Daily bump.
[official-gcc.git] / gcc / ada / freeze.adb
blobf977e7a0e02471202d793788c884a43882cb4bd7
1 -----------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Pakd; use Exp_Pakd;
34 with Exp_Util; use Exp_Util;
35 with Exp_Tss; use Exp_Tss;
36 with Layout; use Layout;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Cat; use Sem_Cat;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Ch7; use Sem_Ch7;
48 with Sem_Ch8; use Sem_Ch8;
49 with Sem_Ch13; use Sem_Ch13;
50 with Sem_Eval; use Sem_Eval;
51 with Sem_Mech; use Sem_Mech;
52 with Sem_Prag; use Sem_Prag;
53 with Sem_Res; use Sem_Res;
54 with Sem_Util; use Sem_Util;
55 with Sinfo; use Sinfo;
56 with Snames; use Snames;
57 with Stand; use Stand;
58 with Targparm; use Targparm;
59 with Tbuild; use Tbuild;
60 with Ttypes; use Ttypes;
61 with Uintp; use Uintp;
62 with Urealp; use Urealp;
64 package body Freeze is
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
70 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
71 -- Typ is a type that is being frozen. If no size clause is given,
72 -- but a default Esize has been computed, then this default Esize is
73 -- adjusted up if necessary to be consistent with a given alignment,
74 -- but never to a value greater than Long_Long_Integer'Size. This
75 -- is used for all discrete types and for fixed-point types.
77 procedure Build_And_Analyze_Renamed_Body
78 (Decl : Node_Id;
79 New_S : Entity_Id;
80 After : in out Node_Id);
81 -- Build body for a renaming declaration, insert in tree and analyze
83 procedure Check_Address_Clause (E : Entity_Id);
84 -- Apply legality checks to address clauses for object declarations,
85 -- at the point the object is frozen.
87 procedure Check_Strict_Alignment (E : Entity_Id);
88 -- E is a base type. If E is tagged or has a component that is aliased
89 -- or tagged or contains something this is aliased or tagged, set
90 -- Strict_Alignment.
92 procedure Check_Unsigned_Type (E : Entity_Id);
93 pragma Inline (Check_Unsigned_Type);
94 -- If E is a fixed-point or discrete type, then all the necessary work
95 -- to freeze it is completed except for possible setting of the flag
96 -- Is_Unsigned_Type, which is done by this procedure. The call has no
97 -- effect if the entity E is not a discrete or fixed-point type.
99 procedure Freeze_And_Append
100 (Ent : Entity_Id;
101 Loc : Source_Ptr;
102 Result : in out List_Id);
103 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
104 -- nodes to Result, modifying Result from No_List if necessary.
106 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
107 -- Freeze enumeration type. The Esize field is set as processing
108 -- proceeds (i.e. set by default when the type is declared and then
109 -- adjusted by rep clauses. What this procedure does is to make sure
110 -- that if a foreign convention is specified, and no specific size
111 -- is given, then the size must be at least Integer'Size.
113 procedure Freeze_Static_Object (E : Entity_Id);
114 -- If an object is frozen which has Is_Statically_Allocated set, then
115 -- all referenced types must also be marked with this flag. This routine
116 -- is in charge of meeting this requirement for the object entity E.
118 procedure Freeze_Subprogram (E : Entity_Id);
119 -- Perform freezing actions for a subprogram (create extra formals,
120 -- and set proper default mechanism values). Note that this routine
121 -- is not called for internal subprograms, for which neither of these
122 -- actions is needed (or desirable, we do not want for example to have
123 -- these extra formals present in initialization procedures, where they
124 -- would serve no purpose). In this call E is either a subprogram or
125 -- a subprogram type (i.e. an access to a subprogram).
127 function Is_Fully_Defined (T : Entity_Id) return Boolean;
128 -- True if T is not private and has no private components, or has a full
129 -- view. Used to determine whether the designated type of an access type
130 -- should be frozen when the access type is frozen. This is done when an
131 -- allocator is frozen, or an expression that may involve attributes of
132 -- the designated type. Otherwise freezing the access type does not freeze
133 -- the designated type.
135 procedure Process_Default_Expressions
136 (E : Entity_Id;
137 After : in out Node_Id);
138 -- This procedure is called for each subprogram to complete processing
139 -- of default expressions at the point where all types are known to be
140 -- frozen. The expressions must be analyzed in full, to make sure that
141 -- all error processing is done (they have only been pre-analyzed). If
142 -- the expression is not an entity or literal, its analysis may generate
143 -- code which must not be executed. In that case we build a function
144 -- body to hold that code. This wrapper function serves no other purpose
145 -- (it used to be called to evaluate the default, but now the default is
146 -- inlined at each point of call).
148 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
149 -- Typ is a record or array type that is being frozen. This routine
150 -- sets the default component alignment from the scope stack values
151 -- if the alignment is otherwise not specified.
153 procedure Check_Debug_Info_Needed (T : Entity_Id);
154 -- As each entity is frozen, this routine is called to deal with the
155 -- setting of Debug_Info_Needed for the entity. This flag is set if
156 -- the entity comes from source, or if we are in Debug_Generated_Code
157 -- mode or if the -gnatdV debug flag is set. However, it never sets
158 -- the flag if Debug_Info_Off is set.
160 procedure Set_Debug_Info_Needed (T : Entity_Id);
161 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
162 -- also on any entities that are needed by T (for an object, the type
163 -- of the object is needed, and for a type, the subsidiary types are
164 -- needed -- see body for details). Never has any effect on T if the
165 -- Debug_Info_Off flag is set.
167 procedure Undelay_Type (T : Entity_Id);
168 -- T is a type of a component that we know to be an Itype.
169 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
170 -- Do the same for any Full_View or Corresponding_Record_Type.
172 procedure Warn_Overlay
173 (Expr : Node_Id;
174 Typ : Entity_Id;
175 Nam : Node_Id);
176 -- Expr is the expression for an address clause for entity Nam whose type
177 -- is Typ. If Typ has a default initialization, and there is no explicit
178 -- initialization in the source declaration, check whether the address
179 -- clause might cause overlaying of an entity, and emit a warning on the
180 -- side effect that the initialization will cause.
182 -------------------------------
183 -- Adjust_Esize_For_Alignment --
184 -------------------------------
186 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
187 Align : Uint;
189 begin
190 if Known_Esize (Typ) and then Known_Alignment (Typ) then
191 Align := Alignment_In_Bits (Typ);
193 if Align > Esize (Typ)
194 and then Align <= Standard_Long_Long_Integer_Size
195 then
196 Set_Esize (Typ, Align);
197 end if;
198 end if;
199 end Adjust_Esize_For_Alignment;
201 ------------------------------------
202 -- Build_And_Analyze_Renamed_Body --
203 ------------------------------------
205 procedure Build_And_Analyze_Renamed_Body
206 (Decl : Node_Id;
207 New_S : Entity_Id;
208 After : in out Node_Id)
210 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
211 begin
212 Insert_After (After, Body_Node);
213 Mark_Rewrite_Insertion (Body_Node);
214 Analyze (Body_Node);
215 After := Body_Node;
216 end Build_And_Analyze_Renamed_Body;
218 ------------------------
219 -- Build_Renamed_Body --
220 ------------------------
222 function Build_Renamed_Body
223 (Decl : Node_Id;
224 New_S : Entity_Id) return Node_Id
226 Loc : constant Source_Ptr := Sloc (New_S);
227 -- We use for the source location of the renamed body, the location
228 -- of the spec entity. It might seem more natural to use the location
229 -- of the renaming declaration itself, but that would be wrong, since
230 -- then the body we create would look as though it was created far
231 -- too late, and this could cause problems with elaboration order
232 -- analysis, particularly in connection with instantiations.
234 N : constant Node_Id := Unit_Declaration_Node (New_S);
235 Nam : constant Node_Id := Name (N);
236 Old_S : Entity_Id;
237 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
238 Actuals : List_Id := No_List;
239 Call_Node : Node_Id;
240 Call_Name : Node_Id;
241 Body_Node : Node_Id;
242 Formal : Entity_Id;
243 O_Formal : Entity_Id;
244 Param_Spec : Node_Id;
246 Pref : Node_Id := Empty;
247 -- If the renamed entity is a primitive operation given in prefix form,
248 -- the prefix is the target object and it has to be added as the first
249 -- actual in the generated call.
251 begin
252 -- Determine the entity being renamed, which is the target of the call
253 -- statement. If the name is an explicit dereference, this is a renaming
254 -- of a subprogram type rather than a subprogram. The name itself is
255 -- fully analyzed.
257 if Nkind (Nam) = N_Selected_Component then
258 Old_S := Entity (Selector_Name (Nam));
260 elsif Nkind (Nam) = N_Explicit_Dereference then
261 Old_S := Etype (Nam);
263 elsif Nkind (Nam) = N_Indexed_Component then
264 if Is_Entity_Name (Prefix (Nam)) then
265 Old_S := Entity (Prefix (Nam));
266 else
267 Old_S := Entity (Selector_Name (Prefix (Nam)));
268 end if;
270 elsif Nkind (Nam) = N_Character_Literal then
271 Old_S := Etype (New_S);
273 else
274 Old_S := Entity (Nam);
275 end if;
277 if Is_Entity_Name (Nam) then
279 -- If the renamed entity is a predefined operator, retain full name
280 -- to ensure its visibility.
282 if Ekind (Old_S) = E_Operator
283 and then Nkind (Nam) = N_Expanded_Name
284 then
285 Call_Name := New_Copy (Name (N));
286 else
287 Call_Name := New_Reference_To (Old_S, Loc);
288 end if;
290 else
291 if Nkind (Nam) = N_Selected_Component
292 and then Present (First_Formal (Old_S))
293 and then
294 (Is_Controlling_Formal (First_Formal (Old_S))
295 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
296 then
298 -- Retrieve the target object, to be added as a first actual
299 -- in the call.
301 Call_Name := New_Occurrence_Of (Old_S, Loc);
302 Pref := Prefix (Nam);
304 else
305 Call_Name := New_Copy (Name (N));
306 end if;
308 -- The original name may have been overloaded, but
309 -- is fully resolved now.
311 Set_Is_Overloaded (Call_Name, False);
312 end if;
314 -- For simple renamings, subsequent calls can be expanded directly as
315 -- called to the renamed entity. The body must be generated in any case
316 -- for calls they may appear elsewhere.
318 if (Ekind (Old_S) = E_Function
319 or else Ekind (Old_S) = E_Procedure)
320 and then Nkind (Decl) = N_Subprogram_Declaration
321 then
322 Set_Body_To_Inline (Decl, Old_S);
323 end if;
325 -- The body generated for this renaming is an internal artifact, and
326 -- does not constitute a freeze point for the called entity.
328 Set_Must_Not_Freeze (Call_Name);
330 Formal := First_Formal (Defining_Entity (Decl));
332 if Present (Pref) then
333 declare
334 Pref_Type : constant Entity_Id := Etype (Pref);
335 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
337 begin
339 -- The controlling formal may be an access parameter, or the
340 -- actual may be an access value, so ajust accordingly.
342 if Is_Access_Type (Pref_Type)
343 and then not Is_Access_Type (Form_Type)
344 then
345 Actuals := New_List
346 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
348 elsif Is_Access_Type (Form_Type)
349 and then not Is_Access_Type (Pref)
350 then
351 Actuals := New_List
352 (Make_Attribute_Reference (Loc,
353 Attribute_Name => Name_Access,
354 Prefix => Relocate_Node (Pref)));
355 else
356 Actuals := New_List (Pref);
357 end if;
358 end;
360 elsif Present (Formal) then
361 Actuals := New_List;
363 else
364 Actuals := No_List;
365 end if;
367 if Present (Formal) then
368 while Present (Formal) loop
369 Append (New_Reference_To (Formal, Loc), Actuals);
370 Next_Formal (Formal);
371 end loop;
372 end if;
374 -- If the renamed entity is an entry, inherit its profile. For other
375 -- renamings as bodies, both profiles must be subtype conformant, so it
376 -- is not necessary to replace the profile given in the declaration.
377 -- However, default values that are aggregates are rewritten when
378 -- partially analyzed, so we recover the original aggregate to insure
379 -- that subsequent conformity checking works. Similarly, if the default
380 -- expression was constant-folded, recover the original expression.
382 Formal := First_Formal (Defining_Entity (Decl));
384 if Present (Formal) then
385 O_Formal := First_Formal (Old_S);
386 Param_Spec := First (Parameter_Specifications (Spec));
388 while Present (Formal) loop
389 if Is_Entry (Old_S) then
391 if Nkind (Parameter_Type (Param_Spec)) /=
392 N_Access_Definition
393 then
394 Set_Etype (Formal, Etype (O_Formal));
395 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
396 end if;
398 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
399 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
400 Nkind (Default_Value (O_Formal))
401 then
402 Set_Expression (Param_Spec,
403 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
404 end if;
406 Next_Formal (Formal);
407 Next_Formal (O_Formal);
408 Next (Param_Spec);
409 end loop;
410 end if;
412 -- If the renamed entity is a function, the generated body contains a
413 -- return statement. Otherwise, build a procedure call. If the entity is
414 -- an entry, subsequent analysis of the call will transform it into the
415 -- proper entry or protected operation call. If the renamed entity is
416 -- a character literal, return it directly.
418 if Ekind (Old_S) = E_Function
419 or else Ekind (Old_S) = E_Operator
420 or else (Ekind (Old_S) = E_Subprogram_Type
421 and then Etype (Old_S) /= Standard_Void_Type)
422 then
423 Call_Node :=
424 Make_Simple_Return_Statement (Loc,
425 Expression =>
426 Make_Function_Call (Loc,
427 Name => Call_Name,
428 Parameter_Associations => Actuals));
430 elsif Ekind (Old_S) = E_Enumeration_Literal then
431 Call_Node :=
432 Make_Simple_Return_Statement (Loc,
433 Expression => New_Occurrence_Of (Old_S, Loc));
435 elsif Nkind (Nam) = N_Character_Literal then
436 Call_Node :=
437 Make_Simple_Return_Statement (Loc,
438 Expression => Call_Name);
440 else
441 Call_Node :=
442 Make_Procedure_Call_Statement (Loc,
443 Name => Call_Name,
444 Parameter_Associations => Actuals);
445 end if;
447 -- Create entities for subprogram body and formals
449 Set_Defining_Unit_Name (Spec,
450 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
452 Param_Spec := First (Parameter_Specifications (Spec));
454 while Present (Param_Spec) loop
455 Set_Defining_Identifier (Param_Spec,
456 Make_Defining_Identifier (Loc,
457 Chars => Chars (Defining_Identifier (Param_Spec))));
458 Next (Param_Spec);
459 end loop;
461 Body_Node :=
462 Make_Subprogram_Body (Loc,
463 Specification => Spec,
464 Declarations => New_List,
465 Handled_Statement_Sequence =>
466 Make_Handled_Sequence_Of_Statements (Loc,
467 Statements => New_List (Call_Node)));
469 if Nkind (Decl) /= N_Subprogram_Declaration then
470 Rewrite (N,
471 Make_Subprogram_Declaration (Loc,
472 Specification => Specification (N)));
473 end if;
475 -- Link the body to the entity whose declaration it completes. If
476 -- the body is analyzed when the renamed entity is frozen, it may
477 -- be necessary to restore the proper scope (see package Exp_Ch13).
479 if Nkind (N) = N_Subprogram_Renaming_Declaration
480 and then Present (Corresponding_Spec (N))
481 then
482 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
483 else
484 Set_Corresponding_Spec (Body_Node, New_S);
485 end if;
487 return Body_Node;
488 end Build_Renamed_Body;
490 --------------------------
491 -- Check_Address_Clause --
492 --------------------------
494 procedure Check_Address_Clause (E : Entity_Id) is
495 Addr : constant Node_Id := Address_Clause (E);
496 Expr : Node_Id;
497 Decl : constant Node_Id := Declaration_Node (E);
498 Typ : constant Entity_Id := Etype (E);
500 begin
501 if Present (Addr) then
502 Expr := Expression (Addr);
504 -- If we have no initialization of any kind, then we don't need to
505 -- place any restrictions on the address clause, because the object
506 -- will be elaborated after the address clause is evaluated. This
507 -- happens if the declaration has no initial expression, or the type
508 -- has no implicit initialization, or the object is imported.
510 -- The same holds for all initialized scalar types and all access
511 -- types. Packed bit arrays of size up to 64 are represented using a
512 -- modular type with an initialization (to zero) and can be processed
513 -- like other initialized scalar types.
515 -- If the type is controlled, code to attach the object to a
516 -- finalization chain is generated at the point of declaration,
517 -- and therefore the elaboration of the object cannot be delayed:
518 -- the address expression must be a constant.
520 if (No (Expression (Decl))
521 and then not Controlled_Type (Typ)
522 and then
523 (not Has_Non_Null_Base_Init_Proc (Typ)
524 or else Is_Imported (E)))
526 or else
527 (Present (Expression (Decl))
528 and then Is_Scalar_Type (Typ))
530 or else
531 Is_Access_Type (Typ)
533 or else
534 (Is_Bit_Packed_Array (Typ)
535 and then
536 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
537 then
538 null;
540 -- Otherwise, we require the address clause to be constant because
541 -- the call to the initialization procedure (or the attach code) has
542 -- to happen at the point of the declaration.
544 else
545 Check_Constant_Address_Clause (Expr, E);
546 Set_Has_Delayed_Freeze (E, False);
547 end if;
549 if not Error_Posted (Expr)
550 and then not Controlled_Type (Typ)
551 then
552 Warn_Overlay (Expr, Typ, Name (Addr));
553 end if;
554 end if;
555 end Check_Address_Clause;
557 -----------------------------
558 -- Check_Compile_Time_Size --
559 -----------------------------
561 procedure Check_Compile_Time_Size (T : Entity_Id) is
563 procedure Set_Small_Size (T : Entity_Id; S : Uint);
564 -- Sets the compile time known size (32 bits or less) in the Esize
565 -- field, of T checking for a size clause that was given which attempts
566 -- to give a smaller size.
568 function Size_Known (T : Entity_Id) return Boolean;
569 -- Recursive function that does all the work
571 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
572 -- If T is a constrained subtype, its size is not known if any of its
573 -- discriminant constraints is not static and it is not a null record.
574 -- The test is conservative and doesn't check that the components are
575 -- in fact constrained by non-static discriminant values. Could be made
576 -- more precise ???
578 --------------------
579 -- Set_Small_Size --
580 --------------------
582 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
583 begin
584 if S > 32 then
585 return;
587 elsif Has_Size_Clause (T) then
588 if RM_Size (T) < S then
589 Error_Msg_Uint_1 := S;
590 Error_Msg_NE
591 ("size for & too small, minimum allowed is ^",
592 Size_Clause (T), T);
594 elsif Unknown_Esize (T) then
595 Set_Esize (T, S);
596 end if;
598 -- Set sizes if not set already
600 else
601 if Unknown_Esize (T) then
602 Set_Esize (T, S);
603 end if;
605 if Unknown_RM_Size (T) then
606 Set_RM_Size (T, S);
607 end if;
608 end if;
609 end Set_Small_Size;
611 ----------------
612 -- Size_Known --
613 ----------------
615 function Size_Known (T : Entity_Id) return Boolean is
616 Index : Entity_Id;
617 Comp : Entity_Id;
618 Ctyp : Entity_Id;
619 Low : Node_Id;
620 High : Node_Id;
622 begin
623 if Size_Known_At_Compile_Time (T) then
624 return True;
626 elsif Is_Scalar_Type (T)
627 or else Is_Task_Type (T)
628 then
629 return not Is_Generic_Type (T);
631 elsif Is_Array_Type (T) then
632 if Ekind (T) = E_String_Literal_Subtype then
633 Set_Small_Size (T, Component_Size (T)
634 * String_Literal_Length (T));
635 return True;
637 elsif not Is_Constrained (T) then
638 return False;
640 -- Don't do any recursion on type with error posted, since we may
641 -- have a malformed type that leads us into a loop.
643 elsif Error_Posted (T) then
644 return False;
646 elsif not Size_Known (Component_Type (T)) then
647 return False;
648 end if;
650 -- Check for all indexes static, and also compute possible size
651 -- (in case it is less than 32 and may be packable).
653 declare
654 Esiz : Uint := Component_Size (T);
655 Dim : Uint;
657 begin
658 Index := First_Index (T);
659 while Present (Index) loop
660 if Nkind (Index) = N_Range then
661 Get_Index_Bounds (Index, Low, High);
663 elsif Error_Posted (Scalar_Range (Etype (Index))) then
664 return False;
666 else
667 Low := Type_Low_Bound (Etype (Index));
668 High := Type_High_Bound (Etype (Index));
669 end if;
671 if not Compile_Time_Known_Value (Low)
672 or else not Compile_Time_Known_Value (High)
673 or else Etype (Index) = Any_Type
674 then
675 return False;
677 else
678 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
680 if Dim >= 0 then
681 Esiz := Esiz * Dim;
682 else
683 Esiz := Uint_0;
684 end if;
685 end if;
687 Next_Index (Index);
688 end loop;
690 Set_Small_Size (T, Esiz);
691 return True;
692 end;
694 elsif Is_Access_Type (T) then
695 return True;
697 elsif Is_Private_Type (T)
698 and then not Is_Generic_Type (T)
699 and then Present (Underlying_Type (T))
700 then
701 -- Don't do any recursion on type with error posted, since we may
702 -- have a malformed type that leads us into a loop.
704 if Error_Posted (T) then
705 return False;
706 else
707 return Size_Known (Underlying_Type (T));
708 end if;
710 elsif Is_Record_Type (T) then
712 -- A class-wide type is never considered to have a known size
714 if Is_Class_Wide_Type (T) then
715 return False;
717 -- A subtype of a variant record must not have non-static
718 -- discriminanted components.
720 elsif T /= Base_Type (T)
721 and then not Static_Discriminated_Components (T)
722 then
723 return False;
725 -- Don't do any recursion on type with error posted, since we may
726 -- have a malformed type that leads us into a loop.
728 elsif Error_Posted (T) then
729 return False;
730 end if;
732 -- Now look at the components of the record
734 declare
735 -- The following two variables are used to keep track of the
736 -- size of packed records if we can tell the size of the packed
737 -- record in the front end. Packed_Size_Known is True if so far
738 -- we can figure out the size. It is initialized to True for a
739 -- packed record, unless the record has discriminants. The
740 -- reason we eliminate the discriminated case is that we don't
741 -- know the way the back end lays out discriminated packed
742 -- records. If Packed_Size_Known is True, then Packed_Size is
743 -- the size in bits so far.
745 Packed_Size_Known : Boolean :=
746 Is_Packed (T)
747 and then not Has_Discriminants (T);
749 Packed_Size : Uint := Uint_0;
751 begin
752 -- Test for variant part present
754 if Has_Discriminants (T)
755 and then Present (Parent (T))
756 and then Nkind (Parent (T)) = N_Full_Type_Declaration
757 and then Nkind (Type_Definition (Parent (T))) =
758 N_Record_Definition
759 and then not Null_Present (Type_Definition (Parent (T)))
760 and then Present (Variant_Part
761 (Component_List (Type_Definition (Parent (T)))))
762 then
763 -- If variant part is present, and type is unconstrained,
764 -- then we must have defaulted discriminants, or a size
765 -- clause must be present for the type, or else the size
766 -- is definitely not known at compile time.
768 if not Is_Constrained (T)
769 and then
770 No (Discriminant_Default_Value
771 (First_Discriminant (T)))
772 and then Unknown_Esize (T)
773 then
774 return False;
775 end if;
776 end if;
778 -- Loop through components
780 Comp := First_Component_Or_Discriminant (T);
781 while Present (Comp) loop
782 Ctyp := Etype (Comp);
784 -- We do not know the packed size if there is a component
785 -- clause present (we possibly could, but this would only
786 -- help in the case of a record with partial rep clauses.
787 -- That's because in the case of full rep clauses, the
788 -- size gets figured out anyway by a different circuit).
790 if Present (Component_Clause (Comp)) then
791 Packed_Size_Known := False;
792 end if;
794 -- We need to identify a component that is an array where
795 -- the index type is an enumeration type with non-standard
796 -- representation, and some bound of the type depends on a
797 -- discriminant.
799 -- This is because gigi computes the size by doing a
800 -- substituation of the appropriate discriminant value in
801 -- the size expression for the base type, and gigi is not
802 -- clever enough to evaluate the resulting expression (which
803 -- involves a call to rep_to_pos) at compile time.
805 -- It would be nice if gigi would either recognize that
806 -- this expression can be computed at compile time, or
807 -- alternatively figured out the size from the subtype
808 -- directly, where all the information is at hand ???
810 if Is_Array_Type (Etype (Comp))
811 and then Present (Packed_Array_Type (Etype (Comp)))
812 then
813 declare
814 Ocomp : constant Entity_Id :=
815 Original_Record_Component (Comp);
816 OCtyp : constant Entity_Id := Etype (Ocomp);
817 Ind : Node_Id;
818 Indtyp : Entity_Id;
819 Lo, Hi : Node_Id;
821 begin
822 Ind := First_Index (OCtyp);
823 while Present (Ind) loop
824 Indtyp := Etype (Ind);
826 if Is_Enumeration_Type (Indtyp)
827 and then Has_Non_Standard_Rep (Indtyp)
828 then
829 Lo := Type_Low_Bound (Indtyp);
830 Hi := Type_High_Bound (Indtyp);
832 if Is_Entity_Name (Lo)
833 and then Ekind (Entity (Lo)) = E_Discriminant
834 then
835 return False;
837 elsif Is_Entity_Name (Hi)
838 and then Ekind (Entity (Hi)) = E_Discriminant
839 then
840 return False;
841 end if;
842 end if;
844 Next_Index (Ind);
845 end loop;
846 end;
847 end if;
849 -- Clearly size of record is not known if the size of one of
850 -- the components is not known.
852 if not Size_Known (Ctyp) then
853 return False;
854 end if;
856 -- Accumulate packed size if possible
858 if Packed_Size_Known then
860 -- We can only deal with elementary types, since for
861 -- non-elementary components, alignment enters into the
862 -- picture, and we don't know enough to handle proper
863 -- alignment in this context. Packed arrays count as
864 -- elementary if the representation is a modular type.
866 if Is_Elementary_Type (Ctyp)
867 or else (Is_Array_Type (Ctyp)
868 and then Present (Packed_Array_Type (Ctyp))
869 and then Is_Modular_Integer_Type
870 (Packed_Array_Type (Ctyp)))
871 then
872 -- If RM_Size is known and static, then we can
873 -- keep accumulating the packed size.
875 if Known_Static_RM_Size (Ctyp) then
877 -- A little glitch, to be removed sometime ???
878 -- gigi does not understand zero sizes yet.
880 if RM_Size (Ctyp) = Uint_0 then
881 Packed_Size_Known := False;
883 -- Normal case where we can keep accumulating the
884 -- packed array size.
886 else
887 Packed_Size := Packed_Size + RM_Size (Ctyp);
888 end if;
890 -- If we have a field whose RM_Size is not known then
891 -- we can't figure out the packed size here.
893 else
894 Packed_Size_Known := False;
895 end if;
897 -- If we have a non-elementary type we can't figure out
898 -- the packed array size (alignment issues).
900 else
901 Packed_Size_Known := False;
902 end if;
903 end if;
905 Next_Component_Or_Discriminant (Comp);
906 end loop;
908 if Packed_Size_Known then
909 Set_Small_Size (T, Packed_Size);
910 end if;
912 return True;
913 end;
915 else
916 return False;
917 end if;
918 end Size_Known;
920 -------------------------------------
921 -- Static_Discriminated_Components --
922 -------------------------------------
924 function Static_Discriminated_Components
925 (T : Entity_Id) return Boolean
927 Constraint : Elmt_Id;
929 begin
930 if Has_Discriminants (T)
931 and then Present (Discriminant_Constraint (T))
932 and then Present (First_Component (T))
933 then
934 Constraint := First_Elmt (Discriminant_Constraint (T));
935 while Present (Constraint) loop
936 if not Compile_Time_Known_Value (Node (Constraint)) then
937 return False;
938 end if;
940 Next_Elmt (Constraint);
941 end loop;
942 end if;
944 return True;
945 end Static_Discriminated_Components;
947 -- Start of processing for Check_Compile_Time_Size
949 begin
950 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
951 end Check_Compile_Time_Size;
953 -----------------------------
954 -- Check_Debug_Info_Needed --
955 -----------------------------
957 procedure Check_Debug_Info_Needed (T : Entity_Id) is
958 begin
959 if Needs_Debug_Info (T) or else Debug_Info_Off (T) then
960 return;
962 elsif Comes_From_Source (T)
963 or else Debug_Generated_Code
964 or else Debug_Flag_VV
965 then
966 Set_Debug_Info_Needed (T);
967 end if;
968 end Check_Debug_Info_Needed;
970 ----------------------------
971 -- Check_Strict_Alignment --
972 ----------------------------
974 procedure Check_Strict_Alignment (E : Entity_Id) is
975 Comp : Entity_Id;
977 begin
978 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
979 Set_Strict_Alignment (E);
981 elsif Is_Array_Type (E) then
982 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
984 elsif Is_Record_Type (E) then
985 if Is_Limited_Record (E) then
986 Set_Strict_Alignment (E);
987 return;
988 end if;
990 Comp := First_Component (E);
992 while Present (Comp) loop
993 if not Is_Type (Comp)
994 and then (Strict_Alignment (Etype (Comp))
995 or else Is_Aliased (Comp))
996 then
997 Set_Strict_Alignment (E);
998 return;
999 end if;
1001 Next_Component (Comp);
1002 end loop;
1003 end if;
1004 end Check_Strict_Alignment;
1006 -------------------------
1007 -- Check_Unsigned_Type --
1008 -------------------------
1010 procedure Check_Unsigned_Type (E : Entity_Id) is
1011 Ancestor : Entity_Id;
1012 Lo_Bound : Node_Id;
1013 Btyp : Entity_Id;
1015 begin
1016 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1017 return;
1018 end if;
1020 -- Do not attempt to analyze case where range was in error
1022 if Error_Posted (Scalar_Range (E)) then
1023 return;
1024 end if;
1026 -- The situation that is non trivial is something like
1028 -- subtype x1 is integer range -10 .. +10;
1029 -- subtype x2 is x1 range 0 .. V1;
1030 -- subtype x3 is x2 range V2 .. V3;
1031 -- subtype x4 is x3 range V4 .. V5;
1033 -- where Vn are variables. Here the base type is signed, but we still
1034 -- know that x4 is unsigned because of the lower bound of x2.
1036 -- The only way to deal with this is to look up the ancestor chain
1038 Ancestor := E;
1039 loop
1040 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1041 return;
1042 end if;
1044 Lo_Bound := Type_Low_Bound (Ancestor);
1046 if Compile_Time_Known_Value (Lo_Bound) then
1048 if Expr_Rep_Value (Lo_Bound) >= 0 then
1049 Set_Is_Unsigned_Type (E, True);
1050 end if;
1052 return;
1054 else
1055 Ancestor := Ancestor_Subtype (Ancestor);
1057 -- If no ancestor had a static lower bound, go to base type
1059 if No (Ancestor) then
1061 -- Note: the reason we still check for a compile time known
1062 -- value for the base type is that at least in the case of
1063 -- generic formals, we can have bounds that fail this test,
1064 -- and there may be other cases in error situations.
1066 Btyp := Base_Type (E);
1068 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1069 return;
1070 end if;
1072 Lo_Bound := Type_Low_Bound (Base_Type (E));
1074 if Compile_Time_Known_Value (Lo_Bound)
1075 and then Expr_Rep_Value (Lo_Bound) >= 0
1076 then
1077 Set_Is_Unsigned_Type (E, True);
1078 end if;
1080 return;
1081 end if;
1082 end if;
1083 end loop;
1084 end Check_Unsigned_Type;
1086 -----------------------------
1087 -- Expand_Atomic_Aggregate --
1088 -----------------------------
1090 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1091 Loc : constant Source_Ptr := Sloc (E);
1092 New_N : Node_Id;
1093 Temp : Entity_Id;
1095 begin
1096 if (Nkind (Parent (E)) = N_Object_Declaration
1097 or else Nkind (Parent (E)) = N_Assignment_Statement)
1098 and then Comes_From_Source (Parent (E))
1099 and then Nkind (E) = N_Aggregate
1100 then
1101 Temp :=
1102 Make_Defining_Identifier (Loc,
1103 New_Internal_Name ('T'));
1105 New_N :=
1106 Make_Object_Declaration (Loc,
1107 Defining_Identifier => Temp,
1108 Object_definition => New_Occurrence_Of (Typ, Loc),
1109 Expression => Relocate_Node (E));
1110 Insert_Before (Parent (E), New_N);
1111 Analyze (New_N);
1113 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1115 -- To prevent the temporary from being constant-folded (which would
1116 -- lead to the same piecemeal assignment on the original target)
1117 -- indicate to the back-end that the temporary is a variable with
1118 -- real storage. See description of this flag in Einfo, and the notes
1119 -- on N_Assignment_Statement and N_Object_Declaration in Sinfo.
1121 Set_Is_True_Constant (Temp, False);
1122 end if;
1123 end Expand_Atomic_Aggregate;
1125 ----------------
1126 -- Freeze_All --
1127 ----------------
1129 -- Note: the easy coding for this procedure would be to just build a
1130 -- single list of freeze nodes and then insert them and analyze them
1131 -- all at once. This won't work, because the analysis of earlier freeze
1132 -- nodes may recursively freeze types which would otherwise appear later
1133 -- on in the freeze list. So we must analyze and expand the freeze nodes
1134 -- as they are generated.
1136 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1137 Loc : constant Source_Ptr := Sloc (After);
1138 E : Entity_Id;
1139 Decl : Node_Id;
1141 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1142 -- This is the internal recursive routine that does freezing of entities
1143 -- (but NOT the analysis of default expressions, which should not be
1144 -- recursive, we don't want to analyze those till we are sure that ALL
1145 -- the types are frozen).
1147 --------------------
1148 -- Freeze_All_Ent --
1149 --------------------
1151 procedure Freeze_All_Ent
1152 (From : Entity_Id;
1153 After : in out Node_Id)
1155 E : Entity_Id;
1156 Flist : List_Id;
1157 Lastn : Node_Id;
1159 procedure Process_Flist;
1160 -- If freeze nodes are present, insert and analyze, and reset cursor
1161 -- for next insertion.
1163 -------------------
1164 -- Process_Flist --
1165 -------------------
1167 procedure Process_Flist is
1168 begin
1169 if Is_Non_Empty_List (Flist) then
1170 Lastn := Next (After);
1171 Insert_List_After_And_Analyze (After, Flist);
1173 if Present (Lastn) then
1174 After := Prev (Lastn);
1175 else
1176 After := Last (List_Containing (After));
1177 end if;
1178 end if;
1179 end Process_Flist;
1181 -- Start or processing for Freeze_All_Ent
1183 begin
1184 E := From;
1185 while Present (E) loop
1187 -- If the entity is an inner package which is not a package
1188 -- renaming, then its entities must be frozen at this point. Note
1189 -- that such entities do NOT get frozen at the end of the nested
1190 -- package itself (only library packages freeze).
1192 -- Same is true for task declarations, where anonymous records
1193 -- created for entry parameters must be frozen.
1195 if Ekind (E) = E_Package
1196 and then No (Renamed_Object (E))
1197 and then not Is_Child_Unit (E)
1198 and then not Is_Frozen (E)
1199 then
1200 Push_Scope (E);
1201 Install_Visible_Declarations (E);
1202 Install_Private_Declarations (E);
1204 Freeze_All (First_Entity (E), After);
1206 End_Package_Scope (E);
1208 elsif Ekind (E) in Task_Kind
1209 and then
1210 (Nkind (Parent (E)) = N_Task_Type_Declaration
1211 or else
1212 Nkind (Parent (E)) = N_Single_Task_Declaration)
1213 then
1214 Push_Scope (E);
1215 Freeze_All (First_Entity (E), After);
1216 End_Scope;
1218 -- For a derived tagged type, we must ensure that all the
1219 -- primitive operations of the parent have been frozen, so that
1220 -- their addresses will be in the parent's dispatch table at the
1221 -- point it is inherited.
1223 elsif Ekind (E) = E_Record_Type
1224 and then Is_Tagged_Type (E)
1225 and then Is_Tagged_Type (Etype (E))
1226 and then Is_Derived_Type (E)
1227 then
1228 declare
1229 Prim_List : constant Elist_Id :=
1230 Primitive_Operations (Etype (E));
1232 Prim : Elmt_Id;
1233 Subp : Entity_Id;
1235 begin
1236 Prim := First_Elmt (Prim_List);
1238 while Present (Prim) loop
1239 Subp := Node (Prim);
1241 if Comes_From_Source (Subp)
1242 and then not Is_Frozen (Subp)
1243 then
1244 Flist := Freeze_Entity (Subp, Loc);
1245 Process_Flist;
1246 end if;
1248 Next_Elmt (Prim);
1249 end loop;
1250 end;
1251 end if;
1253 if not Is_Frozen (E) then
1254 Flist := Freeze_Entity (E, Loc);
1255 Process_Flist;
1256 end if;
1258 -- If an incomplete type is still not frozen, this may be a
1259 -- premature freezing because of a body declaration that follows.
1260 -- Indicate where the freezing took place.
1262 -- If the freezing is caused by the end of the current declarative
1263 -- part, it is a Taft Amendment type, and there is no error.
1265 if not Is_Frozen (E)
1266 and then Ekind (E) = E_Incomplete_Type
1267 then
1268 declare
1269 Bod : constant Node_Id := Next (After);
1271 begin
1272 if (Nkind (Bod) = N_Subprogram_Body
1273 or else Nkind (Bod) = N_Entry_Body
1274 or else Nkind (Bod) = N_Package_Body
1275 or else Nkind (Bod) = N_Protected_Body
1276 or else Nkind (Bod) = N_Task_Body
1277 or else Nkind (Bod) in N_Body_Stub)
1278 and then
1279 List_Containing (After) = List_Containing (Parent (E))
1280 then
1281 Error_Msg_Sloc := Sloc (Next (After));
1282 Error_Msg_NE
1283 ("type& is frozen# before its full declaration",
1284 Parent (E), E);
1285 end if;
1286 end;
1287 end if;
1289 Next_Entity (E);
1290 end loop;
1291 end Freeze_All_Ent;
1293 -- Start of processing for Freeze_All
1295 begin
1296 Freeze_All_Ent (From, After);
1298 -- Now that all types are frozen, we can deal with default expressions
1299 -- that require us to build a default expression functions. This is the
1300 -- point at which such functions are constructed (after all types that
1301 -- might be used in such expressions have been frozen).
1303 -- We also add finalization chains to access types whose designated
1304 -- types are controlled. This is normally done when freezing the type,
1305 -- but this misses recursive type definitions where the later members
1306 -- of the recursion introduce controlled components (e.g. 5624-001).
1308 -- Loop through entities
1310 E := From;
1311 while Present (E) loop
1312 if Is_Subprogram (E) then
1314 if not Default_Expressions_Processed (E) then
1315 Process_Default_Expressions (E, After);
1316 end if;
1318 if not Has_Completion (E) then
1319 Decl := Unit_Declaration_Node (E);
1321 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1322 Build_And_Analyze_Renamed_Body (Decl, E, After);
1324 elsif Nkind (Decl) = N_Subprogram_Declaration
1325 and then Present (Corresponding_Body (Decl))
1326 and then
1327 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1328 = N_Subprogram_Renaming_Declaration
1329 then
1330 Build_And_Analyze_Renamed_Body
1331 (Decl, Corresponding_Body (Decl), After);
1332 end if;
1333 end if;
1335 elsif Ekind (E) in Task_Kind
1336 and then
1337 (Nkind (Parent (E)) = N_Task_Type_Declaration
1338 or else
1339 Nkind (Parent (E)) = N_Single_Task_Declaration)
1340 then
1341 declare
1342 Ent : Entity_Id;
1343 begin
1344 Ent := First_Entity (E);
1346 while Present (Ent) loop
1348 if Is_Entry (Ent)
1349 and then not Default_Expressions_Processed (Ent)
1350 then
1351 Process_Default_Expressions (Ent, After);
1352 end if;
1354 Next_Entity (Ent);
1355 end loop;
1356 end;
1358 elsif Is_Access_Type (E)
1359 and then Comes_From_Source (E)
1360 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1361 and then Controlled_Type (Designated_Type (E))
1362 and then No (Associated_Final_Chain (E))
1363 then
1364 Build_Final_List (Parent (E), E);
1365 end if;
1367 Next_Entity (E);
1368 end loop;
1369 end Freeze_All;
1371 -----------------------
1372 -- Freeze_And_Append --
1373 -----------------------
1375 procedure Freeze_And_Append
1376 (Ent : Entity_Id;
1377 Loc : Source_Ptr;
1378 Result : in out List_Id)
1380 L : constant List_Id := Freeze_Entity (Ent, Loc);
1381 begin
1382 if Is_Non_Empty_List (L) then
1383 if Result = No_List then
1384 Result := L;
1385 else
1386 Append_List (L, Result);
1387 end if;
1388 end if;
1389 end Freeze_And_Append;
1391 -------------------
1392 -- Freeze_Before --
1393 -------------------
1395 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1396 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
1397 begin
1398 if Is_Non_Empty_List (Freeze_Nodes) then
1399 Insert_Actions (N, Freeze_Nodes);
1400 end if;
1401 end Freeze_Before;
1403 -------------------
1404 -- Freeze_Entity --
1405 -------------------
1407 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
1408 Test_E : Entity_Id := E;
1409 Comp : Entity_Id;
1410 F_Node : Node_Id;
1411 Result : List_Id;
1412 Indx : Node_Id;
1413 Formal : Entity_Id;
1414 Atype : Entity_Id;
1416 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1417 -- Check that an Access or Unchecked_Access attribute with a prefix
1418 -- which is the current instance type can only be applied when the type
1419 -- is limited.
1421 function After_Last_Declaration return Boolean;
1422 -- If Loc is a freeze_entity that appears after the last declaration
1423 -- in the scope, inhibit error messages on late completion.
1425 procedure Freeze_Record_Type (Rec : Entity_Id);
1426 -- Freeze each component, handle some representation clauses, and freeze
1427 -- primitive operations if this is a tagged type.
1429 ----------------------------
1430 -- After_Last_Declaration --
1431 ----------------------------
1433 function After_Last_Declaration return Boolean is
1434 Spec : constant Node_Id := Parent (Current_Scope);
1435 begin
1436 if Nkind (Spec) = N_Package_Specification then
1437 if Present (Private_Declarations (Spec)) then
1438 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1439 elsif Present (Visible_Declarations (Spec)) then
1440 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1441 else
1442 return False;
1443 end if;
1444 else
1445 return False;
1446 end if;
1447 end After_Last_Declaration;
1449 ----------------------------
1450 -- Check_Current_Instance --
1451 ----------------------------
1453 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1455 Rec_Type : constant Entity_Id :=
1456 Scope (Defining_Identifier (Comp_Decl));
1458 Decl : constant Node_Id := Parent (Rec_Type);
1460 function Process (N : Node_Id) return Traverse_Result;
1461 -- Process routine to apply check to given node
1463 -------------
1464 -- Process --
1465 -------------
1467 function Process (N : Node_Id) return Traverse_Result is
1468 begin
1469 case Nkind (N) is
1470 when N_Attribute_Reference =>
1471 if (Attribute_Name (N) = Name_Access
1472 or else
1473 Attribute_Name (N) = Name_Unchecked_Access)
1474 and then Is_Entity_Name (Prefix (N))
1475 and then Is_Type (Entity (Prefix (N)))
1476 and then Entity (Prefix (N)) = E
1477 then
1478 Error_Msg_N
1479 ("current instance must be a limited type", Prefix (N));
1480 return Abandon;
1481 else
1482 return OK;
1483 end if;
1485 when others => return OK;
1486 end case;
1487 end Process;
1489 procedure Traverse is new Traverse_Proc (Process);
1491 -- Start of processing for Check_Current_Instance
1493 begin
1494 -- In Ada95, the (imprecise) rule is that the current instance of a
1495 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1496 -- either a tagged type, or a limited record.
1498 if Is_Limited_Type (Rec_Type)
1499 and then
1500 (Ada_Version < Ada_05
1501 or else Is_Tagged_Type (Rec_Type))
1502 then
1503 return;
1505 elsif Nkind (Decl) = N_Full_Type_Declaration
1506 and then Limited_Present (Type_Definition (Decl))
1507 then
1508 return;
1510 else
1511 Traverse (Comp_Decl);
1512 end if;
1513 end Check_Current_Instance;
1515 ------------------------
1516 -- Freeze_Record_Type --
1517 ------------------------
1519 procedure Freeze_Record_Type (Rec : Entity_Id) is
1520 Comp : Entity_Id;
1521 IR : Node_Id;
1522 ADC : Node_Id;
1523 Prev : Entity_Id;
1525 Junk : Boolean;
1526 pragma Warnings (Off, Junk);
1528 Unplaced_Component : Boolean := False;
1529 -- Set True if we find at least one component with no component
1530 -- clause (used to warn about useless Pack pragmas).
1532 Placed_Component : Boolean := False;
1533 -- Set True if we find at least one component with a component
1534 -- clause (used to warn about useless Bit_Order pragmas).
1536 function Check_Allocator (N : Node_Id) return Node_Id;
1537 -- If N is an allocator, possibly wrapped in one or more level of
1538 -- qualified expression(s), return the inner allocator node, else
1539 -- return Empty.
1541 procedure Check_Itype (Typ : Entity_Id);
1542 -- If the component subtype is an access to a constrained subtype of
1543 -- an already frozen type, make the subtype frozen as well. It might
1544 -- otherwise be frozen in the wrong scope, and a freeze node on
1545 -- subtype has no effect. Similarly, if the component subtype is a
1546 -- regular (not protected) access to subprogram, set the anonymous
1547 -- subprogram type to frozen as well, to prevent an out-of-scope
1548 -- freeze node at some eventual point of call. Protected operations
1549 -- are handled elsewhere.
1551 ---------------------
1552 -- Check_Allocator --
1553 ---------------------
1555 function Check_Allocator (N : Node_Id) return Node_Id is
1556 Inner : Node_Id;
1557 begin
1558 Inner := N;
1559 loop
1560 if Nkind (Inner) = N_Allocator then
1561 return Inner;
1562 elsif Nkind (Inner) = N_Qualified_Expression then
1563 Inner := Expression (Inner);
1564 else
1565 return Empty;
1566 end if;
1567 end loop;
1568 end Check_Allocator;
1570 -----------------
1571 -- Check_Itype --
1572 -----------------
1574 procedure Check_Itype (Typ : Entity_Id) is
1575 Desig : constant Entity_Id := Designated_Type (Typ);
1577 begin
1578 if not Is_Frozen (Desig)
1579 and then Is_Frozen (Base_Type (Desig))
1580 then
1581 Set_Is_Frozen (Desig);
1583 -- In addition, add an Itype_Reference to ensure that the
1584 -- access subtype is elaborated early enough. This cannot be
1585 -- done if the subtype may depend on discriminants.
1587 if Ekind (Comp) = E_Component
1588 and then Is_Itype (Etype (Comp))
1589 and then not Has_Discriminants (Rec)
1590 then
1591 IR := Make_Itype_Reference (Sloc (Comp));
1592 Set_Itype (IR, Desig);
1594 if No (Result) then
1595 Result := New_List (IR);
1596 else
1597 Append (IR, Result);
1598 end if;
1599 end if;
1601 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1602 and then Convention (Desig) /= Convention_Protected
1603 then
1604 Set_Is_Frozen (Desig);
1605 end if;
1606 end Check_Itype;
1608 -- Start of processing for Freeze_Record_Type
1610 begin
1611 -- If this is a subtype of a controlled type, declared without a
1612 -- constraint, the _controller may not appear in the component list
1613 -- if the parent was not frozen at the point of subtype declaration.
1614 -- Inherit the _controller component now.
1616 if Rec /= Base_Type (Rec)
1617 and then Has_Controlled_Component (Rec)
1618 then
1619 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1620 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1621 then
1622 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1624 -- If this is an internal type without a declaration, as for
1625 -- record component, the base type may not yet be frozen, and its
1626 -- controller has not been created. Add an explicit freeze node
1627 -- for the itype, so it will be frozen after the base type. This
1628 -- freeze node is used to communicate with the expander, in order
1629 -- to create the controller for the enclosing record, and it is
1630 -- deleted afterwards (see exp_ch3). It must not be created when
1631 -- expansion is off, because it might appear in the wrong context
1632 -- for the back end.
1634 elsif Is_Itype (Rec)
1635 and then Has_Delayed_Freeze (Base_Type (Rec))
1636 and then
1637 Nkind (Associated_Node_For_Itype (Rec)) =
1638 N_Component_Declaration
1639 and then Expander_Active
1640 then
1641 Ensure_Freeze_Node (Rec);
1642 end if;
1643 end if;
1645 -- Freeze components and embedded subtypes
1647 Comp := First_Entity (Rec);
1648 Prev := Empty;
1649 while Present (Comp) loop
1651 -- First handle the (real) component case
1653 if Ekind (Comp) = E_Component
1654 or else Ekind (Comp) = E_Discriminant
1655 then
1656 declare
1657 CC : constant Node_Id := Component_Clause (Comp);
1659 begin
1660 -- Freezing a record type freezes the type of each of its
1661 -- components. However, if the type of the component is
1662 -- part of this record, we do not want or need a separate
1663 -- Freeze_Node. Note that Is_Itype is wrong because that's
1664 -- also set in private type cases. We also can't check for
1665 -- the Scope being exactly Rec because of private types and
1666 -- record extensions.
1668 if Is_Itype (Etype (Comp))
1669 and then Is_Record_Type (Underlying_Type
1670 (Scope (Etype (Comp))))
1671 then
1672 Undelay_Type (Etype (Comp));
1673 end if;
1675 Freeze_And_Append (Etype (Comp), Loc, Result);
1677 -- Check for error of component clause given for variable
1678 -- sized type. We have to delay this test till this point,
1679 -- since the component type has to be frozen for us to know
1680 -- if it is variable length. We omit this test in a generic
1681 -- context, it will be applied at instantiation time.
1683 if Present (CC) then
1684 Placed_Component := True;
1686 if Inside_A_Generic then
1687 null;
1689 elsif not
1690 Size_Known_At_Compile_Time
1691 (Underlying_Type (Etype (Comp)))
1692 then
1693 Error_Msg_N
1694 ("component clause not allowed for variable " &
1695 "length component", CC);
1696 end if;
1698 else
1699 Unplaced_Component := True;
1700 end if;
1702 -- Case of component requires byte alignment
1704 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
1706 -- Set the enclosing record to also require byte align
1708 Set_Must_Be_On_Byte_Boundary (Rec);
1710 -- Check for component clause that is inconsistent with
1711 -- the required byte boundary alignment.
1713 if Present (CC)
1714 and then Normalized_First_Bit (Comp) mod
1715 System_Storage_Unit /= 0
1716 then
1717 Error_Msg_N
1718 ("component & must be byte aligned",
1719 Component_Name (Component_Clause (Comp)));
1720 end if;
1721 end if;
1723 -- If component clause is present, then deal with the non-
1724 -- default bit order case for Ada 95 mode. The required
1725 -- processing for Ada 2005 mode is handled separately after
1726 -- processing all components.
1728 -- We only do this processing for the base type, and in
1729 -- fact that's important, since otherwise if there are
1730 -- record subtypes, we could reverse the bits once for
1731 -- each subtype, which would be incorrect.
1733 if Present (CC)
1734 and then Reverse_Bit_Order (Rec)
1735 and then Ekind (E) = E_Record_Type
1736 and then Ada_Version <= Ada_95
1737 then
1738 declare
1739 CFB : constant Uint := Component_Bit_Offset (Comp);
1740 CSZ : constant Uint := Esize (Comp);
1741 CLC : constant Node_Id := Component_Clause (Comp);
1742 Pos : constant Node_Id := Position (CLC);
1743 FB : constant Node_Id := First_Bit (CLC);
1745 Storage_Unit_Offset : constant Uint :=
1746 CFB / System_Storage_Unit;
1748 Start_Bit : constant Uint :=
1749 CFB mod System_Storage_Unit;
1751 begin
1752 -- Cases where field goes over storage unit boundary
1754 if Start_Bit + CSZ > System_Storage_Unit then
1756 -- Allow multi-byte field but generate warning
1758 if Start_Bit mod System_Storage_Unit = 0
1759 and then CSZ mod System_Storage_Unit = 0
1760 then
1761 Error_Msg_N
1762 ("multi-byte field specified with non-standard"
1763 & " Bit_Order?", CLC);
1765 if Bytes_Big_Endian then
1766 Error_Msg_N
1767 ("bytes are not reversed "
1768 & "(component is big-endian)?", CLC);
1769 else
1770 Error_Msg_N
1771 ("bytes are not reversed "
1772 & "(component is little-endian)?", CLC);
1773 end if;
1775 -- Do not allow non-contiguous field
1777 else
1778 Error_Msg_N
1779 ("attempt to specify non-contiguous field"
1780 & " not permitted", CLC);
1781 Error_Msg_N
1782 ("\(caused by non-standard Bit_Order "
1783 & "specified)", CLC);
1784 end if;
1786 -- Case where field fits in one storage unit
1788 else
1789 -- Give warning if suspicious component clause
1791 if Intval (FB) >= System_Storage_Unit
1792 and then Warn_On_Reverse_Bit_Order
1793 then
1794 Error_Msg_N
1795 ("?Bit_Order clause does not affect " &
1796 "byte ordering", Pos);
1797 Error_Msg_Uint_1 :=
1798 Intval (Pos) + Intval (FB) /
1799 System_Storage_Unit;
1800 Error_Msg_N
1801 ("?position normalized to ^ before bit " &
1802 "order interpreted", Pos);
1803 end if;
1805 -- Here is where we fix up the Component_Bit_Offset
1806 -- value to account for the reverse bit order.
1807 -- Some examples of what needs to be done are:
1809 -- First_Bit .. Last_Bit Component_Bit_Offset
1810 -- old new old new
1812 -- 0 .. 0 7 .. 7 0 7
1813 -- 0 .. 1 6 .. 7 0 6
1814 -- 0 .. 2 5 .. 7 0 5
1815 -- 0 .. 7 0 .. 7 0 4
1817 -- 1 .. 1 6 .. 6 1 6
1818 -- 1 .. 4 3 .. 6 1 3
1819 -- 4 .. 7 0 .. 3 4 0
1821 -- The general rule is that the first bit is
1822 -- is obtained by subtracting the old ending bit
1823 -- from storage_unit - 1.
1825 Set_Component_Bit_Offset
1826 (Comp,
1827 (Storage_Unit_Offset * System_Storage_Unit) +
1828 (System_Storage_Unit - 1) -
1829 (Start_Bit + CSZ - 1));
1831 Set_Normalized_First_Bit
1832 (Comp,
1833 Component_Bit_Offset (Comp) mod
1834 System_Storage_Unit);
1835 end if;
1836 end;
1837 end if;
1838 end;
1839 end if;
1841 -- If the component is an Itype with Delayed_Freeze and is either
1842 -- a record or array subtype and its base type has not yet been
1843 -- frozen, we must remove this from the entity list of this
1844 -- record and put it on the entity list of the scope of its base
1845 -- type. Note that we know that this is not the type of a
1846 -- component since we cleared Has_Delayed_Freeze for it in the
1847 -- previous loop. Thus this must be the Designated_Type of an
1848 -- access type, which is the type of a component.
1850 if Is_Itype (Comp)
1851 and then Is_Type (Scope (Comp))
1852 and then Is_Composite_Type (Comp)
1853 and then Base_Type (Comp) /= Comp
1854 and then Has_Delayed_Freeze (Comp)
1855 and then not Is_Frozen (Base_Type (Comp))
1856 then
1857 declare
1858 Will_Be_Frozen : Boolean := False;
1859 S : Entity_Id := Scope (Rec);
1861 begin
1862 -- We have a pretty bad kludge here. Suppose Rec is subtype
1863 -- being defined in a subprogram that's created as part of
1864 -- the freezing of Rec'Base. In that case, we know that
1865 -- Comp'Base must have already been frozen by the time we
1866 -- get to elaborate this because Gigi doesn't elaborate any
1867 -- bodies until it has elaborated all of the declarative
1868 -- part. But Is_Frozen will not be set at this point because
1869 -- we are processing code in lexical order.
1871 -- We detect this case by going up the Scope chain of Rec
1872 -- and seeing if we have a subprogram scope before reaching
1873 -- the top of the scope chain or that of Comp'Base. If we
1874 -- do, then mark that Comp'Base will actually be frozen. If
1875 -- so, we merely undelay it.
1877 while Present (S) loop
1878 if Is_Subprogram (S) then
1879 Will_Be_Frozen := True;
1880 exit;
1881 elsif S = Scope (Base_Type (Comp)) then
1882 exit;
1883 end if;
1885 S := Scope (S);
1886 end loop;
1888 if Will_Be_Frozen then
1889 Undelay_Type (Comp);
1890 else
1891 if Present (Prev) then
1892 Set_Next_Entity (Prev, Next_Entity (Comp));
1893 else
1894 Set_First_Entity (Rec, Next_Entity (Comp));
1895 end if;
1897 -- Insert in entity list of scope of base type (which
1898 -- must be an enclosing scope, because still unfrozen).
1900 Append_Entity (Comp, Scope (Base_Type (Comp)));
1901 end if;
1902 end;
1904 -- If the component is an access type with an allocator as default
1905 -- value, the designated type will be frozen by the corresponding
1906 -- expression in init_proc. In order to place the freeze node for
1907 -- the designated type before that for the current record type,
1908 -- freeze it now.
1910 -- Same process if the component is an array of access types,
1911 -- initialized with an aggregate. If the designated type is
1912 -- private, it cannot contain allocators, and it is premature
1913 -- to freeze the type, so we check for this as well.
1915 elsif Is_Access_Type (Etype (Comp))
1916 and then Present (Parent (Comp))
1917 and then Present (Expression (Parent (Comp)))
1918 then
1919 declare
1920 Alloc : constant Node_Id :=
1921 Check_Allocator (Expression (Parent (Comp)));
1923 begin
1924 if Present (Alloc) then
1926 -- If component is pointer to a classwide type, freeze
1927 -- the specific type in the expression being allocated.
1928 -- The expression may be a subtype indication, in which
1929 -- case freeze the subtype mark.
1931 if Is_Class_Wide_Type
1932 (Designated_Type (Etype (Comp)))
1933 then
1934 if Is_Entity_Name (Expression (Alloc)) then
1935 Freeze_And_Append
1936 (Entity (Expression (Alloc)), Loc, Result);
1937 elsif
1938 Nkind (Expression (Alloc)) = N_Subtype_Indication
1939 then
1940 Freeze_And_Append
1941 (Entity (Subtype_Mark (Expression (Alloc))),
1942 Loc, Result);
1943 end if;
1945 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1946 Check_Itype (Etype (Comp));
1948 else
1949 Freeze_And_Append
1950 (Designated_Type (Etype (Comp)), Loc, Result);
1951 end if;
1952 end if;
1953 end;
1955 elsif Is_Access_Type (Etype (Comp))
1956 and then Is_Itype (Designated_Type (Etype (Comp)))
1957 then
1958 Check_Itype (Etype (Comp));
1960 elsif Is_Array_Type (Etype (Comp))
1961 and then Is_Access_Type (Component_Type (Etype (Comp)))
1962 and then Present (Parent (Comp))
1963 and then Nkind (Parent (Comp)) = N_Component_Declaration
1964 and then Present (Expression (Parent (Comp)))
1965 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1966 and then Is_Fully_Defined
1967 (Designated_Type (Component_Type (Etype (Comp))))
1968 then
1969 Freeze_And_Append
1970 (Designated_Type
1971 (Component_Type (Etype (Comp))), Loc, Result);
1972 end if;
1974 Prev := Comp;
1975 Next_Entity (Comp);
1976 end loop;
1978 -- Deal with pragma Bit_Order
1980 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
1981 if not Placed_Component then
1982 ADC :=
1983 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
1984 Error_Msg_N
1985 ("?Bit_Order specification has no effect", ADC);
1986 Error_Msg_N
1987 ("\?since no component clauses were specified", ADC);
1989 -- Here is where we do Ada 2005 processing for bit order (the Ada
1990 -- 95 case was already taken care of above).
1992 elsif Ada_Version >= Ada_05 then
1993 Adjust_Record_For_Reverse_Bit_Order (Rec);
1994 end if;
1995 end if;
1997 -- Check for useless pragma Pack when all components placed. We only
1998 -- do this check for record types, not subtypes, since a subtype may
1999 -- have all its components placed, and it still makes perfectly good
2000 -- sense to pack other subtypes or the parent type.
2002 if Ekind (Rec) = E_Record_Type
2003 and then Is_Packed (Rec)
2004 and then not Unplaced_Component
2005 then
2006 -- Reset packed status. Probably not necessary, but we do it so
2007 -- that there is no chance of the back end doing something strange
2008 -- with this redundant indication of packing.
2010 Set_Is_Packed (Rec, False);
2012 -- Give warning if redundant constructs warnings on
2014 if Warn_On_Redundant_Constructs then
2015 Error_Msg_N
2016 ("?pragma Pack has no effect, no unplaced components",
2017 Get_Rep_Pragma (Rec, Name_Pack));
2018 end if;
2019 end if;
2021 -- If this is the record corresponding to a remote type, freeze the
2022 -- remote type here since that is what we are semantically freezing.
2023 -- This prevents the freeze node for that type in an inner scope.
2025 -- Also, Check for controlled components and unchecked unions.
2026 -- Finally, enforce the restriction that access attributes with a
2027 -- current instance prefix can only apply to limited types.
2029 if Ekind (Rec) = E_Record_Type then
2030 if Present (Corresponding_Remote_Type (Rec)) then
2031 Freeze_And_Append
2032 (Corresponding_Remote_Type (Rec), Loc, Result);
2033 end if;
2035 Comp := First_Component (Rec);
2036 while Present (Comp) loop
2037 if Has_Controlled_Component (Etype (Comp))
2038 or else (Chars (Comp) /= Name_uParent
2039 and then Is_Controlled (Etype (Comp)))
2040 or else (Is_Protected_Type (Etype (Comp))
2041 and then Present
2042 (Corresponding_Record_Type (Etype (Comp)))
2043 and then Has_Controlled_Component
2044 (Corresponding_Record_Type (Etype (Comp))))
2045 then
2046 Set_Has_Controlled_Component (Rec);
2047 exit;
2048 end if;
2050 if Has_Unchecked_Union (Etype (Comp)) then
2051 Set_Has_Unchecked_Union (Rec);
2052 end if;
2054 if Has_Per_Object_Constraint (Comp) then
2056 -- Scan component declaration for likely misuses of current
2057 -- instance, either in a constraint or a default expression.
2059 Check_Current_Instance (Parent (Comp));
2060 end if;
2062 Next_Component (Comp);
2063 end loop;
2064 end if;
2066 Set_Component_Alignment_If_Not_Set (Rec);
2068 -- For first subtypes, check if there are any fixed-point fields with
2069 -- component clauses, where we must check the size. This is not done
2070 -- till the freeze point, since for fixed-point types, we do not know
2071 -- the size until the type is frozen. Similar processing applies to
2072 -- bit packed arrays.
2074 if Is_First_Subtype (Rec) then
2075 Comp := First_Component (Rec);
2077 while Present (Comp) loop
2078 if Present (Component_Clause (Comp))
2079 and then (Is_Fixed_Point_Type (Etype (Comp))
2080 or else
2081 Is_Bit_Packed_Array (Etype (Comp)))
2082 then
2083 Check_Size
2084 (Component_Name (Component_Clause (Comp)),
2085 Etype (Comp),
2086 Esize (Comp),
2087 Junk);
2088 end if;
2090 Next_Component (Comp);
2091 end loop;
2092 end if;
2094 -- Generate warning for applying C or C++ convention to a record
2095 -- with discriminants. This is suppressed for the unchecked union
2096 -- case, since the whole point in this case is interface C.
2098 if Has_Discriminants (E)
2099 and then not Is_Unchecked_Union (E)
2100 and then not Warnings_Off (E)
2101 and then not Warnings_Off (Base_Type (E))
2102 and then (Convention (E) = Convention_C
2103 or else
2104 Convention (E) = Convention_CPP)
2105 and then Comes_From_Source (E)
2106 then
2107 declare
2108 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2109 A2 : Node_Id;
2111 begin
2112 if Present (Cprag) then
2113 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2115 if Convention (E) = Convention_C then
2116 Error_Msg_N
2117 ("?variant record has no direct equivalent in C", A2);
2118 else
2119 Error_Msg_N
2120 ("?variant record has no direct equivalent in C++", A2);
2121 end if;
2123 Error_Msg_NE
2124 ("\?use of convention for type& is dubious", A2, E);
2125 end if;
2126 end;
2127 end if;
2128 end Freeze_Record_Type;
2130 -- Start of processing for Freeze_Entity
2132 begin
2133 -- We are going to test for various reasons why this entity need not be
2134 -- frozen here, but in the case of an Itype that's defined within a
2135 -- record, that test actually applies to the record.
2137 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2138 Test_E := Scope (E);
2139 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2140 and then Is_Record_Type (Underlying_Type (Scope (E)))
2141 then
2142 Test_E := Underlying_Type (Scope (E));
2143 end if;
2145 -- Do not freeze if already frozen since we only need one freeze node
2147 if Is_Frozen (E) then
2148 return No_List;
2150 -- It is improper to freeze an external entity within a generic because
2151 -- its freeze node will appear in a non-valid context. The entity will
2152 -- be frozen in the proper scope after the current generic is analyzed.
2154 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
2155 return No_List;
2157 -- Do not freeze a global entity within an inner scope created during
2158 -- expansion. A call to subprogram E within some internal procedure
2159 -- (a stream attribute for example) might require freezing E, but the
2160 -- freeze node must appear in the same declarative part as E itself.
2161 -- The two-pass elaboration mechanism in gigi guarantees that E will
2162 -- be frozen before the inner call is elaborated. We exclude constants
2163 -- from this test, because deferred constants may be frozen early, and
2164 -- must be diagnosed (e.g. in the case of a deferred constant being used
2165 -- in a default expression). If the enclosing subprogram comes from
2166 -- source, or is a generic instance, then the freeze point is the one
2167 -- mandated by the language, and we freeze the entity. A subprogram that
2168 -- is a child unit body that acts as a spec does not have a spec that
2169 -- comes from source, but can only come from source.
2171 elsif In_Open_Scopes (Scope (Test_E))
2172 and then Scope (Test_E) /= Current_Scope
2173 and then Ekind (Test_E) /= E_Constant
2174 then
2175 declare
2176 S : Entity_Id := Current_Scope;
2178 begin
2179 while Present (S) loop
2180 if Is_Overloadable (S) then
2181 if Comes_From_Source (S)
2182 or else Is_Generic_Instance (S)
2183 or else Is_Child_Unit (S)
2184 then
2185 exit;
2186 else
2187 return No_List;
2188 end if;
2189 end if;
2191 S := Scope (S);
2192 end loop;
2193 end;
2195 -- Similarly, an inlined instance body may make reference to global
2196 -- entities, but these references cannot be the proper freezing point
2197 -- for them, and in the absence of inlining freezing will take place in
2198 -- their own scope. Normally instance bodies are analyzed after the
2199 -- enclosing compilation, and everything has been frozen at the proper
2200 -- place, but with front-end inlining an instance body is compiled
2201 -- before the end of the enclosing scope, and as a result out-of-order
2202 -- freezing must be prevented.
2204 elsif Front_End_Inlining
2205 and then In_Instance_Body
2206 and then Present (Scope (Test_E))
2207 then
2208 declare
2209 S : Entity_Id := Scope (Test_E);
2211 begin
2212 while Present (S) loop
2213 if Is_Generic_Instance (S) then
2214 exit;
2215 else
2216 S := Scope (S);
2217 end if;
2218 end loop;
2220 if No (S) then
2221 return No_List;
2222 end if;
2223 end;
2224 end if;
2226 -- Here to freeze the entity
2228 Result := No_List;
2229 Set_Is_Frozen (E);
2231 -- Case of entity being frozen is other than a type
2233 if not Is_Type (E) then
2235 -- If entity is exported or imported and does not have an external
2236 -- name, now is the time to provide the appropriate default name.
2237 -- Skip this if the entity is stubbed, since we don't need a name
2238 -- for any stubbed routine.
2240 if (Is_Imported (E) or else Is_Exported (E))
2241 and then No (Interface_Name (E))
2242 and then Convention (E) /= Convention_Stubbed
2243 then
2244 Set_Encoded_Interface_Name
2245 (E, Get_Default_External_Name (E));
2247 -- Special processing for atomic objects appearing in object decls
2249 elsif Is_Atomic (E)
2250 and then Nkind (Parent (E)) = N_Object_Declaration
2251 and then Present (Expression (Parent (E)))
2252 then
2253 declare
2254 Expr : constant Node_Id := Expression (Parent (E));
2256 begin
2257 -- If expression is an aggregate, assign to a temporary to
2258 -- ensure that the actual assignment is done atomically rather
2259 -- than component-wise (the assignment to the temp may be done
2260 -- component-wise, but that is harmless).
2262 if Nkind (Expr) = N_Aggregate then
2263 Expand_Atomic_Aggregate (Expr, Etype (E));
2265 -- If the expression is a reference to a record or array object
2266 -- entity, then reset Is_True_Constant to False so that the
2267 -- compiler will not optimize away the intermediate object,
2268 -- which we need in this case for the same reason (to ensure
2269 -- that the actual assignment is atomic, rather than
2270 -- component-wise).
2272 elsif Is_Entity_Name (Expr)
2273 and then (Is_Record_Type (Etype (Expr))
2274 or else
2275 Is_Array_Type (Etype (Expr)))
2276 then
2277 Set_Is_True_Constant (Entity (Expr), False);
2278 end if;
2279 end;
2280 end if;
2282 -- For a subprogram, freeze all parameter types and also the return
2283 -- type (RM 13.14(14)). However skip this for internal subprograms.
2284 -- This is also the point where any extra formal parameters are
2285 -- created since we now know whether the subprogram will use
2286 -- a foreign convention.
2288 if Is_Subprogram (E) then
2289 if not Is_Internal (E) then
2290 declare
2291 F_Type : Entity_Id;
2292 R_Type : Entity_Id;
2293 Warn_Node : Node_Id;
2295 begin
2296 -- Loop through formals
2298 Formal := First_Formal (E);
2299 while Present (Formal) loop
2300 F_Type := Etype (Formal);
2301 Freeze_And_Append (F_Type, Loc, Result);
2303 if Is_Private_Type (F_Type)
2304 and then Is_Private_Type (Base_Type (F_Type))
2305 and then No (Full_View (Base_Type (F_Type)))
2306 and then not Is_Generic_Type (F_Type)
2307 and then not Is_Derived_Type (F_Type)
2308 then
2309 -- If the type of a formal is incomplete, subprogram
2310 -- is being frozen prematurely. Within an instance
2311 -- (but not within a wrapper package) this is an
2312 -- an artifact of our need to regard the end of an
2313 -- instantiation as a freeze point. Otherwise it is
2314 -- a definite error.
2316 -- and then not Is_Wrapper_Package (Current_Scope) ???
2318 if In_Instance then
2319 Set_Is_Frozen (E, False);
2320 return No_List;
2322 elsif not After_Last_Declaration
2323 and then not Freezing_Library_Level_Tagged_Type
2324 then
2325 Error_Msg_Node_1 := F_Type;
2326 Error_Msg
2327 ("type& must be fully defined before this point",
2328 Loc);
2329 end if;
2330 end if;
2332 -- Check suspicious parameter for C function. These tests
2333 -- apply only to exported/imported suboprograms.
2335 if Warn_On_Export_Import
2336 and then (Convention (E) = Convention_C
2337 or else
2338 Convention (E) = Convention_CPP)
2339 and then not Warnings_Off (E)
2340 and then not Warnings_Off (F_Type)
2341 and then not Warnings_Off (Formal)
2342 and then (Is_Imported (E) or else Is_Exported (E))
2343 then
2344 Error_Msg_Qual_Level := 1;
2346 -- Check suspicious use of fat C pointer
2348 if Is_Access_Type (F_Type)
2349 and then Esize (F_Type) > Ttypes.System_Address_Size
2350 then
2351 Error_Msg_N
2352 ("?type of & does not correspond "
2353 & "to C pointer!", Formal);
2355 -- Check suspicious return of boolean
2357 elsif Root_Type (F_Type) = Standard_Boolean
2358 and then Convention (F_Type) = Convention_Ada
2359 then
2360 Error_Msg_N
2361 ("?& is an 8-bit Ada Boolean, "
2362 & "use char in C!", Formal);
2364 -- Check suspicious tagged type
2366 elsif (Is_Tagged_Type (F_Type)
2367 or else (Is_Access_Type (F_Type)
2368 and then
2369 Is_Tagged_Type
2370 (Designated_Type (F_Type))))
2371 and then Convention (E) = Convention_C
2372 then
2373 Error_Msg_N
2374 ("?& is a tagged type which does not "
2375 & "correspond to any C type!", Formal);
2377 -- Check wrong convention subprogram pointer
2379 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2380 and then not Has_Foreign_Convention (F_Type)
2381 then
2382 Error_Msg_N
2383 ("?subprogram pointer & should "
2384 & "have foreign convention!", Formal);
2385 Error_Msg_Sloc := Sloc (F_Type);
2386 Error_Msg_NE
2387 ("\?add Convention pragma to declaration of &#",
2388 Formal, F_Type);
2389 end if;
2391 Error_Msg_Qual_Level := 0;
2392 end if;
2394 -- Check for unconstrained array in exported foreign
2395 -- convention case.
2397 if Has_Foreign_Convention (E)
2398 and then not Is_Imported (E)
2399 and then Is_Array_Type (F_Type)
2400 and then not Is_Constrained (F_Type)
2401 and then Warn_On_Export_Import
2402 then
2403 Error_Msg_Qual_Level := 1;
2405 -- If this is an inherited operation, place the
2406 -- warning on the derived type declaration, rather
2407 -- than on the original subprogram.
2409 if Nkind (Original_Node (Parent (E))) =
2410 N_Full_Type_Declaration
2411 then
2412 Warn_Node := Parent (E);
2414 if Formal = First_Formal (E) then
2415 Error_Msg_NE
2416 ("?in inherited operation&", Warn_Node, E);
2417 end if;
2418 else
2419 Warn_Node := Formal;
2420 end if;
2422 Error_Msg_NE
2423 ("?type of argument& is unconstrained array",
2424 Warn_Node, Formal);
2425 Error_Msg_NE
2426 ("?foreign caller must pass bounds explicitly",
2427 Warn_Node, Formal);
2428 Error_Msg_Qual_Level := 0;
2429 end if;
2431 -- Ada 2005 (AI-326): Check wrong use of tag incomplete
2432 -- types with unknown discriminants. For example:
2434 -- type T (<>) is tagged;
2435 -- procedure P (X : access T); -- ERROR
2436 -- procedure P (X : T); -- ERROR
2438 if not From_With_Type (F_Type) then
2439 if Is_Access_Type (F_Type) then
2440 F_Type := Designated_Type (F_Type);
2441 end if;
2443 if Ekind (F_Type) = E_Incomplete_Type
2444 and then Is_Tagged_Type (F_Type)
2445 and then not Is_Class_Wide_Type (F_Type)
2446 and then No (Full_View (F_Type))
2447 and then Unknown_Discriminants_Present
2448 (Parent (F_Type))
2449 and then No (Stored_Constraint (F_Type))
2450 then
2451 Error_Msg_N
2452 ("(Ada 2005): invalid use of unconstrained tagged"
2453 & " incomplete type", E);
2455 -- If the formal is an anonymous_access_to_subprogram
2456 -- freeze the subprogram type as well, to prevent
2457 -- scope anomalies in gigi, because there is no other
2458 -- clear point at which it could be frozen.
2460 elsif Is_Itype (Etype (Formal))
2461 and then Ekind (F_Type) = E_Subprogram_Type
2462 then
2463 Freeze_And_Append (F_Type, Loc, Result);
2464 end if;
2465 end if;
2467 Next_Formal (Formal);
2468 end loop;
2470 -- Case of function
2472 if Ekind (E) = E_Function then
2474 -- Freeze return type
2476 R_Type := Etype (E);
2477 Freeze_And_Append (R_Type, Loc, Result);
2479 -- Check suspicious return type for C function
2481 if Warn_On_Export_Import
2482 and then (Convention (E) = Convention_C
2483 or else
2484 Convention (E) = Convention_CPP)
2485 and then not Warnings_Off (E)
2486 and then not Warnings_Off (R_Type)
2487 and then (Is_Imported (E) or else Is_Exported (E))
2488 then
2489 -- Check suspicious return of fat C pointer
2491 if Is_Access_Type (R_Type)
2492 and then Esize (R_Type) > Ttypes.System_Address_Size
2493 then
2494 Error_Msg_N
2495 ("?return type of& does not "
2496 & "correspond to C pointer!", E);
2498 -- Check suspicious return of boolean
2500 elsif Root_Type (R_Type) = Standard_Boolean
2501 and then Convention (R_Type) = Convention_Ada
2502 then
2503 Error_Msg_N
2504 ("?return type of & is an 8-bit "
2505 & "Ada Boolean, use char in C!", E);
2507 -- Check suspicious return tagged type
2509 elsif (Is_Tagged_Type (R_Type)
2510 or else (Is_Access_Type (R_Type)
2511 and then
2512 Is_Tagged_Type
2513 (Designated_Type (R_Type))))
2514 and then Convention (E) = Convention_C
2515 then
2516 Error_Msg_N
2517 ("?return type of & does not "
2518 & "correspond to C type!", E);
2520 -- Check return of wrong convention subprogram pointer
2522 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2523 and then not Has_Foreign_Convention (R_Type)
2524 then
2525 Error_Msg_N
2526 ("?& should return a foreign "
2527 & "convention subprogram pointer", E);
2528 Error_Msg_Sloc := Sloc (R_Type);
2529 Error_Msg_NE
2530 ("\?add Convention pragma to declaration of& #",
2531 E, R_Type);
2532 end if;
2533 end if;
2535 if Is_Array_Type (Etype (E))
2536 and then not Is_Constrained (Etype (E))
2537 and then not Is_Imported (E)
2538 and then Has_Foreign_Convention (E)
2539 and then Warn_On_Export_Import
2540 then
2541 Error_Msg_N
2542 ("?foreign convention function& should not " &
2543 "return unconstrained array", E);
2545 -- Ada 2005 (AI-326): Check wrong use of tagged
2546 -- incomplete type
2548 -- type T is tagged;
2549 -- function F (X : Boolean) return T; -- ERROR
2551 elsif Ekind (Etype (E)) = E_Incomplete_Type
2552 and then Is_Tagged_Type (Etype (E))
2553 and then No (Full_View (Etype (E)))
2554 and then not Is_Value_Type (Etype (E))
2555 then
2556 Error_Msg_N
2557 ("(Ada 2005): invalid use of tagged incomplete type",
2559 end if;
2560 end if;
2561 end;
2562 end if;
2564 -- Must freeze its parent first if it is a derived subprogram
2566 if Present (Alias (E)) then
2567 Freeze_And_Append (Alias (E), Loc, Result);
2568 end if;
2570 -- We don't freeze internal subprograms, because we don't normally
2571 -- want addition of extra formals or mechanism setting to happen
2572 -- for those. However we do pass through predefined dispatching
2573 -- cases, since extra formals may be needed in some cases, such as
2574 -- for the stream 'Input function (build-in-place formals).
2576 if not Is_Internal (E)
2577 or else Is_Predefined_Dispatching_Operation (E)
2578 then
2579 Freeze_Subprogram (E);
2580 end if;
2582 -- Here for other than a subprogram or type
2584 else
2585 -- If entity has a type, and it is not a generic unit, then
2586 -- freeze it first (RM 13.14(10)).
2588 if Present (Etype (E))
2589 and then Ekind (E) /= E_Generic_Function
2590 then
2591 Freeze_And_Append (Etype (E), Loc, Result);
2592 end if;
2594 -- Special processing for objects created by object declaration
2596 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2598 -- For object created by object declaration, perform required
2599 -- categorization (preelaborate and pure) checks. Defer these
2600 -- checks to freeze time since pragma Import inhibits default
2601 -- initialization and thus pragma Import affects these checks.
2603 Validate_Object_Declaration (Declaration_Node (E));
2605 -- If there is an address clause, check it is valid
2607 Check_Address_Clause (E);
2609 -- For imported objects, set Is_Public unless there is also an
2610 -- address clause, which means that there is no external symbol
2611 -- needed for the Import (Is_Public may still be set for other
2612 -- unrelated reasons). Note that we delayed this processing
2613 -- till freeze time so that we can be sure not to set the flag
2614 -- if there is an address clause. If there is such a clause,
2615 -- then the only purpose of the Import pragma is to suppress
2616 -- implicit initialization.
2618 if Is_Imported (E)
2619 and then No (Address_Clause (E))
2620 then
2621 Set_Is_Public (E);
2622 end if;
2624 -- For convention C objects of an enumeration type, warn if
2625 -- the size is not integer size and no explicit size given.
2626 -- Skip warning for Boolean, and Character, assume programmer
2627 -- expects 8-bit sizes for these cases.
2629 if (Convention (E) = Convention_C
2630 or else
2631 Convention (E) = Convention_CPP)
2632 and then Is_Enumeration_Type (Etype (E))
2633 and then not Is_Character_Type (Etype (E))
2634 and then not Is_Boolean_Type (Etype (E))
2635 and then Esize (Etype (E)) < Standard_Integer_Size
2636 and then not Has_Size_Clause (E)
2637 then
2638 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2639 Error_Msg_N
2640 ("?convention C enumeration object has size less than ^",
2642 Error_Msg_N ("\?use explicit size clause to set size", E);
2643 end if;
2644 end if;
2646 -- Check that a constant which has a pragma Volatile[_Components]
2647 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
2649 -- Note: Atomic[_Components] also sets Volatile[_Components]
2651 if Ekind (E) = E_Constant
2652 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2653 and then not Is_Imported (E)
2654 then
2655 -- Make sure we actually have a pragma, and have not merely
2656 -- inherited the indication from elsewhere (e.g. an address
2657 -- clause, which is not good enough in RM terms!)
2659 if Has_Rep_Pragma (E, Name_Atomic)
2660 or else
2661 Has_Rep_Pragma (E, Name_Atomic_Components)
2662 then
2663 Error_Msg_N
2664 ("stand alone atomic constant must be " &
2665 "imported (RM C.6(13))", E);
2667 elsif Has_Rep_Pragma (E, Name_Volatile)
2668 or else
2669 Has_Rep_Pragma (E, Name_Volatile_Components)
2670 then
2671 Error_Msg_N
2672 ("stand alone volatile constant must be " &
2673 "imported (RM C.6(13))", E);
2674 end if;
2675 end if;
2677 -- Static objects require special handling
2679 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2680 and then Is_Statically_Allocated (E)
2681 then
2682 Freeze_Static_Object (E);
2683 end if;
2685 -- Remaining step is to layout objects
2687 if Ekind (E) = E_Variable
2688 or else
2689 Ekind (E) = E_Constant
2690 or else
2691 Ekind (E) = E_Loop_Parameter
2692 or else
2693 Is_Formal (E)
2694 then
2695 Layout_Object (E);
2696 end if;
2697 end if;
2699 -- Case of a type or subtype being frozen
2701 else
2702 -- We used to check here that a full type must have preelaborable
2703 -- initialization if it completes a private type specified with
2704 -- pragma Preelaborable_Intialization, but that missed cases where
2705 -- the types occur within a generic package, since the freezing
2706 -- that occurs within a containing scope generally skips traversal
2707 -- of a generic unit's declarations (those will be frozen within
2708 -- instances). This check was moved to Analyze_Package_Specification.
2710 -- The type may be defined in a generic unit. This can occur when
2711 -- freezing a generic function that returns the type (which is
2712 -- defined in a parent unit). It is clearly meaningless to freeze
2713 -- this type. However, if it is a subtype, its size may be determi-
2714 -- nable and used in subsequent checks, so might as well try to
2715 -- compute it.
2717 if Present (Scope (E))
2718 and then Is_Generic_Unit (Scope (E))
2719 then
2720 Check_Compile_Time_Size (E);
2721 return No_List;
2722 end if;
2724 -- Deal with special cases of freezing for subtype
2726 if E /= Base_Type (E) then
2728 -- Before we do anything else, a specialized test for the case of
2729 -- a size given for an array where the array needs to be packed,
2730 -- but was not so the size cannot be honored. This would of course
2731 -- be caught by the backend, and indeed we don't catch all cases.
2732 -- The point is that we can give a better error message in those
2733 -- cases that we do catch with the circuitry here. Also if pragma
2734 -- Implicit_Packing is set, this is where the packing occurs.
2736 -- The reason we do this so early is that the processing in the
2737 -- automatic packing case affects the layout of the base type, so
2738 -- it must be done before we freeze the base type.
2740 if Is_Array_Type (E) then
2741 declare
2742 Lo, Hi : Node_Id;
2743 Ctyp : constant Entity_Id := Component_Type (E);
2745 begin
2746 -- Check enabling conditions. These are straightforward
2747 -- except for the test for a limited composite type. This
2748 -- eliminates the rare case of a array of limited components
2749 -- where there are issues of whether or not we can go ahead
2750 -- and pack the array (since we can't freely pack and unpack
2751 -- arrays if they are limited).
2753 -- Note that we check the root type explicitly because the
2754 -- whole point is we are doing this test before we have had
2755 -- a chance to freeze the base type (and it is that freeze
2756 -- action that causes stuff to be inherited).
2758 if Present (Size_Clause (E))
2759 and then Known_Static_Esize (E)
2760 and then not Is_Packed (E)
2761 and then not Has_Pragma_Pack (E)
2762 and then Number_Dimensions (E) = 1
2763 and then not Has_Component_Size_Clause (E)
2764 and then Known_Static_Esize (Ctyp)
2765 and then not Is_Limited_Composite (E)
2766 and then not Is_Packed (Root_Type (E))
2767 and then not Has_Component_Size_Clause (Root_Type (E))
2768 then
2769 Get_Index_Bounds (First_Index (E), Lo, Hi);
2771 if Compile_Time_Known_Value (Lo)
2772 and then Compile_Time_Known_Value (Hi)
2773 and then Known_Static_RM_Size (Ctyp)
2774 and then RM_Size (Ctyp) < 64
2775 then
2776 declare
2777 Lov : constant Uint := Expr_Value (Lo);
2778 Hiv : constant Uint := Expr_Value (Hi);
2779 Len : constant Uint := UI_Max
2780 (Uint_0,
2781 Hiv - Lov + 1);
2782 Rsiz : constant Uint := RM_Size (Ctyp);
2783 SZ : constant Node_Id := Size_Clause (E);
2784 Btyp : constant Entity_Id := Base_Type (E);
2786 -- What we are looking for here is the situation where
2787 -- the RM_Size given would be exactly right if there
2788 -- was a pragma Pack (resulting in the component size
2789 -- being the same as the RM_Size). Furthermore, the
2790 -- component type size must be an odd size (not a
2791 -- multiple of storage unit)
2793 begin
2794 if RM_Size (E) = Len * Rsiz
2795 and then Rsiz mod System_Storage_Unit /= 0
2796 then
2797 -- For implicit packing mode, just set the
2798 -- component size silently
2800 if Implicit_Packing then
2801 Set_Component_Size (Btyp, Rsiz);
2802 Set_Is_Bit_Packed_Array (Btyp);
2803 Set_Is_Packed (Btyp);
2804 Set_Has_Non_Standard_Rep (Btyp);
2806 -- Otherwise give an error message
2808 else
2809 Error_Msg_NE
2810 ("size given for& too small", SZ, E);
2811 Error_Msg_N
2812 ("\use explicit pragma Pack "
2813 & "or use pragma Implicit_Packing", SZ);
2814 end if;
2815 end if;
2816 end;
2817 end if;
2818 end if;
2819 end;
2820 end if;
2822 -- If ancestor subtype present, freeze that first. Note that this
2823 -- will also get the base type frozen.
2825 Atype := Ancestor_Subtype (E);
2827 if Present (Atype) then
2828 Freeze_And_Append (Atype, Loc, Result);
2830 -- Otherwise freeze the base type of the entity before freezing
2831 -- the entity itself (RM 13.14(15)).
2833 elsif E /= Base_Type (E) then
2834 Freeze_And_Append (Base_Type (E), Loc, Result);
2835 end if;
2837 -- For a derived type, freeze its parent type first (RM 13.14(15))
2839 elsif Is_Derived_Type (E) then
2840 Freeze_And_Append (Etype (E), Loc, Result);
2841 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2842 end if;
2844 -- For array type, freeze index types and component type first
2845 -- before freezing the array (RM 13.14(15)).
2847 if Is_Array_Type (E) then
2848 declare
2849 Ctyp : constant Entity_Id := Component_Type (E);
2851 Non_Standard_Enum : Boolean := False;
2852 -- Set true if any of the index types is an enumeration type
2853 -- with a non-standard representation.
2855 begin
2856 Freeze_And_Append (Ctyp, Loc, Result);
2858 Indx := First_Index (E);
2859 while Present (Indx) loop
2860 Freeze_And_Append (Etype (Indx), Loc, Result);
2862 if Is_Enumeration_Type (Etype (Indx))
2863 and then Has_Non_Standard_Rep (Etype (Indx))
2864 then
2865 Non_Standard_Enum := True;
2866 end if;
2868 Next_Index (Indx);
2869 end loop;
2871 -- Processing that is done only for base types
2873 if Ekind (E) = E_Array_Type then
2875 -- Propagate flags for component type
2877 if Is_Controlled (Component_Type (E))
2878 or else Has_Controlled_Component (Ctyp)
2879 then
2880 Set_Has_Controlled_Component (E);
2881 end if;
2883 if Has_Unchecked_Union (Component_Type (E)) then
2884 Set_Has_Unchecked_Union (E);
2885 end if;
2887 -- If packing was requested or if the component size was set
2888 -- explicitly, then see if bit packing is required. This
2889 -- processing is only done for base types, since all the
2890 -- representation aspects involved are type-related. This
2891 -- is not just an optimization, if we start processing the
2892 -- subtypes, they intefere with the settings on the base
2893 -- type (this is because Is_Packed has a slightly different
2894 -- meaning before and after freezing).
2896 declare
2897 Csiz : Uint;
2898 Esiz : Uint;
2900 begin
2901 if (Is_Packed (E) or else Has_Pragma_Pack (E))
2902 and then not Has_Atomic_Components (E)
2903 and then Known_Static_RM_Size (Ctyp)
2904 then
2905 Csiz := UI_Max (RM_Size (Ctyp), 1);
2907 elsif Known_Component_Size (E) then
2908 Csiz := Component_Size (E);
2910 elsif not Known_Static_Esize (Ctyp) then
2911 Csiz := Uint_0;
2913 else
2914 Esiz := Esize (Ctyp);
2916 -- We can set the component size if it is less than
2917 -- 16, rounding it up to the next storage unit size.
2919 if Esiz <= 8 then
2920 Csiz := Uint_8;
2921 elsif Esiz <= 16 then
2922 Csiz := Uint_16;
2923 else
2924 Csiz := Uint_0;
2925 end if;
2927 -- Set component size up to match alignment if it
2928 -- would otherwise be less than the alignment. This
2929 -- deals with cases of types whose alignment exceeds
2930 -- their size (padded types).
2932 if Csiz /= 0 then
2933 declare
2934 A : constant Uint := Alignment_In_Bits (Ctyp);
2935 begin
2936 if Csiz < A then
2937 Csiz := A;
2938 end if;
2939 end;
2940 end if;
2941 end if;
2943 -- Case of component size that may result in packing
2945 if 1 <= Csiz and then Csiz <= 64 then
2946 declare
2947 Ent : constant Entity_Id :=
2948 First_Subtype (E);
2949 Pack_Pragma : constant Node_Id :=
2950 Get_Rep_Pragma (Ent, Name_Pack);
2951 Comp_Size_C : constant Node_Id :=
2952 Get_Attribute_Definition_Clause
2953 (Ent, Attribute_Component_Size);
2954 begin
2955 -- Warn if we have pack and component size so that
2956 -- the pack is ignored.
2958 -- Note: here we must check for the presence of a
2959 -- component size before checking for a Pack pragma
2960 -- to deal with the case where the array type is a
2961 -- derived type whose parent is currently private.
2963 if Present (Comp_Size_C)
2964 and then Has_Pragma_Pack (Ent)
2965 then
2966 Error_Msg_Sloc := Sloc (Comp_Size_C);
2967 Error_Msg_NE
2968 ("?pragma Pack for& ignored!",
2969 Pack_Pragma, Ent);
2970 Error_Msg_N
2971 ("\?explicit component size given#!",
2972 Pack_Pragma);
2973 end if;
2975 -- Set component size if not already set by a
2976 -- component size clause.
2978 if not Present (Comp_Size_C) then
2979 Set_Component_Size (E, Csiz);
2980 end if;
2982 -- Check for base type of 8, 16, 32 bits, where an
2983 -- unsigned subtype has a length one less than the
2984 -- base type (e.g. Natural subtype of Integer).
2986 -- In such cases, if a component size was not set
2987 -- explicitly, then generate a warning.
2989 if Has_Pragma_Pack (E)
2990 and then not Present (Comp_Size_C)
2991 and then
2992 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2993 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2994 then
2995 Error_Msg_Uint_1 := Csiz;
2997 if Present (Pack_Pragma) then
2998 Error_Msg_N
2999 ("?pragma Pack causes component size "
3000 & "to be ^!", Pack_Pragma);
3001 Error_Msg_N
3002 ("\?use Component_Size to set "
3003 & "desired value!", Pack_Pragma);
3004 end if;
3005 end if;
3007 -- Actual packing is not needed for 8, 16, 32, 64.
3008 -- Also not needed for 24 if alignment is 1.
3010 if Csiz = 8
3011 or else Csiz = 16
3012 or else Csiz = 32
3013 or else Csiz = 64
3014 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3015 then
3016 -- Here the array was requested to be packed,
3017 -- but the packing request had no effect, so
3018 -- Is_Packed is reset.
3020 -- Note: semantically this means that we lose
3021 -- track of the fact that a derived type
3022 -- inherited a pragma Pack that was non-
3023 -- effective, but that seems fine.
3025 -- We regard a Pack pragma as a request to set
3026 -- a representation characteristic, and this
3027 -- request may be ignored.
3029 Set_Is_Packed (Base_Type (E), False);
3031 -- In all other cases, packing is indeed needed
3033 else
3034 Set_Has_Non_Standard_Rep (Base_Type (E));
3035 Set_Is_Bit_Packed_Array (Base_Type (E));
3036 Set_Is_Packed (Base_Type (E));
3037 end if;
3038 end;
3039 end if;
3040 end;
3042 -- Processing that is done only for subtypes
3044 else
3045 -- Acquire alignment from base type
3047 if Unknown_Alignment (E) then
3048 Set_Alignment (E, Alignment (Base_Type (E)));
3049 Adjust_Esize_Alignment (E);
3050 end if;
3051 end if;
3053 -- For bit-packed arrays, check the size
3055 if Is_Bit_Packed_Array (E)
3056 and then Known_RM_Size (E)
3057 then
3058 declare
3059 SizC : constant Node_Id := Size_Clause (E);
3061 Discard : Boolean;
3062 pragma Warnings (Off, Discard);
3064 begin
3065 -- It is not clear if it is possible to have no size
3066 -- clause at this stage, but it is not worth worrying
3067 -- about. Post error on the entity name in the size
3068 -- clause if present, else on the type entity itself.
3070 if Present (SizC) then
3071 Check_Size (Name (SizC), E, RM_Size (E), Discard);
3072 else
3073 Check_Size (E, E, RM_Size (E), Discard);
3074 end if;
3075 end;
3076 end if;
3078 -- If any of the index types was an enumeration type with
3079 -- a non-standard rep clause, then we indicate that the
3080 -- array type is always packed (even if it is not bit packed).
3082 if Non_Standard_Enum then
3083 Set_Has_Non_Standard_Rep (Base_Type (E));
3084 Set_Is_Packed (Base_Type (E));
3085 end if;
3087 Set_Component_Alignment_If_Not_Set (E);
3089 -- If the array is packed, we must create the packed array
3090 -- type to be used to actually implement the type. This is
3091 -- only needed for real array types (not for string literal
3092 -- types, since they are present only for the front end).
3094 if Is_Packed (E)
3095 and then Ekind (E) /= E_String_Literal_Subtype
3096 then
3097 Create_Packed_Array_Type (E);
3098 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
3100 -- Size information of packed array type is copied to the
3101 -- array type, since this is really the representation. But
3102 -- do not override explicit existing size values. If the
3103 -- ancestor subtype is constrained the packed_array_type
3104 -- will be inherited from it, but the size may have been
3105 -- provided already, and must not be overridden either.
3107 if not Has_Size_Clause (E)
3108 and then
3109 (No (Ancestor_Subtype (E))
3110 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3111 then
3112 Set_Esize (E, Esize (Packed_Array_Type (E)));
3113 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3114 end if;
3116 if not Has_Alignment_Clause (E) then
3117 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3118 end if;
3119 end if;
3121 -- For non-packed arrays set the alignment of the array to the
3122 -- alignment of the component type if it is unknown. Skip this
3123 -- in atomic case (atomic arrays may need larger alignments).
3125 if not Is_Packed (E)
3126 and then Unknown_Alignment (E)
3127 and then Known_Alignment (Ctyp)
3128 and then Known_Static_Component_Size (E)
3129 and then Known_Static_Esize (Ctyp)
3130 and then Esize (Ctyp) = Component_Size (E)
3131 and then not Is_Atomic (E)
3132 then
3133 Set_Alignment (E, Alignment (Component_Type (E)));
3134 end if;
3135 end;
3137 -- For a class-wide type, the corresponding specific type is
3138 -- frozen as well (RM 13.14(15))
3140 elsif Is_Class_Wide_Type (E) then
3141 Freeze_And_Append (Root_Type (E), Loc, Result);
3143 -- If the base type of the class-wide type is still incomplete,
3144 -- the class-wide remains unfrozen as well. This is legal when
3145 -- E is the formal of a primitive operation of some other type
3146 -- which is being frozen.
3148 if not Is_Frozen (Root_Type (E)) then
3149 Set_Is_Frozen (E, False);
3150 return Result;
3151 end if;
3153 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3154 -- parent of a derived type) and it is a library-level entity,
3155 -- generate an itype reference for it. Otherwise, its first
3156 -- explicit reference may be in an inner scope, which will be
3157 -- rejected by the back-end.
3159 if Is_Itype (E)
3160 and then Is_Compilation_Unit (Scope (E))
3161 then
3162 declare
3163 Ref : constant Node_Id := Make_Itype_Reference (Loc);
3165 begin
3166 Set_Itype (Ref, E);
3167 if No (Result) then
3168 Result := New_List (Ref);
3169 else
3170 Append (Ref, Result);
3171 end if;
3172 end;
3173 end if;
3175 -- The equivalent type associated with a class-wide subtype needs
3176 -- to be frozen to ensure that its layout is done. Class-wide
3177 -- subtypes are currently only frozen on targets requiring
3178 -- front-end layout (see New_Class_Wide_Subtype and
3179 -- Make_CW_Equivalent_Type in exp_util.adb).
3181 if Ekind (E) = E_Class_Wide_Subtype
3182 and then Present (Equivalent_Type (E))
3183 then
3184 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3185 end if;
3187 -- For a record (sub)type, freeze all the component types (RM
3188 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3189 -- Is_Record_Type, because we don't want to attempt the freeze for
3190 -- the case of a private type with record extension (we will do that
3191 -- later when the full type is frozen).
3193 elsif Ekind (E) = E_Record_Type
3194 or else Ekind (E) = E_Record_Subtype
3195 then
3196 Freeze_Record_Type (E);
3198 -- For a concurrent type, freeze corresponding record type. This
3199 -- does not correpond to any specific rule in the RM, but the
3200 -- record type is essentially part of the concurrent type.
3201 -- Freeze as well all local entities. This includes record types
3202 -- created for entry parameter blocks, and whatever local entities
3203 -- may appear in the private part.
3205 elsif Is_Concurrent_Type (E) then
3206 if Present (Corresponding_Record_Type (E)) then
3207 Freeze_And_Append
3208 (Corresponding_Record_Type (E), Loc, Result);
3209 end if;
3211 Comp := First_Entity (E);
3213 while Present (Comp) loop
3214 if Is_Type (Comp) then
3215 Freeze_And_Append (Comp, Loc, Result);
3217 elsif (Ekind (Comp)) /= E_Function then
3218 if Is_Itype (Etype (Comp))
3219 and then Underlying_Type (Scope (Etype (Comp))) = E
3220 then
3221 Undelay_Type (Etype (Comp));
3222 end if;
3224 Freeze_And_Append (Etype (Comp), Loc, Result);
3225 end if;
3227 Next_Entity (Comp);
3228 end loop;
3230 -- Private types are required to point to the same freeze node as
3231 -- their corresponding full views. The freeze node itself has to
3232 -- point to the partial view of the entity (because from the partial
3233 -- view, we can retrieve the full view, but not the reverse).
3234 -- However, in order to freeze correctly, we need to freeze the full
3235 -- view. If we are freezing at the end of a scope (or within the
3236 -- scope of the private type), the partial and full views will have
3237 -- been swapped, the full view appears first in the entity chain and
3238 -- the swapping mechanism ensures that the pointers are properly set
3239 -- (on scope exit).
3241 -- If we encounter the partial view before the full view (e.g. when
3242 -- freezing from another scope), we freeze the full view, and then
3243 -- set the pointers appropriately since we cannot rely on swapping to
3244 -- fix things up (subtypes in an outer scope might not get swapped).
3246 elsif Is_Incomplete_Or_Private_Type (E)
3247 and then not Is_Generic_Type (E)
3248 then
3249 -- The construction of the dispatch table associated with library
3250 -- level tagged types forces freezing of all the primitives of the
3251 -- type, which may cause premature freezing of the partial view.
3252 -- For example:
3254 -- package Pkg is
3255 -- type T is tagged private;
3256 -- type DT is new T with private;
3257 -- procedure Prim (X : in out T; Y : in out DT'class);
3258 -- private
3259 -- type T is tagged null record;
3260 -- Obj : T;
3261 -- type DT is new T with null record;
3262 -- end;
3264 -- In this case the type will be frozen later by the usual
3265 -- mechanism: an object declaration, an instantiation, or the
3266 -- end of a declarative part.
3268 if Is_Library_Level_Tagged_Type (E)
3269 and then not Present (Full_View (E))
3270 then
3271 Set_Is_Frozen (E, False);
3272 return Result;
3274 -- Case of full view present
3276 elsif Present (Full_View (E)) then
3278 -- If full view has already been frozen, then no further
3279 -- processing is required
3281 if Is_Frozen (Full_View (E)) then
3283 Set_Has_Delayed_Freeze (E, False);
3284 Set_Freeze_Node (E, Empty);
3285 Check_Debug_Info_Needed (E);
3287 -- Otherwise freeze full view and patch the pointers so that
3288 -- the freeze node will elaborate both views in the back-end.
3290 else
3291 declare
3292 Full : constant Entity_Id := Full_View (E);
3294 begin
3295 if Is_Private_Type (Full)
3296 and then Present (Underlying_Full_View (Full))
3297 then
3298 Freeze_And_Append
3299 (Underlying_Full_View (Full), Loc, Result);
3300 end if;
3302 Freeze_And_Append (Full, Loc, Result);
3304 if Has_Delayed_Freeze (E) then
3305 F_Node := Freeze_Node (Full);
3307 if Present (F_Node) then
3308 Set_Freeze_Node (E, F_Node);
3309 Set_Entity (F_Node, E);
3311 else
3312 -- {Incomplete,Private}_Subtypes with Full_Views
3313 -- constrained by discriminants.
3315 Set_Has_Delayed_Freeze (E, False);
3316 Set_Freeze_Node (E, Empty);
3317 end if;
3318 end if;
3319 end;
3321 Check_Debug_Info_Needed (E);
3322 end if;
3324 -- AI-117 requires that the convention of a partial view be the
3325 -- same as the convention of the full view. Note that this is a
3326 -- recognized breach of privacy, but it's essential for logical
3327 -- consistency of representation, and the lack of a rule in
3328 -- RM95 was an oversight.
3330 Set_Convention (E, Convention (Full_View (E)));
3332 Set_Size_Known_At_Compile_Time (E,
3333 Size_Known_At_Compile_Time (Full_View (E)));
3335 -- Size information is copied from the full view to the
3336 -- incomplete or private view for consistency.
3338 -- We skip this is the full view is not a type. This is very
3339 -- strange of course, and can only happen as a result of
3340 -- certain illegalities, such as a premature attempt to derive
3341 -- from an incomplete type.
3343 if Is_Type (Full_View (E)) then
3344 Set_Size_Info (E, Full_View (E));
3345 Set_RM_Size (E, RM_Size (Full_View (E)));
3346 end if;
3348 return Result;
3350 -- Case of no full view present. If entity is derived or subtype,
3351 -- it is safe to freeze, correctness depends on the frozen status
3352 -- of parent. Otherwise it is either premature usage, or a Taft
3353 -- amendment type, so diagnosis is at the point of use and the
3354 -- type might be frozen later.
3356 elsif E /= Base_Type (E)
3357 or else Is_Derived_Type (E)
3358 then
3359 null;
3361 else
3362 Set_Is_Frozen (E, False);
3363 return No_List;
3364 end if;
3366 -- For access subprogram, freeze types of all formals, the return
3367 -- type was already frozen, since it is the Etype of the function.
3369 elsif Ekind (E) = E_Subprogram_Type then
3370 Formal := First_Formal (E);
3371 while Present (Formal) loop
3372 Freeze_And_Append (Etype (Formal), Loc, Result);
3373 Next_Formal (Formal);
3374 end loop;
3376 Freeze_Subprogram (E);
3378 -- Ada 2005 (AI-326): Check wrong use of tag incomplete type
3380 -- type T is tagged;
3381 -- type Acc is access function (X : T) return T; -- ERROR
3383 if Ekind (Etype (E)) = E_Incomplete_Type
3384 and then Is_Tagged_Type (Etype (E))
3385 and then No (Full_View (Etype (E)))
3386 and then not Is_Value_Type (Etype (E))
3387 then
3388 Error_Msg_N
3389 ("(Ada 2005): invalid use of tagged incomplete type", E);
3390 end if;
3392 -- For access to a protected subprogram, freeze the equivalent type
3393 -- (however this is not set if we are not generating code or if this
3394 -- is an anonymous type used just for resolution).
3396 elsif Is_Access_Protected_Subprogram_Type (E) then
3398 -- AI-326: Check wrong use of tagged incomplete types
3400 -- type T is tagged;
3401 -- type As3D is access protected
3402 -- function (X : Float) return T; -- ERROR
3404 declare
3405 Etyp : Entity_Id;
3407 begin
3408 Etyp := Etype (Directly_Designated_Type (E));
3410 if Is_Class_Wide_Type (Etyp) then
3411 Etyp := Etype (Etyp);
3412 end if;
3414 if Ekind (Etyp) = E_Incomplete_Type
3415 and then Is_Tagged_Type (Etyp)
3416 and then No (Full_View (Etyp))
3417 and then not Is_Value_Type (Etype (E))
3418 then
3419 Error_Msg_N
3420 ("(Ada 2005): invalid use of tagged incomplete type", E);
3421 end if;
3422 end;
3424 if Present (Equivalent_Type (E)) then
3425 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3426 end if;
3427 end if;
3429 -- Generic types are never seen by the back-end, and are also not
3430 -- processed by the expander (since the expander is turned off for
3431 -- generic processing), so we never need freeze nodes for them.
3433 if Is_Generic_Type (E) then
3434 return Result;
3435 end if;
3437 -- Some special processing for non-generic types to complete
3438 -- representation details not known till the freeze point.
3440 if Is_Fixed_Point_Type (E) then
3441 Freeze_Fixed_Point_Type (E);
3443 -- Some error checks required for ordinary fixed-point type. Defer
3444 -- these till the freeze-point since we need the small and range
3445 -- values. We only do these checks for base types
3447 if Is_Ordinary_Fixed_Point_Type (E)
3448 and then E = Base_Type (E)
3449 then
3450 if Small_Value (E) < Ureal_2_M_80 then
3451 Error_Msg_Name_1 := Name_Small;
3452 Error_Msg_N
3453 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
3455 elsif Small_Value (E) > Ureal_2_80 then
3456 Error_Msg_Name_1 := Name_Small;
3457 Error_Msg_N
3458 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
3459 end if;
3461 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3462 Error_Msg_Name_1 := Name_First;
3463 Error_Msg_N
3464 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
3465 end if;
3467 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3468 Error_Msg_Name_1 := Name_Last;
3469 Error_Msg_N
3470 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
3471 end if;
3472 end if;
3474 elsif Is_Enumeration_Type (E) then
3475 Freeze_Enumeration_Type (E);
3477 elsif Is_Integer_Type (E) then
3478 Adjust_Esize_For_Alignment (E);
3480 elsif Is_Access_Type (E) then
3482 -- Check restriction for standard storage pool
3484 if No (Associated_Storage_Pool (E)) then
3485 Check_Restriction (No_Standard_Storage_Pools, E);
3486 end if;
3488 -- Deal with error message for pure access type. This is not an
3489 -- error in Ada 2005 if there is no pool (see AI-366).
3491 if Is_Pure_Unit_Access_Type (E)
3492 and then (Ada_Version < Ada_05
3493 or else not No_Pool_Assigned (E))
3494 then
3495 Error_Msg_N ("named access type not allowed in pure unit", E);
3496 end if;
3497 end if;
3499 -- Case of composite types
3501 if Is_Composite_Type (E) then
3503 -- AI-117 requires that all new primitives of a tagged type must
3504 -- inherit the convention of the full view of the type. Inherited
3505 -- and overriding operations are defined to inherit the convention
3506 -- of their parent or overridden subprogram (also specified in
3507 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3508 -- and New_Overloaded_Entity). Here we set the convention of
3509 -- primitives that are still convention Ada, which will ensure
3510 -- that any new primitives inherit the type's convention. Class-
3511 -- wide types can have a foreign convention inherited from their
3512 -- specific type, but are excluded from this since they don't have
3513 -- any associated primitives.
3515 if Is_Tagged_Type (E)
3516 and then not Is_Class_Wide_Type (E)
3517 and then Convention (E) /= Convention_Ada
3518 then
3519 declare
3520 Prim_List : constant Elist_Id := Primitive_Operations (E);
3521 Prim : Elmt_Id;
3522 begin
3523 Prim := First_Elmt (Prim_List);
3524 while Present (Prim) loop
3525 if Convention (Node (Prim)) = Convention_Ada then
3526 Set_Convention (Node (Prim), Convention (E));
3527 end if;
3529 Next_Elmt (Prim);
3530 end loop;
3531 end;
3532 end if;
3533 end if;
3535 -- Generate primitive operation references for a tagged type
3537 if Is_Tagged_Type (E)
3538 and then not Is_Class_Wide_Type (E)
3539 then
3540 declare
3541 Prim_List : Elist_Id;
3542 Prim : Elmt_Id;
3543 Ent : Entity_Id;
3544 Aux_E : Entity_Id;
3546 begin
3547 -- Handle subtypes
3549 if Ekind (E) = E_Protected_Subtype
3550 or else Ekind (E) = E_Task_Subtype
3551 then
3552 Aux_E := Etype (E);
3553 else
3554 Aux_E := E;
3555 end if;
3557 -- Ada 2005 (AI-345): In case of concurrent type generate
3558 -- reference to the wrapper that allow us to dispatch calls
3559 -- through their implemented abstract interface types.
3561 -- The check for Present here is to protect against previously
3562 -- reported critical errors.
3564 if Is_Concurrent_Type (Aux_E)
3565 and then Present (Corresponding_Record_Type (Aux_E))
3566 then
3567 Prim_List := Primitive_Operations
3568 (Corresponding_Record_Type (Aux_E));
3569 else
3570 Prim_List := Primitive_Operations (Aux_E);
3571 end if;
3573 -- Loop to generate references for primitive operations
3575 if Present (Prim_List) then
3576 Prim := First_Elmt (Prim_List);
3577 while Present (Prim) loop
3579 -- If the operation is derived, get the original for
3580 -- cross-reference purposes (it is the original for
3581 -- which we want the xref, and for which the comes
3582 -- from source test needs to be performed).
3584 Ent := Node (Prim);
3585 while Present (Alias (Ent)) loop
3586 Ent := Alias (Ent);
3587 end loop;
3589 Generate_Reference (E, Ent, 'p', Set_Ref => False);
3590 Next_Elmt (Prim);
3591 end loop;
3592 end if;
3593 end;
3594 end if;
3596 -- Now that all types from which E may depend are frozen, see if the
3597 -- size is known at compile time, if it must be unsigned, or if
3598 -- strict alignment is required
3600 Check_Compile_Time_Size (E);
3601 Check_Unsigned_Type (E);
3603 if Base_Type (E) = E then
3604 Check_Strict_Alignment (E);
3605 end if;
3607 -- Do not allow a size clause for a type which does not have a size
3608 -- that is known at compile time
3610 if Has_Size_Clause (E)
3611 and then not Size_Known_At_Compile_Time (E)
3612 then
3613 -- Supress this message if errors posted on E, even if we are
3614 -- in all errors mode, since this is often a junk message
3616 if not Error_Posted (E) then
3617 Error_Msg_N
3618 ("size clause not allowed for variable length type",
3619 Size_Clause (E));
3620 end if;
3621 end if;
3623 -- Remaining process is to set/verify the representation information,
3624 -- in particular the size and alignment values. This processing is
3625 -- not required for generic types, since generic types do not play
3626 -- any part in code generation, and so the size and alignment values
3627 -- for such types are irrelevant.
3629 if Is_Generic_Type (E) then
3630 return Result;
3632 -- Otherwise we call the layout procedure
3634 else
3635 Layout_Type (E);
3636 end if;
3638 -- End of freeze processing for type entities
3639 end if;
3641 -- Here is where we logically freeze the current entity. If it has a
3642 -- freeze node, then this is the point at which the freeze node is
3643 -- linked into the result list.
3645 if Has_Delayed_Freeze (E) then
3647 -- If a freeze node is already allocated, use it, otherwise allocate
3648 -- a new one. The preallocation happens in the case of anonymous base
3649 -- types, where we preallocate so that we can set First_Subtype_Link.
3650 -- Note that we reset the Sloc to the current freeze location.
3652 if Present (Freeze_Node (E)) then
3653 F_Node := Freeze_Node (E);
3654 Set_Sloc (F_Node, Loc);
3656 else
3657 F_Node := New_Node (N_Freeze_Entity, Loc);
3658 Set_Freeze_Node (E, F_Node);
3659 Set_Access_Types_To_Process (F_Node, No_Elist);
3660 Set_TSS_Elist (F_Node, No_Elist);
3661 Set_Actions (F_Node, No_List);
3662 end if;
3664 Set_Entity (F_Node, E);
3666 if Result = No_List then
3667 Result := New_List (F_Node);
3668 else
3669 Append (F_Node, Result);
3670 end if;
3672 -- A final pass over record types with discriminants. If the type
3673 -- has an incomplete declaration, there may be constrained access
3674 -- subtypes declared elsewhere, which do not depend on the discrimi-
3675 -- nants of the type, and which are used as component types (i.e.
3676 -- the full view is a recursive type). The designated types of these
3677 -- subtypes can only be elaborated after the type itself, and they
3678 -- need an itype reference.
3680 if Ekind (E) = E_Record_Type
3681 and then Has_Discriminants (E)
3682 then
3683 declare
3684 Comp : Entity_Id;
3685 IR : Node_Id;
3686 Typ : Entity_Id;
3688 begin
3689 Comp := First_Component (E);
3691 while Present (Comp) loop
3692 Typ := Etype (Comp);
3694 if Ekind (Comp) = E_Component
3695 and then Is_Access_Type (Typ)
3696 and then Scope (Typ) /= E
3697 and then Base_Type (Designated_Type (Typ)) = E
3698 and then Is_Itype (Designated_Type (Typ))
3699 then
3700 IR := Make_Itype_Reference (Sloc (Comp));
3701 Set_Itype (IR, Designated_Type (Typ));
3702 Append (IR, Result);
3703 end if;
3705 Next_Component (Comp);
3706 end loop;
3707 end;
3708 end if;
3709 end if;
3711 -- When a type is frozen, the first subtype of the type is frozen as
3712 -- well (RM 13.14(15)). This has to be done after freezing the type,
3713 -- since obviously the first subtype depends on its own base type.
3715 if Is_Type (E) then
3716 Freeze_And_Append (First_Subtype (E), Loc, Result);
3718 -- If we just froze a tagged non-class wide record, then freeze the
3719 -- corresponding class-wide type. This must be done after the tagged
3720 -- type itself is frozen, because the class-wide type refers to the
3721 -- tagged type which generates the class.
3723 if Is_Tagged_Type (E)
3724 and then not Is_Class_Wide_Type (E)
3725 and then Present (Class_Wide_Type (E))
3726 then
3727 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3728 end if;
3729 end if;
3731 Check_Debug_Info_Needed (E);
3733 -- Special handling for subprograms
3735 if Is_Subprogram (E) then
3737 -- If subprogram has address clause then reset Is_Public flag, since
3738 -- we do not want the backend to generate external references.
3740 if Present (Address_Clause (E))
3741 and then not Is_Library_Level_Entity (E)
3742 then
3743 Set_Is_Public (E, False);
3745 -- If no address clause and not intrinsic, then for imported
3746 -- subprogram in main unit, generate descriptor if we are in
3747 -- Propagate_Exceptions mode.
3749 elsif Propagate_Exceptions
3750 and then Is_Imported (E)
3751 and then not Is_Intrinsic_Subprogram (E)
3752 and then Convention (E) /= Convention_Stubbed
3753 then
3754 if Result = No_List then
3755 Result := Empty_List;
3756 end if;
3757 end if;
3758 end if;
3760 return Result;
3761 end Freeze_Entity;
3763 -----------------------------
3764 -- Freeze_Enumeration_Type --
3765 -----------------------------
3767 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3768 begin
3769 if Has_Foreign_Convention (Typ)
3770 and then not Has_Size_Clause (Typ)
3771 and then Esize (Typ) < Standard_Integer_Size
3772 then
3773 Init_Esize (Typ, Standard_Integer_Size);
3774 else
3775 Adjust_Esize_For_Alignment (Typ);
3776 end if;
3777 end Freeze_Enumeration_Type;
3779 -----------------------
3780 -- Freeze_Expression --
3781 -----------------------
3783 procedure Freeze_Expression (N : Node_Id) is
3784 In_Def_Exp : constant Boolean := In_Default_Expression;
3785 Typ : Entity_Id;
3786 Nam : Entity_Id;
3787 Desig_Typ : Entity_Id;
3788 P : Node_Id;
3789 Parent_P : Node_Id;
3791 Freeze_Outside : Boolean := False;
3792 -- This flag is set true if the entity must be frozen outside the
3793 -- current subprogram. This happens in the case of expander generated
3794 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3795 -- not freeze all entities like other bodies, but which nevertheless
3796 -- may reference entities that have to be frozen before the body and
3797 -- obviously cannot be frozen inside the body.
3799 function In_Exp_Body (N : Node_Id) return Boolean;
3800 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3801 -- it is the handled statement sequence of an expander-generated
3802 -- subprogram (init proc, stream subprogram, or renaming as body).
3803 -- If so, this is not a freezing context.
3805 -----------------
3806 -- In_Exp_Body --
3807 -----------------
3809 function In_Exp_Body (N : Node_Id) return Boolean is
3810 P : Node_Id;
3811 Id : Entity_Id;
3813 begin
3814 if Nkind (N) = N_Subprogram_Body then
3815 P := N;
3816 else
3817 P := Parent (N);
3818 end if;
3820 if Nkind (P) /= N_Subprogram_Body then
3821 return False;
3823 else
3824 Id := Defining_Unit_Name (Specification (P));
3826 if Nkind (Id) = N_Defining_Identifier
3827 and then (Is_Init_Proc (Id) or else
3828 Is_TSS (Id, TSS_Stream_Input) or else
3829 Is_TSS (Id, TSS_Stream_Output) or else
3830 Is_TSS (Id, TSS_Stream_Read) or else
3831 Is_TSS (Id, TSS_Stream_Write) or else
3832 Nkind (Original_Node (P)) =
3833 N_Subprogram_Renaming_Declaration)
3834 then
3835 return True;
3836 else
3837 return False;
3838 end if;
3839 end if;
3840 end In_Exp_Body;
3842 -- Start of processing for Freeze_Expression
3844 begin
3845 -- Immediate return if freezing is inhibited. This flag is set by the
3846 -- analyzer to stop freezing on generated expressions that would cause
3847 -- freezing if they were in the source program, but which are not
3848 -- supposed to freeze, since they are created.
3850 if Must_Not_Freeze (N) then
3851 return;
3852 end if;
3854 -- If expression is non-static, then it does not freeze in a default
3855 -- expression, see section "Handling of Default Expressions" in the
3856 -- spec of package Sem for further details. Note that we have to
3857 -- make sure that we actually have a real expression (if we have
3858 -- a subtype indication, we can't test Is_Static_Expression!)
3860 if In_Def_Exp
3861 and then Nkind (N) in N_Subexpr
3862 and then not Is_Static_Expression (N)
3863 then
3864 return;
3865 end if;
3867 -- Freeze type of expression if not frozen already
3869 Typ := Empty;
3871 if Nkind (N) in N_Has_Etype then
3872 if not Is_Frozen (Etype (N)) then
3873 Typ := Etype (N);
3875 -- Base type may be an derived numeric type that is frozen at
3876 -- the point of declaration, but first_subtype is still unfrozen.
3878 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3879 Typ := First_Subtype (Etype (N));
3880 end if;
3881 end if;
3883 -- For entity name, freeze entity if not frozen already. A special
3884 -- exception occurs for an identifier that did not come from source.
3885 -- We don't let such identifiers freeze a non-internal entity, i.e.
3886 -- an entity that did come from source, since such an identifier was
3887 -- generated by the expander, and cannot have any semantic effect on
3888 -- the freezing semantics. For example, this stops the parameter of
3889 -- an initialization procedure from freezing the variable.
3891 if Is_Entity_Name (N)
3892 and then not Is_Frozen (Entity (N))
3893 and then (Nkind (N) /= N_Identifier
3894 or else Comes_From_Source (N)
3895 or else not Comes_From_Source (Entity (N)))
3896 then
3897 Nam := Entity (N);
3898 else
3899 Nam := Empty;
3900 end if;
3902 -- For an allocator freeze designated type if not frozen already
3904 -- For an aggregate whose component type is an access type, freeze the
3905 -- designated type now, so that its freeze does not appear within the
3906 -- loop that might be created in the expansion of the aggregate. If the
3907 -- designated type is a private type without full view, the expression
3908 -- cannot contain an allocator, so the type is not frozen.
3910 Desig_Typ := Empty;
3912 case Nkind (N) is
3913 when N_Allocator =>
3914 Desig_Typ := Designated_Type (Etype (N));
3916 when N_Aggregate =>
3917 if Is_Array_Type (Etype (N))
3918 and then Is_Access_Type (Component_Type (Etype (N)))
3919 then
3920 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
3921 end if;
3923 when N_Selected_Component |
3924 N_Indexed_Component |
3925 N_Slice =>
3927 if Is_Access_Type (Etype (Prefix (N))) then
3928 Desig_Typ := Designated_Type (Etype (Prefix (N)));
3929 end if;
3931 when others =>
3932 null;
3933 end case;
3935 if Desig_Typ /= Empty
3936 and then (Is_Frozen (Desig_Typ)
3937 or else (not Is_Fully_Defined (Desig_Typ)))
3938 then
3939 Desig_Typ := Empty;
3940 end if;
3942 -- All done if nothing needs freezing
3944 if No (Typ)
3945 and then No (Nam)
3946 and then No (Desig_Typ)
3947 then
3948 return;
3949 end if;
3951 -- Loop for looking at the right place to insert the freeze nodes
3952 -- exiting from the loop when it is appropriate to insert the freeze
3953 -- node before the current node P.
3955 -- Also checks some special exceptions to the freezing rules. These
3956 -- cases result in a direct return, bypassing the freeze action.
3958 P := N;
3959 loop
3960 Parent_P := Parent (P);
3962 -- If we don't have a parent, then we are not in a well-formed tree.
3963 -- This is an unusual case, but there are some legitimate situations
3964 -- in which this occurs, notably when the expressions in the range of
3965 -- a type declaration are resolved. We simply ignore the freeze
3966 -- request in this case. Is this right ???
3968 if No (Parent_P) then
3969 return;
3970 end if;
3972 -- See if we have got to an appropriate point in the tree
3974 case Nkind (Parent_P) is
3976 -- A special test for the exception of (RM 13.14(8)) for the case
3977 -- of per-object expressions (RM 3.8(18)) occurring in component
3978 -- definition or a discrete subtype definition. Note that we test
3979 -- for a component declaration which includes both cases we are
3980 -- interested in, and furthermore the tree does not have explicit
3981 -- nodes for either of these two constructs.
3983 when N_Component_Declaration =>
3985 -- The case we want to test for here is an identifier that is
3986 -- a per-object expression, this is either a discriminant that
3987 -- appears in a context other than the component declaration
3988 -- or it is a reference to the type of the enclosing construct.
3990 -- For either of these cases, we skip the freezing
3992 if not In_Default_Expression
3993 and then Nkind (N) = N_Identifier
3994 and then (Present (Entity (N)))
3995 then
3996 -- We recognize the discriminant case by just looking for
3997 -- a reference to a discriminant. It can only be one for
3998 -- the enclosing construct. Skip freezing in this case.
4000 if Ekind (Entity (N)) = E_Discriminant then
4001 return;
4003 -- For the case of a reference to the enclosing record,
4004 -- (or task or protected type), we look for a type that
4005 -- matches the current scope.
4007 elsif Entity (N) = Current_Scope then
4008 return;
4009 end if;
4010 end if;
4012 -- If we have an enumeration literal that appears as the choice in
4013 -- the aggregate of an enumeration representation clause, then
4014 -- freezing does not occur (RM 13.14(10)).
4016 when N_Enumeration_Representation_Clause =>
4018 -- The case we are looking for is an enumeration literal
4020 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4021 and then Is_Enumeration_Type (Etype (N))
4022 then
4023 -- If enumeration literal appears directly as the choice,
4024 -- do not freeze (this is the normal non-overloade case)
4026 if Nkind (Parent (N)) = N_Component_Association
4027 and then First (Choices (Parent (N))) = N
4028 then
4029 return;
4031 -- If enumeration literal appears as the name of function
4032 -- which is the choice, then also do not freeze. This
4033 -- happens in the overloaded literal case, where the
4034 -- enumeration literal is temporarily changed to a function
4035 -- call for overloading analysis purposes.
4037 elsif Nkind (Parent (N)) = N_Function_Call
4038 and then
4039 Nkind (Parent (Parent (N))) = N_Component_Association
4040 and then
4041 First (Choices (Parent (Parent (N)))) = Parent (N)
4042 then
4043 return;
4044 end if;
4045 end if;
4047 -- Normally if the parent is a handled sequence of statements,
4048 -- then the current node must be a statement, and that is an
4049 -- appropriate place to insert a freeze node.
4051 when N_Handled_Sequence_Of_Statements =>
4053 -- An exception occurs when the sequence of statements is for
4054 -- an expander generated body that did not do the usual freeze
4055 -- all operation. In this case we usually want to freeze
4056 -- outside this body, not inside it, and we skip past the
4057 -- subprogram body that we are inside.
4059 if In_Exp_Body (Parent_P) then
4061 -- However, we *do* want to freeze at this point if we have
4062 -- an entity to freeze, and that entity is declared *inside*
4063 -- the body of the expander generated procedure. This case
4064 -- is recognized by the scope of the type, which is either
4065 -- the spec for some enclosing body, or (in the case of
4066 -- init_procs, for which there are no separate specs) the
4067 -- current scope.
4069 declare
4070 Subp : constant Node_Id := Parent (Parent_P);
4071 Cspc : Entity_Id;
4073 begin
4074 if Nkind (Subp) = N_Subprogram_Body then
4075 Cspc := Corresponding_Spec (Subp);
4077 if (Present (Typ) and then Scope (Typ) = Cspc)
4078 or else
4079 (Present (Nam) and then Scope (Nam) = Cspc)
4080 then
4081 exit;
4083 elsif Present (Typ)
4084 and then Scope (Typ) = Current_Scope
4085 and then Current_Scope = Defining_Entity (Subp)
4086 then
4087 exit;
4088 end if;
4089 end if;
4090 end;
4092 -- If not that exception to the exception, then this is
4093 -- where we delay the freeze till outside the body.
4095 Parent_P := Parent (Parent_P);
4096 Freeze_Outside := True;
4098 -- Here if normal case where we are in handled statement
4099 -- sequence and want to do the insertion right there.
4101 else
4102 exit;
4103 end if;
4105 -- If parent is a body or a spec or a block, then the current node
4106 -- is a statement or declaration and we can insert the freeze node
4107 -- before it.
4109 when N_Package_Specification |
4110 N_Package_Body |
4111 N_Subprogram_Body |
4112 N_Task_Body |
4113 N_Protected_Body |
4114 N_Entry_Body |
4115 N_Block_Statement => exit;
4117 -- The expander is allowed to define types in any statements list,
4118 -- so any of the following parent nodes also mark a freezing point
4119 -- if the actual node is in a list of statements or declarations.
4121 when N_Exception_Handler |
4122 N_If_Statement |
4123 N_Elsif_Part |
4124 N_Case_Statement_Alternative |
4125 N_Compilation_Unit_Aux |
4126 N_Selective_Accept |
4127 N_Accept_Alternative |
4128 N_Delay_Alternative |
4129 N_Conditional_Entry_Call |
4130 N_Entry_Call_Alternative |
4131 N_Triggering_Alternative |
4132 N_Abortable_Part |
4133 N_Freeze_Entity =>
4135 exit when Is_List_Member (P);
4137 -- Note: The N_Loop_Statement is a special case. A type that
4138 -- appears in the source can never be frozen in a loop (this
4139 -- occurs only because of a loop expanded by the expander), so we
4140 -- keep on going. Otherwise we terminate the search. Same is true
4141 -- of any entity which comes from source. (if they have predefined
4142 -- type, that type does not appear to come from source, but the
4143 -- entity should not be frozen here).
4145 when N_Loop_Statement =>
4146 exit when not Comes_From_Source (Etype (N))
4147 and then (No (Nam) or else not Comes_From_Source (Nam));
4149 -- For all other cases, keep looking at parents
4151 when others =>
4152 null;
4153 end case;
4155 -- We fall through the case if we did not yet find the proper
4156 -- place in the free for inserting the freeze node, so climb!
4158 P := Parent_P;
4159 end loop;
4161 -- If the expression appears in a record or an initialization procedure,
4162 -- the freeze nodes are collected and attached to the current scope, to
4163 -- be inserted and analyzed on exit from the scope, to insure that
4164 -- generated entities appear in the correct scope. If the expression is
4165 -- a default for a discriminant specification, the scope is still void.
4166 -- The expression can also appear in the discriminant part of a private
4167 -- or concurrent type.
4169 -- If the expression appears in a constrained subcomponent of an
4170 -- enclosing record declaration, the freeze nodes must be attached to
4171 -- the outer record type so they can eventually be placed in the
4172 -- enclosing declaration list.
4174 -- The other case requiring this special handling is if we are in a
4175 -- default expression, since in that case we are about to freeze a
4176 -- static type, and the freeze scope needs to be the outer scope, not
4177 -- the scope of the subprogram with the default parameter.
4179 -- For default expressions in generic units, the Move_Freeze_Nodes
4180 -- mechanism (see sem_ch12.adb) takes care of placing them at the proper
4181 -- place, after the generic unit.
4183 if (In_Def_Exp and not Inside_A_Generic)
4184 or else Freeze_Outside
4185 or else (Is_Type (Current_Scope)
4186 and then (not Is_Concurrent_Type (Current_Scope)
4187 or else not Has_Completion (Current_Scope)))
4188 or else Ekind (Current_Scope) = E_Void
4189 then
4190 declare
4191 Loc : constant Source_Ptr := Sloc (Current_Scope);
4192 Freeze_Nodes : List_Id := No_List;
4193 Pos : Int := Scope_Stack.Last;
4195 begin
4196 if Present (Desig_Typ) then
4197 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4198 end if;
4200 if Present (Typ) then
4201 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4202 end if;
4204 if Present (Nam) then
4205 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4206 end if;
4208 -- The current scope may be that of a constrained component of
4209 -- an enclosing record declaration, which is above the current
4210 -- scope in the scope stack.
4212 if Is_Record_Type (Scope (Current_Scope)) then
4213 Pos := Pos - 1;
4214 end if;
4216 if Is_Non_Empty_List (Freeze_Nodes) then
4217 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4218 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
4219 Freeze_Nodes;
4220 else
4221 Append_List (Freeze_Nodes, Scope_Stack.Table
4222 (Pos).Pending_Freeze_Actions);
4223 end if;
4224 end if;
4225 end;
4227 return;
4228 end if;
4230 -- Now we have the right place to do the freezing. First, a special
4231 -- adjustment, if we are in default expression analysis mode, these
4232 -- freeze actions must not be thrown away (normally all inserted actions
4233 -- are thrown away in this mode. However, the freeze actions are from
4234 -- static expressions and one of the important reasons we are doing this
4235 -- special analysis is to get these freeze actions. Therefore we turn
4236 -- off the In_Default_Expression mode to propagate these freeze actions.
4237 -- This also means they get properly analyzed and expanded.
4239 In_Default_Expression := False;
4241 -- Freeze the designated type of an allocator (RM 13.14(13))
4243 if Present (Desig_Typ) then
4244 Freeze_Before (P, Desig_Typ);
4245 end if;
4247 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
4248 -- the enumeration representation clause exception in the loop above.
4250 if Present (Typ) then
4251 Freeze_Before (P, Typ);
4252 end if;
4254 -- Freeze name if one is present (RM 13.14(11))
4256 if Present (Nam) then
4257 Freeze_Before (P, Nam);
4258 end if;
4260 In_Default_Expression := In_Def_Exp;
4261 end Freeze_Expression;
4263 -----------------------------
4264 -- Freeze_Fixed_Point_Type --
4265 -----------------------------
4267 -- Certain fixed-point types and subtypes, including implicit base types
4268 -- and declared first subtypes, have not yet set up a range. This is
4269 -- because the range cannot be set until the Small and Size values are
4270 -- known, and these are not known till the type is frozen.
4272 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4273 -- whose bounds are unanalyzed real literals. This routine will recognize
4274 -- this case, and transform this range node into a properly typed range
4275 -- with properly analyzed and resolved values.
4277 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4278 Rng : constant Node_Id := Scalar_Range (Typ);
4279 Lo : constant Node_Id := Low_Bound (Rng);
4280 Hi : constant Node_Id := High_Bound (Rng);
4281 Btyp : constant Entity_Id := Base_Type (Typ);
4282 Brng : constant Node_Id := Scalar_Range (Btyp);
4283 BLo : constant Node_Id := Low_Bound (Brng);
4284 BHi : constant Node_Id := High_Bound (Brng);
4285 Small : constant Ureal := Small_Value (Typ);
4286 Loval : Ureal;
4287 Hival : Ureal;
4288 Atype : Entity_Id;
4290 Actual_Size : Nat;
4292 function Fsize (Lov, Hiv : Ureal) return Nat;
4293 -- Returns size of type with given bounds. Also leaves these
4294 -- bounds set as the current bounds of the Typ.
4296 -----------
4297 -- Fsize --
4298 -----------
4300 function Fsize (Lov, Hiv : Ureal) return Nat is
4301 begin
4302 Set_Realval (Lo, Lov);
4303 Set_Realval (Hi, Hiv);
4304 return Minimum_Size (Typ);
4305 end Fsize;
4307 -- Start of processing for Freeze_Fixed_Point_Type
4309 begin
4310 -- If Esize of a subtype has not previously been set, set it now
4312 if Unknown_Esize (Typ) then
4313 Atype := Ancestor_Subtype (Typ);
4315 if Present (Atype) then
4316 Set_Esize (Typ, Esize (Atype));
4317 else
4318 Set_Esize (Typ, Esize (Base_Type (Typ)));
4319 end if;
4320 end if;
4322 -- Immediate return if the range is already analyzed. This means that
4323 -- the range is already set, and does not need to be computed by this
4324 -- routine.
4326 if Analyzed (Rng) then
4327 return;
4328 end if;
4330 -- Immediate return if either of the bounds raises Constraint_Error
4332 if Raises_Constraint_Error (Lo)
4333 or else Raises_Constraint_Error (Hi)
4334 then
4335 return;
4336 end if;
4338 Loval := Realval (Lo);
4339 Hival := Realval (Hi);
4341 -- Ordinary fixed-point case
4343 if Is_Ordinary_Fixed_Point_Type (Typ) then
4345 -- For the ordinary fixed-point case, we are allowed to fudge the
4346 -- end-points up or down by small. Generally we prefer to fudge up,
4347 -- i.e. widen the bounds for non-model numbers so that the end points
4348 -- are included. However there are cases in which this cannot be
4349 -- done, and indeed cases in which we may need to narrow the bounds.
4350 -- The following circuit makes the decision.
4352 -- Note: our terminology here is that Incl_EP means that the bounds
4353 -- are widened by Small if necessary to include the end points, and
4354 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4355 -- end-points if this reduces the size.
4357 -- Note that in the Incl case, all we care about is including the
4358 -- end-points. In the Excl case, we want to narrow the bounds as
4359 -- much as permitted by the RM, to give the smallest possible size.
4361 Fudge : declare
4362 Loval_Incl_EP : Ureal;
4363 Hival_Incl_EP : Ureal;
4365 Loval_Excl_EP : Ureal;
4366 Hival_Excl_EP : Ureal;
4368 Size_Incl_EP : Nat;
4369 Size_Excl_EP : Nat;
4371 Model_Num : Ureal;
4372 First_Subt : Entity_Id;
4373 Actual_Lo : Ureal;
4374 Actual_Hi : Ureal;
4376 begin
4377 -- First step. Base types are required to be symmetrical. Right
4378 -- now, the base type range is a copy of the first subtype range.
4379 -- This will be corrected before we are done, but right away we
4380 -- need to deal with the case where both bounds are non-negative.
4381 -- In this case, we set the low bound to the negative of the high
4382 -- bound, to make sure that the size is computed to include the
4383 -- required sign. Note that we do not need to worry about the
4384 -- case of both bounds negative, because the sign will be dealt
4385 -- with anyway. Furthermore we can't just go making such a bound
4386 -- symmetrical, since in a twos-complement system, there is an
4387 -- extra negative value which could not be accomodated on the
4388 -- positive side.
4390 if Typ = Btyp
4391 and then not UR_Is_Negative (Loval)
4392 and then Hival > Loval
4393 then
4394 Loval := -Hival;
4395 Set_Realval (Lo, Loval);
4396 end if;
4398 -- Compute the fudged bounds. If the number is a model number,
4399 -- then we do nothing to include it, but we are allowed to backoff
4400 -- to the next adjacent model number when we exclude it. If it is
4401 -- not a model number then we straddle the two values with the
4402 -- model numbers on either side.
4404 Model_Num := UR_Trunc (Loval / Small) * Small;
4406 if Loval = Model_Num then
4407 Loval_Incl_EP := Model_Num;
4408 else
4409 Loval_Incl_EP := Model_Num - Small;
4410 end if;
4412 -- The low value excluding the end point is Small greater, but
4413 -- we do not do this exclusion if the low value is positive,
4414 -- since it can't help the size and could actually hurt by
4415 -- crossing the high bound.
4417 if UR_Is_Negative (Loval_Incl_EP) then
4418 Loval_Excl_EP := Loval_Incl_EP + Small;
4420 -- If the value went from negative to zero, then we have the
4421 -- case where Loval_Incl_EP is the model number just below
4422 -- zero, so we want to stick to the negative value for the
4423 -- base type to maintain the condition that the size will
4424 -- include signed values.
4426 if Typ = Btyp
4427 and then UR_Is_Zero (Loval_Excl_EP)
4428 then
4429 Loval_Excl_EP := Loval_Incl_EP;
4430 end if;
4432 else
4433 Loval_Excl_EP := Loval_Incl_EP;
4434 end if;
4436 -- Similar processing for upper bound and high value
4438 Model_Num := UR_Trunc (Hival / Small) * Small;
4440 if Hival = Model_Num then
4441 Hival_Incl_EP := Model_Num;
4442 else
4443 Hival_Incl_EP := Model_Num + Small;
4444 end if;
4446 if UR_Is_Positive (Hival_Incl_EP) then
4447 Hival_Excl_EP := Hival_Incl_EP - Small;
4448 else
4449 Hival_Excl_EP := Hival_Incl_EP;
4450 end if;
4452 -- One further adjustment is needed. In the case of subtypes, we
4453 -- cannot go outside the range of the base type, or we get
4454 -- peculiarities, and the base type range is already set. This
4455 -- only applies to the Incl values, since clearly the Excl values
4456 -- are already as restricted as they are allowed to be.
4458 if Typ /= Btyp then
4459 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4460 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4461 end if;
4463 -- Get size including and excluding end points
4465 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4466 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4468 -- No need to exclude end-points if it does not reduce size
4470 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4471 Loval_Excl_EP := Loval_Incl_EP;
4472 end if;
4474 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4475 Hival_Excl_EP := Hival_Incl_EP;
4476 end if;
4478 -- Now we set the actual size to be used. We want to use the
4479 -- bounds fudged up to include the end-points but only if this
4480 -- can be done without violating a specifically given size
4481 -- size clause or causing an unacceptable increase in size.
4483 -- Case of size clause given
4485 if Has_Size_Clause (Typ) then
4487 -- Use the inclusive size only if it is consistent with
4488 -- the explicitly specified size.
4490 if Size_Incl_EP <= RM_Size (Typ) then
4491 Actual_Lo := Loval_Incl_EP;
4492 Actual_Hi := Hival_Incl_EP;
4493 Actual_Size := Size_Incl_EP;
4495 -- If the inclusive size is too large, we try excluding
4496 -- the end-points (will be caught later if does not work).
4498 else
4499 Actual_Lo := Loval_Excl_EP;
4500 Actual_Hi := Hival_Excl_EP;
4501 Actual_Size := Size_Excl_EP;
4502 end if;
4504 -- Case of size clause not given
4506 else
4507 -- If we have a base type whose corresponding first subtype
4508 -- has an explicit size that is large enough to include our
4509 -- end-points, then do so. There is no point in working hard
4510 -- to get a base type whose size is smaller than the specified
4511 -- size of the first subtype.
4513 First_Subt := First_Subtype (Typ);
4515 if Has_Size_Clause (First_Subt)
4516 and then Size_Incl_EP <= Esize (First_Subt)
4517 then
4518 Actual_Size := Size_Incl_EP;
4519 Actual_Lo := Loval_Incl_EP;
4520 Actual_Hi := Hival_Incl_EP;
4522 -- If excluding the end-points makes the size smaller and
4523 -- results in a size of 8,16,32,64, then we take the smaller
4524 -- size. For the 64 case, this is compulsory. For the other
4525 -- cases, it seems reasonable. We like to include end points
4526 -- if we can, but not at the expense of moving to the next
4527 -- natural boundary of size.
4529 elsif Size_Incl_EP /= Size_Excl_EP
4530 and then
4531 (Size_Excl_EP = 8 or else
4532 Size_Excl_EP = 16 or else
4533 Size_Excl_EP = 32 or else
4534 Size_Excl_EP = 64)
4535 then
4536 Actual_Size := Size_Excl_EP;
4537 Actual_Lo := Loval_Excl_EP;
4538 Actual_Hi := Hival_Excl_EP;
4540 -- Otherwise we can definitely include the end points
4542 else
4543 Actual_Size := Size_Incl_EP;
4544 Actual_Lo := Loval_Incl_EP;
4545 Actual_Hi := Hival_Incl_EP;
4546 end if;
4548 -- One pathological case: normally we never fudge a low bound
4549 -- down, since it would seem to increase the size (if it has
4550 -- any effect), but for ranges containing single value, or no
4551 -- values, the high bound can be small too large. Consider:
4553 -- type t is delta 2.0**(-14)
4554 -- range 131072.0 .. 0;
4556 -- That lower bound is *just* outside the range of 32 bits, and
4557 -- does need fudging down in this case. Note that the bounds
4558 -- will always have crossed here, since the high bound will be
4559 -- fudged down if necessary, as in the case of:
4561 -- type t is delta 2.0**(-14)
4562 -- range 131072.0 .. 131072.0;
4564 -- So we detect the situation by looking for crossed bounds,
4565 -- and if the bounds are crossed, and the low bound is greater
4566 -- than zero, we will always back it off by small, since this
4567 -- is completely harmless.
4569 if Actual_Lo > Actual_Hi then
4570 if UR_Is_Positive (Actual_Lo) then
4571 Actual_Lo := Loval_Incl_EP - Small;
4572 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4574 -- And of course, we need to do exactly the same parallel
4575 -- fudge for flat ranges in the negative region.
4577 elsif UR_Is_Negative (Actual_Hi) then
4578 Actual_Hi := Hival_Incl_EP + Small;
4579 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4580 end if;
4581 end if;
4582 end if;
4584 Set_Realval (Lo, Actual_Lo);
4585 Set_Realval (Hi, Actual_Hi);
4586 end Fudge;
4588 -- For the decimal case, none of this fudging is required, since there
4589 -- are no end-point problems in the decimal case (the end-points are
4590 -- always included).
4592 else
4593 Actual_Size := Fsize (Loval, Hival);
4594 end if;
4596 -- At this stage, the actual size has been calculated and the proper
4597 -- required bounds are stored in the low and high bounds.
4599 if Actual_Size > 64 then
4600 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4601 Error_Msg_N
4602 ("size required (^) for type& too large, maximum allowed is 64",
4603 Typ);
4604 Actual_Size := 64;
4605 end if;
4607 -- Check size against explicit given size
4609 if Has_Size_Clause (Typ) then
4610 if Actual_Size > RM_Size (Typ) then
4611 Error_Msg_Uint_1 := RM_Size (Typ);
4612 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4613 Error_Msg_NE
4614 ("size given (^) for type& too small, minimum allowed is ^",
4615 Size_Clause (Typ), Typ);
4617 else
4618 Actual_Size := UI_To_Int (Esize (Typ));
4619 end if;
4621 -- Increase size to next natural boundary if no size clause given
4623 else
4624 if Actual_Size <= 8 then
4625 Actual_Size := 8;
4626 elsif Actual_Size <= 16 then
4627 Actual_Size := 16;
4628 elsif Actual_Size <= 32 then
4629 Actual_Size := 32;
4630 else
4631 Actual_Size := 64;
4632 end if;
4634 Init_Esize (Typ, Actual_Size);
4635 Adjust_Esize_For_Alignment (Typ);
4636 end if;
4638 -- If we have a base type, then expand the bounds so that they extend to
4639 -- the full width of the allocated size in bits, to avoid junk range
4640 -- checks on intermediate computations.
4642 if Base_Type (Typ) = Typ then
4643 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4644 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4645 end if;
4647 -- Final step is to reanalyze the bounds using the proper type
4648 -- and set the Corresponding_Integer_Value fields of the literals.
4650 Set_Etype (Lo, Empty);
4651 Set_Analyzed (Lo, False);
4652 Analyze (Lo);
4654 -- Resolve with universal fixed if the base type, and the base type if
4655 -- it is a subtype. Note we can't resolve the base type with itself,
4656 -- that would be a reference before definition.
4658 if Typ = Btyp then
4659 Resolve (Lo, Universal_Fixed);
4660 else
4661 Resolve (Lo, Btyp);
4662 end if;
4664 -- Set corresponding integer value for bound
4666 Set_Corresponding_Integer_Value
4667 (Lo, UR_To_Uint (Realval (Lo) / Small));
4669 -- Similar processing for high bound
4671 Set_Etype (Hi, Empty);
4672 Set_Analyzed (Hi, False);
4673 Analyze (Hi);
4675 if Typ = Btyp then
4676 Resolve (Hi, Universal_Fixed);
4677 else
4678 Resolve (Hi, Btyp);
4679 end if;
4681 Set_Corresponding_Integer_Value
4682 (Hi, UR_To_Uint (Realval (Hi) / Small));
4684 -- Set type of range to correspond to bounds
4686 Set_Etype (Rng, Etype (Lo));
4688 -- Set Esize to calculated size if not set already
4690 if Unknown_Esize (Typ) then
4691 Init_Esize (Typ, Actual_Size);
4692 end if;
4694 -- Set RM_Size if not already set. If already set, check value
4696 declare
4697 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4699 begin
4700 if RM_Size (Typ) /= Uint_0 then
4701 if RM_Size (Typ) < Minsiz then
4702 Error_Msg_Uint_1 := RM_Size (Typ);
4703 Error_Msg_Uint_2 := Minsiz;
4704 Error_Msg_NE
4705 ("size given (^) for type& too small, minimum allowed is ^",
4706 Size_Clause (Typ), Typ);
4707 end if;
4709 else
4710 Set_RM_Size (Typ, Minsiz);
4711 end if;
4712 end;
4713 end Freeze_Fixed_Point_Type;
4715 ------------------
4716 -- Freeze_Itype --
4717 ------------------
4719 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4720 L : List_Id;
4722 begin
4723 Set_Has_Delayed_Freeze (T);
4724 L := Freeze_Entity (T, Sloc (N));
4726 if Is_Non_Empty_List (L) then
4727 Insert_Actions (N, L);
4728 end if;
4729 end Freeze_Itype;
4731 --------------------------
4732 -- Freeze_Static_Object --
4733 --------------------------
4735 procedure Freeze_Static_Object (E : Entity_Id) is
4737 Cannot_Be_Static : exception;
4738 -- Exception raised if the type of a static object cannot be made
4739 -- static. This happens if the type depends on non-global objects.
4741 procedure Ensure_Expression_Is_SA (N : Node_Id);
4742 -- Called to ensure that an expression used as part of a type definition
4743 -- is statically allocatable, which means that the expression type is
4744 -- statically allocatable, and the expression is either static, or a
4745 -- reference to a library level constant.
4747 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4748 -- Called to mark a type as static, checking that it is possible
4749 -- to set the type as static. If it is not possible, then the
4750 -- exception Cannot_Be_Static is raised.
4752 -----------------------------
4753 -- Ensure_Expression_Is_SA --
4754 -----------------------------
4756 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4757 Ent : Entity_Id;
4759 begin
4760 Ensure_Type_Is_SA (Etype (N));
4762 if Is_Static_Expression (N) then
4763 return;
4765 elsif Nkind (N) = N_Identifier then
4766 Ent := Entity (N);
4768 if Present (Ent)
4769 and then Ekind (Ent) = E_Constant
4770 and then Is_Library_Level_Entity (Ent)
4771 then
4772 return;
4773 end if;
4774 end if;
4776 raise Cannot_Be_Static;
4777 end Ensure_Expression_Is_SA;
4779 -----------------------
4780 -- Ensure_Type_Is_SA --
4781 -----------------------
4783 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4784 N : Node_Id;
4785 C : Entity_Id;
4787 begin
4788 -- If type is library level, we are all set
4790 if Is_Library_Level_Entity (Typ) then
4791 return;
4792 end if;
4794 -- We are also OK if the type already marked as statically allocated,
4795 -- which means we processed it before.
4797 if Is_Statically_Allocated (Typ) then
4798 return;
4799 end if;
4801 -- Mark type as statically allocated
4803 Set_Is_Statically_Allocated (Typ);
4805 -- Check that it is safe to statically allocate this type
4807 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4808 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4809 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4811 elsif Is_Array_Type (Typ) then
4812 N := First_Index (Typ);
4813 while Present (N) loop
4814 Ensure_Type_Is_SA (Etype (N));
4815 Next_Index (N);
4816 end loop;
4818 Ensure_Type_Is_SA (Component_Type (Typ));
4820 elsif Is_Access_Type (Typ) then
4821 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4823 declare
4824 F : Entity_Id;
4825 T : constant Entity_Id := Etype (Designated_Type (Typ));
4827 begin
4828 if T /= Standard_Void_Type then
4829 Ensure_Type_Is_SA (T);
4830 end if;
4832 F := First_Formal (Designated_Type (Typ));
4834 while Present (F) loop
4835 Ensure_Type_Is_SA (Etype (F));
4836 Next_Formal (F);
4837 end loop;
4838 end;
4840 else
4841 Ensure_Type_Is_SA (Designated_Type (Typ));
4842 end if;
4844 elsif Is_Record_Type (Typ) then
4845 C := First_Entity (Typ);
4846 while Present (C) loop
4847 if Ekind (C) = E_Discriminant
4848 or else Ekind (C) = E_Component
4849 then
4850 Ensure_Type_Is_SA (Etype (C));
4852 elsif Is_Type (C) then
4853 Ensure_Type_Is_SA (C);
4854 end if;
4856 Next_Entity (C);
4857 end loop;
4859 elsif Ekind (Typ) = E_Subprogram_Type then
4860 Ensure_Type_Is_SA (Etype (Typ));
4862 C := First_Formal (Typ);
4863 while Present (C) loop
4864 Ensure_Type_Is_SA (Etype (C));
4865 Next_Formal (C);
4866 end loop;
4868 else
4869 raise Cannot_Be_Static;
4870 end if;
4871 end Ensure_Type_Is_SA;
4873 -- Start of processing for Freeze_Static_Object
4875 begin
4876 Ensure_Type_Is_SA (Etype (E));
4878 exception
4879 when Cannot_Be_Static =>
4881 -- If the object that cannot be static is imported or exported,
4882 -- then we give an error message saying that this object cannot
4883 -- be imported or exported.
4885 if Is_Imported (E) then
4886 Error_Msg_N
4887 ("& cannot be imported (local type is not constant)", E);
4889 -- Otherwise must be exported, something is wrong if compiler
4890 -- is marking something as statically allocated which cannot be).
4892 else pragma Assert (Is_Exported (E));
4893 Error_Msg_N
4894 ("& cannot be exported (local type is not constant)", E);
4895 end if;
4896 end Freeze_Static_Object;
4898 -----------------------
4899 -- Freeze_Subprogram --
4900 -----------------------
4902 procedure Freeze_Subprogram (E : Entity_Id) is
4903 Retype : Entity_Id;
4904 F : Entity_Id;
4906 begin
4907 -- Subprogram may not have an address clause unless it is imported
4909 if Present (Address_Clause (E)) then
4910 if not Is_Imported (E) then
4911 Error_Msg_N
4912 ("address clause can only be given " &
4913 "for imported subprogram",
4914 Name (Address_Clause (E)));
4915 end if;
4916 end if;
4918 -- Reset the Pure indication on an imported subprogram unless an
4919 -- explicit Pure_Function pragma was present. We do this because
4920 -- otherwise it is an insidious error to call a non-pure function from
4921 -- pure unit and have calls mysteriously optimized away. What happens
4922 -- here is that the Import can bypass the normal check to ensure that
4923 -- pure units call only pure subprograms.
4925 if Is_Imported (E)
4926 and then Is_Pure (E)
4927 and then not Has_Pragma_Pure_Function (E)
4928 then
4929 Set_Is_Pure (E, False);
4930 end if;
4932 -- For non-foreign convention subprograms, this is where we create
4933 -- the extra formals (for accessibility level and constrained bit
4934 -- information). We delay this till the freeze point precisely so
4935 -- that we know the convention!
4937 if not Has_Foreign_Convention (E) then
4938 Create_Extra_Formals (E);
4939 Set_Mechanisms (E);
4941 -- If this is convention Ada and a Valued_Procedure, that's odd
4943 if Ekind (E) = E_Procedure
4944 and then Is_Valued_Procedure (E)
4945 and then Convention (E) = Convention_Ada
4946 and then Warn_On_Export_Import
4947 then
4948 Error_Msg_N
4949 ("?Valued_Procedure has no effect for convention Ada", E);
4950 Set_Is_Valued_Procedure (E, False);
4951 end if;
4953 -- Case of foreign convention
4955 else
4956 Set_Mechanisms (E);
4958 -- For foreign conventions, warn about return of an
4959 -- unconstrained array.
4961 -- Note: we *do* allow a return by descriptor for the VMS case,
4962 -- though here there is probably more to be done ???
4964 if Ekind (E) = E_Function then
4965 Retype := Underlying_Type (Etype (E));
4967 -- If no return type, probably some other error, e.g. a
4968 -- missing full declaration, so ignore.
4970 if No (Retype) then
4971 null;
4973 -- If the return type is generic, we have emitted a warning
4974 -- earlier on, and there is nothing else to check here. Specific
4975 -- instantiations may lead to erroneous behavior.
4977 elsif Is_Generic_Type (Etype (E)) then
4978 null;
4980 elsif Is_Array_Type (Retype)
4981 and then not Is_Constrained (Retype)
4982 and then Mechanism (E) not in Descriptor_Codes
4983 and then Warn_On_Export_Import
4984 then
4985 Error_Msg_N
4986 ("?foreign convention function& should not return " &
4987 "unconstrained array", E);
4988 return;
4989 end if;
4990 end if;
4992 -- If any of the formals for an exported foreign convention
4993 -- subprogram have defaults, then emit an appropriate warning since
4994 -- this is odd (default cannot be used from non-Ada code)
4996 if Is_Exported (E) then
4997 F := First_Formal (E);
4998 while Present (F) loop
4999 if Warn_On_Export_Import
5000 and then Present (Default_Value (F))
5001 then
5002 Error_Msg_N
5003 ("?parameter cannot be defaulted in non-Ada call",
5004 Default_Value (F));
5005 end if;
5007 Next_Formal (F);
5008 end loop;
5009 end if;
5010 end if;
5012 -- For VMS, descriptor mechanisms for parameters are allowed only
5013 -- for imported/exported subprograms. Moreover, the NCA descriptor
5014 -- is not allowed for parameters of exported subprograms.
5016 if OpenVMS_On_Target then
5017 if Is_Exported (E) then
5018 F := First_Formal (E);
5019 while Present (F) loop
5020 if Mechanism (F) = By_Descriptor_NCA then
5021 Error_Msg_N
5022 ("'N'C'A' descriptor for parameter not permitted", F);
5023 Error_Msg_N
5024 ("\can only be used for imported subprogram", F);
5025 end if;
5027 Next_Formal (F);
5028 end loop;
5030 elsif not Is_Imported (E) then
5031 F := First_Formal (E);
5032 while Present (F) loop
5033 if Mechanism (F) in Descriptor_Codes then
5034 Error_Msg_N
5035 ("descriptor mechanism for parameter not permitted", F);
5036 Error_Msg_N
5037 ("\can only be used for imported/exported subprogram", F);
5038 end if;
5040 Next_Formal (F);
5041 end loop;
5042 end if;
5043 end if;
5045 -- Pragma Inline_Always is disallowed for dispatching subprograms
5046 -- because the address of such subprograms is saved in the dispatch
5047 -- table to support dispatching calls, and dispatching calls cannot
5048 -- be inlined. This is consistent with the restriction against using
5049 -- 'Access or 'Address on an Inline_Always subprogram.
5051 if Is_Dispatching_Operation (E)
5052 and then Has_Pragma_Inline_Always (E)
5053 then
5054 Error_Msg_N
5055 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5056 end if;
5057 end Freeze_Subprogram;
5059 ----------------------
5060 -- Is_Fully_Defined --
5061 ----------------------
5063 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5064 begin
5065 if Ekind (T) = E_Class_Wide_Type then
5066 return Is_Fully_Defined (Etype (T));
5068 elsif Is_Array_Type (T) then
5069 return Is_Fully_Defined (Component_Type (T));
5071 elsif Is_Record_Type (T)
5072 and not Is_Private_Type (T)
5073 then
5074 -- Verify that the record type has no components with private types
5075 -- without completion.
5077 declare
5078 Comp : Entity_Id;
5080 begin
5081 Comp := First_Component (T);
5083 while Present (Comp) loop
5084 if not Is_Fully_Defined (Etype (Comp)) then
5085 return False;
5086 end if;
5088 Next_Component (Comp);
5089 end loop;
5090 return True;
5091 end;
5093 else
5094 return not Is_Private_Type (T)
5095 or else Present (Full_View (Base_Type (T)));
5096 end if;
5097 end Is_Fully_Defined;
5099 ---------------------------------
5100 -- Process_Default_Expressions --
5101 ---------------------------------
5103 procedure Process_Default_Expressions
5104 (E : Entity_Id;
5105 After : in out Node_Id)
5107 Loc : constant Source_Ptr := Sloc (E);
5108 Dbody : Node_Id;
5109 Formal : Node_Id;
5110 Dcopy : Node_Id;
5111 Dnam : Entity_Id;
5113 begin
5114 Set_Default_Expressions_Processed (E);
5116 -- A subprogram instance and its associated anonymous subprogram share
5117 -- their signature. The default expression functions are defined in the
5118 -- wrapper packages for the anonymous subprogram, and should not be
5119 -- generated again for the instance.
5121 if Is_Generic_Instance (E)
5122 and then Present (Alias (E))
5123 and then Default_Expressions_Processed (Alias (E))
5124 then
5125 return;
5126 end if;
5128 Formal := First_Formal (E);
5129 while Present (Formal) loop
5130 if Present (Default_Value (Formal)) then
5132 -- We work with a copy of the default expression because we
5133 -- do not want to disturb the original, since this would mess
5134 -- up the conformance checking.
5136 Dcopy := New_Copy_Tree (Default_Value (Formal));
5138 -- The analysis of the expression may generate insert actions,
5139 -- which of course must not be executed. We wrap those actions
5140 -- in a procedure that is not called, and later on eliminated.
5141 -- The following cases have no side-effects, and are analyzed
5142 -- directly.
5144 if Nkind (Dcopy) = N_Identifier
5145 or else Nkind (Dcopy) = N_Expanded_Name
5146 or else Nkind (Dcopy) = N_Integer_Literal
5147 or else (Nkind (Dcopy) = N_Real_Literal
5148 and then not Vax_Float (Etype (Dcopy)))
5149 or else Nkind (Dcopy) = N_Character_Literal
5150 or else Nkind (Dcopy) = N_String_Literal
5151 or else Known_Null (Dcopy)
5152 or else (Nkind (Dcopy) = N_Attribute_Reference
5153 and then
5154 Attribute_Name (Dcopy) = Name_Null_Parameter)
5155 then
5157 -- If there is no default function, we must still do a full
5158 -- analyze call on the default value, to ensure that all error
5159 -- checks are performed, e.g. those associated with static
5160 -- evaluation. Note: this branch will always be taken if the
5161 -- analyzer is turned off (but we still need the error checks).
5163 -- Note: the setting of parent here is to meet the requirement
5164 -- that we can only analyze the expression while attached to
5165 -- the tree. Really the requirement is that the parent chain
5166 -- be set, we don't actually need to be in the tree.
5168 Set_Parent (Dcopy, Declaration_Node (Formal));
5169 Analyze (Dcopy);
5171 -- Default expressions are resolved with their own type if the
5172 -- context is generic, to avoid anomalies with private types.
5174 if Ekind (Scope (E)) = E_Generic_Package then
5175 Resolve (Dcopy);
5176 else
5177 Resolve (Dcopy, Etype (Formal));
5178 end if;
5180 -- If that resolved expression will raise constraint error,
5181 -- then flag the default value as raising constraint error.
5182 -- This allows a proper error message on the calls.
5184 if Raises_Constraint_Error (Dcopy) then
5185 Set_Raises_Constraint_Error (Default_Value (Formal));
5186 end if;
5188 -- If the default is a parameterless call, we use the name of
5189 -- the called function directly, and there is no body to build.
5191 elsif Nkind (Dcopy) = N_Function_Call
5192 and then No (Parameter_Associations (Dcopy))
5193 then
5194 null;
5196 -- Else construct and analyze the body of a wrapper procedure
5197 -- that contains an object declaration to hold the expression.
5198 -- Given that this is done only to complete the analysis, it
5199 -- simpler to build a procedure than a function which might
5200 -- involve secondary stack expansion.
5202 else
5203 Dnam :=
5204 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5206 Dbody :=
5207 Make_Subprogram_Body (Loc,
5208 Specification =>
5209 Make_Procedure_Specification (Loc,
5210 Defining_Unit_Name => Dnam),
5212 Declarations => New_List (
5213 Make_Object_Declaration (Loc,
5214 Defining_Identifier =>
5215 Make_Defining_Identifier (Loc,
5216 New_Internal_Name ('T')),
5217 Object_Definition =>
5218 New_Occurrence_Of (Etype (Formal), Loc),
5219 Expression => New_Copy_Tree (Dcopy))),
5221 Handled_Statement_Sequence =>
5222 Make_Handled_Sequence_Of_Statements (Loc,
5223 Statements => New_List));
5225 Set_Scope (Dnam, Scope (E));
5226 Set_Assignment_OK (First (Declarations (Dbody)));
5227 Set_Is_Eliminated (Dnam);
5228 Insert_After (After, Dbody);
5229 Analyze (Dbody);
5230 After := Dbody;
5231 end if;
5232 end if;
5234 Next_Formal (Formal);
5235 end loop;
5237 end Process_Default_Expressions;
5239 ----------------------------------------
5240 -- Set_Component_Alignment_If_Not_Set --
5241 ----------------------------------------
5243 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5244 begin
5245 -- Ignore if not base type, subtypes don't need anything
5247 if Typ /= Base_Type (Typ) then
5248 return;
5249 end if;
5251 -- Do not override existing representation
5253 if Is_Packed (Typ) then
5254 return;
5256 elsif Has_Specified_Layout (Typ) then
5257 return;
5259 elsif Component_Alignment (Typ) /= Calign_Default then
5260 return;
5262 else
5263 Set_Component_Alignment
5264 (Typ, Scope_Stack.Table
5265 (Scope_Stack.Last).Component_Alignment_Default);
5266 end if;
5267 end Set_Component_Alignment_If_Not_Set;
5269 ---------------------------
5270 -- Set_Debug_Info_Needed --
5271 ---------------------------
5273 procedure Set_Debug_Info_Needed (T : Entity_Id) is
5274 begin
5275 if No (T)
5276 or else Needs_Debug_Info (T)
5277 or else Debug_Info_Off (T)
5278 then
5279 return;
5280 else
5281 Set_Needs_Debug_Info (T);
5282 end if;
5284 if Is_Object (T) then
5285 Set_Debug_Info_Needed (Etype (T));
5287 elsif Is_Type (T) then
5288 Set_Debug_Info_Needed (Etype (T));
5290 if Is_Record_Type (T) then
5291 declare
5292 Ent : Entity_Id := First_Entity (T);
5293 begin
5294 while Present (Ent) loop
5295 Set_Debug_Info_Needed (Ent);
5296 Next_Entity (Ent);
5297 end loop;
5298 end;
5300 elsif Is_Array_Type (T) then
5301 Set_Debug_Info_Needed (Component_Type (T));
5303 declare
5304 Indx : Node_Id := First_Index (T);
5305 begin
5306 while Present (Indx) loop
5307 Set_Debug_Info_Needed (Etype (Indx));
5308 Indx := Next_Index (Indx);
5309 end loop;
5310 end;
5312 if Is_Packed (T) then
5313 Set_Debug_Info_Needed (Packed_Array_Type (T));
5314 end if;
5316 elsif Is_Access_Type (T) then
5317 Set_Debug_Info_Needed (Directly_Designated_Type (T));
5319 elsif Is_Private_Type (T) then
5320 Set_Debug_Info_Needed (Full_View (T));
5322 elsif Is_Protected_Type (T) then
5323 Set_Debug_Info_Needed (Corresponding_Record_Type (T));
5324 end if;
5325 end if;
5326 end Set_Debug_Info_Needed;
5328 ------------------
5329 -- Undelay_Type --
5330 ------------------
5332 procedure Undelay_Type (T : Entity_Id) is
5333 begin
5334 Set_Has_Delayed_Freeze (T, False);
5335 Set_Freeze_Node (T, Empty);
5337 -- Since we don't want T to have a Freeze_Node, we don't want its
5338 -- Full_View or Corresponding_Record_Type to have one either.
5340 -- ??? Fundamentally, this whole handling is a kludge. What we really
5341 -- want is to be sure that for an Itype that's part of record R and is a
5342 -- subtype of type T, that it's frozen after the later of the freeze
5343 -- points of R and T. We have no way of doing that directly, so what we
5344 -- do is force most such Itypes to be frozen as part of freezing R via
5345 -- this procedure and only delay the ones that need to be delayed
5346 -- (mostly the designated types of access types that are defined as part
5347 -- of the record).
5349 if Is_Private_Type (T)
5350 and then Present (Full_View (T))
5351 and then Is_Itype (Full_View (T))
5352 and then Is_Record_Type (Scope (Full_View (T)))
5353 then
5354 Undelay_Type (Full_View (T));
5355 end if;
5357 if Is_Concurrent_Type (T)
5358 and then Present (Corresponding_Record_Type (T))
5359 and then Is_Itype (Corresponding_Record_Type (T))
5360 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5361 then
5362 Undelay_Type (Corresponding_Record_Type (T));
5363 end if;
5364 end Undelay_Type;
5366 ------------------
5367 -- Warn_Overlay --
5368 ------------------
5370 procedure Warn_Overlay
5371 (Expr : Node_Id;
5372 Typ : Entity_Id;
5373 Nam : Entity_Id)
5375 Ent : constant Entity_Id := Entity (Nam);
5376 -- The object to which the address clause applies
5378 Init : Node_Id;
5379 Old : Entity_Id := Empty;
5380 Decl : Node_Id;
5382 begin
5383 -- No warning if address clause overlay warnings are off
5385 if not Address_Clause_Overlay_Warnings then
5386 return;
5387 end if;
5389 -- No warning if there is an explicit initialization
5391 Init := Original_Node (Expression (Declaration_Node (Ent)));
5393 if Present (Init) and then Comes_From_Source (Init) then
5394 return;
5395 end if;
5397 -- We only give the warning for non-imported entities of a type for
5398 -- which a non-null base init proc is defined (or for access types which
5399 -- have implicit null initialization).
5401 if Present (Expr)
5402 and then (Has_Non_Null_Base_Init_Proc (Typ)
5403 or else Is_Access_Type (Typ))
5404 and then not Is_Imported (Ent)
5405 then
5406 if Nkind (Expr) = N_Attribute_Reference
5407 and then Is_Entity_Name (Prefix (Expr))
5408 then
5409 Old := Entity (Prefix (Expr));
5411 elsif Is_Entity_Name (Expr)
5412 and then Ekind (Entity (Expr)) = E_Constant
5413 then
5414 Decl := Declaration_Node (Entity (Expr));
5416 if Nkind (Decl) = N_Object_Declaration
5417 and then Present (Expression (Decl))
5418 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5419 and then Is_Entity_Name (Prefix (Expression (Decl)))
5420 then
5421 Old := Entity (Prefix (Expression (Decl)));
5423 elsif Nkind (Expr) = N_Function_Call then
5424 return;
5425 end if;
5427 -- A function call (most likely to To_Address) is probably not an
5428 -- overlay, so skip warning. Ditto if the function call was inlined
5429 -- and transformed into an entity.
5431 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5432 return;
5433 end if;
5435 Decl := Next (Parent (Expr));
5437 -- If a pragma Import follows, we assume that it is for the current
5438 -- target of the address clause, and skip the warning.
5440 if Present (Decl)
5441 and then Nkind (Decl) = N_Pragma
5442 and then Chars (Decl) = Name_Import
5443 then
5444 return;
5445 end if;
5447 if Present (Old) then
5448 Error_Msg_Node_2 := Old;
5449 Error_Msg_N
5450 ("default initialization of & may modify &?",
5451 Nam);
5452 else
5453 Error_Msg_N
5454 ("default initialization of & may modify overlaid storage?",
5455 Nam);
5456 end if;
5458 -- Add friendly warning if initialization comes from a packed array
5459 -- component.
5461 if Is_Record_Type (Typ) then
5462 declare
5463 Comp : Entity_Id;
5465 begin
5466 Comp := First_Component (Typ);
5468 while Present (Comp) loop
5469 if Nkind (Parent (Comp)) = N_Component_Declaration
5470 and then Present (Expression (Parent (Comp)))
5471 then
5472 exit;
5473 elsif Is_Array_Type (Etype (Comp))
5474 and then Present (Packed_Array_Type (Etype (Comp)))
5475 then
5476 Error_Msg_NE
5477 ("\packed array component& " &
5478 "will be initialized to zero?",
5479 Nam, Comp);
5480 exit;
5481 else
5482 Next_Component (Comp);
5483 end if;
5484 end loop;
5485 end;
5486 end if;
5488 Error_Msg_N
5489 ("\use pragma Import for & to " &
5490 "suppress initialization (RM B.1(24))?",
5491 Nam);
5492 end if;
5493 end Warn_Overlay;
5495 end Freeze;