* config/rs6000/rs6000.c (rs6000_option_override_internal): Do not
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blobb968802d9fb846ba9bdf0ab5264dcdaaa7c038b4
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2012 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
33 /* Definitions for the object file format. These are set at
34 compile-time. */
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
54 /* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56 #define DOT_SYMBOLS 1
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #else
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
78 #endif
80 #ifdef HAVE_AS_DFP
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82 #else
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84 #endif
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
88 #else
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90 #endif
92 #ifdef HAVE_AS_DCI
93 #define ASM_CPU_476_SPEC "-m476"
94 #else
95 #define ASM_CPU_476_SPEC "-mpower4"
96 #endif
98 /* Common ASM definitions used by ASM_SPEC among the various targets for
99 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
100 provide the default assembler options if the user uses -mcpu=native, so if
101 you make changes here, make them also there. */
102 #define ASM_CPU_SPEC \
103 "%{!mcpu*: \
104 %{mpowerpc64*: -mppc64} \
105 %{!mpowerpc64*: %(asm_default)}} \
106 %{mcpu=native: %(asm_cpu_native)} \
107 %{mcpu=cell: -mcell} \
108 %{mcpu=power3: -mppc64} \
109 %{mcpu=power4: -mpower4} \
110 %{mcpu=power5: %(asm_cpu_power5)} \
111 %{mcpu=power5+: %(asm_cpu_power5)} \
112 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
113 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
114 %{mcpu=power7: %(asm_cpu_power7)} \
115 %{mcpu=a2: -ma2} \
116 %{mcpu=powerpc: -mppc} \
117 %{mcpu=rs64a: -mppc64} \
118 %{mcpu=401: -mppc} \
119 %{mcpu=403: -m403} \
120 %{mcpu=405: -m405} \
121 %{mcpu=405fp: -m405} \
122 %{mcpu=440: -m440} \
123 %{mcpu=440fp: -m440} \
124 %{mcpu=464: -m440} \
125 %{mcpu=464fp: -m440} \
126 %{mcpu=476: %(asm_cpu_476)} \
127 %{mcpu=476fp: %(asm_cpu_476)} \
128 %{mcpu=505: -mppc} \
129 %{mcpu=601: -m601} \
130 %{mcpu=602: -mppc} \
131 %{mcpu=603: -mppc} \
132 %{mcpu=603e: -mppc} \
133 %{mcpu=ec603e: -mppc} \
134 %{mcpu=604: -mppc} \
135 %{mcpu=604e: -mppc} \
136 %{mcpu=620: -mppc64} \
137 %{mcpu=630: -mppc64} \
138 %{mcpu=740: -mppc} \
139 %{mcpu=750: -mppc} \
140 %{mcpu=G3: -mppc} \
141 %{mcpu=7400: -mppc -maltivec} \
142 %{mcpu=7450: -mppc -maltivec} \
143 %{mcpu=G4: -mppc -maltivec} \
144 %{mcpu=801: -mppc} \
145 %{mcpu=821: -mppc} \
146 %{mcpu=823: -mppc} \
147 %{mcpu=860: -mppc} \
148 %{mcpu=970: -mpower4 -maltivec} \
149 %{mcpu=G5: -mpower4 -maltivec} \
150 %{mcpu=8540: -me500} \
151 %{mcpu=8548: -me500} \
152 %{mcpu=e300c2: -me300} \
153 %{mcpu=e300c3: -me300} \
154 %{mcpu=e500mc: -me500mc} \
155 %{mcpu=e500mc64: -me500mc64} \
156 %{mcpu=e5500: -me5500} \
157 %{mcpu=e6500: -me6500} \
158 %{maltivec: -maltivec} \
159 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
160 -many"
162 #define CPP_DEFAULT_SPEC ""
164 #define ASM_DEFAULT_SPEC ""
166 /* This macro defines names of additional specifications to put in the specs
167 that can be used in various specifications like CC1_SPEC. Its definition
168 is an initializer with a subgrouping for each command option.
170 Each subgrouping contains a string constant, that defines the
171 specification name, and a string constant that used by the GCC driver
172 program.
174 Do not define this macro if it does not need to do anything. */
176 #define SUBTARGET_EXTRA_SPECS
178 #define EXTRA_SPECS \
179 { "cpp_default", CPP_DEFAULT_SPEC }, \
180 { "asm_cpu", ASM_CPU_SPEC }, \
181 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
182 { "asm_default", ASM_DEFAULT_SPEC }, \
183 { "cc1_cpu", CC1_CPU_SPEC }, \
184 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
185 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
186 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
187 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
188 SUBTARGET_EXTRA_SPECS
190 /* -mcpu=native handling only makes sense with compiler running on
191 an PowerPC chip. If changing this condition, also change
192 the condition in driver-rs6000.c. */
193 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
194 /* In driver-rs6000.c. */
195 extern const char *host_detect_local_cpu (int argc, const char **argv);
196 #define EXTRA_SPEC_FUNCTIONS \
197 { "local_cpu_detect", host_detect_local_cpu },
198 #define HAVE_LOCAL_CPU_DETECT
199 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
201 #else
202 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
203 #endif
205 #ifndef CC1_CPU_SPEC
206 #ifdef HAVE_LOCAL_CPU_DETECT
207 #define CC1_CPU_SPEC \
208 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
209 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
210 #else
211 #define CC1_CPU_SPEC ""
212 #endif
213 #endif
215 /* Architecture type. */
217 /* Define TARGET_MFCRF if the target assembler does not support the
218 optional field operand for mfcr. */
220 #ifndef HAVE_AS_MFCRF
221 #undef TARGET_MFCRF
222 #define TARGET_MFCRF 0
223 #endif
225 /* Define TARGET_POPCNTB if the target assembler does not support the
226 popcount byte instruction. */
228 #ifndef HAVE_AS_POPCNTB
229 #undef TARGET_POPCNTB
230 #define TARGET_POPCNTB 0
231 #endif
233 /* Define TARGET_FPRND if the target assembler does not support the
234 fp rounding instructions. */
236 #ifndef HAVE_AS_FPRND
237 #undef TARGET_FPRND
238 #define TARGET_FPRND 0
239 #endif
241 /* Define TARGET_CMPB if the target assembler does not support the
242 cmpb instruction. */
244 #ifndef HAVE_AS_CMPB
245 #undef TARGET_CMPB
246 #define TARGET_CMPB 0
247 #endif
249 /* Define TARGET_MFPGPR if the target assembler does not support the
250 mffpr and mftgpr instructions. */
252 #ifndef HAVE_AS_MFPGPR
253 #undef TARGET_MFPGPR
254 #define TARGET_MFPGPR 0
255 #endif
257 /* Define TARGET_DFP if the target assembler does not support decimal
258 floating point instructions. */
259 #ifndef HAVE_AS_DFP
260 #undef TARGET_DFP
261 #define TARGET_DFP 0
262 #endif
264 /* Define TARGET_POPCNTD if the target assembler does not support the
265 popcount word and double word instructions. */
267 #ifndef HAVE_AS_POPCNTD
268 #undef TARGET_POPCNTD
269 #define TARGET_POPCNTD 0
270 #endif
272 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
273 not, generate the lwsync code as an integer constant. */
274 #ifdef HAVE_AS_LWSYNC
275 #define TARGET_LWSYNC_INSTRUCTION 1
276 #else
277 #define TARGET_LWSYNC_INSTRUCTION 0
278 #endif
280 /* Define TARGET_TLS_MARKERS if the target assembler does not support
281 arg markers for __tls_get_addr calls. */
282 #ifndef HAVE_AS_TLS_MARKERS
283 #undef TARGET_TLS_MARKERS
284 #define TARGET_TLS_MARKERS 0
285 #else
286 #define TARGET_TLS_MARKERS tls_markers
287 #endif
289 #ifndef TARGET_SECURE_PLT
290 #define TARGET_SECURE_PLT 0
291 #endif
293 #ifndef TARGET_CMODEL
294 #define TARGET_CMODEL CMODEL_SMALL
295 #endif
297 #define TARGET_32BIT (! TARGET_64BIT)
299 #ifndef HAVE_AS_TLS
300 #define HAVE_AS_TLS 0
301 #endif
303 #ifndef TARGET_LINK_STACK
304 #define TARGET_LINK_STACK 0
305 #endif
307 #ifndef SET_TARGET_LINK_STACK
308 #define SET_TARGET_LINK_STACK(X) do { } while (0)
309 #endif
311 /* Return 1 for a symbol ref for a thread-local storage symbol. */
312 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
313 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
315 #ifdef IN_LIBGCC2
316 /* For libgcc2 we make sure this is a compile time constant */
317 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
318 #undef TARGET_POWERPC64
319 #define TARGET_POWERPC64 1
320 #else
321 #undef TARGET_POWERPC64
322 #define TARGET_POWERPC64 0
323 #endif
324 #else
325 /* The option machinery will define this. */
326 #endif
328 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
330 /* FPU operations supported.
331 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
332 also test TARGET_HARD_FLOAT. */
333 #define TARGET_SINGLE_FLOAT 1
334 #define TARGET_DOUBLE_FLOAT 1
335 #define TARGET_SINGLE_FPU 0
336 #define TARGET_SIMPLE_FPU 0
337 #define TARGET_XILINX_FPU 0
339 /* Recast the processor type to the cpu attribute. */
340 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
342 /* Define generic processor types based upon current deployment. */
343 #define PROCESSOR_COMMON PROCESSOR_PPC601
344 #define PROCESSOR_POWERPC PROCESSOR_PPC604
345 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
347 /* Define the default processor. This is overridden by other tm.h files. */
348 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
349 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
351 /* Debug support */
352 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
353 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
354 #define MASK_DEBUG_REG 0x04 /* debug register handling */
355 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
356 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
357 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
358 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
359 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
360 | MASK_DEBUG_ARG \
361 | MASK_DEBUG_REG \
362 | MASK_DEBUG_ADDR \
363 | MASK_DEBUG_COST \
364 | MASK_DEBUG_TARGET \
365 | MASK_DEBUG_BUILTIN)
367 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
368 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
369 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
370 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
371 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
372 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
373 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
375 extern enum rs6000_vector rs6000_vector_unit[];
377 #define VECTOR_UNIT_NONE_P(MODE) \
378 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
380 #define VECTOR_UNIT_VSX_P(MODE) \
381 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
383 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
384 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
386 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
387 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC \
388 || rs6000_vector_unit[(MODE)] == VECTOR_VSX)
390 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
391 same unit as the vector unit we are using, but we may want to migrate to
392 using VSX style loads even for types handled by altivec. */
393 extern enum rs6000_vector rs6000_vector_mem[];
395 #define VECTOR_MEM_NONE_P(MODE) \
396 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
398 #define VECTOR_MEM_VSX_P(MODE) \
399 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
401 #define VECTOR_MEM_ALTIVEC_P(MODE) \
402 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
404 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
405 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC \
406 || rs6000_vector_mem[(MODE)] == VECTOR_VSX)
408 /* Return the alignment of a given vector type, which is set based on the
409 vector unit use. VSX for instance can load 32 or 64 bit aligned words
410 without problems, while Altivec requires 128-bit aligned vectors. */
411 extern int rs6000_vector_align[];
413 #define VECTOR_ALIGN(MODE) \
414 ((rs6000_vector_align[(MODE)] != 0) \
415 ? rs6000_vector_align[(MODE)] \
416 : (int)GET_MODE_BITSIZE ((MODE)))
418 /* Alignment options for fields in structures for sub-targets following
419 AIX-like ABI.
420 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
421 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
423 Override the macro definitions when compiling libobjc to avoid undefined
424 reference to rs6000_alignment_flags due to library's use of GCC alignment
425 macros which use the macros below. */
427 #ifndef IN_TARGET_LIBS
428 #define MASK_ALIGN_POWER 0x00000000
429 #define MASK_ALIGN_NATURAL 0x00000001
430 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
431 #else
432 #define TARGET_ALIGN_NATURAL 0
433 #endif
435 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
436 #define TARGET_IEEEQUAD rs6000_ieeequad
437 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
438 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
440 #define TARGET_SPE_ABI 0
441 #define TARGET_SPE 0
442 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
443 #define TARGET_FPRS 1
444 #define TARGET_E500_SINGLE 0
445 #define TARGET_E500_DOUBLE 0
446 #define CHECK_E500_OPTIONS do { } while (0)
448 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
449 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
450 XILINX. */
451 #define TARGET_FCFID (TARGET_POWERPC64 \
452 || TARGET_PPC_GPOPT /* 970/power4 */ \
453 || TARGET_POPCNTB /* ISA 2.02 */ \
454 || TARGET_CMPB /* ISA 2.05 */ \
455 || TARGET_POPCNTD /* ISA 2.06 */ \
456 || TARGET_XILINX_FPU)
458 #define TARGET_FCTIDZ TARGET_FCFID
459 #define TARGET_STFIWX TARGET_PPC_GFXOPT
460 #define TARGET_LFIWAX TARGET_CMPB
461 #define TARGET_LFIWZX TARGET_POPCNTD
462 #define TARGET_FCFIDS TARGET_POPCNTD
463 #define TARGET_FCFIDU TARGET_POPCNTD
464 #define TARGET_FCFIDUS TARGET_POPCNTD
465 #define TARGET_FCTIDUZ TARGET_POPCNTD
466 #define TARGET_FCTIWUZ TARGET_POPCNTD
468 /* For power systems, we want to enable Altivec and VSX builtins even if the
469 user did not use -maltivec or -mvsx to allow the builtins to be used inside
470 of #pragma GCC target or the target attribute to change the code level for a
471 given system. The SPE and Paired builtins are only enabled if you configure
472 the compiler for those builtins, and those machines don't support altivec or
473 VSX. */
475 #define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
476 && ((TARGET_POWERPC64 \
477 || TARGET_PPC_GPOPT /* 970/power4 */ \
478 || TARGET_POPCNTB /* ISA 2.02 */ \
479 || TARGET_CMPB /* ISA 2.05 */ \
480 || TARGET_POPCNTD /* ISA 2.06 */ \
481 || TARGET_ALTIVEC \
482 || TARGET_VSX)))
484 /* E500 cores only support plain "sync", not lwsync. */
485 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
486 || rs6000_cpu == PROCESSOR_PPC8548)
489 /* Which machine supports the various reciprocal estimate instructions. */
490 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
491 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
493 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
494 && TARGET_DOUBLE_FLOAT \
495 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
497 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
498 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
500 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
501 && TARGET_DOUBLE_FLOAT \
502 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
504 /* Whether the various reciprocal divide/square root estimate instructions
505 exist, and whether we should automatically generate code for the instruction
506 by default. */
507 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
508 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
509 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
510 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
512 extern unsigned char rs6000_recip_bits[];
514 #define RS6000_RECIP_HAVE_RE_P(MODE) \
515 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
517 #define RS6000_RECIP_AUTO_RE_P(MODE) \
518 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
520 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
521 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
523 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
524 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
526 #define RS6000_RECIP_HIGH_PRECISION_P(MODE) \
527 ((MODE) == SFmode || (MODE) == V4SFmode || TARGET_RECIP_PRECISION)
529 /* The default CPU for TARGET_OPTION_OVERRIDE. */
530 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
532 /* Target pragma. */
533 #define REGISTER_TARGET_PRAGMAS() do { \
534 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
535 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
536 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
537 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
538 } while (0)
540 /* Target #defines. */
541 #define TARGET_CPU_CPP_BUILTINS() \
542 rs6000_cpu_cpp_builtins (pfile)
544 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
545 we're compiling for. Some configurations may need to override it. */
546 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
547 do \
549 if (BYTES_BIG_ENDIAN) \
551 builtin_define ("__BIG_ENDIAN__"); \
552 builtin_define ("_BIG_ENDIAN"); \
553 builtin_assert ("machine=bigendian"); \
555 else \
557 builtin_define ("__LITTLE_ENDIAN__"); \
558 builtin_define ("_LITTLE_ENDIAN"); \
559 builtin_assert ("machine=littleendian"); \
562 while (0)
564 /* Target machine storage layout. */
566 /* Define this macro if it is advisable to hold scalars in registers
567 in a wider mode than that declared by the program. In such cases,
568 the value is constrained to be within the bounds of the declared
569 type, but kept valid in the wider mode. The signedness of the
570 extension may differ from that of the type. */
572 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
573 if (GET_MODE_CLASS (MODE) == MODE_INT \
574 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
575 (MODE) = TARGET_32BIT ? SImode : DImode;
577 /* Define this if most significant bit is lowest numbered
578 in instructions that operate on numbered bit-fields. */
579 /* That is true on RS/6000. */
580 #define BITS_BIG_ENDIAN 1
582 /* Define this if most significant byte of a word is the lowest numbered. */
583 /* That is true on RS/6000. */
584 #define BYTES_BIG_ENDIAN 1
586 /* Define this if most significant word of a multiword number is lowest
587 numbered.
589 For RS/6000 we can decide arbitrarily since there are no machine
590 instructions for them. Might as well be consistent with bits and bytes. */
591 #define WORDS_BIG_ENDIAN 1
593 #define MAX_BITS_PER_WORD 64
595 /* Width of a word, in units (bytes). */
596 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
597 #ifdef IN_LIBGCC2
598 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
599 #else
600 #define MIN_UNITS_PER_WORD 4
601 #endif
602 #define UNITS_PER_FP_WORD 8
603 #define UNITS_PER_ALTIVEC_WORD 16
604 #define UNITS_PER_VSX_WORD 16
605 #define UNITS_PER_SPE_WORD 8
606 #define UNITS_PER_PAIRED_WORD 8
608 /* Type used for ptrdiff_t, as a string used in a declaration. */
609 #define PTRDIFF_TYPE "int"
611 /* Type used for size_t, as a string used in a declaration. */
612 #define SIZE_TYPE "long unsigned int"
614 /* Type used for wchar_t, as a string used in a declaration. */
615 #define WCHAR_TYPE "short unsigned int"
617 /* Width of wchar_t in bits. */
618 #define WCHAR_TYPE_SIZE 16
620 /* A C expression for the size in bits of the type `short' on the
621 target machine. If you don't define this, the default is half a
622 word. (If this would be less than one storage unit, it is
623 rounded up to one unit.) */
624 #define SHORT_TYPE_SIZE 16
626 /* A C expression for the size in bits of the type `int' on the
627 target machine. If you don't define this, the default is one
628 word. */
629 #define INT_TYPE_SIZE 32
631 /* A C expression for the size in bits of the type `long' on the
632 target machine. If you don't define this, the default is one
633 word. */
634 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
636 /* A C expression for the size in bits of the type `long long' on the
637 target machine. If you don't define this, the default is two
638 words. */
639 #define LONG_LONG_TYPE_SIZE 64
641 /* A C expression for the size in bits of the type `float' on the
642 target machine. If you don't define this, the default is one
643 word. */
644 #define FLOAT_TYPE_SIZE 32
646 /* A C expression for the size in bits of the type `double' on the
647 target machine. If you don't define this, the default is two
648 words. */
649 #define DOUBLE_TYPE_SIZE 64
651 /* A C expression for the size in bits of the type `long double' on
652 the target machine. If you don't define this, the default is two
653 words. */
654 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
656 /* Define this to set long double type size to use in libgcc2.c, which can
657 not depend on target_flags. */
658 #ifdef __LONG_DOUBLE_128__
659 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
660 #else
661 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
662 #endif
664 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
665 #define WIDEST_HARDWARE_FP_SIZE 64
667 /* Width in bits of a pointer.
668 See also the macro `Pmode' defined below. */
669 extern unsigned rs6000_pointer_size;
670 #define POINTER_SIZE rs6000_pointer_size
672 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
673 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
675 /* Boundary (in *bits*) on which stack pointer should be aligned. */
676 #define STACK_BOUNDARY \
677 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
678 ? 64 : 128)
680 /* Allocation boundary (in *bits*) for the code of a function. */
681 #define FUNCTION_BOUNDARY 32
683 /* No data type wants to be aligned rounder than this. */
684 #define BIGGEST_ALIGNMENT 128
686 /* A C expression to compute the alignment for a variables in the
687 local store. TYPE is the data type, and ALIGN is the alignment
688 that the object would ordinarily have. */
689 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
690 DATA_ALIGNMENT (TYPE, ALIGN)
692 /* Alignment of field after `int : 0' in a structure. */
693 #define EMPTY_FIELD_BOUNDARY 32
695 /* Every structure's size must be a multiple of this. */
696 #define STRUCTURE_SIZE_BOUNDARY 8
698 /* A bit-field declared as `int' forces `int' alignment for the struct. */
699 #define PCC_BITFIELD_TYPE_MATTERS 1
701 /* Make strings word-aligned so strcpy from constants will be faster.
702 Make vector constants quadword aligned. */
703 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
704 (TREE_CODE (EXP) == STRING_CST \
705 && (STRICT_ALIGNMENT || !optimize_size) \
706 && (ALIGN) < BITS_PER_WORD \
707 ? BITS_PER_WORD \
708 : (ALIGN))
710 /* Make arrays of chars word-aligned for the same reasons.
711 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
712 64 bits. */
713 #define DATA_ALIGNMENT(TYPE, ALIGN) \
714 (TREE_CODE (TYPE) == VECTOR_TYPE \
715 ? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) \
716 || (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \
717 ? 64 : 128) \
718 : ((TARGET_E500_DOUBLE \
719 && TREE_CODE (TYPE) == REAL_TYPE \
720 && TYPE_MODE (TYPE) == DFmode) \
721 ? 64 \
722 : (TREE_CODE (TYPE) == ARRAY_TYPE \
723 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
724 && (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN)))
726 /* Nonzero if move instructions will actually fail to work
727 when given unaligned data. */
728 #define STRICT_ALIGNMENT 0
730 /* Define this macro to be the value 1 if unaligned accesses have a cost
731 many times greater than aligned accesses, for example if they are
732 emulated in a trap handler. */
733 /* Altivec vector memory instructions simply ignore the low bits; SPE vector
734 memory instructions trap on unaligned accesses; VSX memory instructions are
735 aligned to 4 or 8 bytes. */
736 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
737 (STRICT_ALIGNMENT \
738 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
739 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) \
740 && (ALIGN) < 32) \
741 || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
744 /* Standard register usage. */
746 /* Number of actual hardware registers.
747 The hardware registers are assigned numbers for the compiler
748 from 0 to just below FIRST_PSEUDO_REGISTER.
749 All registers that the compiler knows about must be given numbers,
750 even those that are not normally considered general registers.
752 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
753 a count register, a link register, and 8 condition register fields,
754 which we view here as separate registers. AltiVec adds 32 vector
755 registers and a VRsave register.
757 In addition, the difference between the frame and argument pointers is
758 a function of the number of registers saved, so we need to have a
759 register for AP that will later be eliminated in favor of SP or FP.
760 This is a normal register, but it is fixed.
762 We also create a pseudo register for float/int conversions, that will
763 really represent the memory location used. It is represented here as
764 a register, in order to work around problems in allocating stack storage
765 in inline functions.
767 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
768 pointer, which is eventually eliminated in favor of SP or FP. */
770 #define FIRST_PSEUDO_REGISTER 114
772 /* This must be included for pre gcc 3.0 glibc compatibility. */
773 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
775 /* Add 32 dwarf columns for synthetic SPE registers. */
776 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
778 /* The SPE has an additional 32 synthetic registers, with DWARF debug
779 info numbering for these registers starting at 1200. While eh_frame
780 register numbering need not be the same as the debug info numbering,
781 we choose to number these regs for eh_frame at 1200 too. This allows
782 future versions of the rs6000 backend to add hard registers and
783 continue to use the gcc hard register numbering for eh_frame. If the
784 extra SPE registers in eh_frame were numbered starting from the
785 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
786 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
787 avoid invalidating older SPE eh_frame info.
789 We must map them here to avoid huge unwinder tables mostly consisting
790 of unused space. */
791 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
792 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
794 /* Use standard DWARF numbering for DWARF debugging information. */
795 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
797 /* Use gcc hard register numbering for eh_frame. */
798 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
800 /* Map register numbers held in the call frame info that gcc has
801 collected using DWARF_FRAME_REGNUM to those that should be output in
802 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
803 for .eh_frame, but use the numbers mandated by the various ABIs for
804 .debug_frame. rs6000_emit_prologue has translated any combination of
805 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
806 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
807 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
808 ((FOR_EH) ? (REGNO) \
809 : (REGNO) == CR2_REGNO ? 64 \
810 : DBX_REGISTER_NUMBER (REGNO))
812 /* 1 for registers that have pervasive standard uses
813 and are not available for the register allocator.
815 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
816 as a local register; for all other OS's r2 is the TOC pointer.
818 cr5 is not supposed to be used.
820 On System V implementations, r13 is fixed and not available for use. */
822 #define FIXED_REGISTERS \
823 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
824 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
825 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
826 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
827 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
828 /* AltiVec registers. */ \
829 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
830 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
831 1, 1 \
832 , 1, 1, 1 \
835 /* 1 for registers not available across function calls.
836 These must include the FIXED_REGISTERS and also any
837 registers that can be used without being saved.
838 The latter must include the registers where values are returned
839 and the register where structure-value addresses are passed.
840 Aside from that, you can include as many other registers as you like. */
842 #define CALL_USED_REGISTERS \
843 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
844 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
845 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
846 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
847 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
848 /* AltiVec registers. */ \
849 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
850 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
851 1, 1 \
852 , 1, 1, 1 \
855 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
856 the entire set of `FIXED_REGISTERS' be included.
857 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
858 This macro is optional. If not specified, it defaults to the value
859 of `CALL_USED_REGISTERS'. */
861 #define CALL_REALLY_USED_REGISTERS \
862 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
863 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
864 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
865 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
866 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
867 /* AltiVec registers. */ \
868 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
869 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
870 0, 0 \
871 , 0, 0, 0 \
874 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
876 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
877 #define FIRST_SAVED_FP_REGNO (14+32)
878 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
880 /* List the order in which to allocate registers. Each register must be
881 listed once, even those in FIXED_REGISTERS.
883 We allocate in the following order:
884 fp0 (not saved or used for anything)
885 fp13 - fp2 (not saved; incoming fp arg registers)
886 fp1 (not saved; return value)
887 fp31 - fp14 (saved; order given to save least number)
888 cr7, cr6 (not saved or special)
889 cr1 (not saved, but used for FP operations)
890 cr0 (not saved, but used for arithmetic operations)
891 cr4, cr3, cr2 (saved)
892 r9 (not saved; best for TImode)
893 r10, r8-r4 (not saved; highest first for less conflict with params)
894 r3 (not saved; return value register)
895 r11 (not saved; later alloc to help shrink-wrap)
896 r0 (not saved; cannot be base reg)
897 r31 - r13 (saved; order given to save least number)
898 r12 (not saved; if used for DImode or DFmode would use r13)
899 ctr (not saved; when we have the choice ctr is better)
900 lr (saved)
901 cr5, r1, r2, ap, ca (fixed)
902 v0 - v1 (not saved or used for anything)
903 v13 - v3 (not saved; incoming vector arg registers)
904 v2 (not saved; incoming vector arg reg; return value)
905 v19 - v14 (not saved or used for anything)
906 v31 - v20 (saved; order given to save least number)
907 vrsave, vscr (fixed)
908 spe_acc, spefscr (fixed)
909 sfp (fixed)
912 #if FIXED_R2 == 1
913 #define MAYBE_R2_AVAILABLE
914 #define MAYBE_R2_FIXED 2,
915 #else
916 #define MAYBE_R2_AVAILABLE 2,
917 #define MAYBE_R2_FIXED
918 #endif
920 #if FIXED_R13 == 1
921 #define EARLY_R12 12,
922 #define LATE_R12
923 #else
924 #define EARLY_R12
925 #define LATE_R12 12,
926 #endif
928 #define REG_ALLOC_ORDER \
929 {32, \
930 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
931 33, \
932 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
933 50, 49, 48, 47, 46, \
934 75, 74, 69, 68, 72, 71, 70, \
935 MAYBE_R2_AVAILABLE \
936 9, 10, 8, 7, 6, 5, 4, \
937 3, EARLY_R12 11, 0, \
938 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
939 18, 17, 16, 15, 14, 13, LATE_R12 \
940 66, 65, \
941 73, 1, MAYBE_R2_FIXED 67, 76, \
942 /* AltiVec registers. */ \
943 77, 78, \
944 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
945 79, \
946 96, 95, 94, 93, 92, 91, \
947 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
948 109, 110, \
949 111, 112, 113 \
952 /* True if register is floating-point. */
953 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
955 /* True if register is a condition register. */
956 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
958 /* True if register is a condition register, but not cr0. */
959 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
961 /* True if register is an integer register. */
962 #define INT_REGNO_P(N) \
963 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
965 /* SPE SIMD registers are just the GPRs. */
966 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
968 /* PAIRED SIMD registers are just the FPRs. */
969 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
971 /* True if register is the CA register. */
972 #define CA_REGNO_P(N) ((N) == CA_REGNO)
974 /* True if register is an AltiVec register. */
975 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
977 /* True if register is a VSX register. */
978 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
980 /* Alternate name for any vector register supporting floating point, no matter
981 which instruction set(s) are available. */
982 #define VFLOAT_REGNO_P(N) \
983 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
985 /* Alternate name for any vector register supporting integer, no matter which
986 instruction set(s) are available. */
987 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
989 /* Alternate name for any vector register supporting logical operations, no
990 matter which instruction set(s) are available. */
991 #define VLOGICAL_REGNO_P(N) VFLOAT_REGNO_P (N)
993 /* Return number of consecutive hard regs needed starting at reg REGNO
994 to hold something of mode MODE. */
996 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
998 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
999 enough space to account for vectors in FP regs. */
1000 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1001 (TARGET_VSX \
1002 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1003 && FP_REGNO_P (REGNO) \
1004 ? V2DFmode \
1005 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1007 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1008 (((TARGET_32BIT && TARGET_POWERPC64 \
1009 && (GET_MODE_SIZE (MODE) > 4) \
1010 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1011 || (TARGET_VSX && FP_REGNO_P (REGNO) \
1012 && GET_MODE_SIZE (MODE) > 8))
1014 #define VSX_VECTOR_MODE(MODE) \
1015 ((MODE) == V4SFmode \
1016 || (MODE) == V2DFmode) \
1018 #define ALTIVEC_VECTOR_MODE(MODE) \
1019 ((MODE) == V16QImode \
1020 || (MODE) == V8HImode \
1021 || (MODE) == V4SFmode \
1022 || (MODE) == V4SImode)
1024 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1025 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1026 || (MODE) == V2DImode)
1028 #define SPE_VECTOR_MODE(MODE) \
1029 ((MODE) == V4HImode \
1030 || (MODE) == V2SFmode \
1031 || (MODE) == V1DImode \
1032 || (MODE) == V2SImode)
1034 #define PAIRED_VECTOR_MODE(MODE) \
1035 ((MODE) == V2SFmode)
1037 /* Value is TRUE if hard register REGNO can hold a value of
1038 machine-mode MODE. */
1039 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1040 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1042 /* Value is 1 if it is a good idea to tie two pseudo registers
1043 when one has mode MODE1 and one has mode MODE2.
1044 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1045 for any hard reg, then this must be 0 for correct output. */
1046 #define MODES_TIEABLE_P(MODE1, MODE2) \
1047 (SCALAR_FLOAT_MODE_P (MODE1) \
1048 ? SCALAR_FLOAT_MODE_P (MODE2) \
1049 : SCALAR_FLOAT_MODE_P (MODE2) \
1050 ? SCALAR_FLOAT_MODE_P (MODE1) \
1051 : GET_MODE_CLASS (MODE1) == MODE_CC \
1052 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1053 : GET_MODE_CLASS (MODE2) == MODE_CC \
1054 ? GET_MODE_CLASS (MODE1) == MODE_CC \
1055 : SPE_VECTOR_MODE (MODE1) \
1056 ? SPE_VECTOR_MODE (MODE2) \
1057 : SPE_VECTOR_MODE (MODE2) \
1058 ? SPE_VECTOR_MODE (MODE1) \
1059 : ALTIVEC_VECTOR_MODE (MODE1) \
1060 ? ALTIVEC_VECTOR_MODE (MODE2) \
1061 : ALTIVEC_VECTOR_MODE (MODE2) \
1062 ? ALTIVEC_VECTOR_MODE (MODE1) \
1063 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1064 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1065 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1066 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1067 : 1)
1069 /* Post-reload, we can't use any new AltiVec registers, as we already
1070 emitted the vrsave mask. */
1072 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1073 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1075 /* Specify the cost of a branch insn; roughly the number of extra insns that
1076 should be added to avoid a branch.
1078 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1079 unscheduled conditional branch. */
1081 #define BRANCH_COST(speed_p, predictable_p) 3
1083 /* Override BRANCH_COST heuristic which empirically produces worse
1084 performance for removing short circuiting from the logical ops. */
1086 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1088 /* A fixed register used at epilogue generation to address SPE registers
1089 with negative offsets. The 64-bit load/store instructions on the SPE
1090 only take positive offsets (and small ones at that), so we need to
1091 reserve a register for consing up negative offsets. */
1093 #define FIXED_SCRATCH 0
1095 /* Specify the registers used for certain standard purposes.
1096 The values of these macros are register numbers. */
1098 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1099 /* #define PC_REGNUM */
1101 /* Register to use for pushing function arguments. */
1102 #define STACK_POINTER_REGNUM 1
1104 /* Base register for access to local variables of the function. */
1105 #define HARD_FRAME_POINTER_REGNUM 31
1107 /* Base register for access to local variables of the function. */
1108 #define FRAME_POINTER_REGNUM 113
1110 /* Base register for access to arguments of the function. */
1111 #define ARG_POINTER_REGNUM 67
1113 /* Place to put static chain when calling a function that requires it. */
1114 #define STATIC_CHAIN_REGNUM 11
1117 /* Define the classes of registers for register constraints in the
1118 machine description. Also define ranges of constants.
1120 One of the classes must always be named ALL_REGS and include all hard regs.
1121 If there is more than one class, another class must be named NO_REGS
1122 and contain no registers.
1124 The name GENERAL_REGS must be the name of a class (or an alias for
1125 another name such as ALL_REGS). This is the class of registers
1126 that is allowed by "g" or "r" in a register constraint.
1127 Also, registers outside this class are allocated only when
1128 instructions express preferences for them.
1130 The classes must be numbered in nondecreasing order; that is,
1131 a larger-numbered class must never be contained completely
1132 in a smaller-numbered class.
1134 For any two classes, it is very desirable that there be another
1135 class that represents their union. */
1137 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1138 condition registers, plus three special registers, CTR, and the link
1139 register. AltiVec adds a vector register class. VSX registers overlap the
1140 FPR registers and the Altivec registers.
1142 However, r0 is special in that it cannot be used as a base register.
1143 So make a class for registers valid as base registers.
1145 Also, cr0 is the only condition code register that can be used in
1146 arithmetic insns, so make a separate class for it. */
1148 enum reg_class
1150 NO_REGS,
1151 BASE_REGS,
1152 GENERAL_REGS,
1153 FLOAT_REGS,
1154 ALTIVEC_REGS,
1155 VSX_REGS,
1156 VRSAVE_REGS,
1157 VSCR_REGS,
1158 SPE_ACC_REGS,
1159 SPEFSCR_REGS,
1160 NON_SPECIAL_REGS,
1161 LINK_REGS,
1162 CTR_REGS,
1163 LINK_OR_CTR_REGS,
1164 SPECIAL_REGS,
1165 SPEC_OR_GEN_REGS,
1166 CR0_REGS,
1167 CR_REGS,
1168 NON_FLOAT_REGS,
1169 CA_REGS,
1170 ALL_REGS,
1171 LIM_REG_CLASSES
1174 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1176 /* Give names of register classes as strings for dump file. */
1178 #define REG_CLASS_NAMES \
1180 "NO_REGS", \
1181 "BASE_REGS", \
1182 "GENERAL_REGS", \
1183 "FLOAT_REGS", \
1184 "ALTIVEC_REGS", \
1185 "VSX_REGS", \
1186 "VRSAVE_REGS", \
1187 "VSCR_REGS", \
1188 "SPE_ACC_REGS", \
1189 "SPEFSCR_REGS", \
1190 "NON_SPECIAL_REGS", \
1191 "LINK_REGS", \
1192 "CTR_REGS", \
1193 "LINK_OR_CTR_REGS", \
1194 "SPECIAL_REGS", \
1195 "SPEC_OR_GEN_REGS", \
1196 "CR0_REGS", \
1197 "CR_REGS", \
1198 "NON_FLOAT_REGS", \
1199 "CA_REGS", \
1200 "ALL_REGS" \
1203 /* Define which registers fit in which classes.
1204 This is an initializer for a vector of HARD_REG_SET
1205 of length N_REG_CLASSES. */
1207 #define REG_CLASS_CONTENTS \
1209 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1210 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1211 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1212 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1213 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1214 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \
1215 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1216 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1217 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1218 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1219 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1220 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1221 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1222 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1223 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, /* SPECIAL_REGS */ \
1224 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1225 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1226 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1227 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000 }, /* NON_FLOAT_REGS */ \
1228 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \
1229 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0003ffff } /* ALL_REGS */ \
1232 /* The same information, inverted:
1233 Return the class number of the smallest class containing
1234 reg number REGNO. This could be a conditional expression
1235 or could index an array. */
1237 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1239 #if ENABLE_CHECKING
1240 #define REGNO_REG_CLASS(REGNO) \
1241 (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
1242 rs6000_regno_regclass[(REGNO)])
1244 #else
1245 #define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1246 #endif
1248 /* Register classes for various constraints that are based on the target
1249 switches. */
1250 enum r6000_reg_class_enum {
1251 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1252 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1253 RS6000_CONSTRAINT_v, /* Altivec registers */
1254 RS6000_CONSTRAINT_wa, /* Any VSX register */
1255 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1256 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1257 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1258 RS6000_CONSTRAINT_MAX
1261 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1263 /* The class value for index registers, and the one for base regs. */
1264 #define INDEX_REG_CLASS GENERAL_REGS
1265 #define BASE_REG_CLASS BASE_REGS
1267 /* Return whether a given register class can hold VSX objects. */
1268 #define VSX_REG_CLASS_P(CLASS) \
1269 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1271 /* Given an rtx X being reloaded into a reg required to be
1272 in class CLASS, return the class of reg to actually use.
1273 In general this is just CLASS; but on some machines
1274 in some cases it is preferable to use a more restrictive class.
1276 On the RS/6000, we have to return NO_REGS when we want to reload a
1277 floating-point CONST_DOUBLE to force it to be copied to memory.
1279 We also don't want to reload integer values into floating-point
1280 registers if we can at all help it. In fact, this can
1281 cause reload to die, if it tries to generate a reload of CTR
1282 into a FP register and discovers it doesn't have the memory location
1283 required.
1285 ??? Would it be a good idea to have reload do the converse, that is
1286 try to reload floating modes into FP registers if possible?
1289 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1290 rs6000_preferred_reload_class_ptr (X, CLASS)
1292 /* Return the register class of a scratch register needed to copy IN into
1293 or out of a register in CLASS in MODE. If it can be done directly,
1294 NO_REGS is returned. */
1296 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1297 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1299 /* If we are copying between FP or AltiVec registers and anything
1300 else, we need a memory location. The exception is when we are
1301 targeting ppc64 and the move to/from fpr to gpr instructions
1302 are available.*/
1304 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1305 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1307 /* For cpus that cannot load/store SDmode values from the 64-bit
1308 FP registers without using a full 64-bit load/store, we need
1309 to allocate a full 64-bit stack slot for them. */
1311 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1312 rs6000_secondary_memory_needed_rtx (MODE)
1314 /* Return the maximum number of consecutive registers
1315 needed to represent mode MODE in a register of class CLASS.
1317 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1318 a single reg is enough for two words, unless we have VSX, where the FP
1319 registers can hold 128 bits. */
1320 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1322 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1324 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1325 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1327 /* Stack layout; function entry, exit and calling. */
1329 /* Define this if pushing a word on the stack
1330 makes the stack pointer a smaller address. */
1331 #define STACK_GROWS_DOWNWARD
1333 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1334 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1336 /* Define this to nonzero if the nominal address of the stack frame
1337 is at the high-address end of the local variables;
1338 that is, each additional local variable allocated
1339 goes at a more negative offset in the frame.
1341 On the RS/6000, we grow upwards, from the area after the outgoing
1342 arguments. */
1343 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1345 /* Size of the outgoing register save area */
1346 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1347 || DEFAULT_ABI == ABI_DARWIN) \
1348 ? (TARGET_64BIT ? 64 : 32) \
1349 : 0)
1351 /* Size of the fixed area on the stack */
1352 #define RS6000_SAVE_AREA \
1353 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1354 << (TARGET_64BIT ? 1 : 0))
1356 /* MEM representing address to save the TOC register */
1357 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1358 plus_constant (Pmode, stack_pointer_rtx, \
1359 (TARGET_32BIT ? 20 : 40)))
1361 /* Align an address */
1362 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1364 /* Offset within stack frame to start allocating local variables at.
1365 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1366 first local allocated. Otherwise, it is the offset to the BEGINNING
1367 of the first local allocated.
1369 On the RS/6000, the frame pointer is the same as the stack pointer,
1370 except for dynamic allocations. So we start after the fixed area and
1371 outgoing parameter area. */
1373 #define STARTING_FRAME_OFFSET \
1374 (FRAME_GROWS_DOWNWARD \
1375 ? 0 \
1376 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1377 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1378 + RS6000_SAVE_AREA))
1380 /* Offset from the stack pointer register to an item dynamically
1381 allocated on the stack, e.g., by `alloca'.
1383 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1384 length of the outgoing arguments. The default is correct for most
1385 machines. See `function.c' for details. */
1386 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1387 (RS6000_ALIGN (crtl->outgoing_args_size, \
1388 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1389 + (STACK_POINTER_OFFSET))
1391 /* If we generate an insn to push BYTES bytes,
1392 this says how many the stack pointer really advances by.
1393 On RS/6000, don't define this because there are no push insns. */
1394 /* #define PUSH_ROUNDING(BYTES) */
1396 /* Offset of first parameter from the argument pointer register value.
1397 On the RS/6000, we define the argument pointer to the start of the fixed
1398 area. */
1399 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1401 /* Offset from the argument pointer register value to the top of
1402 stack. This is different from FIRST_PARM_OFFSET because of the
1403 register save area. */
1404 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1406 /* Define this if stack space is still allocated for a parameter passed
1407 in a register. The value is the number of bytes allocated to this
1408 area. */
1409 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1411 /* Define this if the above stack space is to be considered part of the
1412 space allocated by the caller. */
1413 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1415 /* This is the difference between the logical top of stack and the actual sp.
1417 For the RS/6000, sp points past the fixed area. */
1418 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1420 /* Define this if the maximum size of all the outgoing args is to be
1421 accumulated and pushed during the prologue. The amount can be
1422 found in the variable crtl->outgoing_args_size. */
1423 #define ACCUMULATE_OUTGOING_ARGS 1
1425 /* Define how to find the value returned by a library function
1426 assuming the value has mode MODE. */
1428 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1430 /* DRAFT_V4_STRUCT_RET defaults off. */
1431 #define DRAFT_V4_STRUCT_RET 0
1433 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1434 #define DEFAULT_PCC_STRUCT_RETURN 0
1436 /* Mode of stack savearea.
1437 FUNCTION is VOIDmode because calling convention maintains SP.
1438 BLOCK needs Pmode for SP.
1439 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1440 #define STACK_SAVEAREA_MODE(LEVEL) \
1441 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1442 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1444 /* Minimum and maximum general purpose registers used to hold arguments. */
1445 #define GP_ARG_MIN_REG 3
1446 #define GP_ARG_MAX_REG 10
1447 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1449 /* Minimum and maximum floating point registers used to hold arguments. */
1450 #define FP_ARG_MIN_REG 33
1451 #define FP_ARG_AIX_MAX_REG 45
1452 #define FP_ARG_V4_MAX_REG 40
1453 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1454 || DEFAULT_ABI == ABI_DARWIN) \
1455 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1456 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1458 /* Minimum and maximum AltiVec registers used to hold arguments. */
1459 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1460 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1461 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1463 /* Return registers */
1464 #define GP_ARG_RETURN GP_ARG_MIN_REG
1465 #define FP_ARG_RETURN FP_ARG_MIN_REG
1466 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1468 /* Flags for the call/call_value rtl operations set up by function_arg */
1469 #define CALL_NORMAL 0x00000000 /* no special processing */
1470 /* Bits in 0x00000001 are unused. */
1471 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1472 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1473 #define CALL_LONG 0x00000008 /* always call indirect */
1474 #define CALL_LIBCALL 0x00000010 /* libcall */
1476 /* We don't have prologue and epilogue functions to save/restore
1477 everything for most ABIs. */
1478 #define WORLD_SAVE_P(INFO) 0
1480 /* 1 if N is a possible register number for a function value
1481 as seen by the caller.
1483 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1484 #define FUNCTION_VALUE_REGNO_P(N) \
1485 ((N) == GP_ARG_RETURN \
1486 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1487 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1489 /* 1 if N is a possible register number for function argument passing.
1490 On RS/6000, these are r3-r10 and fp1-fp13.
1491 On AltiVec, v2 - v13 are used for passing vectors. */
1492 #define FUNCTION_ARG_REGNO_P(N) \
1493 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1494 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1495 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1496 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1497 && TARGET_HARD_FLOAT && TARGET_FPRS))
1499 /* Define a data type for recording info about an argument list
1500 during the scan of that argument list. This data type should
1501 hold all necessary information about the function itself
1502 and about the args processed so far, enough to enable macros
1503 such as FUNCTION_ARG to determine where the next arg should go.
1505 On the RS/6000, this is a structure. The first element is the number of
1506 total argument words, the second is used to store the next
1507 floating-point register number, and the third says how many more args we
1508 have prototype types for.
1510 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1511 the next available GP register, `fregno' is the next available FP
1512 register, and `words' is the number of words used on the stack.
1514 The varargs/stdarg support requires that this structure's size
1515 be a multiple of sizeof(int). */
1517 typedef struct rs6000_args
1519 int words; /* # words used for passing GP registers */
1520 int fregno; /* next available FP register */
1521 int vregno; /* next available AltiVec register */
1522 int nargs_prototype; /* # args left in the current prototype */
1523 int prototype; /* Whether a prototype was defined */
1524 int stdarg; /* Whether function is a stdarg function. */
1525 int call_cookie; /* Do special things for this call */
1526 int sysv_gregno; /* next available GP register */
1527 int intoffset; /* running offset in struct (darwin64) */
1528 int use_stack; /* any part of struct on stack (darwin64) */
1529 int floats_in_gpr; /* count of SFmode floats taking up
1530 GPR space (darwin64) */
1531 int named; /* false for varargs params */
1532 int escapes; /* if function visible outside tu */
1533 } CUMULATIVE_ARGS;
1535 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1536 for a call to a function whose data type is FNTYPE.
1537 For a library call, FNTYPE is 0. */
1539 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1540 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1541 N_NAMED_ARGS, FNDECL, VOIDmode)
1543 /* Similar, but when scanning the definition of a procedure. We always
1544 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1546 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1547 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1548 1000, current_function_decl, VOIDmode)
1550 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1552 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1553 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1554 0, NULL_TREE, MODE)
1556 /* If defined, a C expression which determines whether, and in which
1557 direction, to pad out an argument with extra space. The value
1558 should be of type `enum direction': either `upward' to pad above
1559 the argument, `downward' to pad below, or `none' to inhibit
1560 padding. */
1562 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1564 #define PAD_VARARGS_DOWN \
1565 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1567 /* Output assembler code to FILE to increment profiler label # LABELNO
1568 for profiling a function entry. */
1570 #define FUNCTION_PROFILER(FILE, LABELNO) \
1571 output_function_profiler ((FILE), (LABELNO));
1573 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1574 the stack pointer does not matter. No definition is equivalent to
1575 always zero.
1577 On the RS/6000, this is nonzero because we can restore the stack from
1578 its backpointer, which we maintain. */
1579 #define EXIT_IGNORE_STACK 1
1581 /* Define this macro as a C expression that is nonzero for registers
1582 that are used by the epilogue or the return' pattern. The stack
1583 and frame pointer registers are already be assumed to be used as
1584 needed. */
1586 #define EPILOGUE_USES(REGNO) \
1587 ((reload_completed && (REGNO) == LR_REGNO) \
1588 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1589 || (crtl->calls_eh_return \
1590 && TARGET_AIX \
1591 && (REGNO) == 2))
1594 /* Length in units of the trampoline for entering a nested function. */
1596 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1598 /* Definitions for __builtin_return_address and __builtin_frame_address.
1599 __builtin_return_address (0) should give link register (65), enable
1600 this. */
1601 /* This should be uncommented, so that the link register is used, but
1602 currently this would result in unmatched insns and spilling fixed
1603 registers so we'll leave it for another day. When these problems are
1604 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1605 (mrs) */
1606 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1608 /* Number of bytes into the frame return addresses can be found. See
1609 rs6000_stack_info in rs6000.c for more information on how the different
1610 abi's store the return address. */
1611 #define RETURN_ADDRESS_OFFSET \
1612 ((DEFAULT_ABI == ABI_AIX \
1613 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1614 (DEFAULT_ABI == ABI_V4) ? 4 : \
1615 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1617 /* The current return address is in link register (65). The return address
1618 of anything farther back is accessed normally at an offset of 8 from the
1619 frame pointer. */
1620 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1621 (rs6000_return_addr (COUNT, FRAME))
1624 /* Definitions for register eliminations.
1626 We have two registers that can be eliminated on the RS/6000. First, the
1627 frame pointer register can often be eliminated in favor of the stack
1628 pointer register. Secondly, the argument pointer register can always be
1629 eliminated; it is replaced with either the stack or frame pointer.
1631 In addition, we use the elimination mechanism to see if r30 is needed
1632 Initially we assume that it isn't. If it is, we spill it. This is done
1633 by making it an eliminable register. We replace it with itself so that
1634 if it isn't needed, then existing uses won't be modified. */
1636 /* This is an array of structures. Each structure initializes one pair
1637 of eliminable registers. The "from" register number is given first,
1638 followed by "to". Eliminations of the same "from" register are listed
1639 in order of preference. */
1640 #define ELIMINABLE_REGS \
1641 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1642 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1643 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1644 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1645 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1646 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1648 /* Define the offset between two registers, one to be eliminated, and the other
1649 its replacement, at the start of a routine. */
1650 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1651 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1653 /* Addressing modes, and classification of registers for them. */
1655 #define HAVE_PRE_DECREMENT 1
1656 #define HAVE_PRE_INCREMENT 1
1657 #define HAVE_PRE_MODIFY_DISP 1
1658 #define HAVE_PRE_MODIFY_REG 1
1660 /* Macros to check register numbers against specific register classes. */
1662 /* These assume that REGNO is a hard or pseudo reg number.
1663 They give nonzero only if REGNO is a hard reg of the suitable class
1664 or a pseudo reg currently allocated to a suitable hard reg.
1665 Since they use reg_renumber, they are safe only once reg_renumber
1666 has been allocated, which happens in local-alloc.c. */
1668 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1669 ((REGNO) < FIRST_PSEUDO_REGISTER \
1670 ? (REGNO) <= 31 || (REGNO) == 67 \
1671 || (REGNO) == FRAME_POINTER_REGNUM \
1672 : (reg_renumber[REGNO] >= 0 \
1673 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1674 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1676 #define REGNO_OK_FOR_BASE_P(REGNO) \
1677 ((REGNO) < FIRST_PSEUDO_REGISTER \
1678 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1679 || (REGNO) == FRAME_POINTER_REGNUM \
1680 : (reg_renumber[REGNO] > 0 \
1681 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1682 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1684 /* Nonzero if X is a hard reg that can be used as an index
1685 or if it is a pseudo reg in the non-strict case. */
1686 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1687 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1688 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1690 /* Nonzero if X is a hard reg that can be used as a base reg
1691 or if it is a pseudo reg in the non-strict case. */
1692 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1693 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1694 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1697 /* Maximum number of registers that can appear in a valid memory address. */
1699 #define MAX_REGS_PER_ADDRESS 2
1701 /* Recognize any constant value that is a valid address. */
1703 #define CONSTANT_ADDRESS_P(X) \
1704 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1705 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1706 || GET_CODE (X) == HIGH)
1708 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1709 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1710 && EASY_VECTOR_15((n) >> 1) \
1711 && ((n) & 1) == 0)
1713 #define EASY_VECTOR_MSB(n,mode) \
1714 (((unsigned HOST_WIDE_INT)n) == \
1715 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1718 /* Try a machine-dependent way of reloading an illegitimate address
1719 operand. If we find one, push the reload and jump to WIN. This
1720 macro is used in only one place: `find_reloads_address' in reload.c.
1722 Implemented on rs6000 by rs6000_legitimize_reload_address.
1723 Note that (X) is evaluated twice; this is safe in current usage. */
1725 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1726 do { \
1727 int win; \
1728 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
1729 (int)(TYPE), (IND_LEVELS), &win); \
1730 if ( win ) \
1731 goto WIN; \
1732 } while (0)
1734 #define FIND_BASE_TERM rs6000_find_base_term
1736 /* The register number of the register used to address a table of
1737 static data addresses in memory. In some cases this register is
1738 defined by a processor's "application binary interface" (ABI).
1739 When this macro is defined, RTL is generated for this register
1740 once, as with the stack pointer and frame pointer registers. If
1741 this macro is not defined, it is up to the machine-dependent files
1742 to allocate such a register (if necessary). */
1744 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1745 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1747 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1749 /* Define this macro if the register defined by
1750 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1751 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1753 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1755 /* A C expression that is nonzero if X is a legitimate immediate
1756 operand on the target machine when generating position independent
1757 code. You can assume that X satisfies `CONSTANT_P', so you need
1758 not check this. You can also assume FLAG_PIC is true, so you need
1759 not check it either. You need not define this macro if all
1760 constants (including `SYMBOL_REF') can be immediate operands when
1761 generating position independent code. */
1763 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1765 /* Define this if some processing needs to be done immediately before
1766 emitting code for an insn. */
1768 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1769 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1771 /* Specify the machine mode that this machine uses
1772 for the index in the tablejump instruction. */
1773 #define CASE_VECTOR_MODE SImode
1775 /* Define as C expression which evaluates to nonzero if the tablejump
1776 instruction expects the table to contain offsets from the address of the
1777 table.
1778 Do not define this if the table should contain absolute addresses. */
1779 #define CASE_VECTOR_PC_RELATIVE 1
1781 /* Define this as 1 if `char' should by default be signed; else as 0. */
1782 #define DEFAULT_SIGNED_CHAR 0
1784 /* An integer expression for the size in bits of the largest integer machine
1785 mode that should actually be used. */
1787 /* Allow pairs of registers to be used, which is the intent of the default. */
1788 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1790 /* Max number of bytes we can move from memory to memory
1791 in one reasonably fast instruction. */
1792 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1793 #define MAX_MOVE_MAX 8
1795 /* Nonzero if access to memory by bytes is no faster than for words.
1796 Also nonzero if doing byte operations (specifically shifts) in registers
1797 is undesirable. */
1798 #define SLOW_BYTE_ACCESS 1
1800 /* Define if operations between registers always perform the operation
1801 on the full register even if a narrower mode is specified. */
1802 #define WORD_REGISTER_OPERATIONS
1804 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1805 will either zero-extend or sign-extend. The value of this macro should
1806 be the code that says which one of the two operations is implicitly
1807 done, UNKNOWN if none. */
1808 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1810 /* Define if loading short immediate values into registers sign extends. */
1811 #define SHORT_IMMEDIATES_SIGN_EXTEND
1813 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1814 is done just by pretending it is already truncated. */
1815 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1817 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1818 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1819 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1821 /* The CTZ patterns return -1 for input of zero. */
1822 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1824 /* Specify the machine mode that pointers have.
1825 After generation of rtl, the compiler makes no further distinction
1826 between pointers and any other objects of this machine mode. */
1827 extern unsigned rs6000_pmode;
1828 #define Pmode ((enum machine_mode)rs6000_pmode)
1830 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1831 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1833 /* Mode of a function address in a call instruction (for indexing purposes).
1834 Doesn't matter on RS/6000. */
1835 #define FUNCTION_MODE SImode
1837 /* Define this if addresses of constant functions
1838 shouldn't be put through pseudo regs where they can be cse'd.
1839 Desirable on machines where ordinary constants are expensive
1840 but a CALL with constant address is cheap. */
1841 #define NO_FUNCTION_CSE
1843 /* Define this to be nonzero if shift instructions ignore all but the low-order
1844 few bits.
1846 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1847 have been dropped from the PowerPC architecture. */
1848 #define SHIFT_COUNT_TRUNCATED 0
1850 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1851 should be adjusted to reflect any required changes. This macro is used when
1852 there is some systematic length adjustment required that would be difficult
1853 to express in the length attribute. */
1855 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1857 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1858 COMPARE, return the mode to be used for the comparison. For
1859 floating-point, CCFPmode should be used. CCUNSmode should be used
1860 for unsigned comparisons. CCEQmode should be used when we are
1861 doing an inequality comparison on the result of a
1862 comparison. CCmode should be used in all other cases. */
1864 #define SELECT_CC_MODE(OP,X,Y) \
1865 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1866 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1867 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1868 ? CCEQmode : CCmode))
1870 /* Can the condition code MODE be safely reversed? This is safe in
1871 all cases on this port, because at present it doesn't use the
1872 trapping FP comparisons (fcmpo). */
1873 #define REVERSIBLE_CC_MODE(MODE) 1
1875 /* Given a condition code and a mode, return the inverse condition. */
1876 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1879 /* Control the assembler format that we output. */
1881 /* A C string constant describing how to begin a comment in the target
1882 assembler language. The compiler assumes that the comment will end at
1883 the end of the line. */
1884 #define ASM_COMMENT_START " #"
1886 /* Flag to say the TOC is initialized */
1887 extern int toc_initialized;
1889 /* Macro to output a special constant pool entry. Go to WIN if we output
1890 it. Otherwise, it is written the usual way.
1892 On the RS/6000, toc entries are handled this way. */
1894 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1895 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1897 output_toc (FILE, X, LABELNO, MODE); \
1898 goto WIN; \
1902 #ifdef HAVE_GAS_WEAK
1903 #define RS6000_WEAK 1
1904 #else
1905 #define RS6000_WEAK 0
1906 #endif
1908 #if RS6000_WEAK
1909 /* Used in lieu of ASM_WEAKEN_LABEL. */
1910 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1911 do \
1913 fputs ("\t.weak\t", (FILE)); \
1914 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1915 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1916 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1918 if (TARGET_XCOFF) \
1919 fputs ("[DS]", (FILE)); \
1920 fputs ("\n\t.weak\t.", (FILE)); \
1921 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1923 fputc ('\n', (FILE)); \
1924 if (VAL) \
1926 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
1927 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1928 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1930 fputs ("\t.set\t.", (FILE)); \
1931 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1932 fputs (",.", (FILE)); \
1933 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
1934 fputc ('\n', (FILE)); \
1938 while (0)
1939 #endif
1941 #if HAVE_GAS_WEAKREF
1942 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
1943 do \
1945 fputs ("\t.weakref\t", (FILE)); \
1946 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1947 fputs (", ", (FILE)); \
1948 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1949 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1950 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1952 fputs ("\n\t.weakref\t.", (FILE)); \
1953 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1954 fputs (", .", (FILE)); \
1955 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1957 fputc ('\n', (FILE)); \
1958 } while (0)
1959 #endif
1961 /* This implements the `alias' attribute. */
1962 #undef ASM_OUTPUT_DEF_FROM_DECLS
1963 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
1964 do \
1966 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
1967 const char *name = IDENTIFIER_POINTER (TARGET); \
1968 if (TREE_CODE (DECL) == FUNCTION_DECL \
1969 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1971 if (TREE_PUBLIC (DECL)) \
1973 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1975 fputs ("\t.globl\t.", FILE); \
1976 RS6000_OUTPUT_BASENAME (FILE, alias); \
1977 putc ('\n', FILE); \
1980 else if (TARGET_XCOFF) \
1982 fputs ("\t.lglobl\t.", FILE); \
1983 RS6000_OUTPUT_BASENAME (FILE, alias); \
1984 putc ('\n', FILE); \
1986 fputs ("\t.set\t.", FILE); \
1987 RS6000_OUTPUT_BASENAME (FILE, alias); \
1988 fputs (",.", FILE); \
1989 RS6000_OUTPUT_BASENAME (FILE, name); \
1990 fputc ('\n', FILE); \
1992 ASM_OUTPUT_DEF (FILE, alias, name); \
1994 while (0)
1996 #define TARGET_ASM_FILE_START rs6000_file_start
1998 /* Output to assembler file text saying following lines
1999 may contain character constants, extra white space, comments, etc. */
2001 #define ASM_APP_ON ""
2003 /* Output to assembler file text saying following lines
2004 no longer contain unusual constructs. */
2006 #define ASM_APP_OFF ""
2008 /* How to refer to registers in assembler output.
2009 This sequence is indexed by compiler's hard-register-number (see above). */
2011 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2013 #define REGISTER_NAMES \
2015 &rs6000_reg_names[ 0][0], /* r0 */ \
2016 &rs6000_reg_names[ 1][0], /* r1 */ \
2017 &rs6000_reg_names[ 2][0], /* r2 */ \
2018 &rs6000_reg_names[ 3][0], /* r3 */ \
2019 &rs6000_reg_names[ 4][0], /* r4 */ \
2020 &rs6000_reg_names[ 5][0], /* r5 */ \
2021 &rs6000_reg_names[ 6][0], /* r6 */ \
2022 &rs6000_reg_names[ 7][0], /* r7 */ \
2023 &rs6000_reg_names[ 8][0], /* r8 */ \
2024 &rs6000_reg_names[ 9][0], /* r9 */ \
2025 &rs6000_reg_names[10][0], /* r10 */ \
2026 &rs6000_reg_names[11][0], /* r11 */ \
2027 &rs6000_reg_names[12][0], /* r12 */ \
2028 &rs6000_reg_names[13][0], /* r13 */ \
2029 &rs6000_reg_names[14][0], /* r14 */ \
2030 &rs6000_reg_names[15][0], /* r15 */ \
2031 &rs6000_reg_names[16][0], /* r16 */ \
2032 &rs6000_reg_names[17][0], /* r17 */ \
2033 &rs6000_reg_names[18][0], /* r18 */ \
2034 &rs6000_reg_names[19][0], /* r19 */ \
2035 &rs6000_reg_names[20][0], /* r20 */ \
2036 &rs6000_reg_names[21][0], /* r21 */ \
2037 &rs6000_reg_names[22][0], /* r22 */ \
2038 &rs6000_reg_names[23][0], /* r23 */ \
2039 &rs6000_reg_names[24][0], /* r24 */ \
2040 &rs6000_reg_names[25][0], /* r25 */ \
2041 &rs6000_reg_names[26][0], /* r26 */ \
2042 &rs6000_reg_names[27][0], /* r27 */ \
2043 &rs6000_reg_names[28][0], /* r28 */ \
2044 &rs6000_reg_names[29][0], /* r29 */ \
2045 &rs6000_reg_names[30][0], /* r30 */ \
2046 &rs6000_reg_names[31][0], /* r31 */ \
2048 &rs6000_reg_names[32][0], /* fr0 */ \
2049 &rs6000_reg_names[33][0], /* fr1 */ \
2050 &rs6000_reg_names[34][0], /* fr2 */ \
2051 &rs6000_reg_names[35][0], /* fr3 */ \
2052 &rs6000_reg_names[36][0], /* fr4 */ \
2053 &rs6000_reg_names[37][0], /* fr5 */ \
2054 &rs6000_reg_names[38][0], /* fr6 */ \
2055 &rs6000_reg_names[39][0], /* fr7 */ \
2056 &rs6000_reg_names[40][0], /* fr8 */ \
2057 &rs6000_reg_names[41][0], /* fr9 */ \
2058 &rs6000_reg_names[42][0], /* fr10 */ \
2059 &rs6000_reg_names[43][0], /* fr11 */ \
2060 &rs6000_reg_names[44][0], /* fr12 */ \
2061 &rs6000_reg_names[45][0], /* fr13 */ \
2062 &rs6000_reg_names[46][0], /* fr14 */ \
2063 &rs6000_reg_names[47][0], /* fr15 */ \
2064 &rs6000_reg_names[48][0], /* fr16 */ \
2065 &rs6000_reg_names[49][0], /* fr17 */ \
2066 &rs6000_reg_names[50][0], /* fr18 */ \
2067 &rs6000_reg_names[51][0], /* fr19 */ \
2068 &rs6000_reg_names[52][0], /* fr20 */ \
2069 &rs6000_reg_names[53][0], /* fr21 */ \
2070 &rs6000_reg_names[54][0], /* fr22 */ \
2071 &rs6000_reg_names[55][0], /* fr23 */ \
2072 &rs6000_reg_names[56][0], /* fr24 */ \
2073 &rs6000_reg_names[57][0], /* fr25 */ \
2074 &rs6000_reg_names[58][0], /* fr26 */ \
2075 &rs6000_reg_names[59][0], /* fr27 */ \
2076 &rs6000_reg_names[60][0], /* fr28 */ \
2077 &rs6000_reg_names[61][0], /* fr29 */ \
2078 &rs6000_reg_names[62][0], /* fr30 */ \
2079 &rs6000_reg_names[63][0], /* fr31 */ \
2081 &rs6000_reg_names[64][0], /* was mq */ \
2082 &rs6000_reg_names[65][0], /* lr */ \
2083 &rs6000_reg_names[66][0], /* ctr */ \
2084 &rs6000_reg_names[67][0], /* ap */ \
2086 &rs6000_reg_names[68][0], /* cr0 */ \
2087 &rs6000_reg_names[69][0], /* cr1 */ \
2088 &rs6000_reg_names[70][0], /* cr2 */ \
2089 &rs6000_reg_names[71][0], /* cr3 */ \
2090 &rs6000_reg_names[72][0], /* cr4 */ \
2091 &rs6000_reg_names[73][0], /* cr5 */ \
2092 &rs6000_reg_names[74][0], /* cr6 */ \
2093 &rs6000_reg_names[75][0], /* cr7 */ \
2095 &rs6000_reg_names[76][0], /* ca */ \
2097 &rs6000_reg_names[77][0], /* v0 */ \
2098 &rs6000_reg_names[78][0], /* v1 */ \
2099 &rs6000_reg_names[79][0], /* v2 */ \
2100 &rs6000_reg_names[80][0], /* v3 */ \
2101 &rs6000_reg_names[81][0], /* v4 */ \
2102 &rs6000_reg_names[82][0], /* v5 */ \
2103 &rs6000_reg_names[83][0], /* v6 */ \
2104 &rs6000_reg_names[84][0], /* v7 */ \
2105 &rs6000_reg_names[85][0], /* v8 */ \
2106 &rs6000_reg_names[86][0], /* v9 */ \
2107 &rs6000_reg_names[87][0], /* v10 */ \
2108 &rs6000_reg_names[88][0], /* v11 */ \
2109 &rs6000_reg_names[89][0], /* v12 */ \
2110 &rs6000_reg_names[90][0], /* v13 */ \
2111 &rs6000_reg_names[91][0], /* v14 */ \
2112 &rs6000_reg_names[92][0], /* v15 */ \
2113 &rs6000_reg_names[93][0], /* v16 */ \
2114 &rs6000_reg_names[94][0], /* v17 */ \
2115 &rs6000_reg_names[95][0], /* v18 */ \
2116 &rs6000_reg_names[96][0], /* v19 */ \
2117 &rs6000_reg_names[97][0], /* v20 */ \
2118 &rs6000_reg_names[98][0], /* v21 */ \
2119 &rs6000_reg_names[99][0], /* v22 */ \
2120 &rs6000_reg_names[100][0], /* v23 */ \
2121 &rs6000_reg_names[101][0], /* v24 */ \
2122 &rs6000_reg_names[102][0], /* v25 */ \
2123 &rs6000_reg_names[103][0], /* v26 */ \
2124 &rs6000_reg_names[104][0], /* v27 */ \
2125 &rs6000_reg_names[105][0], /* v28 */ \
2126 &rs6000_reg_names[106][0], /* v29 */ \
2127 &rs6000_reg_names[107][0], /* v30 */ \
2128 &rs6000_reg_names[108][0], /* v31 */ \
2129 &rs6000_reg_names[109][0], /* vrsave */ \
2130 &rs6000_reg_names[110][0], /* vscr */ \
2131 &rs6000_reg_names[111][0], /* spe_acc */ \
2132 &rs6000_reg_names[112][0], /* spefscr */ \
2133 &rs6000_reg_names[113][0], /* sfp */ \
2136 /* Table of additional register names to use in user input. */
2138 #define ADDITIONAL_REGISTER_NAMES \
2139 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2140 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2141 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2142 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2143 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2144 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2145 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2146 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2147 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2148 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2149 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2150 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2151 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2152 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2153 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2154 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2155 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2156 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2157 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2158 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2159 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2160 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2161 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2162 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2163 {"vrsave", 109}, {"vscr", 110}, \
2164 {"spe_acc", 111}, {"spefscr", 112}, \
2165 /* no additional names for: lr, ctr, ap */ \
2166 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2167 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2168 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2169 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2170 {"xer", 76}, \
2171 /* VSX registers overlaid on top of FR, Altivec registers */ \
2172 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2173 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2174 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2175 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2176 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2177 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2178 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2179 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2180 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2181 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2182 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2183 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2184 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2185 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2186 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2187 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} }
2189 /* This is how to output an element of a case-vector that is relative. */
2191 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2192 do { char buf[100]; \
2193 fputs ("\t.long ", FILE); \
2194 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2195 assemble_name (FILE, buf); \
2196 putc ('-', FILE); \
2197 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2198 assemble_name (FILE, buf); \
2199 putc ('\n', FILE); \
2200 } while (0)
2202 /* This is how to output an assembler line
2203 that says to advance the location counter
2204 to a multiple of 2**LOG bytes. */
2206 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2207 if ((LOG) != 0) \
2208 fprintf (FILE, "\t.align %d\n", (LOG))
2210 /* How to align the given loop. */
2211 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2213 /* Pick up the return address upon entry to a procedure. Used for
2214 dwarf2 unwind information. This also enables the table driven
2215 mechanism. */
2217 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2218 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2220 /* Describe how we implement __builtin_eh_return. */
2221 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2222 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2224 /* Print operand X (an rtx) in assembler syntax to file FILE.
2225 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2226 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2228 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2230 /* Define which CODE values are valid. */
2232 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2233 ((CODE) == '.' || (CODE) == '&')
2235 /* Print a memory address as an operand to reference that memory location. */
2237 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2239 /* uncomment for disabling the corresponding default options */
2240 /* #define MACHINE_no_sched_interblock */
2241 /* #define MACHINE_no_sched_speculative */
2242 /* #define MACHINE_no_sched_speculative_load */
2244 /* General flags. */
2245 extern int frame_pointer_needed;
2247 /* Classification of the builtin functions as to which switches enable the
2248 builtin, and what attributes it should have. We used to use the target
2249 flags macros, but we've run out of bits, so we now map the options into new
2250 settings used here. */
2252 /* Builtin attributes. */
2253 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2254 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2255 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2256 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2257 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2258 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2259 #define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2260 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2261 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2263 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2264 #define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
2265 #define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
2266 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2267 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2269 /* Miscellaneous information. */
2270 #define RS6000_BTC_OVERLOADED 0x4000000 /* function is overloaded. */
2272 /* Convenience macros to document the instruction type. */
2273 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2274 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2276 /* Builtin targets. For now, we reuse the masks for those options that are in
2277 target flags, and pick two random bits for SPE and paired which aren't in
2278 target_flags. */
2279 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2280 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2281 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2282 #define RS6000_BTM_SPE MASK_STRING /* E500 */
2283 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2284 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2285 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2286 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2287 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2288 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2289 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2291 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2292 | RS6000_BTM_VSX \
2293 | RS6000_BTM_FRE \
2294 | RS6000_BTM_FRES \
2295 | RS6000_BTM_FRSQRTE \
2296 | RS6000_BTM_FRSQRTES \
2297 | RS6000_BTM_POPCNTD \
2298 | RS6000_BTM_CELL)
2300 /* Define builtin enum index. */
2302 #undef RS6000_BUILTIN_1
2303 #undef RS6000_BUILTIN_2
2304 #undef RS6000_BUILTIN_3
2305 #undef RS6000_BUILTIN_A
2306 #undef RS6000_BUILTIN_D
2307 #undef RS6000_BUILTIN_E
2308 #undef RS6000_BUILTIN_P
2309 #undef RS6000_BUILTIN_Q
2310 #undef RS6000_BUILTIN_S
2311 #undef RS6000_BUILTIN_X
2313 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2314 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2315 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2316 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2317 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2318 #define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2319 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2320 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2321 #define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2322 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2324 enum rs6000_builtins
2326 #include "rs6000-builtin.def"
2328 RS6000_BUILTIN_COUNT
2331 #undef RS6000_BUILTIN_1
2332 #undef RS6000_BUILTIN_2
2333 #undef RS6000_BUILTIN_3
2334 #undef RS6000_BUILTIN_A
2335 #undef RS6000_BUILTIN_D
2336 #undef RS6000_BUILTIN_E
2337 #undef RS6000_BUILTIN_P
2338 #undef RS6000_BUILTIN_Q
2339 #undef RS6000_BUILTIN_S
2340 #undef RS6000_BUILTIN_X
2342 enum rs6000_builtin_type_index
2344 RS6000_BTI_NOT_OPAQUE,
2345 RS6000_BTI_opaque_V2SI,
2346 RS6000_BTI_opaque_V2SF,
2347 RS6000_BTI_opaque_p_V2SI,
2348 RS6000_BTI_opaque_V4SI,
2349 RS6000_BTI_V16QI,
2350 RS6000_BTI_V2SI,
2351 RS6000_BTI_V2SF,
2352 RS6000_BTI_V2DI,
2353 RS6000_BTI_V2DF,
2354 RS6000_BTI_V4HI,
2355 RS6000_BTI_V4SI,
2356 RS6000_BTI_V4SF,
2357 RS6000_BTI_V8HI,
2358 RS6000_BTI_unsigned_V16QI,
2359 RS6000_BTI_unsigned_V8HI,
2360 RS6000_BTI_unsigned_V4SI,
2361 RS6000_BTI_unsigned_V2DI,
2362 RS6000_BTI_bool_char, /* __bool char */
2363 RS6000_BTI_bool_short, /* __bool short */
2364 RS6000_BTI_bool_int, /* __bool int */
2365 RS6000_BTI_bool_long, /* __bool long */
2366 RS6000_BTI_pixel, /* __pixel */
2367 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2368 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2369 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2370 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2371 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2372 RS6000_BTI_long, /* long_integer_type_node */
2373 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2374 RS6000_BTI_long_long, /* long_long_integer_type_node */
2375 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2376 RS6000_BTI_INTQI, /* intQI_type_node */
2377 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2378 RS6000_BTI_INTHI, /* intHI_type_node */
2379 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2380 RS6000_BTI_INTSI, /* intSI_type_node */
2381 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2382 RS6000_BTI_INTDI, /* intDI_type_node */
2383 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2384 RS6000_BTI_float, /* float_type_node */
2385 RS6000_BTI_double, /* double_type_node */
2386 RS6000_BTI_void, /* void_type_node */
2387 RS6000_BTI_MAX
2391 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2392 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2393 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2394 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2395 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2396 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2397 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2398 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2399 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2400 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2401 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2402 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2403 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2404 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2405 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2406 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2407 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2408 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2409 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2410 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2411 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2412 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2413 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2414 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2415 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2416 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2417 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2419 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2420 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2421 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2422 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2423 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2424 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2425 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2426 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2427 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2428 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2429 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2430 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2431 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2432 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2433 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2435 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2436 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];