RISC-V: Fix snafu in SI mode splitters patch
[official-gcc.git] / gcc / gimple-range-fold.cc
blob65d31adde54c43613aed379748d5fc98c986ce5a
1 /* Code for GIMPLE range related routines.
2 Copyright (C) 2019-2024 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "optabs-tree.h"
32 #include "gimple-iterator.h"
33 #include "gimple-fold.h"
34 #include "wide-int.h"
35 #include "fold-const.h"
36 #include "case-cfn-macros.h"
37 #include "omp-general.h"
38 #include "cfgloop.h"
39 #include "tree-ssa-loop.h"
40 #include "tree-scalar-evolution.h"
41 #include "langhooks.h"
42 #include "vr-values.h"
43 #include "range.h"
44 #include "value-query.h"
45 #include "gimple-range-op.h"
46 #include "gimple-range.h"
47 #include "cgraph.h"
48 #include "alloc-pool.h"
49 #include "symbol-summary.h"
50 #include "ipa-utils.h"
51 #include "sreal.h"
52 #include "ipa-cp.h"
53 #include "ipa-prop.h"
54 // Construct a fur_source, and set the m_query field.
56 fur_source::fur_source (range_query *q)
58 if (q)
59 m_query = q;
60 else
61 m_query = get_range_query (cfun);
62 m_depend_p = false;
65 // Invoke range_of_expr on EXPR.
67 bool
68 fur_source::get_operand (vrange &r, tree expr)
70 return m_query->range_of_expr (r, expr);
73 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
74 // range_query to get the range on the edge.
76 bool
77 fur_source::get_phi_operand (vrange &r, tree expr, edge e)
79 return m_query->range_on_edge (r, e, expr);
82 // Default is no relation.
84 relation_kind
85 fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED,
86 tree op2 ATTRIBUTE_UNUSED)
88 return VREL_VARYING;
91 // Default registers nothing.
93 void
94 fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED,
95 relation_kind k ATTRIBUTE_UNUSED,
96 tree op1 ATTRIBUTE_UNUSED,
97 tree op2 ATTRIBUTE_UNUSED)
101 // Default registers nothing.
103 void
104 fur_source::register_relation (edge e ATTRIBUTE_UNUSED,
105 relation_kind k ATTRIBUTE_UNUSED,
106 tree op1 ATTRIBUTE_UNUSED,
107 tree op2 ATTRIBUTE_UNUSED)
111 // This version of fur_source will pick a range up off an edge.
113 class fur_edge : public fur_source
115 public:
116 fur_edge (edge e, range_query *q = NULL);
117 virtual bool get_operand (vrange &r, tree expr) override;
118 virtual bool get_phi_operand (vrange &r, tree expr, edge e) override;
119 private:
120 edge m_edge;
123 // Instantiate an edge based fur_source.
125 inline
126 fur_edge::fur_edge (edge e, range_query *q) : fur_source (q)
128 m_edge = e;
131 // Get the value of EXPR on edge m_edge.
133 bool
134 fur_edge::get_operand (vrange &r, tree expr)
136 return m_query->range_on_edge (r, m_edge, expr);
139 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
140 // range_query to get the range on the edge.
142 bool
143 fur_edge::get_phi_operand (vrange &r, tree expr, edge e)
145 // Edge to edge recalculations not supported yet, until we sort it out.
146 gcc_checking_assert (e == m_edge);
147 return m_query->range_on_edge (r, e, expr);
150 // Instantiate a stmt based fur_source.
152 fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q)
154 m_stmt = s;
157 // Retrieve range of EXPR as it occurs as a use on stmt M_STMT.
159 bool
160 fur_stmt::get_operand (vrange &r, tree expr)
162 return m_query->range_of_expr (r, expr, m_stmt);
165 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
166 // range_query to get the range on the edge.
168 bool
169 fur_stmt::get_phi_operand (vrange &r, tree expr, edge e)
171 // Pick up the range of expr from edge E.
172 fur_edge e_src (e, m_query);
173 return e_src.get_operand (r, expr);
176 // Return relation based from m_stmt.
178 relation_kind
179 fur_stmt::query_relation (tree op1, tree op2)
181 return m_query->relation ().query (m_stmt, op1, op2);
184 // Instantiate a stmt based fur_source with a GORI object.
187 fur_depend::fur_depend (gimple *s, range_query *q)
188 : fur_stmt (s, q)
190 m_depend_p = true;
193 // Register a relation on a stmt if there is an oracle.
195 void
196 fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2)
198 m_query->relation ().record (s, k, op1, op2);
201 // Register a relation on an edge if there is an oracle.
203 void
204 fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2)
206 m_query->relation ().record (e, k, op1, op2);
209 // This version of fur_source will pick a range up from a list of ranges
210 // supplied by the caller.
212 class fur_list : public fur_source
214 public:
215 fur_list (vrange &r1, range_query *q = NULL);
216 fur_list (vrange &r1, vrange &r2, range_query *q = NULL);
217 fur_list (unsigned num, vrange **list, range_query *q = NULL);
218 virtual bool get_operand (vrange &r, tree expr) override;
219 virtual bool get_phi_operand (vrange &r, tree expr, edge e) override;
220 private:
221 vrange *m_local[2];
222 vrange **m_list;
223 unsigned m_index;
224 unsigned m_limit;
227 // One range supplied for unary operations.
229 fur_list::fur_list (vrange &r1, range_query *q) : fur_source (q)
231 m_list = m_local;
232 m_index = 0;
233 m_limit = 1;
234 m_local[0] = &r1;
237 // Two ranges supplied for binary operations.
239 fur_list::fur_list (vrange &r1, vrange &r2, range_query *q) : fur_source (q)
241 m_list = m_local;
242 m_index = 0;
243 m_limit = 2;
244 m_local[0] = &r1;
245 m_local[1] = &r2;
248 // Arbitrary number of ranges in a vector.
250 fur_list::fur_list (unsigned num, vrange **list, range_query *q)
251 : fur_source (q)
253 m_list = list;
254 m_index = 0;
255 m_limit = num;
258 // Get the next operand from the vector, ensure types are compatible.
260 bool
261 fur_list::get_operand (vrange &r, tree expr)
263 // Do not use the vector for non-ssa-names, or if it has been emptied.
264 if (TREE_CODE (expr) != SSA_NAME || m_index >= m_limit)
265 return m_query->range_of_expr (r, expr);
266 r = *m_list[m_index++];
267 gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ()));
268 return true;
271 // This will simply pick the next operand from the vector.
272 bool
273 fur_list::get_phi_operand (vrange &r, tree expr, edge e ATTRIBUTE_UNUSED)
275 return get_operand (r, expr);
278 // Fold stmt S into range R using R1 as the first operand.
280 bool
281 fold_range (vrange &r, gimple *s, vrange &r1, range_query *q)
283 fold_using_range f;
284 fur_list src (r1, q);
285 return f.fold_stmt (r, s, src);
288 // Fold stmt S into range R using R1 and R2 as the first two operands.
290 bool
291 fold_range (vrange &r, gimple *s, vrange &r1, vrange &r2, range_query *q)
293 fold_using_range f;
294 fur_list src (r1, r2, q);
295 return f.fold_stmt (r, s, src);
298 // Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial
299 // operands encountered.
301 bool
302 fold_range (vrange &r, gimple *s, unsigned num_elements, vrange **vector,
303 range_query *q)
305 fold_using_range f;
306 fur_list src (num_elements, vector, q);
307 return f.fold_stmt (r, s, src);
310 // Fold stmt S into range R using range query Q.
312 bool
313 fold_range (vrange &r, gimple *s, range_query *q)
315 fold_using_range f;
316 fur_stmt src (s, q);
317 return f.fold_stmt (r, s, src);
320 // Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
322 bool
323 fold_range (vrange &r, gimple *s, edge on_edge, range_query *q)
325 fold_using_range f;
326 fur_edge src (on_edge, q);
327 return f.fold_stmt (r, s, src);
330 // Calculate op1 on statetemt S with LHS into range R using range query Q
331 // to resolve any other operands.
333 bool
334 op1_range (vrange &r, gimple *s, const vrange &lhs, range_query *q)
336 gimple_range_op_handler handler (s);
337 if (!handler)
338 return false;
340 fur_stmt src (s, q);
342 tree op2_expr = handler.operand2 ();
343 if (!op2_expr)
344 return handler.calc_op1 (r, lhs);
346 value_range op2 (TREE_TYPE (op2_expr));
347 if (!src.get_operand (op2, op2_expr))
348 return false;
350 return handler.calc_op1 (r, lhs, op2);
353 // Calculate op1 on statetemt S into range R using range query Q.
354 // LHS is set to VARYING in this case.
356 bool
357 op1_range (vrange &r, gimple *s, range_query *q)
359 tree lhs_type = gimple_range_type (s);
360 if (!lhs_type)
361 return false;
362 value_range lhs_range;
363 lhs_range.set_varying (lhs_type);
364 return op1_range (r, s, lhs_range, q);
367 // Calculate op2 on statetemt S with LHS into range R using range query Q
368 // to resolve any other operands.
370 bool
371 op2_range (vrange &r, gimple *s, const vrange &lhs, range_query *q)
374 gimple_range_op_handler handler (s);
375 if (!handler)
376 return false;
378 fur_stmt src (s, q);
380 value_range op1 (TREE_TYPE (handler.operand1 ()));
381 if (!src.get_operand (op1, handler.operand1 ()))
382 return false;
384 return handler.calc_op2 (r, lhs, op1);
387 // Calculate op2 on statetemt S into range R using range query Q.
388 // LHS is set to VARYING in this case.
390 bool
391 op2_range (vrange &r, gimple *s, range_query *q)
393 tree lhs_type = gimple_range_type (s);
394 if (!lhs_type)
395 return false;
396 value_range lhs_range;
397 lhs_range.set_varying (lhs_type);
398 return op2_range (r, s, lhs_range, q);
401 // Provide a fur_source which can be used to determine any relations on
402 // a statement. It manages the callback from fold_using_ranges to determine
403 // a relation_trio for a statement.
405 class fur_relation : public fur_stmt
407 public:
408 fur_relation (gimple *s, range_query *q = NULL);
409 virtual void register_relation (gimple *stmt, relation_kind k, tree op1,
410 tree op2);
411 virtual void register_relation (edge e, relation_kind k, tree op1,
412 tree op2);
413 relation_trio trio() const;
414 private:
415 relation_kind def_op1, def_op2, op1_op2;
418 fur_relation::fur_relation (gimple *s, range_query *q) : fur_stmt (s, q)
420 def_op1 = def_op2 = op1_op2 = VREL_VARYING;
423 // Construct a trio from what is known.
425 relation_trio
426 fur_relation::trio () const
428 return relation_trio (def_op1, def_op2, op1_op2);
431 // Don't support edges, but avoid a compiler warning by providing the routine.
433 void
434 fur_relation::register_relation (edge, relation_kind, tree, tree)
438 // Register relation K between OP1 and OP2 on STMT.
440 void
441 fur_relation::register_relation (gimple *stmt, relation_kind k, tree op1,
442 tree op2)
444 tree lhs = gimple_get_lhs (stmt);
445 tree a1 = NULL_TREE;
446 tree a2 = NULL_TREE;
447 switch (gimple_code (stmt))
449 case GIMPLE_COND:
450 a1 = gimple_cond_lhs (stmt);
451 a2 = gimple_cond_rhs (stmt);
452 break;
453 case GIMPLE_ASSIGN:
454 a1 = gimple_assign_rhs1 (stmt);
455 if (gimple_num_ops (stmt) >= 3)
456 a2 = gimple_assign_rhs2 (stmt);
457 break;
458 default:
459 break;
461 // STMT is of the form LHS = A1 op A2, now map the relation to these
462 // operands, if possible.
463 if (op1 == lhs)
465 if (op2 == a1)
466 def_op1 = k;
467 else if (op2 == a2)
468 def_op2 = k;
470 else if (op2 == lhs)
472 if (op1 == a1)
473 def_op1 = relation_swap (k);
474 else if (op1 == a2)
475 def_op2 = relation_swap (k);
477 else
479 if (op1 == a1 && op2 == a2)
480 op1_op2 = k;
481 else if (op2 == a1 && op1 == a2)
482 op1_op2 = relation_swap (k);
486 // Return the relation trio for stmt S using query Q.
488 relation_trio
489 fold_relations (gimple *s, range_query *q)
491 fold_using_range f;
492 fur_relation src (s, q);
493 tree lhs = gimple_range_ssa_p (gimple_get_lhs (s));
494 if (lhs)
496 value_range vr(TREE_TYPE (lhs));
497 if (f.fold_stmt (vr, s, src))
498 return src.trio ();
500 return TRIO_VARYING;
503 // -------------------------------------------------------------------------
505 // Adjust the range for a pointer difference where the operands came
506 // from a memchr.
508 // This notices the following sequence:
510 // def = __builtin_memchr (arg, 0, sz)
511 // n = def - arg
513 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
515 static void
516 adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
518 tree op0 = gimple_assign_rhs1 (diff_stmt);
519 tree op1 = gimple_assign_rhs2 (diff_stmt);
520 tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
521 tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
522 gimple *call;
524 if (TREE_CODE (op0) == SSA_NAME
525 && TREE_CODE (op1) == SSA_NAME
526 && (call = SSA_NAME_DEF_STMT (op0))
527 && is_gimple_call (call)
528 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
529 && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
530 && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
531 && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
532 && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
533 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
534 && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
535 && integer_zerop (gimple_call_arg (call, 1)))
537 wide_int maxm1 = irange_val_max (ptrdiff_type_node) - 1;
538 res.intersect (int_range<2> (ptrdiff_type_node,
539 wi::zero (TYPE_PRECISION (ptrdiff_type_node)),
540 maxm1));
544 // Adjust the range for an IMAGPART_EXPR.
546 static void
547 adjust_imagpart_expr (vrange &res, const gimple *stmt)
549 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
551 if (TREE_CODE (name) != SSA_NAME || !SSA_NAME_DEF_STMT (name))
552 return;
554 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
555 if (is_gimple_call (def_stmt) && gimple_call_internal_p (def_stmt))
557 switch (gimple_call_internal_fn (def_stmt))
559 case IFN_ADD_OVERFLOW:
560 case IFN_SUB_OVERFLOW:
561 case IFN_MUL_OVERFLOW:
562 case IFN_UADDC:
563 case IFN_USUBC:
564 case IFN_ATOMIC_COMPARE_EXCHANGE:
566 int_range<2> r;
567 r.set_varying (boolean_type_node);
568 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
569 range_cast (r, type);
570 res.intersect (r);
572 default:
573 break;
575 return;
577 if (is_gimple_assign (def_stmt)
578 && gimple_assign_rhs_code (def_stmt) == COMPLEX_CST)
580 tree cst = gimple_assign_rhs1 (def_stmt);
581 if (TREE_CODE (cst) == COMPLEX_CST
582 && TREE_CODE (TREE_TYPE (TREE_TYPE (cst))) == INTEGER_TYPE)
584 wide_int w = wi::to_wide (TREE_IMAGPART (cst));
585 int_range<1> imag (TREE_TYPE (TREE_IMAGPART (cst)), w, w);
586 res.intersect (imag);
591 // Adjust the range for a REALPART_EXPR.
593 static void
594 adjust_realpart_expr (vrange &res, const gimple *stmt)
596 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
598 if (TREE_CODE (name) != SSA_NAME)
599 return;
601 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
602 if (!SSA_NAME_DEF_STMT (name))
603 return;
605 if (is_gimple_assign (def_stmt)
606 && gimple_assign_rhs_code (def_stmt) == COMPLEX_CST)
608 tree cst = gimple_assign_rhs1 (def_stmt);
609 if (TREE_CODE (cst) == COMPLEX_CST
610 && TREE_CODE (TREE_TYPE (TREE_TYPE (cst))) == INTEGER_TYPE)
612 wide_int imag = wi::to_wide (TREE_REALPART (cst));
613 int_range<2> tmp (TREE_TYPE (TREE_REALPART (cst)), imag, imag);
614 res.intersect (tmp);
619 // This function looks for situations when walking the use/def chains
620 // may provide additional contextual range information not exposed on
621 // this statement.
623 static void
624 gimple_range_adjustment (vrange &res, const gimple *stmt)
626 switch (gimple_expr_code (stmt))
628 case POINTER_DIFF_EXPR:
629 adjust_pointer_diff_expr (as_a <irange> (res), stmt);
630 return;
632 case IMAGPART_EXPR:
633 adjust_imagpart_expr (res, stmt);
634 return;
636 case REALPART_EXPR:
637 adjust_realpart_expr (res, stmt);
638 return;
640 default:
641 break;
645 // Calculate a range for statement S and return it in R. If NAME is provided it
646 // represents the SSA_NAME on the LHS of the statement. It is only required
647 // if there is more than one lhs/output. If a range cannot
648 // be calculated, return false.
650 bool
651 fold_using_range::fold_stmt (vrange &r, gimple *s, fur_source &src, tree name)
653 bool res = false;
654 // If name and S are specified, make sure it is an LHS of S.
655 gcc_checking_assert (!name || !gimple_get_lhs (s) ||
656 name == gimple_get_lhs (s));
658 if (!name)
659 name = gimple_get_lhs (s);
661 // Process addresses.
662 if (gimple_code (s) == GIMPLE_ASSIGN
663 && gimple_assign_rhs_code (s) == ADDR_EXPR)
664 return range_of_address (as_a <prange> (r), s, src);
666 gimple_range_op_handler handler (s);
667 if (handler)
668 res = range_of_range_op (r, handler, src);
669 else if (is_a<gphi *>(s))
670 res = range_of_phi (r, as_a<gphi *> (s), src);
671 else if (is_a<gcall *>(s))
672 res = range_of_call (r, as_a<gcall *> (s), src);
673 else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
674 res = range_of_cond_expr (r, as_a<gassign *> (s), src);
676 // If the result is varying, check for basic nonnegativeness.
677 // Specifically this helps for now with strict enum in cases like
678 // g++.dg/warn/pr33738.C.
679 bool so_p;
680 if (res && r.varying_p () && INTEGRAL_TYPE_P (r.type ())
681 && gimple_stmt_nonnegative_warnv_p (s, &so_p))
682 r.set_nonnegative (r.type ());
684 if (!res)
686 // If no name specified or range is unsupported, bail.
687 if (!name || !gimple_range_ssa_p (name))
688 return false;
689 // We don't understand the stmt, so return the global range.
690 gimple_range_global (r, name);
691 return true;
694 if (r.undefined_p ())
695 return true;
697 // We sometimes get compatible types copied from operands, make sure
698 // the correct type is being returned.
699 if (name && TREE_TYPE (name) != r.type ())
701 gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
702 range_cast (r, TREE_TYPE (name));
704 return true;
707 // Calculate a range for range_op statement S and return it in R. If any
708 // If a range cannot be calculated, return false.
710 bool
711 fold_using_range::range_of_range_op (vrange &r,
712 gimple_range_op_handler &handler,
713 fur_source &src)
715 gcc_checking_assert (handler);
716 gimple *s = handler.stmt ();
717 tree type = gimple_range_type (s);
718 if (!type)
719 return false;
721 tree lhs = handler.lhs ();
722 tree op1 = handler.operand1 ();
723 tree op2 = handler.operand2 ();
725 // Certain types of builtin functions may have no arguments.
726 if (!op1)
728 value_range r1 (type);
729 if (!handler.fold_range (r, type, r1, r1))
730 r.set_varying (type);
731 return true;
734 value_range range1 (TREE_TYPE (op1));
735 value_range range2 (op2 ? TREE_TYPE (op2) : TREE_TYPE (op1));
737 if (src.get_operand (range1, op1))
739 if (!op2)
741 // Fold range, and register any dependency if available.
742 value_range r2 (type);
743 r2.set_varying (type);
744 if (!handler.fold_range (r, type, range1, r2))
745 r.set_varying (type);
746 if (lhs && gimple_range_ssa_p (op1))
748 if (src.gori_ssa ())
749 src.gori_ssa ()->register_dependency (lhs, op1);
750 relation_kind rel;
751 rel = handler.lhs_op1_relation (r, range1, range1);
752 if (rel != VREL_VARYING)
753 src.register_relation (s, rel, lhs, op1);
756 else if (src.get_operand (range2, op2))
758 relation_kind rel = src.query_relation (op1, op2);
759 if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_VARYING)
761 fprintf (dump_file, " folding with relation ");
762 print_generic_expr (dump_file, op1, TDF_SLIM);
763 print_relation (dump_file, rel);
764 print_generic_expr (dump_file, op2, TDF_SLIM);
765 fputc ('\n', dump_file);
767 // Fold range, and register any dependency if available.
768 if (!handler.fold_range (r, type, range1, range2,
769 relation_trio::op1_op2 (rel)))
770 r.set_varying (type);
771 if (irange::supports_p (type))
772 relation_fold_and_or (as_a <irange> (r), s, src, range1, range2);
773 if (lhs)
775 if (src.gori_ssa ())
777 src.gori_ssa ()->register_dependency (lhs, op1);
778 src.gori_ssa ()->register_dependency (lhs, op2);
780 if (gimple_range_ssa_p (op1))
782 rel = handler.lhs_op1_relation (r, range1, range2, rel);
783 if (rel != VREL_VARYING)
784 src.register_relation (s, rel, lhs, op1);
786 if (gimple_range_ssa_p (op2))
788 rel = handler.lhs_op2_relation (r, range1, range2, rel);
789 if (rel != VREL_VARYING)
790 src.register_relation (s, rel, lhs, op2);
793 // Check for an existing BB, as we maybe asked to fold an
794 // artificial statement not in the CFG.
795 else if (is_a<gcond *> (s) && gimple_bb (s))
797 basic_block bb = gimple_bb (s);
798 edge e0 = EDGE_SUCC (bb, 0);
799 edge e1 = EDGE_SUCC (bb, 1);
801 if (!single_pred_p (e0->dest))
802 e0 = NULL;
803 if (!single_pred_p (e1->dest))
804 e1 = NULL;
805 src.register_outgoing_edges (as_a<gcond *> (s),
806 as_a <irange> (r), e0, e1);
809 else
810 r.set_varying (type);
812 else
813 r.set_varying (type);
814 // Make certain range-op adjustments that aren't handled any other way.
815 gimple_range_adjustment (r, s);
816 return true;
819 // Calculate the range of an assignment containing an ADDR_EXPR.
820 // Return the range in R.
821 // If a range cannot be calculated, set it to VARYING and return true.
823 bool
824 fold_using_range::range_of_address (prange &r, gimple *stmt, fur_source &src)
826 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
827 gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);
829 bool strict_overflow_p;
830 tree expr = gimple_assign_rhs1 (stmt);
831 poly_int64 bitsize, bitpos;
832 tree offset;
833 machine_mode mode;
834 int unsignedp, reversep, volatilep;
835 tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
836 &bitpos, &offset, &mode, &unsignedp,
837 &reversep, &volatilep);
840 if (base != NULL_TREE
841 && TREE_CODE (base) == MEM_REF
842 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
844 tree ssa = TREE_OPERAND (base, 0);
845 tree lhs = gimple_get_lhs (stmt);
846 if (lhs && gimple_range_ssa_p (ssa) && src.gori_ssa ())
847 src.gori_ssa ()->register_dependency (lhs, ssa);
848 src.get_operand (r, ssa);
849 range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));
851 poly_offset_int off = 0;
852 bool off_cst = false;
853 if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
855 off = mem_ref_offset (base);
856 if (offset)
857 off += poly_offset_int::from (wi::to_poly_wide (offset),
858 SIGNED);
859 off <<= LOG2_BITS_PER_UNIT;
860 off += bitpos;
861 off_cst = true;
863 /* If &X->a is equal to X, the range of X is the result. */
864 if (off_cst && known_eq (off, 0))
865 return true;
866 else if (flag_delete_null_pointer_checks
867 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
869 /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
870 allow going from non-NULL pointer to NULL. */
871 if (r.undefined_p ()
872 || !r.contains_p (wi::zero (TYPE_PRECISION (TREE_TYPE (expr)))))
874 /* We could here instead adjust r by off >> LOG2_BITS_PER_UNIT
875 using POINTER_PLUS_EXPR if off_cst and just fall back to
876 this. */
877 r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
878 return true;
881 /* If MEM_REF has a "positive" offset, consider it non-NULL
882 always, for -fdelete-null-pointer-checks also "negative"
883 ones. Punt for unknown offsets (e.g. variable ones). */
884 if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
885 && off_cst
886 && known_ne (off, 0)
887 && (flag_delete_null_pointer_checks || known_gt (off, 0)))
889 r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
890 return true;
892 r.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt)));
893 return true;
896 // Handle "= &a".
897 if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
899 r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
900 return true;
903 // Otherwise return varying.
904 r.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt)));
905 return true;
908 // Calculate a range for phi statement S and return it in R.
909 // If a range cannot be calculated, return false.
911 bool
912 fold_using_range::range_of_phi (vrange &r, gphi *phi, fur_source &src)
914 tree phi_def = gimple_phi_result (phi);
915 tree type = gimple_range_type (phi);
916 value_range arg_range (type);
917 value_range equiv_range (type);
918 unsigned x;
920 if (!type)
921 return false;
923 // Track if all executable arguments are the same.
924 tree single_arg = NULL_TREE;
925 bool seen_arg = false;
927 relation_oracle *oracle = &(src.query()->relation ());
928 // Start with an empty range, unioning in each argument's range.
929 r.set_undefined ();
930 for (x = 0; x < gimple_phi_num_args (phi); x++)
932 tree arg = gimple_phi_arg_def (phi, x);
933 // An argument that is the same as the def provides no new range.
934 if (arg == phi_def)
935 continue;
937 edge e = gimple_phi_arg_edge (phi, x);
939 // Get the range of the argument on its edge.
940 src.get_phi_operand (arg_range, arg, e);
942 if (!arg_range.undefined_p ())
944 // Register potential dependencies for stale value tracking.
945 // Likewise, if the incoming PHI argument is equivalent to this
946 // PHI definition, it provides no new info. Accumulate these ranges
947 // in case all arguments are equivalences.
948 if (oracle->query (e, arg, phi_def) == VREL_EQ)
949 equiv_range.union_(arg_range);
950 else
951 r.union_ (arg_range);
953 if (gimple_range_ssa_p (arg) && src.gori_ssa ())
954 src.gori_ssa ()->register_dependency (phi_def, arg);
957 // Track if all arguments are the same.
958 if (!seen_arg)
960 seen_arg = true;
961 single_arg = arg;
963 else if (single_arg != arg)
964 single_arg = NULL_TREE;
966 // Once the value reaches varying, stop looking.
967 if (r.varying_p () && single_arg == NULL_TREE)
968 break;
971 // If all arguments were equivalences, use the equivalence ranges as no
972 // arguments were processed.
973 if (r.undefined_p () && !equiv_range.undefined_p ())
974 r = equiv_range;
976 // If the PHI boils down to a single effective argument, look at it.
977 if (single_arg)
979 // Symbolic arguments can be equivalences.
980 if (gimple_range_ssa_p (single_arg))
982 // Only allow the equivalence if the PHI definition does not
983 // dominate any incoming edge for SINGLE_ARG.
984 // See PR 108139 and 109462.
985 basic_block bb = gimple_bb (phi);
986 if (!dom_info_available_p (CDI_DOMINATORS))
987 single_arg = NULL;
988 else
989 for (x = 0; x < gimple_phi_num_args (phi); x++)
990 if (gimple_phi_arg_def (phi, x) == single_arg
991 && dominated_by_p (CDI_DOMINATORS,
992 gimple_phi_arg_edge (phi, x)->src,
993 bb))
995 single_arg = NULL;
996 break;
998 if (single_arg)
999 src.register_relation (phi, VREL_EQ, phi_def, single_arg);
1001 else if (src.get_operand (arg_range, single_arg)
1002 && arg_range.singleton_p ())
1004 // Numerical arguments that are a constant can be returned as
1005 // the constant. This can help fold later cases where even this
1006 // constant might have been UNDEFINED via an unreachable edge.
1007 r = arg_range;
1008 return true;
1012 // If PHI analysis is available, see if there is an iniital range.
1013 if (phi_analysis_available_p ()
1014 && irange::supports_p (TREE_TYPE (phi_def)))
1016 phi_group *g = (phi_analysis())[phi_def];
1017 if (g && !(g->range ().varying_p ()))
1019 if (dump_file && (dump_flags & TDF_DETAILS))
1021 fprintf (dump_file, "PHI GROUP query for ");
1022 print_generic_expr (dump_file, phi_def, TDF_SLIM);
1023 fprintf (dump_file, " found : ");
1024 g->range ().dump (dump_file);
1025 fprintf (dump_file, " and adjusted original range from :");
1026 r.dump (dump_file);
1028 r.intersect (g->range ());
1029 if (dump_file && (dump_flags & TDF_DETAILS))
1031 fprintf (dump_file, " to :");
1032 r.dump (dump_file);
1033 fprintf (dump_file, "\n");
1038 // If SCEV is available, query if this PHI has any known values.
1039 if (scev_initialized_p ()
1040 && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
1042 class loop *l = loop_containing_stmt (phi);
1043 if (l && loop_outer (l))
1045 value_range loop_range (type);
1046 range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src);
1047 if (!loop_range.varying_p ())
1049 if (dump_file && (dump_flags & TDF_DETAILS))
1051 fprintf (dump_file, "Loops range found for ");
1052 print_generic_expr (dump_file, phi_def, TDF_SLIM);
1053 fprintf (dump_file, ": ");
1054 loop_range.dump (dump_file);
1055 fprintf (dump_file, " and calculated range :");
1056 r.dump (dump_file);
1057 fprintf (dump_file, "\n");
1059 r.intersect (loop_range);
1064 return true;
1067 // Calculate a range for call statement S and return it in R.
1068 // If a range cannot be calculated, return false.
1070 bool
1071 fold_using_range::range_of_call (vrange &r, gcall *call, fur_source &)
1073 tree type = gimple_range_type (call);
1074 if (!type)
1075 return false;
1077 tree lhs = gimple_call_lhs (call);
1078 bool strict_overflow_p;
1080 if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
1081 r.set_nonnegative (type);
1082 else if (gimple_call_nonnull_result_p (call)
1083 || gimple_call_nonnull_arg (call))
1084 r.set_nonzero (type);
1085 else
1086 r.set_varying (type);
1088 tree callee = gimple_call_fndecl (call);
1089 if (callee
1090 && useless_type_conversion_p (TREE_TYPE (TREE_TYPE (callee)), type))
1092 value_range val;
1093 if (ipa_return_value_range (val, callee))
1095 r.intersect (val);
1096 if (dump_file && (dump_flags & TDF_DETAILS))
1098 fprintf (dump_file, "Using return value range of ");
1099 print_generic_expr (dump_file, callee, TDF_SLIM);
1100 fprintf (dump_file, ": ");
1101 val.dump (dump_file);
1102 fprintf (dump_file, "\n");
1107 // If there is an LHS, intersect that with what is known.
1108 if (gimple_range_ssa_p (lhs))
1110 value_range def (TREE_TYPE (lhs));
1111 gimple_range_global (def, lhs);
1112 r.intersect (def);
1114 return true;
1117 // Given COND ? OP1 : OP2 with ranges R1 for OP1 and R2 for OP2, Use gori
1118 // to further resolve R1 and R2 if there are any dependencies between
1119 // OP1 and COND or OP2 and COND. All values can are to be calculated using SRC
1120 // as the origination source location for operands..
1121 // Effectively, use COND an the edge condition and solve for OP1 on the true
1122 // edge and OP2 on the false edge.
1124 bool
1125 fold_using_range::condexpr_adjust (vrange &r1, vrange &r2, gimple *, tree cond,
1126 tree op1, tree op2, fur_source &src)
1128 if (!src.gori () || !src.gori_ssa ())
1129 return false;
1131 tree ssa1 = gimple_range_ssa_p (op1);
1132 tree ssa2 = gimple_range_ssa_p (op2);
1133 if (!ssa1 && !ssa2)
1134 return false;
1135 if (TREE_CODE (cond) != SSA_NAME)
1136 return false;
1137 gassign *cond_def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (cond));
1138 if (!cond_def
1139 || TREE_CODE_CLASS (gimple_assign_rhs_code (cond_def)) != tcc_comparison)
1140 return false;
1141 tree type = TREE_TYPE (gimple_assign_rhs1 (cond_def));
1142 if (!range_compatible_p (type, TREE_TYPE (gimple_assign_rhs2 (cond_def))))
1143 return false;
1144 range_op_handler hand (gimple_assign_rhs_code (cond_def));
1145 if (!hand)
1146 return false;
1148 tree c1 = gimple_range_ssa_p (gimple_assign_rhs1 (cond_def));
1149 tree c2 = gimple_range_ssa_p (gimple_assign_rhs2 (cond_def));
1151 // Only solve if there is one SSA name in the condition.
1152 if ((!c1 && !c2) || (c1 && c2))
1153 return false;
1155 // Pick up the current values of each part of the condition.
1156 tree rhs1 = gimple_assign_rhs1 (cond_def);
1157 tree rhs2 = gimple_assign_rhs2 (cond_def);
1158 value_range cl (TREE_TYPE (rhs1));
1159 value_range cr (TREE_TYPE (rhs2));
1160 src.get_operand (cl, rhs1);
1161 src.get_operand (cr, rhs2);
1163 tree cond_name = c1 ? c1 : c2;
1164 gimple *def_stmt = SSA_NAME_DEF_STMT (cond_name);
1166 // Evaluate the value of COND_NAME on the true and false edges, using either
1167 // the op1 or op2 routines based on its location.
1168 value_range cond_true (type), cond_false (type);
1169 if (c1)
1171 if (!hand.op1_range (cond_false, type, range_false (), cr))
1172 return false;
1173 if (!hand.op1_range (cond_true, type, range_true (), cr))
1174 return false;
1175 cond_false.intersect (cl);
1176 cond_true.intersect (cl);
1178 else
1180 if (!hand.op2_range (cond_false, type, range_false (), cl))
1181 return false;
1182 if (!hand.op2_range (cond_true, type, range_true (), cl))
1183 return false;
1184 cond_false.intersect (cr);
1185 cond_true.intersect (cr);
1188 // Now solve for SSA1 or SSA2 if they are in the dependency chain.
1189 if (ssa1 && src.gori_ssa()->in_chain_p (ssa1, cond_name))
1191 value_range tmp1 (TREE_TYPE (ssa1));
1192 if (src.gori ()->compute_operand_range (tmp1, def_stmt, cond_true,
1193 ssa1, src))
1194 r1.intersect (tmp1);
1196 if (ssa2 && src.gori_ssa ()->in_chain_p (ssa2, cond_name))
1198 value_range tmp2 (TREE_TYPE (ssa2));
1199 if (src.gori ()->compute_operand_range (tmp2, def_stmt, cond_false,
1200 ssa2, src))
1201 r2.intersect (tmp2);
1203 return true;
1206 // Calculate a range for COND_EXPR statement S and return it in R.
1207 // If a range cannot be calculated, return false.
1209 bool
1210 fold_using_range::range_of_cond_expr (vrange &r, gassign *s, fur_source &src)
1212 tree cond = gimple_assign_rhs1 (s);
1213 tree op1 = gimple_assign_rhs2 (s);
1214 tree op2 = gimple_assign_rhs3 (s);
1216 tree type = gimple_range_type (s);
1217 if (!type)
1218 return false;
1220 value_range range1 (TREE_TYPE (op1));
1221 value_range range2 (TREE_TYPE (op2));
1222 value_range cond_range (TREE_TYPE (cond));
1223 gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
1224 gcc_checking_assert (range_compatible_p (TREE_TYPE (op1), TREE_TYPE (op2)));
1225 src.get_operand (cond_range, cond);
1226 src.get_operand (range1, op1);
1227 src.get_operand (range2, op2);
1229 // Try to see if there is a dependence between the COND and either operand
1230 if (condexpr_adjust (range1, range2, s, cond, op1, op2, src))
1231 if (dump_file && (dump_flags & TDF_DETAILS))
1233 fprintf (dump_file, "Possible COND_EXPR adjustment. Range op1 : ");
1234 range1.dump(dump_file);
1235 fprintf (dump_file, " and Range op2: ");
1236 range2.dump(dump_file);
1237 fprintf (dump_file, "\n");
1240 // If the condition is known, choose the appropriate expression.
1241 if (cond_range.singleton_p ())
1243 // False, pick second operand.
1244 if (cond_range.zero_p ())
1245 r = range2;
1246 else
1247 r = range1;
1249 else
1251 r = range1;
1252 r.union_ (range2);
1254 gcc_checking_assert (r.undefined_p ()
1255 || range_compatible_p (r.type (), type));
1256 return true;
1259 // If SCEV has any information about phi node NAME, return it as a range in R.
1261 void
1262 fold_using_range::range_of_ssa_name_with_loop_info (vrange &r, tree name,
1263 class loop *l, gphi *phi,
1264 fur_source &src)
1266 gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
1267 // SCEV currently invokes get_range_query () for values. If the query
1268 // being passed in is not the same SCEV will use, do not invoke SCEV.
1269 // This can be remove if/when SCEV uses a passed in range-query.
1270 if (src.query () != get_range_query (cfun))
1272 r.set_varying (TREE_TYPE (name));
1273 // Report the msmatch if SRC is not the global query. The cache
1274 // uses a global query and would provide numerous false positives.
1275 if (dump_file && (dump_flags & TDF_DETAILS)
1276 && src.query () != get_global_range_query ())
1277 fprintf (dump_file,
1278 "fold_using-range:: SCEV not invoked due to mismatched queries\n");
1280 else if (!range_of_var_in_loop (r, name, l, phi, src.query ()))
1281 r.set_varying (TREE_TYPE (name));
1284 // -----------------------------------------------------------------------
1286 // Check if an && or || expression can be folded based on relations. ie
1287 // c_2 = a_6 > b_7
1288 // c_3 = a_6 < b_7
1289 // c_4 = c_2 && c_3
1290 // c_2 and c_3 can never be true at the same time,
1291 // Therefore c_4 can always resolve to false based purely on the relations.
1293 void
1294 fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s,
1295 fur_source &src, vrange &op1,
1296 vrange &op2)
1298 // No queries or already folded.
1299 if (!src.gori () || lhs_range.singleton_p ())
1300 return;
1302 // Only care about AND and OR expressions.
1303 enum tree_code code = gimple_expr_code (s);
1304 bool is_and = false;
1305 if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR)
1306 is_and = true;
1307 else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR)
1308 return;
1310 gimple_range_op_handler handler (s);
1311 tree lhs = handler.lhs ();
1312 tree ssa1 = gimple_range_ssa_p (handler.operand1 ());
1313 tree ssa2 = gimple_range_ssa_p (handler.operand2 ());
1315 // Deal with || and && only when there is a full set of symbolics.
1316 if (!lhs || !ssa1 || !ssa2
1317 || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
1318 || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE)
1319 || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE))
1320 return;
1322 // Now we know its a boolean AND or OR expression with boolean operands.
1323 // Ideally we search dependencies for common names, and see what pops out.
1324 // until then, simply try to resolve direct dependencies.
1326 gimple *ssa1_stmt = SSA_NAME_DEF_STMT (ssa1);
1327 gimple *ssa2_stmt = SSA_NAME_DEF_STMT (ssa2);
1329 gimple_range_op_handler handler1 (ssa1_stmt);
1330 gimple_range_op_handler handler2 (ssa2_stmt);
1332 // If either handler is not present, no relation can be found.
1333 if (!handler1 || !handler2)
1334 return;
1336 // Both stmts will need to have 2 ssa names in the stmt.
1337 tree ssa1_dep1 = gimple_range_ssa_p (handler1.operand1 ());
1338 tree ssa1_dep2 = gimple_range_ssa_p (handler1.operand2 ());
1339 tree ssa2_dep1 = gimple_range_ssa_p (handler2.operand1 ());
1340 tree ssa2_dep2 = gimple_range_ssa_p (handler2.operand2 ());
1342 if (!ssa1_dep1 || !ssa1_dep2 || !ssa2_dep1 || !ssa2_dep2)
1343 return;
1345 if (HONOR_NANS (TREE_TYPE (ssa1_dep1)))
1346 return;
1348 // Make sure they are the same dependencies, and detect the order of the
1349 // relationship.
1350 bool reverse_op2 = true;
1351 if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2)
1352 reverse_op2 = false;
1353 else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1)
1354 return;
1356 int_range<2> bool_one = range_true ();
1357 relation_kind relation1 = handler1.op1_op2_relation (bool_one, op1, op2);
1358 relation_kind relation2 = handler2.op1_op2_relation (bool_one, op1, op2);
1359 if (relation1 == VREL_VARYING || relation2 == VREL_VARYING)
1360 return;
1362 if (reverse_op2)
1363 relation2 = relation_negate (relation2);
1365 // x && y is false if the relation intersection of the true cases is NULL.
1366 if (is_and && relation_intersect (relation1, relation2) == VREL_UNDEFINED)
1367 lhs_range = range_false (boolean_type_node);
1368 // x || y is true if the union of the true cases is NO-RELATION..
1369 // ie, one or the other being true covers the full range of possibilities.
1370 else if (!is_and && relation_union (relation1, relation2) == VREL_VARYING)
1371 lhs_range = bool_one;
1372 else
1373 return;
1375 range_cast (lhs_range, TREE_TYPE (lhs));
1376 if (dump_file && (dump_flags & TDF_DETAILS))
1378 fprintf (dump_file, " Relation adjustment: ");
1379 print_generic_expr (dump_file, ssa1, TDF_SLIM);
1380 fprintf (dump_file, " and ");
1381 print_generic_expr (dump_file, ssa2, TDF_SLIM);
1382 fprintf (dump_file, " combine to produce ");
1383 lhs_range.dump (dump_file);
1384 fputc ('\n', dump_file);
1387 return;
1390 // Register any outgoing edge relations from a conditional branch.
1392 void
1393 fur_source::register_outgoing_edges (gcond *s, irange &lhs_range,
1394 edge e0, edge e1)
1396 int_range<2> e0_range, e1_range;
1397 tree name;
1398 basic_block bb = gimple_bb (s);
1400 gimple_range_op_handler handler (s);
1401 if (!handler)
1402 return;
1404 if (e0)
1406 // If this edge is never taken, ignore it.
1407 gcond_edge_range (e0_range, e0);
1408 e0_range.intersect (lhs_range);
1409 if (e0_range.undefined_p ())
1410 e0 = NULL;
1413 if (e1)
1415 // If this edge is never taken, ignore it.
1416 gcond_edge_range (e1_range, e1);
1417 e1_range.intersect (lhs_range);
1418 if (e1_range.undefined_p ())
1419 e1 = NULL;
1422 if (!e0 && !e1)
1423 return;
1425 // First, register the gcond itself. This will catch statements like
1426 // if (a_2 < b_5)
1427 tree ssa1 = gimple_range_ssa_p (handler.operand1 ());
1428 tree ssa2 = gimple_range_ssa_p (handler.operand2 ());
1429 value_range r1,r2;
1430 if (ssa1 && ssa2)
1432 r1.set_varying (TREE_TYPE (ssa1));
1433 r2.set_varying (TREE_TYPE (ssa2));
1434 if (e0)
1436 relation_kind relation = handler.op1_op2_relation (e0_range, r1, r2);
1437 if (relation != VREL_VARYING)
1438 register_relation (e0, relation, ssa1, ssa2);
1440 if (e1)
1442 relation_kind relation = handler.op1_op2_relation (e1_range, r1, r2);
1443 if (relation != VREL_VARYING)
1444 register_relation (e1, relation, ssa1, ssa2);
1448 // Outgoing relations of GORI exports require a gori engine.
1449 if (!gori_ssa ())
1450 return;
1452 // Now look for other relations in the exports. This will find stmts
1453 // leading to the condition such as:
1454 // c_2 = a_4 < b_7
1455 // if (c_2)
1456 FOR_EACH_GORI_EXPORT_NAME (gori_ssa (), bb, name)
1458 if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE)
1459 continue;
1460 gimple *stmt = SSA_NAME_DEF_STMT (name);
1461 gimple_range_op_handler handler (stmt);
1462 if (!handler)
1463 continue;
1464 tree ssa1 = gimple_range_ssa_p (handler.operand1 ());
1465 tree ssa2 = gimple_range_ssa_p (handler.operand2 ());
1466 value_range r (TREE_TYPE (name));
1467 if (ssa1 && ssa2)
1469 r1.set_varying (TREE_TYPE (ssa1));
1470 r2.set_varying (TREE_TYPE (ssa2));
1471 if (e0 && gori ()->edge_range_p (r, e0, name, *m_query)
1472 && r.singleton_p ())
1474 relation_kind relation = handler.op1_op2_relation (r, r1, r2);
1475 if (relation != VREL_VARYING)
1476 register_relation (e0, relation, ssa1, ssa2);
1478 if (e1 && gori ()->edge_range_p (r, e1, name, *m_query)
1479 && r.singleton_p ())
1481 relation_kind relation = handler.op1_op2_relation (r, r1, r2);
1482 if (relation != VREL_VARYING)
1483 register_relation (e1, relation, ssa1, ssa2);