fixing pr42337
[official-gcc.git] / gcc / ada / freeze.adb
blob26b821d38d108cac66b3fb2fd601ca9cd1473e15
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- You should have received a copy of the GNU General Public License along --
19 -- with this program; see file COPYING3. If not see --
20 -- <http://www.gnu.org/licenses/>. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch3; use Exp_Ch3;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Exp_Tss; use Exp_Tss;
38 with Layout; use Layout;
39 with Namet; use Namet;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Cat; use Sem_Cat;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch7; use Sem_Ch7;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch13; use Sem_Ch13;
52 with Sem_Eval; use Sem_Eval;
53 with Sem_Mech; use Sem_Mech;
54 with Sem_Prag; use Sem_Prag;
55 with Sem_Res; use Sem_Res;
56 with Sem_Util; use Sem_Util;
57 with Sinfo; use Sinfo;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Targparm; use Targparm;
61 with Tbuild; use Tbuild;
62 with Ttypes; use Ttypes;
63 with Uintp; use Uintp;
64 with Urealp; use Urealp;
66 package body Freeze is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
73 -- Typ is a type that is being frozen. If no size clause is given,
74 -- but a default Esize has been computed, then this default Esize is
75 -- adjusted up if necessary to be consistent with a given alignment,
76 -- but never to a value greater than Long_Long_Integer'Size. This
77 -- is used for all discrete types and for fixed-point types.
79 procedure Build_And_Analyze_Renamed_Body
80 (Decl : Node_Id;
81 New_S : Entity_Id;
82 After : in out Node_Id);
83 -- Build body for a renaming declaration, insert in tree and analyze
85 procedure Check_Address_Clause (E : Entity_Id);
86 -- Apply legality checks to address clauses for object declarations,
87 -- at the point the object is frozen.
89 procedure Check_Strict_Alignment (E : Entity_Id);
90 -- E is a base type. If E is tagged or has a component that is aliased
91 -- or tagged or contains something this is aliased or tagged, set
92 -- Strict_Alignment.
94 procedure Check_Unsigned_Type (E : Entity_Id);
95 pragma Inline (Check_Unsigned_Type);
96 -- If E is a fixed-point or discrete type, then all the necessary work
97 -- to freeze it is completed except for possible setting of the flag
98 -- Is_Unsigned_Type, which is done by this procedure. The call has no
99 -- effect if the entity E is not a discrete or fixed-point type.
101 procedure Freeze_And_Append
102 (Ent : Entity_Id;
103 Loc : Source_Ptr;
104 Result : in out List_Id);
105 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
106 -- nodes to Result, modifying Result from No_List if necessary.
108 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
109 -- Freeze enumeration type. The Esize field is set as processing
110 -- proceeds (i.e. set by default when the type is declared and then
111 -- adjusted by rep clauses. What this procedure does is to make sure
112 -- that if a foreign convention is specified, and no specific size
113 -- is given, then the size must be at least Integer'Size.
115 procedure Freeze_Static_Object (E : Entity_Id);
116 -- If an object is frozen which has Is_Statically_Allocated set, then
117 -- all referenced types must also be marked with this flag. This routine
118 -- is in charge of meeting this requirement for the object entity E.
120 procedure Freeze_Subprogram (E : Entity_Id);
121 -- Perform freezing actions for a subprogram (create extra formals,
122 -- and set proper default mechanism values). Note that this routine
123 -- is not called for internal subprograms, for which neither of these
124 -- actions is needed (or desirable, we do not want for example to have
125 -- these extra formals present in initialization procedures, where they
126 -- would serve no purpose). In this call E is either a subprogram or
127 -- a subprogram type (i.e. an access to a subprogram).
129 function Is_Fully_Defined (T : Entity_Id) return Boolean;
130 -- True if T is not private and has no private components, or has a full
131 -- view. Used to determine whether the designated type of an access type
132 -- should be frozen when the access type is frozen. This is done when an
133 -- allocator is frozen, or an expression that may involve attributes of
134 -- the designated type. Otherwise freezing the access type does not freeze
135 -- the designated type.
137 procedure Process_Default_Expressions
138 (E : Entity_Id;
139 After : in out Node_Id);
140 -- This procedure is called for each subprogram to complete processing
141 -- of default expressions at the point where all types are known to be
142 -- frozen. The expressions must be analyzed in full, to make sure that
143 -- all error processing is done (they have only been pre-analyzed). If
144 -- the expression is not an entity or literal, its analysis may generate
145 -- code which must not be executed. In that case we build a function
146 -- body to hold that code. This wrapper function serves no other purpose
147 -- (it used to be called to evaluate the default, but now the default is
148 -- inlined at each point of call).
150 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
151 -- Typ is a record or array type that is being frozen. This routine
152 -- sets the default component alignment from the scope stack values
153 -- if the alignment is otherwise not specified.
155 procedure Check_Debug_Info_Needed (T : Entity_Id);
156 -- As each entity is frozen, this routine is called to deal with the
157 -- setting of Debug_Info_Needed for the entity. This flag is set if
158 -- the entity comes from source, or if we are in Debug_Generated_Code
159 -- mode or if the -gnatdV debug flag is set. However, it never sets
160 -- the flag if Debug_Info_Off is set. This procedure also ensures that
161 -- subsidiary entities have the flag set as required.
163 procedure Undelay_Type (T : Entity_Id);
164 -- T is a type of a component that we know to be an Itype.
165 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
166 -- Do the same for any Full_View or Corresponding_Record_Type.
168 procedure Warn_Overlay
169 (Expr : Node_Id;
170 Typ : Entity_Id;
171 Nam : Node_Id);
172 -- Expr is the expression for an address clause for entity Nam whose type
173 -- is Typ. If Typ has a default initialization, and there is no explicit
174 -- initialization in the source declaration, check whether the address
175 -- clause might cause overlaying of an entity, and emit a warning on the
176 -- side effect that the initialization will cause.
178 -------------------------------
179 -- Adjust_Esize_For_Alignment --
180 -------------------------------
182 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
183 Align : Uint;
185 begin
186 if Known_Esize (Typ) and then Known_Alignment (Typ) then
187 Align := Alignment_In_Bits (Typ);
189 if Align > Esize (Typ)
190 and then Align <= Standard_Long_Long_Integer_Size
191 then
192 Set_Esize (Typ, Align);
193 end if;
194 end if;
195 end Adjust_Esize_For_Alignment;
197 ------------------------------------
198 -- Build_And_Analyze_Renamed_Body --
199 ------------------------------------
201 procedure Build_And_Analyze_Renamed_Body
202 (Decl : Node_Id;
203 New_S : Entity_Id;
204 After : in out Node_Id)
206 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
207 begin
208 Insert_After (After, Body_Node);
209 Mark_Rewrite_Insertion (Body_Node);
210 Analyze (Body_Node);
211 After := Body_Node;
212 end Build_And_Analyze_Renamed_Body;
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
218 function Build_Renamed_Body
219 (Decl : Node_Id;
220 New_S : Entity_Id) return Node_Id
222 Loc : constant Source_Ptr := Sloc (New_S);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
230 N : constant Node_Id := Unit_Declaration_Node (New_S);
231 Nam : constant Node_Id := Name (N);
232 Old_S : Entity_Id;
233 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
234 Actuals : List_Id := No_List;
235 Call_Node : Node_Id;
236 Call_Name : Node_Id;
237 Body_Node : Node_Id;
238 Formal : Entity_Id;
239 O_Formal : Entity_Id;
240 Param_Spec : Node_Id;
242 Pref : Node_Id := Empty;
243 -- If the renamed entity is a primitive operation given in prefix form,
244 -- the prefix is the target object and it has to be added as the first
245 -- actual in the generated call.
247 begin
248 -- Determine the entity being renamed, which is the target of the call
249 -- statement. If the name is an explicit dereference, this is a renaming
250 -- of a subprogram type rather than a subprogram. The name itself is
251 -- fully analyzed.
253 if Nkind (Nam) = N_Selected_Component then
254 Old_S := Entity (Selector_Name (Nam));
256 elsif Nkind (Nam) = N_Explicit_Dereference then
257 Old_S := Etype (Nam);
259 elsif Nkind (Nam) = N_Indexed_Component then
260 if Is_Entity_Name (Prefix (Nam)) then
261 Old_S := Entity (Prefix (Nam));
262 else
263 Old_S := Entity (Selector_Name (Prefix (Nam)));
264 end if;
266 elsif Nkind (Nam) = N_Character_Literal then
267 Old_S := Etype (New_S);
269 else
270 Old_S := Entity (Nam);
271 end if;
273 if Is_Entity_Name (Nam) then
275 -- If the renamed entity is a predefined operator, retain full name
276 -- to ensure its visibility.
278 if Ekind (Old_S) = E_Operator
279 and then Nkind (Nam) = N_Expanded_Name
280 then
281 Call_Name := New_Copy (Name (N));
282 else
283 Call_Name := New_Reference_To (Old_S, Loc);
284 end if;
286 else
287 if Nkind (Nam) = N_Selected_Component
288 and then Present (First_Formal (Old_S))
289 and then
290 (Is_Controlling_Formal (First_Formal (Old_S))
291 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
292 then
294 -- Retrieve the target object, to be added as a first actual
295 -- in the call.
297 Call_Name := New_Occurrence_Of (Old_S, Loc);
298 Pref := Prefix (Nam);
300 else
301 Call_Name := New_Copy (Name (N));
302 end if;
304 -- The original name may have been overloaded, but
305 -- is fully resolved now.
307 Set_Is_Overloaded (Call_Name, False);
308 end if;
310 -- For simple renamings, subsequent calls can be expanded directly as
311 -- called to the renamed entity. The body must be generated in any case
312 -- for calls they may appear elsewhere.
314 if (Ekind (Old_S) = E_Function
315 or else Ekind (Old_S) = E_Procedure)
316 and then Nkind (Decl) = N_Subprogram_Declaration
317 then
318 Set_Body_To_Inline (Decl, Old_S);
319 end if;
321 -- The body generated for this renaming is an internal artifact, and
322 -- does not constitute a freeze point for the called entity.
324 Set_Must_Not_Freeze (Call_Name);
326 Formal := First_Formal (Defining_Entity (Decl));
328 if Present (Pref) then
329 declare
330 Pref_Type : constant Entity_Id := Etype (Pref);
331 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
333 begin
335 -- The controlling formal may be an access parameter, or the
336 -- actual may be an access value, so adjust accordingly.
338 if Is_Access_Type (Pref_Type)
339 and then not Is_Access_Type (Form_Type)
340 then
341 Actuals := New_List
342 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
344 elsif Is_Access_Type (Form_Type)
345 and then not Is_Access_Type (Pref)
346 then
347 Actuals := New_List
348 (Make_Attribute_Reference (Loc,
349 Attribute_Name => Name_Access,
350 Prefix => Relocate_Node (Pref)));
351 else
352 Actuals := New_List (Pref);
353 end if;
354 end;
356 elsif Present (Formal) then
357 Actuals := New_List;
359 else
360 Actuals := No_List;
361 end if;
363 if Present (Formal) then
364 while Present (Formal) loop
365 Append (New_Reference_To (Formal, Loc), Actuals);
366 Next_Formal (Formal);
367 end loop;
368 end if;
370 -- If the renamed entity is an entry, inherit its profile. For other
371 -- renamings as bodies, both profiles must be subtype conformant, so it
372 -- is not necessary to replace the profile given in the declaration.
373 -- However, default values that are aggregates are rewritten when
374 -- partially analyzed, so we recover the original aggregate to insure
375 -- that subsequent conformity checking works. Similarly, if the default
376 -- expression was constant-folded, recover the original expression.
378 Formal := First_Formal (Defining_Entity (Decl));
380 if Present (Formal) then
381 O_Formal := First_Formal (Old_S);
382 Param_Spec := First (Parameter_Specifications (Spec));
384 while Present (Formal) loop
385 if Is_Entry (Old_S) then
387 if Nkind (Parameter_Type (Param_Spec)) /=
388 N_Access_Definition
389 then
390 Set_Etype (Formal, Etype (O_Formal));
391 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
392 end if;
394 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
395 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
396 Nkind (Default_Value (O_Formal))
397 then
398 Set_Expression (Param_Spec,
399 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
400 end if;
402 Next_Formal (Formal);
403 Next_Formal (O_Formal);
404 Next (Param_Spec);
405 end loop;
406 end if;
408 -- If the renamed entity is a function, the generated body contains a
409 -- return statement. Otherwise, build a procedure call. If the entity is
410 -- an entry, subsequent analysis of the call will transform it into the
411 -- proper entry or protected operation call. If the renamed entity is
412 -- a character literal, return it directly.
414 if Ekind (Old_S) = E_Function
415 or else Ekind (Old_S) = E_Operator
416 or else (Ekind (Old_S) = E_Subprogram_Type
417 and then Etype (Old_S) /= Standard_Void_Type)
418 then
419 Call_Node :=
420 Make_Simple_Return_Statement (Loc,
421 Expression =>
422 Make_Function_Call (Loc,
423 Name => Call_Name,
424 Parameter_Associations => Actuals));
426 elsif Ekind (Old_S) = E_Enumeration_Literal then
427 Call_Node :=
428 Make_Simple_Return_Statement (Loc,
429 Expression => New_Occurrence_Of (Old_S, Loc));
431 elsif Nkind (Nam) = N_Character_Literal then
432 Call_Node :=
433 Make_Simple_Return_Statement (Loc,
434 Expression => Call_Name);
436 else
437 Call_Node :=
438 Make_Procedure_Call_Statement (Loc,
439 Name => Call_Name,
440 Parameter_Associations => Actuals);
441 end if;
443 -- Create entities for subprogram body and formals
445 Set_Defining_Unit_Name (Spec,
446 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
448 Param_Spec := First (Parameter_Specifications (Spec));
450 while Present (Param_Spec) loop
451 Set_Defining_Identifier (Param_Spec,
452 Make_Defining_Identifier (Loc,
453 Chars => Chars (Defining_Identifier (Param_Spec))));
454 Next (Param_Spec);
455 end loop;
457 Body_Node :=
458 Make_Subprogram_Body (Loc,
459 Specification => Spec,
460 Declarations => New_List,
461 Handled_Statement_Sequence =>
462 Make_Handled_Sequence_Of_Statements (Loc,
463 Statements => New_List (Call_Node)));
465 if Nkind (Decl) /= N_Subprogram_Declaration then
466 Rewrite (N,
467 Make_Subprogram_Declaration (Loc,
468 Specification => Specification (N)));
469 end if;
471 -- Link the body to the entity whose declaration it completes. If
472 -- the body is analyzed when the renamed entity is frozen, it may
473 -- be necessary to restore the proper scope (see package Exp_Ch13).
475 if Nkind (N) = N_Subprogram_Renaming_Declaration
476 and then Present (Corresponding_Spec (N))
477 then
478 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
479 else
480 Set_Corresponding_Spec (Body_Node, New_S);
481 end if;
483 return Body_Node;
484 end Build_Renamed_Body;
486 --------------------------
487 -- Check_Address_Clause --
488 --------------------------
490 procedure Check_Address_Clause (E : Entity_Id) is
491 Addr : constant Node_Id := Address_Clause (E);
492 Expr : Node_Id;
493 Decl : constant Node_Id := Declaration_Node (E);
494 Typ : constant Entity_Id := Etype (E);
496 begin
497 if Present (Addr) then
498 Expr := Expression (Addr);
500 -- If we have no initialization of any kind, then we don't need to
501 -- place any restrictions on the address clause, because the object
502 -- will be elaborated after the address clause is evaluated. This
503 -- happens if the declaration has no initial expression, or the type
504 -- has no implicit initialization, or the object is imported.
506 -- The same holds for all initialized scalar types and all access
507 -- types. Packed bit arrays of size up to 64 are represented using a
508 -- modular type with an initialization (to zero) and can be processed
509 -- like other initialized scalar types.
511 -- If the type is controlled, code to attach the object to a
512 -- finalization chain is generated at the point of declaration,
513 -- and therefore the elaboration of the object cannot be delayed:
514 -- the address expression must be a constant.
516 if (No (Expression (Decl))
517 and then not Needs_Finalization (Typ)
518 and then
519 (not Has_Non_Null_Base_Init_Proc (Typ)
520 or else Is_Imported (E)))
522 or else
523 (Present (Expression (Decl))
524 and then Is_Scalar_Type (Typ))
526 or else
527 Is_Access_Type (Typ)
529 or else
530 (Is_Bit_Packed_Array (Typ)
531 and then
532 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
533 then
534 null;
536 -- Otherwise, we require the address clause to be constant because
537 -- the call to the initialization procedure (or the attach code) has
538 -- to happen at the point of the declaration.
539 -- Actually the IP call has been moved to the freeze actions
540 -- anyway, so maybe we can relax this restriction???
542 else
543 Check_Constant_Address_Clause (Expr, E);
545 -- Has_Delayed_Freeze was set on E when the address clause was
546 -- analyzed. Reset the flag now unless freeze actions were
547 -- attached to it in the mean time.
549 if No (Freeze_Node (E)) then
550 Set_Has_Delayed_Freeze (E, False);
551 end if;
552 end if;
554 if not Error_Posted (Expr)
555 and then not Needs_Finalization (Typ)
556 then
557 Warn_Overlay (Expr, Typ, Name (Addr));
558 end if;
559 end if;
560 end Check_Address_Clause;
562 -----------------------------
563 -- Check_Compile_Time_Size --
564 -----------------------------
566 procedure Check_Compile_Time_Size (T : Entity_Id) is
568 procedure Set_Small_Size (T : Entity_Id; S : Uint);
569 -- Sets the compile time known size (32 bits or less) in the Esize
570 -- field, of T checking for a size clause that was given which attempts
571 -- to give a smaller size.
573 function Size_Known (T : Entity_Id) return Boolean;
574 -- Recursive function that does all the work
576 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
577 -- If T is a constrained subtype, its size is not known if any of its
578 -- discriminant constraints is not static and it is not a null record.
579 -- The test is conservative and doesn't check that the components are
580 -- in fact constrained by non-static discriminant values. Could be made
581 -- more precise ???
583 --------------------
584 -- Set_Small_Size --
585 --------------------
587 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
588 begin
589 if S > 32 then
590 return;
592 elsif Has_Size_Clause (T) then
593 if RM_Size (T) < S then
594 Error_Msg_Uint_1 := S;
595 Error_Msg_NE
596 ("size for& too small, minimum allowed is ^",
597 Size_Clause (T), T);
599 elsif Unknown_Esize (T) then
600 Set_Esize (T, S);
601 end if;
603 -- Set sizes if not set already
605 else
606 if Unknown_Esize (T) then
607 Set_Esize (T, S);
608 end if;
610 if Unknown_RM_Size (T) then
611 Set_RM_Size (T, S);
612 end if;
613 end if;
614 end Set_Small_Size;
616 ----------------
617 -- Size_Known --
618 ----------------
620 function Size_Known (T : Entity_Id) return Boolean is
621 Index : Entity_Id;
622 Comp : Entity_Id;
623 Ctyp : Entity_Id;
624 Low : Node_Id;
625 High : Node_Id;
627 begin
628 if Size_Known_At_Compile_Time (T) then
629 return True;
631 -- Always True for scalar types. This is true even for generic formal
632 -- scalar types. We used to return False in the latter case, but the
633 -- size is known at compile time, even in the template, we just do
634 -- not know the exact size but that's not the point of this routine.
636 elsif Is_Scalar_Type (T)
637 or else Is_Task_Type (T)
638 then
639 return True;
641 -- Array types
643 elsif Is_Array_Type (T) then
645 -- String literals always have known size, and we can set it
647 if Ekind (T) = E_String_Literal_Subtype then
648 Set_Small_Size (T, Component_Size (T)
649 * String_Literal_Length (T));
650 return True;
652 -- Unconstrained types never have known at compile time size
654 elsif not Is_Constrained (T) then
655 return False;
657 -- Don't do any recursion on type with error posted, since we may
658 -- have a malformed type that leads us into a loop.
660 elsif Error_Posted (T) then
661 return False;
663 -- Otherwise if component size unknown, then array size unknown
665 elsif not Size_Known (Component_Type (T)) then
666 return False;
667 end if;
669 -- Check for all indexes static, and also compute possible size
670 -- (in case it is less than 32 and may be packable).
672 declare
673 Esiz : Uint := Component_Size (T);
674 Dim : Uint;
676 begin
677 Index := First_Index (T);
678 while Present (Index) loop
679 if Nkind (Index) = N_Range then
680 Get_Index_Bounds (Index, Low, High);
682 elsif Error_Posted (Scalar_Range (Etype (Index))) then
683 return False;
685 else
686 Low := Type_Low_Bound (Etype (Index));
687 High := Type_High_Bound (Etype (Index));
688 end if;
690 if not Compile_Time_Known_Value (Low)
691 or else not Compile_Time_Known_Value (High)
692 or else Etype (Index) = Any_Type
693 then
694 return False;
696 else
697 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
699 if Dim >= 0 then
700 Esiz := Esiz * Dim;
701 else
702 Esiz := Uint_0;
703 end if;
704 end if;
706 Next_Index (Index);
707 end loop;
709 Set_Small_Size (T, Esiz);
710 return True;
711 end;
713 -- Access types always have known at compile time sizes
715 elsif Is_Access_Type (T) then
716 return True;
718 -- For non-generic private types, go to underlying type if present
720 elsif Is_Private_Type (T)
721 and then not Is_Generic_Type (T)
722 and then Present (Underlying_Type (T))
723 then
724 -- Don't do any recursion on type with error posted, since we may
725 -- have a malformed type that leads us into a loop.
727 if Error_Posted (T) then
728 return False;
729 else
730 return Size_Known (Underlying_Type (T));
731 end if;
733 -- Record types
735 elsif Is_Record_Type (T) then
737 -- A class-wide type is never considered to have a known size
739 if Is_Class_Wide_Type (T) then
740 return False;
742 -- A subtype of a variant record must not have non-static
743 -- discriminanted components.
745 elsif T /= Base_Type (T)
746 and then not Static_Discriminated_Components (T)
747 then
748 return False;
750 -- Don't do any recursion on type with error posted, since we may
751 -- have a malformed type that leads us into a loop.
753 elsif Error_Posted (T) then
754 return False;
755 end if;
757 -- Now look at the components of the record
759 declare
760 -- The following two variables are used to keep track of the
761 -- size of packed records if we can tell the size of the packed
762 -- record in the front end. Packed_Size_Known is True if so far
763 -- we can figure out the size. It is initialized to True for a
764 -- packed record, unless the record has discriminants. The
765 -- reason we eliminate the discriminated case is that we don't
766 -- know the way the back end lays out discriminated packed
767 -- records. If Packed_Size_Known is True, then Packed_Size is
768 -- the size in bits so far.
770 Packed_Size_Known : Boolean :=
771 Is_Packed (T)
772 and then not Has_Discriminants (T);
774 Packed_Size : Uint := Uint_0;
776 begin
777 -- Test for variant part present
779 if Has_Discriminants (T)
780 and then Present (Parent (T))
781 and then Nkind (Parent (T)) = N_Full_Type_Declaration
782 and then Nkind (Type_Definition (Parent (T))) =
783 N_Record_Definition
784 and then not Null_Present (Type_Definition (Parent (T)))
785 and then Present (Variant_Part
786 (Component_List (Type_Definition (Parent (T)))))
787 then
788 -- If variant part is present, and type is unconstrained,
789 -- then we must have defaulted discriminants, or a size
790 -- clause must be present for the type, or else the size
791 -- is definitely not known at compile time.
793 if not Is_Constrained (T)
794 and then
795 No (Discriminant_Default_Value
796 (First_Discriminant (T)))
797 and then Unknown_Esize (T)
798 then
799 return False;
800 end if;
801 end if;
803 -- Loop through components
805 Comp := First_Component_Or_Discriminant (T);
806 while Present (Comp) loop
807 Ctyp := Etype (Comp);
809 -- We do not know the packed size if there is a component
810 -- clause present (we possibly could, but this would only
811 -- help in the case of a record with partial rep clauses.
812 -- That's because in the case of full rep clauses, the
813 -- size gets figured out anyway by a different circuit).
815 if Present (Component_Clause (Comp)) then
816 Packed_Size_Known := False;
817 end if;
819 -- We need to identify a component that is an array where
820 -- the index type is an enumeration type with non-standard
821 -- representation, and some bound of the type depends on a
822 -- discriminant.
824 -- This is because gigi computes the size by doing a
825 -- substitution of the appropriate discriminant value in
826 -- the size expression for the base type, and gigi is not
827 -- clever enough to evaluate the resulting expression (which
828 -- involves a call to rep_to_pos) at compile time.
830 -- It would be nice if gigi would either recognize that
831 -- this expression can be computed at compile time, or
832 -- alternatively figured out the size from the subtype
833 -- directly, where all the information is at hand ???
835 if Is_Array_Type (Etype (Comp))
836 and then Present (Packed_Array_Type (Etype (Comp)))
837 then
838 declare
839 Ocomp : constant Entity_Id :=
840 Original_Record_Component (Comp);
841 OCtyp : constant Entity_Id := Etype (Ocomp);
842 Ind : Node_Id;
843 Indtyp : Entity_Id;
844 Lo, Hi : Node_Id;
846 begin
847 Ind := First_Index (OCtyp);
848 while Present (Ind) loop
849 Indtyp := Etype (Ind);
851 if Is_Enumeration_Type (Indtyp)
852 and then Has_Non_Standard_Rep (Indtyp)
853 then
854 Lo := Type_Low_Bound (Indtyp);
855 Hi := Type_High_Bound (Indtyp);
857 if Is_Entity_Name (Lo)
858 and then Ekind (Entity (Lo)) = E_Discriminant
859 then
860 return False;
862 elsif Is_Entity_Name (Hi)
863 and then Ekind (Entity (Hi)) = E_Discriminant
864 then
865 return False;
866 end if;
867 end if;
869 Next_Index (Ind);
870 end loop;
871 end;
872 end if;
874 -- Clearly size of record is not known if the size of one of
875 -- the components is not known.
877 if not Size_Known (Ctyp) then
878 return False;
879 end if;
881 -- Accumulate packed size if possible
883 if Packed_Size_Known then
885 -- We can only deal with elementary types, since for
886 -- non-elementary components, alignment enters into the
887 -- picture, and we don't know enough to handle proper
888 -- alignment in this context. Packed arrays count as
889 -- elementary if the representation is a modular type.
891 if Is_Elementary_Type (Ctyp)
892 or else (Is_Array_Type (Ctyp)
893 and then Present (Packed_Array_Type (Ctyp))
894 and then Is_Modular_Integer_Type
895 (Packed_Array_Type (Ctyp)))
896 then
897 -- If RM_Size is known and static, then we can
898 -- keep accumulating the packed size.
900 if Known_Static_RM_Size (Ctyp) then
902 -- A little glitch, to be removed sometime ???
903 -- gigi does not understand zero sizes yet.
905 if RM_Size (Ctyp) = Uint_0 then
906 Packed_Size_Known := False;
908 -- Normal case where we can keep accumulating the
909 -- packed array size.
911 else
912 Packed_Size := Packed_Size + RM_Size (Ctyp);
913 end if;
915 -- If we have a field whose RM_Size is not known then
916 -- we can't figure out the packed size here.
918 else
919 Packed_Size_Known := False;
920 end if;
922 -- If we have a non-elementary type we can't figure out
923 -- the packed array size (alignment issues).
925 else
926 Packed_Size_Known := False;
927 end if;
928 end if;
930 Next_Component_Or_Discriminant (Comp);
931 end loop;
933 if Packed_Size_Known then
934 Set_Small_Size (T, Packed_Size);
935 end if;
937 return True;
938 end;
940 -- All other cases, size not known at compile time
942 else
943 return False;
944 end if;
945 end Size_Known;
947 -------------------------------------
948 -- Static_Discriminated_Components --
949 -------------------------------------
951 function Static_Discriminated_Components
952 (T : Entity_Id) return Boolean
954 Constraint : Elmt_Id;
956 begin
957 if Has_Discriminants (T)
958 and then Present (Discriminant_Constraint (T))
959 and then Present (First_Component (T))
960 then
961 Constraint := First_Elmt (Discriminant_Constraint (T));
962 while Present (Constraint) loop
963 if not Compile_Time_Known_Value (Node (Constraint)) then
964 return False;
965 end if;
967 Next_Elmt (Constraint);
968 end loop;
969 end if;
971 return True;
972 end Static_Discriminated_Components;
974 -- Start of processing for Check_Compile_Time_Size
976 begin
977 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
978 end Check_Compile_Time_Size;
980 -----------------------------
981 -- Check_Debug_Info_Needed --
982 -----------------------------
984 procedure Check_Debug_Info_Needed (T : Entity_Id) is
985 begin
986 if Debug_Info_Off (T) then
987 return;
989 elsif Comes_From_Source (T)
990 or else Debug_Generated_Code
991 or else Debug_Flag_VV
992 or else Needs_Debug_Info (T)
993 then
994 Set_Debug_Info_Needed (T);
995 end if;
996 end Check_Debug_Info_Needed;
998 ----------------------------
999 -- Check_Strict_Alignment --
1000 ----------------------------
1002 procedure Check_Strict_Alignment (E : Entity_Id) is
1003 Comp : Entity_Id;
1005 begin
1006 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1007 Set_Strict_Alignment (E);
1009 elsif Is_Array_Type (E) then
1010 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1012 elsif Is_Record_Type (E) then
1013 if Is_Limited_Record (E) then
1014 Set_Strict_Alignment (E);
1015 return;
1016 end if;
1018 Comp := First_Component (E);
1020 while Present (Comp) loop
1021 if not Is_Type (Comp)
1022 and then (Strict_Alignment (Etype (Comp))
1023 or else Is_Aliased (Comp))
1024 then
1025 Set_Strict_Alignment (E);
1026 return;
1027 end if;
1029 Next_Component (Comp);
1030 end loop;
1031 end if;
1032 end Check_Strict_Alignment;
1034 -------------------------
1035 -- Check_Unsigned_Type --
1036 -------------------------
1038 procedure Check_Unsigned_Type (E : Entity_Id) is
1039 Ancestor : Entity_Id;
1040 Lo_Bound : Node_Id;
1041 Btyp : Entity_Id;
1043 begin
1044 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1045 return;
1046 end if;
1048 -- Do not attempt to analyze case where range was in error
1050 if Error_Posted (Scalar_Range (E)) then
1051 return;
1052 end if;
1054 -- The situation that is non trivial is something like
1056 -- subtype x1 is integer range -10 .. +10;
1057 -- subtype x2 is x1 range 0 .. V1;
1058 -- subtype x3 is x2 range V2 .. V3;
1059 -- subtype x4 is x3 range V4 .. V5;
1061 -- where Vn are variables. Here the base type is signed, but we still
1062 -- know that x4 is unsigned because of the lower bound of x2.
1064 -- The only way to deal with this is to look up the ancestor chain
1066 Ancestor := E;
1067 loop
1068 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1069 return;
1070 end if;
1072 Lo_Bound := Type_Low_Bound (Ancestor);
1074 if Compile_Time_Known_Value (Lo_Bound) then
1076 if Expr_Rep_Value (Lo_Bound) >= 0 then
1077 Set_Is_Unsigned_Type (E, True);
1078 end if;
1080 return;
1082 else
1083 Ancestor := Ancestor_Subtype (Ancestor);
1085 -- If no ancestor had a static lower bound, go to base type
1087 if No (Ancestor) then
1089 -- Note: the reason we still check for a compile time known
1090 -- value for the base type is that at least in the case of
1091 -- generic formals, we can have bounds that fail this test,
1092 -- and there may be other cases in error situations.
1094 Btyp := Base_Type (E);
1096 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1097 return;
1098 end if;
1100 Lo_Bound := Type_Low_Bound (Base_Type (E));
1102 if Compile_Time_Known_Value (Lo_Bound)
1103 and then Expr_Rep_Value (Lo_Bound) >= 0
1104 then
1105 Set_Is_Unsigned_Type (E, True);
1106 end if;
1108 return;
1109 end if;
1110 end if;
1111 end loop;
1112 end Check_Unsigned_Type;
1114 -------------------------
1115 -- Is_Atomic_Aggregate --
1116 -------------------------
1118 function Is_Atomic_Aggregate
1119 (E : Entity_Id;
1120 Typ : Entity_Id) return Boolean
1122 Loc : constant Source_Ptr := Sloc (E);
1123 New_N : Node_Id;
1124 Par : Node_Id;
1125 Temp : Entity_Id;
1127 begin
1128 Par := Parent (E);
1130 -- Array may be qualified, so find outer context
1132 if Nkind (Par) = N_Qualified_Expression then
1133 Par := Parent (Par);
1134 end if;
1136 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
1137 and then Comes_From_Source (Par)
1138 then
1139 Temp :=
1140 Make_Defining_Identifier (Loc,
1141 New_Internal_Name ('T'));
1143 New_N :=
1144 Make_Object_Declaration (Loc,
1145 Defining_Identifier => Temp,
1146 Object_Definition => New_Occurrence_Of (Typ, Loc),
1147 Expression => Relocate_Node (E));
1148 Insert_Before (Par, New_N);
1149 Analyze (New_N);
1151 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1152 return True;
1154 else
1155 return False;
1156 end if;
1157 end Is_Atomic_Aggregate;
1159 ----------------
1160 -- Freeze_All --
1161 ----------------
1163 -- Note: the easy coding for this procedure would be to just build a
1164 -- single list of freeze nodes and then insert them and analyze them
1165 -- all at once. This won't work, because the analysis of earlier freeze
1166 -- nodes may recursively freeze types which would otherwise appear later
1167 -- on in the freeze list. So we must analyze and expand the freeze nodes
1168 -- as they are generated.
1170 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1171 Loc : constant Source_Ptr := Sloc (After);
1172 E : Entity_Id;
1173 Decl : Node_Id;
1175 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1176 -- This is the internal recursive routine that does freezing of entities
1177 -- (but NOT the analysis of default expressions, which should not be
1178 -- recursive, we don't want to analyze those till we are sure that ALL
1179 -- the types are frozen).
1181 --------------------
1182 -- Freeze_All_Ent --
1183 --------------------
1185 procedure Freeze_All_Ent
1186 (From : Entity_Id;
1187 After : in out Node_Id)
1189 E : Entity_Id;
1190 Flist : List_Id;
1191 Lastn : Node_Id;
1193 procedure Process_Flist;
1194 -- If freeze nodes are present, insert and analyze, and reset cursor
1195 -- for next insertion.
1197 -------------------
1198 -- Process_Flist --
1199 -------------------
1201 procedure Process_Flist is
1202 begin
1203 if Is_Non_Empty_List (Flist) then
1204 Lastn := Next (After);
1205 Insert_List_After_And_Analyze (After, Flist);
1207 if Present (Lastn) then
1208 After := Prev (Lastn);
1209 else
1210 After := Last (List_Containing (After));
1211 end if;
1212 end if;
1213 end Process_Flist;
1215 -- Start or processing for Freeze_All_Ent
1217 begin
1218 E := From;
1219 while Present (E) loop
1221 -- If the entity is an inner package which is not a package
1222 -- renaming, then its entities must be frozen at this point. Note
1223 -- that such entities do NOT get frozen at the end of the nested
1224 -- package itself (only library packages freeze).
1226 -- Same is true for task declarations, where anonymous records
1227 -- created for entry parameters must be frozen.
1229 if Ekind (E) = E_Package
1230 and then No (Renamed_Object (E))
1231 and then not Is_Child_Unit (E)
1232 and then not Is_Frozen (E)
1233 then
1234 Push_Scope (E);
1235 Install_Visible_Declarations (E);
1236 Install_Private_Declarations (E);
1238 Freeze_All (First_Entity (E), After);
1240 End_Package_Scope (E);
1242 elsif Ekind (E) in Task_Kind
1243 and then
1244 (Nkind (Parent (E)) = N_Task_Type_Declaration
1245 or else
1246 Nkind (Parent (E)) = N_Single_Task_Declaration)
1247 then
1248 Push_Scope (E);
1249 Freeze_All (First_Entity (E), After);
1250 End_Scope;
1252 -- For a derived tagged type, we must ensure that all the
1253 -- primitive operations of the parent have been frozen, so that
1254 -- their addresses will be in the parent's dispatch table at the
1255 -- point it is inherited.
1257 elsif Ekind (E) = E_Record_Type
1258 and then Is_Tagged_Type (E)
1259 and then Is_Tagged_Type (Etype (E))
1260 and then Is_Derived_Type (E)
1261 then
1262 declare
1263 Prim_List : constant Elist_Id :=
1264 Primitive_Operations (Etype (E));
1266 Prim : Elmt_Id;
1267 Subp : Entity_Id;
1269 begin
1270 Prim := First_Elmt (Prim_List);
1272 while Present (Prim) loop
1273 Subp := Node (Prim);
1275 if Comes_From_Source (Subp)
1276 and then not Is_Frozen (Subp)
1277 then
1278 Flist := Freeze_Entity (Subp, Loc);
1279 Process_Flist;
1280 end if;
1282 Next_Elmt (Prim);
1283 end loop;
1284 end;
1285 end if;
1287 if not Is_Frozen (E) then
1288 Flist := Freeze_Entity (E, Loc);
1289 Process_Flist;
1290 end if;
1292 -- If an incomplete type is still not frozen, this may be a
1293 -- premature freezing because of a body declaration that follows.
1294 -- Indicate where the freezing took place.
1296 -- If the freezing is caused by the end of the current declarative
1297 -- part, it is a Taft Amendment type, and there is no error.
1299 if not Is_Frozen (E)
1300 and then Ekind (E) = E_Incomplete_Type
1301 then
1302 declare
1303 Bod : constant Node_Id := Next (After);
1305 begin
1306 if (Nkind (Bod) = N_Subprogram_Body
1307 or else Nkind (Bod) = N_Entry_Body
1308 or else Nkind (Bod) = N_Package_Body
1309 or else Nkind (Bod) = N_Protected_Body
1310 or else Nkind (Bod) = N_Task_Body
1311 or else Nkind (Bod) in N_Body_Stub)
1312 and then
1313 List_Containing (After) = List_Containing (Parent (E))
1314 then
1315 Error_Msg_Sloc := Sloc (Next (After));
1316 Error_Msg_NE
1317 ("type& is frozen# before its full declaration",
1318 Parent (E), E);
1319 end if;
1320 end;
1321 end if;
1323 Next_Entity (E);
1324 end loop;
1325 end Freeze_All_Ent;
1327 -- Start of processing for Freeze_All
1329 begin
1330 Freeze_All_Ent (From, After);
1332 -- Now that all types are frozen, we can deal with default expressions
1333 -- that require us to build a default expression functions. This is the
1334 -- point at which such functions are constructed (after all types that
1335 -- might be used in such expressions have been frozen).
1337 -- We also add finalization chains to access types whose designated
1338 -- types are controlled. This is normally done when freezing the type,
1339 -- but this misses recursive type definitions where the later members
1340 -- of the recursion introduce controlled components.
1342 -- Loop through entities
1344 E := From;
1345 while Present (E) loop
1346 if Is_Subprogram (E) then
1348 if not Default_Expressions_Processed (E) then
1349 Process_Default_Expressions (E, After);
1350 end if;
1352 if not Has_Completion (E) then
1353 Decl := Unit_Declaration_Node (E);
1355 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1356 Build_And_Analyze_Renamed_Body (Decl, E, After);
1358 elsif Nkind (Decl) = N_Subprogram_Declaration
1359 and then Present (Corresponding_Body (Decl))
1360 and then
1361 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1362 = N_Subprogram_Renaming_Declaration
1363 then
1364 Build_And_Analyze_Renamed_Body
1365 (Decl, Corresponding_Body (Decl), After);
1366 end if;
1367 end if;
1369 elsif Ekind (E) in Task_Kind
1370 and then
1371 (Nkind (Parent (E)) = N_Task_Type_Declaration
1372 or else
1373 Nkind (Parent (E)) = N_Single_Task_Declaration)
1374 then
1375 declare
1376 Ent : Entity_Id;
1377 begin
1378 Ent := First_Entity (E);
1380 while Present (Ent) loop
1382 if Is_Entry (Ent)
1383 and then not Default_Expressions_Processed (Ent)
1384 then
1385 Process_Default_Expressions (Ent, After);
1386 end if;
1388 Next_Entity (Ent);
1389 end loop;
1390 end;
1392 elsif Is_Access_Type (E)
1393 and then Comes_From_Source (E)
1394 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1395 and then Needs_Finalization (Designated_Type (E))
1396 and then No (Associated_Final_Chain (E))
1397 then
1398 Build_Final_List (Parent (E), E);
1399 end if;
1401 Next_Entity (E);
1402 end loop;
1403 end Freeze_All;
1405 -----------------------
1406 -- Freeze_And_Append --
1407 -----------------------
1409 procedure Freeze_And_Append
1410 (Ent : Entity_Id;
1411 Loc : Source_Ptr;
1412 Result : in out List_Id)
1414 L : constant List_Id := Freeze_Entity (Ent, Loc);
1415 begin
1416 if Is_Non_Empty_List (L) then
1417 if Result = No_List then
1418 Result := L;
1419 else
1420 Append_List (L, Result);
1421 end if;
1422 end if;
1423 end Freeze_And_Append;
1425 -------------------
1426 -- Freeze_Before --
1427 -------------------
1429 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1430 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
1431 begin
1432 if Is_Non_Empty_List (Freeze_Nodes) then
1433 Insert_Actions (N, Freeze_Nodes);
1434 end if;
1435 end Freeze_Before;
1437 -------------------
1438 -- Freeze_Entity --
1439 -------------------
1441 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
1442 Test_E : Entity_Id := E;
1443 Comp : Entity_Id;
1444 F_Node : Node_Id;
1445 Result : List_Id;
1446 Indx : Node_Id;
1447 Formal : Entity_Id;
1448 Atype : Entity_Id;
1450 Has_Default_Initialization : Boolean := False;
1451 -- This flag gets set to true for a variable with default initialization
1453 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1454 -- Check that an Access or Unchecked_Access attribute with a prefix
1455 -- which is the current instance type can only be applied when the type
1456 -- is limited.
1458 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1459 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1460 -- integer literal without an explicit corresponding size clause. The
1461 -- caller has checked that Utype is a modular integer type.
1463 function After_Last_Declaration return Boolean;
1464 -- If Loc is a freeze_entity that appears after the last declaration
1465 -- in the scope, inhibit error messages on late completion.
1467 procedure Freeze_Record_Type (Rec : Entity_Id);
1468 -- Freeze each component, handle some representation clauses, and freeze
1469 -- primitive operations if this is a tagged type.
1471 ----------------------------
1472 -- After_Last_Declaration --
1473 ----------------------------
1475 function After_Last_Declaration return Boolean is
1476 Spec : constant Node_Id := Parent (Current_Scope);
1477 begin
1478 if Nkind (Spec) = N_Package_Specification then
1479 if Present (Private_Declarations (Spec)) then
1480 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1481 elsif Present (Visible_Declarations (Spec)) then
1482 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1483 else
1484 return False;
1485 end if;
1486 else
1487 return False;
1488 end if;
1489 end After_Last_Declaration;
1491 ----------------------------
1492 -- Check_Current_Instance --
1493 ----------------------------
1495 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1497 Rec_Type : constant Entity_Id :=
1498 Scope (Defining_Identifier (Comp_Decl));
1500 Decl : constant Node_Id := Parent (Rec_Type);
1502 function Process (N : Node_Id) return Traverse_Result;
1503 -- Process routine to apply check to given node
1505 -------------
1506 -- Process --
1507 -------------
1509 function Process (N : Node_Id) return Traverse_Result is
1510 begin
1511 case Nkind (N) is
1512 when N_Attribute_Reference =>
1513 if (Attribute_Name (N) = Name_Access
1514 or else
1515 Attribute_Name (N) = Name_Unchecked_Access)
1516 and then Is_Entity_Name (Prefix (N))
1517 and then Is_Type (Entity (Prefix (N)))
1518 and then Entity (Prefix (N)) = E
1519 then
1520 Error_Msg_N
1521 ("current instance must be a limited type", Prefix (N));
1522 return Abandon;
1523 else
1524 return OK;
1525 end if;
1527 when others => return OK;
1528 end case;
1529 end Process;
1531 procedure Traverse is new Traverse_Proc (Process);
1533 -- Start of processing for Check_Current_Instance
1535 begin
1536 -- In Ada95, the (imprecise) rule is that the current instance of a
1537 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1538 -- either a tagged type, or a limited record.
1540 if Is_Limited_Type (Rec_Type)
1541 and then (Ada_Version < Ada_05 or else Is_Tagged_Type (Rec_Type))
1542 then
1543 return;
1545 elsif Nkind (Decl) = N_Full_Type_Declaration
1546 and then Limited_Present (Type_Definition (Decl))
1547 then
1548 return;
1550 else
1551 Traverse (Comp_Decl);
1552 end if;
1553 end Check_Current_Instance;
1555 ------------------------------
1556 -- Check_Suspicious_Modulus --
1557 ------------------------------
1559 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1560 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1562 begin
1563 if Nkind (Decl) = N_Full_Type_Declaration then
1564 declare
1565 Tdef : constant Node_Id := Type_Definition (Decl);
1566 begin
1567 if Nkind (Tdef) = N_Modular_Type_Definition then
1568 declare
1569 Modulus : constant Node_Id :=
1570 Original_Node (Expression (Tdef));
1571 begin
1572 if Nkind (Modulus) = N_Integer_Literal then
1573 declare
1574 Modv : constant Uint := Intval (Modulus);
1575 Sizv : constant Uint := RM_Size (Utype);
1577 begin
1578 -- First case, modulus and size are the same. This
1579 -- happens if you have something like mod 32, with
1580 -- an explicit size of 32, this is for sure a case
1581 -- where the warning is given, since it is seems
1582 -- very unlikely that someone would want e.g. a
1583 -- five bit type stored in 32 bits. It is much
1584 -- more likely they wanted a 32-bit type.
1586 if Modv = Sizv then
1587 null;
1589 -- Second case, the modulus is 32 or 64 and no
1590 -- size clause is present. This is a less clear
1591 -- case for giving the warning, but in the case
1592 -- of 32/64 (5-bit or 6-bit types) these seem rare
1593 -- enough that it is a likely error (and in any
1594 -- case using 2**5 or 2**6 in these cases seems
1595 -- clearer. We don't include 8 or 16 here, simply
1596 -- because in practice 3-bit and 4-bit types are
1597 -- more common and too many false positives if
1598 -- we warn in these cases.
1600 elsif not Has_Size_Clause (Utype)
1601 and then (Modv = Uint_32 or else Modv = Uint_64)
1602 then
1603 null;
1605 -- No warning needed
1607 else
1608 return;
1609 end if;
1611 -- If we fall through, give warning
1613 Error_Msg_Uint_1 := Modv;
1614 Error_Msg_N
1615 ("?2 '*'*^' may have been intended here",
1616 Modulus);
1617 end;
1618 end if;
1619 end;
1620 end if;
1621 end;
1622 end if;
1623 end Check_Suspicious_Modulus;
1625 ------------------------
1626 -- Freeze_Record_Type --
1627 ------------------------
1629 procedure Freeze_Record_Type (Rec : Entity_Id) is
1630 Comp : Entity_Id;
1631 IR : Node_Id;
1632 ADC : Node_Id;
1633 Prev : Entity_Id;
1635 Junk : Boolean;
1636 pragma Warnings (Off, Junk);
1638 Unplaced_Component : Boolean := False;
1639 -- Set True if we find at least one component with no component
1640 -- clause (used to warn about useless Pack pragmas).
1642 Placed_Component : Boolean := False;
1643 -- Set True if we find at least one component with a component
1644 -- clause (used to warn about useless Bit_Order pragmas, and also
1645 -- to detect cases where Implicit_Packing may have an effect).
1647 All_Scalar_Components : Boolean := True;
1648 -- Set False if we encounter a component of a non-scalar type
1650 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1651 Scalar_Component_Total_Esize : Uint := Uint_0;
1652 -- Accumulates total RM_Size values and total Esize values of all
1653 -- scalar components. Used for processing of Implicit_Packing.
1655 function Check_Allocator (N : Node_Id) return Node_Id;
1656 -- If N is an allocator, possibly wrapped in one or more level of
1657 -- qualified expression(s), return the inner allocator node, else
1658 -- return Empty.
1660 procedure Check_Itype (Typ : Entity_Id);
1661 -- If the component subtype is an access to a constrained subtype of
1662 -- an already frozen type, make the subtype frozen as well. It might
1663 -- otherwise be frozen in the wrong scope, and a freeze node on
1664 -- subtype has no effect. Similarly, if the component subtype is a
1665 -- regular (not protected) access to subprogram, set the anonymous
1666 -- subprogram type to frozen as well, to prevent an out-of-scope
1667 -- freeze node at some eventual point of call. Protected operations
1668 -- are handled elsewhere.
1670 ---------------------
1671 -- Check_Allocator --
1672 ---------------------
1674 function Check_Allocator (N : Node_Id) return Node_Id is
1675 Inner : Node_Id;
1676 begin
1677 Inner := N;
1678 loop
1679 if Nkind (Inner) = N_Allocator then
1680 return Inner;
1681 elsif Nkind (Inner) = N_Qualified_Expression then
1682 Inner := Expression (Inner);
1683 else
1684 return Empty;
1685 end if;
1686 end loop;
1687 end Check_Allocator;
1689 -----------------
1690 -- Check_Itype --
1691 -----------------
1693 procedure Check_Itype (Typ : Entity_Id) is
1694 Desig : constant Entity_Id := Designated_Type (Typ);
1696 begin
1697 if not Is_Frozen (Desig)
1698 and then Is_Frozen (Base_Type (Desig))
1699 then
1700 Set_Is_Frozen (Desig);
1702 -- In addition, add an Itype_Reference to ensure that the
1703 -- access subtype is elaborated early enough. This cannot be
1704 -- done if the subtype may depend on discriminants.
1706 if Ekind (Comp) = E_Component
1707 and then Is_Itype (Etype (Comp))
1708 and then not Has_Discriminants (Rec)
1709 then
1710 IR := Make_Itype_Reference (Sloc (Comp));
1711 Set_Itype (IR, Desig);
1713 if No (Result) then
1714 Result := New_List (IR);
1715 else
1716 Append (IR, Result);
1717 end if;
1718 end if;
1720 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1721 and then Convention (Desig) /= Convention_Protected
1722 then
1723 Set_Is_Frozen (Desig);
1724 end if;
1725 end Check_Itype;
1727 -- Start of processing for Freeze_Record_Type
1729 begin
1730 -- If this is a subtype of a controlled type, declared without a
1731 -- constraint, the _controller may not appear in the component list
1732 -- if the parent was not frozen at the point of subtype declaration.
1733 -- Inherit the _controller component now.
1735 if Rec /= Base_Type (Rec)
1736 and then Has_Controlled_Component (Rec)
1737 then
1738 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1739 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1740 then
1741 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1743 -- If this is an internal type without a declaration, as for
1744 -- record component, the base type may not yet be frozen, and its
1745 -- controller has not been created. Add an explicit freeze node
1746 -- for the itype, so it will be frozen after the base type. This
1747 -- freeze node is used to communicate with the expander, in order
1748 -- to create the controller for the enclosing record, and it is
1749 -- deleted afterwards (see exp_ch3). It must not be created when
1750 -- expansion is off, because it might appear in the wrong context
1751 -- for the back end.
1753 elsif Is_Itype (Rec)
1754 and then Has_Delayed_Freeze (Base_Type (Rec))
1755 and then
1756 Nkind (Associated_Node_For_Itype (Rec)) =
1757 N_Component_Declaration
1758 and then Expander_Active
1759 then
1760 Ensure_Freeze_Node (Rec);
1761 end if;
1762 end if;
1764 -- Freeze components and embedded subtypes
1766 Comp := First_Entity (Rec);
1767 Prev := Empty;
1768 while Present (Comp) loop
1770 -- First handle the (real) component case
1772 if Ekind (Comp) = E_Component
1773 or else Ekind (Comp) = E_Discriminant
1774 then
1775 declare
1776 CC : constant Node_Id := Component_Clause (Comp);
1778 begin
1779 -- Freezing a record type freezes the type of each of its
1780 -- components. However, if the type of the component is
1781 -- part of this record, we do not want or need a separate
1782 -- Freeze_Node. Note that Is_Itype is wrong because that's
1783 -- also set in private type cases. We also can't check for
1784 -- the Scope being exactly Rec because of private types and
1785 -- record extensions.
1787 if Is_Itype (Etype (Comp))
1788 and then Is_Record_Type (Underlying_Type
1789 (Scope (Etype (Comp))))
1790 then
1791 Undelay_Type (Etype (Comp));
1792 end if;
1794 Freeze_And_Append (Etype (Comp), Loc, Result);
1796 -- Check for error of component clause given for variable
1797 -- sized type. We have to delay this test till this point,
1798 -- since the component type has to be frozen for us to know
1799 -- if it is variable length. We omit this test in a generic
1800 -- context, it will be applied at instantiation time.
1802 if Present (CC) then
1803 Placed_Component := True;
1805 if Inside_A_Generic then
1806 null;
1808 elsif not
1809 Size_Known_At_Compile_Time
1810 (Underlying_Type (Etype (Comp)))
1811 then
1812 Error_Msg_N
1813 ("component clause not allowed for variable " &
1814 "length component", CC);
1815 end if;
1817 else
1818 Unplaced_Component := True;
1819 end if;
1821 -- Case of component requires byte alignment
1823 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
1825 -- Set the enclosing record to also require byte align
1827 Set_Must_Be_On_Byte_Boundary (Rec);
1829 -- Check for component clause that is inconsistent with
1830 -- the required byte boundary alignment.
1832 if Present (CC)
1833 and then Normalized_First_Bit (Comp) mod
1834 System_Storage_Unit /= 0
1835 then
1836 Error_Msg_N
1837 ("component & must be byte aligned",
1838 Component_Name (Component_Clause (Comp)));
1839 end if;
1840 end if;
1842 -- If component clause is present, then deal with the non-
1843 -- default bit order case for Ada 95 mode. The required
1844 -- processing for Ada 2005 mode is handled separately after
1845 -- processing all components.
1847 -- We only do this processing for the base type, and in
1848 -- fact that's important, since otherwise if there are
1849 -- record subtypes, we could reverse the bits once for
1850 -- each subtype, which would be incorrect.
1852 if Present (CC)
1853 and then Reverse_Bit_Order (Rec)
1854 and then Ekind (E) = E_Record_Type
1855 and then Ada_Version <= Ada_95
1856 then
1857 declare
1858 CFB : constant Uint := Component_Bit_Offset (Comp);
1859 CSZ : constant Uint := Esize (Comp);
1860 CLC : constant Node_Id := Component_Clause (Comp);
1861 Pos : constant Node_Id := Position (CLC);
1862 FB : constant Node_Id := First_Bit (CLC);
1864 Storage_Unit_Offset : constant Uint :=
1865 CFB / System_Storage_Unit;
1867 Start_Bit : constant Uint :=
1868 CFB mod System_Storage_Unit;
1870 begin
1871 -- Cases where field goes over storage unit boundary
1873 if Start_Bit + CSZ > System_Storage_Unit then
1875 -- Allow multi-byte field but generate warning
1877 if Start_Bit mod System_Storage_Unit = 0
1878 and then CSZ mod System_Storage_Unit = 0
1879 then
1880 Error_Msg_N
1881 ("multi-byte field specified with non-standard"
1882 & " Bit_Order?", CLC);
1884 if Bytes_Big_Endian then
1885 Error_Msg_N
1886 ("bytes are not reversed "
1887 & "(component is big-endian)?", CLC);
1888 else
1889 Error_Msg_N
1890 ("bytes are not reversed "
1891 & "(component is little-endian)?", CLC);
1892 end if;
1894 -- Do not allow non-contiguous field
1896 else
1897 Error_Msg_N
1898 ("attempt to specify non-contiguous field "
1899 & "not permitted", CLC);
1900 Error_Msg_N
1901 ("\caused by non-standard Bit_Order "
1902 & "specified", CLC);
1903 Error_Msg_N
1904 ("\consider possibility of using "
1905 & "Ada 2005 mode here", CLC);
1906 end if;
1908 -- Case where field fits in one storage unit
1910 else
1911 -- Give warning if suspicious component clause
1913 if Intval (FB) >= System_Storage_Unit
1914 and then Warn_On_Reverse_Bit_Order
1915 then
1916 Error_Msg_N
1917 ("?Bit_Order clause does not affect " &
1918 "byte ordering", Pos);
1919 Error_Msg_Uint_1 :=
1920 Intval (Pos) + Intval (FB) /
1921 System_Storage_Unit;
1922 Error_Msg_N
1923 ("?position normalized to ^ before bit " &
1924 "order interpreted", Pos);
1925 end if;
1927 -- Here is where we fix up the Component_Bit_Offset
1928 -- value to account for the reverse bit order.
1929 -- Some examples of what needs to be done are:
1931 -- First_Bit .. Last_Bit Component_Bit_Offset
1932 -- old new old new
1934 -- 0 .. 0 7 .. 7 0 7
1935 -- 0 .. 1 6 .. 7 0 6
1936 -- 0 .. 2 5 .. 7 0 5
1937 -- 0 .. 7 0 .. 7 0 4
1939 -- 1 .. 1 6 .. 6 1 6
1940 -- 1 .. 4 3 .. 6 1 3
1941 -- 4 .. 7 0 .. 3 4 0
1943 -- The general rule is that the first bit is
1944 -- is obtained by subtracting the old ending bit
1945 -- from storage_unit - 1.
1947 Set_Component_Bit_Offset
1948 (Comp,
1949 (Storage_Unit_Offset * System_Storage_Unit) +
1950 (System_Storage_Unit - 1) -
1951 (Start_Bit + CSZ - 1));
1953 Set_Normalized_First_Bit
1954 (Comp,
1955 Component_Bit_Offset (Comp) mod
1956 System_Storage_Unit);
1957 end if;
1958 end;
1959 end if;
1960 end;
1961 end if;
1963 -- Gather data for possible Implicit_Packing later
1965 if not Is_Scalar_Type (Etype (Comp)) then
1966 All_Scalar_Components := False;
1967 else
1968 Scalar_Component_Total_RM_Size :=
1969 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1970 Scalar_Component_Total_Esize :=
1971 Scalar_Component_Total_Esize + Esize (Etype (Comp));
1972 end if;
1974 -- If the component is an Itype with Delayed_Freeze and is either
1975 -- a record or array subtype and its base type has not yet been
1976 -- frozen, we must remove this from the entity list of this
1977 -- record and put it on the entity list of the scope of its base
1978 -- type. Note that we know that this is not the type of a
1979 -- component since we cleared Has_Delayed_Freeze for it in the
1980 -- previous loop. Thus this must be the Designated_Type of an
1981 -- access type, which is the type of a component.
1983 if Is_Itype (Comp)
1984 and then Is_Type (Scope (Comp))
1985 and then Is_Composite_Type (Comp)
1986 and then Base_Type (Comp) /= Comp
1987 and then Has_Delayed_Freeze (Comp)
1988 and then not Is_Frozen (Base_Type (Comp))
1989 then
1990 declare
1991 Will_Be_Frozen : Boolean := False;
1992 S : Entity_Id;
1994 begin
1995 -- We have a pretty bad kludge here. Suppose Rec is subtype
1996 -- being defined in a subprogram that's created as part of
1997 -- the freezing of Rec'Base. In that case, we know that
1998 -- Comp'Base must have already been frozen by the time we
1999 -- get to elaborate this because Gigi doesn't elaborate any
2000 -- bodies until it has elaborated all of the declarative
2001 -- part. But Is_Frozen will not be set at this point because
2002 -- we are processing code in lexical order.
2004 -- We detect this case by going up the Scope chain of Rec
2005 -- and seeing if we have a subprogram scope before reaching
2006 -- the top of the scope chain or that of Comp'Base. If we
2007 -- do, then mark that Comp'Base will actually be frozen. If
2008 -- so, we merely undelay it.
2010 S := Scope (Rec);
2011 while Present (S) loop
2012 if Is_Subprogram (S) then
2013 Will_Be_Frozen := True;
2014 exit;
2015 elsif S = Scope (Base_Type (Comp)) then
2016 exit;
2017 end if;
2019 S := Scope (S);
2020 end loop;
2022 if Will_Be_Frozen then
2023 Undelay_Type (Comp);
2024 else
2025 if Present (Prev) then
2026 Set_Next_Entity (Prev, Next_Entity (Comp));
2027 else
2028 Set_First_Entity (Rec, Next_Entity (Comp));
2029 end if;
2031 -- Insert in entity list of scope of base type (which
2032 -- must be an enclosing scope, because still unfrozen).
2034 Append_Entity (Comp, Scope (Base_Type (Comp)));
2035 end if;
2036 end;
2038 -- If the component is an access type with an allocator as default
2039 -- value, the designated type will be frozen by the corresponding
2040 -- expression in init_proc. In order to place the freeze node for
2041 -- the designated type before that for the current record type,
2042 -- freeze it now.
2044 -- Same process if the component is an array of access types,
2045 -- initialized with an aggregate. If the designated type is
2046 -- private, it cannot contain allocators, and it is premature
2047 -- to freeze the type, so we check for this as well.
2049 elsif Is_Access_Type (Etype (Comp))
2050 and then Present (Parent (Comp))
2051 and then Present (Expression (Parent (Comp)))
2052 then
2053 declare
2054 Alloc : constant Node_Id :=
2055 Check_Allocator (Expression (Parent (Comp)));
2057 begin
2058 if Present (Alloc) then
2060 -- If component is pointer to a classwide type, freeze
2061 -- the specific type in the expression being allocated.
2062 -- The expression may be a subtype indication, in which
2063 -- case freeze the subtype mark.
2065 if Is_Class_Wide_Type
2066 (Designated_Type (Etype (Comp)))
2067 then
2068 if Is_Entity_Name (Expression (Alloc)) then
2069 Freeze_And_Append
2070 (Entity (Expression (Alloc)), Loc, Result);
2071 elsif
2072 Nkind (Expression (Alloc)) = N_Subtype_Indication
2073 then
2074 Freeze_And_Append
2075 (Entity (Subtype_Mark (Expression (Alloc))),
2076 Loc, Result);
2077 end if;
2079 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2080 Check_Itype (Etype (Comp));
2082 else
2083 Freeze_And_Append
2084 (Designated_Type (Etype (Comp)), Loc, Result);
2085 end if;
2086 end if;
2087 end;
2089 elsif Is_Access_Type (Etype (Comp))
2090 and then Is_Itype (Designated_Type (Etype (Comp)))
2091 then
2092 Check_Itype (Etype (Comp));
2094 elsif Is_Array_Type (Etype (Comp))
2095 and then Is_Access_Type (Component_Type (Etype (Comp)))
2096 and then Present (Parent (Comp))
2097 and then Nkind (Parent (Comp)) = N_Component_Declaration
2098 and then Present (Expression (Parent (Comp)))
2099 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2100 and then Is_Fully_Defined
2101 (Designated_Type (Component_Type (Etype (Comp))))
2102 then
2103 Freeze_And_Append
2104 (Designated_Type
2105 (Component_Type (Etype (Comp))), Loc, Result);
2106 end if;
2108 Prev := Comp;
2109 Next_Entity (Comp);
2110 end loop;
2112 -- Deal with pragma Bit_Order
2114 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2115 if not Placed_Component then
2116 ADC :=
2117 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2118 Error_Msg_N
2119 ("?Bit_Order specification has no effect", ADC);
2120 Error_Msg_N
2121 ("\?since no component clauses were specified", ADC);
2123 -- Here is where we do Ada 2005 processing for bit order (the Ada
2124 -- 95 case was already taken care of above).
2126 elsif Ada_Version >= Ada_05 then
2127 Adjust_Record_For_Reverse_Bit_Order (Rec);
2128 end if;
2129 end if;
2131 -- Set OK_To_Reorder_Components depending on debug flags
2133 if Rec = Base_Type (Rec)
2134 and then Convention (Rec) = Convention_Ada
2135 then
2136 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2137 or else
2138 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2139 then
2140 Set_OK_To_Reorder_Components (Rec);
2141 end if;
2142 end if;
2144 -- Check for useless pragma Pack when all components placed. We only
2145 -- do this check for record types, not subtypes, since a subtype may
2146 -- have all its components placed, and it still makes perfectly good
2147 -- sense to pack other subtypes or the parent type. We do not give
2148 -- this warning if Optimize_Alignment is set to Space, since the
2149 -- pragma Pack does have an effect in this case (it always resets
2150 -- the alignment to one).
2152 if Ekind (Rec) = E_Record_Type
2153 and then Is_Packed (Rec)
2154 and then not Unplaced_Component
2155 and then Optimize_Alignment /= 'S'
2156 then
2157 -- Reset packed status. Probably not necessary, but we do it so
2158 -- that there is no chance of the back end doing something strange
2159 -- with this redundant indication of packing.
2161 Set_Is_Packed (Rec, False);
2163 -- Give warning if redundant constructs warnings on
2165 if Warn_On_Redundant_Constructs then
2166 Error_Msg_N
2167 ("?pragma Pack has no effect, no unplaced components",
2168 Get_Rep_Pragma (Rec, Name_Pack));
2169 end if;
2170 end if;
2172 -- If this is the record corresponding to a remote type, freeze the
2173 -- remote type here since that is what we are semantically freezing.
2174 -- This prevents the freeze node for that type in an inner scope.
2176 -- Also, Check for controlled components and unchecked unions.
2177 -- Finally, enforce the restriction that access attributes with a
2178 -- current instance prefix can only apply to limited types.
2180 if Ekind (Rec) = E_Record_Type then
2181 if Present (Corresponding_Remote_Type (Rec)) then
2182 Freeze_And_Append
2183 (Corresponding_Remote_Type (Rec), Loc, Result);
2184 end if;
2186 Comp := First_Component (Rec);
2187 while Present (Comp) loop
2189 -- Do not set Has_Controlled_Component on a class-wide
2190 -- equivalent type. See Make_CW_Equivalent_Type.
2192 if not Is_Class_Wide_Equivalent_Type (Rec)
2193 and then (Has_Controlled_Component (Etype (Comp))
2194 or else (Chars (Comp) /= Name_uParent
2195 and then Is_Controlled (Etype (Comp)))
2196 or else (Is_Protected_Type (Etype (Comp))
2197 and then Present
2198 (Corresponding_Record_Type
2199 (Etype (Comp)))
2200 and then Has_Controlled_Component
2201 (Corresponding_Record_Type
2202 (Etype (Comp)))))
2203 then
2204 Set_Has_Controlled_Component (Rec);
2205 exit;
2206 end if;
2208 if Has_Unchecked_Union (Etype (Comp)) then
2209 Set_Has_Unchecked_Union (Rec);
2210 end if;
2212 if Has_Per_Object_Constraint (Comp) then
2214 -- Scan component declaration for likely misuses of current
2215 -- instance, either in a constraint or a default expression.
2217 Check_Current_Instance (Parent (Comp));
2218 end if;
2220 Next_Component (Comp);
2221 end loop;
2222 end if;
2224 Set_Component_Alignment_If_Not_Set (Rec);
2226 -- For first subtypes, check if there are any fixed-point fields with
2227 -- component clauses, where we must check the size. This is not done
2228 -- till the freeze point, since for fixed-point types, we do not know
2229 -- the size until the type is frozen. Similar processing applies to
2230 -- bit packed arrays.
2232 if Is_First_Subtype (Rec) then
2233 Comp := First_Component (Rec);
2235 while Present (Comp) loop
2236 if Present (Component_Clause (Comp))
2237 and then (Is_Fixed_Point_Type (Etype (Comp))
2238 or else
2239 Is_Bit_Packed_Array (Etype (Comp)))
2240 then
2241 Check_Size
2242 (Component_Name (Component_Clause (Comp)),
2243 Etype (Comp),
2244 Esize (Comp),
2245 Junk);
2246 end if;
2248 Next_Component (Comp);
2249 end loop;
2250 end if;
2252 -- Generate warning for applying C or C++ convention to a record
2253 -- with discriminants. This is suppressed for the unchecked union
2254 -- case, since the whole point in this case is interface C. We also
2255 -- do not generate this within instantiations, since we will have
2256 -- generated a message on the template.
2258 if Has_Discriminants (E)
2259 and then not Is_Unchecked_Union (E)
2260 and then (Convention (E) = Convention_C
2261 or else
2262 Convention (E) = Convention_CPP)
2263 and then Comes_From_Source (E)
2264 and then not In_Instance
2265 and then not Has_Warnings_Off (E)
2266 and then not Has_Warnings_Off (Base_Type (E))
2267 then
2268 declare
2269 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2270 A2 : Node_Id;
2272 begin
2273 if Present (Cprag) then
2274 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2276 if Convention (E) = Convention_C then
2277 Error_Msg_N
2278 ("?variant record has no direct equivalent in C", A2);
2279 else
2280 Error_Msg_N
2281 ("?variant record has no direct equivalent in C++", A2);
2282 end if;
2284 Error_Msg_NE
2285 ("\?use of convention for type& is dubious", A2, E);
2286 end if;
2287 end;
2288 end if;
2290 -- See if Size is too small as is (and implicit packing might help)
2292 if not Is_Packed (Rec)
2294 -- No implicit packing if even one component is explicitly placed
2296 and then not Placed_Component
2298 -- Must have size clause and all scalar components
2300 and then Has_Size_Clause (Rec)
2301 and then All_Scalar_Components
2303 -- Do not try implicit packing on records with discriminants, too
2304 -- complicated, especially in the variant record case.
2306 and then not Has_Discriminants (Rec)
2308 -- We can implicitly pack if the specified size of the record is
2309 -- less than the sum of the object sizes (no point in packing if
2310 -- this is not the case).
2312 and then Esize (Rec) < Scalar_Component_Total_Esize
2314 -- And the total RM size cannot be greater than the specified size
2315 -- since otherwise packing will not get us where we have to be!
2317 and then Esize (Rec) >= Scalar_Component_Total_RM_Size
2319 -- Never do implicit packing in CodePeer mode since we don't do
2320 -- any packing ever in this mode (why not???)
2322 and then not CodePeer_Mode
2323 then
2324 -- If implicit packing enabled, do it
2326 if Implicit_Packing then
2327 Set_Is_Packed (Rec);
2329 -- Otherwise flag the size clause
2331 else
2332 declare
2333 Sz : constant Node_Id := Size_Clause (Rec);
2334 begin
2335 Error_Msg_NE -- CODEFIX
2336 ("size given for& too small", Sz, Rec);
2337 Error_Msg_N -- CODEFIX
2338 ("\use explicit pragma Pack "
2339 & "or use pragma Implicit_Packing", Sz);
2340 end;
2341 end if;
2342 end if;
2343 end Freeze_Record_Type;
2345 -- Start of processing for Freeze_Entity
2347 begin
2348 -- We are going to test for various reasons why this entity need not be
2349 -- frozen here, but in the case of an Itype that's defined within a
2350 -- record, that test actually applies to the record.
2352 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2353 Test_E := Scope (E);
2354 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2355 and then Is_Record_Type (Underlying_Type (Scope (E)))
2356 then
2357 Test_E := Underlying_Type (Scope (E));
2358 end if;
2360 -- Do not freeze if already frozen since we only need one freeze node
2362 if Is_Frozen (E) then
2363 return No_List;
2365 -- It is improper to freeze an external entity within a generic because
2366 -- its freeze node will appear in a non-valid context. The entity will
2367 -- be frozen in the proper scope after the current generic is analyzed.
2369 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
2370 return No_List;
2372 -- Do not freeze a global entity within an inner scope created during
2373 -- expansion. A call to subprogram E within some internal procedure
2374 -- (a stream attribute for example) might require freezing E, but the
2375 -- freeze node must appear in the same declarative part as E itself.
2376 -- The two-pass elaboration mechanism in gigi guarantees that E will
2377 -- be frozen before the inner call is elaborated. We exclude constants
2378 -- from this test, because deferred constants may be frozen early, and
2379 -- must be diagnosed (e.g. in the case of a deferred constant being used
2380 -- in a default expression). If the enclosing subprogram comes from
2381 -- source, or is a generic instance, then the freeze point is the one
2382 -- mandated by the language, and we freeze the entity. A subprogram that
2383 -- is a child unit body that acts as a spec does not have a spec that
2384 -- comes from source, but can only come from source.
2386 elsif In_Open_Scopes (Scope (Test_E))
2387 and then Scope (Test_E) /= Current_Scope
2388 and then Ekind (Test_E) /= E_Constant
2389 then
2390 declare
2391 S : Entity_Id := Current_Scope;
2393 begin
2394 while Present (S) loop
2395 if Is_Overloadable (S) then
2396 if Comes_From_Source (S)
2397 or else Is_Generic_Instance (S)
2398 or else Is_Child_Unit (S)
2399 then
2400 exit;
2401 else
2402 return No_List;
2403 end if;
2404 end if;
2406 S := Scope (S);
2407 end loop;
2408 end;
2410 -- Similarly, an inlined instance body may make reference to global
2411 -- entities, but these references cannot be the proper freezing point
2412 -- for them, and in the absence of inlining freezing will take place in
2413 -- their own scope. Normally instance bodies are analyzed after the
2414 -- enclosing compilation, and everything has been frozen at the proper
2415 -- place, but with front-end inlining an instance body is compiled
2416 -- before the end of the enclosing scope, and as a result out-of-order
2417 -- freezing must be prevented.
2419 elsif Front_End_Inlining
2420 and then In_Instance_Body
2421 and then Present (Scope (Test_E))
2422 then
2423 declare
2424 S : Entity_Id := Scope (Test_E);
2426 begin
2427 while Present (S) loop
2428 if Is_Generic_Instance (S) then
2429 exit;
2430 else
2431 S := Scope (S);
2432 end if;
2433 end loop;
2435 if No (S) then
2436 return No_List;
2437 end if;
2438 end;
2439 end if;
2441 -- Here to freeze the entity
2443 Result := No_List;
2444 Set_Is_Frozen (E);
2446 -- Case of entity being frozen is other than a type
2448 if not Is_Type (E) then
2450 -- If entity is exported or imported and does not have an external
2451 -- name, now is the time to provide the appropriate default name.
2452 -- Skip this if the entity is stubbed, since we don't need a name
2453 -- for any stubbed routine. For the case on intrinsics, if no
2454 -- external name is specified, then calls will be handled in
2455 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed; if
2456 -- an external name is provided, then Expand_Intrinsic_Call leaves
2457 -- calls in place for expansion by GIGI.
2459 if (Is_Imported (E) or else Is_Exported (E))
2460 and then No (Interface_Name (E))
2461 and then Convention (E) /= Convention_Stubbed
2462 and then Convention (E) /= Convention_Intrinsic
2463 then
2464 Set_Encoded_Interface_Name
2465 (E, Get_Default_External_Name (E));
2467 -- If entity is an atomic object appearing in a declaration and
2468 -- the expression is an aggregate, assign it to a temporary to
2469 -- ensure that the actual assignment is done atomically rather
2470 -- than component-wise (the assignment to the temp may be done
2471 -- component-wise, but that is harmless).
2473 elsif Is_Atomic (E)
2474 and then Nkind (Parent (E)) = N_Object_Declaration
2475 and then Present (Expression (Parent (E)))
2476 and then Nkind (Expression (Parent (E))) = N_Aggregate
2477 and then
2478 Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
2479 then
2480 null;
2481 end if;
2483 -- For a subprogram, freeze all parameter types and also the return
2484 -- type (RM 13.14(14)). However skip this for internal subprograms.
2485 -- This is also the point where any extra formal parameters are
2486 -- created since we now know whether the subprogram will use a
2487 -- foreign convention.
2489 if Is_Subprogram (E) then
2490 if not Is_Internal (E) then
2491 declare
2492 F_Type : Entity_Id;
2493 R_Type : Entity_Id;
2494 Warn_Node : Node_Id;
2496 begin
2497 -- Loop through formals
2499 Formal := First_Formal (E);
2500 while Present (Formal) loop
2501 F_Type := Etype (Formal);
2502 Freeze_And_Append (F_Type, Loc, Result);
2504 if Is_Private_Type (F_Type)
2505 and then Is_Private_Type (Base_Type (F_Type))
2506 and then No (Full_View (Base_Type (F_Type)))
2507 and then not Is_Generic_Type (F_Type)
2508 and then not Is_Derived_Type (F_Type)
2509 then
2510 -- If the type of a formal is incomplete, subprogram
2511 -- is being frozen prematurely. Within an instance
2512 -- (but not within a wrapper package) this is an
2513 -- artifact of our need to regard the end of an
2514 -- instantiation as a freeze point. Otherwise it is
2515 -- a definite error.
2517 if In_Instance then
2518 Set_Is_Frozen (E, False);
2519 return No_List;
2521 elsif not After_Last_Declaration
2522 and then not Freezing_Library_Level_Tagged_Type
2523 then
2524 Error_Msg_Node_1 := F_Type;
2525 Error_Msg
2526 ("type& must be fully defined before this point",
2527 Loc);
2528 end if;
2529 end if;
2531 -- Check suspicious parameter for C function. These tests
2532 -- apply only to exported/imported subprograms.
2534 if Warn_On_Export_Import
2535 and then Comes_From_Source (E)
2536 and then (Convention (E) = Convention_C
2537 or else
2538 Convention (E) = Convention_CPP)
2539 and then (Is_Imported (E) or else Is_Exported (E))
2540 and then Convention (E) /= Convention (Formal)
2541 and then not Has_Warnings_Off (E)
2542 and then not Has_Warnings_Off (F_Type)
2543 and then not Has_Warnings_Off (Formal)
2544 then
2545 -- Qualify mention of formals with subprogram name
2547 Error_Msg_Qual_Level := 1;
2549 -- Check suspicious use of fat C pointer
2551 if Is_Access_Type (F_Type)
2552 and then Esize (F_Type) > Ttypes.System_Address_Size
2553 then
2554 Error_Msg_N
2555 ("?type of & does not correspond to C pointer!",
2556 Formal);
2558 -- Check suspicious return of boolean
2560 elsif Root_Type (F_Type) = Standard_Boolean
2561 and then Convention (F_Type) = Convention_Ada
2562 and then not Has_Warnings_Off (F_Type)
2563 and then not Has_Size_Clause (F_Type)
2564 and then VM_Target = No_VM
2565 then
2566 Error_Msg_N
2567 ("& is an 8-bit Ada Boolean?", Formal);
2568 Error_Msg_N
2569 ("\use appropriate corresponding type in C "
2570 & "(e.g. char)?", Formal);
2572 -- Check suspicious tagged type
2574 elsif (Is_Tagged_Type (F_Type)
2575 or else (Is_Access_Type (F_Type)
2576 and then
2577 Is_Tagged_Type
2578 (Designated_Type (F_Type))))
2579 and then Convention (E) = Convention_C
2580 then
2581 Error_Msg_N
2582 ("?& involves a tagged type which does not "
2583 & "correspond to any C type!", Formal);
2585 -- Check wrong convention subprogram pointer
2587 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2588 and then not Has_Foreign_Convention (F_Type)
2589 then
2590 Error_Msg_N
2591 ("?subprogram pointer & should "
2592 & "have foreign convention!", Formal);
2593 Error_Msg_Sloc := Sloc (F_Type);
2594 Error_Msg_NE
2595 ("\?add Convention pragma to declaration of &#",
2596 Formal, F_Type);
2597 end if;
2599 -- Turn off name qualification after message output
2601 Error_Msg_Qual_Level := 0;
2602 end if;
2604 -- Check for unconstrained array in exported foreign
2605 -- convention case.
2607 if Has_Foreign_Convention (E)
2608 and then not Is_Imported (E)
2609 and then Is_Array_Type (F_Type)
2610 and then not Is_Constrained (F_Type)
2611 and then Warn_On_Export_Import
2613 -- Exclude VM case, since both .NET and JVM can handle
2614 -- unconstrained arrays without a problem.
2616 and then VM_Target = No_VM
2617 then
2618 Error_Msg_Qual_Level := 1;
2620 -- If this is an inherited operation, place the
2621 -- warning on the derived type declaration, rather
2622 -- than on the original subprogram.
2624 if Nkind (Original_Node (Parent (E))) =
2625 N_Full_Type_Declaration
2626 then
2627 Warn_Node := Parent (E);
2629 if Formal = First_Formal (E) then
2630 Error_Msg_NE
2631 ("?in inherited operation&", Warn_Node, E);
2632 end if;
2633 else
2634 Warn_Node := Formal;
2635 end if;
2637 Error_Msg_NE
2638 ("?type of argument& is unconstrained array",
2639 Warn_Node, Formal);
2640 Error_Msg_NE
2641 ("?foreign caller must pass bounds explicitly",
2642 Warn_Node, Formal);
2643 Error_Msg_Qual_Level := 0;
2644 end if;
2646 if not From_With_Type (F_Type) then
2647 if Is_Access_Type (F_Type) then
2648 F_Type := Designated_Type (F_Type);
2649 end if;
2651 -- If the formal is an anonymous_access_to_subprogram
2652 -- freeze the subprogram type as well, to prevent
2653 -- scope anomalies in gigi, because there is no other
2654 -- clear point at which it could be frozen.
2656 if Is_Itype (Etype (Formal))
2657 and then Ekind (F_Type) = E_Subprogram_Type
2658 then
2659 Freeze_And_Append (F_Type, Loc, Result);
2660 end if;
2661 end if;
2663 Next_Formal (Formal);
2664 end loop;
2666 -- Case of function: similar checks on return type
2668 if Ekind (E) = E_Function then
2670 -- Freeze return type
2672 R_Type := Etype (E);
2673 Freeze_And_Append (R_Type, Loc, Result);
2675 -- Check suspicious return type for C function
2677 if Warn_On_Export_Import
2678 and then (Convention (E) = Convention_C
2679 or else
2680 Convention (E) = Convention_CPP)
2681 and then (Is_Imported (E) or else Is_Exported (E))
2682 then
2683 -- Check suspicious return of fat C pointer
2685 if Is_Access_Type (R_Type)
2686 and then Esize (R_Type) > Ttypes.System_Address_Size
2687 and then not Has_Warnings_Off (E)
2688 and then not Has_Warnings_Off (R_Type)
2689 then
2690 Error_Msg_N
2691 ("?return type of& does not "
2692 & "correspond to C pointer!", E);
2694 -- Check suspicious return of boolean
2696 elsif Root_Type (R_Type) = Standard_Boolean
2697 and then Convention (R_Type) = Convention_Ada
2698 and then VM_Target = No_VM
2699 and then not Has_Warnings_Off (E)
2700 and then not Has_Warnings_Off (R_Type)
2701 and then not Has_Size_Clause (R_Type)
2702 then
2703 declare
2704 N : constant Node_Id :=
2705 Result_Definition (Declaration_Node (E));
2706 begin
2707 Error_Msg_NE
2708 ("return type of & is an 8-bit Ada Boolean?",
2709 N, E);
2710 Error_Msg_NE
2711 ("\use appropriate corresponding type in C "
2712 & "(e.g. char)?", N, E);
2713 end;
2715 -- Check suspicious return tagged type
2717 elsif (Is_Tagged_Type (R_Type)
2718 or else (Is_Access_Type (R_Type)
2719 and then
2720 Is_Tagged_Type
2721 (Designated_Type (R_Type))))
2722 and then Convention (E) = Convention_C
2723 and then not Has_Warnings_Off (E)
2724 and then not Has_Warnings_Off (R_Type)
2725 then
2726 Error_Msg_N
2727 ("?return type of & does not "
2728 & "correspond to C type!", E);
2730 -- Check return of wrong convention subprogram pointer
2732 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2733 and then not Has_Foreign_Convention (R_Type)
2734 and then not Has_Warnings_Off (E)
2735 and then not Has_Warnings_Off (R_Type)
2736 then
2737 Error_Msg_N
2738 ("?& should return a foreign "
2739 & "convention subprogram pointer", E);
2740 Error_Msg_Sloc := Sloc (R_Type);
2741 Error_Msg_NE
2742 ("\?add Convention pragma to declaration of& #",
2743 E, R_Type);
2744 end if;
2745 end if;
2747 -- Give warning for suspicous return of a result of an
2748 -- unconstrained array type in a foreign convention
2749 -- function.
2751 if Has_Foreign_Convention (E)
2753 -- We are looking for a return of unconstrained array
2755 and then Is_Array_Type (R_Type)
2756 and then not Is_Constrained (R_Type)
2758 -- Exclude imported routines, the warning does not
2759 -- belong on the import, but on the routine definition.
2761 and then not Is_Imported (E)
2763 -- Exclude VM case, since both .NET and JVM can handle
2764 -- return of unconstrained arrays without a problem.
2766 and then VM_Target = No_VM
2768 -- Check that general warning is enabled, and that it
2769 -- is not suppressed for this particular case.
2771 and then Warn_On_Export_Import
2772 and then not Has_Warnings_Off (E)
2773 and then not Has_Warnings_Off (R_Type)
2774 then
2775 Error_Msg_N
2776 ("?foreign convention function& should not " &
2777 "return unconstrained array!", E);
2778 end if;
2779 end if;
2780 end;
2781 end if;
2783 -- Must freeze its parent first if it is a derived subprogram
2785 if Present (Alias (E)) then
2786 Freeze_And_Append (Alias (E), Loc, Result);
2787 end if;
2789 -- We don't freeze internal subprograms, because we don't normally
2790 -- want addition of extra formals or mechanism setting to happen
2791 -- for those. However we do pass through predefined dispatching
2792 -- cases, since extra formals may be needed in some cases, such as
2793 -- for the stream 'Input function (build-in-place formals).
2795 if not Is_Internal (E)
2796 or else Is_Predefined_Dispatching_Operation (E)
2797 then
2798 Freeze_Subprogram (E);
2799 end if;
2801 -- Here for other than a subprogram or type
2803 else
2804 -- If entity has a type, and it is not a generic unit, then
2805 -- freeze it first (RM 13.14(10)).
2807 if Present (Etype (E))
2808 and then Ekind (E) /= E_Generic_Function
2809 then
2810 Freeze_And_Append (Etype (E), Loc, Result);
2811 end if;
2813 -- Special processing for objects created by object declaration
2815 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2817 -- Abstract type allowed only for C++ imported variables or
2818 -- constants.
2820 -- Note: we inhibit this check for objects that do not come
2821 -- from source because there is at least one case (the
2822 -- expansion of x'class'input where x is abstract) where we
2823 -- legitimately generate an abstract object.
2825 if Is_Abstract_Type (Etype (E))
2826 and then Comes_From_Source (Parent (E))
2827 and then not (Is_Imported (E)
2828 and then Is_CPP_Class (Etype (E)))
2829 then
2830 Error_Msg_N ("type of object cannot be abstract",
2831 Object_Definition (Parent (E)));
2833 if Is_CPP_Class (Etype (E)) then
2834 Error_Msg_NE ("\} may need a cpp_constructor",
2835 Object_Definition (Parent (E)), Etype (E));
2836 end if;
2837 end if;
2839 -- For object created by object declaration, perform required
2840 -- categorization (preelaborate and pure) checks. Defer these
2841 -- checks to freeze time since pragma Import inhibits default
2842 -- initialization and thus pragma Import affects these checks.
2844 Validate_Object_Declaration (Declaration_Node (E));
2846 -- If there is an address clause, check that it is valid
2848 Check_Address_Clause (E);
2850 -- If the object needs any kind of default initialization, an
2851 -- error must be issued if No_Default_Initialization applies.
2852 -- The check doesn't apply to imported objects, which are not
2853 -- ever default initialized, and is why the check is deferred
2854 -- until freezing, at which point we know if Import applies.
2855 -- Deferred constants are also exempted from this test because
2856 -- their completion is explicit, or through an import pragma.
2858 if Ekind (E) = E_Constant
2859 and then Present (Full_View (E))
2860 then
2861 null;
2863 elsif Comes_From_Source (E)
2864 and then not Is_Imported (E)
2865 and then not Has_Init_Expression (Declaration_Node (E))
2866 and then
2867 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2868 and then not No_Initialization (Declaration_Node (E))
2869 and then not Is_Value_Type (Etype (E))
2870 and then not Suppress_Init_Proc (Etype (E)))
2871 or else
2872 (Needs_Simple_Initialization (Etype (E))
2873 and then not Is_Internal (E)))
2874 then
2875 Has_Default_Initialization := True;
2876 Check_Restriction
2877 (No_Default_Initialization, Declaration_Node (E));
2878 end if;
2880 -- Check that a Thread_Local_Storage variable does not have
2881 -- default initialization, and any explicit initialization must
2882 -- either be the null constant or a static constant.
2884 if Has_Pragma_Thread_Local_Storage (E) then
2885 declare
2886 Decl : constant Node_Id := Declaration_Node (E);
2887 begin
2888 if Has_Default_Initialization
2889 or else
2890 (Has_Init_Expression (Decl)
2891 and then
2892 (No (Expression (Decl))
2893 or else not
2894 (Is_Static_Expression (Expression (Decl))
2895 or else
2896 Nkind (Expression (Decl)) = N_Null)))
2897 then
2898 Error_Msg_NE
2899 ("Thread_Local_Storage variable& is "
2900 & "improperly initialized", Decl, E);
2901 Error_Msg_NE
2902 ("\only allowed initialization is explicit "
2903 & "NULL or static expression", Decl, E);
2904 end if;
2905 end;
2906 end if;
2908 -- For imported objects, set Is_Public unless there is also an
2909 -- address clause, which means that there is no external symbol
2910 -- needed for the Import (Is_Public may still be set for other
2911 -- unrelated reasons). Note that we delayed this processing
2912 -- till freeze time so that we can be sure not to set the flag
2913 -- if there is an address clause. If there is such a clause,
2914 -- then the only purpose of the Import pragma is to suppress
2915 -- implicit initialization.
2917 if Is_Imported (E)
2918 and then No (Address_Clause (E))
2919 then
2920 Set_Is_Public (E);
2921 end if;
2923 -- For convention C objects of an enumeration type, warn if
2924 -- the size is not integer size and no explicit size given.
2925 -- Skip warning for Boolean, and Character, assume programmer
2926 -- expects 8-bit sizes for these cases.
2928 if (Convention (E) = Convention_C
2929 or else
2930 Convention (E) = Convention_CPP)
2931 and then Is_Enumeration_Type (Etype (E))
2932 and then not Is_Character_Type (Etype (E))
2933 and then not Is_Boolean_Type (Etype (E))
2934 and then Esize (Etype (E)) < Standard_Integer_Size
2935 and then not Has_Size_Clause (E)
2936 then
2937 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2938 Error_Msg_N
2939 ("?convention C enumeration object has size less than ^",
2941 Error_Msg_N ("\?use explicit size clause to set size", E);
2942 end if;
2943 end if;
2945 -- Check that a constant which has a pragma Volatile[_Components]
2946 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
2948 -- Note: Atomic[_Components] also sets Volatile[_Components]
2950 if Ekind (E) = E_Constant
2951 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2952 and then not Is_Imported (E)
2953 then
2954 -- Make sure we actually have a pragma, and have not merely
2955 -- inherited the indication from elsewhere (e.g. an address
2956 -- clause, which is not good enough in RM terms!)
2958 if Has_Rep_Pragma (E, Name_Atomic)
2959 or else
2960 Has_Rep_Pragma (E, Name_Atomic_Components)
2961 then
2962 Error_Msg_N
2963 ("stand alone atomic constant must be " &
2964 "imported (RM C.6(13))", E);
2966 elsif Has_Rep_Pragma (E, Name_Volatile)
2967 or else
2968 Has_Rep_Pragma (E, Name_Volatile_Components)
2969 then
2970 Error_Msg_N
2971 ("stand alone volatile constant must be " &
2972 "imported (RM C.6(13))", E);
2973 end if;
2974 end if;
2976 -- Static objects require special handling
2978 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2979 and then Is_Statically_Allocated (E)
2980 then
2981 Freeze_Static_Object (E);
2982 end if;
2984 -- Remaining step is to layout objects
2986 if Ekind (E) = E_Variable
2987 or else
2988 Ekind (E) = E_Constant
2989 or else
2990 Ekind (E) = E_Loop_Parameter
2991 or else
2992 Is_Formal (E)
2993 then
2994 Layout_Object (E);
2995 end if;
2996 end if;
2998 -- Case of a type or subtype being frozen
3000 else
3001 -- We used to check here that a full type must have preelaborable
3002 -- initialization if it completes a private type specified with
3003 -- pragma Preelaborable_Intialization, but that missed cases where
3004 -- the types occur within a generic package, since the freezing
3005 -- that occurs within a containing scope generally skips traversal
3006 -- of a generic unit's declarations (those will be frozen within
3007 -- instances). This check was moved to Analyze_Package_Specification.
3009 -- The type may be defined in a generic unit. This can occur when
3010 -- freezing a generic function that returns the type (which is
3011 -- defined in a parent unit). It is clearly meaningless to freeze
3012 -- this type. However, if it is a subtype, its size may be determi-
3013 -- nable and used in subsequent checks, so might as well try to
3014 -- compute it.
3016 if Present (Scope (E))
3017 and then Is_Generic_Unit (Scope (E))
3018 then
3019 Check_Compile_Time_Size (E);
3020 return No_List;
3021 end if;
3023 -- Deal with special cases of freezing for subtype
3025 if E /= Base_Type (E) then
3027 -- Before we do anything else, a specialized test for the case of
3028 -- a size given for an array where the array needs to be packed,
3029 -- but was not so the size cannot be honored. This would of course
3030 -- be caught by the backend, and indeed we don't catch all cases.
3031 -- The point is that we can give a better error message in those
3032 -- cases that we do catch with the circuitry here. Also if pragma
3033 -- Implicit_Packing is set, this is where the packing occurs.
3035 -- The reason we do this so early is that the processing in the
3036 -- automatic packing case affects the layout of the base type, so
3037 -- it must be done before we freeze the base type.
3039 if Is_Array_Type (E) then
3040 declare
3041 Lo, Hi : Node_Id;
3042 Ctyp : constant Entity_Id := Component_Type (E);
3044 begin
3045 -- Check enabling conditions. These are straightforward
3046 -- except for the test for a limited composite type. This
3047 -- eliminates the rare case of a array of limited components
3048 -- where there are issues of whether or not we can go ahead
3049 -- and pack the array (since we can't freely pack and unpack
3050 -- arrays if they are limited).
3052 -- Note that we check the root type explicitly because the
3053 -- whole point is we are doing this test before we have had
3054 -- a chance to freeze the base type (and it is that freeze
3055 -- action that causes stuff to be inherited).
3057 if Present (Size_Clause (E))
3058 and then Known_Static_Esize (E)
3059 and then not Is_Packed (E)
3060 and then not Has_Pragma_Pack (E)
3061 and then Number_Dimensions (E) = 1
3062 and then not Has_Component_Size_Clause (E)
3063 and then Known_Static_Esize (Ctyp)
3064 and then not Is_Limited_Composite (E)
3065 and then not Is_Packed (Root_Type (E))
3066 and then not Has_Component_Size_Clause (Root_Type (E))
3067 and then not CodePeer_Mode
3068 then
3069 Get_Index_Bounds (First_Index (E), Lo, Hi);
3071 if Compile_Time_Known_Value (Lo)
3072 and then Compile_Time_Known_Value (Hi)
3073 and then Known_Static_RM_Size (Ctyp)
3074 and then RM_Size (Ctyp) < 64
3075 then
3076 declare
3077 Lov : constant Uint := Expr_Value (Lo);
3078 Hiv : constant Uint := Expr_Value (Hi);
3079 Len : constant Uint := UI_Max
3080 (Uint_0,
3081 Hiv - Lov + 1);
3082 Rsiz : constant Uint := RM_Size (Ctyp);
3083 SZ : constant Node_Id := Size_Clause (E);
3084 Btyp : constant Entity_Id := Base_Type (E);
3086 -- What we are looking for here is the situation where
3087 -- the RM_Size given would be exactly right if there
3088 -- was a pragma Pack (resulting in the component size
3089 -- being the same as the RM_Size). Furthermore, the
3090 -- component type size must be an odd size (not a
3091 -- multiple of storage unit). If the component RM size
3092 -- is an exact number of storage units that is a power
3093 -- of two, the array is not packed and has a standard
3094 -- representation.
3096 begin
3097 if RM_Size (E) = Len * Rsiz
3098 and then Rsiz mod System_Storage_Unit /= 0
3099 then
3100 -- For implicit packing mode, just set the
3101 -- component size silently.
3103 if Implicit_Packing then
3104 Set_Component_Size (Btyp, Rsiz);
3105 Set_Is_Bit_Packed_Array (Btyp);
3106 Set_Is_Packed (Btyp);
3107 Set_Has_Non_Standard_Rep (Btyp);
3109 -- Otherwise give an error message
3111 else
3112 Error_Msg_NE
3113 ("size given for& too small", SZ, E);
3114 Error_Msg_N
3115 ("\use explicit pragma Pack "
3116 & "or use pragma Implicit_Packing", SZ);
3117 end if;
3119 elsif RM_Size (E) = Len * Rsiz
3120 and then Implicit_Packing
3121 and then
3122 (Rsiz / System_Storage_Unit = 1
3123 or else Rsiz / System_Storage_Unit = 2
3124 or else Rsiz / System_Storage_Unit = 4)
3125 then
3127 -- Not a packed array, but indicate the desired
3128 -- component size, for the back-end.
3130 Set_Component_Size (Btyp, Rsiz);
3131 end if;
3132 end;
3133 end if;
3134 end if;
3135 end;
3136 end if;
3138 -- If ancestor subtype present, freeze that first. Note that this
3139 -- will also get the base type frozen.
3141 Atype := Ancestor_Subtype (E);
3143 if Present (Atype) then
3144 Freeze_And_Append (Atype, Loc, Result);
3146 -- Otherwise freeze the base type of the entity before freezing
3147 -- the entity itself (RM 13.14(15)).
3149 elsif E /= Base_Type (E) then
3150 Freeze_And_Append (Base_Type (E), Loc, Result);
3151 end if;
3153 -- For a derived type, freeze its parent type first (RM 13.14(15))
3155 elsif Is_Derived_Type (E) then
3156 Freeze_And_Append (Etype (E), Loc, Result);
3157 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
3158 end if;
3160 -- For array type, freeze index types and component type first
3161 -- before freezing the array (RM 13.14(15)).
3163 if Is_Array_Type (E) then
3164 declare
3165 Ctyp : constant Entity_Id := Component_Type (E);
3167 Non_Standard_Enum : Boolean := False;
3168 -- Set true if any of the index types is an enumeration type
3169 -- with a non-standard representation.
3171 begin
3172 Freeze_And_Append (Ctyp, Loc, Result);
3174 Indx := First_Index (E);
3175 while Present (Indx) loop
3176 Freeze_And_Append (Etype (Indx), Loc, Result);
3178 if Is_Enumeration_Type (Etype (Indx))
3179 and then Has_Non_Standard_Rep (Etype (Indx))
3180 then
3181 Non_Standard_Enum := True;
3182 end if;
3184 Next_Index (Indx);
3185 end loop;
3187 -- Processing that is done only for base types
3189 if Ekind (E) = E_Array_Type then
3191 -- Propagate flags for component type
3193 if Is_Controlled (Component_Type (E))
3194 or else Has_Controlled_Component (Ctyp)
3195 then
3196 Set_Has_Controlled_Component (E);
3197 end if;
3199 if Has_Unchecked_Union (Component_Type (E)) then
3200 Set_Has_Unchecked_Union (E);
3201 end if;
3203 -- If packing was requested or if the component size was set
3204 -- explicitly, then see if bit packing is required. This
3205 -- processing is only done for base types, since all the
3206 -- representation aspects involved are type-related. This
3207 -- is not just an optimization, if we start processing the
3208 -- subtypes, they interfere with the settings on the base
3209 -- type (this is because Is_Packed has a slightly different
3210 -- meaning before and after freezing).
3212 declare
3213 Csiz : Uint;
3214 Esiz : Uint;
3216 begin
3217 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3218 and then not Has_Atomic_Components (E)
3219 and then Known_Static_RM_Size (Ctyp)
3220 then
3221 Csiz := UI_Max (RM_Size (Ctyp), 1);
3223 elsif Known_Component_Size (E) then
3224 Csiz := Component_Size (E);
3226 elsif not Known_Static_Esize (Ctyp) then
3227 Csiz := Uint_0;
3229 else
3230 Esiz := Esize (Ctyp);
3232 -- We can set the component size if it is less than
3233 -- 16, rounding it up to the next storage unit size.
3235 if Esiz <= 8 then
3236 Csiz := Uint_8;
3237 elsif Esiz <= 16 then
3238 Csiz := Uint_16;
3239 else
3240 Csiz := Uint_0;
3241 end if;
3243 -- Set component size up to match alignment if it
3244 -- would otherwise be less than the alignment. This
3245 -- deals with cases of types whose alignment exceeds
3246 -- their size (padded types).
3248 if Csiz /= 0 then
3249 declare
3250 A : constant Uint := Alignment_In_Bits (Ctyp);
3251 begin
3252 if Csiz < A then
3253 Csiz := A;
3254 end if;
3255 end;
3256 end if;
3257 end if;
3259 -- Case of component size that may result in packing
3261 if 1 <= Csiz and then Csiz <= 64 then
3262 declare
3263 Ent : constant Entity_Id :=
3264 First_Subtype (E);
3265 Pack_Pragma : constant Node_Id :=
3266 Get_Rep_Pragma (Ent, Name_Pack);
3267 Comp_Size_C : constant Node_Id :=
3268 Get_Attribute_Definition_Clause
3269 (Ent, Attribute_Component_Size);
3270 begin
3271 -- Warn if we have pack and component size so that
3272 -- the pack is ignored.
3274 -- Note: here we must check for the presence of a
3275 -- component size before checking for a Pack pragma
3276 -- to deal with the case where the array type is a
3277 -- derived type whose parent is currently private.
3279 if Present (Comp_Size_C)
3280 and then Has_Pragma_Pack (Ent)
3281 then
3282 Error_Msg_Sloc := Sloc (Comp_Size_C);
3283 Error_Msg_NE
3284 ("?pragma Pack for& ignored!",
3285 Pack_Pragma, Ent);
3286 Error_Msg_N
3287 ("\?explicit component size given#!",
3288 Pack_Pragma);
3289 end if;
3291 -- Set component size if not already set by a
3292 -- component size clause.
3294 if not Present (Comp_Size_C) then
3295 Set_Component_Size (E, Csiz);
3296 end if;
3298 -- Check for base type of 8, 16, 32 bits, where an
3299 -- unsigned subtype has a length one less than the
3300 -- base type (e.g. Natural subtype of Integer).
3302 -- In such cases, if a component size was not set
3303 -- explicitly, then generate a warning.
3305 if Has_Pragma_Pack (E)
3306 and then not Present (Comp_Size_C)
3307 and then
3308 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3309 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3310 then
3311 Error_Msg_Uint_1 := Csiz;
3313 if Present (Pack_Pragma) then
3314 Error_Msg_N
3315 ("?pragma Pack causes component size "
3316 & "to be ^!", Pack_Pragma);
3317 Error_Msg_N
3318 ("\?use Component_Size to set "
3319 & "desired value!", Pack_Pragma);
3320 end if;
3321 end if;
3323 -- Actual packing is not needed for 8, 16, 32, 64.
3324 -- Also not needed for 24 if alignment is 1.
3326 if Csiz = 8
3327 or else Csiz = 16
3328 or else Csiz = 32
3329 or else Csiz = 64
3330 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3331 then
3332 -- Here the array was requested to be packed,
3333 -- but the packing request had no effect, so
3334 -- Is_Packed is reset.
3336 -- Note: semantically this means that we lose
3337 -- track of the fact that a derived type
3338 -- inherited a pragma Pack that was non-
3339 -- effective, but that seems fine.
3341 -- We regard a Pack pragma as a request to set
3342 -- a representation characteristic, and this
3343 -- request may be ignored.
3345 Set_Is_Packed (Base_Type (E), False);
3347 -- In all other cases, packing is indeed needed
3349 else
3350 Set_Has_Non_Standard_Rep (Base_Type (E));
3351 Set_Is_Bit_Packed_Array (Base_Type (E));
3352 Set_Is_Packed (Base_Type (E));
3353 end if;
3354 end;
3355 end if;
3356 end;
3358 -- Processing that is done only for subtypes
3360 else
3361 -- Acquire alignment from base type
3363 if Unknown_Alignment (E) then
3364 Set_Alignment (E, Alignment (Base_Type (E)));
3365 Adjust_Esize_Alignment (E);
3366 end if;
3367 end if;
3369 -- For bit-packed arrays, check the size
3371 if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
3372 declare
3373 SizC : constant Node_Id := Size_Clause (E);
3375 Discard : Boolean;
3376 pragma Warnings (Off, Discard);
3378 begin
3379 -- It is not clear if it is possible to have no size
3380 -- clause at this stage, but it is not worth worrying
3381 -- about. Post error on the entity name in the size
3382 -- clause if present, else on the type entity itself.
3384 if Present (SizC) then
3385 Check_Size (Name (SizC), E, RM_Size (E), Discard);
3386 else
3387 Check_Size (E, E, RM_Size (E), Discard);
3388 end if;
3389 end;
3390 end if;
3392 -- If any of the index types was an enumeration type with
3393 -- a non-standard rep clause, then we indicate that the
3394 -- array type is always packed (even if it is not bit packed).
3396 if Non_Standard_Enum then
3397 Set_Has_Non_Standard_Rep (Base_Type (E));
3398 Set_Is_Packed (Base_Type (E));
3399 end if;
3401 Set_Component_Alignment_If_Not_Set (E);
3403 -- If the array is packed, we must create the packed array
3404 -- type to be used to actually implement the type. This is
3405 -- only needed for real array types (not for string literal
3406 -- types, since they are present only for the front end).
3408 if Is_Packed (E)
3409 and then Ekind (E) /= E_String_Literal_Subtype
3410 then
3411 Create_Packed_Array_Type (E);
3412 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
3414 -- Size information of packed array type is copied to the
3415 -- array type, since this is really the representation. But
3416 -- do not override explicit existing size values. If the
3417 -- ancestor subtype is constrained the packed_array_type
3418 -- will be inherited from it, but the size may have been
3419 -- provided already, and must not be overridden either.
3421 if not Has_Size_Clause (E)
3422 and then
3423 (No (Ancestor_Subtype (E))
3424 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3425 then
3426 Set_Esize (E, Esize (Packed_Array_Type (E)));
3427 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3428 end if;
3430 if not Has_Alignment_Clause (E) then
3431 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3432 end if;
3433 end if;
3435 -- For non-packed arrays set the alignment of the array to the
3436 -- alignment of the component type if it is unknown. Skip this
3437 -- in atomic case (atomic arrays may need larger alignments).
3439 if not Is_Packed (E)
3440 and then Unknown_Alignment (E)
3441 and then Known_Alignment (Ctyp)
3442 and then Known_Static_Component_Size (E)
3443 and then Known_Static_Esize (Ctyp)
3444 and then Esize (Ctyp) = Component_Size (E)
3445 and then not Is_Atomic (E)
3446 then
3447 Set_Alignment (E, Alignment (Component_Type (E)));
3448 end if;
3449 end;
3451 -- For a class-wide type, the corresponding specific type is
3452 -- frozen as well (RM 13.14(15))
3454 elsif Is_Class_Wide_Type (E) then
3455 Freeze_And_Append (Root_Type (E), Loc, Result);
3457 -- If the base type of the class-wide type is still incomplete,
3458 -- the class-wide remains unfrozen as well. This is legal when
3459 -- E is the formal of a primitive operation of some other type
3460 -- which is being frozen.
3462 if not Is_Frozen (Root_Type (E)) then
3463 Set_Is_Frozen (E, False);
3464 return Result;
3465 end if;
3467 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3468 -- parent of a derived type) and it is a library-level entity,
3469 -- generate an itype reference for it. Otherwise, its first
3470 -- explicit reference may be in an inner scope, which will be
3471 -- rejected by the back-end.
3473 if Is_Itype (E)
3474 and then Is_Compilation_Unit (Scope (E))
3475 then
3476 declare
3477 Ref : constant Node_Id := Make_Itype_Reference (Loc);
3479 begin
3480 Set_Itype (Ref, E);
3481 if No (Result) then
3482 Result := New_List (Ref);
3483 else
3484 Append (Ref, Result);
3485 end if;
3486 end;
3487 end if;
3489 -- The equivalent type associated with a class-wide subtype needs
3490 -- to be frozen to ensure that its layout is done.
3492 if Ekind (E) = E_Class_Wide_Subtype
3493 and then Present (Equivalent_Type (E))
3494 then
3495 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3496 end if;
3498 -- For a record (sub)type, freeze all the component types (RM
3499 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3500 -- Is_Record_Type, because we don't want to attempt the freeze for
3501 -- the case of a private type with record extension (we will do that
3502 -- later when the full type is frozen).
3504 elsif Ekind (E) = E_Record_Type
3505 or else Ekind (E) = E_Record_Subtype
3506 then
3507 Freeze_Record_Type (E);
3509 -- For a concurrent type, freeze corresponding record type. This
3510 -- does not correspond to any specific rule in the RM, but the
3511 -- record type is essentially part of the concurrent type.
3512 -- Freeze as well all local entities. This includes record types
3513 -- created for entry parameter blocks, and whatever local entities
3514 -- may appear in the private part.
3516 elsif Is_Concurrent_Type (E) then
3517 if Present (Corresponding_Record_Type (E)) then
3518 Freeze_And_Append
3519 (Corresponding_Record_Type (E), Loc, Result);
3520 end if;
3522 Comp := First_Entity (E);
3523 while Present (Comp) loop
3524 if Is_Type (Comp) then
3525 Freeze_And_Append (Comp, Loc, Result);
3527 elsif (Ekind (Comp)) /= E_Function then
3528 if Is_Itype (Etype (Comp))
3529 and then Underlying_Type (Scope (Etype (Comp))) = E
3530 then
3531 Undelay_Type (Etype (Comp));
3532 end if;
3534 Freeze_And_Append (Etype (Comp), Loc, Result);
3535 end if;
3537 Next_Entity (Comp);
3538 end loop;
3540 -- Private types are required to point to the same freeze node as
3541 -- their corresponding full views. The freeze node itself has to
3542 -- point to the partial view of the entity (because from the partial
3543 -- view, we can retrieve the full view, but not the reverse).
3544 -- However, in order to freeze correctly, we need to freeze the full
3545 -- view. If we are freezing at the end of a scope (or within the
3546 -- scope of the private type), the partial and full views will have
3547 -- been swapped, the full view appears first in the entity chain and
3548 -- the swapping mechanism ensures that the pointers are properly set
3549 -- (on scope exit).
3551 -- If we encounter the partial view before the full view (e.g. when
3552 -- freezing from another scope), we freeze the full view, and then
3553 -- set the pointers appropriately since we cannot rely on swapping to
3554 -- fix things up (subtypes in an outer scope might not get swapped).
3556 elsif Is_Incomplete_Or_Private_Type (E)
3557 and then not Is_Generic_Type (E)
3558 then
3559 -- The construction of the dispatch table associated with library
3560 -- level tagged types forces freezing of all the primitives of the
3561 -- type, which may cause premature freezing of the partial view.
3562 -- For example:
3564 -- package Pkg is
3565 -- type T is tagged private;
3566 -- type DT is new T with private;
3567 -- procedure Prim (X : in out T; Y : in out DT'class);
3568 -- private
3569 -- type T is tagged null record;
3570 -- Obj : T;
3571 -- type DT is new T with null record;
3572 -- end;
3574 -- In this case the type will be frozen later by the usual
3575 -- mechanism: an object declaration, an instantiation, or the
3576 -- end of a declarative part.
3578 if Is_Library_Level_Tagged_Type (E)
3579 and then not Present (Full_View (E))
3580 then
3581 Set_Is_Frozen (E, False);
3582 return Result;
3584 -- Case of full view present
3586 elsif Present (Full_View (E)) then
3588 -- If full view has already been frozen, then no further
3589 -- processing is required
3591 if Is_Frozen (Full_View (E)) then
3593 Set_Has_Delayed_Freeze (E, False);
3594 Set_Freeze_Node (E, Empty);
3595 Check_Debug_Info_Needed (E);
3597 -- Otherwise freeze full view and patch the pointers so that
3598 -- the freeze node will elaborate both views in the back-end.
3600 else
3601 declare
3602 Full : constant Entity_Id := Full_View (E);
3604 begin
3605 if Is_Private_Type (Full)
3606 and then Present (Underlying_Full_View (Full))
3607 then
3608 Freeze_And_Append
3609 (Underlying_Full_View (Full), Loc, Result);
3610 end if;
3612 Freeze_And_Append (Full, Loc, Result);
3614 if Has_Delayed_Freeze (E) then
3615 F_Node := Freeze_Node (Full);
3617 if Present (F_Node) then
3618 Set_Freeze_Node (E, F_Node);
3619 Set_Entity (F_Node, E);
3621 else
3622 -- {Incomplete,Private}_Subtypes with Full_Views
3623 -- constrained by discriminants.
3625 Set_Has_Delayed_Freeze (E, False);
3626 Set_Freeze_Node (E, Empty);
3627 end if;
3628 end if;
3629 end;
3631 Check_Debug_Info_Needed (E);
3632 end if;
3634 -- AI-117 requires that the convention of a partial view be the
3635 -- same as the convention of the full view. Note that this is a
3636 -- recognized breach of privacy, but it's essential for logical
3637 -- consistency of representation, and the lack of a rule in
3638 -- RM95 was an oversight.
3640 Set_Convention (E, Convention (Full_View (E)));
3642 Set_Size_Known_At_Compile_Time (E,
3643 Size_Known_At_Compile_Time (Full_View (E)));
3645 -- Size information is copied from the full view to the
3646 -- incomplete or private view for consistency.
3648 -- We skip this is the full view is not a type. This is very
3649 -- strange of course, and can only happen as a result of
3650 -- certain illegalities, such as a premature attempt to derive
3651 -- from an incomplete type.
3653 if Is_Type (Full_View (E)) then
3654 Set_Size_Info (E, Full_View (E));
3655 Set_RM_Size (E, RM_Size (Full_View (E)));
3656 end if;
3658 return Result;
3660 -- Case of no full view present. If entity is derived or subtype,
3661 -- it is safe to freeze, correctness depends on the frozen status
3662 -- of parent. Otherwise it is either premature usage, or a Taft
3663 -- amendment type, so diagnosis is at the point of use and the
3664 -- type might be frozen later.
3666 elsif E /= Base_Type (E)
3667 or else Is_Derived_Type (E)
3668 then
3669 null;
3671 else
3672 Set_Is_Frozen (E, False);
3673 return No_List;
3674 end if;
3676 -- For access subprogram, freeze types of all formals, the return
3677 -- type was already frozen, since it is the Etype of the function.
3678 -- Formal types can be tagged Taft amendment types, but otherwise
3679 -- they cannot be incomplete.
3681 elsif Ekind (E) = E_Subprogram_Type then
3682 Formal := First_Formal (E);
3684 while Present (Formal) loop
3685 if Ekind (Etype (Formal)) = E_Incomplete_Type
3686 and then No (Full_View (Etype (Formal)))
3687 and then not Is_Value_Type (Etype (Formal))
3688 then
3689 if Is_Tagged_Type (Etype (Formal)) then
3690 null;
3691 else
3692 Error_Msg_NE
3693 ("invalid use of incomplete type&", E, Etype (Formal));
3694 end if;
3695 end if;
3697 Freeze_And_Append (Etype (Formal), Loc, Result);
3698 Next_Formal (Formal);
3699 end loop;
3701 Freeze_Subprogram (E);
3703 -- For access to a protected subprogram, freeze the equivalent type
3704 -- (however this is not set if we are not generating code or if this
3705 -- is an anonymous type used just for resolution).
3707 elsif Is_Access_Protected_Subprogram_Type (E) then
3708 if Present (Equivalent_Type (E)) then
3709 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3710 end if;
3711 end if;
3713 -- Generic types are never seen by the back-end, and are also not
3714 -- processed by the expander (since the expander is turned off for
3715 -- generic processing), so we never need freeze nodes for them.
3717 if Is_Generic_Type (E) then
3718 return Result;
3719 end if;
3721 -- Some special processing for non-generic types to complete
3722 -- representation details not known till the freeze point.
3724 if Is_Fixed_Point_Type (E) then
3725 Freeze_Fixed_Point_Type (E);
3727 -- Some error checks required for ordinary fixed-point type. Defer
3728 -- these till the freeze-point since we need the small and range
3729 -- values. We only do these checks for base types
3731 if Is_Ordinary_Fixed_Point_Type (E)
3732 and then E = Base_Type (E)
3733 then
3734 if Small_Value (E) < Ureal_2_M_80 then
3735 Error_Msg_Name_1 := Name_Small;
3736 Error_Msg_N
3737 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
3739 elsif Small_Value (E) > Ureal_2_80 then
3740 Error_Msg_Name_1 := Name_Small;
3741 Error_Msg_N
3742 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
3743 end if;
3745 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3746 Error_Msg_Name_1 := Name_First;
3747 Error_Msg_N
3748 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
3749 end if;
3751 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3752 Error_Msg_Name_1 := Name_Last;
3753 Error_Msg_N
3754 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
3755 end if;
3756 end if;
3758 elsif Is_Enumeration_Type (E) then
3759 Freeze_Enumeration_Type (E);
3761 elsif Is_Integer_Type (E) then
3762 Adjust_Esize_For_Alignment (E);
3764 if Is_Modular_Integer_Type (E)
3765 and then Warn_On_Suspicious_Modulus_Value
3766 then
3767 Check_Suspicious_Modulus (E);
3768 end if;
3770 elsif Is_Access_Type (E) then
3772 -- Check restriction for standard storage pool
3774 if No (Associated_Storage_Pool (E)) then
3775 Check_Restriction (No_Standard_Storage_Pools, E);
3776 end if;
3778 -- Deal with error message for pure access type. This is not an
3779 -- error in Ada 2005 if there is no pool (see AI-366).
3781 if Is_Pure_Unit_Access_Type (E)
3782 and then (Ada_Version < Ada_05
3783 or else not No_Pool_Assigned (E))
3784 then
3785 Error_Msg_N ("named access type not allowed in pure unit", E);
3787 if Ada_Version >= Ada_05 then
3788 Error_Msg_N
3789 ("\would be legal if Storage_Size of 0 given?", E);
3791 elsif No_Pool_Assigned (E) then
3792 Error_Msg_N
3793 ("\would be legal in Ada 2005?", E);
3795 else
3796 Error_Msg_N
3797 ("\would be legal in Ada 2005 if "
3798 & "Storage_Size of 0 given?", E);
3799 end if;
3800 end if;
3801 end if;
3803 -- Case of composite types
3805 if Is_Composite_Type (E) then
3807 -- AI-117 requires that all new primitives of a tagged type must
3808 -- inherit the convention of the full view of the type. Inherited
3809 -- and overriding operations are defined to inherit the convention
3810 -- of their parent or overridden subprogram (also specified in
3811 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3812 -- and New_Overloaded_Entity). Here we set the convention of
3813 -- primitives that are still convention Ada, which will ensure
3814 -- that any new primitives inherit the type's convention. Class-
3815 -- wide types can have a foreign convention inherited from their
3816 -- specific type, but are excluded from this since they don't have
3817 -- any associated primitives.
3819 if Is_Tagged_Type (E)
3820 and then not Is_Class_Wide_Type (E)
3821 and then Convention (E) /= Convention_Ada
3822 then
3823 declare
3824 Prim_List : constant Elist_Id := Primitive_Operations (E);
3825 Prim : Elmt_Id;
3826 begin
3827 Prim := First_Elmt (Prim_List);
3828 while Present (Prim) loop
3829 if Convention (Node (Prim)) = Convention_Ada then
3830 Set_Convention (Node (Prim), Convention (E));
3831 end if;
3833 Next_Elmt (Prim);
3834 end loop;
3835 end;
3836 end if;
3837 end if;
3839 -- Now that all types from which E may depend are frozen, see if the
3840 -- size is known at compile time, if it must be unsigned, or if
3841 -- strict alignment is required
3843 Check_Compile_Time_Size (E);
3844 Check_Unsigned_Type (E);
3846 if Base_Type (E) = E then
3847 Check_Strict_Alignment (E);
3848 end if;
3850 -- Do not allow a size clause for a type which does not have a size
3851 -- that is known at compile time
3853 if Has_Size_Clause (E)
3854 and then not Size_Known_At_Compile_Time (E)
3855 then
3856 -- Suppress this message if errors posted on E, even if we are
3857 -- in all errors mode, since this is often a junk message
3859 if not Error_Posted (E) then
3860 Error_Msg_N
3861 ("size clause not allowed for variable length type",
3862 Size_Clause (E));
3863 end if;
3864 end if;
3866 -- Remaining process is to set/verify the representation information,
3867 -- in particular the size and alignment values. This processing is
3868 -- not required for generic types, since generic types do not play
3869 -- any part in code generation, and so the size and alignment values
3870 -- for such types are irrelevant.
3872 if Is_Generic_Type (E) then
3873 return Result;
3875 -- Otherwise we call the layout procedure
3877 else
3878 Layout_Type (E);
3879 end if;
3881 -- End of freeze processing for type entities
3882 end if;
3884 -- Here is where we logically freeze the current entity. If it has a
3885 -- freeze node, then this is the point at which the freeze node is
3886 -- linked into the result list.
3888 if Has_Delayed_Freeze (E) then
3890 -- If a freeze node is already allocated, use it, otherwise allocate
3891 -- a new one. The preallocation happens in the case of anonymous base
3892 -- types, where we preallocate so that we can set First_Subtype_Link.
3893 -- Note that we reset the Sloc to the current freeze location.
3895 if Present (Freeze_Node (E)) then
3896 F_Node := Freeze_Node (E);
3897 Set_Sloc (F_Node, Loc);
3899 else
3900 F_Node := New_Node (N_Freeze_Entity, Loc);
3901 Set_Freeze_Node (E, F_Node);
3902 Set_Access_Types_To_Process (F_Node, No_Elist);
3903 Set_TSS_Elist (F_Node, No_Elist);
3904 Set_Actions (F_Node, No_List);
3905 end if;
3907 Set_Entity (F_Node, E);
3909 if Result = No_List then
3910 Result := New_List (F_Node);
3911 else
3912 Append (F_Node, Result);
3913 end if;
3915 -- A final pass over record types with discriminants. If the type
3916 -- has an incomplete declaration, there may be constrained access
3917 -- subtypes declared elsewhere, which do not depend on the discrimi-
3918 -- nants of the type, and which are used as component types (i.e.
3919 -- the full view is a recursive type). The designated types of these
3920 -- subtypes can only be elaborated after the type itself, and they
3921 -- need an itype reference.
3923 if Ekind (E) = E_Record_Type
3924 and then Has_Discriminants (E)
3925 then
3926 declare
3927 Comp : Entity_Id;
3928 IR : Node_Id;
3929 Typ : Entity_Id;
3931 begin
3932 Comp := First_Component (E);
3934 while Present (Comp) loop
3935 Typ := Etype (Comp);
3937 if Ekind (Comp) = E_Component
3938 and then Is_Access_Type (Typ)
3939 and then Scope (Typ) /= E
3940 and then Base_Type (Designated_Type (Typ)) = E
3941 and then Is_Itype (Designated_Type (Typ))
3942 then
3943 IR := Make_Itype_Reference (Sloc (Comp));
3944 Set_Itype (IR, Designated_Type (Typ));
3945 Append (IR, Result);
3946 end if;
3948 Next_Component (Comp);
3949 end loop;
3950 end;
3951 end if;
3952 end if;
3954 -- When a type is frozen, the first subtype of the type is frozen as
3955 -- well (RM 13.14(15)). This has to be done after freezing the type,
3956 -- since obviously the first subtype depends on its own base type.
3958 if Is_Type (E) then
3959 Freeze_And_Append (First_Subtype (E), Loc, Result);
3961 -- If we just froze a tagged non-class wide record, then freeze the
3962 -- corresponding class-wide type. This must be done after the tagged
3963 -- type itself is frozen, because the class-wide type refers to the
3964 -- tagged type which generates the class.
3966 if Is_Tagged_Type (E)
3967 and then not Is_Class_Wide_Type (E)
3968 and then Present (Class_Wide_Type (E))
3969 then
3970 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3971 end if;
3972 end if;
3974 Check_Debug_Info_Needed (E);
3976 -- Special handling for subprograms
3978 if Is_Subprogram (E) then
3980 -- If subprogram has address clause then reset Is_Public flag, since
3981 -- we do not want the backend to generate external references.
3983 if Present (Address_Clause (E))
3984 and then not Is_Library_Level_Entity (E)
3985 then
3986 Set_Is_Public (E, False);
3988 -- If no address clause and not intrinsic, then for imported
3989 -- subprogram in main unit, generate descriptor if we are in
3990 -- Propagate_Exceptions mode.
3992 elsif Propagate_Exceptions
3993 and then Is_Imported (E)
3994 and then not Is_Intrinsic_Subprogram (E)
3995 and then Convention (E) /= Convention_Stubbed
3996 then
3997 if Result = No_List then
3998 Result := Empty_List;
3999 end if;
4000 end if;
4001 end if;
4003 return Result;
4004 end Freeze_Entity;
4006 -----------------------------
4007 -- Freeze_Enumeration_Type --
4008 -----------------------------
4010 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
4011 begin
4012 -- By default, if no size clause is present, an enumeration type with
4013 -- Convention C is assumed to interface to a C enum, and has integer
4014 -- size. This applies to types. For subtypes, verify that its base
4015 -- type has no size clause either.
4017 if Has_Foreign_Convention (Typ)
4018 and then not Has_Size_Clause (Typ)
4019 and then not Has_Size_Clause (Base_Type (Typ))
4020 and then Esize (Typ) < Standard_Integer_Size
4021 then
4022 Init_Esize (Typ, Standard_Integer_Size);
4024 else
4025 -- If the enumeration type interfaces to C, and it has a size clause
4026 -- that specifies less than int size, it warrants a warning. The
4027 -- user may intend the C type to be an enum or a char, so this is
4028 -- not by itself an error that the Ada compiler can detect, but it
4029 -- it is a worth a heads-up. For Boolean and Character types we
4030 -- assume that the programmer has the proper C type in mind.
4032 if Convention (Typ) = Convention_C
4033 and then Has_Size_Clause (Typ)
4034 and then Esize (Typ) /= Esize (Standard_Integer)
4035 and then not Is_Boolean_Type (Typ)
4036 and then not Is_Character_Type (Typ)
4037 then
4038 Error_Msg_N
4039 ("C enum types have the size of a C int?", Size_Clause (Typ));
4040 end if;
4042 Adjust_Esize_For_Alignment (Typ);
4043 end if;
4044 end Freeze_Enumeration_Type;
4046 -----------------------
4047 -- Freeze_Expression --
4048 -----------------------
4050 procedure Freeze_Expression (N : Node_Id) is
4051 In_Spec_Exp : constant Boolean := In_Spec_Expression;
4052 Typ : Entity_Id;
4053 Nam : Entity_Id;
4054 Desig_Typ : Entity_Id;
4055 P : Node_Id;
4056 Parent_P : Node_Id;
4058 Freeze_Outside : Boolean := False;
4059 -- This flag is set true if the entity must be frozen outside the
4060 -- current subprogram. This happens in the case of expander generated
4061 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4062 -- not freeze all entities like other bodies, but which nevertheless
4063 -- may reference entities that have to be frozen before the body and
4064 -- obviously cannot be frozen inside the body.
4066 function In_Exp_Body (N : Node_Id) return Boolean;
4067 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
4068 -- it is the handled statement sequence of an expander-generated
4069 -- subprogram (init proc, stream subprogram, or renaming as body).
4070 -- If so, this is not a freezing context.
4072 -----------------
4073 -- In_Exp_Body --
4074 -----------------
4076 function In_Exp_Body (N : Node_Id) return Boolean is
4077 P : Node_Id;
4078 Id : Entity_Id;
4080 begin
4081 if Nkind (N) = N_Subprogram_Body then
4082 P := N;
4083 else
4084 P := Parent (N);
4085 end if;
4087 if Nkind (P) /= N_Subprogram_Body then
4088 return False;
4090 else
4091 Id := Defining_Unit_Name (Specification (P));
4093 if Nkind (Id) = N_Defining_Identifier
4094 and then (Is_Init_Proc (Id) or else
4095 Is_TSS (Id, TSS_Stream_Input) or else
4096 Is_TSS (Id, TSS_Stream_Output) or else
4097 Is_TSS (Id, TSS_Stream_Read) or else
4098 Is_TSS (Id, TSS_Stream_Write) or else
4099 Nkind (Original_Node (P)) =
4100 N_Subprogram_Renaming_Declaration)
4101 then
4102 return True;
4103 else
4104 return False;
4105 end if;
4106 end if;
4107 end In_Exp_Body;
4109 -- Start of processing for Freeze_Expression
4111 begin
4112 -- Immediate return if freezing is inhibited. This flag is set by the
4113 -- analyzer to stop freezing on generated expressions that would cause
4114 -- freezing if they were in the source program, but which are not
4115 -- supposed to freeze, since they are created.
4117 if Must_Not_Freeze (N) then
4118 return;
4119 end if;
4121 -- If expression is non-static, then it does not freeze in a default
4122 -- expression, see section "Handling of Default Expressions" in the
4123 -- spec of package Sem for further details. Note that we have to
4124 -- make sure that we actually have a real expression (if we have
4125 -- a subtype indication, we can't test Is_Static_Expression!)
4127 if In_Spec_Exp
4128 and then Nkind (N) in N_Subexpr
4129 and then not Is_Static_Expression (N)
4130 then
4131 return;
4132 end if;
4134 -- Freeze type of expression if not frozen already
4136 Typ := Empty;
4138 if Nkind (N) in N_Has_Etype then
4139 if not Is_Frozen (Etype (N)) then
4140 Typ := Etype (N);
4142 -- Base type may be an derived numeric type that is frozen at
4143 -- the point of declaration, but first_subtype is still unfrozen.
4145 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4146 Typ := First_Subtype (Etype (N));
4147 end if;
4148 end if;
4150 -- For entity name, freeze entity if not frozen already. A special
4151 -- exception occurs for an identifier that did not come from source.
4152 -- We don't let such identifiers freeze a non-internal entity, i.e.
4153 -- an entity that did come from source, since such an identifier was
4154 -- generated by the expander, and cannot have any semantic effect on
4155 -- the freezing semantics. For example, this stops the parameter of
4156 -- an initialization procedure from freezing the variable.
4158 if Is_Entity_Name (N)
4159 and then not Is_Frozen (Entity (N))
4160 and then (Nkind (N) /= N_Identifier
4161 or else Comes_From_Source (N)
4162 or else not Comes_From_Source (Entity (N)))
4163 then
4164 Nam := Entity (N);
4165 else
4166 Nam := Empty;
4167 end if;
4169 -- For an allocator freeze designated type if not frozen already
4171 -- For an aggregate whose component type is an access type, freeze the
4172 -- designated type now, so that its freeze does not appear within the
4173 -- loop that might be created in the expansion of the aggregate. If the
4174 -- designated type is a private type without full view, the expression
4175 -- cannot contain an allocator, so the type is not frozen.
4177 -- For a function, we freeze the entity when the subprogram declaration
4178 -- is frozen, but a function call may appear in an initialization proc.
4179 -- before the declaration is frozen. We need to generate the extra
4180 -- formals, if any, to ensure that the expansion of the call includes
4181 -- the proper actuals. This only applies to Ada subprograms, not to
4182 -- imported ones.
4184 Desig_Typ := Empty;
4186 case Nkind (N) is
4187 when N_Allocator =>
4188 Desig_Typ := Designated_Type (Etype (N));
4190 when N_Aggregate =>
4191 if Is_Array_Type (Etype (N))
4192 and then Is_Access_Type (Component_Type (Etype (N)))
4193 then
4194 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4195 end if;
4197 when N_Selected_Component |
4198 N_Indexed_Component |
4199 N_Slice =>
4201 if Is_Access_Type (Etype (Prefix (N))) then
4202 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4203 end if;
4205 when N_Identifier =>
4206 if Present (Nam)
4207 and then Ekind (Nam) = E_Function
4208 and then Nkind (Parent (N)) = N_Function_Call
4209 and then Convention (Nam) = Convention_Ada
4210 then
4211 Create_Extra_Formals (Nam);
4212 end if;
4214 when others =>
4215 null;
4216 end case;
4218 if Desig_Typ /= Empty
4219 and then (Is_Frozen (Desig_Typ)
4220 or else (not Is_Fully_Defined (Desig_Typ)))
4221 then
4222 Desig_Typ := Empty;
4223 end if;
4225 -- All done if nothing needs freezing
4227 if No (Typ)
4228 and then No (Nam)
4229 and then No (Desig_Typ)
4230 then
4231 return;
4232 end if;
4234 -- Loop for looking at the right place to insert the freeze nodes,
4235 -- exiting from the loop when it is appropriate to insert the freeze
4236 -- node before the current node P.
4238 -- Also checks som special exceptions to the freezing rules. These cases
4239 -- result in a direct return, bypassing the freeze action.
4241 P := N;
4242 loop
4243 Parent_P := Parent (P);
4245 -- If we don't have a parent, then we are not in a well-formed tree.
4246 -- This is an unusual case, but there are some legitimate situations
4247 -- in which this occurs, notably when the expressions in the range of
4248 -- a type declaration are resolved. We simply ignore the freeze
4249 -- request in this case. Is this right ???
4251 if No (Parent_P) then
4252 return;
4253 end if;
4255 -- See if we have got to an appropriate point in the tree
4257 case Nkind (Parent_P) is
4259 -- A special test for the exception of (RM 13.14(8)) for the case
4260 -- of per-object expressions (RM 3.8(18)) occurring in component
4261 -- definition or a discrete subtype definition. Note that we test
4262 -- for a component declaration which includes both cases we are
4263 -- interested in, and furthermore the tree does not have explicit
4264 -- nodes for either of these two constructs.
4266 when N_Component_Declaration =>
4268 -- The case we want to test for here is an identifier that is
4269 -- a per-object expression, this is either a discriminant that
4270 -- appears in a context other than the component declaration
4271 -- or it is a reference to the type of the enclosing construct.
4273 -- For either of these cases, we skip the freezing
4275 if not In_Spec_Expression
4276 and then Nkind (N) = N_Identifier
4277 and then (Present (Entity (N)))
4278 then
4279 -- We recognize the discriminant case by just looking for
4280 -- a reference to a discriminant. It can only be one for
4281 -- the enclosing construct. Skip freezing in this case.
4283 if Ekind (Entity (N)) = E_Discriminant then
4284 return;
4286 -- For the case of a reference to the enclosing record,
4287 -- (or task or protected type), we look for a type that
4288 -- matches the current scope.
4290 elsif Entity (N) = Current_Scope then
4291 return;
4292 end if;
4293 end if;
4295 -- If we have an enumeration literal that appears as the choice in
4296 -- the aggregate of an enumeration representation clause, then
4297 -- freezing does not occur (RM 13.14(10)).
4299 when N_Enumeration_Representation_Clause =>
4301 -- The case we are looking for is an enumeration literal
4303 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4304 and then Is_Enumeration_Type (Etype (N))
4305 then
4306 -- If enumeration literal appears directly as the choice,
4307 -- do not freeze (this is the normal non-overloaded case)
4309 if Nkind (Parent (N)) = N_Component_Association
4310 and then First (Choices (Parent (N))) = N
4311 then
4312 return;
4314 -- If enumeration literal appears as the name of function
4315 -- which is the choice, then also do not freeze. This
4316 -- happens in the overloaded literal case, where the
4317 -- enumeration literal is temporarily changed to a function
4318 -- call for overloading analysis purposes.
4320 elsif Nkind (Parent (N)) = N_Function_Call
4321 and then
4322 Nkind (Parent (Parent (N))) = N_Component_Association
4323 and then
4324 First (Choices (Parent (Parent (N)))) = Parent (N)
4325 then
4326 return;
4327 end if;
4328 end if;
4330 -- Normally if the parent is a handled sequence of statements,
4331 -- then the current node must be a statement, and that is an
4332 -- appropriate place to insert a freeze node.
4334 when N_Handled_Sequence_Of_Statements =>
4336 -- An exception occurs when the sequence of statements is for
4337 -- an expander generated body that did not do the usual freeze
4338 -- all operation. In this case we usually want to freeze
4339 -- outside this body, not inside it, and we skip past the
4340 -- subprogram body that we are inside.
4342 if In_Exp_Body (Parent_P) then
4344 -- However, we *do* want to freeze at this point if we have
4345 -- an entity to freeze, and that entity is declared *inside*
4346 -- the body of the expander generated procedure. This case
4347 -- is recognized by the scope of the type, which is either
4348 -- the spec for some enclosing body, or (in the case of
4349 -- init_procs, for which there are no separate specs) the
4350 -- current scope.
4352 declare
4353 Subp : constant Node_Id := Parent (Parent_P);
4354 Cspc : Entity_Id;
4356 begin
4357 if Nkind (Subp) = N_Subprogram_Body then
4358 Cspc := Corresponding_Spec (Subp);
4360 if (Present (Typ) and then Scope (Typ) = Cspc)
4361 or else
4362 (Present (Nam) and then Scope (Nam) = Cspc)
4363 then
4364 exit;
4366 elsif Present (Typ)
4367 and then Scope (Typ) = Current_Scope
4368 and then Current_Scope = Defining_Entity (Subp)
4369 then
4370 exit;
4371 end if;
4372 end if;
4373 end;
4375 -- If not that exception to the exception, then this is
4376 -- where we delay the freeze till outside the body.
4378 Parent_P := Parent (Parent_P);
4379 Freeze_Outside := True;
4381 -- Here if normal case where we are in handled statement
4382 -- sequence and want to do the insertion right there.
4384 else
4385 exit;
4386 end if;
4388 -- If parent is a body or a spec or a block, then the current node
4389 -- is a statement or declaration and we can insert the freeze node
4390 -- before it.
4392 when N_Package_Specification |
4393 N_Package_Body |
4394 N_Subprogram_Body |
4395 N_Task_Body |
4396 N_Protected_Body |
4397 N_Entry_Body |
4398 N_Block_Statement => exit;
4400 -- The expander is allowed to define types in any statements list,
4401 -- so any of the following parent nodes also mark a freezing point
4402 -- if the actual node is in a list of statements or declarations.
4404 when N_Exception_Handler |
4405 N_If_Statement |
4406 N_Elsif_Part |
4407 N_Case_Statement_Alternative |
4408 N_Compilation_Unit_Aux |
4409 N_Selective_Accept |
4410 N_Accept_Alternative |
4411 N_Delay_Alternative |
4412 N_Conditional_Entry_Call |
4413 N_Entry_Call_Alternative |
4414 N_Triggering_Alternative |
4415 N_Abortable_Part |
4416 N_Freeze_Entity =>
4418 exit when Is_List_Member (P);
4420 -- Note: The N_Loop_Statement is a special case. A type that
4421 -- appears in the source can never be frozen in a loop (this
4422 -- occurs only because of a loop expanded by the expander), so we
4423 -- keep on going. Otherwise we terminate the search. Same is true
4424 -- of any entity which comes from source. (if they have predefined
4425 -- type, that type does not appear to come from source, but the
4426 -- entity should not be frozen here).
4428 when N_Loop_Statement =>
4429 exit when not Comes_From_Source (Etype (N))
4430 and then (No (Nam) or else not Comes_From_Source (Nam));
4432 -- For all other cases, keep looking at parents
4434 when others =>
4435 null;
4436 end case;
4438 -- We fall through the case if we did not yet find the proper
4439 -- place in the free for inserting the freeze node, so climb!
4441 P := Parent_P;
4442 end loop;
4444 -- If the expression appears in a record or an initialization procedure,
4445 -- the freeze nodes are collected and attached to the current scope, to
4446 -- be inserted and analyzed on exit from the scope, to insure that
4447 -- generated entities appear in the correct scope. If the expression is
4448 -- a default for a discriminant specification, the scope is still void.
4449 -- The expression can also appear in the discriminant part of a private
4450 -- or concurrent type.
4452 -- If the expression appears in a constrained subcomponent of an
4453 -- enclosing record declaration, the freeze nodes must be attached to
4454 -- the outer record type so they can eventually be placed in the
4455 -- enclosing declaration list.
4457 -- The other case requiring this special handling is if we are in a
4458 -- default expression, since in that case we are about to freeze a
4459 -- static type, and the freeze scope needs to be the outer scope, not
4460 -- the scope of the subprogram with the default parameter.
4462 -- For default expressions and other spec expressions in generic units,
4463 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4464 -- placing them at the proper place, after the generic unit.
4466 if (In_Spec_Exp and not Inside_A_Generic)
4467 or else Freeze_Outside
4468 or else (Is_Type (Current_Scope)
4469 and then (not Is_Concurrent_Type (Current_Scope)
4470 or else not Has_Completion (Current_Scope)))
4471 or else Ekind (Current_Scope) = E_Void
4472 then
4473 declare
4474 Loc : constant Source_Ptr := Sloc (Current_Scope);
4475 Freeze_Nodes : List_Id := No_List;
4476 Pos : Int := Scope_Stack.Last;
4478 begin
4479 if Present (Desig_Typ) then
4480 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4481 end if;
4483 if Present (Typ) then
4484 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4485 end if;
4487 if Present (Nam) then
4488 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4489 end if;
4491 -- The current scope may be that of a constrained component of
4492 -- an enclosing record declaration, which is above the current
4493 -- scope in the scope stack.
4495 if Is_Record_Type (Scope (Current_Scope)) then
4496 Pos := Pos - 1;
4497 end if;
4499 if Is_Non_Empty_List (Freeze_Nodes) then
4500 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4501 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
4502 Freeze_Nodes;
4503 else
4504 Append_List (Freeze_Nodes, Scope_Stack.Table
4505 (Pos).Pending_Freeze_Actions);
4506 end if;
4507 end if;
4508 end;
4510 return;
4511 end if;
4513 -- Now we have the right place to do the freezing. First, a special
4514 -- adjustment, if we are in spec-expression analysis mode, these freeze
4515 -- actions must not be thrown away (normally all inserted actions are
4516 -- thrown away in this mode. However, the freeze actions are from static
4517 -- expressions and one of the important reasons we are doing this
4518 -- special analysis is to get these freeze actions. Therefore we turn
4519 -- off the In_Spec_Expression mode to propagate these freeze actions.
4520 -- This also means they get properly analyzed and expanded.
4522 In_Spec_Expression := False;
4524 -- Freeze the designated type of an allocator (RM 13.14(13))
4526 if Present (Desig_Typ) then
4527 Freeze_Before (P, Desig_Typ);
4528 end if;
4530 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
4531 -- the enumeration representation clause exception in the loop above.
4533 if Present (Typ) then
4534 Freeze_Before (P, Typ);
4535 end if;
4537 -- Freeze name if one is present (RM 13.14(11))
4539 if Present (Nam) then
4540 Freeze_Before (P, Nam);
4541 end if;
4543 -- Restore In_Spec_Expression flag
4545 In_Spec_Expression := In_Spec_Exp;
4546 end Freeze_Expression;
4548 -----------------------------
4549 -- Freeze_Fixed_Point_Type --
4550 -----------------------------
4552 -- Certain fixed-point types and subtypes, including implicit base types
4553 -- and declared first subtypes, have not yet set up a range. This is
4554 -- because the range cannot be set until the Small and Size values are
4555 -- known, and these are not known till the type is frozen.
4557 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4558 -- whose bounds are unanalyzed real literals. This routine will recognize
4559 -- this case, and transform this range node into a properly typed range
4560 -- with properly analyzed and resolved values.
4562 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4563 Rng : constant Node_Id := Scalar_Range (Typ);
4564 Lo : constant Node_Id := Low_Bound (Rng);
4565 Hi : constant Node_Id := High_Bound (Rng);
4566 Btyp : constant Entity_Id := Base_Type (Typ);
4567 Brng : constant Node_Id := Scalar_Range (Btyp);
4568 BLo : constant Node_Id := Low_Bound (Brng);
4569 BHi : constant Node_Id := High_Bound (Brng);
4570 Small : constant Ureal := Small_Value (Typ);
4571 Loval : Ureal;
4572 Hival : Ureal;
4573 Atype : Entity_Id;
4575 Actual_Size : Nat;
4577 function Fsize (Lov, Hiv : Ureal) return Nat;
4578 -- Returns size of type with given bounds. Also leaves these
4579 -- bounds set as the current bounds of the Typ.
4581 -----------
4582 -- Fsize --
4583 -----------
4585 function Fsize (Lov, Hiv : Ureal) return Nat is
4586 begin
4587 Set_Realval (Lo, Lov);
4588 Set_Realval (Hi, Hiv);
4589 return Minimum_Size (Typ);
4590 end Fsize;
4592 -- Start of processing for Freeze_Fixed_Point_Type
4594 begin
4595 -- If Esize of a subtype has not previously been set, set it now
4597 if Unknown_Esize (Typ) then
4598 Atype := Ancestor_Subtype (Typ);
4600 if Present (Atype) then
4601 Set_Esize (Typ, Esize (Atype));
4602 else
4603 Set_Esize (Typ, Esize (Base_Type (Typ)));
4604 end if;
4605 end if;
4607 -- Immediate return if the range is already analyzed. This means that
4608 -- the range is already set, and does not need to be computed by this
4609 -- routine.
4611 if Analyzed (Rng) then
4612 return;
4613 end if;
4615 -- Immediate return if either of the bounds raises Constraint_Error
4617 if Raises_Constraint_Error (Lo)
4618 or else Raises_Constraint_Error (Hi)
4619 then
4620 return;
4621 end if;
4623 Loval := Realval (Lo);
4624 Hival := Realval (Hi);
4626 -- Ordinary fixed-point case
4628 if Is_Ordinary_Fixed_Point_Type (Typ) then
4630 -- For the ordinary fixed-point case, we are allowed to fudge the
4631 -- end-points up or down by small. Generally we prefer to fudge up,
4632 -- i.e. widen the bounds for non-model numbers so that the end points
4633 -- are included. However there are cases in which this cannot be
4634 -- done, and indeed cases in which we may need to narrow the bounds.
4635 -- The following circuit makes the decision.
4637 -- Note: our terminology here is that Incl_EP means that the bounds
4638 -- are widened by Small if necessary to include the end points, and
4639 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4640 -- end-points if this reduces the size.
4642 -- Note that in the Incl case, all we care about is including the
4643 -- end-points. In the Excl case, we want to narrow the bounds as
4644 -- much as permitted by the RM, to give the smallest possible size.
4646 Fudge : declare
4647 Loval_Incl_EP : Ureal;
4648 Hival_Incl_EP : Ureal;
4650 Loval_Excl_EP : Ureal;
4651 Hival_Excl_EP : Ureal;
4653 Size_Incl_EP : Nat;
4654 Size_Excl_EP : Nat;
4656 Model_Num : Ureal;
4657 First_Subt : Entity_Id;
4658 Actual_Lo : Ureal;
4659 Actual_Hi : Ureal;
4661 begin
4662 -- First step. Base types are required to be symmetrical. Right
4663 -- now, the base type range is a copy of the first subtype range.
4664 -- This will be corrected before we are done, but right away we
4665 -- need to deal with the case where both bounds are non-negative.
4666 -- In this case, we set the low bound to the negative of the high
4667 -- bound, to make sure that the size is computed to include the
4668 -- required sign. Note that we do not need to worry about the
4669 -- case of both bounds negative, because the sign will be dealt
4670 -- with anyway. Furthermore we can't just go making such a bound
4671 -- symmetrical, since in a twos-complement system, there is an
4672 -- extra negative value which could not be accommodated on the
4673 -- positive side.
4675 if Typ = Btyp
4676 and then not UR_Is_Negative (Loval)
4677 and then Hival > Loval
4678 then
4679 Loval := -Hival;
4680 Set_Realval (Lo, Loval);
4681 end if;
4683 -- Compute the fudged bounds. If the number is a model number,
4684 -- then we do nothing to include it, but we are allowed to backoff
4685 -- to the next adjacent model number when we exclude it. If it is
4686 -- not a model number then we straddle the two values with the
4687 -- model numbers on either side.
4689 Model_Num := UR_Trunc (Loval / Small) * Small;
4691 if Loval = Model_Num then
4692 Loval_Incl_EP := Model_Num;
4693 else
4694 Loval_Incl_EP := Model_Num - Small;
4695 end if;
4697 -- The low value excluding the end point is Small greater, but
4698 -- we do not do this exclusion if the low value is positive,
4699 -- since it can't help the size and could actually hurt by
4700 -- crossing the high bound.
4702 if UR_Is_Negative (Loval_Incl_EP) then
4703 Loval_Excl_EP := Loval_Incl_EP + Small;
4705 -- If the value went from negative to zero, then we have the
4706 -- case where Loval_Incl_EP is the model number just below
4707 -- zero, so we want to stick to the negative value for the
4708 -- base type to maintain the condition that the size will
4709 -- include signed values.
4711 if Typ = Btyp
4712 and then UR_Is_Zero (Loval_Excl_EP)
4713 then
4714 Loval_Excl_EP := Loval_Incl_EP;
4715 end if;
4717 else
4718 Loval_Excl_EP := Loval_Incl_EP;
4719 end if;
4721 -- Similar processing for upper bound and high value
4723 Model_Num := UR_Trunc (Hival / Small) * Small;
4725 if Hival = Model_Num then
4726 Hival_Incl_EP := Model_Num;
4727 else
4728 Hival_Incl_EP := Model_Num + Small;
4729 end if;
4731 if UR_Is_Positive (Hival_Incl_EP) then
4732 Hival_Excl_EP := Hival_Incl_EP - Small;
4733 else
4734 Hival_Excl_EP := Hival_Incl_EP;
4735 end if;
4737 -- One further adjustment is needed. In the case of subtypes, we
4738 -- cannot go outside the range of the base type, or we get
4739 -- peculiarities, and the base type range is already set. This
4740 -- only applies to the Incl values, since clearly the Excl values
4741 -- are already as restricted as they are allowed to be.
4743 if Typ /= Btyp then
4744 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4745 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4746 end if;
4748 -- Get size including and excluding end points
4750 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4751 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4753 -- No need to exclude end-points if it does not reduce size
4755 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4756 Loval_Excl_EP := Loval_Incl_EP;
4757 end if;
4759 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4760 Hival_Excl_EP := Hival_Incl_EP;
4761 end if;
4763 -- Now we set the actual size to be used. We want to use the
4764 -- bounds fudged up to include the end-points but only if this
4765 -- can be done without violating a specifically given size
4766 -- size clause or causing an unacceptable increase in size.
4768 -- Case of size clause given
4770 if Has_Size_Clause (Typ) then
4772 -- Use the inclusive size only if it is consistent with
4773 -- the explicitly specified size.
4775 if Size_Incl_EP <= RM_Size (Typ) then
4776 Actual_Lo := Loval_Incl_EP;
4777 Actual_Hi := Hival_Incl_EP;
4778 Actual_Size := Size_Incl_EP;
4780 -- If the inclusive size is too large, we try excluding
4781 -- the end-points (will be caught later if does not work).
4783 else
4784 Actual_Lo := Loval_Excl_EP;
4785 Actual_Hi := Hival_Excl_EP;
4786 Actual_Size := Size_Excl_EP;
4787 end if;
4789 -- Case of size clause not given
4791 else
4792 -- If we have a base type whose corresponding first subtype
4793 -- has an explicit size that is large enough to include our
4794 -- end-points, then do so. There is no point in working hard
4795 -- to get a base type whose size is smaller than the specified
4796 -- size of the first subtype.
4798 First_Subt := First_Subtype (Typ);
4800 if Has_Size_Clause (First_Subt)
4801 and then Size_Incl_EP <= Esize (First_Subt)
4802 then
4803 Actual_Size := Size_Incl_EP;
4804 Actual_Lo := Loval_Incl_EP;
4805 Actual_Hi := Hival_Incl_EP;
4807 -- If excluding the end-points makes the size smaller and
4808 -- results in a size of 8,16,32,64, then we take the smaller
4809 -- size. For the 64 case, this is compulsory. For the other
4810 -- cases, it seems reasonable. We like to include end points
4811 -- if we can, but not at the expense of moving to the next
4812 -- natural boundary of size.
4814 elsif Size_Incl_EP /= Size_Excl_EP
4815 and then
4816 (Size_Excl_EP = 8 or else
4817 Size_Excl_EP = 16 or else
4818 Size_Excl_EP = 32 or else
4819 Size_Excl_EP = 64)
4820 then
4821 Actual_Size := Size_Excl_EP;
4822 Actual_Lo := Loval_Excl_EP;
4823 Actual_Hi := Hival_Excl_EP;
4825 -- Otherwise we can definitely include the end points
4827 else
4828 Actual_Size := Size_Incl_EP;
4829 Actual_Lo := Loval_Incl_EP;
4830 Actual_Hi := Hival_Incl_EP;
4831 end if;
4833 -- One pathological case: normally we never fudge a low bound
4834 -- down, since it would seem to increase the size (if it has
4835 -- any effect), but for ranges containing single value, or no
4836 -- values, the high bound can be small too large. Consider:
4838 -- type t is delta 2.0**(-14)
4839 -- range 131072.0 .. 0;
4841 -- That lower bound is *just* outside the range of 32 bits, and
4842 -- does need fudging down in this case. Note that the bounds
4843 -- will always have crossed here, since the high bound will be
4844 -- fudged down if necessary, as in the case of:
4846 -- type t is delta 2.0**(-14)
4847 -- range 131072.0 .. 131072.0;
4849 -- So we detect the situation by looking for crossed bounds,
4850 -- and if the bounds are crossed, and the low bound is greater
4851 -- than zero, we will always back it off by small, since this
4852 -- is completely harmless.
4854 if Actual_Lo > Actual_Hi then
4855 if UR_Is_Positive (Actual_Lo) then
4856 Actual_Lo := Loval_Incl_EP - Small;
4857 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4859 -- And of course, we need to do exactly the same parallel
4860 -- fudge for flat ranges in the negative region.
4862 elsif UR_Is_Negative (Actual_Hi) then
4863 Actual_Hi := Hival_Incl_EP + Small;
4864 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4865 end if;
4866 end if;
4867 end if;
4869 Set_Realval (Lo, Actual_Lo);
4870 Set_Realval (Hi, Actual_Hi);
4871 end Fudge;
4873 -- For the decimal case, none of this fudging is required, since there
4874 -- are no end-point problems in the decimal case (the end-points are
4875 -- always included).
4877 else
4878 Actual_Size := Fsize (Loval, Hival);
4879 end if;
4881 -- At this stage, the actual size has been calculated and the proper
4882 -- required bounds are stored in the low and high bounds.
4884 if Actual_Size > 64 then
4885 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4886 Error_Msg_N
4887 ("size required (^) for type& too large, maximum allowed is 64",
4888 Typ);
4889 Actual_Size := 64;
4890 end if;
4892 -- Check size against explicit given size
4894 if Has_Size_Clause (Typ) then
4895 if Actual_Size > RM_Size (Typ) then
4896 Error_Msg_Uint_1 := RM_Size (Typ);
4897 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4898 Error_Msg_NE
4899 ("size given (^) for type& too small, minimum allowed is ^",
4900 Size_Clause (Typ), Typ);
4902 else
4903 Actual_Size := UI_To_Int (Esize (Typ));
4904 end if;
4906 -- Increase size to next natural boundary if no size clause given
4908 else
4909 if Actual_Size <= 8 then
4910 Actual_Size := 8;
4911 elsif Actual_Size <= 16 then
4912 Actual_Size := 16;
4913 elsif Actual_Size <= 32 then
4914 Actual_Size := 32;
4915 else
4916 Actual_Size := 64;
4917 end if;
4919 Init_Esize (Typ, Actual_Size);
4920 Adjust_Esize_For_Alignment (Typ);
4921 end if;
4923 -- If we have a base type, then expand the bounds so that they extend to
4924 -- the full width of the allocated size in bits, to avoid junk range
4925 -- checks on intermediate computations.
4927 if Base_Type (Typ) = Typ then
4928 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4929 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4930 end if;
4932 -- Final step is to reanalyze the bounds using the proper type
4933 -- and set the Corresponding_Integer_Value fields of the literals.
4935 Set_Etype (Lo, Empty);
4936 Set_Analyzed (Lo, False);
4937 Analyze (Lo);
4939 -- Resolve with universal fixed if the base type, and the base type if
4940 -- it is a subtype. Note we can't resolve the base type with itself,
4941 -- that would be a reference before definition.
4943 if Typ = Btyp then
4944 Resolve (Lo, Universal_Fixed);
4945 else
4946 Resolve (Lo, Btyp);
4947 end if;
4949 -- Set corresponding integer value for bound
4951 Set_Corresponding_Integer_Value
4952 (Lo, UR_To_Uint (Realval (Lo) / Small));
4954 -- Similar processing for high bound
4956 Set_Etype (Hi, Empty);
4957 Set_Analyzed (Hi, False);
4958 Analyze (Hi);
4960 if Typ = Btyp then
4961 Resolve (Hi, Universal_Fixed);
4962 else
4963 Resolve (Hi, Btyp);
4964 end if;
4966 Set_Corresponding_Integer_Value
4967 (Hi, UR_To_Uint (Realval (Hi) / Small));
4969 -- Set type of range to correspond to bounds
4971 Set_Etype (Rng, Etype (Lo));
4973 -- Set Esize to calculated size if not set already
4975 if Unknown_Esize (Typ) then
4976 Init_Esize (Typ, Actual_Size);
4977 end if;
4979 -- Set RM_Size if not already set. If already set, check value
4981 declare
4982 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4984 begin
4985 if RM_Size (Typ) /= Uint_0 then
4986 if RM_Size (Typ) < Minsiz then
4987 Error_Msg_Uint_1 := RM_Size (Typ);
4988 Error_Msg_Uint_2 := Minsiz;
4989 Error_Msg_NE
4990 ("size given (^) for type& too small, minimum allowed is ^",
4991 Size_Clause (Typ), Typ);
4992 end if;
4994 else
4995 Set_RM_Size (Typ, Minsiz);
4996 end if;
4997 end;
4998 end Freeze_Fixed_Point_Type;
5000 ------------------
5001 -- Freeze_Itype --
5002 ------------------
5004 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
5005 L : List_Id;
5007 begin
5008 Set_Has_Delayed_Freeze (T);
5009 L := Freeze_Entity (T, Sloc (N));
5011 if Is_Non_Empty_List (L) then
5012 Insert_Actions (N, L);
5013 end if;
5014 end Freeze_Itype;
5016 --------------------------
5017 -- Freeze_Static_Object --
5018 --------------------------
5020 procedure Freeze_Static_Object (E : Entity_Id) is
5022 Cannot_Be_Static : exception;
5023 -- Exception raised if the type of a static object cannot be made
5024 -- static. This happens if the type depends on non-global objects.
5026 procedure Ensure_Expression_Is_SA (N : Node_Id);
5027 -- Called to ensure that an expression used as part of a type definition
5028 -- is statically allocatable, which means that the expression type is
5029 -- statically allocatable, and the expression is either static, or a
5030 -- reference to a library level constant.
5032 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
5033 -- Called to mark a type as static, checking that it is possible
5034 -- to set the type as static. If it is not possible, then the
5035 -- exception Cannot_Be_Static is raised.
5037 -----------------------------
5038 -- Ensure_Expression_Is_SA --
5039 -----------------------------
5041 procedure Ensure_Expression_Is_SA (N : Node_Id) is
5042 Ent : Entity_Id;
5044 begin
5045 Ensure_Type_Is_SA (Etype (N));
5047 if Is_Static_Expression (N) then
5048 return;
5050 elsif Nkind (N) = N_Identifier then
5051 Ent := Entity (N);
5053 if Present (Ent)
5054 and then Ekind (Ent) = E_Constant
5055 and then Is_Library_Level_Entity (Ent)
5056 then
5057 return;
5058 end if;
5059 end if;
5061 raise Cannot_Be_Static;
5062 end Ensure_Expression_Is_SA;
5064 -----------------------
5065 -- Ensure_Type_Is_SA --
5066 -----------------------
5068 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5069 N : Node_Id;
5070 C : Entity_Id;
5072 begin
5073 -- If type is library level, we are all set
5075 if Is_Library_Level_Entity (Typ) then
5076 return;
5077 end if;
5079 -- We are also OK if the type already marked as statically allocated,
5080 -- which means we processed it before.
5082 if Is_Statically_Allocated (Typ) then
5083 return;
5084 end if;
5086 -- Mark type as statically allocated
5088 Set_Is_Statically_Allocated (Typ);
5090 -- Check that it is safe to statically allocate this type
5092 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5093 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5094 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5096 elsif Is_Array_Type (Typ) then
5097 N := First_Index (Typ);
5098 while Present (N) loop
5099 Ensure_Type_Is_SA (Etype (N));
5100 Next_Index (N);
5101 end loop;
5103 Ensure_Type_Is_SA (Component_Type (Typ));
5105 elsif Is_Access_Type (Typ) then
5106 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5108 declare
5109 F : Entity_Id;
5110 T : constant Entity_Id := Etype (Designated_Type (Typ));
5112 begin
5113 if T /= Standard_Void_Type then
5114 Ensure_Type_Is_SA (T);
5115 end if;
5117 F := First_Formal (Designated_Type (Typ));
5119 while Present (F) loop
5120 Ensure_Type_Is_SA (Etype (F));
5121 Next_Formal (F);
5122 end loop;
5123 end;
5125 else
5126 Ensure_Type_Is_SA (Designated_Type (Typ));
5127 end if;
5129 elsif Is_Record_Type (Typ) then
5130 C := First_Entity (Typ);
5131 while Present (C) loop
5132 if Ekind (C) = E_Discriminant
5133 or else Ekind (C) = E_Component
5134 then
5135 Ensure_Type_Is_SA (Etype (C));
5137 elsif Is_Type (C) then
5138 Ensure_Type_Is_SA (C);
5139 end if;
5141 Next_Entity (C);
5142 end loop;
5144 elsif Ekind (Typ) = E_Subprogram_Type then
5145 Ensure_Type_Is_SA (Etype (Typ));
5147 C := First_Formal (Typ);
5148 while Present (C) loop
5149 Ensure_Type_Is_SA (Etype (C));
5150 Next_Formal (C);
5151 end loop;
5153 else
5154 raise Cannot_Be_Static;
5155 end if;
5156 end Ensure_Type_Is_SA;
5158 -- Start of processing for Freeze_Static_Object
5160 begin
5161 Ensure_Type_Is_SA (Etype (E));
5163 exception
5164 when Cannot_Be_Static =>
5166 -- If the object that cannot be static is imported or exported, then
5167 -- issue an error message saying that this object cannot be imported
5168 -- or exported. If it has an address clause it is an overlay in the
5169 -- current partition and the static requirement is not relevant.
5171 if Is_Imported (E) and then No (Address_Clause (E)) then
5172 Error_Msg_N
5173 ("& cannot be imported (local type is not constant)", E);
5175 -- Otherwise must be exported, something is wrong if compiler
5176 -- is marking something as statically allocated which cannot be).
5178 else pragma Assert (Is_Exported (E));
5179 Error_Msg_N
5180 ("& cannot be exported (local type is not constant)", E);
5181 end if;
5182 end Freeze_Static_Object;
5184 -----------------------
5185 -- Freeze_Subprogram --
5186 -----------------------
5188 procedure Freeze_Subprogram (E : Entity_Id) is
5189 Retype : Entity_Id;
5190 F : Entity_Id;
5192 begin
5193 -- Subprogram may not have an address clause unless it is imported
5195 if Present (Address_Clause (E)) then
5196 if not Is_Imported (E) then
5197 Error_Msg_N
5198 ("address clause can only be given " &
5199 "for imported subprogram",
5200 Name (Address_Clause (E)));
5201 end if;
5202 end if;
5204 -- Reset the Pure indication on an imported subprogram unless an
5205 -- explicit Pure_Function pragma was present. We do this because
5206 -- otherwise it is an insidious error to call a non-pure function from
5207 -- pure unit and have calls mysteriously optimized away. What happens
5208 -- here is that the Import can bypass the normal check to ensure that
5209 -- pure units call only pure subprograms.
5211 if Is_Imported (E)
5212 and then Is_Pure (E)
5213 and then not Has_Pragma_Pure_Function (E)
5214 then
5215 Set_Is_Pure (E, False);
5216 end if;
5218 -- For non-foreign convention subprograms, this is where we create
5219 -- the extra formals (for accessibility level and constrained bit
5220 -- information). We delay this till the freeze point precisely so
5221 -- that we know the convention!
5223 if not Has_Foreign_Convention (E) then
5224 Create_Extra_Formals (E);
5225 Set_Mechanisms (E);
5227 -- If this is convention Ada and a Valued_Procedure, that's odd
5229 if Ekind (E) = E_Procedure
5230 and then Is_Valued_Procedure (E)
5231 and then Convention (E) = Convention_Ada
5232 and then Warn_On_Export_Import
5233 then
5234 Error_Msg_N
5235 ("?Valued_Procedure has no effect for convention Ada", E);
5236 Set_Is_Valued_Procedure (E, False);
5237 end if;
5239 -- Case of foreign convention
5241 else
5242 Set_Mechanisms (E);
5244 -- For foreign conventions, warn about return of an
5245 -- unconstrained array.
5247 -- Note: we *do* allow a return by descriptor for the VMS case,
5248 -- though here there is probably more to be done ???
5250 if Ekind (E) = E_Function then
5251 Retype := Underlying_Type (Etype (E));
5253 -- If no return type, probably some other error, e.g. a
5254 -- missing full declaration, so ignore.
5256 if No (Retype) then
5257 null;
5259 -- If the return type is generic, we have emitted a warning
5260 -- earlier on, and there is nothing else to check here. Specific
5261 -- instantiations may lead to erroneous behavior.
5263 elsif Is_Generic_Type (Etype (E)) then
5264 null;
5266 -- Display warning if returning unconstrained array
5268 elsif Is_Array_Type (Retype)
5269 and then not Is_Constrained (Retype)
5271 -- Exclude cases where descriptor mechanism is set, since the
5272 -- VMS descriptor mechanisms allow such unconstrained returns.
5274 and then Mechanism (E) not in Descriptor_Codes
5276 -- Check appropriate warning is enabled (should we check for
5277 -- Warnings (Off) on specific entities here, probably so???)
5279 and then Warn_On_Export_Import
5281 -- Exclude the VM case, since return of unconstrained arrays
5282 -- is properly handled in both the JVM and .NET cases.
5284 and then VM_Target = No_VM
5285 then
5286 Error_Msg_N
5287 ("?foreign convention function& should not return " &
5288 "unconstrained array", E);
5289 return;
5290 end if;
5291 end if;
5293 -- If any of the formals for an exported foreign convention
5294 -- subprogram have defaults, then emit an appropriate warning since
5295 -- this is odd (default cannot be used from non-Ada code)
5297 if Is_Exported (E) then
5298 F := First_Formal (E);
5299 while Present (F) loop
5300 if Warn_On_Export_Import
5301 and then Present (Default_Value (F))
5302 then
5303 Error_Msg_N
5304 ("?parameter cannot be defaulted in non-Ada call",
5305 Default_Value (F));
5306 end if;
5308 Next_Formal (F);
5309 end loop;
5310 end if;
5311 end if;
5313 -- For VMS, descriptor mechanisms for parameters are allowed only for
5314 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5315 -- allowed for parameters of exported subprograms.
5317 if OpenVMS_On_Target then
5318 if Is_Exported (E) then
5319 F := First_Formal (E);
5320 while Present (F) loop
5321 if Mechanism (F) = By_Descriptor_NCA then
5322 Error_Msg_N
5323 ("'N'C'A' descriptor for parameter not permitted", F);
5324 Error_Msg_N
5325 ("\can only be used for imported subprogram", F);
5326 end if;
5328 Next_Formal (F);
5329 end loop;
5331 elsif not Is_Imported (E) then
5332 F := First_Formal (E);
5333 while Present (F) loop
5334 if Mechanism (F) in Descriptor_Codes then
5335 Error_Msg_N
5336 ("descriptor mechanism for parameter not permitted", F);
5337 Error_Msg_N
5338 ("\can only be used for imported/exported subprogram", F);
5339 end if;
5341 Next_Formal (F);
5342 end loop;
5343 end if;
5344 end if;
5346 -- Pragma Inline_Always is disallowed for dispatching subprograms
5347 -- because the address of such subprograms is saved in the dispatch
5348 -- table to support dispatching calls, and dispatching calls cannot
5349 -- be inlined. This is consistent with the restriction against using
5350 -- 'Access or 'Address on an Inline_Always subprogram.
5352 if Is_Dispatching_Operation (E)
5353 and then Has_Pragma_Inline_Always (E)
5354 then
5355 Error_Msg_N
5356 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5357 end if;
5359 -- Because of the implicit representation of inherited predefined
5360 -- operators in the front-end, the overriding status of the operation
5361 -- may be affected when a full view of a type is analyzed, and this is
5362 -- not captured by the analysis of the corresponding type declaration.
5363 -- Therefore the correctness of a not-overriding indicator must be
5364 -- rechecked when the subprogram is frozen.
5366 if Nkind (E) = N_Defining_Operator_Symbol
5367 and then not Error_Posted (Parent (E))
5368 then
5369 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5370 end if;
5371 end Freeze_Subprogram;
5373 ----------------------
5374 -- Is_Fully_Defined --
5375 ----------------------
5377 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5378 begin
5379 if Ekind (T) = E_Class_Wide_Type then
5380 return Is_Fully_Defined (Etype (T));
5382 elsif Is_Array_Type (T) then
5383 return Is_Fully_Defined (Component_Type (T));
5385 elsif Is_Record_Type (T)
5386 and not Is_Private_Type (T)
5387 then
5388 -- Verify that the record type has no components with private types
5389 -- without completion.
5391 declare
5392 Comp : Entity_Id;
5394 begin
5395 Comp := First_Component (T);
5397 while Present (Comp) loop
5398 if not Is_Fully_Defined (Etype (Comp)) then
5399 return False;
5400 end if;
5402 Next_Component (Comp);
5403 end loop;
5404 return True;
5405 end;
5407 else
5408 return not Is_Private_Type (T)
5409 or else Present (Full_View (Base_Type (T)));
5410 end if;
5411 end Is_Fully_Defined;
5413 ---------------------------------
5414 -- Process_Default_Expressions --
5415 ---------------------------------
5417 procedure Process_Default_Expressions
5418 (E : Entity_Id;
5419 After : in out Node_Id)
5421 Loc : constant Source_Ptr := Sloc (E);
5422 Dbody : Node_Id;
5423 Formal : Node_Id;
5424 Dcopy : Node_Id;
5425 Dnam : Entity_Id;
5427 begin
5428 Set_Default_Expressions_Processed (E);
5430 -- A subprogram instance and its associated anonymous subprogram share
5431 -- their signature. The default expression functions are defined in the
5432 -- wrapper packages for the anonymous subprogram, and should not be
5433 -- generated again for the instance.
5435 if Is_Generic_Instance (E)
5436 and then Present (Alias (E))
5437 and then Default_Expressions_Processed (Alias (E))
5438 then
5439 return;
5440 end if;
5442 Formal := First_Formal (E);
5443 while Present (Formal) loop
5444 if Present (Default_Value (Formal)) then
5446 -- We work with a copy of the default expression because we
5447 -- do not want to disturb the original, since this would mess
5448 -- up the conformance checking.
5450 Dcopy := New_Copy_Tree (Default_Value (Formal));
5452 -- The analysis of the expression may generate insert actions,
5453 -- which of course must not be executed. We wrap those actions
5454 -- in a procedure that is not called, and later on eliminated.
5455 -- The following cases have no side-effects, and are analyzed
5456 -- directly.
5458 if Nkind (Dcopy) = N_Identifier
5459 or else Nkind (Dcopy) = N_Expanded_Name
5460 or else Nkind (Dcopy) = N_Integer_Literal
5461 or else (Nkind (Dcopy) = N_Real_Literal
5462 and then not Vax_Float (Etype (Dcopy)))
5463 or else Nkind (Dcopy) = N_Character_Literal
5464 or else Nkind (Dcopy) = N_String_Literal
5465 or else Known_Null (Dcopy)
5466 or else (Nkind (Dcopy) = N_Attribute_Reference
5467 and then
5468 Attribute_Name (Dcopy) = Name_Null_Parameter)
5469 then
5471 -- If there is no default function, we must still do a full
5472 -- analyze call on the default value, to ensure that all error
5473 -- checks are performed, e.g. those associated with static
5474 -- evaluation. Note: this branch will always be taken if the
5475 -- analyzer is turned off (but we still need the error checks).
5477 -- Note: the setting of parent here is to meet the requirement
5478 -- that we can only analyze the expression while attached to
5479 -- the tree. Really the requirement is that the parent chain
5480 -- be set, we don't actually need to be in the tree.
5482 Set_Parent (Dcopy, Declaration_Node (Formal));
5483 Analyze (Dcopy);
5485 -- Default expressions are resolved with their own type if the
5486 -- context is generic, to avoid anomalies with private types.
5488 if Ekind (Scope (E)) = E_Generic_Package then
5489 Resolve (Dcopy);
5490 else
5491 Resolve (Dcopy, Etype (Formal));
5492 end if;
5494 -- If that resolved expression will raise constraint error,
5495 -- then flag the default value as raising constraint error.
5496 -- This allows a proper error message on the calls.
5498 if Raises_Constraint_Error (Dcopy) then
5499 Set_Raises_Constraint_Error (Default_Value (Formal));
5500 end if;
5502 -- If the default is a parameterless call, we use the name of
5503 -- the called function directly, and there is no body to build.
5505 elsif Nkind (Dcopy) = N_Function_Call
5506 and then No (Parameter_Associations (Dcopy))
5507 then
5508 null;
5510 -- Else construct and analyze the body of a wrapper procedure
5511 -- that contains an object declaration to hold the expression.
5512 -- Given that this is done only to complete the analysis, it
5513 -- simpler to build a procedure than a function which might
5514 -- involve secondary stack expansion.
5516 else
5517 Dnam :=
5518 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5520 Dbody :=
5521 Make_Subprogram_Body (Loc,
5522 Specification =>
5523 Make_Procedure_Specification (Loc,
5524 Defining_Unit_Name => Dnam),
5526 Declarations => New_List (
5527 Make_Object_Declaration (Loc,
5528 Defining_Identifier =>
5529 Make_Defining_Identifier (Loc,
5530 New_Internal_Name ('T')),
5531 Object_Definition =>
5532 New_Occurrence_Of (Etype (Formal), Loc),
5533 Expression => New_Copy_Tree (Dcopy))),
5535 Handled_Statement_Sequence =>
5536 Make_Handled_Sequence_Of_Statements (Loc,
5537 Statements => New_List));
5539 Set_Scope (Dnam, Scope (E));
5540 Set_Assignment_OK (First (Declarations (Dbody)));
5541 Set_Is_Eliminated (Dnam);
5542 Insert_After (After, Dbody);
5543 Analyze (Dbody);
5544 After := Dbody;
5545 end if;
5546 end if;
5548 Next_Formal (Formal);
5549 end loop;
5550 end Process_Default_Expressions;
5552 ----------------------------------------
5553 -- Set_Component_Alignment_If_Not_Set --
5554 ----------------------------------------
5556 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5557 begin
5558 -- Ignore if not base type, subtypes don't need anything
5560 if Typ /= Base_Type (Typ) then
5561 return;
5562 end if;
5564 -- Do not override existing representation
5566 if Is_Packed (Typ) then
5567 return;
5569 elsif Has_Specified_Layout (Typ) then
5570 return;
5572 elsif Component_Alignment (Typ) /= Calign_Default then
5573 return;
5575 else
5576 Set_Component_Alignment
5577 (Typ, Scope_Stack.Table
5578 (Scope_Stack.Last).Component_Alignment_Default);
5579 end if;
5580 end Set_Component_Alignment_If_Not_Set;
5582 ------------------
5583 -- Undelay_Type --
5584 ------------------
5586 procedure Undelay_Type (T : Entity_Id) is
5587 begin
5588 Set_Has_Delayed_Freeze (T, False);
5589 Set_Freeze_Node (T, Empty);
5591 -- Since we don't want T to have a Freeze_Node, we don't want its
5592 -- Full_View or Corresponding_Record_Type to have one either.
5594 -- ??? Fundamentally, this whole handling is a kludge. What we really
5595 -- want is to be sure that for an Itype that's part of record R and is a
5596 -- subtype of type T, that it's frozen after the later of the freeze
5597 -- points of R and T. We have no way of doing that directly, so what we
5598 -- do is force most such Itypes to be frozen as part of freezing R via
5599 -- this procedure and only delay the ones that need to be delayed
5600 -- (mostly the designated types of access types that are defined as part
5601 -- of the record).
5603 if Is_Private_Type (T)
5604 and then Present (Full_View (T))
5605 and then Is_Itype (Full_View (T))
5606 and then Is_Record_Type (Scope (Full_View (T)))
5607 then
5608 Undelay_Type (Full_View (T));
5609 end if;
5611 if Is_Concurrent_Type (T)
5612 and then Present (Corresponding_Record_Type (T))
5613 and then Is_Itype (Corresponding_Record_Type (T))
5614 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5615 then
5616 Undelay_Type (Corresponding_Record_Type (T));
5617 end if;
5618 end Undelay_Type;
5620 ------------------
5621 -- Warn_Overlay --
5622 ------------------
5624 procedure Warn_Overlay
5625 (Expr : Node_Id;
5626 Typ : Entity_Id;
5627 Nam : Entity_Id)
5629 Ent : constant Entity_Id := Entity (Nam);
5630 -- The object to which the address clause applies
5632 Init : Node_Id;
5633 Old : Entity_Id := Empty;
5634 Decl : Node_Id;
5636 begin
5637 -- No warning if address clause overlay warnings are off
5639 if not Address_Clause_Overlay_Warnings then
5640 return;
5641 end if;
5643 -- No warning if there is an explicit initialization
5645 Init := Original_Node (Expression (Declaration_Node (Ent)));
5647 if Present (Init) and then Comes_From_Source (Init) then
5648 return;
5649 end if;
5651 -- We only give the warning for non-imported entities of a type for
5652 -- which a non-null base init proc is defined, or for objects of access
5653 -- types with implicit null initialization, or when Initialize_Scalars
5654 -- applies and the type is scalar or a string type (the latter being
5655 -- tested for because predefined String types are initialized by inline
5656 -- code rather than by an init_proc).
5658 if Present (Expr)
5659 and then not Is_Imported (Ent)
5660 and then (Has_Non_Null_Base_Init_Proc (Typ)
5661 or else Is_Access_Type (Typ)
5662 or else (Init_Or_Norm_Scalars
5663 and then (Is_Scalar_Type (Typ)
5664 or else Is_String_Type (Typ))))
5665 then
5666 if Nkind (Expr) = N_Attribute_Reference
5667 and then Is_Entity_Name (Prefix (Expr))
5668 then
5669 Old := Entity (Prefix (Expr));
5671 elsif Is_Entity_Name (Expr)
5672 and then Ekind (Entity (Expr)) = E_Constant
5673 then
5674 Decl := Declaration_Node (Entity (Expr));
5676 if Nkind (Decl) = N_Object_Declaration
5677 and then Present (Expression (Decl))
5678 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5679 and then Is_Entity_Name (Prefix (Expression (Decl)))
5680 then
5681 Old := Entity (Prefix (Expression (Decl)));
5683 elsif Nkind (Expr) = N_Function_Call then
5684 return;
5685 end if;
5687 -- A function call (most likely to To_Address) is probably not an
5688 -- overlay, so skip warning. Ditto if the function call was inlined
5689 -- and transformed into an entity.
5691 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5692 return;
5693 end if;
5695 Decl := Next (Parent (Expr));
5697 -- If a pragma Import follows, we assume that it is for the current
5698 -- target of the address clause, and skip the warning.
5700 if Present (Decl)
5701 and then Nkind (Decl) = N_Pragma
5702 and then Pragma_Name (Decl) = Name_Import
5703 then
5704 return;
5705 end if;
5707 if Present (Old) then
5708 Error_Msg_Node_2 := Old;
5709 Error_Msg_N
5710 ("default initialization of & may modify &?",
5711 Nam);
5712 else
5713 Error_Msg_N
5714 ("default initialization of & may modify overlaid storage?",
5715 Nam);
5716 end if;
5718 -- Add friendly warning if initialization comes from a packed array
5719 -- component.
5721 if Is_Record_Type (Typ) then
5722 declare
5723 Comp : Entity_Id;
5725 begin
5726 Comp := First_Component (Typ);
5728 while Present (Comp) loop
5729 if Nkind (Parent (Comp)) = N_Component_Declaration
5730 and then Present (Expression (Parent (Comp)))
5731 then
5732 exit;
5733 elsif Is_Array_Type (Etype (Comp))
5734 and then Present (Packed_Array_Type (Etype (Comp)))
5735 then
5736 Error_Msg_NE
5737 ("\packed array component& " &
5738 "will be initialized to zero?",
5739 Nam, Comp);
5740 exit;
5741 else
5742 Next_Component (Comp);
5743 end if;
5744 end loop;
5745 end;
5746 end if;
5748 Error_Msg_N
5749 ("\use pragma Import for & to " &
5750 "suppress initialization (RM B.1(24))?",
5751 Nam);
5752 end if;
5753 end Warn_Overlay;
5755 end Freeze;