1 /* Code for GIMPLE range related routines.
2 Copyright (C) 2019-2024 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "insn-codes.h"
30 #include "gimple-pretty-print.h"
31 #include "optabs-tree.h"
32 #include "gimple-iterator.h"
33 #include "gimple-fold.h"
35 #include "fold-const.h"
36 #include "case-cfn-macros.h"
37 #include "omp-general.h"
39 #include "tree-ssa-loop.h"
40 #include "tree-scalar-evolution.h"
41 #include "langhooks.h"
42 #include "vr-values.h"
44 #include "value-query.h"
45 #include "gimple-range-op.h"
46 #include "gimple-range.h"
48 #include "alloc-pool.h"
49 #include "symbol-summary.h"
50 #include "ipa-utils.h"
52 // Construct a fur_source, and set the m_query field.
54 fur_source::fur_source (range_query
*q
)
59 m_query
= get_range_query (cfun
);
63 // Invoke range_of_expr on EXPR.
66 fur_source::get_operand (vrange
&r
, tree expr
)
68 return m_query
->range_of_expr (r
, expr
);
71 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
72 // range_query to get the range on the edge.
75 fur_source::get_phi_operand (vrange
&r
, tree expr
, edge e
)
77 return m_query
->range_on_edge (r
, e
, expr
);
80 // Default is no relation.
83 fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED
,
84 tree op2 ATTRIBUTE_UNUSED
)
89 // Default registers nothing.
92 fur_source::register_relation (gimple
*s ATTRIBUTE_UNUSED
,
93 relation_kind k ATTRIBUTE_UNUSED
,
94 tree op1 ATTRIBUTE_UNUSED
,
95 tree op2 ATTRIBUTE_UNUSED
)
99 // Default registers nothing.
102 fur_source::register_relation (edge e ATTRIBUTE_UNUSED
,
103 relation_kind k ATTRIBUTE_UNUSED
,
104 tree op1 ATTRIBUTE_UNUSED
,
105 tree op2 ATTRIBUTE_UNUSED
)
109 // This version of fur_source will pick a range up off an edge.
111 class fur_edge
: public fur_source
114 fur_edge (edge e
, range_query
*q
= NULL
);
115 virtual bool get_operand (vrange
&r
, tree expr
) override
;
116 virtual bool get_phi_operand (vrange
&r
, tree expr
, edge e
) override
;
121 // Instantiate an edge based fur_source.
124 fur_edge::fur_edge (edge e
, range_query
*q
) : fur_source (q
)
129 // Get the value of EXPR on edge m_edge.
132 fur_edge::get_operand (vrange
&r
, tree expr
)
134 return m_query
->range_on_edge (r
, m_edge
, expr
);
137 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
138 // range_query to get the range on the edge.
141 fur_edge::get_phi_operand (vrange
&r
, tree expr
, edge e
)
143 // Edge to edge recalculations not supported yet, until we sort it out.
144 gcc_checking_assert (e
== m_edge
);
145 return m_query
->range_on_edge (r
, e
, expr
);
148 // Instantiate a stmt based fur_source.
150 fur_stmt::fur_stmt (gimple
*s
, range_query
*q
) : fur_source (q
)
155 // Retrieve range of EXPR as it occurs as a use on stmt M_STMT.
158 fur_stmt::get_operand (vrange
&r
, tree expr
)
160 return m_query
->range_of_expr (r
, expr
, m_stmt
);
163 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
164 // range_query to get the range on the edge.
167 fur_stmt::get_phi_operand (vrange
&r
, tree expr
, edge e
)
169 // Pick up the range of expr from edge E.
170 fur_edge
e_src (e
, m_query
);
171 return e_src
.get_operand (r
, expr
);
174 // Return relation based from m_stmt.
177 fur_stmt::query_relation (tree op1
, tree op2
)
179 return m_query
->query_relation (m_stmt
, op1
, op2
);
182 // Instantiate a stmt based fur_source with a GORI object.
185 fur_depend::fur_depend (gimple
*s
, gori_compute
*gori
, range_query
*q
)
188 gcc_checking_assert (gori
);
190 // Set relations if there is an oracle in the range_query.
191 // This will enable registering of relationships as they are discovered.
192 m_oracle
= q
->oracle ();
196 // Register a relation on a stmt if there is an oracle.
199 fur_depend::register_relation (gimple
*s
, relation_kind k
, tree op1
, tree op2
)
202 m_oracle
->register_stmt (s
, k
, op1
, op2
);
205 // Register a relation on an edge if there is an oracle.
208 fur_depend::register_relation (edge e
, relation_kind k
, tree op1
, tree op2
)
211 m_oracle
->register_edge (e
, k
, op1
, op2
);
214 // This version of fur_source will pick a range up from a list of ranges
215 // supplied by the caller.
217 class fur_list
: public fur_source
220 fur_list (vrange
&r1
, range_query
*q
= NULL
);
221 fur_list (vrange
&r1
, vrange
&r2
, range_query
*q
= NULL
);
222 fur_list (unsigned num
, vrange
**list
, range_query
*q
= NULL
);
223 virtual bool get_operand (vrange
&r
, tree expr
) override
;
224 virtual bool get_phi_operand (vrange
&r
, tree expr
, edge e
) override
;
232 // One range supplied for unary operations.
234 fur_list::fur_list (vrange
&r1
, range_query
*q
) : fur_source (q
)
242 // Two ranges supplied for binary operations.
244 fur_list::fur_list (vrange
&r1
, vrange
&r2
, range_query
*q
) : fur_source (q
)
253 // Arbitrary number of ranges in a vector.
255 fur_list::fur_list (unsigned num
, vrange
**list
, range_query
*q
)
263 // Get the next operand from the vector, ensure types are compatible.
266 fur_list::get_operand (vrange
&r
, tree expr
)
268 // Do not use the vector for non-ssa-names, or if it has been emptied.
269 if (TREE_CODE (expr
) != SSA_NAME
|| m_index
>= m_limit
)
270 return m_query
->range_of_expr (r
, expr
);
271 r
= *m_list
[m_index
++];
272 gcc_checking_assert (range_compatible_p (TREE_TYPE (expr
), r
.type ()));
276 // This will simply pick the next operand from the vector.
278 fur_list::get_phi_operand (vrange
&r
, tree expr
, edge e ATTRIBUTE_UNUSED
)
280 return get_operand (r
, expr
);
283 // Fold stmt S into range R using R1 as the first operand.
286 fold_range (vrange
&r
, gimple
*s
, vrange
&r1
, range_query
*q
)
289 fur_list
src (r1
, q
);
290 return f
.fold_stmt (r
, s
, src
);
293 // Fold stmt S into range R using R1 and R2 as the first two operands.
296 fold_range (vrange
&r
, gimple
*s
, vrange
&r1
, vrange
&r2
, range_query
*q
)
299 fur_list
src (r1
, r2
, q
);
300 return f
.fold_stmt (r
, s
, src
);
303 // Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial
304 // operands encountered.
307 fold_range (vrange
&r
, gimple
*s
, unsigned num_elements
, vrange
**vector
,
311 fur_list
src (num_elements
, vector
, q
);
312 return f
.fold_stmt (r
, s
, src
);
315 // Fold stmt S into range R using range query Q.
318 fold_range (vrange
&r
, gimple
*s
, range_query
*q
)
322 return f
.fold_stmt (r
, s
, src
);
325 // Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
328 fold_range (vrange
&r
, gimple
*s
, edge on_edge
, range_query
*q
)
331 fur_edge
src (on_edge
, q
);
332 return f
.fold_stmt (r
, s
, src
);
335 // Provide a fur_source which can be used to determine any relations on
336 // a statement. It manages the callback from fold_using_ranges to determine
337 // a relation_trio for a statement.
339 class fur_relation
: public fur_stmt
342 fur_relation (gimple
*s
, range_query
*q
= NULL
);
343 virtual void register_relation (gimple
*stmt
, relation_kind k
, tree op1
,
345 virtual void register_relation (edge e
, relation_kind k
, tree op1
,
347 relation_trio
trio() const;
349 relation_kind def_op1
, def_op2
, op1_op2
;
352 fur_relation::fur_relation (gimple
*s
, range_query
*q
) : fur_stmt (s
, q
)
354 def_op1
= def_op2
= op1_op2
= VREL_VARYING
;
357 // Construct a trio from what is known.
360 fur_relation::trio () const
362 return relation_trio (def_op1
, def_op2
, op1_op2
);
365 // Don't support edges, but avoid a compiler warning by providing the routine.
368 fur_relation::register_relation (edge
, relation_kind
, tree
, tree
)
372 // Register relation K between OP1 and OP2 on STMT.
375 fur_relation::register_relation (gimple
*stmt
, relation_kind k
, tree op1
,
378 tree lhs
= gimple_get_lhs (stmt
);
381 switch (gimple_code (stmt
))
384 a1
= gimple_cond_lhs (stmt
);
385 a2
= gimple_cond_rhs (stmt
);
388 a1
= gimple_assign_rhs1 (stmt
);
389 if (gimple_num_ops (stmt
) >= 3)
390 a2
= gimple_assign_rhs2 (stmt
);
395 // STMT is of the form LHS = A1 op A2, now map the relation to these
396 // operands, if possible.
407 def_op1
= relation_swap (k
);
409 def_op2
= relation_swap (k
);
413 if (op1
== a1
&& op2
== a2
)
415 else if (op2
== a1
&& op1
== a2
)
416 op1_op2
= relation_swap (k
);
420 // Return the relation trio for stmt S using query Q.
423 fold_relations (gimple
*s
, range_query
*q
)
426 fur_relation
src (s
, q
);
427 tree lhs
= gimple_range_ssa_p (gimple_get_lhs (s
));
430 Value_Range
vr(TREE_TYPE (lhs
));
431 if (f
.fold_stmt (vr
, s
, src
))
437 // -------------------------------------------------------------------------
439 // Adjust the range for a pointer difference where the operands came
442 // This notices the following sequence:
444 // def = __builtin_memchr (arg, 0, sz)
447 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
450 adjust_pointer_diff_expr (irange
&res
, const gimple
*diff_stmt
)
452 tree op0
= gimple_assign_rhs1 (diff_stmt
);
453 tree op1
= gimple_assign_rhs2 (diff_stmt
);
454 tree op0_ptype
= TREE_TYPE (TREE_TYPE (op0
));
455 tree op1_ptype
= TREE_TYPE (TREE_TYPE (op1
));
458 if (TREE_CODE (op0
) == SSA_NAME
459 && TREE_CODE (op1
) == SSA_NAME
460 && (call
= SSA_NAME_DEF_STMT (op0
))
461 && is_gimple_call (call
)
462 && gimple_call_builtin_p (call
, BUILT_IN_MEMCHR
)
463 && TYPE_MODE (op0_ptype
) == TYPE_MODE (char_type_node
)
464 && TYPE_PRECISION (op0_ptype
) == TYPE_PRECISION (char_type_node
)
465 && TYPE_MODE (op1_ptype
) == TYPE_MODE (char_type_node
)
466 && TYPE_PRECISION (op1_ptype
) == TYPE_PRECISION (char_type_node
)
467 && gimple_call_builtin_p (call
, BUILT_IN_MEMCHR
)
468 && vrp_operand_equal_p (op1
, gimple_call_arg (call
, 0))
469 && integer_zerop (gimple_call_arg (call
, 1)))
471 wide_int maxm1
= irange_val_max (ptrdiff_type_node
) - 1;
472 res
.intersect (int_range
<2> (ptrdiff_type_node
,
473 wi::zero (TYPE_PRECISION (ptrdiff_type_node
)),
478 // Adjust the range for an IMAGPART_EXPR.
481 adjust_imagpart_expr (vrange
&res
, const gimple
*stmt
)
483 tree name
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
485 if (TREE_CODE (name
) != SSA_NAME
|| !SSA_NAME_DEF_STMT (name
))
488 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
489 if (is_gimple_call (def_stmt
) && gimple_call_internal_p (def_stmt
))
491 switch (gimple_call_internal_fn (def_stmt
))
493 case IFN_ADD_OVERFLOW
:
494 case IFN_SUB_OVERFLOW
:
495 case IFN_MUL_OVERFLOW
:
498 case IFN_ATOMIC_COMPARE_EXCHANGE
:
501 r
.set_varying (boolean_type_node
);
502 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
503 range_cast (r
, type
);
511 if (is_gimple_assign (def_stmt
)
512 && gimple_assign_rhs_code (def_stmt
) == COMPLEX_CST
)
514 tree cst
= gimple_assign_rhs1 (def_stmt
);
515 if (TREE_CODE (cst
) == COMPLEX_CST
516 && TREE_CODE (TREE_TYPE (TREE_TYPE (cst
))) == INTEGER_TYPE
)
518 wide_int w
= wi::to_wide (TREE_IMAGPART (cst
));
519 int_range
<1> imag (TREE_TYPE (TREE_IMAGPART (cst
)), w
, w
);
520 res
.intersect (imag
);
525 // Adjust the range for a REALPART_EXPR.
528 adjust_realpart_expr (vrange
&res
, const gimple
*stmt
)
530 tree name
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
532 if (TREE_CODE (name
) != SSA_NAME
)
535 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
536 if (!SSA_NAME_DEF_STMT (name
))
539 if (is_gimple_assign (def_stmt
)
540 && gimple_assign_rhs_code (def_stmt
) == COMPLEX_CST
)
542 tree cst
= gimple_assign_rhs1 (def_stmt
);
543 if (TREE_CODE (cst
) == COMPLEX_CST
544 && TREE_CODE (TREE_TYPE (TREE_TYPE (cst
))) == INTEGER_TYPE
)
546 wide_int imag
= wi::to_wide (TREE_REALPART (cst
));
547 int_range
<2> tmp (TREE_TYPE (TREE_REALPART (cst
)), imag
, imag
);
553 // This function looks for situations when walking the use/def chains
554 // may provide additional contextual range information not exposed on
558 gimple_range_adjustment (vrange
&res
, const gimple
*stmt
)
560 switch (gimple_expr_code (stmt
))
562 case POINTER_DIFF_EXPR
:
563 adjust_pointer_diff_expr (as_a
<irange
> (res
), stmt
);
567 adjust_imagpart_expr (res
, stmt
);
571 adjust_realpart_expr (res
, stmt
);
579 // Calculate a range for statement S and return it in R. If NAME is provided it
580 // represents the SSA_NAME on the LHS of the statement. It is only required
581 // if there is more than one lhs/output. If a range cannot
582 // be calculated, return false.
585 fold_using_range::fold_stmt (vrange
&r
, gimple
*s
, fur_source
&src
, tree name
)
588 // If name and S are specified, make sure it is an LHS of S.
589 gcc_checking_assert (!name
|| !gimple_get_lhs (s
) ||
590 name
== gimple_get_lhs (s
));
593 name
= gimple_get_lhs (s
);
595 // Process addresses.
596 if (gimple_code (s
) == GIMPLE_ASSIGN
597 && gimple_assign_rhs_code (s
) == ADDR_EXPR
)
598 return range_of_address (as_a
<irange
> (r
), s
, src
);
600 gimple_range_op_handler
handler (s
);
602 res
= range_of_range_op (r
, handler
, src
);
603 else if (is_a
<gphi
*>(s
))
604 res
= range_of_phi (r
, as_a
<gphi
*> (s
), src
);
605 else if (is_a
<gcall
*>(s
))
606 res
= range_of_call (r
, as_a
<gcall
*> (s
), src
);
607 else if (is_a
<gassign
*> (s
) && gimple_assign_rhs_code (s
) == COND_EXPR
)
608 res
= range_of_cond_expr (r
, as_a
<gassign
*> (s
), src
);
610 // If the result is varying, check for basic nonnegativeness.
611 // Specifically this helps for now with strict enum in cases like
612 // g++.dg/warn/pr33738.C.
614 if (res
&& r
.varying_p () && INTEGRAL_TYPE_P (r
.type ())
615 && gimple_stmt_nonnegative_warnv_p (s
, &so_p
))
616 r
.set_nonnegative (r
.type ());
620 // If no name specified or range is unsupported, bail.
621 if (!name
|| !gimple_range_ssa_p (name
))
623 // We don't understand the stmt, so return the global range.
624 gimple_range_global (r
, name
);
628 if (r
.undefined_p ())
631 // We sometimes get compatible types copied from operands, make sure
632 // the correct type is being returned.
633 if (name
&& TREE_TYPE (name
) != r
.type ())
635 gcc_checking_assert (range_compatible_p (r
.type (), TREE_TYPE (name
)));
636 range_cast (r
, TREE_TYPE (name
));
641 // Calculate a range for range_op statement S and return it in R. If any
642 // If a range cannot be calculated, return false.
645 fold_using_range::range_of_range_op (vrange
&r
,
646 gimple_range_op_handler
&handler
,
649 gcc_checking_assert (handler
);
650 gimple
*s
= handler
.stmt ();
651 tree type
= gimple_range_type (s
);
655 tree lhs
= handler
.lhs ();
656 tree op1
= handler
.operand1 ();
657 tree op2
= handler
.operand2 ();
659 // Certain types of builtin functions may have no arguments.
662 Value_Range
r1 (type
);
663 if (!handler
.fold_range (r
, type
, r1
, r1
))
664 r
.set_varying (type
);
668 Value_Range
range1 (TREE_TYPE (op1
));
669 Value_Range
range2 (op2
? TREE_TYPE (op2
) : TREE_TYPE (op1
));
671 if (src
.get_operand (range1
, op1
))
675 // Fold range, and register any dependency if available.
676 Value_Range
r2 (type
);
677 r2
.set_varying (type
);
678 if (!handler
.fold_range (r
, type
, range1
, r2
))
679 r
.set_varying (type
);
680 if (lhs
&& gimple_range_ssa_p (op1
))
683 src
.gori ()->register_dependency (lhs
, op1
);
685 rel
= handler
.lhs_op1_relation (r
, range1
, range1
);
686 if (rel
!= VREL_VARYING
)
687 src
.register_relation (s
, rel
, lhs
, op1
);
690 else if (src
.get_operand (range2
, op2
))
692 relation_kind rel
= src
.query_relation (op1
, op2
);
693 if (dump_file
&& (dump_flags
& TDF_DETAILS
) && rel
!= VREL_VARYING
)
695 fprintf (dump_file
, " folding with relation ");
696 print_generic_expr (dump_file
, op1
, TDF_SLIM
);
697 print_relation (dump_file
, rel
);
698 print_generic_expr (dump_file
, op2
, TDF_SLIM
);
699 fputc ('\n', dump_file
);
701 // Fold range, and register any dependency if available.
702 if (!handler
.fold_range (r
, type
, range1
, range2
,
703 relation_trio::op1_op2 (rel
)))
704 r
.set_varying (type
);
705 if (irange::supports_p (type
))
706 relation_fold_and_or (as_a
<irange
> (r
), s
, src
, range1
, range2
);
711 src
.gori ()->register_dependency (lhs
, op1
);
712 src
.gori ()->register_dependency (lhs
, op2
);
714 if (gimple_range_ssa_p (op1
))
716 rel
= handler
.lhs_op1_relation (r
, range1
, range2
, rel
);
717 if (rel
!= VREL_VARYING
)
718 src
.register_relation (s
, rel
, lhs
, op1
);
720 if (gimple_range_ssa_p (op2
))
722 rel
= handler
.lhs_op2_relation (r
, range1
, range2
, rel
);
723 if (rel
!= VREL_VARYING
)
724 src
.register_relation (s
, rel
, lhs
, op2
);
727 // Check for an existing BB, as we maybe asked to fold an
728 // artificial statement not in the CFG.
729 else if (is_a
<gcond
*> (s
) && gimple_bb (s
))
731 basic_block bb
= gimple_bb (s
);
732 edge e0
= EDGE_SUCC (bb
, 0);
733 edge e1
= EDGE_SUCC (bb
, 1);
735 if (!single_pred_p (e0
->dest
))
737 if (!single_pred_p (e1
->dest
))
739 src
.register_outgoing_edges (as_a
<gcond
*> (s
),
740 as_a
<irange
> (r
), e0
, e1
);
744 r
.set_varying (type
);
747 r
.set_varying (type
);
748 // Make certain range-op adjustments that aren't handled any other way.
749 gimple_range_adjustment (r
, s
);
753 // Calculate the range of an assignment containing an ADDR_EXPR.
754 // Return the range in R.
755 // If a range cannot be calculated, set it to VARYING and return true.
758 fold_using_range::range_of_address (irange
&r
, gimple
*stmt
, fur_source
&src
)
760 gcc_checking_assert (gimple_code (stmt
) == GIMPLE_ASSIGN
);
761 gcc_checking_assert (gimple_assign_rhs_code (stmt
) == ADDR_EXPR
);
763 bool strict_overflow_p
;
764 tree expr
= gimple_assign_rhs1 (stmt
);
765 poly_int64 bitsize
, bitpos
;
768 int unsignedp
, reversep
, volatilep
;
769 tree base
= get_inner_reference (TREE_OPERAND (expr
, 0), &bitsize
,
770 &bitpos
, &offset
, &mode
, &unsignedp
,
771 &reversep
, &volatilep
);
774 if (base
!= NULL_TREE
775 && TREE_CODE (base
) == MEM_REF
776 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
778 tree ssa
= TREE_OPERAND (base
, 0);
779 tree lhs
= gimple_get_lhs (stmt
);
780 if (lhs
&& gimple_range_ssa_p (ssa
) && src
.gori ())
781 src
.gori ()->register_dependency (lhs
, ssa
);
782 src
.get_operand (r
, ssa
);
783 range_cast (r
, TREE_TYPE (gimple_assign_rhs1 (stmt
)));
785 poly_offset_int off
= 0;
786 bool off_cst
= false;
787 if (offset
== NULL_TREE
|| TREE_CODE (offset
) == INTEGER_CST
)
789 off
= mem_ref_offset (base
);
791 off
+= poly_offset_int::from (wi::to_poly_wide (offset
),
793 off
<<= LOG2_BITS_PER_UNIT
;
797 /* If &X->a is equal to X, the range of X is the result. */
798 if (off_cst
&& known_eq (off
, 0))
800 else if (flag_delete_null_pointer_checks
801 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr
)))
803 /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
804 allow going from non-NULL pointer to NULL. */
806 || !r
.contains_p (wi::zero (TYPE_PRECISION (TREE_TYPE (expr
)))))
808 /* We could here instead adjust r by off >> LOG2_BITS_PER_UNIT
809 using POINTER_PLUS_EXPR if off_cst and just fall back to
811 r
.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt
)));
815 /* If MEM_REF has a "positive" offset, consider it non-NULL
816 always, for -fdelete-null-pointer-checks also "negative"
817 ones. Punt for unknown offsets (e.g. variable ones). */
818 if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr
))
821 && (flag_delete_null_pointer_checks
|| known_gt (off
, 0)))
823 r
.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt
)));
826 r
.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt
)));
831 if (tree_single_nonzero_warnv_p (expr
, &strict_overflow_p
))
833 r
.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt
)));
837 // Otherwise return varying.
838 r
.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt
)));
842 // Calculate a range for phi statement S and return it in R.
843 // If a range cannot be calculated, return false.
846 fold_using_range::range_of_phi (vrange
&r
, gphi
*phi
, fur_source
&src
)
848 tree phi_def
= gimple_phi_result (phi
);
849 tree type
= gimple_range_type (phi
);
850 Value_Range
arg_range (type
);
851 Value_Range
equiv_range (type
);
857 // Track if all executable arguments are the same.
858 tree single_arg
= NULL_TREE
;
859 bool seen_arg
= false;
861 // Start with an empty range, unioning in each argument's range.
863 for (x
= 0; x
< gimple_phi_num_args (phi
); x
++)
865 tree arg
= gimple_phi_arg_def (phi
, x
);
866 // An argument that is the same as the def provides no new range.
870 edge e
= gimple_phi_arg_edge (phi
, x
);
872 // Get the range of the argument on its edge.
873 src
.get_phi_operand (arg_range
, arg
, e
);
875 if (!arg_range
.undefined_p ())
877 // Register potential dependencies for stale value tracking.
878 // Likewise, if the incoming PHI argument is equivalent to this
879 // PHI definition, it provides no new info. Accumulate these ranges
880 // in case all arguments are equivalences.
881 if (src
.query ()->query_relation (e
, arg
, phi_def
, false) == VREL_EQ
)
882 equiv_range
.union_(arg_range
);
884 r
.union_ (arg_range
);
886 if (gimple_range_ssa_p (arg
) && src
.gori ())
887 src
.gori ()->register_dependency (phi_def
, arg
);
890 // Track if all arguments are the same.
896 else if (single_arg
!= arg
)
897 single_arg
= NULL_TREE
;
899 // Once the value reaches varying, stop looking.
900 if (r
.varying_p () && single_arg
== NULL_TREE
)
904 // If all arguments were equivalences, use the equivalence ranges as no
905 // arguments were processed.
906 if (r
.undefined_p () && !equiv_range
.undefined_p ())
909 // If the PHI boils down to a single effective argument, look at it.
912 // Symbolic arguments can be equivalences.
913 if (gimple_range_ssa_p (single_arg
))
915 // Only allow the equivalence if the PHI definition does not
916 // dominate any incoming edge for SINGLE_ARG.
917 // See PR 108139 and 109462.
918 basic_block bb
= gimple_bb (phi
);
919 if (!dom_info_available_p (CDI_DOMINATORS
))
922 for (x
= 0; x
< gimple_phi_num_args (phi
); x
++)
923 if (gimple_phi_arg_def (phi
, x
) == single_arg
924 && dominated_by_p (CDI_DOMINATORS
,
925 gimple_phi_arg_edge (phi
, x
)->src
,
932 src
.register_relation (phi
, VREL_EQ
, phi_def
, single_arg
);
934 else if (src
.get_operand (arg_range
, single_arg
)
935 && arg_range
.singleton_p ())
937 // Numerical arguments that are a constant can be returned as
938 // the constant. This can help fold later cases where even this
939 // constant might have been UNDEFINED via an unreachable edge.
945 // If PHI analysis is available, see if there is an iniital range.
946 if (phi_analysis_available_p ()
947 && irange::supports_p (TREE_TYPE (phi_def
)))
949 phi_group
*g
= (phi_analysis())[phi_def
];
950 if (g
&& !(g
->range ().varying_p ()))
952 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
954 fprintf (dump_file
, "PHI GROUP query for ");
955 print_generic_expr (dump_file
, phi_def
, TDF_SLIM
);
956 fprintf (dump_file
, " found : ");
957 g
->range ().dump (dump_file
);
958 fprintf (dump_file
, " and adjusted original range from :");
961 r
.intersect (g
->range ());
962 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
964 fprintf (dump_file
, " to :");
966 fprintf (dump_file
, "\n");
971 // If SCEV is available, query if this PHI has any known values.
972 if (scev_initialized_p ()
973 && !POINTER_TYPE_P (TREE_TYPE (phi_def
)))
975 class loop
*l
= loop_containing_stmt (phi
);
976 if (l
&& loop_outer (l
))
978 Value_Range
loop_range (type
);
979 range_of_ssa_name_with_loop_info (loop_range
, phi_def
, l
, phi
, src
);
980 if (!loop_range
.varying_p ())
982 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
984 fprintf (dump_file
, "Loops range found for ");
985 print_generic_expr (dump_file
, phi_def
, TDF_SLIM
);
986 fprintf (dump_file
, ": ");
987 loop_range
.dump (dump_file
);
988 fprintf (dump_file
, " and calculated range :");
990 fprintf (dump_file
, "\n");
992 r
.intersect (loop_range
);
1000 // Calculate a range for call statement S and return it in R.
1001 // If a range cannot be calculated, return false.
1004 fold_using_range::range_of_call (vrange
&r
, gcall
*call
, fur_source
&)
1006 tree type
= gimple_range_type (call
);
1010 tree lhs
= gimple_call_lhs (call
);
1011 bool strict_overflow_p
;
1013 if (gimple_stmt_nonnegative_warnv_p (call
, &strict_overflow_p
))
1014 r
.set_nonnegative (type
);
1015 else if (gimple_call_nonnull_result_p (call
)
1016 || gimple_call_nonnull_arg (call
))
1017 r
.set_nonzero (type
);
1019 r
.set_varying (type
);
1021 tree callee
= gimple_call_fndecl (call
);
1023 && useless_type_conversion_p (TREE_TYPE (TREE_TYPE (callee
)), type
))
1026 if (ipa_return_value_range (val
, callee
))
1029 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1031 fprintf (dump_file
, "Using return value range of ");
1032 print_generic_expr (dump_file
, callee
, TDF_SLIM
);
1033 fprintf (dump_file
, ": ");
1034 val
.dump (dump_file
);
1035 fprintf (dump_file
, "\n");
1040 // If there is an LHS, intersect that with what is known.
1043 Value_Range
def (TREE_TYPE (lhs
));
1044 gimple_range_global (def
, lhs
);
1050 // Calculate a range for COND_EXPR statement S and return it in R.
1051 // If a range cannot be calculated, return false.
1054 fold_using_range::range_of_cond_expr (vrange
&r
, gassign
*s
, fur_source
&src
)
1056 tree cond
= gimple_assign_rhs1 (s
);
1057 tree op1
= gimple_assign_rhs2 (s
);
1058 tree op2
= gimple_assign_rhs3 (s
);
1060 tree type
= gimple_range_type (s
);
1064 Value_Range
range1 (TREE_TYPE (op1
));
1065 Value_Range
range2 (TREE_TYPE (op2
));
1066 Value_Range
cond_range (TREE_TYPE (cond
));
1067 gcc_checking_assert (gimple_assign_rhs_code (s
) == COND_EXPR
);
1068 gcc_checking_assert (range_compatible_p (TREE_TYPE (op1
), TREE_TYPE (op2
)));
1069 src
.get_operand (cond_range
, cond
);
1070 src
.get_operand (range1
, op1
);
1071 src
.get_operand (range2
, op2
);
1073 // Try to see if there is a dependence between the COND and either operand
1075 if (src
.gori ()->condexpr_adjust (range1
, range2
, s
, cond
, op1
, op2
, src
))
1076 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1078 fprintf (dump_file
, "Possible COND_EXPR adjustment. Range op1 : ");
1079 range1
.dump(dump_file
);
1080 fprintf (dump_file
, " and Range op2: ");
1081 range2
.dump(dump_file
);
1082 fprintf (dump_file
, "\n");
1085 // If the condition is known, choose the appropriate expression.
1086 if (cond_range
.singleton_p ())
1088 // False, pick second operand.
1089 if (cond_range
.zero_p ())
1099 gcc_checking_assert (r
.undefined_p ()
1100 || range_compatible_p (r
.type (), type
));
1104 // If SCEV has any information about phi node NAME, return it as a range in R.
1107 fold_using_range::range_of_ssa_name_with_loop_info (vrange
&r
, tree name
,
1108 class loop
*l
, gphi
*phi
,
1111 gcc_checking_assert (TREE_CODE (name
) == SSA_NAME
);
1112 if (!range_of_var_in_loop (r
, name
, l
, phi
, src
.query ()))
1113 r
.set_varying (TREE_TYPE (name
));
1116 // -----------------------------------------------------------------------
1118 // Check if an && or || expression can be folded based on relations. ie
1122 // c_2 and c_3 can never be true at the same time,
1123 // Therefore c_4 can always resolve to false based purely on the relations.
1126 fold_using_range::relation_fold_and_or (irange
& lhs_range
, gimple
*s
,
1127 fur_source
&src
, vrange
&op1
,
1130 // No queries or already folded.
1131 if (!src
.gori () || !src
.query ()->oracle () || lhs_range
.singleton_p ())
1134 // Only care about AND and OR expressions.
1135 enum tree_code code
= gimple_expr_code (s
);
1136 bool is_and
= false;
1137 if (code
== BIT_AND_EXPR
|| code
== TRUTH_AND_EXPR
)
1139 else if (code
!= BIT_IOR_EXPR
&& code
!= TRUTH_OR_EXPR
)
1142 gimple_range_op_handler
handler (s
);
1143 tree lhs
= handler
.lhs ();
1144 tree ssa1
= gimple_range_ssa_p (handler
.operand1 ());
1145 tree ssa2
= gimple_range_ssa_p (handler
.operand2 ());
1147 // Deal with || and && only when there is a full set of symbolics.
1148 if (!lhs
|| !ssa1
|| !ssa2
1149 || (TREE_CODE (TREE_TYPE (lhs
)) != BOOLEAN_TYPE
)
1150 || (TREE_CODE (TREE_TYPE (ssa1
)) != BOOLEAN_TYPE
)
1151 || (TREE_CODE (TREE_TYPE (ssa2
)) != BOOLEAN_TYPE
))
1154 // Now we know its a boolean AND or OR expression with boolean operands.
1155 // Ideally we search dependencies for common names, and see what pops out.
1156 // until then, simply try to resolve direct dependencies.
1158 gimple
*ssa1_stmt
= SSA_NAME_DEF_STMT (ssa1
);
1159 gimple
*ssa2_stmt
= SSA_NAME_DEF_STMT (ssa2
);
1161 gimple_range_op_handler
handler1 (ssa1_stmt
);
1162 gimple_range_op_handler
handler2 (ssa2_stmt
);
1164 // If either handler is not present, no relation can be found.
1165 if (!handler1
|| !handler2
)
1168 // Both stmts will need to have 2 ssa names in the stmt.
1169 tree ssa1_dep1
= gimple_range_ssa_p (handler1
.operand1 ());
1170 tree ssa1_dep2
= gimple_range_ssa_p (handler1
.operand2 ());
1171 tree ssa2_dep1
= gimple_range_ssa_p (handler2
.operand1 ());
1172 tree ssa2_dep2
= gimple_range_ssa_p (handler2
.operand2 ());
1174 if (!ssa1_dep1
|| !ssa1_dep2
|| !ssa2_dep1
|| !ssa2_dep2
)
1177 if (HONOR_NANS (TREE_TYPE (ssa1_dep1
)))
1180 // Make sure they are the same dependencies, and detect the order of the
1182 bool reverse_op2
= true;
1183 if (ssa1_dep1
== ssa2_dep1
&& ssa1_dep2
== ssa2_dep2
)
1184 reverse_op2
= false;
1185 else if (ssa1_dep1
!= ssa2_dep2
|| ssa1_dep2
!= ssa2_dep1
)
1188 int_range
<2> bool_one
= range_true ();
1189 relation_kind relation1
= handler1
.op1_op2_relation (bool_one
, op1
, op2
);
1190 relation_kind relation2
= handler2
.op1_op2_relation (bool_one
, op1
, op2
);
1191 if (relation1
== VREL_VARYING
|| relation2
== VREL_VARYING
)
1195 relation2
= relation_negate (relation2
);
1197 // x && y is false if the relation intersection of the true cases is NULL.
1198 if (is_and
&& relation_intersect (relation1
, relation2
) == VREL_UNDEFINED
)
1199 lhs_range
= range_false (boolean_type_node
);
1200 // x || y is true if the union of the true cases is NO-RELATION..
1201 // ie, one or the other being true covers the full range of possibilities.
1202 else if (!is_and
&& relation_union (relation1
, relation2
) == VREL_VARYING
)
1203 lhs_range
= bool_one
;
1207 range_cast (lhs_range
, TREE_TYPE (lhs
));
1208 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1210 fprintf (dump_file
, " Relation adjustment: ");
1211 print_generic_expr (dump_file
, ssa1
, TDF_SLIM
);
1212 fprintf (dump_file
, " and ");
1213 print_generic_expr (dump_file
, ssa2
, TDF_SLIM
);
1214 fprintf (dump_file
, " combine to produce ");
1215 lhs_range
.dump (dump_file
);
1216 fputc ('\n', dump_file
);
1222 // Register any outgoing edge relations from a conditional branch.
1225 fur_source::register_outgoing_edges (gcond
*s
, irange
&lhs_range
,
1228 int_range
<2> e0_range
, e1_range
;
1230 basic_block bb
= gimple_bb (s
);
1232 gimple_range_op_handler
handler (s
);
1238 // If this edge is never taken, ignore it.
1239 gcond_edge_range (e0_range
, e0
);
1240 e0_range
.intersect (lhs_range
);
1241 if (e0_range
.undefined_p ())
1247 // If this edge is never taken, ignore it.
1248 gcond_edge_range (e1_range
, e1
);
1249 e1_range
.intersect (lhs_range
);
1250 if (e1_range
.undefined_p ())
1257 // First, register the gcond itself. This will catch statements like
1259 tree ssa1
= gimple_range_ssa_p (handler
.operand1 ());
1260 tree ssa2
= gimple_range_ssa_p (handler
.operand2 ());
1264 r1
.set_varying (TREE_TYPE (ssa1
));
1265 r2
.set_varying (TREE_TYPE (ssa2
));
1268 relation_kind relation
= handler
.op1_op2_relation (e0_range
, r1
, r2
);
1269 if (relation
!= VREL_VARYING
)
1270 register_relation (e0
, relation
, ssa1
, ssa2
);
1274 relation_kind relation
= handler
.op1_op2_relation (e1_range
, r1
, r2
);
1275 if (relation
!= VREL_VARYING
)
1276 register_relation (e1
, relation
, ssa1
, ssa2
);
1280 // Outgoing relations of GORI exports require a gori engine.
1284 // Now look for other relations in the exports. This will find stmts
1285 // leading to the condition such as:
1288 FOR_EACH_GORI_EXPORT_NAME (*(gori ()), bb
, name
)
1290 if (TREE_CODE (TREE_TYPE (name
)) != BOOLEAN_TYPE
)
1292 gimple
*stmt
= SSA_NAME_DEF_STMT (name
);
1293 gimple_range_op_handler
handler (stmt
);
1296 tree ssa1
= gimple_range_ssa_p (handler
.operand1 ());
1297 tree ssa2
= gimple_range_ssa_p (handler
.operand2 ());
1298 Value_Range
r (TREE_TYPE (name
));
1301 r1
.set_varying (TREE_TYPE (ssa1
));
1302 r2
.set_varying (TREE_TYPE (ssa2
));
1303 if (e0
&& gori ()->outgoing_edge_range_p (r
, e0
, name
, *m_query
)
1304 && r
.singleton_p ())
1306 relation_kind relation
= handler
.op1_op2_relation (r
, r1
, r2
);
1307 if (relation
!= VREL_VARYING
)
1308 register_relation (e0
, relation
, ssa1
, ssa2
);
1310 if (e1
&& gori ()->outgoing_edge_range_p (r
, e1
, name
, *m_query
)
1311 && r
.singleton_p ())
1313 relation_kind relation
= handler
.op1_op2_relation (r
, r1
, r2
);
1314 if (relation
!= VREL_VARYING
)
1315 register_relation (e1
, relation
, ssa1
, ssa2
);