
6529 -- declaration, as a discriminant constraint or expression.
6531 Set_Etype
(N
, Target_Base_Type
);
6532 end Convert_And_Check_Range
;
6534 -- Start of processing for Generate_Range_Check
6537 -- First special case, if the source type is already within the range
6538 -- of the target type, then no check is needed (probably we should have
6539 -- stopped Do_Range_Check from being set in the first place, but better
6540 -- late than never in preventing junk code and junk flag settings.
6542 if In_Subrange_Of
(Source_Type
, Target_Type
)
6544 -- We do NOT apply this if the source node is a literal, since in this
6545 -- case the literal has already been labeled as having the subtype of
6549 (Nkind_In
(N
, N_Integer_Literal
, N_Real_Literal
, N_Character_Literal
)
6552 and then Ekind
(Entity
(N
)) = E_Enumeration_Literal
))
6554 Set_Do_Range_Check
(N
, False);
6558 -- Here a check is needed. If the expander is not active, or if we are
6559 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6560 -- are done. In both these cases, we just want to see the range check
6561 -- flag set, we do not want to generate the explicit range check code.
6563 if GNATprove_Mode
or else not Expander_Active
then
6564 Set_Do_Range_Check
(N
, True);
6568 -- Here we will generate an explicit range check, so we don't want to
6569 -- set the Do_Range check flag, since the range check is taken care of
6570 -- by the code we will generate.
6572 Set_Do_Range_Check
(N
, False);
6574 -- Force evaluation of the node, so that it does not get evaluated twice
6575 -- (once for the check, once for the actual reference). Such a double
6576 -- evaluation is always a potential source of inefficiency, and is
6577 -- functionally incorrect in the volatile case.
6579 if not Is_Entity_Name
(N
) or else Treat_As_Volatile
(Entity
(N
)) then
6580 Force_Evaluation
(N
);
6583 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6584 -- the same since in this case we can simply do a direct check of the
6585 -- value of N against the bounds of Target_Type.
6587 -- [constraint_error when N not in Target_Type]
6589 -- Note: this is by far the most common case, for example all cases of
6590 -- checks on the RHS of assignments are in this category, but not all
6591 -- cases are like this. Notably conversions can involve two types.
6593 if Source_Base_Type
= Target_Base_Type
then
6595 -- Insert the explicit range check. Note that we suppress checks for
6596 -- this code, since we don't want a recursive range check popping up.
6599 Make_Raise_Constraint_Error
(Loc
,
6602 Left_Opnd
=> Duplicate_Subexpr
(N
),
6603 Right_Opnd
=> New_Occurrence_Of
(Target_Type
, Loc
)),
6605 Suppress
=> All_Checks
);
6607 -- Next test for the case where the target type is within the bounds
6608 -- of the base type of the source type, since in this case we can
6609 -- simply convert these bounds to the base type of T to do the test.
6611 -- [constraint_error when N not in
6612 -- Source_Base_Type (Target_Type'First)
6614 -- Source_Base_Type(Target_Type'Last))]
6616 -- The conversions will always work and need no check
6618 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6619 -- of converting from an enumeration value to an integer type, such as
6620 -- occurs for the case of generating a range check on Enum'Val(Exp)
6621 -- (which used to be handled by gigi). This is OK, since the conversion
6622 -- itself does not require a check.
6624 elsif In_Subrange_Of
(Target_Type
, Source_Base_Type
) then
6626 -- Insert the explicit range check. Note that we suppress checks for
6627 -- this code, since we don't want a recursive range check popping up.
6629 if Is_Discrete_Type
(Source_Base_Type
)
6631 Is_Discrete_Type
(Target_Base_Type
)
6634 Make_Raise_Constraint_Error
(Loc
,
6637 Left_Opnd
=> Duplicate_Subexpr
(N
),
6642 Unchecked_Convert_To
(Source_Base_Type
,
6643 Make_Attribute_Reference
(Loc
,
6645 New_Occurrence_Of
(Target_Type
, Loc
),
6646 Attribute_Name
=> Name_First
)),
6649 Unchecked_Convert_To
(Source_Base_Type
,
6650 Make_Attribute_Reference
(Loc
,
6652 New_Occurrence_Of
(Target_Type
, Loc
),
6653 Attribute_Name
=> Name_Last
)))),
6655 Suppress
=> All_Checks
);
6657 -- For conversions involving at least one type that is not discrete,
6658 -- first convert to target type and then generate the range check.
6659 -- This avoids problems with values that are close to a bound of the
6660 -- target type that would fail a range check when done in a larger
6661 -- source type before converting but would pass if converted with
6662 -- rounding and then checked (such as in float-to-float conversions).
6665 Convert_And_Check_Range
;
6668 -- Note that at this stage we now that the Target_Base_Type is not in
6669 -- the range of the Source_Base_Type (since even the Target_Type itself
6670 -- is not in this range). It could still be the case that Source_Type is
6671 -- in range of the target base type since we have not checked that case.
6673 -- If that is the case, we can freely convert the source to the target,
6674 -- and then test the target result against the bounds.
6676 elsif In_Subrange_Of
(Source_Type
, Target_Base_Type
) then
6677 Convert_And_Check_Range
;
6679 -- At this stage, we know that we have two scalar types, which are
6680 -- directly convertible, and where neither scalar type has a base
6681 -- range that is in the range of the other scalar type.
6683 -- The only way this can happen is with a signed and unsigned type.
6684 -- So test for these two cases:
6687 -- Case of the source is unsigned and the target is signed
6689 if Is_Unsigned_Type
(Source_Base_Type
)
6690 and then not Is_Unsigned_Type
(Target_Base_Type
)
6692 -- If the source is unsigned and the target is signed, then we
6693 -- know that the source is not shorter than the target (otherwise
6694 -- the source base type would be in the target base type range).
6696 -- In other words, the unsigned type is either the same size as
6697 -- the target, or it is larger. It cannot be smaller.
6700 (Esize
(Source_Base_Type
) >= Esize
(Target_Base_Type
));
6702 -- We only need to check the low bound if the low bound of the
6703 -- target type is non-negative. If the low bound of the target
6704 -- type is negative, then we know that we will fit fine.
6706 -- If the high bound of the target type is negative, then we
6707 -- know we have a constraint error, since we can't possibly
6708 -- have a negative source.
6710 -- With these two checks out of the way, we can do the check
6711 -- using the source type safely
6713 -- This is definitely the most annoying case.
6715 -- [constraint_error
6716 -- when (Target_Type'First >= 0
6718 -- N < Source_Base_Type (Target_Type'First))
6719 -- or else Target_Type'Last < 0
6720 -- or else N > Source_Base_Type (Target_Type'Last)];
6722 -- We turn off all checks since we know that the conversions
6723 -- will work fine, given the guards for negative values.
6726 Make_Raise_Constraint_Error
(Loc
,
6732 Left_Opnd
=> Make_Op_Ge
(Loc
,
6734 Make_Attribute_Reference
(Loc
,
6736 New_Occurrence_Of
(Target_Type
, Loc
),
6737 Attribute_Name
=> Name_First
),
6738 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
6742 Left_Opnd
=> Duplicate_Subexpr
(N
),
6744 Convert_To
(Source_Base_Type
,
6745 Make_Attribute_Reference
(Loc
,
6747 New_Occurrence_Of
(Target_Type
, Loc
),
6748 Attribute_Name
=> Name_First
)))),
6753 Make_Attribute_Reference
(Loc
,
6754 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
6755 Attribute_Name
=> Name_Last
),
6756 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
))),
6760 Left_Opnd
=> Duplicate_Subexpr
(N
),
6762 Convert_To
(Source_Base_Type
,
6763 Make_Attribute_Reference
(Loc
,
6764 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
6765 Attribute_Name
=> Name_Last
)))),
6768 Suppress
=> All_Checks
);
6770 -- Only remaining possibility is that the source is signed and
6771 -- the target is unsigned.
6774 pragma Assert
(not Is_Unsigned_Type
(Source_Base_Type
)
6775 and then Is_Unsigned_Type
(Target_Base_Type
));
6777 -- If the source is signed and the target is unsigned, then we
6778 -- know that the target is not shorter than the source (otherwise
6779 -- the target base type would be in the source base type range).
6781 -- In other words, the unsigned type is either the same size as
6782 -- the target, or it is larger. It cannot be smaller.
6784 -- Clearly we have an error if the source value is negative since
6785 -- no unsigned type can have negative values. If the source type
6786 -- is non-negative, then the check can be done using the target
6789 -- Tnn : constant Target_Base_Type (N) := Target_Type;
6791 -- [constraint_error
6792 -- when N < 0 or else Tnn not in Target_Type];
6794 -- We turn off all checks for the conversion of N to the target
6795 -- base type, since we generate the explicit check to ensure that
6796 -- the value is non-negative
6799 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
6802 Insert_Actions
(N
, New_List
(
6803 Make_Object_Declaration
(Loc
,
6804 Defining_Identifier
=> Tnn
,
6805 Object_Definition
=>
6806 New_Occurrence_Of
(Target_Base_Type
, Loc
),
6807 Constant_Present
=> True,
6809 Make_Unchecked_Type_Conversion
(Loc
,
6811 New_Occurrence_Of
(Target_Base_Type
, Loc
),
6812 Expression
=> Duplicate_Subexpr
(N
))),
6814 Make_Raise_Constraint_Error
(Loc
,
6819 Left_Opnd
=> Duplicate_Subexpr
(N
),
6820 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
6824 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
6826 New_Occurrence_Of
(Target_Type
, Loc
))),
6829 Suppress
=> All_Checks
);
6831 -- Set the Etype explicitly, because Insert_Actions may have
6832 -- placed the declaration in the freeze list for an enclosing
6833 -- construct, and thus it is not analyzed yet.
6835 Set_Etype
(Tnn
, Target_Base_Type
);
6836 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
6840 end Generate_Range_Check
;
6846 function Get_Check_Id
(N
: Name_Id
) return Check_Id
is
6848 -- For standard check name, we can do a direct computation
6850 if N
in First_Check_Name
.. Last_Check_Name
then
6851 return Check_Id
(N
- (First_Check_Name
- 1));
6853 -- For non-standard names added by pragma Check_Name, search table
6856 for J
in All_Checks
+ 1 .. Check_Names
.Last
loop
6857 if Check_Names
.Table
(J
) = N
then
6863 -- No matching name found
6868 ---------------------
6869 -- Get_Discriminal --
6870 ---------------------
6872 function Get_Discriminal
(E
: Entity_Id
; Bound
: Node_Id
) return Node_Id
is
6873 Loc
: constant Source_Ptr
:= Sloc
(E
);
6878 -- The bound can be a bona fide parameter of a protected operation,
6879 -- rather than a prival encoded as an in-parameter.
6881 if No
(Discriminal_Link
(Entity
(Bound
))) then
6885 -- Climb the scope stack looking for an enclosing protected type. If
6886 -- we run out of scopes, return the bound itself.
6889 while Present
(Sc
) loop
6890 if Sc
= Standard_Standard
then
6892 elsif Ekind
(Sc
) = E_Protected_Type
then
6899 D
:= First_Discriminant
(Sc
);
6900 while Present
(D
) loop
6901 if Chars
(D
) = Chars
(Bound
) then
6902 return New_Occurrence_Of
(Discriminal
(D
), Loc
);
6905 Next_Discriminant
(D
);
6909 end Get_Discriminal
;
6911 ----------------------
6912 -- Get_Range_Checks --
6913 ----------------------
6915 function Get_Range_Checks
6917 Target_Typ
: Entity_Id
;
6918 Source_Typ
: Entity_Id
:= Empty
;
6919 Warn_Node
: Node_Id
:= Empty
) return Check_Result
6923 Selected_Range_Checks
(Ck_Node
, Target_Typ
, Source_Typ
, Warn_Node
);
6924 end Get_Range_Checks
;
6930 function Guard_Access
6933 Ck_Node
: Node_Id
) return Node_Id
6936 if Nkind
(Cond
) = N_Or_Else
then
6937 Set_Paren_Count
(Cond
, 1);
6940 if Nkind
(Ck_Node
) = N_Allocator
then
6948 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
6949 Right_Opnd
=> Make_Null
(Loc
)),
6950 Right_Opnd
=> Cond
);
6954 -----------------------------
6955 -- Index_Checks_Suppressed --
6956 -----------------------------
6958 function Index_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
6960 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
6961 return Is_Check_Suppressed
(E
, Index_Check
);
6963 return Scope_Suppress
.Suppress
(Index_Check
);
6965 end Index_Checks_Suppressed
;
6971 procedure Initialize
is
6973 for J
in Determine_Range_Cache_N
'Range loop
6974 Determine_Range_Cache_N
(J
) := Empty
;
6979 for J
in Int
range 1 .. All_Checks
loop
6980 Check_Names
.Append
(Name_Id
(Int
(First_Check_Name
) + J
- 1));
6984 -------------------------
6985 -- Insert_Range_Checks --
6986 -------------------------
6988 procedure Insert_Range_Checks
6989 (Checks
: Check_Result
;
6991 Suppress_Typ
: Entity_Id
;
6992 Static_Sloc
: Source_Ptr
:= No_Location
;
6993 Flag_Node
: Node_Id
:= Empty
;
6994 Do_Before
: Boolean := False)
6996 Internal_Flag_Node
: Node_Id
:= Flag_Node
;
6997 Internal_Static_Sloc
: Source_Ptr
:= Static_Sloc
;
6999 Check_Node
: Node_Id
;
7000 Checks_On
: constant Boolean :=
7001 (not Index_Checks_Suppressed
(Suppress_Typ
))
7002 or else (not Range_Checks_Suppressed
(Suppress_Typ
));
7005 -- For now we just return if Checks_On is false, however this should be
7006 -- enhanced to check for an always True value in the condition and to
7007 -- generate a compilation warning???
7009 if not Expander_Active
or not Checks_On
then
7013 if Static_Sloc
= No_Location
then
7014 Internal_Static_Sloc
:= Sloc
(Node
);
7017 if No
(Flag_Node
) then
7018 Internal_Flag_Node
:= Node
;
7021 for J
in 1 .. 2 loop
7022 exit when No
(Checks
(J
));
7024 if Nkind
(Checks
(J
)) = N_Raise_Constraint_Error
7025 and then Present
(Condition
(Checks
(J
)))
7027 if not Has_Dynamic_Range_Check
(Internal_Flag_Node
) then
7028 Check_Node
:= Checks
(J
);
7029 Mark_Rewrite_Insertion
(Check_Node
);
7032 Insert_Before_And_Analyze
(Node
, Check_Node
);
7034 Insert_After_And_Analyze
(Node
, Check_Node
);
7037 Set_Has_Dynamic_Range_Check
(Internal_Flag_Node
);
7042 Make_Raise_Constraint_Error
(Internal_Static_Sloc
,
7043 Reason
=> CE_Range_Check_Failed
);
7044 Mark_Rewrite_Insertion
(Check_Node
);
7047 Insert_Before_And_Analyze
(Node
, Check_Node
);
7049 Insert_After_And_Analyze
(Node
, Check_Node
);
7053 end Insert_Range_Checks
;
7055 ------------------------
7056 -- Insert_Valid_Check --
7057 ------------------------
7059 procedure Insert_Valid_Check
7061 Related_Id
: Entity_Id
:= Empty
;
7062 Is_Low_Bound
: Boolean := False;
7063 Is_High_Bound
: Boolean := False)
7065 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
7066 Typ
: constant Entity_Id
:= Etype
(Expr
);
7070 -- Do not insert if checks off, or if not checking validity or if
7071 -- expression is known to be valid.
7073 if not Validity_Checks_On
7074 or else Range_Or_Validity_Checks_Suppressed
(Expr
)
7075 or else Expr_Known_Valid
(Expr
)
7080 -- Do not insert checks within a predicate function. This will arise
7081 -- if the current unit and the predicate function are being compiled
7082 -- with validity checks enabled.
7084 if Present
(Predicate_Function
(Typ
))
7085 and then Current_Scope
= Predicate_Function
(Typ
)
7090 -- If the expression is a packed component of a modular type of the
7091 -- right size, the data is always valid.
7093 if Nkind
(Expr
) = N_Selected_Component
7094 and then Present
(Component_Clause
(Entity
(Selector_Name
(Expr
))))
7095 and then Is_Modular_Integer_Type
(Typ
)
7096 and then Modulus
(Typ
) = 2 ** Esize
(Entity
(Selector_Name
(Expr
)))
7101 -- If we have a checked conversion, then validity check applies to
7102 -- the expression inside the conversion, not the result, since if
7103 -- the expression inside is valid, then so is the conversion result.
7106 while Nkind
(Exp
) = N_Type_Conversion
loop
7107 Exp
:= Expression
(Exp
);
7110 -- We are about to insert the validity check for Exp. We save and
7111 -- reset the Do_Range_Check flag over this validity check, and then
7112 -- put it back for the final original reference (Exp may be rewritten).
7115 DRC
: constant Boolean := Do_Range_Check
(Exp
);
7120 Set_Do_Range_Check
(Exp
, False);
7122 -- Force evaluation to avoid multiple reads for atomic/volatile
7124 -- Note: we set Name_Req to False. We used to set it to True, with
7125 -- the thinking that a name is required as the prefix of the 'Valid
7126 -- call, but in fact the check that the prefix of an attribute is
7127 -- a name is in the parser, and we just don't require it here.
7128 -- Moreover, when we set Name_Req to True, that interfered with the
7129 -- checking for Volatile, since we couldn't just capture the value.
7131 if Is_Entity_Name
(Exp
)
7132 and then Is_Volatile
(Entity
(Exp
))
7134 -- Same reasoning as above for setting Name_Req to False
7136 Force_Evaluation
(Exp
, Name_Req
=> False);
7139 -- Build the prefix for the 'Valid call
7142 Duplicate_Subexpr_No_Checks
7145 Related_Id
=> Related_Id
,
7146 Is_Low_Bound
=> Is_Low_Bound
,
7147 Is_High_Bound
=> Is_High_Bound
);
7149 -- A rather specialized test. If PV is an analyzed expression which
7150 -- is an indexed component of a packed array that has not been
7151 -- properly expanded, turn off its Analyzed flag to make sure it
7152 -- gets properly reexpanded. If the prefix is an access value,
7153 -- the dereference will be added later.
7155 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7156 -- an analyze with the old parent pointer. This may point e.g. to
7157 -- a subprogram call, which deactivates this expansion.
7160 and then Nkind
(PV
) = N_Indexed_Component
7161 and then Is_Array_Type
(Etype
(Prefix
(PV
)))
7162 and then Present
(Packed_Array_Impl_Type
(Etype
(Prefix
(PV
))))
7164 Set_Analyzed
(PV
, False);
7167 -- Build the raise CE node to check for validity. We build a type
7168 -- qualification for the prefix, since it may not be of the form of
7169 -- a name, and we don't care in this context!
7172 Make_Raise_Constraint_Error
(Loc
,
7176 Make_Attribute_Reference
(Loc
,
7178 Attribute_Name
=> Name_Valid
)),
7179 Reason
=> CE_Invalid_Data
);
7181 -- Insert the validity check. Note that we do this with validity
7182 -- checks turned off, to avoid recursion, we do not want validity
7183 -- checks on the validity checking code itself.
7185 Insert_Action
(Expr
, CE
, Suppress
=> Validity_Check
);
7187 -- If the expression is a reference to an element of a bit-packed
7188 -- array, then it is rewritten as a renaming declaration. If the
7189 -- expression is an actual in a call, it has not been expanded,
7190 -- waiting for the proper point at which to do it. The same happens
7191 -- with renamings, so that we have to force the expansion now. This
7192 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7195 if Is_Entity_Name
(Exp
)
7196 and then Nkind
(Parent
(Entity
(Exp
))) =
7197 N_Object_Renaming_Declaration
7200 Old_Exp
: constant Node_Id
:= Name
(Parent
(Entity
(Exp
)));
7202 if Nkind
(Old_Exp
) = N_Indexed_Component
7203 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Old_Exp
)))
7205 Expand_Packed_Element_Reference
(Old_Exp
);
7210 -- Put back the Do_Range_Check flag on the resulting (possibly
7211 -- rewritten) expression.
7213 -- Note: it might be thought that a validity check is not required
7214 -- when a range check is present, but that's not the case, because
7215 -- the back end is allowed to assume for the range check that the
7216 -- operand is within its declared range (an assumption that validity
7217 -- checking is all about NOT assuming).
7219 -- Note: no need to worry about Possible_Local_Raise here, it will
7220 -- already have been called if original node has Do_Range_Check set.
7222 Set_Do_Range_Check
(Exp
, DRC
);
7224 end Insert_Valid_Check
;
7226 -------------------------------------
7227 -- Is_Signed_Integer_Arithmetic_Op --
7228 -------------------------------------
7230 function Is_Signed_Integer_Arithmetic_Op
(N
: Node_Id
) return Boolean is
7233 when N_Op_Abs | N_Op_Add | N_Op_Divide | N_Op_Expon |
7234 N_Op_Minus | N_Op_Mod | N_Op_Multiply | N_Op_Plus |
7235 N_Op_Rem | N_Op_Subtract
=>
7236 return Is_Signed_Integer_Type
(Etype
(N
));
7238 when N_If_Expression | N_Case_Expression
=>
7239 return Is_Signed_Integer_Type
(Etype
(N
));
7244 end Is_Signed_Integer_Arithmetic_Op
;
7246 ----------------------------------
7247 -- Install_Null_Excluding_Check --
7248 ----------------------------------
7250 procedure Install_Null_Excluding_Check
(N
: Node_Id
) is
7251 Loc
: constant Source_Ptr
:= Sloc
(Parent
(N
));
7252 Typ
: constant Entity_Id
:= Etype
(N
);
7254 function Safe_To_Capture_In_Parameter_Value
return Boolean;
7255 -- Determines if it is safe to capture Known_Non_Null status for an
7256 -- the entity referenced by node N. The caller ensures that N is indeed
7257 -- an entity name. It is safe to capture the non-null status for an IN
7258 -- parameter when the reference occurs within a declaration that is sure
7259 -- to be executed as part of the declarative region.
7261 procedure Mark_Non_Null
;
7262 -- After installation of check, if the node in question is an entity
7263 -- name, then mark this entity as non-null if possible.
7265 function Safe_To_Capture_In_Parameter_Value
return Boolean is
7266 E
: constant Entity_Id
:= Entity
(N
);
7267 S
: constant Entity_Id
:= Current_Scope
;
7271 if Ekind
(E
) /= E_In_Parameter
then
7275 -- Two initial context checks. We must be inside a subprogram body
7276 -- with declarations and reference must not appear in nested scopes.
7278 if (Ekind
(S
) /= E_Function
and then Ekind
(S
) /= E_Procedure
)
7279 or else Scope
(E
) /= S
7284 S_Par
:= Parent
(Parent
(S
));
7286 if Nkind
(S_Par
) /= N_Subprogram_Body
7287 or else No
(Declarations
(S_Par
))
7297 -- Retrieve the declaration node of N (if any). Note that N
7298 -- may be a part of a complex initialization expression.
7302 while Present
(P
) loop
7304 -- If we have a short circuit form, and we are within the right
7305 -- hand expression, we return false, since the right hand side
7306 -- is not guaranteed to be elaborated.
7308 if Nkind
(P
) in N_Short_Circuit
7309 and then N
= Right_Opnd
(P
)
7314 -- Similarly, if we are in an if expression and not part of the
7315 -- condition, then we return False, since neither the THEN or
7316 -- ELSE dependent expressions will always be elaborated.
7318 if Nkind
(P
) = N_If_Expression
7319 and then N
/= First
(Expressions
(P
))
7324 -- If within a case expression, and not part of the expression,
7325 -- then return False, since a particular dependent expression
7326 -- may not always be elaborated
7328 if Nkind
(P
) = N_Case_Expression
7329 and then N
/= Expression
(P
)
7334 -- While traversing the parent chain, if node N belongs to a
7335 -- statement, then it may never appear in a declarative region.
7337 if Nkind
(P
) in N_Statement_Other_Than_Procedure_Call
7338 or else Nkind
(P
) = N_Procedure_Call_Statement
7343 -- If we are at a declaration, record it and exit
7345 if Nkind
(P
) in N_Declaration
7346 and then Nkind
(P
) not in N_Subprogram_Specification
7359 return List_Containing
(N_Decl
) = Declarations
(S_Par
);
7361 end Safe_To_Capture_In_Parameter_Value
;
7367 procedure Mark_Non_Null
is
7369 -- Only case of interest is if node N is an entity name
7371 if Is_Entity_Name
(N
) then
7373 -- For sure, we want to clear an indication that this is known to
7374 -- be null, since if we get past this check, it definitely is not.
7376 Set_Is_Known_Null
(Entity
(N
), False);
7378 -- We can mark the entity as known to be non-null if either it is
7379 -- safe to capture the value, or in the case of an IN parameter,
7380 -- which is a constant, if the check we just installed is in the
7381 -- declarative region of the subprogram body. In this latter case,
7382 -- a check is decisive for the rest of the body if the expression
7383 -- is sure to be elaborated, since we know we have to elaborate
7384 -- all declarations before executing the body.
7386 -- Couldn't this always be part of Safe_To_Capture_Value ???
7388 if Safe_To_Capture_Value
(N
, Entity
(N
))
7389 or else Safe_To_Capture_In_Parameter_Value
7391 Set_Is_Known_Non_Null
(Entity
(N
));
7396 -- Start of processing for Install_Null_Excluding_Check
7399 pragma Assert
(Is_Access_Type
(Typ
));
7401 -- No check inside a generic, check will be emitted in instance
7403 if Inside_A_Generic
then
7407 -- No check needed if known to be non-null
7409 if Known_Non_Null
(N
) then
7413 -- If known to be null, here is where we generate a compile time check
7415 if Known_Null
(N
) then
7417 -- Avoid generating warning message inside init procs. In SPARK mode
7418 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
7419 -- since it will be turned into an error in any case.
7421 if (not Inside_Init_Proc
or else SPARK_Mode
= On
)
7423 -- Do not emit the warning within a conditional expression,
7424 -- where the expression might not be evaluated, and the warning
7425 -- appear as extraneous noise.
7427 and then not Within_Case_Or_If_Expression
(N
)
7429 Apply_Compile_Time_Constraint_Error
7430 (N
, "null value not allowed here??", CE_Access_Check_Failed
);
7432 -- Remaining cases, where we silently insert the raise
7436 Make_Raise_Constraint_Error
(Loc
,
7437 Reason
=> CE_Access_Check_Failed
));
7444 -- If entity is never assigned, for sure a warning is appropriate
7446 if Is_Entity_Name
(N
) then
7447 Check_Unset_Reference
(N
);
7450 -- No check needed if checks are suppressed on the range. Note that we
7451 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7452 -- so, since the program is erroneous, but we don't like to casually
7453 -- propagate such conclusions from erroneosity).
7455 if Access_Checks_Suppressed
(Typ
) then
7459 -- No check needed for access to concurrent record types generated by
7460 -- the expander. This is not just an optimization (though it does indeed
7461 -- remove junk checks). It also avoids generation of junk warnings.
7463 if Nkind
(N
) in N_Has_Chars
7464 and then Chars
(N
) = Name_uObject
7465 and then Is_Concurrent_Record_Type
7466 (Directly_Designated_Type
(Etype
(N
)))
7471 -- No check needed in interface thunks since the runtime check is
7472 -- already performed at the caller side.
7474 if Is_Thunk
(Current_Scope
) then
7478 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7479 -- the expander within exception handlers, since we know that the value
7480 -- can never be null.
7482 -- Is this really the right way to do this? Normally we generate such
7483 -- code in the expander with checks off, and that's how we suppress this
7484 -- kind of junk check ???
7486 if Nkind
(N
) = N_Function_Call
7487 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
7488 and then Nkind
(Prefix
(Name
(N
))) = N_Identifier
7489 and then Is_RTE
(Entity
(Prefix
(Name
(N
))), RE_Get_Current_Excep
)
7494 -- Otherwise install access check
7497 Make_Raise_Constraint_Error
(Loc
,
7500 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(N
),
7501 Right_Opnd
=> Make_Null
(Loc
)),
7502 Reason
=> CE_Access_Check_Failed
));
7505 end Install_Null_Excluding_Check
;
7507 --------------------------
7508 -- Install_Static_Check --
7509 --------------------------
7511 procedure Install_Static_Check
(R_Cno
: Node_Id
; Loc
: Source_Ptr
) is
7512 Stat
: constant Boolean := Is_OK_Static_Expression
(R_Cno
);
7513 Typ
: constant Entity_Id
:= Etype
(R_Cno
);
7517 Make_Raise_Constraint_Error
(Loc
,
7518 Reason
=> CE_Range_Check_Failed
));
7519 Set_Analyzed
(R_Cno
);
7520 Set_Etype
(R_Cno
, Typ
);
7521 Set_Raises_Constraint_Error
(R_Cno
);
7522 Set_Is_Static_Expression
(R_Cno
, Stat
);
7524 -- Now deal with possible local raise handling
7526 Possible_Local_Raise
(R_Cno
, Standard_Constraint_Error
);
7527 end Install_Static_Check
;
7529 -------------------------
7530 -- Is_Check_Suppressed --
7531 -------------------------
7533 function Is_Check_Suppressed
(E
: Entity_Id
; C
: Check_Id
) return Boolean is
7534 Ptr
: Suppress_Stack_Entry_Ptr
;
7537 -- First search the local entity suppress stack. We search this from the
7538 -- top of the stack down so that we get the innermost entry that applies
7539 -- to this case if there are nested entries.
7541 Ptr
:= Local_Suppress_Stack_Top
;
7542 while Ptr
/= null loop
7543 if (Ptr
.Entity
= Empty
or else Ptr
.Entity
= E
)
7544 and then (Ptr
.Check
= All_Checks
or else Ptr
.Check
= C
)
7546 return Ptr
.Suppress
;
7552 -- Now search the global entity suppress table for a matching entry.
7553 -- We also search this from the top down so that if there are multiple
7554 -- pragmas for the same entity, the last one applies (not clear what
7555 -- or whether the RM specifies this handling, but it seems reasonable).
7557 Ptr
:= Global_Suppress_Stack_Top
;
7558 while Ptr
/= null loop
7559 if (Ptr
.Entity
= Empty
or else Ptr
.Entity
= E
)
7560 and then (Ptr
.Check
= All_Checks
or else Ptr
.Check
= C
)
7562 return Ptr
.Suppress
;
7568 -- If we did not find a matching entry, then use the normal scope
7569 -- suppress value after all (actually this will be the global setting
7570 -- since it clearly was not overridden at any point). For a predefined
7571 -- check, we test the specific flag. For a user defined check, we check
7572 -- the All_Checks flag. The Overflow flag requires special handling to
7573 -- deal with the General vs Assertion case
7575 if C
= Overflow_Check
then
7576 return Overflow_Checks_Suppressed
(Empty
);
7577 elsif C
in Predefined_Check_Id
then
7578 return Scope_Suppress
.Suppress
(C
);
7580 return Scope_Suppress
.Suppress
(All_Checks
);
7582 end Is_Check_Suppressed
;
7584 ---------------------
7585 -- Kill_All_Checks --
7586 ---------------------
7588 procedure Kill_All_Checks
is
7590 if Debug_Flag_CC
then
7591 w
("Kill_All_Checks");
7594 -- We reset the number of saved checks to zero, and also modify all
7595 -- stack entries for statement ranges to indicate that the number of
7596 -- checks at each level is now zero.
7598 Num_Saved_Checks
:= 0;
7600 -- Note: the Int'Min here avoids any possibility of J being out of
7601 -- range when called from e.g. Conditional_Statements_Begin.
7603 for J
in 1 .. Int
'Min (Saved_Checks_TOS
, Saved_Checks_Stack
'Last) loop
7604 Saved_Checks_Stack
(J
) := 0;
7606 end Kill_All_Checks
;
7612 procedure Kill_Checks
(V
: Entity_Id
) is
7614 if Debug_Flag_CC
then
7615 w
("Kill_Checks for entity", Int
(V
));
7618 for J
in 1 .. Num_Saved_Checks
loop
7619 if Saved_Checks
(J
).Entity
= V
then
7620 if Debug_Flag_CC
then
7621 w
(" Checks killed for saved check ", J
);
7624 Saved_Checks
(J
).Killed
:= True;
7629 ------------------------------
7630 -- Length_Checks_Suppressed --
7631 ------------------------------
7633 function Length_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
7635 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
7636 return Is_Check_Suppressed
(E
, Length_Check
);
7638 return Scope_Suppress
.Suppress
(Length_Check
);
7640 end Length_Checks_Suppressed
;
7642 -----------------------
7643 -- Make_Bignum_Block --
7644 -----------------------
7646 function Make_Bignum_Block
(Loc
: Source_Ptr
) return Node_Id
is
7647 M
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uM
);
7650 Make_Block_Statement
(Loc
,
7652 New_List
(Build_SS_Mark_Call
(Loc
, M
)),
7653 Handled_Statement_Sequence
=>
7654 Make_Handled_Sequence_Of_Statements
(Loc
,
7655 Statements
=> New_List
(Build_SS_Release_Call
(Loc
, M
))));
7656 end Make_Bignum_Block
;
7658 ----------------------------------
7659 -- Minimize_Eliminate_Overflows --
7660 ----------------------------------
7662 -- This is a recursive routine that is called at the top of an expression
7663 -- tree to properly process overflow checking for a whole subtree by making
7664 -- recursive calls to process operands. This processing may involve the use
7665 -- of bignum or long long integer arithmetic, which will change the types
7666 -- of operands and results. That's why we can't do this bottom up (since
7667 -- it would interfere with semantic analysis).
7669 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
7670 -- the operator expansion routines, as well as the expansion routines for
7671 -- if/case expression, do nothing (for the moment) except call the routine
7672 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
7673 -- routine does nothing for non top-level nodes, so at the point where the
7674 -- call is made for the top level node, the entire expression subtree has
7675 -- not been expanded, or processed for overflow. All that has to happen as
7676 -- a result of the top level call to this routine.
7678 -- As noted above, the overflow processing works by making recursive calls
7679 -- for the operands, and figuring out what to do, based on the processing
7680 -- of these operands (e.g. if a bignum operand appears, the parent op has
7681 -- to be done in bignum mode), and the determined ranges of the operands.
7683 -- After possible rewriting of a constituent subexpression node, a call is
7684 -- made to either reexpand the node (if nothing has changed) or reanalyze
7685 -- the node (if it has been modified by the overflow check processing). The
7686 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
7687 -- a recursive call into the whole overflow apparatus, an important rule
7688 -- for this call is that the overflow handling mode must be temporarily set
7691 procedure Minimize_Eliminate_Overflows
7695 Top_Level
: Boolean)
7697 Rtyp
: constant Entity_Id
:= Etype
(N
);
7698 pragma Assert
(Is_Signed_Integer_Type
(Rtyp
));
7699 -- Result type, must be a signed integer type
7701 Check_Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
7702 pragma Assert
(Check_Mode
in Minimized_Or_Eliminated
);
7704 Loc
: constant Source_Ptr
:= Sloc
(N
);
7707 -- Ranges of values for right operand (operator case)
7710 -- Ranges of values for left operand (operator case)
7712 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
7713 -- Operands and results are of this type when we convert
7715 LLLo
: constant Uint
:= Intval
(Type_Low_Bound
(LLIB
));
7716 LLHi
: constant Uint
:= Intval
(Type_High_Bound
(LLIB
));
7717 -- Bounds of Long_Long_Integer
7719 Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
7720 -- Indicates binary operator case
7723 -- Used in call to Determine_Range
7725 Bignum_Operands
: Boolean;
7726 -- Set True if one or more operands is already of type Bignum, meaning
7727 -- that for sure (regardless of Top_Level setting) we are committed to
7728 -- doing the operation in Bignum mode (or in the case of a case or if
7729 -- expression, converting all the dependent expressions to Bignum).
7731 Long_Long_Integer_Operands
: Boolean;
7732 -- Set True if one or more operands is already of type Long_Long_Integer
7733 -- which means that if the result is known to be in the result type
7734 -- range, then we must convert such operands back to the result type.
7736 procedure Reanalyze
(Typ
: Entity_Id
; Suppress
: Boolean := False);
7737 -- This is called when we have modified the node and we therefore need
7738 -- to reanalyze it. It is important that we reset the mode to STRICT for
7739 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
7740 -- we would reenter this routine recursively which would not be good.
7741 -- The argument Suppress is set True if we also want to suppress
7742 -- overflow checking for the reexpansion (this is set when we know
7743 -- overflow is not possible). Typ is the type for the reanalysis.
7745 procedure Reexpand
(Suppress
: Boolean := False);
7746 -- This is like Reanalyze, but does not do the Analyze step, it only
7747 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
7748 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
7749 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
7750 -- Note that skipping reanalysis is not just an optimization, testing
7751 -- has showed up several complex cases in which reanalyzing an already
7752 -- analyzed node causes incorrect behavior.
7754 function In_Result_Range
return Boolean;
7755 -- Returns True iff Lo .. Hi are within range of the result type
7757 procedure Max
(A
: in out Uint
; B
: Uint
);
7758 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
7760 procedure Min
(A
: in out Uint
; B
: Uint
);
7761 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
7763 ---------------------
7764 -- In_Result_Range --
7765 ---------------------
7767 function In_Result_Range
return Boolean is
7769 if Lo
= No_Uint
or else Hi
= No_Uint
then
7772 elsif Is_OK_Static_Subtype
(Etype
(N
)) then
7773 return Lo
>= Expr_Value
(Type_Low_Bound
(Rtyp
))
7775 Hi
<= Expr_Value
(Type_High_Bound
(Rtyp
));
7778 return Lo
>= Expr_Value
(Type_Low_Bound
(Base_Type
(Rtyp
)))
7780 Hi
<= Expr_Value
(Type_High_Bound
(Base_Type
(Rtyp
)));
7782 end In_Result_Range
;
7788 procedure Max
(A
: in out Uint
; B
: Uint
) is
7790 if A
= No_Uint
or else B
> A
then
7799 procedure Min
(A
: in out Uint
; B
: Uint
) is
7801 if A
= No_Uint
or else B
< A
then
7810 procedure Reanalyze
(Typ
: Entity_Id
; Suppress
: Boolean := False) is
7811 Svg
: constant Overflow_Mode_Type
:=
7812 Scope_Suppress
.Overflow_Mode_General
;
7813 Sva
: constant Overflow_Mode_Type
:=
7814 Scope_Suppress
.Overflow_Mode_Assertions
;
7815 Svo
: constant Boolean :=
7816 Scope_Suppress
.Suppress
(Overflow_Check
);
7819 Scope_Suppress
.Overflow_Mode_General
:= Strict
;
7820 Scope_Suppress
.Overflow_Mode_Assertions
:= Strict
;
7823 Scope_Suppress
.Suppress
(Overflow_Check
) := True;
7826 Analyze_And_Resolve
(N
, Typ
);
7828 Scope_Suppress
.Suppress
(Overflow_Check
) := Svo
;
7829 Scope_Suppress
.Overflow_Mode_General
:= Svg
;
7830 Scope_Suppress
.Overflow_Mode_Assertions
:= Sva
;
7837 procedure Reexpand
(Suppress
: Boolean := False) is
7838 Svg
: constant Overflow_Mode_Type
:=
7839 Scope_Suppress
.Overflow_Mode_General
;
7840 Sva
: constant Overflow_Mode_Type
:=
7841 Scope_Suppress
.Overflow_Mode_Assertions
;
7842 Svo
: constant Boolean :=
7843 Scope_Suppress
.Suppress
(Overflow_Check
);
7846 Scope_Suppress
.Overflow_Mode_General
:= Strict
;
7847 Scope_Suppress
.Overflow_Mode_Assertions
:= Strict
;
7848 Set_Analyzed
(N
, False);
7851 Scope_Suppress
.Suppress
(Overflow_Check
) := True;
7856 Scope_Suppress
.Suppress
(Overflow_Check
) := Svo
;
7857 Scope_Suppress
.Overflow_Mode_General
:= Svg
;
7858 Scope_Suppress
.Overflow_Mode_Assertions
:= Sva
;
7861 -- Start of processing for Minimize_Eliminate_Overflows
7864 -- Case where we do not have a signed integer arithmetic operation
7866 if not Is_Signed_Integer_Arithmetic_Op
(N
) then
7868 -- Use the normal Determine_Range routine to get the range. We
7869 -- don't require operands to be valid, invalid values may result in
7870 -- rubbish results where the result has not been properly checked for
7871 -- overflow, that's fine.
7873 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> False);
7875 -- If Determine_Range did not work (can this in fact happen? Not
7876 -- clear but might as well protect), use type bounds.
7879 Lo
:= Intval
(Type_Low_Bound
(Base_Type
(Etype
(N
))));
7880 Hi
:= Intval
(Type_High_Bound
(Base_Type
(Etype
(N
))));
7883 -- If we don't have a binary operator, all we have to do is to set
7884 -- the Hi/Lo range, so we are done.
7888 -- Processing for if expression
7890 elsif Nkind
(N
) = N_If_Expression
then
7892 Then_DE
: constant Node_Id
:= Next
(First
(Expressions
(N
)));
7893 Else_DE
: constant Node_Id
:= Next
(Then_DE
);
7896 Bignum_Operands
:= False;
7898 Minimize_Eliminate_Overflows
7899 (Then_DE
, Lo
, Hi
, Top_Level
=> False);
7901 if Lo
= No_Uint
then
7902 Bignum_Operands
:= True;
7905 Minimize_Eliminate_Overflows
7906 (Else_DE
, Rlo
, Rhi
, Top_Level
=> False);
7908 if Rlo
= No_Uint
then
7909 Bignum_Operands
:= True;
7911 Long_Long_Integer_Operands
:=
7912 Etype
(Then_DE
) = LLIB
or else Etype
(Else_DE
) = LLIB
;
7918 -- If at least one of our operands is now Bignum, we must rebuild
7919 -- the if expression to use Bignum operands. We will analyze the
7920 -- rebuilt if expression with overflow checks off, since once we
7921 -- are in bignum mode, we are all done with overflow checks.
7923 if Bignum_Operands
then
7925 Make_If_Expression
(Loc
,
7926 Expressions
=> New_List
(
7927 Remove_Head
(Expressions
(N
)),
7928 Convert_To_Bignum
(Then_DE
),
7929 Convert_To_Bignum
(Else_DE
)),
7930 Is_Elsif
=> Is_Elsif
(N
)));
7932 Reanalyze
(RTE
(RE_Bignum
), Suppress
=> True);
7934 -- If we have no Long_Long_Integer operands, then we are in result
7935 -- range, since it means that none of our operands felt the need
7936 -- to worry about overflow (otherwise it would have already been
7937 -- converted to long long integer or bignum). We reexpand to
7938 -- complete the expansion of the if expression (but we do not
7939 -- need to reanalyze).
7941 elsif not Long_Long_Integer_Operands
then
7942 Set_Do_Overflow_Check
(N
, False);
7945 -- Otherwise convert us to long long integer mode. Note that we
7946 -- don't need any further overflow checking at this level.
7949 Convert_To_And_Rewrite
(LLIB
, Then_DE
);
7950 Convert_To_And_Rewrite
(LLIB
, Else_DE
);
7951 Set_Etype
(N
, LLIB
);
7953 -- Now reanalyze with overflow checks off
7955 Set_Do_Overflow_Check
(N
, False);
7956 Reanalyze
(LLIB
, Suppress
=> True);
7962 -- Here for case expression
7964 elsif Nkind
(N
) = N_Case_Expression
then
7965 Bignum_Operands
:= False;
7966 Long_Long_Integer_Operands
:= False;
7972 -- Loop through expressions applying recursive call
7974 Alt
:= First
(Alternatives
(N
));
7975 while Present
(Alt
) loop
7977 Aexp
: constant Node_Id
:= Expression
(Alt
);
7980 Minimize_Eliminate_Overflows
7981 (Aexp
, Lo
, Hi
, Top_Level
=> False);
7983 if Lo
= No_Uint
then
7984 Bignum_Operands
:= True;
7985 elsif Etype
(Aexp
) = LLIB
then
7986 Long_Long_Integer_Operands
:= True;
7993 -- If we have no bignum or long long integer operands, it means
7994 -- that none of our dependent expressions could raise overflow.
7995 -- In this case, we simply return with no changes except for
7996 -- resetting the overflow flag, since we are done with overflow
7997 -- checks for this node. We will reexpand to get the needed
7998 -- expansion for the case expression, but we do not need to
7999 -- reanalyze, since nothing has changed.
8001 if not (Bignum_Operands
or Long_Long_Integer_Operands
) then
8002 Set_Do_Overflow_Check
(N
, False);
8003 Reexpand
(Suppress
=> True);
8005 -- Otherwise we are going to rebuild the case expression using
8006 -- either bignum or long long integer operands throughout.
8015 New_Alts
:= New_List
;
8016 Alt
:= First
(Alternatives
(N
));
8017 while Present
(Alt
) loop
8018 if Bignum_Operands
then
8019 New_Exp
:= Convert_To_Bignum
(Expression
(Alt
));
8020 Rtype
:= RTE
(RE_Bignum
);
8022 New_Exp
:= Convert_To
(LLIB
, Expression
(Alt
));
8026 Append_To
(New_Alts
,
8027 Make_Case_Expression_Alternative
(Sloc
(Alt
),
8029 Discrete_Choices
=> Discrete_Choices
(Alt
),
8030 Expression
=> New_Exp
));
8036 Make_Case_Expression
(Loc
,
8037 Expression
=> Expression
(N
),
8038 Alternatives
=> New_Alts
));
8040 Reanalyze
(Rtype
, Suppress
=> True);
8048 -- If we have an arithmetic operator we make recursive calls on the
8049 -- operands to get the ranges (and to properly process the subtree
8050 -- that lies below us).
8052 Minimize_Eliminate_Overflows
8053 (Right_Opnd
(N
), Rlo
, Rhi
, Top_Level
=> False);
8056 Minimize_Eliminate_Overflows
8057 (Left_Opnd
(N
), Llo
, Lhi
, Top_Level
=> False);
8060 -- Record if we have Long_Long_Integer operands
8062 Long_Long_Integer_Operands
:=
8063 Etype
(Right_Opnd
(N
)) = LLIB
8064 or else (Binary
and then Etype
(Left_Opnd
(N
)) = LLIB
);
8066 -- If either operand is a bignum, then result will be a bignum and we
8067 -- don't need to do any range analysis. As previously discussed we could
8068 -- do range analysis in such cases, but it could mean working with giant
8069 -- numbers at compile time for very little gain (the number of cases
8070 -- in which we could slip back from bignum mode is small).
8072 if Rlo
= No_Uint
or else (Binary
and then Llo
= No_Uint
) then
8075 Bignum_Operands
:= True;
8077 -- Otherwise compute result range
8080 Bignum_Operands
:= False;
8088 Hi
:= UI_Max
(abs Rlo
, abs Rhi
);
8100 -- If the right operand can only be zero, set 0..0
8102 if Rlo
= 0 and then Rhi
= 0 then
8106 -- Possible bounds of division must come from dividing end
8107 -- values of the input ranges (four possibilities), provided
8108 -- zero is not included in the possible values of the right
8111 -- Otherwise, we just consider two intervals of values for
8112 -- the right operand: the interval of negative values (up to
8113 -- -1) and the interval of positive values (starting at 1).
8114 -- Since division by 1 is the identity, and division by -1
8115 -- is negation, we get all possible bounds of division in that
8116 -- case by considering:
8117 -- - all values from the division of end values of input
8119 -- - the end values of the left operand;
8120 -- - the negation of the end values of the left operand.
8124 Mrk
: constant Uintp
.Save_Mark
:= Mark
;
8125 -- Mark so we can release the RR and Ev values
8133 -- Discard extreme values of zero for the divisor, since
8134 -- they will simply result in an exception in any case.
8142 -- Compute possible bounds coming from dividing end
8143 -- values of the input ranges.
8150 Lo
:= UI_Min
(UI_Min
(Ev1
, Ev2
), UI_Min
(Ev3
, Ev4
));
8151 Hi
:= UI_Max
(UI_Max
(Ev1
, Ev2
), UI_Max
(Ev3
, Ev4
));
8153 -- If the right operand can be both negative or positive,
8154 -- include the end values of the left operand in the
8155 -- extreme values, as well as their negation.
8157 if Rlo
< 0 and then Rhi
> 0 then
8164 UI_Min
(UI_Min
(Ev1
, Ev2
), UI_Min
(Ev3
, Ev4
)));
8166 UI_Max
(UI_Max
(Ev1
, Ev2
), UI_Max
(Ev3
, Ev4
)));
8169 -- Release the RR and Ev values
8171 Release_And_Save
(Mrk
, Lo
, Hi
);
8179 -- Discard negative values for the exponent, since they will
8180 -- simply result in an exception in any case.
8188 -- Estimate number of bits in result before we go computing
8189 -- giant useless bounds. Basically the number of bits in the
8190 -- result is the number of bits in the base multiplied by the
8191 -- value of the exponent. If this is big enough that the result
8192 -- definitely won't fit in Long_Long_Integer, switch to bignum
8193 -- mode immediately, and avoid computing giant bounds.
8195 -- The comparison here is approximate, but conservative, it
8196 -- only clicks on cases that are sure to exceed the bounds.
8198 if Num_Bits
(UI_Max
(abs Llo
, abs Lhi
)) * Rhi
+ 1 > 100 then
8202 -- If right operand is zero then result is 1
8209 -- High bound comes either from exponentiation of largest
8210 -- positive value to largest exponent value, or from
8211 -- the exponentiation of most negative value to an
8225 if Rhi
mod 2 = 0 then
8228 Hi2
:= Llo
** (Rhi
- 1);
8234 Hi
:= UI_Max
(Hi1
, Hi2
);
8237 -- Result can only be negative if base can be negative
8240 if Rhi
mod 2 = 0 then
8241 Lo
:= Llo
** (Rhi
- 1);
8246 -- Otherwise low bound is minimum ** minimum
8263 Maxabs
: constant Uint
:= UI_Max
(abs Rlo
, abs Rhi
) - 1;
8264 -- This is the maximum absolute value of the result
8270 -- The result depends only on the sign and magnitude of
8271 -- the right operand, it does not depend on the sign or
8272 -- magnitude of the left operand.
8285 when N_Op_Multiply
=>
8287 -- Possible bounds of multiplication must come from multiplying
8288 -- end values of the input ranges (four possibilities).
8291 Mrk
: constant Uintp
.Save_Mark
:= Mark
;
8292 -- Mark so we can release the Ev values
8294 Ev1
: constant Uint
:= Llo
* Rlo
;
8295 Ev2
: constant Uint
:= Llo
* Rhi
;
8296 Ev3
: constant Uint
:= Lhi
* Rlo
;
8297 Ev4
: constant Uint
:= Lhi
* Rhi
;
8300 Lo
:= UI_Min
(UI_Min
(Ev1
, Ev2
), UI_Min
(Ev3
, Ev4
));
8301 Hi
:= UI_Max
(UI_Max
(Ev1
, Ev2
), UI_Max
(Ev3
, Ev4
));
8303 -- Release the Ev values
8305 Release_And_Save
(Mrk
, Lo
, Hi
);
8308 -- Plus operator (affirmation)
8318 Maxabs
: constant Uint
:= UI_Max
(abs Rlo
, abs Rhi
) - 1;
8319 -- This is the maximum absolute value of the result. Note
8320 -- that the result range does not depend on the sign of the
8327 -- Case of left operand negative, which results in a range
8328 -- of -Maxabs .. 0 for those negative values. If there are
8329 -- no negative values then Lo value of result is always 0.
8335 -- Case of left operand positive
8344 when N_Op_Subtract
=>
8348 -- Nothing else should be possible
8351 raise Program_Error
;
8355 -- Here for the case where we have not rewritten anything (no bignum
8356 -- operands or long long integer operands), and we know the result.
8357 -- If we know we are in the result range, and we do not have Bignum
8358 -- operands or Long_Long_Integer operands, we can just reexpand with
8359 -- overflow checks turned off (since we know we cannot have overflow).
8360 -- As always the reexpansion is required to complete expansion of the
8361 -- operator, but we do not need to reanalyze, and we prevent recursion
8362 -- by suppressing the check.
8364 if not (Bignum_Operands
or Long_Long_Integer_Operands
)
8365 and then In_Result_Range
8367 Set_Do_Overflow_Check
(N
, False);
8368 Reexpand
(Suppress
=> True);
8371 -- Here we know that we are not in the result range, and in the general
8372 -- case we will move into either the Bignum or Long_Long_Integer domain
8373 -- to compute the result. However, there is one exception. If we are
8374 -- at the top level, and we do not have Bignum or Long_Long_Integer
8375 -- operands, we will have to immediately convert the result back to
8376 -- the result type, so there is no point in Bignum/Long_Long_Integer
8380 and then not (Bignum_Operands
or Long_Long_Integer_Operands
)
8382 -- One further refinement. If we are at the top level, but our parent
8383 -- is a type conversion, then go into bignum or long long integer node
8384 -- since the result will be converted to that type directly without
8385 -- going through the result type, and we may avoid an overflow. This
8386 -- is the case for example of Long_Long_Integer (A ** 4), where A is
8387 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
8388 -- but does not fit in Integer.
8390 and then Nkind
(Parent
(N
)) /= N_Type_Conversion
8392 -- Here keep original types, but we need to complete analysis
8394 -- One subtlety. We can't just go ahead and do an analyze operation
8395 -- here because it will cause recursion into the whole MINIMIZED/
8396 -- ELIMINATED overflow processing which is not what we want. Here
8397 -- we are at the top level, and we need a check against the result
8398 -- mode (i.e. we want to use STRICT mode). So do exactly that.
8399 -- Also, we have not modified the node, so this is a case where
8400 -- we need to reexpand, but not reanalyze.
8405 -- Cases where we do the operation in Bignum mode. This happens either
8406 -- because one of our operands is in Bignum mode already, or because
8407 -- the computed bounds are outside the bounds of Long_Long_Integer,
8408 -- which in some cases can be indicated by Hi and Lo being No_Uint.
8410 -- Note: we could do better here and in some cases switch back from
8411 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
8412 -- 0 .. 1, but the cases are rare and it is not worth the effort.
8413 -- Failing to do this switching back is only an efficiency issue.
8415 elsif Lo
= No_Uint
or else Lo
< LLLo
or else Hi
> LLHi
then
8417 -- OK, we are definitely outside the range of Long_Long_Integer. The
8418 -- question is whether to move to Bignum mode, or stay in the domain
8419 -- of Long_Long_Integer, signalling that an overflow check is needed.
8421 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
8422 -- the Bignum business. In ELIMINATED mode, we will normally move
8423 -- into Bignum mode, but there is an exception if neither of our
8424 -- operands is Bignum now, and we are at the top level (Top_Level
8425 -- set True). In this case, there is no point in moving into Bignum
8426 -- mode to prevent overflow if the caller will immediately convert
8427 -- the Bignum value back to LLI with an overflow check. It's more
8428 -- efficient to stay in LLI mode with an overflow check (if needed)
8430 if Check_Mode
= Minimized
8431 or else (Top_Level
and not Bignum_Operands
)
8433 if Do_Overflow_Check
(N
) then
8434 Enable_Overflow_Check
(N
);
8437 -- The result now has to be in Long_Long_Integer mode, so adjust
8438 -- the possible range to reflect this. Note these calls also
8439 -- change No_Uint values from the top level case to LLI bounds.
8444 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
8447 pragma Assert
(Check_Mode
= Eliminated
);
8456 Fent
:= RTE
(RE_Big_Abs
);
8459 Fent
:= RTE
(RE_Big_Add
);
8462 Fent
:= RTE
(RE_Big_Div
);
8465 Fent
:= RTE
(RE_Big_Exp
);
8468 Fent
:= RTE
(RE_Big_Neg
);
8471 Fent
:= RTE
(RE_Big_Mod
);
8473 when N_Op_Multiply
=>
8474 Fent
:= RTE
(RE_Big_Mul
);
8477 Fent
:= RTE
(RE_Big_Rem
);
8479 when N_Op_Subtract
=>
8480 Fent
:= RTE
(RE_Big_Sub
);
8482 -- Anything else is an internal error, this includes the
8483 -- N_Op_Plus case, since how can plus cause the result
8484 -- to be out of range if the operand is in range?
8487 raise Program_Error
;
8490 -- Construct argument list for Bignum call, converting our
8491 -- operands to Bignum form if they are not already there.
8496 Append_To
(Args
, Convert_To_Bignum
(Left_Opnd
(N
)));
8499 Append_To
(Args
, Convert_To_Bignum
(Right_Opnd
(N
)));
8501 -- Now rewrite the arithmetic operator with a call to the
8502 -- corresponding bignum function.
8505 Make_Function_Call
(Loc
,
8506 Name
=> New_Occurrence_Of
(Fent
, Loc
),
8507 Parameter_Associations
=> Args
));
8508 Reanalyze
(RTE
(RE_Bignum
), Suppress
=> True);
8510 -- Indicate result is Bignum mode
8518 -- Otherwise we are in range of Long_Long_Integer, so no overflow
8519 -- check is required, at least not yet.
8522 Set_Do_Overflow_Check
(N
, False);
8525 -- Here we are not in Bignum territory, but we may have long long
8526 -- integer operands that need special handling. First a special check:
8527 -- If an exponentiation operator exponent is of type Long_Long_Integer,
8528 -- it means we converted it to prevent overflow, but exponentiation
8529 -- requires a Natural right operand, so convert it back to Natural.
8530 -- This conversion may raise an exception which is fine.
8532 if Nkind
(N
) = N_Op_Expon
and then Etype
(Right_Opnd
(N
)) = LLIB
then
8533 Convert_To_And_Rewrite
(Standard_Natural
, Right_Opnd
(N
));
8536 -- Here we will do the operation in Long_Long_Integer. We do this even
8537 -- if we know an overflow check is required, better to do this in long
8538 -- long integer mode, since we are less likely to overflow.
8540 -- Convert right or only operand to Long_Long_Integer, except that
8541 -- we do not touch the exponentiation right operand.
8543 if Nkind
(N
) /= N_Op_Expon
then
8544 Convert_To_And_Rewrite
(LLIB
, Right_Opnd
(N
));
8547 -- Convert left operand to Long_Long_Integer for binary case
8550 Convert_To_And_Rewrite
(LLIB
, Left_Opnd
(N
));
8553 -- Reset node to unanalyzed
8555 Set_Analyzed
(N
, False);
8556 Set_Etype
(N
, Empty
);
8557 Set_Entity
(N
, Empty
);
8559 -- Now analyze this new node. This reanalysis will complete processing
8560 -- for the node. In particular we will complete the expansion of an
8561 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
8562 -- we will complete any division checks (since we have not changed the
8563 -- setting of the Do_Division_Check flag).
8565 -- We do this reanalysis in STRICT mode to avoid recursion into the
8566 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
8569 SG
: constant Overflow_Mode_Type
:=
8570 Scope_Suppress
.Overflow_Mode_General
;
8571 SA
: constant Overflow_Mode_Type
:=
8572 Scope_Suppress
.Overflow_Mode_Assertions
;
8575 Scope_Suppress
.Overflow_Mode_General
:= Strict
;
8576 Scope_Suppress
.Overflow_Mode_Assertions
:= Strict
;
8578 if not Do_Overflow_Check
(N
) then
8579 Reanalyze
(LLIB
, Suppress
=> True);
8584 Scope_Suppress
.Overflow_Mode_General
:= SG
;
8585 Scope_Suppress
.Overflow_Mode_Assertions
:= SA
;
8587 end Minimize_Eliminate_Overflows
;
8589 -------------------------
8590 -- Overflow_Check_Mode --
8591 -------------------------
8593 function Overflow_Check_Mode
return Overflow_Mode_Type
is
8595 if In_Assertion_Expr
= 0 then
8596 return Scope_Suppress
.Overflow_Mode_General
;
8598 return Scope_Suppress
.Overflow_Mode_Assertions
;
8600 end Overflow_Check_Mode
;
8602 --------------------------------
8603 -- Overflow_Checks_Suppressed --
8604 --------------------------------
8606 function Overflow_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
8608 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
8609 return Is_Check_Suppressed
(E
, Overflow_Check
);
8611 return Scope_Suppress
.Suppress
(Overflow_Check
);
8613 end Overflow_Checks_Suppressed
;
8615 ---------------------------------
8616 -- Predicate_Checks_Suppressed --
8617 ---------------------------------
8619 function Predicate_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
8621 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
8622 return Is_Check_Suppressed
(E
, Predicate_Check
);
8624 return Scope_Suppress
.Suppress
(Predicate_Check
);
8626 end Predicate_Checks_Suppressed
;
8628 -----------------------------
8629 -- Range_Checks_Suppressed --
8630 -----------------------------
8632 function Range_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
8635 if Kill_Range_Checks
(E
) then
8638 elsif Checks_May_Be_Suppressed
(E
) then
8639 return Is_Check_Suppressed
(E
, Range_Check
);
8643 return Scope_Suppress
.Suppress
(Range_Check
);
8644 end Range_Checks_Suppressed
;
8646 -----------------------------------------
8647 -- Range_Or_Validity_Checks_Suppressed --
8648 -----------------------------------------
8650 -- Note: the coding would be simpler here if we simply made appropriate
8651 -- calls to Range/Validity_Checks_Suppressed, but that would result in
8652 -- duplicated checks which we prefer to avoid.
8654 function Range_Or_Validity_Checks_Suppressed
8655 (Expr
: Node_Id
) return Boolean
8658 -- Immediate return if scope checks suppressed for either check
8660 if Scope_Suppress
.Suppress
(Range_Check
)
8662 Scope_Suppress
.Suppress
(Validity_Check
)
8667 -- If no expression, that's odd, decide that checks are suppressed,
8668 -- since we don't want anyone trying to do checks in this case, which
8669 -- is most likely the result of some other error.
8675 -- Expression is present, so perform suppress checks on type
8678 Typ
: constant Entity_Id
:= Etype
(Expr
);
8680 if Checks_May_Be_Suppressed
(Typ
)
8681 and then (Is_Check_Suppressed
(Typ
, Range_Check
)
8683 Is_Check_Suppressed
(Typ
, Validity_Check
))
8689 -- If expression is an entity name, perform checks on this entity
8691 if Is_Entity_Name
(Expr
) then
8693 Ent
: constant Entity_Id
:= Entity
(Expr
);
8695 if Checks_May_Be_Suppressed
(Ent
) then
8696 return Is_Check_Suppressed
(Ent
, Range_Check
)
8697 or else Is_Check_Suppressed
(Ent
, Validity_Check
);
8702 -- If we fall through, no checks suppressed
8705 end Range_Or_Validity_Checks_Suppressed
;
8711 procedure Remove_Checks
(Expr
: Node_Id
) is
8712 function Process
(N
: Node_Id
) return Traverse_Result
;
8713 -- Process a single node during the traversal
8715 procedure Traverse
is new Traverse_Proc
(Process
);
8716 -- The traversal procedure itself
8722 function Process
(N
: Node_Id
) return Traverse_Result
is
8724 if Nkind
(N
) not in N_Subexpr
then
8728 Set_Do_Range_Check
(N
, False);
8732 Traverse
(Left_Opnd
(N
));
8735 when N_Attribute_Reference
=>
8736 Set_Do_Overflow_Check
(N
, False);
8738 when N_Function_Call
=>
8739 Set_Do_Tag_Check
(N
, False);
8742 Set_Do_Overflow_Check
(N
, False);
8746 Set_Do_Division_Check
(N
, False);
8749 Set_Do_Length_Check
(N
, False);
8752 Set_Do_Division_Check
(N
, False);
8755 Set_Do_Length_Check
(N
, False);
8758 Set_Do_Division_Check
(N
, False);
8761 Set_Do_Length_Check
(N
, False);
8768 Traverse
(Left_Opnd
(N
));
8771 when N_Selected_Component
=>
8772 Set_Do_Discriminant_Check
(N
, False);
8774 when N_Type_Conversion
=>
8775 Set_Do_Length_Check
(N
, False);
8776 Set_Do_Tag_Check
(N
, False);
8777 Set_Do_Overflow_Check
(N
, False);
8786 -- Start of processing for Remove_Checks
8792 ----------------------------
8793 -- Selected_Length_Checks --
8794 ----------------------------
8796 function Selected_Length_Checks
8798 Target_Typ
: Entity_Id
;
8799 Source_Typ
: Entity_Id
;
8800 Warn_Node
: Node_Id
) return Check_Result
8802 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
8805 Expr_Actual
: Node_Id
;
8807 Cond
: Node_Id
:= Empty
;
8808 Do_Access
: Boolean := False;
8809 Wnode
: Node_Id
:= Warn_Node
;
8810 Ret_Result
: Check_Result
:= (Empty
, Empty
);
8811 Num_Checks
: Natural := 0;
8813 procedure Add_Check
(N
: Node_Id
);
8814 -- Adds the action given to Ret_Result if N is non-Empty
8816 function Get_E_Length
(E
: Entity_Id
; Indx
: Nat
) return Node_Id
;
8817 function Get_N_Length
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
8818 -- Comments required ???
8820 function Same_Bounds
(L
: Node_Id
; R
: Node_Id
) return Boolean;
8821 -- True for equal literals and for nodes that denote the same constant
8822 -- entity, even if its value is not a static constant. This includes the
8823 -- case of a discriminal reference within an init proc. Removes some
8824 -- obviously superfluous checks.
8826 function Length_E_Cond
8827 (Exptyp
: Entity_Id
;
8829 Indx
: Nat
) return Node_Id
;
8830 -- Returns expression to compute:
8831 -- Typ'Length /= Exptyp'Length
8833 function Length_N_Cond
8836 Indx
: Nat
) return Node_Id
;
8837 -- Returns expression to compute:
8838 -- Typ'Length /= Expr'Length
8844 procedure Add_Check
(N
: Node_Id
) is
8848 -- For now, ignore attempt to place more than two checks ???
8849 -- This is really worrisome, are we really discarding checks ???
8851 if Num_Checks
= 2 then
8855 pragma Assert
(Num_Checks
<= 1);
8856 Num_Checks
:= Num_Checks
+ 1;
8857 Ret_Result
(Num_Checks
) := N
;
8865 function Get_E_Length
(E
: Entity_Id
; Indx
: Nat
) return Node_Id
is
8866 SE
: constant Entity_Id
:= Scope
(E
);
8868 E1
: Entity_Id
:= E
;
8871 if Ekind
(Scope
(E
)) = E_Record_Type
8872 and then Has_Discriminants
(Scope
(E
))
8874 N
:= Build_Discriminal_Subtype_Of_Component
(E
);
8877 Insert_Action
(Ck_Node
, N
);
8878 E1
:= Defining_Identifier
(N
);
8882 if Ekind
(E1
) = E_String_Literal_Subtype
then
8884 Make_Integer_Literal
(Loc
,
8885 Intval
=> String_Literal_Length
(E1
));
8887 elsif SE
/= Standard_Standard
8888 and then Ekind
(Scope
(SE
)) = E_Protected_Type
8889 and then Has_Discriminants
(Scope
(SE
))
8890 and then Has_Completion
(Scope
(SE
))
8891 and then not Inside_Init_Proc
8893 -- If the type whose length is needed is a private component
8894 -- constrained by a discriminant, we must expand the 'Length
8895 -- attribute into an explicit computation, using the discriminal
8896 -- of the current protected operation. This is because the actual
8897 -- type of the prival is constructed after the protected opera-
8898 -- tion has been fully expanded.
8901 Indx_Type
: Node_Id
;
8904 Do_Expand
: Boolean := False;
8907 Indx_Type
:= First_Index
(E
);
8909 for J
in 1 .. Indx
- 1 loop
8910 Next_Index
(Indx_Type
);
8913 Get_Index_Bounds
(Indx_Type
, Lo
, Hi
);
8915 if Nkind
(Lo
) = N_Identifier
8916 and then Ekind
(Entity
(Lo
)) = E_In_Parameter
8918 Lo
:= Get_Discriminal
(E
, Lo
);
8922 if Nkind
(Hi
) = N_Identifier
8923 and then Ekind
(Entity
(Hi
)) = E_In_Parameter
8925 Hi
:= Get_Discriminal
(E
, Hi
);
8930 if not Is_Entity_Name
(Lo
) then
8931 Lo
:= Duplicate_Subexpr_No_Checks
(Lo
);
8934 if not Is_Entity_Name
(Hi
) then
8935 Lo
:= Duplicate_Subexpr_No_Checks
(Hi
);
8941 Make_Op_Subtract
(Loc
,
8945 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
8950 Make_Attribute_Reference
(Loc
,
8951 Attribute_Name
=> Name_Length
,
8953 New_Occurrence_Of
(E1
, Loc
));
8956 Set_Expressions
(N
, New_List
(
8957 Make_Integer_Literal
(Loc
, Indx
)));
8966 Make_Attribute_Reference
(Loc
,
8967 Attribute_Name
=> Name_Length
,
8969 New_Occurrence_Of
(E1
, Loc
));
8972 Set_Expressions
(N
, New_List
(
8973 Make_Integer_Literal
(Loc
, Indx
)));
8984 function Get_N_Length
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
8987 Make_Attribute_Reference
(Loc
,
8988 Attribute_Name
=> Name_Length
,
8990 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
8991 Expressions
=> New_List
(
8992 Make_Integer_Literal
(Loc
, Indx
)));
8999 function Length_E_Cond
9000 (Exptyp
: Entity_Id
;
9002 Indx
: Nat
) return Node_Id
9007 Left_Opnd
=> Get_E_Length
(Typ
, Indx
),
9008 Right_Opnd
=> Get_E_Length
(Exptyp
, Indx
));
9015 function Length_N_Cond
9018 Indx
: Nat
) return Node_Id
9023 Left_Opnd
=> Get_E_Length
(Typ
, Indx
),
9024 Right_Opnd
=> Get_N_Length
(Expr
, Indx
));
9031 function Same_Bounds
(L
: Node_Id
; R
: Node_Id
) return Boolean is
9034 (Nkind
(L
) = N_Integer_Literal
9035 and then Nkind
(R
) = N_Integer_Literal
9036 and then Intval
(L
) = Intval
(R
))
9040 and then Ekind
(Entity
(L
)) = E_Constant
9041 and then ((Is_Entity_Name
(R
)
9042 and then Entity
(L
) = Entity
(R
))
9044 (Nkind
(R
) = N_Type_Conversion
9045 and then Is_Entity_Name
(Expression
(R
))
9046 and then Entity
(L
) = Entity
(Expression
(R
)))))
9050 and then Ekind
(Entity
(R
)) = E_Constant
9051 and then Nkind
(L
) = N_Type_Conversion
9052 and then Is_Entity_Name
(Expression
(L
))
9053 and then Entity
(R
) = Entity
(Expression
(L
)))
9057 and then Is_Entity_Name
(R
)
9058 and then Entity
(L
) = Entity
(R
)
9059 and then Ekind
(Entity
(L
)) = E_In_Parameter
9060 and then Inside_Init_Proc
);
9063 -- Start of processing for Selected_Length_Checks
9066 if not Expander_Active
then
9070 if Target_Typ
= Any_Type
9071 or else Target_Typ
= Any_Composite
9072 or else Raises_Constraint_Error
(Ck_Node
)
9081 T_Typ
:= Target_Typ
;
9083 if No
(Source_Typ
) then
9084 S_Typ
:= Etype
(Ck_Node
);
9086 S_Typ
:= Source_Typ
;
9089 if S_Typ
= Any_Type
or else S_Typ
= Any_Composite
then
9093 if Is_Access_Type
(T_Typ
) and then Is_Access_Type
(S_Typ
) then
9094 S_Typ
:= Designated_Type
(S_Typ
);
9095 T_Typ
:= Designated_Type
(T_Typ
);
9098 -- A simple optimization for the null case
9100 if Known_Null
(Ck_Node
) then
9105 if Is_Array_Type
(T_Typ
) and then Is_Array_Type
(S_Typ
) then
9106 if Is_Constrained
(T_Typ
) then
9108 -- The checking code to be generated will freeze the corresponding
9109 -- array type. However, we must freeze the type now, so that the
9110 -- freeze node does not appear within the generated if expression,
9113 Freeze_Before
(Ck_Node
, T_Typ
);
9115 Expr_Actual
:= Get_Referenced_Object
(Ck_Node
);
9116 Exptyp
:= Get_Actual_Subtype
(Ck_Node
);
9118 if Is_Access_Type
(Exptyp
) then
9119 Exptyp
:= Designated_Type
(Exptyp
);
9122 -- String_Literal case. This needs to be handled specially be-
9123 -- cause no index types are available for string literals. The
9124 -- condition is simply:
9126 -- T_Typ'Length = string-literal-length
9128 if Nkind
(Expr_Actual
) = N_String_Literal
9129 and then Ekind
(Etype
(Expr_Actual
)) = E_String_Literal_Subtype
9133 Left_Opnd
=> Get_E_Length
(T_Typ
, 1),
9135 Make_Integer_Literal
(Loc
,
9137 String_Literal_Length
(Etype
(Expr_Actual
))));
9139 -- General array case. Here we have a usable actual subtype for
9140 -- the expression, and the condition is built from the two types
9143 -- T_Typ'Length /= Exptyp'Length or else
9144 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9145 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9148 elsif Is_Constrained
(Exptyp
) then
9150 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
9163 -- At the library level, we need to ensure that the type of
9164 -- the object is elaborated before the check itself is
9165 -- emitted. This is only done if the object is in the
9166 -- current compilation unit, otherwise the type is frozen
9167 -- and elaborated in its unit.
9169 if Is_Itype
(Exptyp
)
9171 Ekind
(Cunit_Entity
(Current_Sem_Unit
)) = E_Package
9173 not In_Package_Body
(Cunit_Entity
(Current_Sem_Unit
))
9174 and then In_Open_Scopes
(Scope
(Exptyp
))
9176 Ref_Node
:= Make_Itype_Reference
(Sloc
(Ck_Node
));
9177 Set_Itype
(Ref_Node
, Exptyp
);
9178 Insert_Action
(Ck_Node
, Ref_Node
);
9181 L_Index
:= First_Index
(T_Typ
);
9182 R_Index
:= First_Index
(Exptyp
);
9184 for Indx
in 1 .. Ndims
loop
9185 if not (Nkind
(L_Index
) = N_Raise_Constraint_Error
9187 Nkind
(R_Index
) = N_Raise_Constraint_Error
)
9189 Get_Index_Bounds
(L_Index
, L_Low
, L_High
);
9190 Get_Index_Bounds
(R_Index
, R_Low
, R_High
);
9192 -- Deal with compile time length check. Note that we
9193 -- skip this in the access case, because the access
9194 -- value may be null, so we cannot know statically.
9197 and then Compile_Time_Known_Value
(L_Low
)
9198 and then Compile_Time_Known_Value
(L_High
)
9199 and then Compile_Time_Known_Value
(R_Low
)
9200 and then Compile_Time_Known_Value
(R_High
)
9202 if Expr_Value
(L_High
) >= Expr_Value
(L_Low
) then
9203 L_Length
:= Expr_Value
(L_High
) -
9204 Expr_Value
(L_Low
) + 1;
9206 L_Length
:= UI_From_Int
(0);
9209 if Expr_Value
(R_High
) >= Expr_Value
(R_Low
) then
9210 R_Length
:= Expr_Value
(R_High
) -
9211 Expr_Value
(R_Low
) + 1;
9213 R_Length
:= UI_From_Int
(0);
9216 if L_Length
> R_Length
then
9218 (Compile_Time_Constraint_Error
9219 (Wnode
, "too few elements for}??", T_Typ
));
9221 elsif L_Length
< R_Length
then
9223 (Compile_Time_Constraint_Error
9224 (Wnode
, "too many elements for}??", T_Typ
));
9227 -- The comparison for an individual index subtype
9228 -- is omitted if the corresponding index subtypes
9229 -- statically match, since the result is known to
9230 -- be true. Note that this test is worth while even
9231 -- though we do static evaluation, because non-static
9232 -- subtypes can statically match.
9235 Subtypes_Statically_Match
9236 (Etype
(L_Index
), Etype
(R_Index
))
9239 (Same_Bounds
(L_Low
, R_Low
)
9240 and then Same_Bounds
(L_High
, R_High
))
9243 (Cond
, Length_E_Cond
(Exptyp
, T_Typ
, Indx
));
9252 -- Handle cases where we do not get a usable actual subtype that
9253 -- is constrained. This happens for example in the function call
9254 -- and explicit dereference cases. In these cases, we have to get
9255 -- the length or range from the expression itself, making sure we
9256 -- do not evaluate it more than once.
9258 -- Here Ck_Node is the original expression, or more properly the
9259 -- result of applying Duplicate_Expr to the original tree, forcing
9260 -- the result to be a name.
9264 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
9267 -- Build the condition for the explicit dereference case
9269 for Indx
in 1 .. Ndims
loop
9271 (Cond
, Length_N_Cond
(Ck_Node
, T_Typ
, Indx
));
9278 -- Construct the test and insert into the tree
9280 if Present
(Cond
) then
9282 Cond
:= Guard_Access
(Cond
, Loc
, Ck_Node
);
9286 (Make_Raise_Constraint_Error
(Loc
,
9288 Reason
=> CE_Length_Check_Failed
));
9292 end Selected_Length_Checks
;
9294 ---------------------------
9295 -- Selected_Range_Checks --
9296 ---------------------------
9298 function Selected_Range_Checks
9300 Target_Typ
: Entity_Id
;
9301 Source_Typ
: Entity_Id
;
9302 Warn_Node
: Node_Id
) return Check_Result
9304 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
9307 Expr_Actual
: Node_Id
;
9309 Cond
: Node_Id
:= Empty
;
9310 Do_Access
: Boolean := False;
9311 Wnode
: Node_Id
:= Warn_Node
;
9312 Ret_Result
: Check_Result
:= (Empty
, Empty
);
9313 Num_Checks
: Integer := 0;
9315 procedure Add_Check
(N
: Node_Id
);
9316 -- Adds the action given to Ret_Result if N is non-Empty
9318 function Discrete_Range_Cond
9320 Typ
: Entity_Id
) return Node_Id
;
9321 -- Returns expression to compute:
9322 -- Low_Bound (Expr) < Typ'First
9324 -- High_Bound (Expr) > Typ'Last
9326 function Discrete_Expr_Cond
9328 Typ
: Entity_Id
) return Node_Id
;
9329 -- Returns expression to compute:
9334 function Get_E_First_Or_Last
9338 Nam
: Name_Id
) return Node_Id
;
9339 -- Returns an attribute reference
9340 -- E'First or E'Last
9341 -- with a source location of Loc.
9343 -- Nam is Name_First or Name_Last, according to which attribute is
9344 -- desired. If Indx is non-zero, it is passed as a literal in the
9345 -- Expressions of the attribute reference (identifying the desired
9346 -- array dimension).
9348 function Get_N_First
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
9349 function Get_N_Last
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
9350 -- Returns expression to compute:
9351 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
9353 function Range_E_Cond
9354 (Exptyp
: Entity_Id
;
9358 -- Returns expression to compute:
9359 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9361 function Range_Equal_E_Cond
9362 (Exptyp
: Entity_Id
;
9364 Indx
: Nat
) return Node_Id
;
9365 -- Returns expression to compute:
9366 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9368 function Range_N_Cond
9371 Indx
: Nat
) return Node_Id
;
9372 -- Return expression to compute:
9373 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9379 procedure Add_Check
(N
: Node_Id
) is
9383 -- For now, ignore attempt to place more than 2 checks ???
9385 if Num_Checks
= 2 then
9389 pragma Assert
(Num_Checks
<= 1);
9390 Num_Checks
:= Num_Checks
+ 1;
9391 Ret_Result
(Num_Checks
) := N
;
9395 -------------------------
9396 -- Discrete_Expr_Cond --
9397 -------------------------
9399 function Discrete_Expr_Cond
9401 Typ
: Entity_Id
) return Node_Id
9409 Convert_To
(Base_Type
(Typ
),
9410 Duplicate_Subexpr_No_Checks
(Expr
)),
9412 Convert_To
(Base_Type
(Typ
),
9413 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_First
))),
9418 Convert_To
(Base_Type
(Typ
),
9419 Duplicate_Subexpr_No_Checks
(Expr
)),
9423 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_Last
))));
9424 end Discrete_Expr_Cond
;
9426 -------------------------
9427 -- Discrete_Range_Cond --
9428 -------------------------
9430 function Discrete_Range_Cond
9432 Typ
: Entity_Id
) return Node_Id
9434 LB
: Node_Id
:= Low_Bound
(Expr
);
9435 HB
: Node_Id
:= High_Bound
(Expr
);
9437 Left_Opnd
: Node_Id
;
9438 Right_Opnd
: Node_Id
;
9441 if Nkind
(LB
) = N_Identifier
9442 and then Ekind
(Entity
(LB
)) = E_Discriminant
9444 LB
:= New_Occurrence_Of
(Discriminal
(Entity
(LB
)), Loc
);
9451 (Base_Type
(Typ
), Duplicate_Subexpr_No_Checks
(LB
)),
9456 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_First
)));
9458 if Nkind
(HB
) = N_Identifier
9459 and then Ekind
(Entity
(HB
)) = E_Discriminant
9461 HB
:= New_Occurrence_Of
(Discriminal
(Entity
(HB
)), Loc
);
9468 (Base_Type
(Typ
), Duplicate_Subexpr_No_Checks
(HB
)),
9473 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_Last
)));
9475 return Make_Or_Else
(Loc
, Left_Opnd
, Right_Opnd
);
9476 end Discrete_Range_Cond
;
9478 -------------------------
9479 -- Get_E_First_Or_Last --
9480 -------------------------
9482 function Get_E_First_Or_Last
9486 Nam
: Name_Id
) return Node_Id
9491 Exprs
:= New_List
(Make_Integer_Literal
(Loc
, UI_From_Int
(Indx
)));
9496 return Make_Attribute_Reference
(Loc
,
9497 Prefix
=> New_Occurrence_Of
(E
, Loc
),
9498 Attribute_Name
=> Nam
,
9499 Expressions
=> Exprs
);
9500 end Get_E_First_Or_Last
;
9506 function Get_N_First
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
9509 Make_Attribute_Reference
(Loc
,
9510 Attribute_Name
=> Name_First
,
9512 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
9513 Expressions
=> New_List
(
9514 Make_Integer_Literal
(Loc
, Indx
)));
9521 function Get_N_Last
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
9524 Make_Attribute_Reference
(Loc
,
9525 Attribute_Name
=> Name_Last
,
9527 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
9528 Expressions
=> New_List
(
9529 Make_Integer_Literal
(Loc
, Indx
)));
9536 function Range_E_Cond
9537 (Exptyp
: Entity_Id
;
9539 Indx
: Nat
) return Node_Id
9547 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_First
),
9549 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
9554 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_Last
),
9556 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
9559 ------------------------
9560 -- Range_Equal_E_Cond --
9561 ------------------------
9563 function Range_Equal_E_Cond
9564 (Exptyp
: Entity_Id
;
9566 Indx
: Nat
) return Node_Id
9574 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_First
),
9576 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
9581 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_Last
),
9583 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
9584 end Range_Equal_E_Cond
;
9590 function Range_N_Cond
9593 Indx
: Nat
) return Node_Id
9601 Get_N_First
(Expr
, Indx
),
9603 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
9608 Get_N_Last
(Expr
, Indx
),
9610 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
9613 -- Start of processing for Selected_Range_Checks
9616 if not Expander_Active
then
9620 if Target_Typ
= Any_Type
9621 or else Target_Typ
= Any_Composite
9622 or else Raises_Constraint_Error
(Ck_Node
)
9631 T_Typ
:= Target_Typ
;
9633 if No
(Source_Typ
) then
9634 S_Typ
:= Etype
(Ck_Node
);
9636 S_Typ
:= Source_Typ
;
9639 if S_Typ
= Any_Type
or else S_Typ
= Any_Composite
then
9643 -- The order of evaluating T_Typ before S_Typ seems to be critical
9644 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
9645 -- in, and since Node can be an N_Range node, it might be invalid.
9646 -- Should there be an assert check somewhere for taking the Etype of
9647 -- an N_Range node ???
9649 if Is_Access_Type
(T_Typ
) and then Is_Access_Type
(S_Typ
) then
9650 S_Typ
:= Designated_Type
(S_Typ
);
9651 T_Typ
:= Designated_Type
(T_Typ
);
9654 -- A simple optimization for the null case
9656 if Known_Null
(Ck_Node
) then
9661 -- For an N_Range Node, check for a null range and then if not
9662 -- null generate a range check action.
9664 if Nkind
(Ck_Node
) = N_Range
then
9666 -- There's no point in checking a range against itself
9668 if Ck_Node
= Scalar_Range
(T_Typ
) then
9673 T_LB
: constant Node_Id
:= Type_Low_Bound
(T_Typ
);
9674 T_HB
: constant Node_Id
:= Type_High_Bound
(T_Typ
);
9675 Known_T_LB
: constant Boolean := Compile_Time_Known_Value
(T_LB
);
9676 Known_T_HB
: constant Boolean := Compile_Time_Known_Value
(T_HB
);
9678 LB
: Node_Id
:= Low_Bound
(Ck_Node
);
9679 HB
: Node_Id
:= High_Bound
(Ck_Node
);
9683 Null_Range
: Boolean;
9684 Out_Of_Range_L
: Boolean;
9685 Out_Of_Range_H
: Boolean;
9688 -- Compute what is known at compile time
9690 if Known_T_LB
and Known_T_HB
then
9691 if Compile_Time_Known_Value
(LB
) then
9694 -- There's no point in checking that a bound is within its
9695 -- own range so pretend that it is known in this case. First
9696 -- deal with low bound.
9698 elsif Ekind
(Etype
(LB
)) = E_Signed_Integer_Subtype
9699 and then Scalar_Range
(Etype
(LB
)) = Scalar_Range
(T_Typ
)
9708 -- Likewise for the high bound
9710 if Compile_Time_Known_Value
(HB
) then
9713 elsif Ekind
(Etype
(HB
)) = E_Signed_Integer_Subtype
9714 and then Scalar_Range
(Etype
(HB
)) = Scalar_Range
(T_Typ
)
9723 -- Check for case where everything is static and we can do the
9724 -- check at compile time. This is skipped if we have an access
9725 -- type, since the access value may be null.
9727 -- ??? This code can be improved since you only need to know that
9728 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
9729 -- compile time to emit pertinent messages.
9731 if Known_T_LB
and Known_T_HB
and Known_LB
and Known_HB
9734 -- Floating-point case
9736 if Is_Floating_Point_Type
(S_Typ
) then
9737 Null_Range
:= Expr_Value_R
(HB
) < Expr_Value_R
(LB
);
9739 (Expr_Value_R
(LB
) < Expr_Value_R
(T_LB
))
9741 (Expr_Value_R
(LB
) > Expr_Value_R
(T_HB
));
9744 (Expr_Value_R
(HB
) > Expr_Value_R
(T_HB
))
9746 (Expr_Value_R
(HB
) < Expr_Value_R
(T_LB
));
9748 -- Fixed or discrete type case
9751 Null_Range
:= Expr_Value
(HB
) < Expr_Value
(LB
);
9753 (Expr_Value
(LB
) < Expr_Value
(T_LB
))
9755 (Expr_Value
(LB
) > Expr_Value
(T_HB
));
9758 (Expr_Value
(HB
) > Expr_Value
(T_HB
))
9760 (Expr_Value
(HB
) < Expr_Value
(T_LB
));
9763 if not Null_Range
then
9764 if Out_Of_Range_L
then
9765 if No
(Warn_Node
) then
9767 (Compile_Time_Constraint_Error
9768 (Low_Bound
(Ck_Node
),
9769 "static value out of range of}??", T_Typ
));
9773 (Compile_Time_Constraint_Error
9775 "static range out of bounds of}??", T_Typ
));
9779 if Out_Of_Range_H
then
9780 if No
(Warn_Node
) then
9782 (Compile_Time_Constraint_Error
9783 (High_Bound
(Ck_Node
),
9784 "static value out of range of}??", T_Typ
));
9788 (Compile_Time_Constraint_Error
9790 "static range out of bounds of}??", T_Typ
));
9797 LB
: Node_Id
:= Low_Bound
(Ck_Node
);
9798 HB
: Node_Id
:= High_Bound
(Ck_Node
);
9801 -- If either bound is a discriminant and we are within the
9802 -- record declaration, it is a use of the discriminant in a
9803 -- constraint of a component, and nothing can be checked
9804 -- here. The check will be emitted within the init proc.
9805 -- Before then, the discriminal has no real meaning.
9806 -- Similarly, if the entity is a discriminal, there is no
9807 -- check to perform yet.
9809 -- The same holds within a discriminated synchronized type,
9810 -- where the discriminant may constrain a component or an
9813 if Nkind
(LB
) = N_Identifier
9814 and then Denotes_Discriminant
(LB
, True)
9816 if Current_Scope
= Scope
(Entity
(LB
))
9817 or else Is_Concurrent_Type
(Current_Scope
)
9818 or else Ekind
(Entity
(LB
)) /= E_Discriminant
9823 New_Occurrence_Of
(Discriminal
(Entity
(LB
)), Loc
);
9827 if Nkind
(HB
) = N_Identifier
9828 and then Denotes_Discriminant
(HB
, True)
9830 if Current_Scope
= Scope
(Entity
(HB
))
9831 or else Is_Concurrent_Type
(Current_Scope
)
9832 or else Ekind
(Entity
(HB
)) /= E_Discriminant
9837 New_Occurrence_Of
(Discriminal
(Entity
(HB
)), Loc
);
9841 Cond
:= Discrete_Range_Cond
(Ck_Node
, T_Typ
);
9842 Set_Paren_Count
(Cond
, 1);
9849 Convert_To
(Base_Type
(Etype
(HB
)),
9850 Duplicate_Subexpr_No_Checks
(HB
)),
9852 Convert_To
(Base_Type
(Etype
(LB
)),
9853 Duplicate_Subexpr_No_Checks
(LB
))),
9854 Right_Opnd
=> Cond
);
9859 elsif Is_Scalar_Type
(S_Typ
) then
9861 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
9862 -- except the above simply sets a flag in the node and lets
9863 -- gigi generate the check base on the Etype of the expression.
9864 -- Sometimes, however we want to do a dynamic check against an
9865 -- arbitrary target type, so we do that here.
9867 if Ekind
(Base_Type
(S_Typ
)) /= Ekind
(Base_Type
(T_Typ
)) then
9868 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
9870 -- For literals, we can tell if the constraint error will be
9871 -- raised at compile time, so we never need a dynamic check, but
9872 -- if the exception will be raised, then post the usual warning,
9873 -- and replace the literal with a raise constraint error
9874 -- expression. As usual, skip this for access types
9876 elsif Compile_Time_Known_Value
(Ck_Node
) and then not Do_Access
then
9878 LB
: constant Node_Id
:= Type_Low_Bound
(T_Typ
);
9879 UB
: constant Node_Id
:= Type_High_Bound
(T_Typ
);
9881 Out_Of_Range
: Boolean;
9882 Static_Bounds
: constant Boolean :=
9883 Compile_Time_Known_Value
(LB
)
9884 and Compile_Time_Known_Value
(UB
);
9887 -- Following range tests should use Sem_Eval routine ???
9889 if Static_Bounds
then
9890 if Is_Floating_Point_Type
(S_Typ
) then
9892 (Expr_Value_R
(Ck_Node
) < Expr_Value_R
(LB
))
9894 (Expr_Value_R
(Ck_Node
) > Expr_Value_R
(UB
));
9896 -- Fixed or discrete type
9900 Expr_Value
(Ck_Node
) < Expr_Value
(LB
)
9902 Expr_Value
(Ck_Node
) > Expr_Value
(UB
);
9905 -- Bounds of the type are static and the literal is out of
9906 -- range so output a warning message.
9908 if Out_Of_Range
then
9909 if No
(Warn_Node
) then
9911 (Compile_Time_Constraint_Error
9913 "static value out of range of}??", T_Typ
));
9917 (Compile_Time_Constraint_Error
9919 "static value out of range of}??", T_Typ
));
9924 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
9928 -- Here for the case of a non-static expression, we need a runtime
9929 -- check unless the source type range is guaranteed to be in the
9930 -- range of the target type.
9933 if not In_Subrange_Of
(S_Typ
, T_Typ
) then
9934 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
9939 if Is_Array_Type
(T_Typ
) and then Is_Array_Type
(S_Typ
) then
9940 if Is_Constrained
(T_Typ
) then
9942 Expr_Actual
:= Get_Referenced_Object
(Ck_Node
);
9943 Exptyp
:= Get_Actual_Subtype
(Expr_Actual
);
9945 if Is_Access_Type
(Exptyp
) then
9946 Exptyp
:= Designated_Type
(Exptyp
);
9949 -- String_Literal case. This needs to be handled specially be-
9950 -- cause no index types are available for string literals. The
9951 -- condition is simply:
9953 -- T_Typ'Length = string-literal-length
9955 if Nkind
(Expr_Actual
) = N_String_Literal
then
9958 -- General array case. Here we have a usable actual subtype for
9959 -- the expression, and the condition is built from the two types
9961 -- T_Typ'First < Exptyp'First or else
9962 -- T_Typ'Last > Exptyp'Last or else
9963 -- T_Typ'First(1) < Exptyp'First(1) or else
9964 -- T_Typ'Last(1) > Exptyp'Last(1) or else
9967 elsif Is_Constrained
(Exptyp
) then
9969 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
9975 L_Index
:= First_Index
(T_Typ
);
9976 R_Index
:= First_Index
(Exptyp
);
9978 for Indx
in 1 .. Ndims
loop
9979 if not (Nkind
(L_Index
) = N_Raise_Constraint_Error
9981 Nkind
(R_Index
) = N_Raise_Constraint_Error
)
9983 -- Deal with compile time length check. Note that we
9984 -- skip this in the access case, because the access
9985 -- value may be null, so we cannot know statically.
9988 Subtypes_Statically_Match
9989 (Etype
(L_Index
), Etype
(R_Index
))
9991 -- If the target type is constrained then we
9992 -- have to check for exact equality of bounds
9993 -- (required for qualified expressions).
9995 if Is_Constrained
(T_Typ
) then
9998 Range_Equal_E_Cond
(Exptyp
, T_Typ
, Indx
));
10001 (Cond
, Range_E_Cond
(Exptyp
, T_Typ
, Indx
));
10011 -- Handle cases where we do not get a usable actual subtype that
10012 -- is constrained. This happens for example in the function call
10013 -- and explicit dereference cases. In these cases, we have to get
10014 -- the length or range from the expression itself, making sure we
10015 -- do not evaluate it more than once.
10017 -- Here Ck_Node is the original expression, or more properly the
10018 -- result of applying Duplicate_Expr to the original tree,
10019 -- forcing the result to be a name.
10023 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
10026 -- Build the condition for the explicit dereference case
10028 for Indx
in 1 .. Ndims
loop
10030 (Cond
, Range_N_Cond
(Ck_Node
, T_Typ
, Indx
));
10036 -- For a conversion to an unconstrained array type, generate an
10037 -- Action to check that the bounds of the source value are within
10038 -- the constraints imposed by the target type (RM 4.6(38)). No
10039 -- check is needed for a conversion to an access to unconstrained
10040 -- array type, as 4.6(24.15/2) requires the designated subtypes
10041 -- of the two access types to statically match.
10043 if Nkind
(Parent
(Ck_Node
)) = N_Type_Conversion
10044 and then not Do_Access
10047 Opnd_Index
: Node_Id
;
10048 Targ_Index
: Node_Id
;
10049 Opnd_Range
: Node_Id
;
10052 Opnd_Index
:= First_Index
(Get_Actual_Subtype
(Ck_Node
));
10053 Targ_Index
:= First_Index
(T_Typ
);
10054 while Present
(Opnd_Index
) loop
10056 -- If the index is a range, use its bounds. If it is an
10057 -- entity (as will be the case if it is a named subtype
10058 -- or an itype created for a slice) retrieve its range.
10060 if Is_Entity_Name
(Opnd_Index
)
10061 and then Is_Type
(Entity
(Opnd_Index
))
10063 Opnd_Range
:= Scalar_Range
(Entity
(Opnd_Index
));
10065 Opnd_Range
:= Opnd_Index
;
10068 if Nkind
(Opnd_Range
) = N_Range
then
10070 (Low_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10071 Assume_Valid
=> True)
10074 (High_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10075 Assume_Valid
=> True)
10079 -- If null range, no check needed
10082 Compile_Time_Known_Value
(High_Bound
(Opnd_Range
))
10084 Compile_Time_Known_Value
(Low_Bound
(Opnd_Range
))
10086 Expr_Value
(High_Bound
(Opnd_Range
)) <
10087 Expr_Value
(Low_Bound
(Opnd_Range
))
10091 elsif Is_Out_Of_Range
10092 (Low_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10093 Assume_Valid
=> True)
10096 (High_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10097 Assume_Valid
=> True)
10100 (Compile_Time_Constraint_Error
10101 (Wnode
, "value out of range of}??", T_Typ
));
10106 Discrete_Range_Cond
10107 (Opnd_Range
, Etype
(Targ_Index
)));
10111 Next_Index
(Opnd_Index
);
10112 Next_Index
(Targ_Index
);
10119 -- Construct the test and insert into the tree
10121 if Present
(Cond
) then
10123 Cond
:= Guard_Access
(Cond
, Loc
, Ck_Node
);
10127 (Make_Raise_Constraint_Error
(Loc
,
10129 Reason
=> CE_Range_Check_Failed
));
10133 end Selected_Range_Checks
;
10135 -------------------------------
10136 -- Storage_Checks_Suppressed --
10137 -------------------------------
10139 function Storage_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
10141 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
10142 return Is_Check_Suppressed
(E
, Storage_Check
);
10144 return Scope_Suppress
.Suppress
(Storage_Check
);
10146 end Storage_Checks_Suppressed
;
10148 ---------------------------
10149 -- Tag_Checks_Suppressed --
10150 ---------------------------
10152 function Tag_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
10155 and then Checks_May_Be_Suppressed
(E
)
10157 return Is_Check_Suppressed
(E
, Tag_Check
);
10159 return Scope_Suppress
.Suppress
(Tag_Check
);
10161 end Tag_Checks_Suppressed
;
10163 ---------------------------------------
10164 -- Validate_Alignment_Check_Warnings --
10165 ---------------------------------------
10167 procedure Validate_Alignment_Check_Warnings
is
10169 for J
in Alignment_Warnings
.First
.. Alignment_Warnings
.Last
loop
10171 AWR
: Alignment_Warnings_Record
10172 renames Alignment_Warnings
.Table
(J
);
10174 if Known_Alignment
(AWR
.E
)
10175 and then AWR
.A
mod Alignment
(AWR
.E
) = 0
10177 Delete_Warning_And_Continuations
(AWR
.W
);
10181 end Validate_Alignment_Check_Warnings
;
10183 --------------------------
10184 -- Validity_Check_Range --
10185 --------------------------
10187 procedure Validity_Check_Range
10189 Related_Id
: Entity_Id
:= Empty
)
10192 if Validity_Checks_On
and Validity_Check_Operands
then
10193 if Nkind
(N
) = N_Range
then
10195 (Expr
=> Low_Bound
(N
),
10196 Related_Id
=> Related_Id
,
10197 Is_Low_Bound
=> True);
10200 (Expr
=> High_Bound
(N
),
10201 Related_Id
=> Related_Id
,
10202 Is_High_Bound
=> True);
10205 end Validity_Check_Range
;
10207 --------------------------------
10208 -- Validity_Checks_Suppressed --
10209 --------------------------------
10211 function Validity_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
10213 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
10214 return Is_Check_Suppressed
(E
, Validity_Check
);
10216 return Scope_Suppress
.Suppress
(Validity_Check
);
10218 end Validity_Checks_Suppressed
;