fixing pr42337
[official-gcc.git] / gcc / ada / exp_ch6.adb
blobfa74f6cc7abc33b2309692560907197d75f7bbe7
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Elists; use Elists;
32 with Exp_Atag; use Exp_Atag;
33 with Exp_Ch2; use Exp_Ch2;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Dist; use Exp_Dist;
40 with Exp_Intr; use Exp_Intr;
41 with Exp_Pakd; use Exp_Pakd;
42 with Exp_Tss; use Exp_Tss;
43 with Exp_Util; use Exp_Util;
44 with Exp_VFpt; use Exp_VFpt;
45 with Fname; use Fname;
46 with Freeze; use Freeze;
47 with Inline; use Inline;
48 with Lib; use Lib;
49 with Namet; use Namet;
50 with Nlists; use Nlists;
51 with Nmake; use Nmake;
52 with Opt; use Opt;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Ch6; use Sem_Ch6;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch12; use Sem_Ch12;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Eval; use Sem_Eval;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Mech; use Sem_Mech;
66 with Sem_Res; use Sem_Res;
67 with Sem_SCIL; use Sem_SCIL;
68 with Sem_Util; use Sem_Util;
69 with Sinfo; use Sinfo;
70 with Snames; use Snames;
71 with Stand; use Stand;
72 with Tbuild; use Tbuild;
73 with Uintp; use Uintp;
74 with Validsw; use Validsw;
76 package body Exp_Ch6 is
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Add_Access_Actual_To_Build_In_Place_Call
83 (Function_Call : Node_Id;
84 Function_Id : Entity_Id;
85 Return_Object : Node_Id;
86 Is_Access : Boolean := False);
87 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
88 -- object name given by Return_Object and add the attribute to the end of
89 -- the actual parameter list associated with the build-in-place function
90 -- call denoted by Function_Call. However, if Is_Access is True, then
91 -- Return_Object is already an access expression, in which case it's passed
92 -- along directly to the build-in-place function. Finally, if Return_Object
93 -- is empty, then pass a null literal as the actual.
95 procedure Add_Alloc_Form_Actual_To_Build_In_Place_Call
96 (Function_Call : Node_Id;
97 Function_Id : Entity_Id;
98 Alloc_Form : BIP_Allocation_Form := Unspecified;
99 Alloc_Form_Exp : Node_Id := Empty);
100 -- Ada 2005 (AI-318-02): Add an actual indicating the form of allocation,
101 -- if any, to be done by a build-in-place function. If Alloc_Form_Exp is
102 -- present, then use it, otherwise pass a literal corresponding to the
103 -- Alloc_Form parameter (which must not be Unspecified in that case).
105 procedure Add_Extra_Actual_To_Call
106 (Subprogram_Call : Node_Id;
107 Extra_Formal : Entity_Id;
108 Extra_Actual : Node_Id);
109 -- Adds Extra_Actual as a named parameter association for the formal
110 -- Extra_Formal in Subprogram_Call.
112 procedure Add_Final_List_Actual_To_Build_In_Place_Call
113 (Function_Call : Node_Id;
114 Function_Id : Entity_Id;
115 Acc_Type : Entity_Id;
116 Sel_Comp : Node_Id := Empty);
117 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type has
118 -- controlled parts, add an actual parameter that is a pointer to
119 -- appropriate finalization list. The finalization list is that of the
120 -- current scope, except for "new Acc'(F(...))" in which case it's the
121 -- finalization list of the access type returned by the allocator. Acc_Type
122 -- is that type in the allocator case; Empty otherwise. If Sel_Comp is
123 -- not Empty, then it denotes a selected component and the finalization
124 -- list is obtained from the _controller list of the prefix object.
126 procedure Add_Task_Actuals_To_Build_In_Place_Call
127 (Function_Call : Node_Id;
128 Function_Id : Entity_Id;
129 Master_Actual : Node_Id);
130 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
131 -- contains tasks, add two actual parameters: the master, and a pointer to
132 -- the caller's activation chain. Master_Actual is the actual parameter
133 -- expression to pass for the master. In most cases, this is the current
134 -- master (_master). The two exceptions are: If the function call is the
135 -- initialization expression for an allocator, we pass the master of the
136 -- access type. If the function call is the initialization expression for
137 -- a return object, we pass along the master passed in by the caller. The
138 -- activation chain to pass is always the local one.
140 procedure Check_Overriding_Operation (Subp : Entity_Id);
141 -- Subp is a dispatching operation. Check whether it may override an
142 -- inherited private operation, in which case its DT entry is that of
143 -- the hidden operation, not the one it may have received earlier.
144 -- This must be done before emitting the code to set the corresponding
145 -- DT to the address of the subprogram. The actual placement of Subp in
146 -- the proper place in the list of primitive operations is done in
147 -- Declare_Inherited_Private_Subprograms, which also has to deal with
148 -- implicit operations. This duplication is unavoidable for now???
150 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
151 -- This procedure is called only if the subprogram body N, whose spec
152 -- has the given entity Spec, contains a parameterless recursive call.
153 -- It attempts to generate runtime code to detect if this a case of
154 -- infinite recursion.
156 -- The body is scanned to determine dependencies. If the only external
157 -- dependencies are on a small set of scalar variables, then the values
158 -- of these variables are captured on entry to the subprogram, and if
159 -- the values are not changed for the call, we know immediately that
160 -- we have an infinite recursion.
162 procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id);
163 -- For each actual of an in-out or out parameter which is a numeric
164 -- (view) conversion of the form T (A), where A denotes a variable,
165 -- we insert the declaration:
167 -- Temp : T[ := T (A)];
169 -- prior to the call. Then we replace the actual with a reference to Temp,
170 -- and append the assignment:
172 -- A := TypeA (Temp);
174 -- after the call. Here TypeA is the actual type of variable A. For out
175 -- parameters, the initial declaration has no expression. If A is not an
176 -- entity name, we generate instead:
178 -- Var : TypeA renames A;
179 -- Temp : T := Var; -- omitting expression for out parameter.
180 -- ...
181 -- Var := TypeA (Temp);
183 -- For other in-out parameters, we emit the required constraint checks
184 -- before and/or after the call.
186 -- For all parameter modes, actuals that denote components and slices of
187 -- packed arrays are expanded into suitable temporaries.
189 -- For non-scalar objects that are possibly unaligned, add call by copy
190 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
192 procedure Expand_Inlined_Call
193 (N : Node_Id;
194 Subp : Entity_Id;
195 Orig_Subp : Entity_Id);
196 -- If called subprogram can be inlined by the front-end, retrieve the
197 -- analyzed body, replace formals with actuals and expand call in place.
198 -- Generate thunks for actuals that are expressions, and insert the
199 -- corresponding constant declarations before the call. If the original
200 -- call is to a derived operation, the return type is the one of the
201 -- derived operation, but the body is that of the original, so return
202 -- expressions in the body must be converted to the desired type (which
203 -- is simply not noted in the tree without inline expansion).
205 function Expand_Protected_Object_Reference
206 (N : Node_Id;
207 Scop : Entity_Id) return Node_Id;
209 procedure Expand_Protected_Subprogram_Call
210 (N : Node_Id;
211 Subp : Entity_Id;
212 Scop : Entity_Id);
213 -- A call to a protected subprogram within the protected object may appear
214 -- as a regular call. The list of actuals must be expanded to contain a
215 -- reference to the object itself, and the call becomes a call to the
216 -- corresponding protected subprogram.
218 function Is_Null_Procedure (Subp : Entity_Id) return Boolean;
219 -- Predicate to recognize stubbed procedures and null procedures, which
220 -- can be inlined unconditionally in all cases.
222 ----------------------------------------------
223 -- Add_Access_Actual_To_Build_In_Place_Call --
224 ----------------------------------------------
226 procedure Add_Access_Actual_To_Build_In_Place_Call
227 (Function_Call : Node_Id;
228 Function_Id : Entity_Id;
229 Return_Object : Node_Id;
230 Is_Access : Boolean := False)
232 Loc : constant Source_Ptr := Sloc (Function_Call);
233 Obj_Address : Node_Id;
234 Obj_Acc_Formal : Entity_Id;
236 begin
237 -- Locate the implicit access parameter in the called function
239 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
241 -- If no return object is provided, then pass null
243 if not Present (Return_Object) then
244 Obj_Address := Make_Null (Loc);
245 Set_Parent (Obj_Address, Function_Call);
247 -- If Return_Object is already an expression of an access type, then use
248 -- it directly, since it must be an access value denoting the return
249 -- object, and couldn't possibly be the return object itself.
251 elsif Is_Access then
252 Obj_Address := Return_Object;
253 Set_Parent (Obj_Address, Function_Call);
255 -- Apply Unrestricted_Access to caller's return object
257 else
258 Obj_Address :=
259 Make_Attribute_Reference (Loc,
260 Prefix => Return_Object,
261 Attribute_Name => Name_Unrestricted_Access);
263 Set_Parent (Return_Object, Obj_Address);
264 Set_Parent (Obj_Address, Function_Call);
265 end if;
267 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
269 -- Build the parameter association for the new actual and add it to the
270 -- end of the function's actuals.
272 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
273 end Add_Access_Actual_To_Build_In_Place_Call;
275 --------------------------------------------------
276 -- Add_Alloc_Form_Actual_To_Build_In_Place_Call --
277 --------------------------------------------------
279 procedure Add_Alloc_Form_Actual_To_Build_In_Place_Call
280 (Function_Call : Node_Id;
281 Function_Id : Entity_Id;
282 Alloc_Form : BIP_Allocation_Form := Unspecified;
283 Alloc_Form_Exp : Node_Id := Empty)
285 Loc : constant Source_Ptr := Sloc (Function_Call);
286 Alloc_Form_Actual : Node_Id;
287 Alloc_Form_Formal : Node_Id;
289 begin
290 -- The allocation form generally doesn't need to be passed in the case
291 -- of a constrained result subtype, since normally the caller performs
292 -- the allocation in that case. However this formal is still needed in
293 -- the case where the function has a tagged result, because generally
294 -- such functions can be called in a dispatching context and such calls
295 -- must be handled like calls to class-wide functions.
297 if Is_Constrained (Underlying_Type (Etype (Function_Id)))
298 and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
299 then
300 return;
301 end if;
303 -- Locate the implicit allocation form parameter in the called function.
304 -- Maybe it would be better for each implicit formal of a build-in-place
305 -- function to have a flag or a Uint attribute to identify it. ???
307 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
309 if Present (Alloc_Form_Exp) then
310 pragma Assert (Alloc_Form = Unspecified);
312 Alloc_Form_Actual := Alloc_Form_Exp;
314 else
315 pragma Assert (Alloc_Form /= Unspecified);
317 Alloc_Form_Actual :=
318 Make_Integer_Literal (Loc,
319 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
320 end if;
322 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
324 -- Build the parameter association for the new actual and add it to the
325 -- end of the function's actuals.
327 Add_Extra_Actual_To_Call
328 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
329 end Add_Alloc_Form_Actual_To_Build_In_Place_Call;
331 ------------------------------
332 -- Add_Extra_Actual_To_Call --
333 ------------------------------
335 procedure Add_Extra_Actual_To_Call
336 (Subprogram_Call : Node_Id;
337 Extra_Formal : Entity_Id;
338 Extra_Actual : Node_Id)
340 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
341 Param_Assoc : Node_Id;
343 begin
344 Param_Assoc :=
345 Make_Parameter_Association (Loc,
346 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
347 Explicit_Actual_Parameter => Extra_Actual);
349 Set_Parent (Param_Assoc, Subprogram_Call);
350 Set_Parent (Extra_Actual, Param_Assoc);
352 if Present (Parameter_Associations (Subprogram_Call)) then
353 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
354 N_Parameter_Association
355 then
357 -- Find last named actual, and append
359 declare
360 L : Node_Id;
361 begin
362 L := First_Actual (Subprogram_Call);
363 while Present (L) loop
364 if No (Next_Actual (L)) then
365 Set_Next_Named_Actual (Parent (L), Extra_Actual);
366 exit;
367 end if;
368 Next_Actual (L);
369 end loop;
370 end;
372 else
373 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
374 end if;
376 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
378 else
379 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
380 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
381 end if;
382 end Add_Extra_Actual_To_Call;
384 --------------------------------------------------
385 -- Add_Final_List_Actual_To_Build_In_Place_Call --
386 --------------------------------------------------
388 procedure Add_Final_List_Actual_To_Build_In_Place_Call
389 (Function_Call : Node_Id;
390 Function_Id : Entity_Id;
391 Acc_Type : Entity_Id;
392 Sel_Comp : Node_Id := Empty)
394 Loc : constant Source_Ptr := Sloc (Function_Call);
395 Final_List : Node_Id;
396 Final_List_Actual : Node_Id;
397 Final_List_Formal : Node_Id;
398 Is_Ctrl_Result : constant Boolean :=
399 Needs_Finalization
400 (Underlying_Type (Etype (Function_Id)));
402 begin
403 -- No such extra parameter is needed if there are no controlled parts.
404 -- The test for Needs_Finalization accounts for class-wide results
405 -- (which potentially have controlled parts, even if the root type
406 -- doesn't), and the test for a tagged result type is needed because
407 -- calls to such a function can in general occur in dispatching
408 -- contexts, which must be treated the same as a call to class-wide
409 -- functions. Both of these situations require that a finalization list
410 -- be passed.
412 if not Needs_BIP_Final_List (Function_Id) then
413 return;
414 end if;
416 -- Locate implicit finalization list parameter in the called function
418 Final_List_Formal := Build_In_Place_Formal (Function_Id, BIP_Final_List);
420 -- Create the actual which is a pointer to the appropriate finalization
421 -- list. Acc_Type is present if and only if this call is the
422 -- initialization of an allocator. Use the Current_Scope or the
423 -- Acc_Type as appropriate.
425 if Present (Acc_Type)
426 and then (Ekind (Acc_Type) = E_Anonymous_Access_Type
427 or else
428 Present (Associated_Final_Chain (Base_Type (Acc_Type))))
429 then
430 Final_List := Find_Final_List (Acc_Type);
432 -- If Sel_Comp is present and the function result is controlled, then
433 -- the finalization list will be obtained from the _controller list of
434 -- the selected component's prefix object.
436 elsif Present (Sel_Comp) and then Is_Ctrl_Result then
437 Final_List := Find_Final_List (Current_Scope, Sel_Comp);
439 else
440 Final_List := Find_Final_List (Current_Scope);
441 end if;
443 Final_List_Actual :=
444 Make_Attribute_Reference (Loc,
445 Prefix => Final_List,
446 Attribute_Name => Name_Unrestricted_Access);
448 Analyze_And_Resolve (Final_List_Actual, Etype (Final_List_Formal));
450 -- Build the parameter association for the new actual and add it to the
451 -- end of the function's actuals.
453 Add_Extra_Actual_To_Call
454 (Function_Call, Final_List_Formal, Final_List_Actual);
455 end Add_Final_List_Actual_To_Build_In_Place_Call;
457 ---------------------------------------------
458 -- Add_Task_Actuals_To_Build_In_Place_Call --
459 ---------------------------------------------
461 procedure Add_Task_Actuals_To_Build_In_Place_Call
462 (Function_Call : Node_Id;
463 Function_Id : Entity_Id;
464 Master_Actual : Node_Id)
465 -- Note: Master_Actual can be Empty, but only if there are no tasks
467 Loc : constant Source_Ptr := Sloc (Function_Call);
469 begin
470 -- No such extra parameters are needed if there are no tasks
472 if not Has_Task (Etype (Function_Id)) then
473 return;
474 end if;
476 -- The master
478 declare
479 Master_Formal : Node_Id;
480 begin
481 -- Locate implicit master parameter in the called function
483 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Master);
485 Analyze_And_Resolve (Master_Actual, Etype (Master_Formal));
487 -- Build the parameter association for the new actual and add it to
488 -- the end of the function's actuals.
490 Add_Extra_Actual_To_Call
491 (Function_Call, Master_Formal, Master_Actual);
492 end;
494 -- The activation chain
496 declare
497 Activation_Chain_Actual : Node_Id;
498 Activation_Chain_Formal : Node_Id;
500 begin
501 -- Locate implicit activation chain parameter in the called function
503 Activation_Chain_Formal := Build_In_Place_Formal
504 (Function_Id, BIP_Activation_Chain);
506 -- Create the actual which is a pointer to the current activation
507 -- chain
509 Activation_Chain_Actual :=
510 Make_Attribute_Reference (Loc,
511 Prefix => Make_Identifier (Loc, Name_uChain),
512 Attribute_Name => Name_Unrestricted_Access);
514 Analyze_And_Resolve
515 (Activation_Chain_Actual, Etype (Activation_Chain_Formal));
517 -- Build the parameter association for the new actual and add it to
518 -- the end of the function's actuals.
520 Add_Extra_Actual_To_Call
521 (Function_Call, Activation_Chain_Formal, Activation_Chain_Actual);
522 end;
523 end Add_Task_Actuals_To_Build_In_Place_Call;
525 -----------------------
526 -- BIP_Formal_Suffix --
527 -----------------------
529 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
530 begin
531 case Kind is
532 when BIP_Alloc_Form =>
533 return "BIPalloc";
534 when BIP_Final_List =>
535 return "BIPfinallist";
536 when BIP_Master =>
537 return "BIPmaster";
538 when BIP_Activation_Chain =>
539 return "BIPactivationchain";
540 when BIP_Object_Access =>
541 return "BIPaccess";
542 end case;
543 end BIP_Formal_Suffix;
545 ---------------------------
546 -- Build_In_Place_Formal --
547 ---------------------------
549 function Build_In_Place_Formal
550 (Func : Entity_Id;
551 Kind : BIP_Formal_Kind) return Entity_Id
553 Extra_Formal : Entity_Id := Extra_Formals (Func);
555 begin
556 -- Maybe it would be better for each implicit formal of a build-in-place
557 -- function to have a flag or a Uint attribute to identify it. ???
559 loop
560 pragma Assert (Present (Extra_Formal));
561 exit when
562 Chars (Extra_Formal) =
563 New_External_Name (Chars (Func), BIP_Formal_Suffix (Kind));
564 Next_Formal_With_Extras (Extra_Formal);
565 end loop;
567 return Extra_Formal;
568 end Build_In_Place_Formal;
570 --------------------------------
571 -- Check_Overriding_Operation --
572 --------------------------------
574 procedure Check_Overriding_Operation (Subp : Entity_Id) is
575 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
576 Op_List : constant Elist_Id := Primitive_Operations (Typ);
577 Op_Elmt : Elmt_Id;
578 Prim_Op : Entity_Id;
579 Par_Op : Entity_Id;
581 begin
582 if Is_Derived_Type (Typ)
583 and then not Is_Private_Type (Typ)
584 and then In_Open_Scopes (Scope (Etype (Typ)))
585 and then Typ = Base_Type (Typ)
586 then
587 -- Subp overrides an inherited private operation if there is an
588 -- inherited operation with a different name than Subp (see
589 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
590 -- same name as Subp.
592 Op_Elmt := First_Elmt (Op_List);
593 while Present (Op_Elmt) loop
594 Prim_Op := Node (Op_Elmt);
595 Par_Op := Alias (Prim_Op);
597 if Present (Par_Op)
598 and then not Comes_From_Source (Prim_Op)
599 and then Chars (Prim_Op) /= Chars (Par_Op)
600 and then Chars (Par_Op) = Chars (Subp)
601 and then Is_Hidden (Par_Op)
602 and then Type_Conformant (Prim_Op, Subp)
603 then
604 Set_DT_Position (Subp, DT_Position (Prim_Op));
605 end if;
607 Next_Elmt (Op_Elmt);
608 end loop;
609 end if;
610 end Check_Overriding_Operation;
612 -------------------------------
613 -- Detect_Infinite_Recursion --
614 -------------------------------
616 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
617 Loc : constant Source_Ptr := Sloc (N);
619 Var_List : constant Elist_Id := New_Elmt_List;
620 -- List of globals referenced by body of procedure
622 Call_List : constant Elist_Id := New_Elmt_List;
623 -- List of recursive calls in body of procedure
625 Shad_List : constant Elist_Id := New_Elmt_List;
626 -- List of entity id's for entities created to capture the value of
627 -- referenced globals on entry to the procedure.
629 Scop : constant Uint := Scope_Depth (Spec);
630 -- This is used to record the scope depth of the current procedure, so
631 -- that we can identify global references.
633 Max_Vars : constant := 4;
634 -- Do not test more than four global variables
636 Count_Vars : Natural := 0;
637 -- Count variables found so far
639 Var : Entity_Id;
640 Elm : Elmt_Id;
641 Ent : Entity_Id;
642 Call : Elmt_Id;
643 Decl : Node_Id;
644 Test : Node_Id;
645 Elm1 : Elmt_Id;
646 Elm2 : Elmt_Id;
647 Last : Node_Id;
649 function Process (Nod : Node_Id) return Traverse_Result;
650 -- Function to traverse the subprogram body (using Traverse_Func)
652 -------------
653 -- Process --
654 -------------
656 function Process (Nod : Node_Id) return Traverse_Result is
657 begin
658 -- Procedure call
660 if Nkind (Nod) = N_Procedure_Call_Statement then
662 -- Case of one of the detected recursive calls
664 if Is_Entity_Name (Name (Nod))
665 and then Has_Recursive_Call (Entity (Name (Nod)))
666 and then Entity (Name (Nod)) = Spec
667 then
668 Append_Elmt (Nod, Call_List);
669 return Skip;
671 -- Any other procedure call may have side effects
673 else
674 return Abandon;
675 end if;
677 -- A call to a pure function can always be ignored
679 elsif Nkind (Nod) = N_Function_Call
680 and then Is_Entity_Name (Name (Nod))
681 and then Is_Pure (Entity (Name (Nod)))
682 then
683 return Skip;
685 -- Case of an identifier reference
687 elsif Nkind (Nod) = N_Identifier then
688 Ent := Entity (Nod);
690 -- If no entity, then ignore the reference
692 -- Not clear why this can happen. To investigate, remove this
693 -- test and look at the crash that occurs here in 3401-004 ???
695 if No (Ent) then
696 return Skip;
698 -- Ignore entities with no Scope, again not clear how this
699 -- can happen, to investigate, look at 4108-008 ???
701 elsif No (Scope (Ent)) then
702 return Skip;
704 -- Ignore the reference if not to a more global object
706 elsif Scope_Depth (Scope (Ent)) >= Scop then
707 return Skip;
709 -- References to types, exceptions and constants are always OK
711 elsif Is_Type (Ent)
712 or else Ekind (Ent) = E_Exception
713 or else Ekind (Ent) = E_Constant
714 then
715 return Skip;
717 -- If other than a non-volatile scalar variable, we have some
718 -- kind of global reference (e.g. to a function) that we cannot
719 -- deal with so we forget the attempt.
721 elsif Ekind (Ent) /= E_Variable
722 or else not Is_Scalar_Type (Etype (Ent))
723 or else Treat_As_Volatile (Ent)
724 then
725 return Abandon;
727 -- Otherwise we have a reference to a global scalar
729 else
730 -- Loop through global entities already detected
732 Elm := First_Elmt (Var_List);
733 loop
734 -- If not detected before, record this new global reference
736 if No (Elm) then
737 Count_Vars := Count_Vars + 1;
739 if Count_Vars <= Max_Vars then
740 Append_Elmt (Entity (Nod), Var_List);
741 else
742 return Abandon;
743 end if;
745 exit;
747 -- If recorded before, ignore
749 elsif Node (Elm) = Entity (Nod) then
750 return Skip;
752 -- Otherwise keep looking
754 else
755 Next_Elmt (Elm);
756 end if;
757 end loop;
759 return Skip;
760 end if;
762 -- For all other node kinds, recursively visit syntactic children
764 else
765 return OK;
766 end if;
767 end Process;
769 function Traverse_Body is new Traverse_Func (Process);
771 -- Start of processing for Detect_Infinite_Recursion
773 begin
774 -- Do not attempt detection in No_Implicit_Conditional mode, since we
775 -- won't be able to generate the code to handle the recursion in any
776 -- case.
778 if Restriction_Active (No_Implicit_Conditionals) then
779 return;
780 end if;
782 -- Otherwise do traversal and quit if we get abandon signal
784 if Traverse_Body (N) = Abandon then
785 return;
787 -- We must have a call, since Has_Recursive_Call was set. If not just
788 -- ignore (this is only an error check, so if we have a funny situation,
789 -- due to bugs or errors, we do not want to bomb!)
791 elsif Is_Empty_Elmt_List (Call_List) then
792 return;
793 end if;
795 -- Here is the case where we detect recursion at compile time
797 -- Push our current scope for analyzing the declarations and code that
798 -- we will insert for the checking.
800 Push_Scope (Spec);
802 -- This loop builds temporary variables for each of the referenced
803 -- globals, so that at the end of the loop the list Shad_List contains
804 -- these temporaries in one-to-one correspondence with the elements in
805 -- Var_List.
807 Last := Empty;
808 Elm := First_Elmt (Var_List);
809 while Present (Elm) loop
810 Var := Node (Elm);
811 Ent :=
812 Make_Defining_Identifier (Loc,
813 Chars => New_Internal_Name ('S'));
814 Append_Elmt (Ent, Shad_List);
816 -- Insert a declaration for this temporary at the start of the
817 -- declarations for the procedure. The temporaries are declared as
818 -- constant objects initialized to the current values of the
819 -- corresponding temporaries.
821 Decl :=
822 Make_Object_Declaration (Loc,
823 Defining_Identifier => Ent,
824 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
825 Constant_Present => True,
826 Expression => New_Occurrence_Of (Var, Loc));
828 if No (Last) then
829 Prepend (Decl, Declarations (N));
830 else
831 Insert_After (Last, Decl);
832 end if;
834 Last := Decl;
835 Analyze (Decl);
836 Next_Elmt (Elm);
837 end loop;
839 -- Loop through calls
841 Call := First_Elmt (Call_List);
842 while Present (Call) loop
844 -- Build a predicate expression of the form
846 -- True
847 -- and then global1 = temp1
848 -- and then global2 = temp2
849 -- ...
851 -- This predicate determines if any of the global values
852 -- referenced by the procedure have changed since the
853 -- current call, if not an infinite recursion is assured.
855 Test := New_Occurrence_Of (Standard_True, Loc);
857 Elm1 := First_Elmt (Var_List);
858 Elm2 := First_Elmt (Shad_List);
859 while Present (Elm1) loop
860 Test :=
861 Make_And_Then (Loc,
862 Left_Opnd => Test,
863 Right_Opnd =>
864 Make_Op_Eq (Loc,
865 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
866 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
868 Next_Elmt (Elm1);
869 Next_Elmt (Elm2);
870 end loop;
872 -- Now we replace the call with the sequence
874 -- if no-changes (see above) then
875 -- raise Storage_Error;
876 -- else
877 -- original-call
878 -- end if;
880 Rewrite (Node (Call),
881 Make_If_Statement (Loc,
882 Condition => Test,
883 Then_Statements => New_List (
884 Make_Raise_Storage_Error (Loc,
885 Reason => SE_Infinite_Recursion)),
887 Else_Statements => New_List (
888 Relocate_Node (Node (Call)))));
890 Analyze (Node (Call));
892 Next_Elmt (Call);
893 end loop;
895 -- Remove temporary scope stack entry used for analysis
897 Pop_Scope;
898 end Detect_Infinite_Recursion;
900 --------------------
901 -- Expand_Actuals --
902 --------------------
904 procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id) is
905 Loc : constant Source_Ptr := Sloc (N);
906 Actual : Node_Id;
907 Formal : Entity_Id;
908 N_Node : Node_Id;
909 Post_Call : List_Id;
910 E_Formal : Entity_Id;
912 procedure Add_Call_By_Copy_Code;
913 -- For cases where the parameter must be passed by copy, this routine
914 -- generates a temporary variable into which the actual is copied and
915 -- then passes this as the parameter. For an OUT or IN OUT parameter,
916 -- an assignment is also generated to copy the result back. The call
917 -- also takes care of any constraint checks required for the type
918 -- conversion case (on both the way in and the way out).
920 procedure Add_Simple_Call_By_Copy_Code;
921 -- This is similar to the above, but is used in cases where we know
922 -- that all that is needed is to simply create a temporary and copy
923 -- the value in and out of the temporary.
925 procedure Check_Fortran_Logical;
926 -- A value of type Logical that is passed through a formal parameter
927 -- must be normalized because .TRUE. usually does not have the same
928 -- representation as True. We assume that .FALSE. = False = 0.
929 -- What about functions that return a logical type ???
931 function Is_Legal_Copy return Boolean;
932 -- Check that an actual can be copied before generating the temporary
933 -- to be used in the call. If the actual is of a by_reference type then
934 -- the program is illegal (this can only happen in the presence of
935 -- rep. clauses that force an incorrect alignment). If the formal is
936 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
937 -- the effect that this might lead to unaligned arguments.
939 function Make_Var (Actual : Node_Id) return Entity_Id;
940 -- Returns an entity that refers to the given actual parameter,
941 -- Actual (not including any type conversion). If Actual is an
942 -- entity name, then this entity is returned unchanged, otherwise
943 -- a renaming is created to provide an entity for the actual.
945 procedure Reset_Packed_Prefix;
946 -- The expansion of a packed array component reference is delayed in
947 -- the context of a call. Now we need to complete the expansion, so we
948 -- unmark the analyzed bits in all prefixes.
950 ---------------------------
951 -- Add_Call_By_Copy_Code --
952 ---------------------------
954 procedure Add_Call_By_Copy_Code is
955 Expr : Node_Id;
956 Init : Node_Id;
957 Temp : Entity_Id;
958 Indic : Node_Id;
959 Var : Entity_Id;
960 F_Typ : constant Entity_Id := Etype (Formal);
961 V_Typ : Entity_Id;
962 Crep : Boolean;
964 begin
965 if not Is_Legal_Copy then
966 return;
967 end if;
969 Temp :=
970 Make_Defining_Identifier (Loc,
971 Chars => New_Internal_Name ('T'));
973 -- Use formal type for temp, unless formal type is an unconstrained
974 -- array, in which case we don't have to worry about bounds checks,
975 -- and we use the actual type, since that has appropriate bounds.
977 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
978 Indic := New_Occurrence_Of (Etype (Actual), Loc);
979 else
980 Indic := New_Occurrence_Of (Etype (Formal), Loc);
981 end if;
983 if Nkind (Actual) = N_Type_Conversion then
984 V_Typ := Etype (Expression (Actual));
986 -- If the formal is an (in-)out parameter, capture the name
987 -- of the variable in order to build the post-call assignment.
989 Var := Make_Var (Expression (Actual));
991 Crep := not Same_Representation
992 (F_Typ, Etype (Expression (Actual)));
994 else
995 V_Typ := Etype (Actual);
996 Var := Make_Var (Actual);
997 Crep := False;
998 end if;
1000 -- Setup initialization for case of in out parameter, or an out
1001 -- parameter where the formal is an unconstrained array (in the
1002 -- latter case, we have to pass in an object with bounds).
1004 -- If this is an out parameter, the initial copy is wasteful, so as
1005 -- an optimization for the one-dimensional case we extract the
1006 -- bounds of the actual and build an uninitialized temporary of the
1007 -- right size.
1009 if Ekind (Formal) = E_In_Out_Parameter
1010 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1011 then
1012 if Nkind (Actual) = N_Type_Conversion then
1013 if Conversion_OK (Actual) then
1014 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1015 else
1016 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1017 end if;
1019 elsif Ekind (Formal) = E_Out_Parameter
1020 and then Is_Array_Type (F_Typ)
1021 and then Number_Dimensions (F_Typ) = 1
1022 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1023 then
1024 -- Actual is a one-dimensional array or slice, and the type
1025 -- requires no initialization. Create a temporary of the
1026 -- right size, but do not copy actual into it (optimization).
1028 Init := Empty;
1029 Indic :=
1030 Make_Subtype_Indication (Loc,
1031 Subtype_Mark =>
1032 New_Occurrence_Of (F_Typ, Loc),
1033 Constraint =>
1034 Make_Index_Or_Discriminant_Constraint (Loc,
1035 Constraints => New_List (
1036 Make_Range (Loc,
1037 Low_Bound =>
1038 Make_Attribute_Reference (Loc,
1039 Prefix => New_Occurrence_Of (Var, Loc),
1040 Attribute_Name => Name_First),
1041 High_Bound =>
1042 Make_Attribute_Reference (Loc,
1043 Prefix => New_Occurrence_Of (Var, Loc),
1044 Attribute_Name => Name_Last)))));
1046 else
1047 Init := New_Occurrence_Of (Var, Loc);
1048 end if;
1050 -- An initialization is created for packed conversions as
1051 -- actuals for out parameters to enable Make_Object_Declaration
1052 -- to determine the proper subtype for N_Node. Note that this
1053 -- is wasteful because the extra copying on the call side is
1054 -- not required for such out parameters. ???
1056 elsif Ekind (Formal) = E_Out_Parameter
1057 and then Nkind (Actual) = N_Type_Conversion
1058 and then (Is_Bit_Packed_Array (F_Typ)
1059 or else
1060 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1061 then
1062 if Conversion_OK (Actual) then
1063 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1064 else
1065 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1066 end if;
1068 elsif Ekind (Formal) = E_In_Parameter then
1070 -- Handle the case in which the actual is a type conversion
1072 if Nkind (Actual) = N_Type_Conversion then
1073 if Conversion_OK (Actual) then
1074 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1075 else
1076 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1077 end if;
1078 else
1079 Init := New_Occurrence_Of (Var, Loc);
1080 end if;
1082 else
1083 Init := Empty;
1084 end if;
1086 N_Node :=
1087 Make_Object_Declaration (Loc,
1088 Defining_Identifier => Temp,
1089 Object_Definition => Indic,
1090 Expression => Init);
1091 Set_Assignment_OK (N_Node);
1092 Insert_Action (N, N_Node);
1094 -- Now, normally the deal here is that we use the defining
1095 -- identifier created by that object declaration. There is
1096 -- one exception to this. In the change of representation case
1097 -- the above declaration will end up looking like:
1099 -- temp : type := identifier;
1101 -- And in this case we might as well use the identifier directly
1102 -- and eliminate the temporary. Note that the analysis of the
1103 -- declaration was not a waste of time in that case, since it is
1104 -- what generated the necessary change of representation code. If
1105 -- the change of representation introduced additional code, as in
1106 -- a fixed-integer conversion, the expression is not an identifier
1107 -- and must be kept.
1109 if Crep
1110 and then Present (Expression (N_Node))
1111 and then Is_Entity_Name (Expression (N_Node))
1112 then
1113 Temp := Entity (Expression (N_Node));
1114 Rewrite (N_Node, Make_Null_Statement (Loc));
1115 end if;
1117 -- For IN parameter, all we do is to replace the actual
1119 if Ekind (Formal) = E_In_Parameter then
1120 Rewrite (Actual, New_Reference_To (Temp, Loc));
1121 Analyze (Actual);
1123 -- Processing for OUT or IN OUT parameter
1125 else
1126 -- Kill current value indications for the temporary variable we
1127 -- created, since we just passed it as an OUT parameter.
1129 Kill_Current_Values (Temp);
1130 Set_Is_Known_Valid (Temp, False);
1132 -- If type conversion, use reverse conversion on exit
1134 if Nkind (Actual) = N_Type_Conversion then
1135 if Conversion_OK (Actual) then
1136 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1137 else
1138 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1139 end if;
1140 else
1141 Expr := New_Occurrence_Of (Temp, Loc);
1142 end if;
1144 Rewrite (Actual, New_Reference_To (Temp, Loc));
1145 Analyze (Actual);
1147 -- If the actual is a conversion of a packed reference, it may
1148 -- already have been expanded by Remove_Side_Effects, and the
1149 -- resulting variable is a temporary which does not designate
1150 -- the proper out-parameter, which may not be addressable. In
1151 -- that case, generate an assignment to the original expression
1152 -- (before expansion of the packed reference) so that the proper
1153 -- expansion of assignment to a packed component can take place.
1155 declare
1156 Obj : Node_Id;
1157 Lhs : Node_Id;
1159 begin
1160 if Is_Renaming_Of_Object (Var)
1161 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1162 and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
1163 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1164 = N_Indexed_Component
1165 and then
1166 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1167 then
1168 Obj := Renamed_Object (Var);
1169 Lhs :=
1170 Make_Selected_Component (Loc,
1171 Prefix =>
1172 New_Copy_Tree (Original_Node (Prefix (Obj))),
1173 Selector_Name => New_Copy (Selector_Name (Obj)));
1174 Reset_Analyzed_Flags (Lhs);
1176 else
1177 Lhs := New_Occurrence_Of (Var, Loc);
1178 end if;
1180 Set_Assignment_OK (Lhs);
1182 Append_To (Post_Call,
1183 Make_Assignment_Statement (Loc,
1184 Name => Lhs,
1185 Expression => Expr));
1186 end;
1187 end if;
1188 end Add_Call_By_Copy_Code;
1190 ----------------------------------
1191 -- Add_Simple_Call_By_Copy_Code --
1192 ----------------------------------
1194 procedure Add_Simple_Call_By_Copy_Code is
1195 Temp : Entity_Id;
1196 Decl : Node_Id;
1197 Incod : Node_Id;
1198 Outcod : Node_Id;
1199 Lhs : Node_Id;
1200 Rhs : Node_Id;
1201 Indic : Node_Id;
1202 F_Typ : constant Entity_Id := Etype (Formal);
1204 begin
1205 if not Is_Legal_Copy then
1206 return;
1207 end if;
1209 -- Use formal type for temp, unless formal type is an unconstrained
1210 -- array, in which case we don't have to worry about bounds checks,
1211 -- and we use the actual type, since that has appropriate bounds.
1213 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1214 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1215 else
1216 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1217 end if;
1219 -- Prepare to generate code
1221 Reset_Packed_Prefix;
1223 Temp :=
1224 Make_Defining_Identifier (Loc,
1225 Chars => New_Internal_Name ('T'));
1226 Incod := Relocate_Node (Actual);
1227 Outcod := New_Copy_Tree (Incod);
1229 -- Generate declaration of temporary variable, initializing it
1230 -- with the input parameter unless we have an OUT formal or
1231 -- this is an initialization call.
1233 -- If the formal is an out parameter with discriminants, the
1234 -- discriminants must be captured even if the rest of the object
1235 -- is in principle uninitialized, because the discriminants may
1236 -- be read by the called subprogram.
1238 if Ekind (Formal) = E_Out_Parameter then
1239 Incod := Empty;
1241 if Has_Discriminants (Etype (Formal)) then
1242 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1243 end if;
1245 elsif Inside_Init_Proc then
1247 -- Could use a comment here to match comment below ???
1249 if Nkind (Actual) /= N_Selected_Component
1250 or else
1251 not Has_Discriminant_Dependent_Constraint
1252 (Entity (Selector_Name (Actual)))
1253 then
1254 Incod := Empty;
1256 -- Otherwise, keep the component in order to generate the proper
1257 -- actual subtype, that depends on enclosing discriminants.
1259 else
1260 null;
1261 end if;
1262 end if;
1264 Decl :=
1265 Make_Object_Declaration (Loc,
1266 Defining_Identifier => Temp,
1267 Object_Definition => Indic,
1268 Expression => Incod);
1270 if Inside_Init_Proc
1271 and then No (Incod)
1272 then
1273 -- If the call is to initialize a component of a composite type,
1274 -- and the component does not depend on discriminants, use the
1275 -- actual type of the component. This is required in case the
1276 -- component is constrained, because in general the formal of the
1277 -- initialization procedure will be unconstrained. Note that if
1278 -- the component being initialized is constrained by an enclosing
1279 -- discriminant, the presence of the initialization in the
1280 -- declaration will generate an expression for the actual subtype.
1282 Set_No_Initialization (Decl);
1283 Set_Object_Definition (Decl,
1284 New_Occurrence_Of (Etype (Actual), Loc));
1285 end if;
1287 Insert_Action (N, Decl);
1289 -- The actual is simply a reference to the temporary
1291 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1293 -- Generate copy out if OUT or IN OUT parameter
1295 if Ekind (Formal) /= E_In_Parameter then
1296 Lhs := Outcod;
1297 Rhs := New_Occurrence_Of (Temp, Loc);
1299 -- Deal with conversion
1301 if Nkind (Lhs) = N_Type_Conversion then
1302 Lhs := Expression (Lhs);
1303 Rhs := Convert_To (Etype (Actual), Rhs);
1304 end if;
1306 Append_To (Post_Call,
1307 Make_Assignment_Statement (Loc,
1308 Name => Lhs,
1309 Expression => Rhs));
1310 Set_Assignment_OK (Name (Last (Post_Call)));
1311 end if;
1312 end Add_Simple_Call_By_Copy_Code;
1314 ---------------------------
1315 -- Check_Fortran_Logical --
1316 ---------------------------
1318 procedure Check_Fortran_Logical is
1319 Logical : constant Entity_Id := Etype (Formal);
1320 Var : Entity_Id;
1322 -- Note: this is very incomplete, e.g. it does not handle arrays
1323 -- of logical values. This is really not the right approach at all???)
1325 begin
1326 if Convention (Subp) = Convention_Fortran
1327 and then Root_Type (Etype (Formal)) = Standard_Boolean
1328 and then Ekind (Formal) /= E_In_Parameter
1329 then
1330 Var := Make_Var (Actual);
1331 Append_To (Post_Call,
1332 Make_Assignment_Statement (Loc,
1333 Name => New_Occurrence_Of (Var, Loc),
1334 Expression =>
1335 Unchecked_Convert_To (
1336 Logical,
1337 Make_Op_Ne (Loc,
1338 Left_Opnd => New_Occurrence_Of (Var, Loc),
1339 Right_Opnd =>
1340 Unchecked_Convert_To (
1341 Logical,
1342 New_Occurrence_Of (Standard_False, Loc))))));
1343 end if;
1344 end Check_Fortran_Logical;
1346 -------------------
1347 -- Is_Legal_Copy --
1348 -------------------
1350 function Is_Legal_Copy return Boolean is
1351 begin
1352 -- An attempt to copy a value of such a type can only occur if
1353 -- representation clauses give the actual a misaligned address.
1355 if Is_By_Reference_Type (Etype (Formal)) then
1356 Error_Msg_N
1357 ("misaligned actual cannot be passed by reference", Actual);
1358 return False;
1360 -- For users of Starlet, we assume that the specification of by-
1361 -- reference mechanism is mandatory. This may lead to unaligned
1362 -- objects but at least for DEC legacy code it is known to work.
1363 -- The warning will alert users of this code that a problem may
1364 -- be lurking.
1366 elsif Mechanism (Formal) = By_Reference
1367 and then Is_Valued_Procedure (Scope (Formal))
1368 then
1369 Error_Msg_N
1370 ("by_reference actual may be misaligned?", Actual);
1371 return False;
1373 else
1374 return True;
1375 end if;
1376 end Is_Legal_Copy;
1378 --------------
1379 -- Make_Var --
1380 --------------
1382 function Make_Var (Actual : Node_Id) return Entity_Id is
1383 Var : Entity_Id;
1385 begin
1386 if Is_Entity_Name (Actual) then
1387 return Entity (Actual);
1389 else
1390 Var :=
1391 Make_Defining_Identifier (Loc,
1392 Chars => New_Internal_Name ('T'));
1394 N_Node :=
1395 Make_Object_Renaming_Declaration (Loc,
1396 Defining_Identifier => Var,
1397 Subtype_Mark =>
1398 New_Occurrence_Of (Etype (Actual), Loc),
1399 Name => Relocate_Node (Actual));
1401 Insert_Action (N, N_Node);
1402 return Var;
1403 end if;
1404 end Make_Var;
1406 -------------------------
1407 -- Reset_Packed_Prefix --
1408 -------------------------
1410 procedure Reset_Packed_Prefix is
1411 Pfx : Node_Id := Actual;
1412 begin
1413 loop
1414 Set_Analyzed (Pfx, False);
1415 exit when
1416 not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1417 Pfx := Prefix (Pfx);
1418 end loop;
1419 end Reset_Packed_Prefix;
1421 -- Start of processing for Expand_Actuals
1423 begin
1424 Post_Call := New_List;
1426 Formal := First_Formal (Subp);
1427 Actual := First_Actual (N);
1428 while Present (Formal) loop
1429 E_Formal := Etype (Formal);
1431 if Is_Scalar_Type (E_Formal)
1432 or else Nkind (Actual) = N_Slice
1433 then
1434 Check_Fortran_Logical;
1436 -- RM 6.4.1 (11)
1438 elsif Ekind (Formal) /= E_Out_Parameter then
1440 -- The unusual case of the current instance of a protected type
1441 -- requires special handling. This can only occur in the context
1442 -- of a call within the body of a protected operation.
1444 if Is_Entity_Name (Actual)
1445 and then Ekind (Entity (Actual)) = E_Protected_Type
1446 and then In_Open_Scopes (Entity (Actual))
1447 then
1448 if Scope (Subp) /= Entity (Actual) then
1449 Error_Msg_N ("operation outside protected type may not "
1450 & "call back its protected operations?", Actual);
1451 end if;
1453 Rewrite (Actual,
1454 Expand_Protected_Object_Reference (N, Entity (Actual)));
1455 end if;
1457 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1458 -- build-in-place function, then a temporary return object needs
1459 -- to be created and access to it must be passed to the function.
1460 -- Currently we limit such functions to those with inherently
1461 -- limited result subtypes, but eventually we plan to expand the
1462 -- functions that are treated as build-in-place to include other
1463 -- composite result types.
1465 if Ada_Version >= Ada_05
1466 and then Is_Build_In_Place_Function_Call (Actual)
1467 then
1468 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1469 end if;
1471 Apply_Constraint_Check (Actual, E_Formal);
1473 -- Out parameter case. No constraint checks on access type
1474 -- RM 6.4.1 (13)
1476 elsif Is_Access_Type (E_Formal) then
1477 null;
1479 -- RM 6.4.1 (14)
1481 elsif Has_Discriminants (Base_Type (E_Formal))
1482 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1483 then
1484 Apply_Constraint_Check (Actual, E_Formal);
1486 -- RM 6.4.1 (15)
1488 else
1489 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1490 end if;
1492 -- Processing for IN-OUT and OUT parameters
1494 if Ekind (Formal) /= E_In_Parameter then
1496 -- For type conversions of arrays, apply length/range checks
1498 if Is_Array_Type (E_Formal)
1499 and then Nkind (Actual) = N_Type_Conversion
1500 then
1501 if Is_Constrained (E_Formal) then
1502 Apply_Length_Check (Expression (Actual), E_Formal);
1503 else
1504 Apply_Range_Check (Expression (Actual), E_Formal);
1505 end if;
1506 end if;
1508 -- If argument is a type conversion for a type that is passed
1509 -- by copy, then we must pass the parameter by copy.
1511 if Nkind (Actual) = N_Type_Conversion
1512 and then
1513 (Is_Numeric_Type (E_Formal)
1514 or else Is_Access_Type (E_Formal)
1515 or else Is_Enumeration_Type (E_Formal)
1516 or else Is_Bit_Packed_Array (Etype (Formal))
1517 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1519 -- Also pass by copy if change of representation
1521 or else not Same_Representation
1522 (Etype (Formal),
1523 Etype (Expression (Actual))))
1524 then
1525 Add_Call_By_Copy_Code;
1527 -- References to components of bit packed arrays are expanded
1528 -- at this point, rather than at the point of analysis of the
1529 -- actuals, to handle the expansion of the assignment to
1530 -- [in] out parameters.
1532 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1533 Add_Simple_Call_By_Copy_Code;
1535 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1536 -- because the back-end cannot cope with such objects. In other
1537 -- cases where alignment forces a copy, the back-end generates
1538 -- it properly. It should not be generated unconditionally in the
1539 -- front-end because it does not know precisely the alignment
1540 -- requirements of the target, and makes too conservative an
1541 -- estimate, leading to superfluous copies or spurious errors
1542 -- on by-reference parameters.
1544 elsif Nkind (Actual) = N_Selected_Component
1545 and then
1546 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
1547 and then not Represented_As_Scalar (Etype (Formal))
1548 then
1549 Add_Simple_Call_By_Copy_Code;
1551 -- References to slices of bit packed arrays are expanded
1553 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1554 Add_Call_By_Copy_Code;
1556 -- References to possibly unaligned slices of arrays are expanded
1558 elsif Is_Possibly_Unaligned_Slice (Actual) then
1559 Add_Call_By_Copy_Code;
1561 -- Deal with access types where the actual subtype and the
1562 -- formal subtype are not the same, requiring a check.
1564 -- It is necessary to exclude tagged types because of "downward
1565 -- conversion" errors.
1567 elsif Is_Access_Type (E_Formal)
1568 and then not Same_Type (E_Formal, Etype (Actual))
1569 and then not Is_Tagged_Type (Designated_Type (E_Formal))
1570 then
1571 Add_Call_By_Copy_Code;
1573 -- If the actual is not a scalar and is marked for volatile
1574 -- treatment, whereas the formal is not volatile, then pass
1575 -- by copy unless it is a by-reference type.
1577 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1578 -- because this is the enforcement of a language rule that applies
1579 -- only to "real" volatile variables, not e.g. to the address
1580 -- clause overlay case.
1582 elsif Is_Entity_Name (Actual)
1583 and then Is_Volatile (Entity (Actual))
1584 and then not Is_By_Reference_Type (Etype (Actual))
1585 and then not Is_Scalar_Type (Etype (Entity (Actual)))
1586 and then not Is_Volatile (E_Formal)
1587 then
1588 Add_Call_By_Copy_Code;
1590 elsif Nkind (Actual) = N_Indexed_Component
1591 and then Is_Entity_Name (Prefix (Actual))
1592 and then Has_Volatile_Components (Entity (Prefix (Actual)))
1593 then
1594 Add_Call_By_Copy_Code;
1596 -- Add call-by-copy code for the case of scalar out parameters
1597 -- when it is not known at compile time that the subtype of the
1598 -- formal is a subrange of the subtype of the actual (or vice
1599 -- versa for in out parameters), in order to get range checks
1600 -- on such actuals. (Maybe this case should be handled earlier
1601 -- in the if statement???)
1603 elsif Is_Scalar_Type (E_Formal)
1604 and then
1605 (not In_Subrange_Of (E_Formal, Etype (Actual))
1606 or else
1607 (Ekind (Formal) = E_In_Out_Parameter
1608 and then not In_Subrange_Of (Etype (Actual), E_Formal)))
1609 then
1610 -- Perhaps the setting back to False should be done within
1611 -- Add_Call_By_Copy_Code, since it could get set on other
1612 -- cases occurring above???
1614 if Do_Range_Check (Actual) then
1615 Set_Do_Range_Check (Actual, False);
1616 end if;
1618 Add_Call_By_Copy_Code;
1619 end if;
1621 -- Processing for IN parameters
1623 else
1624 -- For IN parameters is in the packed array case, we expand an
1625 -- indexed component (the circuit in Exp_Ch4 deliberately left
1626 -- indexed components appearing as actuals untouched, so that
1627 -- the special processing above for the OUT and IN OUT cases
1628 -- could be performed. We could make the test in Exp_Ch4 more
1629 -- complex and have it detect the parameter mode, but it is
1630 -- easier simply to handle all cases here.)
1632 if Nkind (Actual) = N_Indexed_Component
1633 and then Is_Packed (Etype (Prefix (Actual)))
1634 then
1635 Reset_Packed_Prefix;
1636 Expand_Packed_Element_Reference (Actual);
1638 -- If we have a reference to a bit packed array, we copy it, since
1639 -- the actual must be byte aligned.
1641 -- Is this really necessary in all cases???
1643 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1644 Add_Simple_Call_By_Copy_Code;
1646 -- If a non-scalar actual is possibly unaligned, we need a copy
1648 elsif Is_Possibly_Unaligned_Object (Actual)
1649 and then not Represented_As_Scalar (Etype (Formal))
1650 then
1651 Add_Simple_Call_By_Copy_Code;
1653 -- Similarly, we have to expand slices of packed arrays here
1654 -- because the result must be byte aligned.
1656 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1657 Add_Call_By_Copy_Code;
1659 -- Only processing remaining is to pass by copy if this is a
1660 -- reference to a possibly unaligned slice, since the caller
1661 -- expects an appropriately aligned argument.
1663 elsif Is_Possibly_Unaligned_Slice (Actual) then
1664 Add_Call_By_Copy_Code;
1665 end if;
1666 end if;
1668 Next_Formal (Formal);
1669 Next_Actual (Actual);
1670 end loop;
1672 -- Find right place to put post call stuff if it is present
1674 if not Is_Empty_List (Post_Call) then
1676 -- If call is not a list member, it must be the triggering statement
1677 -- of a triggering alternative or an entry call alternative, and we
1678 -- can add the post call stuff to the corresponding statement list.
1680 if not Is_List_Member (N) then
1681 declare
1682 P : constant Node_Id := Parent (N);
1684 begin
1685 pragma Assert (Nkind_In (P, N_Triggering_Alternative,
1686 N_Entry_Call_Alternative));
1688 if Is_Non_Empty_List (Statements (P)) then
1689 Insert_List_Before_And_Analyze
1690 (First (Statements (P)), Post_Call);
1691 else
1692 Set_Statements (P, Post_Call);
1693 end if;
1694 end;
1696 -- Otherwise, normal case where N is in a statement sequence,
1697 -- just put the post-call stuff after the call statement.
1699 else
1700 Insert_Actions_After (N, Post_Call);
1701 end if;
1702 end if;
1704 -- The call node itself is re-analyzed in Expand_Call
1706 end Expand_Actuals;
1708 -----------------
1709 -- Expand_Call --
1710 -----------------
1712 -- This procedure handles expansion of function calls and procedure call
1713 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
1714 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
1716 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
1717 -- Provide values of actuals for all formals in Extra_Formals list
1718 -- Replace "call" to enumeration literal function by literal itself
1719 -- Rewrite call to predefined operator as operator
1720 -- Replace actuals to in-out parameters that are numeric conversions,
1721 -- with explicit assignment to temporaries before and after the call.
1722 -- Remove optional actuals if First_Optional_Parameter specified.
1724 -- Note that the list of actuals has been filled with default expressions
1725 -- during semantic analysis of the call. Only the extra actuals required
1726 -- for the 'Constrained attribute and for accessibility checks are added
1727 -- at this point.
1729 procedure Expand_Call (N : Node_Id) is
1730 Loc : constant Source_Ptr := Sloc (N);
1731 Extra_Actuals : List_Id := No_List;
1732 Prev : Node_Id := Empty;
1734 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
1735 -- Adds one entry to the end of the actual parameter list. Used for
1736 -- default parameters and for extra actuals (for Extra_Formals). The
1737 -- argument is an N_Parameter_Association node.
1739 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
1740 -- Adds an extra actual to the list of extra actuals. Expr is the
1741 -- expression for the value of the actual, EF is the entity for the
1742 -- extra formal.
1744 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
1745 -- Within an instance, a type derived from a non-tagged formal derived
1746 -- type inherits from the original parent, not from the actual. The
1747 -- current derivation mechanism has the derived type inherit from the
1748 -- actual, which is only correct outside of the instance. If the
1749 -- subprogram is inherited, we test for this particular case through a
1750 -- convoluted tree traversal before setting the proper subprogram to be
1751 -- called.
1753 --------------------------
1754 -- Add_Actual_Parameter --
1755 --------------------------
1757 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
1758 Actual_Expr : constant Node_Id :=
1759 Explicit_Actual_Parameter (Insert_Param);
1761 begin
1762 -- Case of insertion is first named actual
1764 if No (Prev) or else
1765 Nkind (Parent (Prev)) /= N_Parameter_Association
1766 then
1767 Set_Next_Named_Actual (Insert_Param, First_Named_Actual (N));
1768 Set_First_Named_Actual (N, Actual_Expr);
1770 if No (Prev) then
1771 if No (Parameter_Associations (N)) then
1772 Set_Parameter_Associations (N, New_List);
1773 Append (Insert_Param, Parameter_Associations (N));
1774 end if;
1775 else
1776 Insert_After (Prev, Insert_Param);
1777 end if;
1779 -- Case of insertion is not first named actual
1781 else
1782 Set_Next_Named_Actual
1783 (Insert_Param, Next_Named_Actual (Parent (Prev)));
1784 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
1785 Append (Insert_Param, Parameter_Associations (N));
1786 end if;
1788 Prev := Actual_Expr;
1789 end Add_Actual_Parameter;
1791 ----------------------
1792 -- Add_Extra_Actual --
1793 ----------------------
1795 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
1796 Loc : constant Source_Ptr := Sloc (Expr);
1798 begin
1799 if Extra_Actuals = No_List then
1800 Extra_Actuals := New_List;
1801 Set_Parent (Extra_Actuals, N);
1802 end if;
1804 Append_To (Extra_Actuals,
1805 Make_Parameter_Association (Loc,
1806 Explicit_Actual_Parameter => Expr,
1807 Selector_Name =>
1808 Make_Identifier (Loc, Chars (EF))));
1810 Analyze_And_Resolve (Expr, Etype (EF));
1812 if Nkind (N) = N_Function_Call then
1813 Set_Is_Accessibility_Actual (Parent (Expr));
1814 end if;
1815 end Add_Extra_Actual;
1817 ---------------------------
1818 -- Inherited_From_Formal --
1819 ---------------------------
1821 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
1822 Par : Entity_Id;
1823 Gen_Par : Entity_Id;
1824 Gen_Prim : Elist_Id;
1825 Elmt : Elmt_Id;
1826 Indic : Node_Id;
1828 begin
1829 -- If the operation is inherited, it is attached to the corresponding
1830 -- type derivation. If the parent in the derivation is a generic
1831 -- actual, it is a subtype of the actual, and we have to recover the
1832 -- original derived type declaration to find the proper parent.
1834 if Nkind (Parent (S)) /= N_Full_Type_Declaration
1835 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
1836 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
1837 N_Derived_Type_Definition
1838 or else not In_Instance
1839 then
1840 return Empty;
1842 else
1843 Indic :=
1844 Subtype_Indication
1845 (Type_Definition (Original_Node (Parent (S))));
1847 if Nkind (Indic) = N_Subtype_Indication then
1848 Par := Entity (Subtype_Mark (Indic));
1849 else
1850 Par := Entity (Indic);
1851 end if;
1852 end if;
1854 if not Is_Generic_Actual_Type (Par)
1855 or else Is_Tagged_Type (Par)
1856 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
1857 or else not In_Open_Scopes (Scope (Par))
1858 then
1859 return Empty;
1860 else
1861 Gen_Par := Generic_Parent_Type (Parent (Par));
1862 end if;
1864 -- If the actual has no generic parent type, the formal is not
1865 -- a formal derived type, so nothing to inherit.
1867 if No (Gen_Par) then
1868 return Empty;
1869 end if;
1871 -- If the generic parent type is still the generic type, this is a
1872 -- private formal, not a derived formal, and there are no operations
1873 -- inherited from the formal.
1875 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
1876 return Empty;
1877 end if;
1879 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
1881 Elmt := First_Elmt (Gen_Prim);
1882 while Present (Elmt) loop
1883 if Chars (Node (Elmt)) = Chars (S) then
1884 declare
1885 F1 : Entity_Id;
1886 F2 : Entity_Id;
1888 begin
1889 F1 := First_Formal (S);
1890 F2 := First_Formal (Node (Elmt));
1891 while Present (F1)
1892 and then Present (F2)
1893 loop
1894 if Etype (F1) = Etype (F2)
1895 or else Etype (F2) = Gen_Par
1896 then
1897 Next_Formal (F1);
1898 Next_Formal (F2);
1899 else
1900 Next_Elmt (Elmt);
1901 exit; -- not the right subprogram
1902 end if;
1904 return Node (Elmt);
1905 end loop;
1906 end;
1908 else
1909 Next_Elmt (Elmt);
1910 end if;
1911 end loop;
1913 raise Program_Error;
1914 end Inherited_From_Formal;
1916 -- Local variables
1918 Remote : constant Boolean := Is_Remote_Call (N);
1919 Actual : Node_Id;
1920 Formal : Entity_Id;
1921 Orig_Subp : Entity_Id := Empty;
1922 Param_Count : Natural := 0;
1923 Parent_Formal : Entity_Id;
1924 Parent_Subp : Entity_Id;
1925 Scop : Entity_Id;
1926 Subp : Entity_Id;
1928 Prev_Orig : Node_Id;
1929 -- Original node for an actual, which may have been rewritten. If the
1930 -- actual is a function call that has been transformed from a selected
1931 -- component, the original node is unanalyzed. Otherwise, it carries
1932 -- semantic information used to generate additional actuals.
1934 CW_Interface_Formals_Present : Boolean := False;
1936 -- Start of processing for Expand_Call
1938 begin
1939 -- Ignore if previous error
1941 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1942 return;
1943 end if;
1945 -- Call using access to subprogram with explicit dereference
1947 if Nkind (Name (N)) = N_Explicit_Dereference then
1948 Subp := Etype (Name (N));
1949 Parent_Subp := Empty;
1951 -- Case of call to simple entry, where the Name is a selected component
1952 -- whose prefix is the task, and whose selector name is the entry name
1954 elsif Nkind (Name (N)) = N_Selected_Component then
1955 Subp := Entity (Selector_Name (Name (N)));
1956 Parent_Subp := Empty;
1958 -- Case of call to member of entry family, where Name is an indexed
1959 -- component, with the prefix being a selected component giving the
1960 -- task and entry family name, and the index being the entry index.
1962 elsif Nkind (Name (N)) = N_Indexed_Component then
1963 Subp := Entity (Selector_Name (Prefix (Name (N))));
1964 Parent_Subp := Empty;
1966 -- Normal case
1968 else
1969 Subp := Entity (Name (N));
1970 Parent_Subp := Alias (Subp);
1972 -- Replace call to Raise_Exception by call to Raise_Exception_Always
1973 -- if we can tell that the first parameter cannot possibly be null.
1974 -- This improves efficiency by avoiding a run-time test.
1976 -- We do not do this if Raise_Exception_Always does not exist, which
1977 -- can happen in configurable run time profiles which provide only a
1978 -- Raise_Exception.
1980 if Is_RTE (Subp, RE_Raise_Exception)
1981 and then RTE_Available (RE_Raise_Exception_Always)
1982 then
1983 declare
1984 FA : constant Node_Id := Original_Node (First_Actual (N));
1986 begin
1987 -- The case we catch is where the first argument is obtained
1988 -- using the Identity attribute (which must always be
1989 -- non-null).
1991 if Nkind (FA) = N_Attribute_Reference
1992 and then Attribute_Name (FA) = Name_Identity
1993 then
1994 Subp := RTE (RE_Raise_Exception_Always);
1995 Set_Name (N, New_Occurrence_Of (Subp, Loc));
1996 end if;
1997 end;
1998 end if;
2000 if Ekind (Subp) = E_Entry then
2001 Parent_Subp := Empty;
2002 end if;
2003 end if;
2005 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2006 -- alternative in an asynchronous select or as an entry call in
2007 -- a conditional or timed select. Check whether the procedure call
2008 -- is a renaming of an entry and rewrite it as an entry call.
2010 if Ada_Version >= Ada_05
2011 and then Nkind (N) = N_Procedure_Call_Statement
2012 and then
2013 ((Nkind (Parent (N)) = N_Triggering_Alternative
2014 and then Triggering_Statement (Parent (N)) = N)
2015 or else
2016 (Nkind (Parent (N)) = N_Entry_Call_Alternative
2017 and then Entry_Call_Statement (Parent (N)) = N))
2018 then
2019 declare
2020 Ren_Decl : Node_Id;
2021 Ren_Root : Entity_Id := Subp;
2023 begin
2024 -- This may be a chain of renamings, find the root
2026 if Present (Alias (Ren_Root)) then
2027 Ren_Root := Alias (Ren_Root);
2028 end if;
2030 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2031 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2033 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2034 Rewrite (N,
2035 Make_Entry_Call_Statement (Loc,
2036 Name =>
2037 New_Copy_Tree (Name (Ren_Decl)),
2038 Parameter_Associations =>
2039 New_Copy_List_Tree (Parameter_Associations (N))));
2041 return;
2042 end if;
2043 end if;
2044 end;
2045 end if;
2047 -- First step, compute extra actuals, corresponding to any Extra_Formals
2048 -- present. Note that we do not access Extra_Formals directly, instead
2049 -- we simply note the presence of the extra formals as we process the
2050 -- regular formals collecting corresponding actuals in Extra_Actuals.
2052 -- We also generate any required range checks for actuals for in formals
2053 -- as we go through the loop, since this is a convenient place to do it.
2054 -- (Though it seems that this would be better done in Expand_Actuals???)
2056 Formal := First_Formal (Subp);
2057 Actual := First_Actual (N);
2058 Param_Count := 1;
2059 while Present (Formal) loop
2061 -- Generate range check if required
2063 if Do_Range_Check (Actual)
2064 and then Ekind (Formal) = E_In_Parameter
2065 then
2066 Set_Do_Range_Check (Actual, False);
2067 Generate_Range_Check
2068 (Actual, Etype (Formal), CE_Range_Check_Failed);
2069 end if;
2071 -- Prepare to examine current entry
2073 Prev := Actual;
2074 Prev_Orig := Original_Node (Prev);
2076 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2077 -- to expand it in a further round.
2079 CW_Interface_Formals_Present :=
2080 CW_Interface_Formals_Present
2081 or else
2082 (Ekind (Etype (Formal)) = E_Class_Wide_Type
2083 and then Is_Interface (Etype (Etype (Formal))))
2084 or else
2085 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2086 and then Is_Interface (Directly_Designated_Type
2087 (Etype (Etype (Formal)))));
2089 -- Create possible extra actual for constrained case. Usually, the
2090 -- extra actual is of the form actual'constrained, but since this
2091 -- attribute is only available for unconstrained records, TRUE is
2092 -- expanded if the type of the formal happens to be constrained (for
2093 -- instance when this procedure is inherited from an unconstrained
2094 -- record to a constrained one) or if the actual has no discriminant
2095 -- (its type is constrained). An exception to this is the case of a
2096 -- private type without discriminants. In this case we pass FALSE
2097 -- because the object has underlying discriminants with defaults.
2099 if Present (Extra_Constrained (Formal)) then
2100 if Ekind (Etype (Prev)) in Private_Kind
2101 and then not Has_Discriminants (Base_Type (Etype (Prev)))
2102 then
2103 Add_Extra_Actual
2104 (New_Occurrence_Of (Standard_False, Loc),
2105 Extra_Constrained (Formal));
2107 elsif Is_Constrained (Etype (Formal))
2108 or else not Has_Discriminants (Etype (Prev))
2109 then
2110 Add_Extra_Actual
2111 (New_Occurrence_Of (Standard_True, Loc),
2112 Extra_Constrained (Formal));
2114 -- Do not produce extra actuals for Unchecked_Union parameters.
2115 -- Jump directly to the end of the loop.
2117 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2118 goto Skip_Extra_Actual_Generation;
2120 else
2121 -- If the actual is a type conversion, then the constrained
2122 -- test applies to the actual, not the target type.
2124 declare
2125 Act_Prev : Node_Id;
2127 begin
2128 -- Test for unchecked conversions as well, which can occur
2129 -- as out parameter actuals on calls to stream procedures.
2131 Act_Prev := Prev;
2132 while Nkind_In (Act_Prev, N_Type_Conversion,
2133 N_Unchecked_Type_Conversion)
2134 loop
2135 Act_Prev := Expression (Act_Prev);
2136 end loop;
2138 -- If the expression is a conversion of a dereference, this
2139 -- is internally generated code that manipulates addresses,
2140 -- e.g. when building interface tables. No check should
2141 -- occur in this case, and the discriminated object is not
2142 -- directly a hand.
2144 if not Comes_From_Source (Actual)
2145 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2146 and then Nkind (Act_Prev) = N_Explicit_Dereference
2147 then
2148 Add_Extra_Actual
2149 (New_Occurrence_Of (Standard_False, Loc),
2150 Extra_Constrained (Formal));
2152 else
2153 Add_Extra_Actual
2154 (Make_Attribute_Reference (Sloc (Prev),
2155 Prefix =>
2156 Duplicate_Subexpr_No_Checks
2157 (Act_Prev, Name_Req => True),
2158 Attribute_Name => Name_Constrained),
2159 Extra_Constrained (Formal));
2160 end if;
2161 end;
2162 end if;
2163 end if;
2165 -- Create possible extra actual for accessibility level
2167 if Present (Extra_Accessibility (Formal)) then
2169 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2170 -- attribute, then the original actual may be an aliased object
2171 -- occurring as the prefix in a call using "Object.Operation"
2172 -- notation. In that case we must pass the level of the object,
2173 -- so Prev_Orig is reset to Prev and the attribute will be
2174 -- processed by the code for Access attributes further below.
2176 if Prev_Orig /= Prev
2177 and then Nkind (Prev) = N_Attribute_Reference
2178 and then
2179 Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
2180 and then Is_Aliased_View (Prev_Orig)
2181 then
2182 Prev_Orig := Prev;
2183 end if;
2185 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals
2186 -- of accessibility levels.
2188 if Ekind (Current_Scope) in Subprogram_Kind
2189 and then Is_Thunk (Current_Scope)
2190 then
2191 declare
2192 Parm_Ent : Entity_Id;
2194 begin
2195 if Is_Controlling_Actual (Actual) then
2197 -- Find the corresponding actual of the thunk
2199 Parm_Ent := First_Entity (Current_Scope);
2200 for J in 2 .. Param_Count loop
2201 Next_Entity (Parm_Ent);
2202 end loop;
2204 else pragma Assert (Is_Entity_Name (Actual));
2205 Parm_Ent := Entity (Actual);
2206 end if;
2208 Add_Extra_Actual
2209 (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
2210 Extra_Accessibility (Formal));
2211 end;
2213 elsif Is_Entity_Name (Prev_Orig) then
2215 -- When passing an access parameter, or a renaming of an access
2216 -- parameter, as the actual to another access parameter we need
2217 -- to pass along the actual's own access level parameter. This
2218 -- is done if we are within the scope of the formal access
2219 -- parameter (if this is an inlined body the extra formal is
2220 -- irrelevant).
2222 if (Is_Formal (Entity (Prev_Orig))
2223 or else
2224 (Present (Renamed_Object (Entity (Prev_Orig)))
2225 and then
2226 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
2227 and then
2228 Is_Formal
2229 (Entity (Renamed_Object (Entity (Prev_Orig))))))
2230 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
2231 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
2232 then
2233 declare
2234 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
2236 begin
2237 pragma Assert (Present (Parm_Ent));
2239 if Present (Extra_Accessibility (Parm_Ent)) then
2240 Add_Extra_Actual
2241 (New_Occurrence_Of
2242 (Extra_Accessibility (Parm_Ent), Loc),
2243 Extra_Accessibility (Formal));
2245 -- If the actual access parameter does not have an
2246 -- associated extra formal providing its scope level,
2247 -- then treat the actual as having library-level
2248 -- accessibility.
2250 else
2251 Add_Extra_Actual
2252 (Make_Integer_Literal (Loc,
2253 Intval => Scope_Depth (Standard_Standard)),
2254 Extra_Accessibility (Formal));
2255 end if;
2256 end;
2258 -- The actual is a normal access value, so just pass the level
2259 -- of the actual's access type.
2261 else
2262 Add_Extra_Actual
2263 (Make_Integer_Literal (Loc,
2264 Intval => Type_Access_Level (Etype (Prev_Orig))),
2265 Extra_Accessibility (Formal));
2266 end if;
2268 -- If the actual is an access discriminant, then pass the level
2269 -- of the enclosing object (RM05-3.10.2(12.4/2)).
2271 elsif Nkind (Prev_Orig) = N_Selected_Component
2272 and then Ekind (Entity (Selector_Name (Prev_Orig))) =
2273 E_Discriminant
2274 and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
2275 E_Anonymous_Access_Type
2276 then
2277 Add_Extra_Actual
2278 (Make_Integer_Literal (Loc,
2279 Intval => Object_Access_Level (Prefix (Prev_Orig))),
2280 Extra_Accessibility (Formal));
2282 -- All other cases
2284 else
2285 case Nkind (Prev_Orig) is
2287 when N_Attribute_Reference =>
2288 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
2290 -- For X'Access, pass on the level of the prefix X
2292 when Attribute_Access =>
2293 Add_Extra_Actual
2294 (Make_Integer_Literal (Loc,
2295 Intval =>
2296 Object_Access_Level
2297 (Prefix (Prev_Orig))),
2298 Extra_Accessibility (Formal));
2300 -- Treat the unchecked attributes as library-level
2302 when Attribute_Unchecked_Access |
2303 Attribute_Unrestricted_Access =>
2304 Add_Extra_Actual
2305 (Make_Integer_Literal (Loc,
2306 Intval => Scope_Depth (Standard_Standard)),
2307 Extra_Accessibility (Formal));
2309 -- No other cases of attributes returning access
2310 -- values that can be passed to access parameters
2312 when others =>
2313 raise Program_Error;
2315 end case;
2317 -- For allocators we pass the level of the execution of the
2318 -- called subprogram, which is one greater than the current
2319 -- scope level.
2321 when N_Allocator =>
2322 Add_Extra_Actual
2323 (Make_Integer_Literal (Loc,
2324 Intval => Scope_Depth (Current_Scope) + 1),
2325 Extra_Accessibility (Formal));
2327 -- For other cases we simply pass the level of the actual's
2328 -- access type. The type is retrieved from Prev rather than
2329 -- Prev_Orig, because in some cases Prev_Orig denotes an
2330 -- original expression that has not been analyzed.
2332 when others =>
2333 Add_Extra_Actual
2334 (Make_Integer_Literal (Loc,
2335 Intval => Type_Access_Level (Etype (Prev))),
2336 Extra_Accessibility (Formal));
2337 end case;
2338 end if;
2339 end if;
2341 -- Perform the check of 4.6(49) that prevents a null value from being
2342 -- passed as an actual to an access parameter. Note that the check is
2343 -- elided in the common cases of passing an access attribute or
2344 -- access parameter as an actual. Also, we currently don't enforce
2345 -- this check for expander-generated actuals and when -gnatdj is set.
2347 if Ada_Version >= Ada_05 then
2349 -- Ada 2005 (AI-231): Check null-excluding access types
2351 if Is_Access_Type (Etype (Formal))
2352 and then Can_Never_Be_Null (Etype (Formal))
2353 and then Nkind (Prev) /= N_Raise_Constraint_Error
2354 and then (Known_Null (Prev)
2355 or else not Can_Never_Be_Null (Etype (Prev)))
2356 then
2357 Install_Null_Excluding_Check (Prev);
2358 end if;
2360 -- Ada_Version < Ada_05
2362 else
2363 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
2364 or else Access_Checks_Suppressed (Subp)
2365 then
2366 null;
2368 elsif Debug_Flag_J then
2369 null;
2371 elsif not Comes_From_Source (Prev) then
2372 null;
2374 elsif Is_Entity_Name (Prev)
2375 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
2376 then
2377 null;
2379 elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
2380 null;
2382 -- Suppress null checks when passing to access parameters of Java
2383 -- and CIL subprograms. (Should this be done for other foreign
2384 -- conventions as well ???)
2386 elsif Convention (Subp) = Convention_Java
2387 or else Convention (Subp) = Convention_CIL
2388 then
2389 null;
2391 else
2392 Install_Null_Excluding_Check (Prev);
2393 end if;
2394 end if;
2396 -- Perform appropriate validity checks on parameters that
2397 -- are entities.
2399 if Validity_Checks_On then
2400 if (Ekind (Formal) = E_In_Parameter
2401 and then Validity_Check_In_Params)
2402 or else
2403 (Ekind (Formal) = E_In_Out_Parameter
2404 and then Validity_Check_In_Out_Params)
2405 then
2406 -- If the actual is an indexed component of a packed type (or
2407 -- is an indexed or selected component whose prefix recursively
2408 -- meets this condition), it has not been expanded yet. It will
2409 -- be copied in the validity code that follows, and has to be
2410 -- expanded appropriately, so reanalyze it.
2412 -- What we do is just to unset analyzed bits on prefixes till
2413 -- we reach something that does not have a prefix.
2415 declare
2416 Nod : Node_Id;
2418 begin
2419 Nod := Actual;
2420 while Nkind_In (Nod, N_Indexed_Component,
2421 N_Selected_Component)
2422 loop
2423 Set_Analyzed (Nod, False);
2424 Nod := Prefix (Nod);
2425 end loop;
2426 end;
2428 Ensure_Valid (Actual);
2429 end if;
2430 end if;
2432 -- For IN OUT and OUT parameters, ensure that subscripts are valid
2433 -- since this is a left side reference. We only do this for calls
2434 -- from the source program since we assume that compiler generated
2435 -- calls explicitly generate any required checks. We also need it
2436 -- only if we are doing standard validity checks, since clearly it
2437 -- is not needed if validity checks are off, and in subscript
2438 -- validity checking mode, all indexed components are checked with
2439 -- a call directly from Expand_N_Indexed_Component.
2441 if Comes_From_Source (N)
2442 and then Ekind (Formal) /= E_In_Parameter
2443 and then Validity_Checks_On
2444 and then Validity_Check_Default
2445 and then not Validity_Check_Subscripts
2446 then
2447 Check_Valid_Lvalue_Subscripts (Actual);
2448 end if;
2450 -- Mark any scalar OUT parameter that is a simple variable as no
2451 -- longer known to be valid (unless the type is always valid). This
2452 -- reflects the fact that if an OUT parameter is never set in a
2453 -- procedure, then it can become invalid on the procedure return.
2455 if Ekind (Formal) = E_Out_Parameter
2456 and then Is_Entity_Name (Actual)
2457 and then Ekind (Entity (Actual)) = E_Variable
2458 and then not Is_Known_Valid (Etype (Actual))
2459 then
2460 Set_Is_Known_Valid (Entity (Actual), False);
2461 end if;
2463 -- For an OUT or IN OUT parameter, if the actual is an entity, then
2464 -- clear current values, since they can be clobbered. We are probably
2465 -- doing this in more places than we need to, but better safe than
2466 -- sorry when it comes to retaining bad current values!
2468 if Ekind (Formal) /= E_In_Parameter
2469 and then Is_Entity_Name (Actual)
2470 and then Present (Entity (Actual))
2471 then
2472 declare
2473 Ent : constant Entity_Id := Entity (Actual);
2474 Sav : Node_Id;
2476 begin
2477 -- For an OUT or IN OUT parameter that is an assignable entity,
2478 -- we do not want to clobber the Last_Assignment field, since
2479 -- if it is set, it was precisely because it is indeed an OUT
2480 -- or IN OUT parameter! We do reset the Is_Known_Valid flag
2481 -- since the subprogram could have returned in invalid value.
2483 if (Ekind (Formal) = E_Out_Parameter
2484 or else
2485 Ekind (Formal) = E_In_Out_Parameter)
2486 and then Is_Assignable (Ent)
2487 then
2488 Sav := Last_Assignment (Ent);
2489 Kill_Current_Values (Ent);
2490 Set_Last_Assignment (Ent, Sav);
2491 Set_Is_Known_Valid (Ent, False);
2493 -- For all other cases, just kill the current values
2495 else
2496 Kill_Current_Values (Ent);
2497 end if;
2498 end;
2499 end if;
2501 -- If the formal is class wide and the actual is an aggregate, force
2502 -- evaluation so that the back end who does not know about class-wide
2503 -- type, does not generate a temporary of the wrong size.
2505 if not Is_Class_Wide_Type (Etype (Formal)) then
2506 null;
2508 elsif Nkind (Actual) = N_Aggregate
2509 or else (Nkind (Actual) = N_Qualified_Expression
2510 and then Nkind (Expression (Actual)) = N_Aggregate)
2511 then
2512 Force_Evaluation (Actual);
2513 end if;
2515 -- In a remote call, if the formal is of a class-wide type, check
2516 -- that the actual meets the requirements described in E.4(18).
2518 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
2519 Insert_Action (Actual,
2520 Make_Transportable_Check (Loc,
2521 Duplicate_Subexpr_Move_Checks (Actual)));
2522 end if;
2524 -- This label is required when skipping extra actual generation for
2525 -- Unchecked_Union parameters.
2527 <<Skip_Extra_Actual_Generation>>
2529 Param_Count := Param_Count + 1;
2530 Next_Actual (Actual);
2531 Next_Formal (Formal);
2532 end loop;
2534 -- If we are expanding a rhs of an assignment we need to check if tag
2535 -- propagation is needed. You might expect this processing to be in
2536 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
2537 -- assignment might be transformed to a declaration for an unconstrained
2538 -- value if the expression is classwide.
2540 if Nkind (N) = N_Function_Call
2541 and then Is_Tag_Indeterminate (N)
2542 and then Is_Entity_Name (Name (N))
2543 then
2544 declare
2545 Ass : Node_Id := Empty;
2547 begin
2548 if Nkind (Parent (N)) = N_Assignment_Statement then
2549 Ass := Parent (N);
2551 elsif Nkind (Parent (N)) = N_Qualified_Expression
2552 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
2553 then
2554 Ass := Parent (Parent (N));
2556 elsif Nkind (Parent (N)) = N_Explicit_Dereference
2557 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
2558 then
2559 Ass := Parent (Parent (N));
2560 end if;
2562 if Present (Ass)
2563 and then Is_Class_Wide_Type (Etype (Name (Ass)))
2564 then
2565 if Is_Access_Type (Etype (N)) then
2566 if Designated_Type (Etype (N)) /=
2567 Root_Type (Etype (Name (Ass)))
2568 then
2569 Error_Msg_NE
2570 ("tag-indeterminate expression "
2571 & " must have designated type& (RM 5.2 (6))",
2572 N, Root_Type (Etype (Name (Ass))));
2573 else
2574 Propagate_Tag (Name (Ass), N);
2575 end if;
2577 elsif Etype (N) /= Root_Type (Etype (Name (Ass))) then
2578 Error_Msg_NE
2579 ("tag-indeterminate expression must have type&"
2580 & "(RM 5.2 (6))", N, Root_Type (Etype (Name (Ass))));
2582 else
2583 Propagate_Tag (Name (Ass), N);
2584 end if;
2586 -- The call will be rewritten as a dispatching call, and
2587 -- expanded as such.
2589 return;
2590 end if;
2591 end;
2592 end if;
2594 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
2595 -- it to point to the correct secondary virtual table
2597 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement)
2598 and then CW_Interface_Formals_Present
2599 then
2600 Expand_Interface_Actuals (N);
2601 end if;
2603 -- Deals with Dispatch_Call if we still have a call, before expanding
2604 -- extra actuals since this will be done on the re-analysis of the
2605 -- dispatching call. Note that we do not try to shorten the actual
2606 -- list for a dispatching call, it would not make sense to do so.
2607 -- Expansion of dispatching calls is suppressed when VM_Target, because
2608 -- the VM back-ends directly handle the generation of dispatching
2609 -- calls and would have to undo any expansion to an indirect call.
2611 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement)
2612 and then Present (Controlling_Argument (N))
2613 then
2614 if Tagged_Type_Expansion then
2615 Expand_Dispatching_Call (N);
2617 -- The following return is worrisome. Is it really OK to
2618 -- skip all remaining processing in this procedure ???
2620 return;
2622 else
2623 Apply_Tag_Checks (N);
2625 -- Expansion of a dispatching call results in an indirect call,
2626 -- which in turn causes current values to be killed (see
2627 -- Resolve_Call), so on VM targets we do the call here to ensure
2628 -- consistent warnings between VM and non-VM targets.
2630 Kill_Current_Values;
2631 end if;
2632 end if;
2634 -- Similarly, expand calls to RCI subprograms on which pragma
2635 -- All_Calls_Remote applies. The rewriting will be reanalyzed
2636 -- later. Do this only when the call comes from source since we do
2637 -- not want such a rewriting to occur in expanded code.
2639 if Is_All_Remote_Call (N) then
2640 Expand_All_Calls_Remote_Subprogram_Call (N);
2642 -- Similarly, do not add extra actuals for an entry call whose entity
2643 -- is a protected procedure, or for an internal protected subprogram
2644 -- call, because it will be rewritten as a protected subprogram call
2645 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
2647 elsif Is_Protected_Type (Scope (Subp))
2648 and then (Ekind (Subp) = E_Procedure
2649 or else Ekind (Subp) = E_Function)
2650 then
2651 null;
2653 -- During that loop we gathered the extra actuals (the ones that
2654 -- correspond to Extra_Formals), so now they can be appended.
2656 else
2657 while Is_Non_Empty_List (Extra_Actuals) loop
2658 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2659 end loop;
2660 end if;
2662 -- At this point we have all the actuals, so this is the point at
2663 -- which the various expansion activities for actuals is carried out.
2665 Expand_Actuals (N, Subp);
2667 -- If the subprogram is a renaming, or if it is inherited, replace it
2668 -- in the call with the name of the actual subprogram being called.
2669 -- If this is a dispatching call, the run-time decides what to call.
2670 -- The Alias attribute does not apply to entries.
2672 if Nkind (N) /= N_Entry_Call_Statement
2673 and then No (Controlling_Argument (N))
2674 and then Present (Parent_Subp)
2675 then
2676 if Present (Inherited_From_Formal (Subp)) then
2677 Parent_Subp := Inherited_From_Formal (Subp);
2678 else
2679 while Present (Alias (Parent_Subp)) loop
2680 Parent_Subp := Alias (Parent_Subp);
2681 end loop;
2682 end if;
2684 -- The below setting of Entity is suspect, see F109-018 discussion???
2686 Set_Entity (Name (N), Parent_Subp);
2688 if Is_Abstract_Subprogram (Parent_Subp)
2689 and then not In_Instance
2690 then
2691 Error_Msg_NE
2692 ("cannot call abstract subprogram &!", Name (N), Parent_Subp);
2693 end if;
2695 -- Inspect all formals of derived subprogram Subp. Compare parameter
2696 -- types with the parent subprogram and check whether an actual may
2697 -- need a type conversion to the corresponding formal of the parent
2698 -- subprogram.
2700 -- Not clear whether intrinsic subprograms need such conversions. ???
2702 if not Is_Intrinsic_Subprogram (Parent_Subp)
2703 or else Is_Generic_Instance (Parent_Subp)
2704 then
2705 declare
2706 procedure Convert (Act : Node_Id; Typ : Entity_Id);
2707 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
2708 -- and resolve the newly generated construct.
2710 -------------
2711 -- Convert --
2712 -------------
2714 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
2715 begin
2716 Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
2717 Analyze (Act);
2718 Resolve (Act, Typ);
2719 end Convert;
2721 -- Local variables
2723 Actual_Typ : Entity_Id;
2724 Formal_Typ : Entity_Id;
2725 Parent_Typ : Entity_Id;
2727 begin
2728 Actual := First_Actual (N);
2729 Formal := First_Formal (Subp);
2730 Parent_Formal := First_Formal (Parent_Subp);
2731 while Present (Formal) loop
2732 Actual_Typ := Etype (Actual);
2733 Formal_Typ := Etype (Formal);
2734 Parent_Typ := Etype (Parent_Formal);
2736 -- For an IN parameter of a scalar type, the parent formal
2737 -- type and derived formal type differ or the parent formal
2738 -- type and actual type do not match statically.
2740 if Is_Scalar_Type (Formal_Typ)
2741 and then Ekind (Formal) = E_In_Parameter
2742 and then Formal_Typ /= Parent_Typ
2743 and then
2744 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
2745 and then not Raises_Constraint_Error (Actual)
2746 then
2747 Convert (Actual, Parent_Typ);
2748 Enable_Range_Check (Actual);
2750 -- If the actual has been marked as requiring a range
2751 -- check, then generate it here.
2753 if Do_Range_Check (Actual) then
2754 Set_Do_Range_Check (Actual, False);
2755 Generate_Range_Check
2756 (Actual, Etype (Formal), CE_Range_Check_Failed);
2757 end if;
2759 -- For access types, the parent formal type and actual type
2760 -- differ.
2762 elsif Is_Access_Type (Formal_Typ)
2763 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
2764 then
2765 if Ekind (Formal) /= E_In_Parameter then
2766 Convert (Actual, Parent_Typ);
2768 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
2769 and then Designated_Type (Parent_Typ) /=
2770 Designated_Type (Actual_Typ)
2771 and then not Is_Controlling_Formal (Formal)
2772 then
2773 -- This unchecked conversion is not necessary unless
2774 -- inlining is enabled, because in that case the type
2775 -- mismatch may become visible in the body about to be
2776 -- inlined.
2778 Rewrite (Actual,
2779 Unchecked_Convert_To (Parent_Typ,
2780 Relocate_Node (Actual)));
2782 -- If the relocated node is a function call then it
2783 -- can be part of the expansion of the predefined
2784 -- equality operator of a tagged type and we may
2785 -- need to adjust its SCIL dispatching node.
2787 if Generate_SCIL
2788 and then Nkind (Actual) /= N_Null
2789 and then Nkind (Expression (Actual))
2790 = N_Function_Call
2791 then
2792 Adjust_SCIL_Node (Actual, Expression (Actual));
2793 end if;
2795 Analyze (Actual);
2796 Resolve (Actual, Parent_Typ);
2797 end if;
2799 -- For array and record types, the parent formal type and
2800 -- derived formal type have different sizes or pragma Pack
2801 -- status.
2803 elsif ((Is_Array_Type (Formal_Typ)
2804 and then Is_Array_Type (Parent_Typ))
2805 or else
2806 (Is_Record_Type (Formal_Typ)
2807 and then Is_Record_Type (Parent_Typ)))
2808 and then
2809 (Esize (Formal_Typ) /= Esize (Parent_Typ)
2810 or else Has_Pragma_Pack (Formal_Typ) /=
2811 Has_Pragma_Pack (Parent_Typ))
2812 then
2813 Convert (Actual, Parent_Typ);
2814 end if;
2816 Next_Actual (Actual);
2817 Next_Formal (Formal);
2818 Next_Formal (Parent_Formal);
2819 end loop;
2820 end;
2821 end if;
2823 Orig_Subp := Subp;
2824 Subp := Parent_Subp;
2825 end if;
2827 -- Check for violation of No_Abort_Statements
2829 if Is_RTE (Subp, RE_Abort_Task) then
2830 Check_Restriction (No_Abort_Statements, N);
2832 -- Check for violation of No_Dynamic_Attachment
2834 elsif RTU_Loaded (Ada_Interrupts)
2835 and then (Is_RTE (Subp, RE_Is_Reserved) or else
2836 Is_RTE (Subp, RE_Is_Attached) or else
2837 Is_RTE (Subp, RE_Current_Handler) or else
2838 Is_RTE (Subp, RE_Attach_Handler) or else
2839 Is_RTE (Subp, RE_Exchange_Handler) or else
2840 Is_RTE (Subp, RE_Detach_Handler) or else
2841 Is_RTE (Subp, RE_Reference))
2842 then
2843 Check_Restriction (No_Dynamic_Attachment, N);
2844 end if;
2846 -- Deal with case where call is an explicit dereference
2848 if Nkind (Name (N)) = N_Explicit_Dereference then
2850 -- Handle case of access to protected subprogram type
2852 if Is_Access_Protected_Subprogram_Type
2853 (Base_Type (Etype (Prefix (Name (N)))))
2854 then
2855 -- If this is a call through an access to protected operation,
2856 -- the prefix has the form (object'address, operation'access).
2857 -- Rewrite as a for other protected calls: the object is the
2858 -- first parameter of the list of actuals.
2860 declare
2861 Call : Node_Id;
2862 Parm : List_Id;
2863 Nam : Node_Id;
2864 Obj : Node_Id;
2865 Ptr : constant Node_Id := Prefix (Name (N));
2867 T : constant Entity_Id :=
2868 Equivalent_Type (Base_Type (Etype (Ptr)));
2870 D_T : constant Entity_Id :=
2871 Designated_Type (Base_Type (Etype (Ptr)));
2873 begin
2874 Obj :=
2875 Make_Selected_Component (Loc,
2876 Prefix => Unchecked_Convert_To (T, Ptr),
2877 Selector_Name =>
2878 New_Occurrence_Of (First_Entity (T), Loc));
2880 Nam :=
2881 Make_Selected_Component (Loc,
2882 Prefix => Unchecked_Convert_To (T, Ptr),
2883 Selector_Name =>
2884 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
2886 Nam :=
2887 Make_Explicit_Dereference (Loc,
2888 Prefix => Nam);
2890 if Present (Parameter_Associations (N)) then
2891 Parm := Parameter_Associations (N);
2892 else
2893 Parm := New_List;
2894 end if;
2896 Prepend (Obj, Parm);
2898 if Etype (D_T) = Standard_Void_Type then
2899 Call :=
2900 Make_Procedure_Call_Statement (Loc,
2901 Name => Nam,
2902 Parameter_Associations => Parm);
2903 else
2904 Call :=
2905 Make_Function_Call (Loc,
2906 Name => Nam,
2907 Parameter_Associations => Parm);
2908 end if;
2910 Set_First_Named_Actual (Call, First_Named_Actual (N));
2911 Set_Etype (Call, Etype (D_T));
2913 -- We do not re-analyze the call to avoid infinite recursion.
2914 -- We analyze separately the prefix and the object, and set
2915 -- the checks on the prefix that would otherwise be emitted
2916 -- when resolving a call.
2918 Rewrite (N, Call);
2919 Analyze (Nam);
2920 Apply_Access_Check (Nam);
2921 Analyze (Obj);
2922 return;
2923 end;
2924 end if;
2925 end if;
2927 -- If this is a call to an intrinsic subprogram, then perform the
2928 -- appropriate expansion to the corresponding tree node and we
2929 -- are all done (since after that the call is gone!)
2931 -- In the case where the intrinsic is to be processed by the back end,
2932 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
2933 -- since the idea in this case is to pass the call unchanged.
2934 -- If the intrinsic is an inherited unchecked conversion, and the
2935 -- derived type is the target type of the conversion, we must retain
2936 -- it as the return type of the expression. Otherwise the expansion
2937 -- below, which uses the parent operation, will yield the wrong type.
2939 if Is_Intrinsic_Subprogram (Subp) then
2940 Expand_Intrinsic_Call (N, Subp);
2942 if Nkind (N) = N_Unchecked_Type_Conversion
2943 and then Parent_Subp /= Orig_Subp
2944 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
2945 then
2946 Set_Etype (N, Etype (Orig_Subp));
2947 end if;
2949 return;
2950 end if;
2952 if Ekind (Subp) = E_Function
2953 or else Ekind (Subp) = E_Procedure
2954 then
2955 -- We perform two simple optimization on calls:
2957 -- a) replace calls to null procedures unconditionally;
2959 -- b) for To_Address, just do an unchecked conversion. Not only is
2960 -- this efficient, but it also avoids order of elaboration problems
2961 -- when address clauses are inlined (address expression elaborated
2962 -- at the wrong point).
2964 -- We perform these optimization regardless of whether we are in the
2965 -- main unit or in a unit in the context of the main unit, to ensure
2966 -- that tree generated is the same in both cases, for Inspector use.
2968 if Is_RTE (Subp, RE_To_Address) then
2969 Rewrite (N,
2970 Unchecked_Convert_To
2971 (RTE (RE_Address), Relocate_Node (First_Actual (N))));
2972 return;
2974 elsif Is_Null_Procedure (Subp) then
2975 Rewrite (N, Make_Null_Statement (Loc));
2976 return;
2977 end if;
2979 if Is_Inlined (Subp) then
2981 Inlined_Subprogram : declare
2982 Bod : Node_Id;
2983 Must_Inline : Boolean := False;
2984 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
2985 Scop : constant Entity_Id := Scope (Subp);
2987 function In_Unfrozen_Instance return Boolean;
2988 -- If the subprogram comes from an instance in the same unit,
2989 -- and the instance is not yet frozen, inlining might trigger
2990 -- order-of-elaboration problems in gigi.
2992 --------------------------
2993 -- In_Unfrozen_Instance --
2994 --------------------------
2996 function In_Unfrozen_Instance return Boolean is
2997 S : Entity_Id;
2999 begin
3000 S := Scop;
3001 while Present (S)
3002 and then S /= Standard_Standard
3003 loop
3004 if Is_Generic_Instance (S)
3005 and then Present (Freeze_Node (S))
3006 and then not Analyzed (Freeze_Node (S))
3007 then
3008 return True;
3009 end if;
3011 S := Scope (S);
3012 end loop;
3014 return False;
3015 end In_Unfrozen_Instance;
3017 -- Start of processing for Inlined_Subprogram
3019 begin
3020 -- Verify that the body to inline has already been seen, and
3021 -- that if the body is in the current unit the inlining does
3022 -- not occur earlier. This avoids order-of-elaboration problems
3023 -- in the back end.
3025 -- This should be documented in sinfo/einfo ???
3027 if No (Spec)
3028 or else Nkind (Spec) /= N_Subprogram_Declaration
3029 or else No (Body_To_Inline (Spec))
3030 then
3031 Must_Inline := False;
3033 -- If this an inherited function that returns a private type,
3034 -- do not inline if the full view is an unconstrained array,
3035 -- because such calls cannot be inlined.
3037 elsif Present (Orig_Subp)
3038 and then Is_Array_Type (Etype (Orig_Subp))
3039 and then not Is_Constrained (Etype (Orig_Subp))
3040 then
3041 Must_Inline := False;
3043 elsif In_Unfrozen_Instance then
3044 Must_Inline := False;
3046 else
3047 Bod := Body_To_Inline (Spec);
3049 if (In_Extended_Main_Code_Unit (N)
3050 or else In_Extended_Main_Code_Unit (Parent (N))
3051 or else Has_Pragma_Inline_Always (Subp))
3052 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
3053 or else
3054 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
3055 then
3056 Must_Inline := True;
3058 -- If we are compiling a package body that is not the main
3059 -- unit, it must be for inlining/instantiation purposes,
3060 -- in which case we inline the call to insure that the same
3061 -- temporaries are generated when compiling the body by
3062 -- itself. Otherwise link errors can occur.
3064 -- If the function being called is itself in the main unit,
3065 -- we cannot inline, because there is a risk of double
3066 -- elaboration and/or circularity: the inlining can make
3067 -- visible a private entity in the body of the main unit,
3068 -- that gigi will see before its sees its proper definition.
3070 elsif not (In_Extended_Main_Code_Unit (N))
3071 and then In_Package_Body
3072 then
3073 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
3074 end if;
3075 end if;
3077 if Must_Inline then
3078 Expand_Inlined_Call (N, Subp, Orig_Subp);
3080 else
3081 -- Let the back end handle it
3083 Add_Inlined_Body (Subp);
3085 if Front_End_Inlining
3086 and then Nkind (Spec) = N_Subprogram_Declaration
3087 and then (In_Extended_Main_Code_Unit (N))
3088 and then No (Body_To_Inline (Spec))
3089 and then not Has_Completion (Subp)
3090 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
3091 then
3092 Cannot_Inline
3093 ("cannot inline& (body not seen yet)?", N, Subp);
3094 end if;
3095 end if;
3096 end Inlined_Subprogram;
3097 end if;
3098 end if;
3100 -- Check for protected subprogram. This is either an intra-object call,
3101 -- or a protected function call. Protected procedure calls are rewritten
3102 -- as entry calls and handled accordingly.
3104 -- In Ada 2005, this may be an indirect call to an access parameter that
3105 -- is an access_to_subprogram. In that case the anonymous type has a
3106 -- scope that is a protected operation, but the call is a regular one.
3108 Scop := Scope (Subp);
3110 if Nkind (N) /= N_Entry_Call_Statement
3111 and then Is_Protected_Type (Scop)
3112 and then Ekind (Subp) /= E_Subprogram_Type
3113 then
3114 -- If the call is an internal one, it is rewritten as a call to the
3115 -- corresponding unprotected subprogram.
3117 Expand_Protected_Subprogram_Call (N, Subp, Scop);
3118 end if;
3120 -- Functions returning controlled objects need special attention:
3121 -- if the return type is limited, the context is an initialization
3122 -- and different processing applies. If the call is to a protected
3123 -- function, the expansion above will call Expand_Call recusively.
3124 -- To prevent a double attachment, check that the current call is
3125 -- not a rewriting of a protected function call.
3127 if Needs_Finalization (Etype (Subp))
3128 and then not Is_Inherently_Limited_Type (Etype (Subp))
3129 and then
3130 (No (First_Formal (Subp))
3131 or else
3132 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
3133 then
3134 Expand_Ctrl_Function_Call (N);
3135 end if;
3137 -- Test for First_Optional_Parameter, and if so, truncate parameter list
3138 -- if there are optional parameters at the trailing end.
3139 -- Note: we never delete procedures for call via a pointer.
3141 if (Ekind (Subp) = E_Procedure or else Ekind (Subp) = E_Function)
3142 and then Present (First_Optional_Parameter (Subp))
3143 then
3144 declare
3145 Last_Keep_Arg : Node_Id;
3147 begin
3148 -- Last_Keep_Arg will hold the last actual that should be kept.
3149 -- If it remains empty at the end, it means that all parameters
3150 -- are optional.
3152 Last_Keep_Arg := Empty;
3154 -- Find first optional parameter, must be present since we checked
3155 -- the validity of the parameter before setting it.
3157 Formal := First_Formal (Subp);
3158 Actual := First_Actual (N);
3159 while Formal /= First_Optional_Parameter (Subp) loop
3160 Last_Keep_Arg := Actual;
3161 Next_Formal (Formal);
3162 Next_Actual (Actual);
3163 end loop;
3165 -- We have Formal and Actual pointing to the first potentially
3166 -- droppable argument. We can drop all the trailing arguments
3167 -- whose actual matches the default. Note that we know that all
3168 -- remaining formals have defaults, because we checked that this
3169 -- requirement was met before setting First_Optional_Parameter.
3171 -- We use Fully_Conformant_Expressions to check for identity
3172 -- between formals and actuals, which may miss some cases, but
3173 -- on the other hand, this is only an optimization (if we fail
3174 -- to truncate a parameter it does not affect functionality).
3175 -- So if the default is 3 and the actual is 1+2, we consider
3176 -- them unequal, which hardly seems worrisome.
3178 while Present (Formal) loop
3179 if not Fully_Conformant_Expressions
3180 (Actual, Default_Value (Formal))
3181 then
3182 Last_Keep_Arg := Actual;
3183 end if;
3185 Next_Formal (Formal);
3186 Next_Actual (Actual);
3187 end loop;
3189 -- If no arguments, delete entire list, this is the easy case
3191 if No (Last_Keep_Arg) then
3192 Set_Parameter_Associations (N, No_List);
3193 Set_First_Named_Actual (N, Empty);
3195 -- Case where at the last retained argument is positional. This
3196 -- is also an easy case, since the retained arguments are already
3197 -- in the right form, and we don't need to worry about the order
3198 -- of arguments that get eliminated.
3200 elsif Is_List_Member (Last_Keep_Arg) then
3201 while Present (Next (Last_Keep_Arg)) loop
3202 Discard_Node (Remove_Next (Last_Keep_Arg));
3203 end loop;
3205 Set_First_Named_Actual (N, Empty);
3207 -- This is the annoying case where the last retained argument
3208 -- is a named parameter. Since the original arguments are not
3209 -- in declaration order, we may have to delete some fairly
3210 -- random collection of arguments.
3212 else
3213 declare
3214 Temp : Node_Id;
3215 Passoc : Node_Id;
3217 begin
3218 -- First step, remove all the named parameters from the
3219 -- list (they are still chained using First_Named_Actual
3220 -- and Next_Named_Actual, so we have not lost them!)
3222 Temp := First (Parameter_Associations (N));
3224 -- Case of all parameters named, remove them all
3226 if Nkind (Temp) = N_Parameter_Association then
3227 while Is_Non_Empty_List (Parameter_Associations (N)) loop
3228 Temp := Remove_Head (Parameter_Associations (N));
3229 end loop;
3231 -- Case of mixed positional/named, remove named parameters
3233 else
3234 while Nkind (Next (Temp)) /= N_Parameter_Association loop
3235 Next (Temp);
3236 end loop;
3238 while Present (Next (Temp)) loop
3239 Remove (Next (Temp));
3240 end loop;
3241 end if;
3243 -- Now we loop through the named parameters, till we get
3244 -- to the last one to be retained, adding them to the list.
3245 -- Note that the Next_Named_Actual list does not need to be
3246 -- touched since we are only reordering them on the actual
3247 -- parameter association list.
3249 Passoc := Parent (First_Named_Actual (N));
3250 loop
3251 Temp := Relocate_Node (Passoc);
3252 Append_To
3253 (Parameter_Associations (N), Temp);
3254 exit when
3255 Last_Keep_Arg = Explicit_Actual_Parameter (Passoc);
3256 Passoc := Parent (Next_Named_Actual (Passoc));
3257 end loop;
3259 Set_Next_Named_Actual (Temp, Empty);
3261 loop
3262 Temp := Next_Named_Actual (Passoc);
3263 exit when No (Temp);
3264 Set_Next_Named_Actual
3265 (Passoc, Next_Named_Actual (Parent (Temp)));
3266 end loop;
3267 end;
3269 end if;
3270 end;
3271 end if;
3272 end Expand_Call;
3274 --------------------------
3275 -- Expand_Inlined_Call --
3276 --------------------------
3278 procedure Expand_Inlined_Call
3279 (N : Node_Id;
3280 Subp : Entity_Id;
3281 Orig_Subp : Entity_Id)
3283 Loc : constant Source_Ptr := Sloc (N);
3284 Is_Predef : constant Boolean :=
3285 Is_Predefined_File_Name
3286 (Unit_File_Name (Get_Source_Unit (Subp)));
3287 Orig_Bod : constant Node_Id :=
3288 Body_To_Inline (Unit_Declaration_Node (Subp));
3290 Blk : Node_Id;
3291 Bod : Node_Id;
3292 Decl : Node_Id;
3293 Decls : constant List_Id := New_List;
3294 Exit_Lab : Entity_Id := Empty;
3295 F : Entity_Id;
3296 A : Node_Id;
3297 Lab_Decl : Node_Id;
3298 Lab_Id : Node_Id;
3299 New_A : Node_Id;
3300 Num_Ret : Int := 0;
3301 Ret_Type : Entity_Id;
3302 Targ : Node_Id;
3303 Targ1 : Node_Id;
3304 Temp : Entity_Id;
3305 Temp_Typ : Entity_Id;
3307 Is_Unc : constant Boolean :=
3308 Is_Array_Type (Etype (Subp))
3309 and then not Is_Constrained (Etype (Subp));
3310 -- If the type returned by the function is unconstrained and the call
3311 -- can be inlined, special processing is required.
3313 procedure Make_Exit_Label;
3314 -- Build declaration for exit label to be used in Return statements,
3315 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implcit
3316 -- declaration).
3318 function Process_Formals (N : Node_Id) return Traverse_Result;
3319 -- Replace occurrence of a formal with the corresponding actual, or the
3320 -- thunk generated for it.
3322 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
3323 -- If the call being expanded is that of an internal subprogram, set the
3324 -- sloc of the generated block to that of the call itself, so that the
3325 -- expansion is skipped by the "next" command in gdb.
3326 -- Same processing for a subprogram in a predefined file, e.g.
3327 -- Ada.Tags. If Debug_Generated_Code is true, suppress this change to
3328 -- simplify our own development.
3330 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
3331 -- If the function body is a single expression, replace call with
3332 -- expression, else insert block appropriately.
3334 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
3335 -- If procedure body has no local variables, inline body without
3336 -- creating block, otherwise rewrite call with block.
3338 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
3339 -- Determine whether a formal parameter is used only once in Orig_Bod
3341 ---------------------
3342 -- Make_Exit_Label --
3343 ---------------------
3345 procedure Make_Exit_Label is
3346 begin
3347 -- Create exit label for subprogram if one does not exist yet
3349 if No (Exit_Lab) then
3350 Lab_Id :=
3351 Make_Identifier (Loc,
3352 Chars => New_Internal_Name ('L'));
3353 Set_Entity (Lab_Id,
3354 Make_Defining_Identifier (Loc, Chars (Lab_Id)));
3355 Exit_Lab := Make_Label (Loc, Lab_Id);
3357 Lab_Decl :=
3358 Make_Implicit_Label_Declaration (Loc,
3359 Defining_Identifier => Entity (Lab_Id),
3360 Label_Construct => Exit_Lab);
3361 end if;
3362 end Make_Exit_Label;
3364 ---------------------
3365 -- Process_Formals --
3366 ---------------------
3368 function Process_Formals (N : Node_Id) return Traverse_Result is
3369 A : Entity_Id;
3370 E : Entity_Id;
3371 Ret : Node_Id;
3373 begin
3374 if Is_Entity_Name (N)
3375 and then Present (Entity (N))
3376 then
3377 E := Entity (N);
3379 if Is_Formal (E)
3380 and then Scope (E) = Subp
3381 then
3382 A := Renamed_Object (E);
3384 -- Rewrite the occurrence of the formal into an occurrence of
3385 -- the actual. Also establish visibility on the proper view of
3386 -- the actual's subtype for the body's context (if the actual's
3387 -- subtype is private at the call point but its full view is
3388 -- visible to the body, then the inlined tree here must be
3389 -- analyzed with the full view).
3391 if Is_Entity_Name (A) then
3392 Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
3393 Check_Private_View (N);
3395 elsif Nkind (A) = N_Defining_Identifier then
3396 Rewrite (N, New_Occurrence_Of (A, Loc));
3397 Check_Private_View (N);
3399 -- Numeric literal
3401 else
3402 Rewrite (N, New_Copy (A));
3403 end if;
3404 end if;
3406 return Skip;
3408 elsif Nkind (N) = N_Simple_Return_Statement then
3409 if No (Expression (N)) then
3410 Make_Exit_Label;
3411 Rewrite (N,
3412 Make_Goto_Statement (Loc,
3413 Name => New_Copy (Lab_Id)));
3415 else
3416 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
3417 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
3418 then
3419 -- Function body is a single expression. No need for
3420 -- exit label.
3422 null;
3424 else
3425 Num_Ret := Num_Ret + 1;
3426 Make_Exit_Label;
3427 end if;
3429 -- Because of the presence of private types, the views of the
3430 -- expression and the context may be different, so place an
3431 -- unchecked conversion to the context type to avoid spurious
3432 -- errors, e.g. when the expression is a numeric literal and
3433 -- the context is private. If the expression is an aggregate,
3434 -- use a qualified expression, because an aggregate is not a
3435 -- legal argument of a conversion.
3437 if Nkind_In (Expression (N), N_Aggregate, N_Null) then
3438 Ret :=
3439 Make_Qualified_Expression (Sloc (N),
3440 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
3441 Expression => Relocate_Node (Expression (N)));
3442 else
3443 Ret :=
3444 Unchecked_Convert_To
3445 (Ret_Type, Relocate_Node (Expression (N)));
3446 end if;
3448 if Nkind (Targ) = N_Defining_Identifier then
3449 Rewrite (N,
3450 Make_Assignment_Statement (Loc,
3451 Name => New_Occurrence_Of (Targ, Loc),
3452 Expression => Ret));
3453 else
3454 Rewrite (N,
3455 Make_Assignment_Statement (Loc,
3456 Name => New_Copy (Targ),
3457 Expression => Ret));
3458 end if;
3460 Set_Assignment_OK (Name (N));
3462 if Present (Exit_Lab) then
3463 Insert_After (N,
3464 Make_Goto_Statement (Loc,
3465 Name => New_Copy (Lab_Id)));
3466 end if;
3467 end if;
3469 return OK;
3471 -- Remove pragma Unreferenced since it may refer to formals that
3472 -- are not visible in the inlined body, and in any case we will
3473 -- not be posting warnings on the inlined body so it is unneeded.
3475 elsif Nkind (N) = N_Pragma
3476 and then Pragma_Name (N) = Name_Unreferenced
3477 then
3478 Rewrite (N, Make_Null_Statement (Sloc (N)));
3479 return OK;
3481 else
3482 return OK;
3483 end if;
3484 end Process_Formals;
3486 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
3488 ------------------
3489 -- Process_Sloc --
3490 ------------------
3492 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
3493 begin
3494 if not Debug_Generated_Code then
3495 Set_Sloc (Nod, Sloc (N));
3496 Set_Comes_From_Source (Nod, False);
3497 end if;
3499 return OK;
3500 end Process_Sloc;
3502 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
3504 ---------------------------
3505 -- Rewrite_Function_Call --
3506 ---------------------------
3508 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
3509 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3510 Fst : constant Node_Id := First (Statements (HSS));
3512 begin
3513 -- Optimize simple case: function body is a single return statement,
3514 -- which has been expanded into an assignment.
3516 if Is_Empty_List (Declarations (Blk))
3517 and then Nkind (Fst) = N_Assignment_Statement
3518 and then No (Next (Fst))
3519 then
3521 -- The function call may have been rewritten as the temporary
3522 -- that holds the result of the call, in which case remove the
3523 -- now useless declaration.
3525 if Nkind (N) = N_Identifier
3526 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3527 then
3528 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
3529 end if;
3531 Rewrite (N, Expression (Fst));
3533 elsif Nkind (N) = N_Identifier
3534 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3535 then
3536 -- The block assigns the result of the call to the temporary
3538 Insert_After (Parent (Entity (N)), Blk);
3540 elsif Nkind (Parent (N)) = N_Assignment_Statement
3541 and then
3542 (Is_Entity_Name (Name (Parent (N)))
3543 or else
3544 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
3545 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
3546 then
3547 -- Replace assignment with the block
3549 declare
3550 Original_Assignment : constant Node_Id := Parent (N);
3552 begin
3553 -- Preserve the original assignment node to keep the complete
3554 -- assignment subtree consistent enough for Analyze_Assignment
3555 -- to proceed (specifically, the original Lhs node must still
3556 -- have an assignment statement as its parent).
3558 -- We cannot rely on Original_Node to go back from the block
3559 -- node to the assignment node, because the assignment might
3560 -- already be a rewrite substitution.
3562 Discard_Node (Relocate_Node (Original_Assignment));
3563 Rewrite (Original_Assignment, Blk);
3564 end;
3566 elsif Nkind (Parent (N)) = N_Object_Declaration then
3567 Set_Expression (Parent (N), Empty);
3568 Insert_After (Parent (N), Blk);
3570 elsif Is_Unc then
3571 Insert_Before (Parent (N), Blk);
3572 end if;
3573 end Rewrite_Function_Call;
3575 ----------------------------
3576 -- Rewrite_Procedure_Call --
3577 ----------------------------
3579 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
3580 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3581 begin
3582 -- If there is a transient scope for N, this will be the scope of the
3583 -- actions for N, and the statements in Blk need to be within this
3584 -- scope. For example, they need to have visibility on the constant
3585 -- declarations created for the formals.
3587 -- If N needs no transient scope, and if there are no declarations in
3588 -- the inlined body, we can do a little optimization and insert the
3589 -- statements for the body directly after N, and rewrite N to a
3590 -- null statement, instead of rewriting N into a full-blown block
3591 -- statement.
3593 if not Scope_Is_Transient
3594 and then Is_Empty_List (Declarations (Blk))
3595 then
3596 Insert_List_After (N, Statements (HSS));
3597 Rewrite (N, Make_Null_Statement (Loc));
3598 else
3599 Rewrite (N, Blk);
3600 end if;
3601 end Rewrite_Procedure_Call;
3603 -------------------------
3604 -- Formal_Is_Used_Once --
3605 -------------------------
3607 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
3608 Use_Counter : Int := 0;
3610 function Count_Uses (N : Node_Id) return Traverse_Result;
3611 -- Traverse the tree and count the uses of the formal parameter.
3612 -- In this case, for optimization purposes, we do not need to
3613 -- continue the traversal once more than one use is encountered.
3615 ----------------
3616 -- Count_Uses --
3617 ----------------
3619 function Count_Uses (N : Node_Id) return Traverse_Result is
3620 begin
3621 -- The original node is an identifier
3623 if Nkind (N) = N_Identifier
3624 and then Present (Entity (N))
3626 -- Original node's entity points to the one in the copied body
3628 and then Nkind (Entity (N)) = N_Identifier
3629 and then Present (Entity (Entity (N)))
3631 -- The entity of the copied node is the formal parameter
3633 and then Entity (Entity (N)) = Formal
3634 then
3635 Use_Counter := Use_Counter + 1;
3637 if Use_Counter > 1 then
3639 -- Denote more than one use and abandon the traversal
3641 Use_Counter := 2;
3642 return Abandon;
3644 end if;
3645 end if;
3647 return OK;
3648 end Count_Uses;
3650 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
3652 -- Start of processing for Formal_Is_Used_Once
3654 begin
3655 Count_Formal_Uses (Orig_Bod);
3656 return Use_Counter = 1;
3657 end Formal_Is_Used_Once;
3659 -- Start of processing for Expand_Inlined_Call
3661 begin
3663 -- Check for an illegal attempt to inline a recursive procedure. If the
3664 -- subprogram has parameters this is detected when trying to supply a
3665 -- binding for parameters that already have one. For parameterless
3666 -- subprograms this must be done explicitly.
3668 if In_Open_Scopes (Subp) then
3669 Error_Msg_N ("call to recursive subprogram cannot be inlined?", N);
3670 Set_Is_Inlined (Subp, False);
3671 return;
3672 end if;
3674 if Nkind (Orig_Bod) = N_Defining_Identifier
3675 or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
3676 then
3677 -- Subprogram is a renaming_as_body. Calls appearing after the
3678 -- renaming can be replaced with calls to the renamed entity
3679 -- directly, because the subprograms are subtype conformant. If
3680 -- the renamed subprogram is an inherited operation, we must redo
3681 -- the expansion because implicit conversions may be needed.
3683 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
3685 if Present (Alias (Orig_Bod)) then
3686 Expand_Call (N);
3687 end if;
3689 return;
3690 end if;
3692 -- Use generic machinery to copy body of inlined subprogram, as if it
3693 -- were an instantiation, resetting source locations appropriately, so
3694 -- that nested inlined calls appear in the main unit.
3696 Save_Env (Subp, Empty);
3697 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
3699 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3700 Blk :=
3701 Make_Block_Statement (Loc,
3702 Declarations => Declarations (Bod),
3703 Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
3705 if No (Declarations (Bod)) then
3706 Set_Declarations (Blk, New_List);
3707 end if;
3709 -- For the unconstrained case, capture the name of the local
3710 -- variable that holds the result. This must be the first declaration
3711 -- in the block, because its bounds cannot depend on local variables.
3712 -- Otherwise there is no way to declare the result outside of the
3713 -- block. Needless to say, in general the bounds will depend on the
3714 -- actuals in the call.
3716 if Is_Unc then
3717 Targ1 := Defining_Identifier (First (Declarations (Blk)));
3718 end if;
3720 -- If this is a derived function, establish the proper return type
3722 if Present (Orig_Subp)
3723 and then Orig_Subp /= Subp
3724 then
3725 Ret_Type := Etype (Orig_Subp);
3726 else
3727 Ret_Type := Etype (Subp);
3728 end if;
3730 -- Create temporaries for the actuals that are expressions, or that
3731 -- are scalars and require copying to preserve semantics.
3733 F := First_Formal (Subp);
3734 A := First_Actual (N);
3735 while Present (F) loop
3736 if Present (Renamed_Object (F)) then
3737 Error_Msg_N ("cannot inline call to recursive subprogram", N);
3738 return;
3739 end if;
3741 -- If the argument may be a controlling argument in a call within
3742 -- the inlined body, we must preserve its classwide nature to insure
3743 -- that dynamic dispatching take place subsequently. If the formal
3744 -- has a constraint it must be preserved to retain the semantics of
3745 -- the body.
3747 if Is_Class_Wide_Type (Etype (F))
3748 or else (Is_Access_Type (Etype (F))
3749 and then
3750 Is_Class_Wide_Type (Designated_Type (Etype (F))))
3751 then
3752 Temp_Typ := Etype (F);
3754 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3755 and then Etype (F) /= Base_Type (Etype (F))
3756 then
3757 Temp_Typ := Etype (F);
3759 else
3760 Temp_Typ := Etype (A);
3761 end if;
3763 -- If the actual is a simple name or a literal, no need to
3764 -- create a temporary, object can be used directly.
3766 -- If the actual is a literal and the formal has its address taken,
3767 -- we cannot pass the literal itself as an argument, so its value
3768 -- must be captured in a temporary.
3770 if (Is_Entity_Name (A)
3771 and then
3772 (not Is_Scalar_Type (Etype (A))
3773 or else Ekind (Entity (A)) = E_Enumeration_Literal))
3775 -- When the actual is an identifier and the corresponding formal
3776 -- is used only once in the original body, the formal can be
3777 -- substituted directly with the actual parameter.
3779 or else (Nkind (A) = N_Identifier
3780 and then Formal_Is_Used_Once (F))
3782 or else
3783 (Nkind_In (A, N_Real_Literal,
3784 N_Integer_Literal,
3785 N_Character_Literal)
3786 and then not Address_Taken (F))
3787 then
3788 if Etype (F) /= Etype (A) then
3789 Set_Renamed_Object
3790 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3791 else
3792 Set_Renamed_Object (F, A);
3793 end if;
3795 else
3796 Temp :=
3797 Make_Defining_Identifier (Loc,
3798 Chars => New_Internal_Name ('C'));
3800 -- If the actual for an in/in-out parameter is a view conversion,
3801 -- make it into an unchecked conversion, given that an untagged
3802 -- type conversion is not a proper object for a renaming.
3804 -- In-out conversions that involve real conversions have already
3805 -- been transformed in Expand_Actuals.
3807 if Nkind (A) = N_Type_Conversion
3808 and then Ekind (F) /= E_In_Parameter
3809 then
3810 New_A :=
3811 Make_Unchecked_Type_Conversion (Loc,
3812 Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
3813 Expression => Relocate_Node (Expression (A)));
3815 elsif Etype (F) /= Etype (A) then
3816 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3817 Temp_Typ := Etype (F);
3819 else
3820 New_A := Relocate_Node (A);
3821 end if;
3823 Set_Sloc (New_A, Sloc (N));
3825 -- If the actual has a by-reference type, it cannot be copied, so
3826 -- its value is captured in a renaming declaration. Otherwise
3827 -- declare a local constant initialized with the actual.
3829 -- We also use a renaming declaration for expressions of an array
3830 -- type that is not bit-packed, both for efficiency reasons and to
3831 -- respect the semantics of the call: in most cases the original
3832 -- call will pass the parameter by reference, and thus the inlined
3833 -- code will have the same semantics.
3835 if Ekind (F) = E_In_Parameter
3836 and then not Is_Limited_Type (Etype (A))
3837 and then not Is_Tagged_Type (Etype (A))
3838 and then
3839 (not Is_Array_Type (Etype (A))
3840 or else not Is_Object_Reference (A)
3841 or else Is_Bit_Packed_Array (Etype (A)))
3842 then
3843 Decl :=
3844 Make_Object_Declaration (Loc,
3845 Defining_Identifier => Temp,
3846 Constant_Present => True,
3847 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3848 Expression => New_A);
3849 else
3850 Decl :=
3851 Make_Object_Renaming_Declaration (Loc,
3852 Defining_Identifier => Temp,
3853 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3854 Name => New_A);
3855 end if;
3857 Append (Decl, Decls);
3858 Set_Renamed_Object (F, Temp);
3859 end if;
3861 Next_Formal (F);
3862 Next_Actual (A);
3863 end loop;
3865 -- Establish target of function call. If context is not assignment or
3866 -- declaration, create a temporary as a target. The declaration for
3867 -- the temporary may be subsequently optimized away if the body is a
3868 -- single expression, or if the left-hand side of the assignment is
3869 -- simple enough, i.e. an entity or an explicit dereference of one.
3871 if Ekind (Subp) = E_Function then
3872 if Nkind (Parent (N)) = N_Assignment_Statement
3873 and then Is_Entity_Name (Name (Parent (N)))
3874 then
3875 Targ := Name (Parent (N));
3877 elsif Nkind (Parent (N)) = N_Assignment_Statement
3878 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
3879 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3880 then
3881 Targ := Name (Parent (N));
3883 else
3884 -- Replace call with temporary and create its declaration
3886 Temp :=
3887 Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
3888 Set_Is_Internal (Temp);
3890 -- For the unconstrained case, the generated temporary has the
3891 -- same constrained declaration as the result variable. It may
3892 -- eventually be possible to remove that temporary and use the
3893 -- result variable directly.
3895 if Is_Unc then
3896 Decl :=
3897 Make_Object_Declaration (Loc,
3898 Defining_Identifier => Temp,
3899 Object_Definition =>
3900 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3902 Replace_Formals (Decl);
3904 else
3905 Decl :=
3906 Make_Object_Declaration (Loc,
3907 Defining_Identifier => Temp,
3908 Object_Definition =>
3909 New_Occurrence_Of (Ret_Type, Loc));
3911 Set_Etype (Temp, Ret_Type);
3912 end if;
3914 Set_No_Initialization (Decl);
3915 Append (Decl, Decls);
3916 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3917 Targ := Temp;
3918 end if;
3919 end if;
3921 Insert_Actions (N, Decls);
3923 -- Traverse the tree and replace formals with actuals or their thunks.
3924 -- Attach block to tree before analysis and rewriting.
3926 Replace_Formals (Blk);
3927 Set_Parent (Blk, N);
3929 if not Comes_From_Source (Subp)
3930 or else Is_Predef
3931 then
3932 Reset_Slocs (Blk);
3933 end if;
3935 if Present (Exit_Lab) then
3937 -- If the body was a single expression, the single return statement
3938 -- and the corresponding label are useless.
3940 if Num_Ret = 1
3941 and then
3942 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3943 N_Goto_Statement
3944 then
3945 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3946 else
3947 Append (Lab_Decl, (Declarations (Blk)));
3948 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
3949 end if;
3950 end if;
3952 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors on
3953 -- conflicting private views that Gigi would ignore. If this is a
3954 -- predefined unit, analyze with checks off, as is done in the non-
3955 -- inlined run-time units.
3957 declare
3958 I_Flag : constant Boolean := In_Inlined_Body;
3960 begin
3961 In_Inlined_Body := True;
3963 if Is_Predef then
3964 declare
3965 Style : constant Boolean := Style_Check;
3966 begin
3967 Style_Check := False;
3968 Analyze (Blk, Suppress => All_Checks);
3969 Style_Check := Style;
3970 end;
3972 else
3973 Analyze (Blk);
3974 end if;
3976 In_Inlined_Body := I_Flag;
3977 end;
3979 if Ekind (Subp) = E_Procedure then
3980 Rewrite_Procedure_Call (N, Blk);
3981 else
3982 Rewrite_Function_Call (N, Blk);
3984 -- For the unconstrained case, the replacement of the call has been
3985 -- made prior to the complete analysis of the generated declarations.
3986 -- Propagate the proper type now.
3988 if Is_Unc then
3989 if Nkind (N) = N_Identifier then
3990 Set_Etype (N, Etype (Entity (N)));
3991 else
3992 Set_Etype (N, Etype (Targ1));
3993 end if;
3994 end if;
3995 end if;
3997 Restore_Env;
3999 -- Cleanup mapping between formals and actuals for other expansions
4001 F := First_Formal (Subp);
4002 while Present (F) loop
4003 Set_Renamed_Object (F, Empty);
4004 Next_Formal (F);
4005 end loop;
4006 end Expand_Inlined_Call;
4008 ----------------------------
4009 -- Expand_N_Function_Call --
4010 ----------------------------
4012 procedure Expand_N_Function_Call (N : Node_Id) is
4013 begin
4014 Expand_Call (N);
4016 -- If the return value of a foreign compiled function is VAX Float, then
4017 -- expand the return (adjusts the location of the return value on
4018 -- Alpha/VMS, no-op everywhere else).
4019 -- Comes_From_Source intercepts recursive expansion.
4021 if Vax_Float (Etype (N))
4022 and then Nkind (N) = N_Function_Call
4023 and then Present (Name (N))
4024 and then Present (Entity (Name (N)))
4025 and then Has_Foreign_Convention (Entity (Name (N)))
4026 and then Comes_From_Source (Parent (N))
4027 then
4028 Expand_Vax_Foreign_Return (N);
4029 end if;
4030 end Expand_N_Function_Call;
4032 ---------------------------------------
4033 -- Expand_N_Procedure_Call_Statement --
4034 ---------------------------------------
4036 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
4037 begin
4038 Expand_Call (N);
4039 end Expand_N_Procedure_Call_Statement;
4041 ------------------------------
4042 -- Expand_N_Subprogram_Body --
4043 ------------------------------
4045 -- Add poll call if ATC polling is enabled, unless the body will be inlined
4046 -- by the back-end.
4048 -- Add dummy push/pop label nodes at start and end to clear any local
4049 -- exception indications if local-exception-to-goto optimization is active.
4051 -- Add return statement if last statement in body is not a return statement
4052 -- (this makes things easier on Gigi which does not want to have to handle
4053 -- a missing return).
4055 -- Add call to Activate_Tasks if body is a task activator
4057 -- Deal with possible detection of infinite recursion
4059 -- Eliminate body completely if convention stubbed
4061 -- Encode entity names within body, since we will not need to reference
4062 -- these entities any longer in the front end.
4064 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
4066 -- Reset Pure indication if any parameter has root type System.Address
4068 -- Wrap thread body
4070 procedure Expand_N_Subprogram_Body (N : Node_Id) is
4071 Loc : constant Source_Ptr := Sloc (N);
4072 H : constant Node_Id := Handled_Statement_Sequence (N);
4073 Body_Id : Entity_Id;
4074 Except_H : Node_Id;
4075 L : List_Id;
4076 Spec_Id : Entity_Id;
4078 procedure Add_Return (S : List_Id);
4079 -- Append a return statement to the statement sequence S if the last
4080 -- statement is not already a return or a goto statement. Note that
4081 -- the latter test is not critical, it does not matter if we add a few
4082 -- extra returns, since they get eliminated anyway later on.
4084 ----------------
4085 -- Add_Return --
4086 ----------------
4088 procedure Add_Return (S : List_Id) is
4089 Last_Stm : Node_Id;
4090 Loc : Source_Ptr;
4092 begin
4093 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
4094 -- not relevant in this context since they are not executable.
4096 Last_Stm := Last (S);
4097 while Nkind (Last_Stm) in N_Pop_xxx_Label loop
4098 Prev (Last_Stm);
4099 end loop;
4101 -- Now insert return unless last statement is a transfer
4103 if not Is_Transfer (Last_Stm) then
4105 -- The source location for the return is the end label of the
4106 -- procedure if present. Otherwise use the sloc of the last
4107 -- statement in the list. If the list comes from a generated
4108 -- exception handler and we are not debugging generated code,
4109 -- all the statements within the handler are made invisible
4110 -- to the debugger.
4112 if Nkind (Parent (S)) = N_Exception_Handler
4113 and then not Comes_From_Source (Parent (S))
4114 then
4115 Loc := Sloc (Last_Stm);
4117 elsif Present (End_Label (H)) then
4118 Loc := Sloc (End_Label (H));
4120 else
4121 Loc := Sloc (Last_Stm);
4122 end if;
4124 declare
4125 Rtn : constant Node_Id := Make_Simple_Return_Statement (Loc);
4127 begin
4128 -- Append return statement, and set analyzed manually. We can't
4129 -- call Analyze on this return since the scope is wrong.
4131 -- Note: it almost works to push the scope and then do the
4132 -- Analyze call, but something goes wrong in some weird cases
4133 -- and it is not worth worrying about ???
4135 Append_To (S, Rtn);
4136 Set_Analyzed (Rtn);
4138 -- Call _Postconditions procedure if appropriate. We need to
4139 -- do this explicitly because we did not analyze the generated
4140 -- return statement above, so the call did not get inserted.
4142 if Ekind (Spec_Id) = E_Procedure
4143 and then Has_Postconditions (Spec_Id)
4144 then
4145 pragma Assert (Present (Postcondition_Proc (Spec_Id)));
4146 Insert_Action (Rtn,
4147 Make_Procedure_Call_Statement (Loc,
4148 Name =>
4149 New_Reference_To (Postcondition_Proc (Spec_Id), Loc)));
4150 end if;
4151 end;
4152 end if;
4153 end Add_Return;
4155 -- Start of processing for Expand_N_Subprogram_Body
4157 begin
4158 -- Set L to either the list of declarations if present, or to the list
4159 -- of statements if no declarations are present. This is used to insert
4160 -- new stuff at the start.
4162 if Is_Non_Empty_List (Declarations (N)) then
4163 L := Declarations (N);
4164 else
4165 L := Statements (H);
4166 end if;
4168 -- If local-exception-to-goto optimization active, insert dummy push
4169 -- statements at start, and dummy pop statements at end.
4171 if (Debug_Flag_Dot_G
4172 or else Restriction_Active (No_Exception_Propagation))
4173 and then Is_Non_Empty_List (L)
4174 then
4175 declare
4176 FS : constant Node_Id := First (L);
4177 FL : constant Source_Ptr := Sloc (FS);
4178 LS : Node_Id;
4179 LL : Source_Ptr;
4181 begin
4182 -- LS points to either last statement, if statements are present
4183 -- or to the last declaration if there are no statements present.
4184 -- It is the node after which the pop's are generated.
4186 if Is_Non_Empty_List (Statements (H)) then
4187 LS := Last (Statements (H));
4188 else
4189 LS := Last (L);
4190 end if;
4192 LL := Sloc (LS);
4194 Insert_List_Before_And_Analyze (FS, New_List (
4195 Make_Push_Constraint_Error_Label (FL),
4196 Make_Push_Program_Error_Label (FL),
4197 Make_Push_Storage_Error_Label (FL)));
4199 Insert_List_After_And_Analyze (LS, New_List (
4200 Make_Pop_Constraint_Error_Label (LL),
4201 Make_Pop_Program_Error_Label (LL),
4202 Make_Pop_Storage_Error_Label (LL)));
4203 end;
4204 end if;
4206 -- Find entity for subprogram
4208 Body_Id := Defining_Entity (N);
4210 if Present (Corresponding_Spec (N)) then
4211 Spec_Id := Corresponding_Spec (N);
4212 else
4213 Spec_Id := Body_Id;
4214 end if;
4216 -- Need poll on entry to subprogram if polling enabled. We only do this
4217 -- for non-empty subprograms, since it does not seem necessary to poll
4218 -- for a dummy null subprogram.
4220 if Is_Non_Empty_List (L) then
4222 -- Do not add a polling call if the subprogram is to be inlined by
4223 -- the back-end, to avoid repeated calls with multiple inlinings.
4225 if Is_Inlined (Spec_Id)
4226 and then Front_End_Inlining
4227 and then Optimization_Level > 1
4228 then
4229 null;
4230 else
4231 Generate_Poll_Call (First (L));
4232 end if;
4233 end if;
4235 -- If this is a Pure function which has any parameters whose root type
4236 -- is System.Address, reset the Pure indication, since it will likely
4237 -- cause incorrect code to be generated as the parameter is probably
4238 -- a pointer, and the fact that the same pointer is passed does not mean
4239 -- that the same value is being referenced.
4241 -- Note that if the programmer gave an explicit Pure_Function pragma,
4242 -- then we believe the programmer, and leave the subprogram Pure.
4244 -- This code should probably be at the freeze point, so that it happens
4245 -- even on a -gnatc (or more importantly -gnatt) compile, so that the
4246 -- semantic tree has Is_Pure set properly ???
4248 if Is_Pure (Spec_Id)
4249 and then Is_Subprogram (Spec_Id)
4250 and then not Has_Pragma_Pure_Function (Spec_Id)
4251 then
4252 declare
4253 F : Entity_Id;
4255 begin
4256 F := First_Formal (Spec_Id);
4257 while Present (F) loop
4258 if Is_Descendent_Of_Address (Etype (F)) then
4259 Set_Is_Pure (Spec_Id, False);
4261 if Spec_Id /= Body_Id then
4262 Set_Is_Pure (Body_Id, False);
4263 end if;
4265 exit;
4266 end if;
4268 Next_Formal (F);
4269 end loop;
4270 end;
4271 end if;
4273 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
4275 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
4276 declare
4277 F : Entity_Id;
4279 begin
4280 -- Loop through formals
4282 F := First_Formal (Spec_Id);
4283 while Present (F) loop
4284 if Is_Scalar_Type (Etype (F))
4285 and then Ekind (F) = E_Out_Parameter
4286 then
4287 Check_Restriction (No_Default_Initialization, F);
4289 -- Insert the initialization. We turn off validity checks
4290 -- for this assignment, since we do not want any check on
4291 -- the initial value itself (which may well be invalid).
4293 Insert_Before_And_Analyze (First (L),
4294 Make_Assignment_Statement (Loc,
4295 Name => New_Occurrence_Of (F, Loc),
4296 Expression => Get_Simple_Init_Val (Etype (F), N)),
4297 Suppress => Validity_Check);
4298 end if;
4300 Next_Formal (F);
4301 end loop;
4302 end;
4303 end if;
4305 -- Clear out statement list for stubbed procedure
4307 if Present (Corresponding_Spec (N)) then
4308 Set_Elaboration_Flag (N, Spec_Id);
4310 if Convention (Spec_Id) = Convention_Stubbed
4311 or else Is_Eliminated (Spec_Id)
4312 then
4313 Set_Declarations (N, Empty_List);
4314 Set_Handled_Statement_Sequence (N,
4315 Make_Handled_Sequence_Of_Statements (Loc,
4316 Statements => New_List (
4317 Make_Null_Statement (Loc))));
4318 return;
4319 end if;
4320 end if;
4322 -- Create a set of discriminals for the next protected subprogram body
4324 if Is_List_Member (N)
4325 and then Present (Parent (List_Containing (N)))
4326 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
4327 and then Present (Next_Protected_Operation (N))
4328 then
4329 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
4330 end if;
4332 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
4333 -- subprograms with no specs are not frozen.
4335 declare
4336 Typ : constant Entity_Id := Etype (Spec_Id);
4337 Utyp : constant Entity_Id := Underlying_Type (Typ);
4339 begin
4340 if not Acts_As_Spec (N)
4341 and then Nkind (Parent (Parent (Spec_Id))) /=
4342 N_Subprogram_Body_Stub
4343 then
4344 null;
4346 elsif Is_Inherently_Limited_Type (Typ) then
4347 Set_Returns_By_Ref (Spec_Id);
4349 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
4350 Set_Returns_By_Ref (Spec_Id);
4351 end if;
4352 end;
4354 -- For a procedure, we add a return for all possible syntactic ends of
4355 -- the subprogram.
4357 if Ekind (Spec_Id) = E_Procedure
4358 or else Ekind (Spec_Id) = E_Generic_Procedure
4359 then
4360 Add_Return (Statements (H));
4362 if Present (Exception_Handlers (H)) then
4363 Except_H := First_Non_Pragma (Exception_Handlers (H));
4364 while Present (Except_H) loop
4365 Add_Return (Statements (Except_H));
4366 Next_Non_Pragma (Except_H);
4367 end loop;
4368 end if;
4370 -- For a function, we must deal with the case where there is at least
4371 -- one missing return. What we do is to wrap the entire body of the
4372 -- function in a block:
4374 -- begin
4375 -- ...
4376 -- end;
4378 -- becomes
4380 -- begin
4381 -- begin
4382 -- ...
4383 -- end;
4385 -- raise Program_Error;
4386 -- end;
4388 -- This approach is necessary because the raise must be signalled to the
4389 -- caller, not handled by any local handler (RM 6.4(11)).
4391 -- Note: we do not need to analyze the constructed sequence here, since
4392 -- it has no handler, and an attempt to analyze the handled statement
4393 -- sequence twice is risky in various ways (e.g. the issue of expanding
4394 -- cleanup actions twice).
4396 elsif Has_Missing_Return (Spec_Id) then
4397 declare
4398 Hloc : constant Source_Ptr := Sloc (H);
4399 Blok : constant Node_Id :=
4400 Make_Block_Statement (Hloc,
4401 Handled_Statement_Sequence => H);
4402 Rais : constant Node_Id :=
4403 Make_Raise_Program_Error (Hloc,
4404 Reason => PE_Missing_Return);
4406 begin
4407 Set_Handled_Statement_Sequence (N,
4408 Make_Handled_Sequence_Of_Statements (Hloc,
4409 Statements => New_List (Blok, Rais)));
4411 Push_Scope (Spec_Id);
4412 Analyze (Blok);
4413 Analyze (Rais);
4414 Pop_Scope;
4415 end;
4416 end if;
4418 -- If subprogram contains a parameterless recursive call, then we may
4419 -- have an infinite recursion, so see if we can generate code to check
4420 -- for this possibility if storage checks are not suppressed.
4422 if Ekind (Spec_Id) = E_Procedure
4423 and then Has_Recursive_Call (Spec_Id)
4424 and then not Storage_Checks_Suppressed (Spec_Id)
4425 then
4426 Detect_Infinite_Recursion (N, Spec_Id);
4427 end if;
4429 -- Set to encode entity names in package body before gigi is called
4431 Qualify_Entity_Names (N);
4432 end Expand_N_Subprogram_Body;
4434 -----------------------------------
4435 -- Expand_N_Subprogram_Body_Stub --
4436 -----------------------------------
4438 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
4439 begin
4440 if Present (Corresponding_Body (N)) then
4441 Expand_N_Subprogram_Body (
4442 Unit_Declaration_Node (Corresponding_Body (N)));
4443 end if;
4444 end Expand_N_Subprogram_Body_Stub;
4446 -------------------------------------
4447 -- Expand_N_Subprogram_Declaration --
4448 -------------------------------------
4450 -- If the declaration appears within a protected body, it is a private
4451 -- operation of the protected type. We must create the corresponding
4452 -- protected subprogram an associated formals. For a normal protected
4453 -- operation, this is done when expanding the protected type declaration.
4455 -- If the declaration is for a null procedure, emit null body
4457 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
4458 Loc : constant Source_Ptr := Sloc (N);
4459 Subp : constant Entity_Id := Defining_Entity (N);
4460 Scop : constant Entity_Id := Scope (Subp);
4461 Prot_Decl : Node_Id;
4462 Prot_Bod : Node_Id;
4463 Prot_Id : Entity_Id;
4465 begin
4466 -- Deal with case of protected subprogram. Do not generate protected
4467 -- operation if operation is flagged as eliminated.
4469 if Is_List_Member (N)
4470 and then Present (Parent (List_Containing (N)))
4471 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
4472 and then Is_Protected_Type (Scop)
4473 then
4474 if No (Protected_Body_Subprogram (Subp))
4475 and then not Is_Eliminated (Subp)
4476 then
4477 Prot_Decl :=
4478 Make_Subprogram_Declaration (Loc,
4479 Specification =>
4480 Build_Protected_Sub_Specification
4481 (N, Scop, Unprotected_Mode));
4483 -- The protected subprogram is declared outside of the protected
4484 -- body. Given that the body has frozen all entities so far, we
4485 -- analyze the subprogram and perform freezing actions explicitly.
4486 -- including the generation of an explicit freeze node, to ensure
4487 -- that gigi has the proper order of elaboration.
4488 -- If the body is a subunit, the insertion point is before the
4489 -- stub in the parent.
4491 Prot_Bod := Parent (List_Containing (N));
4493 if Nkind (Parent (Prot_Bod)) = N_Subunit then
4494 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
4495 end if;
4497 Insert_Before (Prot_Bod, Prot_Decl);
4498 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
4499 Set_Has_Delayed_Freeze (Prot_Id);
4501 Push_Scope (Scope (Scop));
4502 Analyze (Prot_Decl);
4503 Insert_Actions (N, Freeze_Entity (Prot_Id, Loc));
4504 Set_Protected_Body_Subprogram (Subp, Prot_Id);
4506 -- Create protected operation as well. Even though the operation
4507 -- is only accessible within the body, it is possible to make it
4508 -- available outside of the protected object by using 'Access to
4509 -- provide a callback, so we build the protected version in all
4510 -- cases.
4512 Prot_Decl :=
4513 Make_Subprogram_Declaration (Loc,
4514 Specification =>
4515 Build_Protected_Sub_Specification
4516 (N, Scop, Protected_Mode));
4517 Insert_Before (Prot_Bod, Prot_Decl);
4518 Analyze (Prot_Decl);
4520 Pop_Scope;
4521 end if;
4523 -- Ada 2005 (AI-348): Generate body for a null procedure.
4524 -- In most cases this is superfluous because calls to it
4525 -- will be automatically inlined, but we definitely need
4526 -- the body if preconditions for the procedure are present.
4528 elsif Nkind (Specification (N)) = N_Procedure_Specification
4529 and then Null_Present (Specification (N))
4530 then
4531 declare
4532 Bod : constant Node_Id := Body_To_Inline (N);
4534 begin
4535 Set_Has_Completion (Subp, False);
4536 Append_Freeze_Action (Subp, Bod);
4538 -- The body now contains raise statements, so calls to it will
4539 -- not be inlined.
4541 Set_Is_Inlined (Subp, False);
4542 end;
4543 end if;
4544 end Expand_N_Subprogram_Declaration;
4546 ---------------------------------------
4547 -- Expand_Protected_Object_Reference --
4548 ---------------------------------------
4550 function Expand_Protected_Object_Reference
4551 (N : Node_Id;
4552 Scop : Entity_Id) return Node_Id
4554 Loc : constant Source_Ptr := Sloc (N);
4555 Corr : Entity_Id;
4556 Rec : Node_Id;
4557 Param : Entity_Id;
4558 Proc : Entity_Id;
4560 begin
4561 Rec :=
4562 Make_Identifier (Loc,
4563 Chars => Name_uObject);
4564 Set_Etype (Rec, Corresponding_Record_Type (Scop));
4566 -- Find enclosing protected operation, and retrieve its first parameter,
4567 -- which denotes the enclosing protected object. If the enclosing
4568 -- operation is an entry, we are immediately within the protected body,
4569 -- and we can retrieve the object from the service entries procedure. A
4570 -- barrier function has the same signature as an entry. A barrier
4571 -- function is compiled within the protected object, but unlike
4572 -- protected operations its never needs locks, so that its protected
4573 -- body subprogram points to itself.
4575 Proc := Current_Scope;
4576 while Present (Proc)
4577 and then Scope (Proc) /= Scop
4578 loop
4579 Proc := Scope (Proc);
4580 end loop;
4582 Corr := Protected_Body_Subprogram (Proc);
4584 if No (Corr) then
4586 -- Previous error left expansion incomplete.
4587 -- Nothing to do on this call.
4589 return Empty;
4590 end if;
4592 Param :=
4593 Defining_Identifier
4594 (First (Parameter_Specifications (Parent (Corr))));
4596 if Is_Subprogram (Proc)
4597 and then Proc /= Corr
4598 then
4599 -- Protected function or procedure
4601 Set_Entity (Rec, Param);
4603 -- Rec is a reference to an entity which will not be in scope when
4604 -- the call is reanalyzed, and needs no further analysis.
4606 Set_Analyzed (Rec);
4608 else
4609 -- Entry or barrier function for entry body. The first parameter of
4610 -- the entry body procedure is pointer to the object. We create a
4611 -- local variable of the proper type, duplicating what is done to
4612 -- define _object later on.
4614 declare
4615 Decls : List_Id;
4616 Obj_Ptr : constant Entity_Id := Make_Defining_Identifier (Loc,
4617 Chars =>
4618 New_Internal_Name ('T'));
4620 begin
4621 Decls := New_List (
4622 Make_Full_Type_Declaration (Loc,
4623 Defining_Identifier => Obj_Ptr,
4624 Type_Definition =>
4625 Make_Access_To_Object_Definition (Loc,
4626 Subtype_Indication =>
4627 New_Reference_To
4628 (Corresponding_Record_Type (Scop), Loc))));
4630 Insert_Actions (N, Decls);
4631 Insert_Actions (N, Freeze_Entity (Obj_Ptr, Sloc (N)));
4633 Rec :=
4634 Make_Explicit_Dereference (Loc,
4635 Unchecked_Convert_To (Obj_Ptr,
4636 New_Occurrence_Of (Param, Loc)));
4638 -- Analyze new actual. Other actuals in calls are already analyzed
4639 -- and the list of actuals is not reanalyzed after rewriting.
4641 Set_Parent (Rec, N);
4642 Analyze (Rec);
4643 end;
4644 end if;
4646 return Rec;
4647 end Expand_Protected_Object_Reference;
4649 --------------------------------------
4650 -- Expand_Protected_Subprogram_Call --
4651 --------------------------------------
4653 procedure Expand_Protected_Subprogram_Call
4654 (N : Node_Id;
4655 Subp : Entity_Id;
4656 Scop : Entity_Id)
4658 Rec : Node_Id;
4660 begin
4661 -- If the protected object is not an enclosing scope, this is
4662 -- an inter-object function call. Inter-object procedure
4663 -- calls are expanded by Exp_Ch9.Build_Simple_Entry_Call.
4664 -- The call is intra-object only if the subprogram being
4665 -- called is in the protected body being compiled, and if the
4666 -- protected object in the call is statically the enclosing type.
4667 -- The object may be an component of some other data structure,
4668 -- in which case this must be handled as an inter-object call.
4670 if not In_Open_Scopes (Scop)
4671 or else not Is_Entity_Name (Name (N))
4672 then
4673 if Nkind (Name (N)) = N_Selected_Component then
4674 Rec := Prefix (Name (N));
4676 else
4677 pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
4678 Rec := Prefix (Prefix (Name (N)));
4679 end if;
4681 Build_Protected_Subprogram_Call (N,
4682 Name => New_Occurrence_Of (Subp, Sloc (N)),
4683 Rec => Convert_Concurrent (Rec, Etype (Rec)),
4684 External => True);
4686 else
4687 Rec := Expand_Protected_Object_Reference (N, Scop);
4689 if No (Rec) then
4690 return;
4691 end if;
4693 Build_Protected_Subprogram_Call (N,
4694 Name => Name (N),
4695 Rec => Rec,
4696 External => False);
4698 end if;
4700 -- If it is a function call it can appear in elaboration code and
4701 -- the called entity must be frozen here.
4703 if Ekind (Subp) = E_Function then
4704 Freeze_Expression (Name (N));
4705 end if;
4707 -- Analyze and resolve the new call. The actuals have already been
4708 -- resolved, but expansion of a function call will add extra actuals
4709 -- if needed. Analysis of a procedure call already includes resolution.
4711 Analyze (N);
4713 if Ekind (Subp) = E_Function then
4714 Resolve (N, Etype (Subp));
4715 end if;
4716 end Expand_Protected_Subprogram_Call;
4718 --------------------------------
4719 -- Is_Build_In_Place_Function --
4720 --------------------------------
4722 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
4723 begin
4724 -- For now we test whether E denotes a function or access-to-function
4725 -- type whose result subtype is inherently limited. Later this test may
4726 -- be revised to allow composite nonlimited types. Functions with a
4727 -- foreign convention or whose result type has a foreign convention
4728 -- never qualify.
4730 if Ekind (E) = E_Function
4731 or else Ekind (E) = E_Generic_Function
4732 or else (Ekind (E) = E_Subprogram_Type
4733 and then Etype (E) /= Standard_Void_Type)
4734 then
4735 -- Note: If you have Convention (C) on an inherently limited type,
4736 -- you're on your own. That is, the C code will have to be carefully
4737 -- written to know about the Ada conventions.
4739 if Has_Foreign_Convention (E)
4740 or else Has_Foreign_Convention (Etype (E))
4741 then
4742 return False;
4744 -- In Ada 2005 all functions with an inherently limited return type
4745 -- must be handled using a build-in-place profile, including the case
4746 -- of a function with a limited interface result, where the function
4747 -- may return objects of nonlimited descendants.
4749 else
4750 return Is_Inherently_Limited_Type (Etype (E))
4751 and then Ada_Version >= Ada_05
4752 and then not Debug_Flag_Dot_L;
4753 end if;
4755 else
4756 return False;
4757 end if;
4758 end Is_Build_In_Place_Function;
4760 -------------------------------------
4761 -- Is_Build_In_Place_Function_Call --
4762 -------------------------------------
4764 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
4765 Exp_Node : Node_Id := N;
4766 Function_Id : Entity_Id;
4768 begin
4769 -- Step past qualification or unchecked conversion (the latter can occur
4770 -- in cases of calls to 'Input).
4772 if Nkind_In
4773 (Exp_Node, N_Qualified_Expression, N_Unchecked_Type_Conversion)
4774 then
4775 Exp_Node := Expression (N);
4776 end if;
4778 if Nkind (Exp_Node) /= N_Function_Call then
4779 return False;
4781 else
4782 if Is_Entity_Name (Name (Exp_Node)) then
4783 Function_Id := Entity (Name (Exp_Node));
4785 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
4786 Function_Id := Etype (Name (Exp_Node));
4787 end if;
4789 return Is_Build_In_Place_Function (Function_Id);
4790 end if;
4791 end Is_Build_In_Place_Function_Call;
4793 -----------------------
4794 -- Freeze_Subprogram --
4795 -----------------------
4797 procedure Freeze_Subprogram (N : Node_Id) is
4798 Loc : constant Source_Ptr := Sloc (N);
4800 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
4801 -- (Ada 2005): Register a predefined primitive in all the secondary
4802 -- dispatch tables of its primitive type.
4804 ----------------------------------
4805 -- Register_Predefined_DT_Entry --
4806 ----------------------------------
4808 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
4809 Iface_DT_Ptr : Elmt_Id;
4810 Tagged_Typ : Entity_Id;
4811 Thunk_Id : Entity_Id;
4812 Thunk_Code : Node_Id;
4814 begin
4815 Tagged_Typ := Find_Dispatching_Type (Prim);
4817 if No (Access_Disp_Table (Tagged_Typ))
4818 or else not Has_Interfaces (Tagged_Typ)
4819 or else not RTE_Available (RE_Interface_Tag)
4820 or else Restriction_Active (No_Dispatching_Calls)
4821 then
4822 return;
4823 end if;
4825 -- Skip the first two access-to-dispatch-table pointers since they
4826 -- leads to the primary dispatch table (predefined DT and user
4827 -- defined DT). We are only concerned with the secondary dispatch
4828 -- table pointers. Note that the access-to- dispatch-table pointer
4829 -- corresponds to the first implemented interface retrieved below.
4831 Iface_DT_Ptr :=
4832 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
4834 while Present (Iface_DT_Ptr)
4835 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
4836 loop
4837 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
4838 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
4840 if Present (Thunk_Code) then
4841 Insert_Actions_After (N, New_List (
4842 Thunk_Code,
4844 Build_Set_Predefined_Prim_Op_Address (Loc,
4845 Tag_Node =>
4846 New_Reference_To (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
4847 Position => DT_Position (Prim),
4848 Address_Node =>
4849 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
4850 Make_Attribute_Reference (Loc,
4851 Prefix => New_Reference_To (Thunk_Id, Loc),
4852 Attribute_Name => Name_Unrestricted_Access))),
4854 Build_Set_Predefined_Prim_Op_Address (Loc,
4855 Tag_Node =>
4856 New_Reference_To
4857 (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
4858 Loc),
4859 Position => DT_Position (Prim),
4860 Address_Node =>
4861 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
4862 Make_Attribute_Reference (Loc,
4863 Prefix => New_Reference_To (Prim, Loc),
4864 Attribute_Name => Name_Unrestricted_Access)))));
4865 end if;
4867 -- Skip the tag of the predefined primitives dispatch table
4869 Next_Elmt (Iface_DT_Ptr);
4870 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
4872 -- Skip the tag of the no-thunks dispatch table
4874 Next_Elmt (Iface_DT_Ptr);
4875 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
4877 -- Skip the tag of the predefined primitives no-thunks dispatch
4878 -- table
4880 Next_Elmt (Iface_DT_Ptr);
4881 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
4883 Next_Elmt (Iface_DT_Ptr);
4884 end loop;
4885 end Register_Predefined_DT_Entry;
4887 -- Local variables
4889 Subp : constant Entity_Id := Entity (N);
4891 -- Start of processing for Freeze_Subprogram
4893 begin
4894 -- We suppress the initialization of the dispatch table entry when
4895 -- VM_Target because the dispatching mechanism is handled internally
4896 -- by the VM.
4898 if Is_Dispatching_Operation (Subp)
4899 and then not Is_Abstract_Subprogram (Subp)
4900 and then Present (DTC_Entity (Subp))
4901 and then Present (Scope (DTC_Entity (Subp)))
4902 and then Tagged_Type_Expansion
4903 and then not Restriction_Active (No_Dispatching_Calls)
4904 and then RTE_Available (RE_Tag)
4905 then
4906 declare
4907 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
4909 begin
4910 -- Handle private overridden primitives
4912 if not Is_CPP_Class (Typ) then
4913 Check_Overriding_Operation (Subp);
4914 end if;
4916 -- We assume that imported CPP primitives correspond with objects
4917 -- whose constructor is in the CPP side; therefore we don't need
4918 -- to generate code to register them in the dispatch table.
4920 if Is_CPP_Class (Typ) then
4921 null;
4923 -- Handle CPP primitives found in derivations of CPP_Class types.
4924 -- These primitives must have been inherited from some parent, and
4925 -- there is no need to register them in the dispatch table because
4926 -- Build_Inherit_Prims takes care of the initialization of these
4927 -- slots.
4929 elsif Is_Imported (Subp)
4930 and then (Convention (Subp) = Convention_CPP
4931 or else Convention (Subp) = Convention_C)
4932 then
4933 null;
4935 -- Generate code to register the primitive in non statically
4936 -- allocated dispatch tables
4938 elsif not Static_Dispatch_Tables
4939 or else not
4940 Is_Library_Level_Tagged_Type (Scope (DTC_Entity (Subp)))
4941 then
4942 -- When a primitive is frozen, enter its name in its dispatch
4943 -- table slot.
4945 if not Is_Interface (Typ)
4946 or else Present (Interface_Alias (Subp))
4947 then
4948 if Is_Predefined_Dispatching_Operation (Subp) then
4949 Register_Predefined_DT_Entry (Subp);
4950 end if;
4952 Insert_Actions_After (N,
4953 Register_Primitive (Loc, Prim => Subp));
4954 end if;
4955 end if;
4956 end;
4957 end if;
4959 -- Mark functions that return by reference. Note that it cannot be part
4960 -- of the normal semantic analysis of the spec since the underlying
4961 -- returned type may not be known yet (for private types).
4963 declare
4964 Typ : constant Entity_Id := Etype (Subp);
4965 Utyp : constant Entity_Id := Underlying_Type (Typ);
4966 begin
4967 if Is_Inherently_Limited_Type (Typ) then
4968 Set_Returns_By_Ref (Subp);
4969 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
4970 Set_Returns_By_Ref (Subp);
4971 end if;
4972 end;
4973 end Freeze_Subprogram;
4975 -----------------------
4976 -- Is_Null_Procedure --
4977 -----------------------
4979 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
4980 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
4982 begin
4983 if Ekind (Subp) /= E_Procedure then
4984 return False;
4986 -- Check if this is a declared null procedure
4988 elsif Nkind (Decl) = N_Subprogram_Declaration then
4989 if not Null_Present (Specification (Decl)) then
4990 return False;
4992 elsif No (Body_To_Inline (Decl)) then
4993 return False;
4995 -- Check if the body contains only a null statement, followed by
4996 -- the return statement added during expansion.
4998 else
4999 declare
5000 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
5002 Stat : Node_Id;
5003 Stat2 : Node_Id;
5005 begin
5006 if Nkind (Orig_Bod) /= N_Subprogram_Body then
5007 return False;
5008 else
5009 -- We must skip SCIL nodes because they are currently
5010 -- implemented as special N_Null_Statement nodes.
5012 Stat :=
5013 First_Non_SCIL_Node
5014 (Statements (Handled_Statement_Sequence (Orig_Bod)));
5015 Stat2 := Next_Non_SCIL_Node (Stat);
5017 return
5018 Is_Empty_List (Declarations (Orig_Bod))
5019 and then Nkind (Stat) = N_Null_Statement
5020 and then
5021 (No (Stat2)
5022 or else
5023 (Nkind (Stat2) = N_Simple_Return_Statement
5024 and then No (Next (Stat2))));
5025 end if;
5026 end;
5027 end if;
5029 else
5030 return False;
5031 end if;
5032 end Is_Null_Procedure;
5034 -------------------------------------------
5035 -- Make_Build_In_Place_Call_In_Allocator --
5036 -------------------------------------------
5038 procedure Make_Build_In_Place_Call_In_Allocator
5039 (Allocator : Node_Id;
5040 Function_Call : Node_Id)
5042 Loc : Source_Ptr;
5043 Func_Call : Node_Id := Function_Call;
5044 Function_Id : Entity_Id;
5045 Result_Subt : Entity_Id;
5046 Acc_Type : constant Entity_Id := Etype (Allocator);
5047 New_Allocator : Node_Id;
5048 Return_Obj_Access : Entity_Id;
5050 begin
5051 -- Step past qualification or unchecked conversion (the latter can occur
5052 -- in cases of calls to 'Input).
5054 if Nkind_In (Func_Call,
5055 N_Qualified_Expression,
5056 N_Unchecked_Type_Conversion)
5057 then
5058 Func_Call := Expression (Func_Call);
5059 end if;
5061 -- If the call has already been processed to add build-in-place actuals
5062 -- then return. This should not normally occur in an allocator context,
5063 -- but we add the protection as a defensive measure.
5065 if Is_Expanded_Build_In_Place_Call (Func_Call) then
5066 return;
5067 end if;
5069 -- Mark the call as processed as a build-in-place call
5071 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5073 Loc := Sloc (Function_Call);
5075 if Is_Entity_Name (Name (Func_Call)) then
5076 Function_Id := Entity (Name (Func_Call));
5078 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5079 Function_Id := Etype (Name (Func_Call));
5081 else
5082 raise Program_Error;
5083 end if;
5085 Result_Subt := Etype (Function_Id);
5087 -- When the result subtype is constrained, the return object must be
5088 -- allocated on the caller side, and access to it is passed to the
5089 -- function.
5091 -- Here and in related routines, we must examine the full view of the
5092 -- type, because the view at the point of call may differ from that
5093 -- that in the function body, and the expansion mechanism depends on
5094 -- the characteristics of the full view.
5096 if Is_Constrained (Underlying_Type (Result_Subt)) then
5098 -- Replace the initialized allocator of form "new T'(Func (...))"
5099 -- with an uninitialized allocator of form "new T", where T is the
5100 -- result subtype of the called function. The call to the function
5101 -- is handled separately further below.
5103 New_Allocator :=
5104 Make_Allocator (Loc,
5105 Expression => New_Reference_To (Result_Subt, Loc));
5106 Set_No_Initialization (New_Allocator);
5108 -- Copy attributes to new allocator. Note that the new allocator
5109 -- logically comes from source if the original one did, so copy the
5110 -- relevant flag. This ensures proper treatment of the restriction
5111 -- No_Implicit_Heap_Allocations in this case.
5113 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
5114 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
5115 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
5117 Rewrite (Allocator, New_Allocator);
5119 -- Create a new access object and initialize it to the result of the
5120 -- new uninitialized allocator.
5122 Return_Obj_Access :=
5123 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
5124 Set_Etype (Return_Obj_Access, Acc_Type);
5126 Insert_Action (Allocator,
5127 Make_Object_Declaration (Loc,
5128 Defining_Identifier => Return_Obj_Access,
5129 Object_Definition => New_Reference_To (Acc_Type, Loc),
5130 Expression => Relocate_Node (Allocator)));
5132 -- When the function has a controlling result, an allocation-form
5133 -- parameter must be passed indicating that the caller is allocating
5134 -- the result object. This is needed because such a function can be
5135 -- called as a dispatching operation and must be treated similarly
5136 -- to functions with unconstrained result subtypes.
5138 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5139 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5141 Add_Final_List_Actual_To_Build_In_Place_Call
5142 (Func_Call, Function_Id, Acc_Type);
5144 Add_Task_Actuals_To_Build_In_Place_Call
5145 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
5147 -- Add an implicit actual to the function call that provides access
5148 -- to the allocated object. An unchecked conversion to the (specific)
5149 -- result subtype of the function is inserted to handle cases where
5150 -- the access type of the allocator has a class-wide designated type.
5152 Add_Access_Actual_To_Build_In_Place_Call
5153 (Func_Call,
5154 Function_Id,
5155 Make_Unchecked_Type_Conversion (Loc,
5156 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
5157 Expression =>
5158 Make_Explicit_Dereference (Loc,
5159 Prefix => New_Reference_To (Return_Obj_Access, Loc))));
5161 -- When the result subtype is unconstrained, the function itself must
5162 -- perform the allocation of the return object, so we pass parameters
5163 -- indicating that. We don't yet handle the case where the allocation
5164 -- must be done in a user-defined storage pool, which will require
5165 -- passing another actual or two to provide allocation/deallocation
5166 -- operations. ???
5168 else
5170 -- Pass an allocation parameter indicating that the function should
5171 -- allocate its result on the heap.
5173 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5174 (Func_Call, Function_Id, Alloc_Form => Global_Heap);
5176 Add_Final_List_Actual_To_Build_In_Place_Call
5177 (Func_Call, Function_Id, Acc_Type);
5179 Add_Task_Actuals_To_Build_In_Place_Call
5180 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
5182 -- The caller does not provide the return object in this case, so we
5183 -- have to pass null for the object access actual.
5185 Add_Access_Actual_To_Build_In_Place_Call
5186 (Func_Call, Function_Id, Return_Object => Empty);
5187 end if;
5189 -- Finally, replace the allocator node with a reference to the result
5190 -- of the function call itself (which will effectively be an access
5191 -- to the object created by the allocator).
5193 Rewrite (Allocator, Make_Reference (Loc, Relocate_Node (Function_Call)));
5194 Analyze_And_Resolve (Allocator, Acc_Type);
5195 end Make_Build_In_Place_Call_In_Allocator;
5197 ---------------------------------------------------
5198 -- Make_Build_In_Place_Call_In_Anonymous_Context --
5199 ---------------------------------------------------
5201 procedure Make_Build_In_Place_Call_In_Anonymous_Context
5202 (Function_Call : Node_Id)
5204 Loc : Source_Ptr;
5205 Func_Call : Node_Id := Function_Call;
5206 Function_Id : Entity_Id;
5207 Result_Subt : Entity_Id;
5208 Return_Obj_Id : Entity_Id;
5209 Return_Obj_Decl : Entity_Id;
5211 begin
5212 -- Step past qualification or unchecked conversion (the latter can occur
5213 -- in cases of calls to 'Input).
5215 if Nkind_In (Func_Call, N_Qualified_Expression,
5216 N_Unchecked_Type_Conversion)
5217 then
5218 Func_Call := Expression (Func_Call);
5219 end if;
5221 -- If the call has already been processed to add build-in-place actuals
5222 -- then return. One place this can occur is for calls to build-in-place
5223 -- functions that occur within a call to a protected operation, where
5224 -- due to rewriting and expansion of the protected call there can be
5225 -- more than one call to Expand_Actuals for the same set of actuals.
5227 if Is_Expanded_Build_In_Place_Call (Func_Call) then
5228 return;
5229 end if;
5231 -- Mark the call as processed as a build-in-place call
5233 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5235 Loc := Sloc (Function_Call);
5237 if Is_Entity_Name (Name (Func_Call)) then
5238 Function_Id := Entity (Name (Func_Call));
5240 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5241 Function_Id := Etype (Name (Func_Call));
5243 else
5244 raise Program_Error;
5245 end if;
5247 Result_Subt := Etype (Function_Id);
5249 -- When the result subtype is constrained, an object of the subtype is
5250 -- declared and an access value designating it is passed as an actual.
5252 if Is_Constrained (Underlying_Type (Result_Subt)) then
5254 -- Create a temporary object to hold the function result
5256 Return_Obj_Id :=
5257 Make_Defining_Identifier (Loc,
5258 Chars => New_Internal_Name ('R'));
5259 Set_Etype (Return_Obj_Id, Result_Subt);
5261 Return_Obj_Decl :=
5262 Make_Object_Declaration (Loc,
5263 Defining_Identifier => Return_Obj_Id,
5264 Aliased_Present => True,
5265 Object_Definition => New_Reference_To (Result_Subt, Loc));
5267 Set_No_Initialization (Return_Obj_Decl);
5269 Insert_Action (Func_Call, Return_Obj_Decl);
5271 -- When the function has a controlling result, an allocation-form
5272 -- parameter must be passed indicating that the caller is allocating
5273 -- the result object. This is needed because such a function can be
5274 -- called as a dispatching operation and must be treated similarly
5275 -- to functions with unconstrained result subtypes.
5277 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5278 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5280 Add_Final_List_Actual_To_Build_In_Place_Call
5281 (Func_Call, Function_Id, Acc_Type => Empty);
5283 Add_Task_Actuals_To_Build_In_Place_Call
5284 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
5286 -- Add an implicit actual to the function call that provides access
5287 -- to the caller's return object.
5289 Add_Access_Actual_To_Build_In_Place_Call
5290 (Func_Call, Function_Id, New_Reference_To (Return_Obj_Id, Loc));
5292 -- When the result subtype is unconstrained, the function must allocate
5293 -- the return object in the secondary stack, so appropriate implicit
5294 -- parameters are added to the call to indicate that. A transient
5295 -- scope is established to ensure eventual cleanup of the result.
5297 else
5299 -- Pass an allocation parameter indicating that the function should
5300 -- allocate its result on the secondary stack.
5302 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5303 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
5305 Add_Final_List_Actual_To_Build_In_Place_Call
5306 (Func_Call, Function_Id, Acc_Type => Empty);
5308 Add_Task_Actuals_To_Build_In_Place_Call
5309 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
5311 -- Pass a null value to the function since no return object is
5312 -- available on the caller side.
5314 Add_Access_Actual_To_Build_In_Place_Call
5315 (Func_Call, Function_Id, Empty);
5317 Establish_Transient_Scope (Func_Call, Sec_Stack => True);
5318 end if;
5319 end Make_Build_In_Place_Call_In_Anonymous_Context;
5321 --------------------------------------------
5322 -- Make_Build_In_Place_Call_In_Assignment --
5323 --------------------------------------------
5325 procedure Make_Build_In_Place_Call_In_Assignment
5326 (Assign : Node_Id;
5327 Function_Call : Node_Id)
5329 Lhs : constant Node_Id := Name (Assign);
5330 Func_Call : Node_Id := Function_Call;
5331 Func_Id : Entity_Id;
5332 Loc : Source_Ptr;
5333 Obj_Decl : Node_Id;
5334 Obj_Id : Entity_Id;
5335 Ptr_Typ : Entity_Id;
5336 Ptr_Typ_Decl : Node_Id;
5337 Result_Subt : Entity_Id;
5338 Target : Node_Id;
5340 begin
5341 -- Step past qualification or unchecked conversion (the latter can occur
5342 -- in cases of calls to 'Input).
5344 if Nkind_In (Func_Call, N_Qualified_Expression,
5345 N_Unchecked_Type_Conversion)
5346 then
5347 Func_Call := Expression (Func_Call);
5348 end if;
5350 -- If the call has already been processed to add build-in-place actuals
5351 -- then return. This should not normally occur in an assignment context,
5352 -- but we add the protection as a defensive measure.
5354 if Is_Expanded_Build_In_Place_Call (Func_Call) then
5355 return;
5356 end if;
5358 -- Mark the call as processed as a build-in-place call
5360 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5362 Loc := Sloc (Function_Call);
5364 if Is_Entity_Name (Name (Func_Call)) then
5365 Func_Id := Entity (Name (Func_Call));
5367 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5368 Func_Id := Etype (Name (Func_Call));
5370 else
5371 raise Program_Error;
5372 end if;
5374 Result_Subt := Etype (Func_Id);
5376 -- When the result subtype is unconstrained, an additional actual must
5377 -- be passed to indicate that the caller is providing the return object.
5378 -- This parameter must also be passed when the called function has a
5379 -- controlling result, because dispatching calls to the function needs
5380 -- to be treated effectively the same as calls to class-wide functions.
5382 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5383 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
5385 -- If Lhs is a selected component, then pass it along so that its prefix
5386 -- object will be used as the source of the finalization list.
5388 if Nkind (Lhs) = N_Selected_Component then
5389 Add_Final_List_Actual_To_Build_In_Place_Call
5390 (Func_Call, Func_Id, Acc_Type => Empty, Sel_Comp => Lhs);
5391 else
5392 Add_Final_List_Actual_To_Build_In_Place_Call
5393 (Func_Call, Func_Id, Acc_Type => Empty);
5394 end if;
5396 Add_Task_Actuals_To_Build_In_Place_Call
5397 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
5399 -- Add an implicit actual to the function call that provides access to
5400 -- the caller's return object.
5402 Add_Access_Actual_To_Build_In_Place_Call
5403 (Func_Call,
5404 Func_Id,
5405 Make_Unchecked_Type_Conversion (Loc,
5406 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
5407 Expression => Relocate_Node (Lhs)));
5409 -- Create an access type designating the function's result subtype
5411 Ptr_Typ :=
5412 Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
5414 Ptr_Typ_Decl :=
5415 Make_Full_Type_Declaration (Loc,
5416 Defining_Identifier => Ptr_Typ,
5417 Type_Definition =>
5418 Make_Access_To_Object_Definition (Loc,
5419 All_Present => True,
5420 Subtype_Indication =>
5421 New_Reference_To (Result_Subt, Loc)));
5422 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
5424 -- Finally, create an access object initialized to a reference to the
5425 -- function call.
5427 Obj_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
5428 Set_Etype (Obj_Id, Ptr_Typ);
5430 Obj_Decl :=
5431 Make_Object_Declaration (Loc,
5432 Defining_Identifier => Obj_Id,
5433 Object_Definition =>
5434 New_Reference_To (Ptr_Typ, Loc),
5435 Expression =>
5436 Make_Reference (Loc,
5437 Prefix => Relocate_Node (Func_Call)));
5438 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
5440 Rewrite (Assign, Make_Null_Statement (Loc));
5442 -- Retrieve the target of the assignment
5444 if Nkind (Lhs) = N_Selected_Component then
5445 Target := Selector_Name (Lhs);
5446 elsif Nkind (Lhs) = N_Type_Conversion then
5447 Target := Expression (Lhs);
5448 else
5449 Target := Lhs;
5450 end if;
5452 -- If we are assigning to a return object or this is an expression of
5453 -- an extension aggregate, the target should either be an identifier
5454 -- or a simple expression. All other cases imply a different scenario.
5456 if Nkind (Target) in N_Has_Entity then
5457 Target := Entity (Target);
5458 else
5459 return;
5460 end if;
5462 -- When the target of the assignment is a return object of an enclosing
5463 -- build-in-place function and also requires finalization, the list
5464 -- generated for the assignment must be moved to that of the enclosing
5465 -- function.
5467 -- function Enclosing_BIP_Function return Ctrl_Typ is
5468 -- begin
5469 -- return (Ctrl_Parent_Part => BIP_Function with ...);
5470 -- end Enclosing_BIP_Function;
5472 if Is_Return_Object (Target)
5473 and then Needs_Finalization (Etype (Target))
5474 and then Needs_Finalization (Result_Subt)
5475 then
5476 declare
5477 Obj_List : constant Node_Id := Find_Final_List (Obj_Id);
5478 Encl_List : Node_Id;
5479 Encl_Scop : Entity_Id;
5481 begin
5482 Encl_Scop := Scope (Target);
5484 -- Locate the scope of the extended return statement
5486 while Present (Encl_Scop)
5487 and then Ekind (Encl_Scop) /= E_Return_Statement
5488 loop
5489 Encl_Scop := Scope (Encl_Scop);
5490 end loop;
5492 -- A return object should always be enclosed by a return statement
5493 -- scope at some level.
5495 pragma Assert (Present (Encl_Scop));
5497 Encl_List :=
5498 Make_Attribute_Reference (Loc,
5499 Prefix =>
5500 New_Reference_To (
5501 Finalization_Chain_Entity (Encl_Scop), Loc),
5502 Attribute_Name => Name_Unrestricted_Access);
5504 -- Generate a call to move final list
5506 Insert_After_And_Analyze (Obj_Decl,
5507 Make_Procedure_Call_Statement (Loc,
5508 Name =>
5509 New_Reference_To (RTE (RE_Move_Final_List), Loc),
5510 Parameter_Associations => New_List (Obj_List, Encl_List)));
5511 end;
5512 end if;
5513 end Make_Build_In_Place_Call_In_Assignment;
5515 ----------------------------------------------------
5516 -- Make_Build_In_Place_Call_In_Object_Declaration --
5517 ----------------------------------------------------
5519 procedure Make_Build_In_Place_Call_In_Object_Declaration
5520 (Object_Decl : Node_Id;
5521 Function_Call : Node_Id)
5523 Loc : Source_Ptr;
5524 Obj_Def_Id : constant Entity_Id :=
5525 Defining_Identifier (Object_Decl);
5527 Func_Call : Node_Id := Function_Call;
5528 Function_Id : Entity_Id;
5529 Result_Subt : Entity_Id;
5530 Caller_Object : Node_Id;
5531 Call_Deref : Node_Id;
5532 Ref_Type : Entity_Id;
5533 Ptr_Typ_Decl : Node_Id;
5534 Def_Id : Entity_Id;
5535 New_Expr : Node_Id;
5536 Enclosing_Func : Entity_Id;
5537 Pass_Caller_Acc : Boolean := False;
5539 begin
5540 -- Step past qualification or unchecked conversion (the latter can occur
5541 -- in cases of calls to 'Input).
5543 if Nkind_In (Func_Call, N_Qualified_Expression,
5544 N_Unchecked_Type_Conversion)
5545 then
5546 Func_Call := Expression (Func_Call);
5547 end if;
5549 -- If the call has already been processed to add build-in-place actuals
5550 -- then return. This should not normally occur in an object declaration,
5551 -- but we add the protection as a defensive measure.
5553 if Is_Expanded_Build_In_Place_Call (Func_Call) then
5554 return;
5555 end if;
5557 -- Mark the call as processed as a build-in-place call
5559 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5561 Loc := Sloc (Function_Call);
5563 if Is_Entity_Name (Name (Func_Call)) then
5564 Function_Id := Entity (Name (Func_Call));
5566 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5567 Function_Id := Etype (Name (Func_Call));
5569 else
5570 raise Program_Error;
5571 end if;
5573 Result_Subt := Etype (Function_Id);
5575 -- In the constrained case, add an implicit actual to the function call
5576 -- that provides access to the declared object. An unchecked conversion
5577 -- to the (specific) result type of the function is inserted to handle
5578 -- the case where the object is declared with a class-wide type.
5580 if Is_Constrained (Underlying_Type (Result_Subt)) then
5581 Caller_Object :=
5582 Make_Unchecked_Type_Conversion (Loc,
5583 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
5584 Expression => New_Reference_To (Obj_Def_Id, Loc));
5586 -- When the function has a controlling result, an allocation-form
5587 -- parameter must be passed indicating that the caller is allocating
5588 -- the result object. This is needed because such a function can be
5589 -- called as a dispatching operation and must be treated similarly
5590 -- to functions with unconstrained result subtypes.
5592 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5593 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5595 -- If the function's result subtype is unconstrained and the object is
5596 -- a return object of an enclosing build-in-place function, then the
5597 -- implicit build-in-place parameters of the enclosing function must be
5598 -- passed along to the called function. (Unfortunately, this won't cover
5599 -- the case of extension aggregates where the ancestor part is a build-
5600 -- in-place unconstrained function call that should be passed along the
5601 -- caller's parameters. Currently those get mishandled by reassigning
5602 -- the result of the call to the aggregate return object, when the call
5603 -- result should really be directly built in place in the aggregate and
5604 -- not built in a temporary. ???)
5606 elsif Is_Return_Object (Defining_Identifier (Object_Decl)) then
5607 Pass_Caller_Acc := True;
5609 Enclosing_Func := Enclosing_Subprogram (Obj_Def_Id);
5611 -- If the enclosing function has a constrained result type, then
5612 -- caller allocation will be used.
5614 if Is_Constrained (Etype (Enclosing_Func)) then
5615 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5616 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5618 -- Otherwise, when the enclosing function has an unconstrained result
5619 -- type, the BIP_Alloc_Form formal of the enclosing function must be
5620 -- passed along to the callee.
5622 else
5623 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5624 (Func_Call,
5625 Function_Id,
5626 Alloc_Form_Exp =>
5627 New_Reference_To
5628 (Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
5629 Loc));
5630 end if;
5632 -- Retrieve the BIPacc formal from the enclosing function and convert
5633 -- it to the access type of the callee's BIP_Object_Access formal.
5635 Caller_Object :=
5636 Make_Unchecked_Type_Conversion (Loc,
5637 Subtype_Mark =>
5638 New_Reference_To
5639 (Etype
5640 (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
5641 Loc),
5642 Expression =>
5643 New_Reference_To
5644 (Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
5645 Loc));
5647 -- In other unconstrained cases, pass an indication to do the allocation
5648 -- on the secondary stack and set Caller_Object to Empty so that a null
5649 -- value will be passed for the caller's object address. A transient
5650 -- scope is established to ensure eventual cleanup of the result.
5652 else
5653 Add_Alloc_Form_Actual_To_Build_In_Place_Call
5654 (Func_Call,
5655 Function_Id,
5656 Alloc_Form => Secondary_Stack);
5657 Caller_Object := Empty;
5659 Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
5660 end if;
5662 Add_Final_List_Actual_To_Build_In_Place_Call
5663 (Func_Call, Function_Id, Acc_Type => Empty);
5665 if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
5666 and then Has_Task (Result_Subt)
5667 then
5668 Enclosing_Func := Enclosing_Subprogram (Obj_Def_Id);
5670 -- Here we're passing along the master that was passed in to this
5671 -- function.
5673 Add_Task_Actuals_To_Build_In_Place_Call
5674 (Func_Call, Function_Id,
5675 Master_Actual =>
5676 New_Reference_To
5677 (Build_In_Place_Formal (Enclosing_Func, BIP_Master), Loc));
5679 else
5680 Add_Task_Actuals_To_Build_In_Place_Call
5681 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
5682 end if;
5684 Add_Access_Actual_To_Build_In_Place_Call
5685 (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
5687 -- Create an access type designating the function's result subtype
5689 Ref_Type :=
5690 Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
5692 Ptr_Typ_Decl :=
5693 Make_Full_Type_Declaration (Loc,
5694 Defining_Identifier => Ref_Type,
5695 Type_Definition =>
5696 Make_Access_To_Object_Definition (Loc,
5697 All_Present => True,
5698 Subtype_Indication =>
5699 New_Reference_To (Result_Subt, Loc)));
5701 -- The access type and its accompanying object must be inserted after
5702 -- the object declaration in the constrained case, so that the function
5703 -- call can be passed access to the object. In the unconstrained case,
5704 -- the access type and object must be inserted before the object, since
5705 -- the object declaration is rewritten to be a renaming of a dereference
5706 -- of the access object.
5708 if Is_Constrained (Underlying_Type (Result_Subt)) then
5709 Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
5710 else
5711 Insert_Action (Object_Decl, Ptr_Typ_Decl);
5712 end if;
5714 -- Finally, create an access object initialized to a reference to the
5715 -- function call.
5717 Def_Id :=
5718 Make_Defining_Identifier (Loc,
5719 Chars => New_Internal_Name ('R'));
5720 Set_Etype (Def_Id, Ref_Type);
5722 New_Expr :=
5723 Make_Reference (Loc,
5724 Prefix => Relocate_Node (Func_Call));
5726 Insert_After_And_Analyze (Ptr_Typ_Decl,
5727 Make_Object_Declaration (Loc,
5728 Defining_Identifier => Def_Id,
5729 Object_Definition => New_Reference_To (Ref_Type, Loc),
5730 Expression => New_Expr));
5732 if Is_Constrained (Underlying_Type (Result_Subt)) then
5733 Set_Expression (Object_Decl, Empty);
5734 Set_No_Initialization (Object_Decl);
5736 -- In case of an unconstrained result subtype, rewrite the object
5737 -- declaration as an object renaming where the renamed object is a
5738 -- dereference of <function_Call>'reference:
5740 -- Obj : Subt renames <function_call>'Ref.all;
5742 else
5743 Call_Deref :=
5744 Make_Explicit_Dereference (Loc,
5745 Prefix => New_Reference_To (Def_Id, Loc));
5747 Rewrite (Object_Decl,
5748 Make_Object_Renaming_Declaration (Loc,
5749 Defining_Identifier => Make_Defining_Identifier (Loc,
5750 New_Internal_Name ('D')),
5751 Access_Definition => Empty,
5752 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
5753 Name => Call_Deref));
5755 Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
5757 Analyze (Object_Decl);
5759 -- Replace the internal identifier of the renaming declaration's
5760 -- entity with identifier of the original object entity. We also have
5761 -- to exchange the entities containing their defining identifiers to
5762 -- ensure the correct replacement of the object declaration by the
5763 -- object renaming declaration to avoid homograph conflicts (since
5764 -- the object declaration's defining identifier was already entered
5765 -- in current scope). The Next_Entity links of the two entities also
5766 -- have to be swapped since the entities are part of the return
5767 -- scope's entity list and the list structure would otherwise be
5768 -- corrupted. Finally, the homonym chain must be preserved as well.
5770 declare
5771 Renaming_Def_Id : constant Entity_Id :=
5772 Defining_Identifier (Object_Decl);
5773 Next_Entity_Temp : constant Entity_Id :=
5774 Next_Entity (Renaming_Def_Id);
5775 begin
5776 Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
5778 -- Swap next entity links in preparation for exchanging entities
5780 Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
5781 Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
5782 Set_Homonym (Renaming_Def_Id, Homonym (Obj_Def_Id));
5784 Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
5785 end;
5786 end if;
5788 -- If the object entity has a class-wide Etype, then we need to change
5789 -- it to the result subtype of the function call, because otherwise the
5790 -- object will be class-wide without an explicit initialization and
5791 -- won't be allocated properly by the back end. It seems unclean to make
5792 -- such a revision to the type at this point, and we should try to
5793 -- improve this treatment when build-in-place functions with class-wide
5794 -- results are implemented. ???
5796 if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
5797 Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
5798 end if;
5799 end Make_Build_In_Place_Call_In_Object_Declaration;
5801 --------------------------
5802 -- Needs_BIP_Final_List --
5803 --------------------------
5805 function Needs_BIP_Final_List (E : Entity_Id) return Boolean is
5806 pragma Assert (Is_Build_In_Place_Function (E));
5807 Result_Subt : constant Entity_Id := Underlying_Type (Etype (E));
5809 begin
5810 -- We need the BIP_Final_List if the result type needs finalization. We
5811 -- also need it for tagged types, even if not class-wide, because some
5812 -- type extension might need finalization, and all overriding functions
5813 -- must have the same calling conventions. However, if there is a
5814 -- pragma Restrictions (No_Finalization), we never need this parameter.
5816 return (Needs_Finalization (Result_Subt)
5817 or else Is_Tagged_Type (Underlying_Type (Result_Subt)))
5818 and then not Restriction_Active (No_Finalization);
5819 end Needs_BIP_Final_List;
5821 end Exp_Ch6;