1 -----------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Ch7
; use Exp_Ch7
;
33 with Exp_Pakd
; use Exp_Pakd
;
34 with Exp_Util
; use Exp_Util
;
35 with Exp_Tss
; use Exp_Tss
;
36 with Layout
; use Layout
;
37 with Lib
.Xref
; use Lib
.Xref
;
38 with Namet
; use Namet
;
39 with Nlists
; use Nlists
;
40 with Nmake
; use Nmake
;
42 with Restrict
; use Restrict
;
43 with Rident
; use Rident
;
45 with Sem_Cat
; use Sem_Cat
;
46 with Sem_Ch6
; use Sem_Ch6
;
47 with Sem_Ch7
; use Sem_Ch7
;
48 with Sem_Ch8
; use Sem_Ch8
;
49 with Sem_Ch13
; use Sem_Ch13
;
50 with Sem_Eval
; use Sem_Eval
;
51 with Sem_Mech
; use Sem_Mech
;
52 with Sem_Prag
; use Sem_Prag
;
53 with Sem_Res
; use Sem_Res
;
54 with Sem_Util
; use Sem_Util
;
55 with Sinfo
; use Sinfo
;
56 with Snames
; use Snames
;
57 with Stand
; use Stand
;
58 with Targparm
; use Targparm
;
59 with Tbuild
; use Tbuild
;
60 with Ttypes
; use Ttypes
;
61 with Uintp
; use Uintp
;
62 with Urealp
; use Urealp
;
64 package body Freeze
is
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
70 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
);
71 -- Typ is a type that is being frozen. If no size clause is given,
72 -- but a default Esize has been computed, then this default Esize is
73 -- adjusted up if necessary to be consistent with a given alignment,
74 -- but never to a value greater than Long_Long_Integer'Size. This
75 -- is used for all discrete types and for fixed-point types.
77 procedure Build_And_Analyze_Renamed_Body
80 After
: in out Node_Id
);
81 -- Build body for a renaming declaration, insert in tree and analyze
83 procedure Check_Address_Clause
(E
: Entity_Id
);
84 -- Apply legality checks to address clauses for object declarations,
85 -- at the point the object is frozen.
87 procedure Check_Strict_Alignment
(E
: Entity_Id
);
88 -- E is a base type. If E is tagged or has a component that is aliased
89 -- or tagged or contains something this is aliased or tagged, set
92 procedure Check_Unsigned_Type
(E
: Entity_Id
);
93 pragma Inline
(Check_Unsigned_Type
);
94 -- If E is a fixed-point or discrete type, then all the necessary work
95 -- to freeze it is completed except for possible setting of the flag
96 -- Is_Unsigned_Type, which is done by this procedure. The call has no
97 -- effect if the entity E is not a discrete or fixed-point type.
99 procedure Freeze_And_Append
102 Result
: in out List_Id
);
103 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
104 -- nodes to Result, modifying Result from No_List if necessary.
106 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
);
107 -- Freeze enumeration type. The Esize field is set as processing
108 -- proceeds (i.e. set by default when the type is declared and then
109 -- adjusted by rep clauses. What this procedure does is to make sure
110 -- that if a foreign convention is specified, and no specific size
111 -- is given, then the size must be at least Integer'Size.
113 procedure Freeze_Static_Object
(E
: Entity_Id
);
114 -- If an object is frozen which has Is_Statically_Allocated set, then
115 -- all referenced types must also be marked with this flag. This routine
116 -- is in charge of meeting this requirement for the object entity E.
118 procedure Freeze_Subprogram
(E
: Entity_Id
);
119 -- Perform freezing actions for a subprogram (create extra formals,
120 -- and set proper default mechanism values). Note that this routine
121 -- is not called for internal subprograms, for which neither of these
122 -- actions is needed (or desirable, we do not want for example to have
123 -- these extra formals present in initialization procedures, where they
124 -- would serve no purpose). In this call E is either a subprogram or
125 -- a subprogram type (i.e. an access to a subprogram).
127 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean;
128 -- True if T is not private and has no private components, or has a full
129 -- view. Used to determine whether the designated type of an access type
130 -- should be frozen when the access type is frozen. This is done when an
131 -- allocator is frozen, or an expression that may involve attributes of
132 -- the designated type. Otherwise freezing the access type does not freeze
133 -- the designated type.
135 procedure Process_Default_Expressions
137 After
: in out Node_Id
);
138 -- This procedure is called for each subprogram to complete processing
139 -- of default expressions at the point where all types are known to be
140 -- frozen. The expressions must be analyzed in full, to make sure that
141 -- all error processing is done (they have only been pre-analyzed). If
142 -- the expression is not an entity or literal, its analysis may generate
143 -- code which must not be executed. In that case we build a function
144 -- body to hold that code. This wrapper function serves no other purpose
145 -- (it used to be called to evaluate the default, but now the default is
146 -- inlined at each point of call).
148 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
);
149 -- Typ is a record or array type that is being frozen. This routine
150 -- sets the default component alignment from the scope stack values
151 -- if the alignment is otherwise not specified.
153 procedure Check_Debug_Info_Needed
(T
: Entity_Id
);
154 -- As each entity is frozen, this routine is called to deal with the
155 -- setting of Debug_Info_Needed for the entity. This flag is set if
156 -- the entity comes from source, or if we are in Debug_Generated_Code
157 -- mode or if the -gnatdV debug flag is set. However, it never sets
158 -- the flag if Debug_Info_Off is set.
160 procedure Set_Debug_Info_Needed
(T
: Entity_Id
);
161 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
162 -- also on any entities that are needed by T (for an object, the type
163 -- of the object is needed, and for a type, the subsidiary types are
164 -- needed -- see body for details). Never has any effect on T if the
165 -- Debug_Info_Off flag is set.
167 procedure Undelay_Type
(T
: Entity_Id
);
168 -- T is a type of a component that we know to be an Itype.
169 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
170 -- Do the same for any Full_View or Corresponding_Record_Type.
172 procedure Warn_Overlay
176 -- Expr is the expression for an address clause for entity Nam whose type
177 -- is Typ. If Typ has a default initialization, and there is no explicit
178 -- initialization in the source declaration, check whether the address
179 -- clause might cause overlaying of an entity, and emit a warning on the
180 -- side effect that the initialization will cause.
182 -------------------------------
183 -- Adjust_Esize_For_Alignment --
184 -------------------------------
186 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
) is
190 if Known_Esize
(Typ
) and then Known_Alignment
(Typ
) then
191 Align
:= Alignment_In_Bits
(Typ
);
193 if Align
> Esize
(Typ
)
194 and then Align
<= Standard_Long_Long_Integer_Size
196 Set_Esize
(Typ
, Align
);
199 end Adjust_Esize_For_Alignment
;
201 ------------------------------------
202 -- Build_And_Analyze_Renamed_Body --
203 ------------------------------------
205 procedure Build_And_Analyze_Renamed_Body
208 After
: in out Node_Id
)
210 Body_Node
: constant Node_Id
:= Build_Renamed_Body
(Decl
, New_S
);
212 Insert_After
(After
, Body_Node
);
213 Mark_Rewrite_Insertion
(Body_Node
);
216 end Build_And_Analyze_Renamed_Body
;
218 ------------------------
219 -- Build_Renamed_Body --
220 ------------------------
222 function Build_Renamed_Body
224 New_S
: Entity_Id
) return Node_Id
226 Loc
: constant Source_Ptr
:= Sloc
(New_S
);
227 -- We use for the source location of the renamed body, the location
228 -- of the spec entity. It might seem more natural to use the location
229 -- of the renaming declaration itself, but that would be wrong, since
230 -- then the body we create would look as though it was created far
231 -- too late, and this could cause problems with elaboration order
232 -- analysis, particularly in connection with instantiations.
234 N
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
235 Nam
: constant Node_Id
:= Name
(N
);
237 Spec
: constant Node_Id
:= New_Copy_Tree
(Specification
(Decl
));
238 Actuals
: List_Id
:= No_List
;
243 O_Formal
: Entity_Id
;
244 Param_Spec
: Node_Id
;
246 Pref
: Node_Id
:= Empty
;
247 -- If the renamed entity is a primitive operation given in prefix form,
248 -- the prefix is the target object and it has to be added as the first
249 -- actual in the generated call.
252 -- Determine the entity being renamed, which is the target of the call
253 -- statement. If the name is an explicit dereference, this is a renaming
254 -- of a subprogram type rather than a subprogram. The name itself is
257 if Nkind
(Nam
) = N_Selected_Component
then
258 Old_S
:= Entity
(Selector_Name
(Nam
));
260 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
261 Old_S
:= Etype
(Nam
);
263 elsif Nkind
(Nam
) = N_Indexed_Component
then
264 if Is_Entity_Name
(Prefix
(Nam
)) then
265 Old_S
:= Entity
(Prefix
(Nam
));
267 Old_S
:= Entity
(Selector_Name
(Prefix
(Nam
)));
270 elsif Nkind
(Nam
) = N_Character_Literal
then
271 Old_S
:= Etype
(New_S
);
274 Old_S
:= Entity
(Nam
);
277 if Is_Entity_Name
(Nam
) then
279 -- If the renamed entity is a predefined operator, retain full name
280 -- to ensure its visibility.
282 if Ekind
(Old_S
) = E_Operator
283 and then Nkind
(Nam
) = N_Expanded_Name
285 Call_Name
:= New_Copy
(Name
(N
));
287 Call_Name
:= New_Reference_To
(Old_S
, Loc
);
291 if Nkind
(Nam
) = N_Selected_Component
292 and then Present
(First_Formal
(Old_S
))
294 (Is_Controlling_Formal
(First_Formal
(Old_S
))
295 or else Is_Class_Wide_Type
(Etype
(First_Formal
(Old_S
))))
298 -- Retrieve the target object, to be added as a first actual
301 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
302 Pref
:= Prefix
(Nam
);
305 Call_Name
:= New_Copy
(Name
(N
));
308 -- The original name may have been overloaded, but
309 -- is fully resolved now.
311 Set_Is_Overloaded
(Call_Name
, False);
314 -- For simple renamings, subsequent calls can be expanded directly as
315 -- called to the renamed entity. The body must be generated in any case
316 -- for calls they may appear elsewhere.
318 if (Ekind
(Old_S
) = E_Function
319 or else Ekind
(Old_S
) = E_Procedure
)
320 and then Nkind
(Decl
) = N_Subprogram_Declaration
322 Set_Body_To_Inline
(Decl
, Old_S
);
325 -- The body generated for this renaming is an internal artifact, and
326 -- does not constitute a freeze point for the called entity.
328 Set_Must_Not_Freeze
(Call_Name
);
330 Formal
:= First_Formal
(Defining_Entity
(Decl
));
332 if Present
(Pref
) then
334 Pref_Type
: constant Entity_Id
:= Etype
(Pref
);
335 Form_Type
: constant Entity_Id
:= Etype
(First_Formal
(Old_S
));
339 -- The controlling formal may be an access parameter, or the
340 -- actual may be an access value, so ajust accordingly.
342 if Is_Access_Type
(Pref_Type
)
343 and then not Is_Access_Type
(Form_Type
)
346 (Make_Explicit_Dereference
(Loc
, Relocate_Node
(Pref
)));
348 elsif Is_Access_Type
(Form_Type
)
349 and then not Is_Access_Type
(Pref
)
352 (Make_Attribute_Reference
(Loc
,
353 Attribute_Name
=> Name_Access
,
354 Prefix
=> Relocate_Node
(Pref
)));
356 Actuals
:= New_List
(Pref
);
360 elsif Present
(Formal
) then
367 if Present
(Formal
) then
368 while Present
(Formal
) loop
369 Append
(New_Reference_To
(Formal
, Loc
), Actuals
);
370 Next_Formal
(Formal
);
374 -- If the renamed entity is an entry, inherit its profile. For other
375 -- renamings as bodies, both profiles must be subtype conformant, so it
376 -- is not necessary to replace the profile given in the declaration.
377 -- However, default values that are aggregates are rewritten when
378 -- partially analyzed, so we recover the original aggregate to insure
379 -- that subsequent conformity checking works. Similarly, if the default
380 -- expression was constant-folded, recover the original expression.
382 Formal
:= First_Formal
(Defining_Entity
(Decl
));
384 if Present
(Formal
) then
385 O_Formal
:= First_Formal
(Old_S
);
386 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
388 while Present
(Formal
) loop
389 if Is_Entry
(Old_S
) then
391 if Nkind
(Parameter_Type
(Param_Spec
)) /=
394 Set_Etype
(Formal
, Etype
(O_Formal
));
395 Set_Entity
(Parameter_Type
(Param_Spec
), Etype
(O_Formal
));
398 elsif Nkind
(Default_Value
(O_Formal
)) = N_Aggregate
399 or else Nkind
(Original_Node
(Default_Value
(O_Formal
))) /=
400 Nkind
(Default_Value
(O_Formal
))
402 Set_Expression
(Param_Spec
,
403 New_Copy_Tree
(Original_Node
(Default_Value
(O_Formal
))));
406 Next_Formal
(Formal
);
407 Next_Formal
(O_Formal
);
412 -- If the renamed entity is a function, the generated body contains a
413 -- return statement. Otherwise, build a procedure call. If the entity is
414 -- an entry, subsequent analysis of the call will transform it into the
415 -- proper entry or protected operation call. If the renamed entity is
416 -- a character literal, return it directly.
418 if Ekind
(Old_S
) = E_Function
419 or else Ekind
(Old_S
) = E_Operator
420 or else (Ekind
(Old_S
) = E_Subprogram_Type
421 and then Etype
(Old_S
) /= Standard_Void_Type
)
424 Make_Simple_Return_Statement
(Loc
,
426 Make_Function_Call
(Loc
,
428 Parameter_Associations
=> Actuals
));
430 elsif Ekind
(Old_S
) = E_Enumeration_Literal
then
432 Make_Simple_Return_Statement
(Loc
,
433 Expression
=> New_Occurrence_Of
(Old_S
, Loc
));
435 elsif Nkind
(Nam
) = N_Character_Literal
then
437 Make_Simple_Return_Statement
(Loc
,
438 Expression
=> Call_Name
);
442 Make_Procedure_Call_Statement
(Loc
,
444 Parameter_Associations
=> Actuals
);
447 -- Create entities for subprogram body and formals
449 Set_Defining_Unit_Name
(Spec
,
450 Make_Defining_Identifier
(Loc
, Chars
=> Chars
(New_S
)));
452 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
454 while Present
(Param_Spec
) loop
455 Set_Defining_Identifier
(Param_Spec
,
456 Make_Defining_Identifier
(Loc
,
457 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
462 Make_Subprogram_Body
(Loc
,
463 Specification
=> Spec
,
464 Declarations
=> New_List
,
465 Handled_Statement_Sequence
=>
466 Make_Handled_Sequence_Of_Statements
(Loc
,
467 Statements
=> New_List
(Call_Node
)));
469 if Nkind
(Decl
) /= N_Subprogram_Declaration
then
471 Make_Subprogram_Declaration
(Loc
,
472 Specification
=> Specification
(N
)));
475 -- Link the body to the entity whose declaration it completes. If
476 -- the body is analyzed when the renamed entity is frozen, it may
477 -- be necessary to restore the proper scope (see package Exp_Ch13).
479 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
480 and then Present
(Corresponding_Spec
(N
))
482 Set_Corresponding_Spec
(Body_Node
, Corresponding_Spec
(N
));
484 Set_Corresponding_Spec
(Body_Node
, New_S
);
488 end Build_Renamed_Body
;
490 --------------------------
491 -- Check_Address_Clause --
492 --------------------------
494 procedure Check_Address_Clause
(E
: Entity_Id
) is
495 Addr
: constant Node_Id
:= Address_Clause
(E
);
497 Decl
: constant Node_Id
:= Declaration_Node
(E
);
498 Typ
: constant Entity_Id
:= Etype
(E
);
501 if Present
(Addr
) then
502 Expr
:= Expression
(Addr
);
504 -- If we have no initialization of any kind, then we don't need to
505 -- place any restrictions on the address clause, because the object
506 -- will be elaborated after the address clause is evaluated. This
507 -- happens if the declaration has no initial expression, or the type
508 -- has no implicit initialization, or the object is imported.
510 -- The same holds for all initialized scalar types and all access
511 -- types. Packed bit arrays of size up to 64 are represented using a
512 -- modular type with an initialization (to zero) and can be processed
513 -- like other initialized scalar types.
515 -- If the type is controlled, code to attach the object to a
516 -- finalization chain is generated at the point of declaration,
517 -- and therefore the elaboration of the object cannot be delayed:
518 -- the address expression must be a constant.
520 if (No
(Expression
(Decl
))
521 and then not Controlled_Type
(Typ
)
523 (not Has_Non_Null_Base_Init_Proc
(Typ
)
524 or else Is_Imported
(E
)))
527 (Present
(Expression
(Decl
))
528 and then Is_Scalar_Type
(Typ
))
534 (Is_Bit_Packed_Array
(Typ
)
536 Is_Modular_Integer_Type
(Packed_Array_Type
(Typ
)))
540 -- Otherwise, we require the address clause to be constant because
541 -- the call to the initialization procedure (or the attach code) has
542 -- to happen at the point of the declaration.
545 Check_Constant_Address_Clause
(Expr
, E
);
546 Set_Has_Delayed_Freeze
(E
, False);
549 if not Error_Posted
(Expr
)
550 and then not Controlled_Type
(Typ
)
552 Warn_Overlay
(Expr
, Typ
, Name
(Addr
));
555 end Check_Address_Clause
;
557 -----------------------------
558 -- Check_Compile_Time_Size --
559 -----------------------------
561 procedure Check_Compile_Time_Size
(T
: Entity_Id
) is
563 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
);
564 -- Sets the compile time known size (32 bits or less) in the Esize
565 -- field, of T checking for a size clause that was given which attempts
566 -- to give a smaller size.
568 function Size_Known
(T
: Entity_Id
) return Boolean;
569 -- Recursive function that does all the work
571 function Static_Discriminated_Components
(T
: Entity_Id
) return Boolean;
572 -- If T is a constrained subtype, its size is not known if any of its
573 -- discriminant constraints is not static and it is not a null record.
574 -- The test is conservative and doesn't check that the components are
575 -- in fact constrained by non-static discriminant values. Could be made
582 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
) is
587 elsif Has_Size_Clause
(T
) then
588 if RM_Size
(T
) < S
then
589 Error_Msg_Uint_1
:= S
;
591 ("size for & too small, minimum allowed is ^",
594 elsif Unknown_Esize
(T
) then
598 -- Set sizes if not set already
601 if Unknown_Esize
(T
) then
605 if Unknown_RM_Size
(T
) then
615 function Size_Known
(T
: Entity_Id
) return Boolean is
623 if Size_Known_At_Compile_Time
(T
) then
626 elsif Is_Scalar_Type
(T
)
627 or else Is_Task_Type
(T
)
629 return not Is_Generic_Type
(T
);
631 elsif Is_Array_Type
(T
) then
632 if Ekind
(T
) = E_String_Literal_Subtype
then
633 Set_Small_Size
(T
, Component_Size
(T
)
634 * String_Literal_Length
(T
));
637 elsif not Is_Constrained
(T
) then
640 -- Don't do any recursion on type with error posted, since we may
641 -- have a malformed type that leads us into a loop.
643 elsif Error_Posted
(T
) then
646 elsif not Size_Known
(Component_Type
(T
)) then
650 -- Check for all indexes static, and also compute possible size
651 -- (in case it is less than 32 and may be packable).
654 Esiz
: Uint
:= Component_Size
(T
);
658 Index
:= First_Index
(T
);
659 while Present
(Index
) loop
660 if Nkind
(Index
) = N_Range
then
661 Get_Index_Bounds
(Index
, Low
, High
);
663 elsif Error_Posted
(Scalar_Range
(Etype
(Index
))) then
667 Low
:= Type_Low_Bound
(Etype
(Index
));
668 High
:= Type_High_Bound
(Etype
(Index
));
671 if not Compile_Time_Known_Value
(Low
)
672 or else not Compile_Time_Known_Value
(High
)
673 or else Etype
(Index
) = Any_Type
678 Dim
:= Expr_Value
(High
) - Expr_Value
(Low
) + 1;
690 Set_Small_Size
(T
, Esiz
);
694 elsif Is_Access_Type
(T
) then
697 elsif Is_Private_Type
(T
)
698 and then not Is_Generic_Type
(T
)
699 and then Present
(Underlying_Type
(T
))
701 -- Don't do any recursion on type with error posted, since we may
702 -- have a malformed type that leads us into a loop.
704 if Error_Posted
(T
) then
707 return Size_Known
(Underlying_Type
(T
));
710 elsif Is_Record_Type
(T
) then
712 -- A class-wide type is never considered to have a known size
714 if Is_Class_Wide_Type
(T
) then
717 -- A subtype of a variant record must not have non-static
718 -- discriminanted components.
720 elsif T
/= Base_Type
(T
)
721 and then not Static_Discriminated_Components
(T
)
725 -- Don't do any recursion on type with error posted, since we may
726 -- have a malformed type that leads us into a loop.
728 elsif Error_Posted
(T
) then
732 -- Now look at the components of the record
735 -- The following two variables are used to keep track of the
736 -- size of packed records if we can tell the size of the packed
737 -- record in the front end. Packed_Size_Known is True if so far
738 -- we can figure out the size. It is initialized to True for a
739 -- packed record, unless the record has discriminants. The
740 -- reason we eliminate the discriminated case is that we don't
741 -- know the way the back end lays out discriminated packed
742 -- records. If Packed_Size_Known is True, then Packed_Size is
743 -- the size in bits so far.
745 Packed_Size_Known
: Boolean :=
747 and then not Has_Discriminants
(T
);
749 Packed_Size
: Uint
:= Uint_0
;
752 -- Test for variant part present
754 if Has_Discriminants
(T
)
755 and then Present
(Parent
(T
))
756 and then Nkind
(Parent
(T
)) = N_Full_Type_Declaration
757 and then Nkind
(Type_Definition
(Parent
(T
))) =
759 and then not Null_Present
(Type_Definition
(Parent
(T
)))
760 and then Present
(Variant_Part
761 (Component_List
(Type_Definition
(Parent
(T
)))))
763 -- If variant part is present, and type is unconstrained,
764 -- then we must have defaulted discriminants, or a size
765 -- clause must be present for the type, or else the size
766 -- is definitely not known at compile time.
768 if not Is_Constrained
(T
)
770 No
(Discriminant_Default_Value
771 (First_Discriminant
(T
)))
772 and then Unknown_Esize
(T
)
778 -- Loop through components
780 Comp
:= First_Component_Or_Discriminant
(T
);
781 while Present
(Comp
) loop
782 Ctyp
:= Etype
(Comp
);
784 -- We do not know the packed size if there is a component
785 -- clause present (we possibly could, but this would only
786 -- help in the case of a record with partial rep clauses.
787 -- That's because in the case of full rep clauses, the
788 -- size gets figured out anyway by a different circuit).
790 if Present
(Component_Clause
(Comp
)) then
791 Packed_Size_Known
:= False;
794 -- We need to identify a component that is an array where
795 -- the index type is an enumeration type with non-standard
796 -- representation, and some bound of the type depends on a
799 -- This is because gigi computes the size by doing a
800 -- substituation of the appropriate discriminant value in
801 -- the size expression for the base type, and gigi is not
802 -- clever enough to evaluate the resulting expression (which
803 -- involves a call to rep_to_pos) at compile time.
805 -- It would be nice if gigi would either recognize that
806 -- this expression can be computed at compile time, or
807 -- alternatively figured out the size from the subtype
808 -- directly, where all the information is at hand ???
810 if Is_Array_Type
(Etype
(Comp
))
811 and then Present
(Packed_Array_Type
(Etype
(Comp
)))
814 Ocomp
: constant Entity_Id
:=
815 Original_Record_Component
(Comp
);
816 OCtyp
: constant Entity_Id
:= Etype
(Ocomp
);
822 Ind
:= First_Index
(OCtyp
);
823 while Present
(Ind
) loop
824 Indtyp
:= Etype
(Ind
);
826 if Is_Enumeration_Type
(Indtyp
)
827 and then Has_Non_Standard_Rep
(Indtyp
)
829 Lo
:= Type_Low_Bound
(Indtyp
);
830 Hi
:= Type_High_Bound
(Indtyp
);
832 if Is_Entity_Name
(Lo
)
833 and then Ekind
(Entity
(Lo
)) = E_Discriminant
837 elsif Is_Entity_Name
(Hi
)
838 and then Ekind
(Entity
(Hi
)) = E_Discriminant
849 -- Clearly size of record is not known if the size of one of
850 -- the components is not known.
852 if not Size_Known
(Ctyp
) then
856 -- Accumulate packed size if possible
858 if Packed_Size_Known
then
860 -- We can only deal with elementary types, since for
861 -- non-elementary components, alignment enters into the
862 -- picture, and we don't know enough to handle proper
863 -- alignment in this context. Packed arrays count as
864 -- elementary if the representation is a modular type.
866 if Is_Elementary_Type
(Ctyp
)
867 or else (Is_Array_Type
(Ctyp
)
868 and then Present
(Packed_Array_Type
(Ctyp
))
869 and then Is_Modular_Integer_Type
870 (Packed_Array_Type
(Ctyp
)))
872 -- If RM_Size is known and static, then we can
873 -- keep accumulating the packed size.
875 if Known_Static_RM_Size
(Ctyp
) then
877 -- A little glitch, to be removed sometime ???
878 -- gigi does not understand zero sizes yet.
880 if RM_Size
(Ctyp
) = Uint_0
then
881 Packed_Size_Known
:= False;
883 -- Normal case where we can keep accumulating the
884 -- packed array size.
887 Packed_Size
:= Packed_Size
+ RM_Size
(Ctyp
);
890 -- If we have a field whose RM_Size is not known then
891 -- we can't figure out the packed size here.
894 Packed_Size_Known
:= False;
897 -- If we have a non-elementary type we can't figure out
898 -- the packed array size (alignment issues).
901 Packed_Size_Known
:= False;
905 Next_Component_Or_Discriminant
(Comp
);
908 if Packed_Size_Known
then
909 Set_Small_Size
(T
, Packed_Size
);
920 -------------------------------------
921 -- Static_Discriminated_Components --
922 -------------------------------------
924 function Static_Discriminated_Components
925 (T
: Entity_Id
) return Boolean
927 Constraint
: Elmt_Id
;
930 if Has_Discriminants
(T
)
931 and then Present
(Discriminant_Constraint
(T
))
932 and then Present
(First_Component
(T
))
934 Constraint
:= First_Elmt
(Discriminant_Constraint
(T
));
935 while Present
(Constraint
) loop
936 if not Compile_Time_Known_Value
(Node
(Constraint
)) then
940 Next_Elmt
(Constraint
);
945 end Static_Discriminated_Components
;
947 -- Start of processing for Check_Compile_Time_Size
950 Set_Size_Known_At_Compile_Time
(T
, Size_Known
(T
));
951 end Check_Compile_Time_Size
;
953 -----------------------------
954 -- Check_Debug_Info_Needed --
955 -----------------------------
957 procedure Check_Debug_Info_Needed
(T
: Entity_Id
) is
959 if Needs_Debug_Info
(T
) or else Debug_Info_Off
(T
) then
962 elsif Comes_From_Source
(T
)
963 or else Debug_Generated_Code
964 or else Debug_Flag_VV
966 Set_Debug_Info_Needed
(T
);
968 end Check_Debug_Info_Needed
;
970 ----------------------------
971 -- Check_Strict_Alignment --
972 ----------------------------
974 procedure Check_Strict_Alignment
(E
: Entity_Id
) is
978 if Is_Tagged_Type
(E
) or else Is_Concurrent_Type
(E
) then
979 Set_Strict_Alignment
(E
);
981 elsif Is_Array_Type
(E
) then
982 Set_Strict_Alignment
(E
, Strict_Alignment
(Component_Type
(E
)));
984 elsif Is_Record_Type
(E
) then
985 if Is_Limited_Record
(E
) then
986 Set_Strict_Alignment
(E
);
990 Comp
:= First_Component
(E
);
992 while Present
(Comp
) loop
993 if not Is_Type
(Comp
)
994 and then (Strict_Alignment
(Etype
(Comp
))
995 or else Is_Aliased
(Comp
))
997 Set_Strict_Alignment
(E
);
1001 Next_Component
(Comp
);
1004 end Check_Strict_Alignment
;
1006 -------------------------
1007 -- Check_Unsigned_Type --
1008 -------------------------
1010 procedure Check_Unsigned_Type
(E
: Entity_Id
) is
1011 Ancestor
: Entity_Id
;
1016 if not Is_Discrete_Or_Fixed_Point_Type
(E
) then
1020 -- Do not attempt to analyze case where range was in error
1022 if Error_Posted
(Scalar_Range
(E
)) then
1026 -- The situation that is non trivial is something like
1028 -- subtype x1 is integer range -10 .. +10;
1029 -- subtype x2 is x1 range 0 .. V1;
1030 -- subtype x3 is x2 range V2 .. V3;
1031 -- subtype x4 is x3 range V4 .. V5;
1033 -- where Vn are variables. Here the base type is signed, but we still
1034 -- know that x4 is unsigned because of the lower bound of x2.
1036 -- The only way to deal with this is to look up the ancestor chain
1040 if Ancestor
= Any_Type
or else Etype
(Ancestor
) = Any_Type
then
1044 Lo_Bound
:= Type_Low_Bound
(Ancestor
);
1046 if Compile_Time_Known_Value
(Lo_Bound
) then
1048 if Expr_Rep_Value
(Lo_Bound
) >= 0 then
1049 Set_Is_Unsigned_Type
(E
, True);
1055 Ancestor
:= Ancestor_Subtype
(Ancestor
);
1057 -- If no ancestor had a static lower bound, go to base type
1059 if No
(Ancestor
) then
1061 -- Note: the reason we still check for a compile time known
1062 -- value for the base type is that at least in the case of
1063 -- generic formals, we can have bounds that fail this test,
1064 -- and there may be other cases in error situations.
1066 Btyp
:= Base_Type
(E
);
1068 if Btyp
= Any_Type
or else Etype
(Btyp
) = Any_Type
then
1072 Lo_Bound
:= Type_Low_Bound
(Base_Type
(E
));
1074 if Compile_Time_Known_Value
(Lo_Bound
)
1075 and then Expr_Rep_Value
(Lo_Bound
) >= 0
1077 Set_Is_Unsigned_Type
(E
, True);
1084 end Check_Unsigned_Type
;
1086 -----------------------------
1087 -- Expand_Atomic_Aggregate --
1088 -----------------------------
1090 procedure Expand_Atomic_Aggregate
(E
: Entity_Id
; Typ
: Entity_Id
) is
1091 Loc
: constant Source_Ptr
:= Sloc
(E
);
1096 if (Nkind
(Parent
(E
)) = N_Object_Declaration
1097 or else Nkind
(Parent
(E
)) = N_Assignment_Statement
)
1098 and then Comes_From_Source
(Parent
(E
))
1099 and then Nkind
(E
) = N_Aggregate
1102 Make_Defining_Identifier
(Loc
,
1103 New_Internal_Name
('T'));
1106 Make_Object_Declaration
(Loc
,
1107 Defining_Identifier
=> Temp
,
1108 Object_definition
=> New_Occurrence_Of
(Typ
, Loc
),
1109 Expression
=> Relocate_Node
(E
));
1110 Insert_Before
(Parent
(E
), New_N
);
1113 Set_Expression
(Parent
(E
), New_Occurrence_Of
(Temp
, Loc
));
1115 -- To prevent the temporary from being constant-folded (which would
1116 -- lead to the same piecemeal assignment on the original target)
1117 -- indicate to the back-end that the temporary is a variable with
1118 -- real storage. See description of this flag in Einfo, and the notes
1119 -- on N_Assignment_Statement and N_Object_Declaration in Sinfo.
1121 Set_Is_True_Constant
(Temp
, False);
1123 end Expand_Atomic_Aggregate
;
1129 -- Note: the easy coding for this procedure would be to just build a
1130 -- single list of freeze nodes and then insert them and analyze them
1131 -- all at once. This won't work, because the analysis of earlier freeze
1132 -- nodes may recursively freeze types which would otherwise appear later
1133 -- on in the freeze list. So we must analyze and expand the freeze nodes
1134 -- as they are generated.
1136 procedure Freeze_All
(From
: Entity_Id
; After
: in out Node_Id
) is
1137 Loc
: constant Source_Ptr
:= Sloc
(After
);
1141 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
);
1142 -- This is the internal recursive routine that does freezing of entities
1143 -- (but NOT the analysis of default expressions, which should not be
1144 -- recursive, we don't want to analyze those till we are sure that ALL
1145 -- the types are frozen).
1147 --------------------
1148 -- Freeze_All_Ent --
1149 --------------------
1151 procedure Freeze_All_Ent
1153 After
: in out Node_Id
)
1159 procedure Process_Flist
;
1160 -- If freeze nodes are present, insert and analyze, and reset cursor
1161 -- for next insertion.
1167 procedure Process_Flist
is
1169 if Is_Non_Empty_List
(Flist
) then
1170 Lastn
:= Next
(After
);
1171 Insert_List_After_And_Analyze
(After
, Flist
);
1173 if Present
(Lastn
) then
1174 After
:= Prev
(Lastn
);
1176 After
:= Last
(List_Containing
(After
));
1181 -- Start or processing for Freeze_All_Ent
1185 while Present
(E
) loop
1187 -- If the entity is an inner package which is not a package
1188 -- renaming, then its entities must be frozen at this point. Note
1189 -- that such entities do NOT get frozen at the end of the nested
1190 -- package itself (only library packages freeze).
1192 -- Same is true for task declarations, where anonymous records
1193 -- created for entry parameters must be frozen.
1195 if Ekind
(E
) = E_Package
1196 and then No
(Renamed_Object
(E
))
1197 and then not Is_Child_Unit
(E
)
1198 and then not Is_Frozen
(E
)
1201 Install_Visible_Declarations
(E
);
1202 Install_Private_Declarations
(E
);
1204 Freeze_All
(First_Entity
(E
), After
);
1206 End_Package_Scope
(E
);
1208 elsif Ekind
(E
) in Task_Kind
1210 (Nkind
(Parent
(E
)) = N_Task_Type_Declaration
1212 Nkind
(Parent
(E
)) = N_Single_Task_Declaration
)
1215 Freeze_All
(First_Entity
(E
), After
);
1218 -- For a derived tagged type, we must ensure that all the
1219 -- primitive operations of the parent have been frozen, so that
1220 -- their addresses will be in the parent's dispatch table at the
1221 -- point it is inherited.
1223 elsif Ekind
(E
) = E_Record_Type
1224 and then Is_Tagged_Type
(E
)
1225 and then Is_Tagged_Type
(Etype
(E
))
1226 and then Is_Derived_Type
(E
)
1229 Prim_List
: constant Elist_Id
:=
1230 Primitive_Operations
(Etype
(E
));
1236 Prim
:= First_Elmt
(Prim_List
);
1238 while Present
(Prim
) loop
1239 Subp
:= Node
(Prim
);
1241 if Comes_From_Source
(Subp
)
1242 and then not Is_Frozen
(Subp
)
1244 Flist
:= Freeze_Entity
(Subp
, Loc
);
1253 if not Is_Frozen
(E
) then
1254 Flist
:= Freeze_Entity
(E
, Loc
);
1258 -- If an incomplete type is still not frozen, this may be a
1259 -- premature freezing because of a body declaration that follows.
1260 -- Indicate where the freezing took place.
1262 -- If the freezing is caused by the end of the current declarative
1263 -- part, it is a Taft Amendment type, and there is no error.
1265 if not Is_Frozen
(E
)
1266 and then Ekind
(E
) = E_Incomplete_Type
1269 Bod
: constant Node_Id
:= Next
(After
);
1272 if (Nkind
(Bod
) = N_Subprogram_Body
1273 or else Nkind
(Bod
) = N_Entry_Body
1274 or else Nkind
(Bod
) = N_Package_Body
1275 or else Nkind
(Bod
) = N_Protected_Body
1276 or else Nkind
(Bod
) = N_Task_Body
1277 or else Nkind
(Bod
) in N_Body_Stub
)
1279 List_Containing
(After
) = List_Containing
(Parent
(E
))
1281 Error_Msg_Sloc
:= Sloc
(Next
(After
));
1283 ("type& is frozen# before its full declaration",
1293 -- Start of processing for Freeze_All
1296 Freeze_All_Ent
(From
, After
);
1298 -- Now that all types are frozen, we can deal with default expressions
1299 -- that require us to build a default expression functions. This is the
1300 -- point at which such functions are constructed (after all types that
1301 -- might be used in such expressions have been frozen).
1303 -- We also add finalization chains to access types whose designated
1304 -- types are controlled. This is normally done when freezing the type,
1305 -- but this misses recursive type definitions where the later members
1306 -- of the recursion introduce controlled components (e.g. 5624-001).
1308 -- Loop through entities
1311 while Present
(E
) loop
1312 if Is_Subprogram
(E
) then
1314 if not Default_Expressions_Processed
(E
) then
1315 Process_Default_Expressions
(E
, After
);
1318 if not Has_Completion
(E
) then
1319 Decl
:= Unit_Declaration_Node
(E
);
1321 if Nkind
(Decl
) = N_Subprogram_Renaming_Declaration
then
1322 Build_And_Analyze_Renamed_Body
(Decl
, E
, After
);
1324 elsif Nkind
(Decl
) = N_Subprogram_Declaration
1325 and then Present
(Corresponding_Body
(Decl
))
1327 Nkind
(Unit_Declaration_Node
(Corresponding_Body
(Decl
)))
1328 = N_Subprogram_Renaming_Declaration
1330 Build_And_Analyze_Renamed_Body
1331 (Decl
, Corresponding_Body
(Decl
), After
);
1335 elsif Ekind
(E
) in Task_Kind
1337 (Nkind
(Parent
(E
)) = N_Task_Type_Declaration
1339 Nkind
(Parent
(E
)) = N_Single_Task_Declaration
)
1344 Ent
:= First_Entity
(E
);
1346 while Present
(Ent
) loop
1349 and then not Default_Expressions_Processed
(Ent
)
1351 Process_Default_Expressions
(Ent
, After
);
1358 elsif Is_Access_Type
(E
)
1359 and then Comes_From_Source
(E
)
1360 and then Ekind
(Directly_Designated_Type
(E
)) = E_Incomplete_Type
1361 and then Controlled_Type
(Designated_Type
(E
))
1362 and then No
(Associated_Final_Chain
(E
))
1364 Build_Final_List
(Parent
(E
), E
);
1371 -----------------------
1372 -- Freeze_And_Append --
1373 -----------------------
1375 procedure Freeze_And_Append
1378 Result
: in out List_Id
)
1380 L
: constant List_Id
:= Freeze_Entity
(Ent
, Loc
);
1382 if Is_Non_Empty_List
(L
) then
1383 if Result
= No_List
then
1386 Append_List
(L
, Result
);
1389 end Freeze_And_Append
;
1395 procedure Freeze_Before
(N
: Node_Id
; T
: Entity_Id
) is
1396 Freeze_Nodes
: constant List_Id
:= Freeze_Entity
(T
, Sloc
(N
));
1398 if Is_Non_Empty_List
(Freeze_Nodes
) then
1399 Insert_Actions
(N
, Freeze_Nodes
);
1407 function Freeze_Entity
(E
: Entity_Id
; Loc
: Source_Ptr
) return List_Id
is
1408 Test_E
: Entity_Id
:= E
;
1416 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
);
1417 -- Check that an Access or Unchecked_Access attribute with a prefix
1418 -- which is the current instance type can only be applied when the type
1421 function After_Last_Declaration
return Boolean;
1422 -- If Loc is a freeze_entity that appears after the last declaration
1423 -- in the scope, inhibit error messages on late completion.
1425 procedure Freeze_Record_Type
(Rec
: Entity_Id
);
1426 -- Freeze each component, handle some representation clauses, and freeze
1427 -- primitive operations if this is a tagged type.
1429 ----------------------------
1430 -- After_Last_Declaration --
1431 ----------------------------
1433 function After_Last_Declaration
return Boolean is
1434 Spec
: constant Node_Id
:= Parent
(Current_Scope
);
1436 if Nkind
(Spec
) = N_Package_Specification
then
1437 if Present
(Private_Declarations
(Spec
)) then
1438 return Loc
>= Sloc
(Last
(Private_Declarations
(Spec
)));
1439 elsif Present
(Visible_Declarations
(Spec
)) then
1440 return Loc
>= Sloc
(Last
(Visible_Declarations
(Spec
)));
1447 end After_Last_Declaration
;
1449 ----------------------------
1450 -- Check_Current_Instance --
1451 ----------------------------
1453 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
) is
1455 Rec_Type
: constant Entity_Id
:=
1456 Scope
(Defining_Identifier
(Comp_Decl
));
1458 Decl
: constant Node_Id
:= Parent
(Rec_Type
);
1460 function Process
(N
: Node_Id
) return Traverse_Result
;
1461 -- Process routine to apply check to given node
1467 function Process
(N
: Node_Id
) return Traverse_Result
is
1470 when N_Attribute_Reference
=>
1471 if (Attribute_Name
(N
) = Name_Access
1473 Attribute_Name
(N
) = Name_Unchecked_Access
)
1474 and then Is_Entity_Name
(Prefix
(N
))
1475 and then Is_Type
(Entity
(Prefix
(N
)))
1476 and then Entity
(Prefix
(N
)) = E
1479 ("current instance must be a limited type", Prefix
(N
));
1485 when others => return OK
;
1489 procedure Traverse
is new Traverse_Proc
(Process
);
1491 -- Start of processing for Check_Current_Instance
1494 -- In Ada95, the (imprecise) rule is that the current instance of a
1495 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1496 -- either a tagged type, or a limited record.
1498 if Is_Limited_Type
(Rec_Type
)
1500 (Ada_Version
< Ada_05
1501 or else Is_Tagged_Type
(Rec_Type
))
1505 elsif Nkind
(Decl
) = N_Full_Type_Declaration
1506 and then Limited_Present
(Type_Definition
(Decl
))
1511 Traverse
(Comp_Decl
);
1513 end Check_Current_Instance
;
1515 ------------------------
1516 -- Freeze_Record_Type --
1517 ------------------------
1519 procedure Freeze_Record_Type
(Rec
: Entity_Id
) is
1526 pragma Warnings
(Off
, Junk
);
1528 Unplaced_Component
: Boolean := False;
1529 -- Set True if we find at least one component with no component
1530 -- clause (used to warn about useless Pack pragmas).
1532 Placed_Component
: Boolean := False;
1533 -- Set True if we find at least one component with a component
1534 -- clause (used to warn about useless Bit_Order pragmas).
1536 function Check_Allocator
(N
: Node_Id
) return Node_Id
;
1537 -- If N is an allocator, possibly wrapped in one or more level of
1538 -- qualified expression(s), return the inner allocator node, else
1541 procedure Check_Itype
(Typ
: Entity_Id
);
1542 -- If the component subtype is an access to a constrained subtype of
1543 -- an already frozen type, make the subtype frozen as well. It might
1544 -- otherwise be frozen in the wrong scope, and a freeze node on
1545 -- subtype has no effect. Similarly, if the component subtype is a
1546 -- regular (not protected) access to subprogram, set the anonymous
1547 -- subprogram type to frozen as well, to prevent an out-of-scope
1548 -- freeze node at some eventual point of call. Protected operations
1549 -- are handled elsewhere.
1551 ---------------------
1552 -- Check_Allocator --
1553 ---------------------
1555 function Check_Allocator
(N
: Node_Id
) return Node_Id
is
1560 if Nkind
(Inner
) = N_Allocator
then
1562 elsif Nkind
(Inner
) = N_Qualified_Expression
then
1563 Inner
:= Expression
(Inner
);
1568 end Check_Allocator
;
1574 procedure Check_Itype
(Typ
: Entity_Id
) is
1575 Desig
: constant Entity_Id
:= Designated_Type
(Typ
);
1578 if not Is_Frozen
(Desig
)
1579 and then Is_Frozen
(Base_Type
(Desig
))
1581 Set_Is_Frozen
(Desig
);
1583 -- In addition, add an Itype_Reference to ensure that the
1584 -- access subtype is elaborated early enough. This cannot be
1585 -- done if the subtype may depend on discriminants.
1587 if Ekind
(Comp
) = E_Component
1588 and then Is_Itype
(Etype
(Comp
))
1589 and then not Has_Discriminants
(Rec
)
1591 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
1592 Set_Itype
(IR
, Desig
);
1595 Result
:= New_List
(IR
);
1597 Append
(IR
, Result
);
1601 elsif Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
1602 and then Convention
(Desig
) /= Convention_Protected
1604 Set_Is_Frozen
(Desig
);
1608 -- Start of processing for Freeze_Record_Type
1611 -- If this is a subtype of a controlled type, declared without a
1612 -- constraint, the _controller may not appear in the component list
1613 -- if the parent was not frozen at the point of subtype declaration.
1614 -- Inherit the _controller component now.
1616 if Rec
/= Base_Type
(Rec
)
1617 and then Has_Controlled_Component
(Rec
)
1619 if Nkind
(Parent
(Rec
)) = N_Subtype_Declaration
1620 and then Is_Entity_Name
(Subtype_Indication
(Parent
(Rec
)))
1622 Set_First_Entity
(Rec
, First_Entity
(Base_Type
(Rec
)));
1624 -- If this is an internal type without a declaration, as for
1625 -- record component, the base type may not yet be frozen, and its
1626 -- controller has not been created. Add an explicit freeze node
1627 -- for the itype, so it will be frozen after the base type. This
1628 -- freeze node is used to communicate with the expander, in order
1629 -- to create the controller for the enclosing record, and it is
1630 -- deleted afterwards (see exp_ch3). It must not be created when
1631 -- expansion is off, because it might appear in the wrong context
1632 -- for the back end.
1634 elsif Is_Itype
(Rec
)
1635 and then Has_Delayed_Freeze
(Base_Type
(Rec
))
1637 Nkind
(Associated_Node_For_Itype
(Rec
)) =
1638 N_Component_Declaration
1639 and then Expander_Active
1641 Ensure_Freeze_Node
(Rec
);
1645 -- Freeze components and embedded subtypes
1647 Comp
:= First_Entity
(Rec
);
1649 while Present
(Comp
) loop
1651 -- First handle the (real) component case
1653 if Ekind
(Comp
) = E_Component
1654 or else Ekind
(Comp
) = E_Discriminant
1657 CC
: constant Node_Id
:= Component_Clause
(Comp
);
1660 -- Freezing a record type freezes the type of each of its
1661 -- components. However, if the type of the component is
1662 -- part of this record, we do not want or need a separate
1663 -- Freeze_Node. Note that Is_Itype is wrong because that's
1664 -- also set in private type cases. We also can't check for
1665 -- the Scope being exactly Rec because of private types and
1666 -- record extensions.
1668 if Is_Itype
(Etype
(Comp
))
1669 and then Is_Record_Type
(Underlying_Type
1670 (Scope
(Etype
(Comp
))))
1672 Undelay_Type
(Etype
(Comp
));
1675 Freeze_And_Append
(Etype
(Comp
), Loc
, Result
);
1677 -- Check for error of component clause given for variable
1678 -- sized type. We have to delay this test till this point,
1679 -- since the component type has to be frozen for us to know
1680 -- if it is variable length. We omit this test in a generic
1681 -- context, it will be applied at instantiation time.
1683 if Present
(CC
) then
1684 Placed_Component
:= True;
1686 if Inside_A_Generic
then
1690 Size_Known_At_Compile_Time
1691 (Underlying_Type
(Etype
(Comp
)))
1694 ("component clause not allowed for variable " &
1695 "length component", CC
);
1699 Unplaced_Component
:= True;
1702 -- Case of component requires byte alignment
1704 if Must_Be_On_Byte_Boundary
(Etype
(Comp
)) then
1706 -- Set the enclosing record to also require byte align
1708 Set_Must_Be_On_Byte_Boundary
(Rec
);
1710 -- Check for component clause that is inconsistent with
1711 -- the required byte boundary alignment.
1714 and then Normalized_First_Bit
(Comp
) mod
1715 System_Storage_Unit
/= 0
1718 ("component & must be byte aligned",
1719 Component_Name
(Component_Clause
(Comp
)));
1723 -- If component clause is present, then deal with the non-
1724 -- default bit order case for Ada 95 mode. The required
1725 -- processing for Ada 2005 mode is handled separately after
1726 -- processing all components.
1728 -- We only do this processing for the base type, and in
1729 -- fact that's important, since otherwise if there are
1730 -- record subtypes, we could reverse the bits once for
1731 -- each subtype, which would be incorrect.
1734 and then Reverse_Bit_Order
(Rec
)
1735 and then Ekind
(E
) = E_Record_Type
1736 and then Ada_Version
<= Ada_95
1739 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
1740 CSZ
: constant Uint
:= Esize
(Comp
);
1741 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
1742 Pos
: constant Node_Id
:= Position
(CLC
);
1743 FB
: constant Node_Id
:= First_Bit
(CLC
);
1745 Storage_Unit_Offset
: constant Uint
:=
1746 CFB
/ System_Storage_Unit
;
1748 Start_Bit
: constant Uint
:=
1749 CFB
mod System_Storage_Unit
;
1752 -- Cases where field goes over storage unit boundary
1754 if Start_Bit
+ CSZ
> System_Storage_Unit
then
1756 -- Allow multi-byte field but generate warning
1758 if Start_Bit
mod System_Storage_Unit
= 0
1759 and then CSZ
mod System_Storage_Unit
= 0
1762 ("multi-byte field specified with non-standard"
1763 & " Bit_Order?", CLC
);
1765 if Bytes_Big_Endian
then
1767 ("bytes are not reversed "
1768 & "(component is big-endian)?", CLC
);
1771 ("bytes are not reversed "
1772 & "(component is little-endian)?", CLC
);
1775 -- Do not allow non-contiguous field
1779 ("attempt to specify non-contiguous field"
1780 & " not permitted", CLC
);
1782 ("\(caused by non-standard Bit_Order "
1783 & "specified)", CLC
);
1786 -- Case where field fits in one storage unit
1789 -- Give warning if suspicious component clause
1791 if Intval
(FB
) >= System_Storage_Unit
1792 and then Warn_On_Reverse_Bit_Order
1795 ("?Bit_Order clause does not affect " &
1796 "byte ordering", Pos
);
1798 Intval
(Pos
) + Intval
(FB
) /
1799 System_Storage_Unit
;
1801 ("?position normalized to ^ before bit " &
1802 "order interpreted", Pos
);
1805 -- Here is where we fix up the Component_Bit_Offset
1806 -- value to account for the reverse bit order.
1807 -- Some examples of what needs to be done are:
1809 -- First_Bit .. Last_Bit Component_Bit_Offset
1812 -- 0 .. 0 7 .. 7 0 7
1813 -- 0 .. 1 6 .. 7 0 6
1814 -- 0 .. 2 5 .. 7 0 5
1815 -- 0 .. 7 0 .. 7 0 4
1817 -- 1 .. 1 6 .. 6 1 6
1818 -- 1 .. 4 3 .. 6 1 3
1819 -- 4 .. 7 0 .. 3 4 0
1821 -- The general rule is that the first bit is
1822 -- is obtained by subtracting the old ending bit
1823 -- from storage_unit - 1.
1825 Set_Component_Bit_Offset
1827 (Storage_Unit_Offset
* System_Storage_Unit
) +
1828 (System_Storage_Unit
- 1) -
1829 (Start_Bit
+ CSZ
- 1));
1831 Set_Normalized_First_Bit
1833 Component_Bit_Offset
(Comp
) mod
1834 System_Storage_Unit
);
1841 -- If the component is an Itype with Delayed_Freeze and is either
1842 -- a record or array subtype and its base type has not yet been
1843 -- frozen, we must remove this from the entity list of this
1844 -- record and put it on the entity list of the scope of its base
1845 -- type. Note that we know that this is not the type of a
1846 -- component since we cleared Has_Delayed_Freeze for it in the
1847 -- previous loop. Thus this must be the Designated_Type of an
1848 -- access type, which is the type of a component.
1851 and then Is_Type
(Scope
(Comp
))
1852 and then Is_Composite_Type
(Comp
)
1853 and then Base_Type
(Comp
) /= Comp
1854 and then Has_Delayed_Freeze
(Comp
)
1855 and then not Is_Frozen
(Base_Type
(Comp
))
1858 Will_Be_Frozen
: Boolean := False;
1859 S
: Entity_Id
:= Scope
(Rec
);
1862 -- We have a pretty bad kludge here. Suppose Rec is subtype
1863 -- being defined in a subprogram that's created as part of
1864 -- the freezing of Rec'Base. In that case, we know that
1865 -- Comp'Base must have already been frozen by the time we
1866 -- get to elaborate this because Gigi doesn't elaborate any
1867 -- bodies until it has elaborated all of the declarative
1868 -- part. But Is_Frozen will not be set at this point because
1869 -- we are processing code in lexical order.
1871 -- We detect this case by going up the Scope chain of Rec
1872 -- and seeing if we have a subprogram scope before reaching
1873 -- the top of the scope chain or that of Comp'Base. If we
1874 -- do, then mark that Comp'Base will actually be frozen. If
1875 -- so, we merely undelay it.
1877 while Present
(S
) loop
1878 if Is_Subprogram
(S
) then
1879 Will_Be_Frozen
:= True;
1881 elsif S
= Scope
(Base_Type
(Comp
)) then
1888 if Will_Be_Frozen
then
1889 Undelay_Type
(Comp
);
1891 if Present
(Prev
) then
1892 Set_Next_Entity
(Prev
, Next_Entity
(Comp
));
1894 Set_First_Entity
(Rec
, Next_Entity
(Comp
));
1897 -- Insert in entity list of scope of base type (which
1898 -- must be an enclosing scope, because still unfrozen).
1900 Append_Entity
(Comp
, Scope
(Base_Type
(Comp
)));
1904 -- If the component is an access type with an allocator as default
1905 -- value, the designated type will be frozen by the corresponding
1906 -- expression in init_proc. In order to place the freeze node for
1907 -- the designated type before that for the current record type,
1910 -- Same process if the component is an array of access types,
1911 -- initialized with an aggregate. If the designated type is
1912 -- private, it cannot contain allocators, and it is premature
1913 -- to freeze the type, so we check for this as well.
1915 elsif Is_Access_Type
(Etype
(Comp
))
1916 and then Present
(Parent
(Comp
))
1917 and then Present
(Expression
(Parent
(Comp
)))
1920 Alloc
: constant Node_Id
:=
1921 Check_Allocator
(Expression
(Parent
(Comp
)));
1924 if Present
(Alloc
) then
1926 -- If component is pointer to a classwide type, freeze
1927 -- the specific type in the expression being allocated.
1928 -- The expression may be a subtype indication, in which
1929 -- case freeze the subtype mark.
1931 if Is_Class_Wide_Type
1932 (Designated_Type
(Etype
(Comp
)))
1934 if Is_Entity_Name
(Expression
(Alloc
)) then
1936 (Entity
(Expression
(Alloc
)), Loc
, Result
);
1938 Nkind
(Expression
(Alloc
)) = N_Subtype_Indication
1941 (Entity
(Subtype_Mark
(Expression
(Alloc
))),
1945 elsif Is_Itype
(Designated_Type
(Etype
(Comp
))) then
1946 Check_Itype
(Etype
(Comp
));
1950 (Designated_Type
(Etype
(Comp
)), Loc
, Result
);
1955 elsif Is_Access_Type
(Etype
(Comp
))
1956 and then Is_Itype
(Designated_Type
(Etype
(Comp
)))
1958 Check_Itype
(Etype
(Comp
));
1960 elsif Is_Array_Type
(Etype
(Comp
))
1961 and then Is_Access_Type
(Component_Type
(Etype
(Comp
)))
1962 and then Present
(Parent
(Comp
))
1963 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
1964 and then Present
(Expression
(Parent
(Comp
)))
1965 and then Nkind
(Expression
(Parent
(Comp
))) = N_Aggregate
1966 and then Is_Fully_Defined
1967 (Designated_Type
(Component_Type
(Etype
(Comp
))))
1971 (Component_Type
(Etype
(Comp
))), Loc
, Result
);
1978 -- Deal with pragma Bit_Order
1980 if Reverse_Bit_Order
(Rec
) and then Base_Type
(Rec
) = Rec
then
1981 if not Placed_Component
then
1983 Get_Attribute_Definition_Clause
(Rec
, Attribute_Bit_Order
);
1985 ("?Bit_Order specification has no effect", ADC
);
1987 ("\?since no component clauses were specified", ADC
);
1989 -- Here is where we do Ada 2005 processing for bit order (the Ada
1990 -- 95 case was already taken care of above).
1992 elsif Ada_Version
>= Ada_05
then
1993 Adjust_Record_For_Reverse_Bit_Order
(Rec
);
1997 -- Check for useless pragma Pack when all components placed. We only
1998 -- do this check for record types, not subtypes, since a subtype may
1999 -- have all its components placed, and it still makes perfectly good
2000 -- sense to pack other subtypes or the parent type.
2002 if Ekind
(Rec
) = E_Record_Type
2003 and then Is_Packed
(Rec
)
2004 and then not Unplaced_Component
2006 -- Reset packed status. Probably not necessary, but we do it so
2007 -- that there is no chance of the back end doing something strange
2008 -- with this redundant indication of packing.
2010 Set_Is_Packed
(Rec
, False);
2012 -- Give warning if redundant constructs warnings on
2014 if Warn_On_Redundant_Constructs
then
2016 ("?pragma Pack has no effect, no unplaced components",
2017 Get_Rep_Pragma
(Rec
, Name_Pack
));
2021 -- If this is the record corresponding to a remote type, freeze the
2022 -- remote type here since that is what we are semantically freezing.
2023 -- This prevents the freeze node for that type in an inner scope.
2025 -- Also, Check for controlled components and unchecked unions.
2026 -- Finally, enforce the restriction that access attributes with a
2027 -- current instance prefix can only apply to limited types.
2029 if Ekind
(Rec
) = E_Record_Type
then
2030 if Present
(Corresponding_Remote_Type
(Rec
)) then
2032 (Corresponding_Remote_Type
(Rec
), Loc
, Result
);
2035 Comp
:= First_Component
(Rec
);
2036 while Present
(Comp
) loop
2037 if Has_Controlled_Component
(Etype
(Comp
))
2038 or else (Chars
(Comp
) /= Name_uParent
2039 and then Is_Controlled
(Etype
(Comp
)))
2040 or else (Is_Protected_Type
(Etype
(Comp
))
2042 (Corresponding_Record_Type
(Etype
(Comp
)))
2043 and then Has_Controlled_Component
2044 (Corresponding_Record_Type
(Etype
(Comp
))))
2046 Set_Has_Controlled_Component
(Rec
);
2050 if Has_Unchecked_Union
(Etype
(Comp
)) then
2051 Set_Has_Unchecked_Union
(Rec
);
2054 if Has_Per_Object_Constraint
(Comp
) then
2056 -- Scan component declaration for likely misuses of current
2057 -- instance, either in a constraint or a default expression.
2059 Check_Current_Instance
(Parent
(Comp
));
2062 Next_Component
(Comp
);
2066 Set_Component_Alignment_If_Not_Set
(Rec
);
2068 -- For first subtypes, check if there are any fixed-point fields with
2069 -- component clauses, where we must check the size. This is not done
2070 -- till the freeze point, since for fixed-point types, we do not know
2071 -- the size until the type is frozen. Similar processing applies to
2072 -- bit packed arrays.
2074 if Is_First_Subtype
(Rec
) then
2075 Comp
:= First_Component
(Rec
);
2077 while Present
(Comp
) loop
2078 if Present
(Component_Clause
(Comp
))
2079 and then (Is_Fixed_Point_Type
(Etype
(Comp
))
2081 Is_Bit_Packed_Array
(Etype
(Comp
)))
2084 (Component_Name
(Component_Clause
(Comp
)),
2090 Next_Component
(Comp
);
2094 -- Generate warning for applying C or C++ convention to a record
2095 -- with discriminants. This is suppressed for the unchecked union
2096 -- case, since the whole point in this case is interface C.
2098 if Has_Discriminants
(E
)
2099 and then not Is_Unchecked_Union
(E
)
2100 and then not Warnings_Off
(E
)
2101 and then not Warnings_Off
(Base_Type
(E
))
2102 and then (Convention
(E
) = Convention_C
2104 Convention
(E
) = Convention_CPP
)
2105 and then Comes_From_Source
(E
)
2108 Cprag
: constant Node_Id
:= Get_Rep_Pragma
(E
, Name_Convention
);
2112 if Present
(Cprag
) then
2113 A2
:= Next
(First
(Pragma_Argument_Associations
(Cprag
)));
2115 if Convention
(E
) = Convention_C
then
2117 ("?variant record has no direct equivalent in C", A2
);
2120 ("?variant record has no direct equivalent in C++", A2
);
2124 ("\?use of convention for type& is dubious", A2
, E
);
2128 end Freeze_Record_Type
;
2130 -- Start of processing for Freeze_Entity
2133 -- We are going to test for various reasons why this entity need not be
2134 -- frozen here, but in the case of an Itype that's defined within a
2135 -- record, that test actually applies to the record.
2137 if Is_Itype
(E
) and then Is_Record_Type
(Scope
(E
)) then
2138 Test_E
:= Scope
(E
);
2139 elsif Is_Itype
(E
) and then Present
(Underlying_Type
(Scope
(E
)))
2140 and then Is_Record_Type
(Underlying_Type
(Scope
(E
)))
2142 Test_E
:= Underlying_Type
(Scope
(E
));
2145 -- Do not freeze if already frozen since we only need one freeze node
2147 if Is_Frozen
(E
) then
2150 -- It is improper to freeze an external entity within a generic because
2151 -- its freeze node will appear in a non-valid context. The entity will
2152 -- be frozen in the proper scope after the current generic is analyzed.
2154 elsif Inside_A_Generic
and then External_Ref_In_Generic
(Test_E
) then
2157 -- Do not freeze a global entity within an inner scope created during
2158 -- expansion. A call to subprogram E within some internal procedure
2159 -- (a stream attribute for example) might require freezing E, but the
2160 -- freeze node must appear in the same declarative part as E itself.
2161 -- The two-pass elaboration mechanism in gigi guarantees that E will
2162 -- be frozen before the inner call is elaborated. We exclude constants
2163 -- from this test, because deferred constants may be frozen early, and
2164 -- must be diagnosed (e.g. in the case of a deferred constant being used
2165 -- in a default expression). If the enclosing subprogram comes from
2166 -- source, or is a generic instance, then the freeze point is the one
2167 -- mandated by the language, and we freeze the entity. A subprogram that
2168 -- is a child unit body that acts as a spec does not have a spec that
2169 -- comes from source, but can only come from source.
2171 elsif In_Open_Scopes
(Scope
(Test_E
))
2172 and then Scope
(Test_E
) /= Current_Scope
2173 and then Ekind
(Test_E
) /= E_Constant
2176 S
: Entity_Id
:= Current_Scope
;
2179 while Present
(S
) loop
2180 if Is_Overloadable
(S
) then
2181 if Comes_From_Source
(S
)
2182 or else Is_Generic_Instance
(S
)
2183 or else Is_Child_Unit
(S
)
2195 -- Similarly, an inlined instance body may make reference to global
2196 -- entities, but these references cannot be the proper freezing point
2197 -- for them, and in the absence of inlining freezing will take place in
2198 -- their own scope. Normally instance bodies are analyzed after the
2199 -- enclosing compilation, and everything has been frozen at the proper
2200 -- place, but with front-end inlining an instance body is compiled
2201 -- before the end of the enclosing scope, and as a result out-of-order
2202 -- freezing must be prevented.
2204 elsif Front_End_Inlining
2205 and then In_Instance_Body
2206 and then Present
(Scope
(Test_E
))
2209 S
: Entity_Id
:= Scope
(Test_E
);
2212 while Present
(S
) loop
2213 if Is_Generic_Instance
(S
) then
2226 -- Here to freeze the entity
2231 -- Case of entity being frozen is other than a type
2233 if not Is_Type
(E
) then
2235 -- If entity is exported or imported and does not have an external
2236 -- name, now is the time to provide the appropriate default name.
2237 -- Skip this if the entity is stubbed, since we don't need a name
2238 -- for any stubbed routine.
2240 if (Is_Imported
(E
) or else Is_Exported
(E
))
2241 and then No
(Interface_Name
(E
))
2242 and then Convention
(E
) /= Convention_Stubbed
2244 Set_Encoded_Interface_Name
2245 (E
, Get_Default_External_Name
(E
));
2247 -- Special processing for atomic objects appearing in object decls
2250 and then Nkind
(Parent
(E
)) = N_Object_Declaration
2251 and then Present
(Expression
(Parent
(E
)))
2254 Expr
: constant Node_Id
:= Expression
(Parent
(E
));
2257 -- If expression is an aggregate, assign to a temporary to
2258 -- ensure that the actual assignment is done atomically rather
2259 -- than component-wise (the assignment to the temp may be done
2260 -- component-wise, but that is harmless).
2262 if Nkind
(Expr
) = N_Aggregate
then
2263 Expand_Atomic_Aggregate
(Expr
, Etype
(E
));
2265 -- If the expression is a reference to a record or array object
2266 -- entity, then reset Is_True_Constant to False so that the
2267 -- compiler will not optimize away the intermediate object,
2268 -- which we need in this case for the same reason (to ensure
2269 -- that the actual assignment is atomic, rather than
2272 elsif Is_Entity_Name
(Expr
)
2273 and then (Is_Record_Type
(Etype
(Expr
))
2275 Is_Array_Type
(Etype
(Expr
)))
2277 Set_Is_True_Constant
(Entity
(Expr
), False);
2282 -- For a subprogram, freeze all parameter types and also the return
2283 -- type (RM 13.14(14)). However skip this for internal subprograms.
2284 -- This is also the point where any extra formal parameters are
2285 -- created since we now know whether the subprogram will use
2286 -- a foreign convention.
2288 if Is_Subprogram
(E
) then
2289 if not Is_Internal
(E
) then
2293 Warn_Node
: Node_Id
;
2296 -- Loop through formals
2298 Formal
:= First_Formal
(E
);
2299 while Present
(Formal
) loop
2300 F_Type
:= Etype
(Formal
);
2301 Freeze_And_Append
(F_Type
, Loc
, Result
);
2303 if Is_Private_Type
(F_Type
)
2304 and then Is_Private_Type
(Base_Type
(F_Type
))
2305 and then No
(Full_View
(Base_Type
(F_Type
)))
2306 and then not Is_Generic_Type
(F_Type
)
2307 and then not Is_Derived_Type
(F_Type
)
2309 -- If the type of a formal is incomplete, subprogram
2310 -- is being frozen prematurely. Within an instance
2311 -- (but not within a wrapper package) this is an
2312 -- an artifact of our need to regard the end of an
2313 -- instantiation as a freeze point. Otherwise it is
2314 -- a definite error.
2316 -- and then not Is_Wrapper_Package (Current_Scope) ???
2319 Set_Is_Frozen
(E
, False);
2322 elsif not After_Last_Declaration
2323 and then not Freezing_Library_Level_Tagged_Type
2325 Error_Msg_Node_1
:= F_Type
;
2327 ("type& must be fully defined before this point",
2332 -- Check suspicious parameter for C function. These tests
2333 -- apply only to exported/imported suboprograms.
2335 if Warn_On_Export_Import
2336 and then (Convention
(E
) = Convention_C
2338 Convention
(E
) = Convention_CPP
)
2339 and then not Warnings_Off
(E
)
2340 and then not Warnings_Off
(F_Type
)
2341 and then not Warnings_Off
(Formal
)
2342 and then (Is_Imported
(E
) or else Is_Exported
(E
))
2344 Error_Msg_Qual_Level
:= 1;
2346 -- Check suspicious use of fat C pointer
2348 if Is_Access_Type
(F_Type
)
2349 and then Esize
(F_Type
) > Ttypes
.System_Address_Size
2352 ("?type of & does not correspond "
2353 & "to C pointer!", Formal
);
2355 -- Check suspicious return of boolean
2357 elsif Root_Type
(F_Type
) = Standard_Boolean
2358 and then Convention
(F_Type
) = Convention_Ada
2361 ("?& is an 8-bit Ada Boolean, "
2362 & "use char in C!", Formal
);
2364 -- Check suspicious tagged type
2366 elsif (Is_Tagged_Type
(F_Type
)
2367 or else (Is_Access_Type
(F_Type
)
2370 (Designated_Type
(F_Type
))))
2371 and then Convention
(E
) = Convention_C
2374 ("?& is a tagged type which does not "
2375 & "correspond to any C type!", Formal
);
2377 -- Check wrong convention subprogram pointer
2379 elsif Ekind
(F_Type
) = E_Access_Subprogram_Type
2380 and then not Has_Foreign_Convention
(F_Type
)
2383 ("?subprogram pointer & should "
2384 & "have foreign convention!", Formal
);
2385 Error_Msg_Sloc
:= Sloc
(F_Type
);
2387 ("\?add Convention pragma to declaration of &#",
2391 Error_Msg_Qual_Level
:= 0;
2394 -- Check for unconstrained array in exported foreign
2397 if Has_Foreign_Convention
(E
)
2398 and then not Is_Imported
(E
)
2399 and then Is_Array_Type
(F_Type
)
2400 and then not Is_Constrained
(F_Type
)
2401 and then Warn_On_Export_Import
2403 Error_Msg_Qual_Level
:= 1;
2405 -- If this is an inherited operation, place the
2406 -- warning on the derived type declaration, rather
2407 -- than on the original subprogram.
2409 if Nkind
(Original_Node
(Parent
(E
))) =
2410 N_Full_Type_Declaration
2412 Warn_Node
:= Parent
(E
);
2414 if Formal
= First_Formal
(E
) then
2416 ("?in inherited operation&", Warn_Node
, E
);
2419 Warn_Node
:= Formal
;
2423 ("?type of argument& is unconstrained array",
2426 ("?foreign caller must pass bounds explicitly",
2428 Error_Msg_Qual_Level
:= 0;
2431 -- Ada 2005 (AI-326): Check wrong use of tag incomplete
2432 -- types with unknown discriminants. For example:
2434 -- type T (<>) is tagged;
2435 -- procedure P (X : access T); -- ERROR
2436 -- procedure P (X : T); -- ERROR
2438 if not From_With_Type
(F_Type
) then
2439 if Is_Access_Type
(F_Type
) then
2440 F_Type
:= Designated_Type
(F_Type
);
2443 if Ekind
(F_Type
) = E_Incomplete_Type
2444 and then Is_Tagged_Type
(F_Type
)
2445 and then not Is_Class_Wide_Type
(F_Type
)
2446 and then No
(Full_View
(F_Type
))
2447 and then Unknown_Discriminants_Present
2449 and then No
(Stored_Constraint
(F_Type
))
2452 ("(Ada 2005): invalid use of unconstrained tagged"
2453 & " incomplete type", E
);
2455 -- If the formal is an anonymous_access_to_subprogram
2456 -- freeze the subprogram type as well, to prevent
2457 -- scope anomalies in gigi, because there is no other
2458 -- clear point at which it could be frozen.
2460 elsif Is_Itype
(Etype
(Formal
))
2461 and then Ekind
(F_Type
) = E_Subprogram_Type
2463 Freeze_And_Append
(F_Type
, Loc
, Result
);
2467 Next_Formal
(Formal
);
2472 if Ekind
(E
) = E_Function
then
2474 -- Freeze return type
2476 R_Type
:= Etype
(E
);
2477 Freeze_And_Append
(R_Type
, Loc
, Result
);
2479 -- Check suspicious return type for C function
2481 if Warn_On_Export_Import
2482 and then (Convention
(E
) = Convention_C
2484 Convention
(E
) = Convention_CPP
)
2485 and then not Warnings_Off
(E
)
2486 and then not Warnings_Off
(R_Type
)
2487 and then (Is_Imported
(E
) or else Is_Exported
(E
))
2489 -- Check suspicious return of fat C pointer
2491 if Is_Access_Type
(R_Type
)
2492 and then Esize
(R_Type
) > Ttypes
.System_Address_Size
2495 ("?return type of& does not "
2496 & "correspond to C pointer!", E
);
2498 -- Check suspicious return of boolean
2500 elsif Root_Type
(R_Type
) = Standard_Boolean
2501 and then Convention
(R_Type
) = Convention_Ada
2504 ("?return type of & is an 8-bit "
2505 & "Ada Boolean, use char in C!", E
);
2507 -- Check suspicious return tagged type
2509 elsif (Is_Tagged_Type
(R_Type
)
2510 or else (Is_Access_Type
(R_Type
)
2513 (Designated_Type
(R_Type
))))
2514 and then Convention
(E
) = Convention_C
2517 ("?return type of & does not "
2518 & "correspond to C type!", E
);
2520 -- Check return of wrong convention subprogram pointer
2522 elsif Ekind
(R_Type
) = E_Access_Subprogram_Type
2523 and then not Has_Foreign_Convention
(R_Type
)
2526 ("?& should return a foreign "
2527 & "convention subprogram pointer", E
);
2528 Error_Msg_Sloc
:= Sloc
(R_Type
);
2530 ("\?add Convention pragma to declaration of& #",
2535 if Is_Array_Type
(Etype
(E
))
2536 and then not Is_Constrained
(Etype
(E
))
2537 and then not Is_Imported
(E
)
2538 and then Has_Foreign_Convention
(E
)
2539 and then Warn_On_Export_Import
2542 ("?foreign convention function& should not " &
2543 "return unconstrained array", E
);
2545 -- Ada 2005 (AI-326): Check wrong use of tagged
2548 -- type T is tagged;
2549 -- function F (X : Boolean) return T; -- ERROR
2551 elsif Ekind
(Etype
(E
)) = E_Incomplete_Type
2552 and then Is_Tagged_Type
(Etype
(E
))
2553 and then No
(Full_View
(Etype
(E
)))
2554 and then not Is_Value_Type
(Etype
(E
))
2557 ("(Ada 2005): invalid use of tagged incomplete type",
2564 -- Must freeze its parent first if it is a derived subprogram
2566 if Present
(Alias
(E
)) then
2567 Freeze_And_Append
(Alias
(E
), Loc
, Result
);
2570 -- We don't freeze internal subprograms, because we don't normally
2571 -- want addition of extra formals or mechanism setting to happen
2572 -- for those. However we do pass through predefined dispatching
2573 -- cases, since extra formals may be needed in some cases, such as
2574 -- for the stream 'Input function (build-in-place formals).
2576 if not Is_Internal
(E
)
2577 or else Is_Predefined_Dispatching_Operation
(E
)
2579 Freeze_Subprogram
(E
);
2582 -- Here for other than a subprogram or type
2585 -- If entity has a type, and it is not a generic unit, then
2586 -- freeze it first (RM 13.14(10)).
2588 if Present
(Etype
(E
))
2589 and then Ekind
(E
) /= E_Generic_Function
2591 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
2594 -- Special processing for objects created by object declaration
2596 if Nkind
(Declaration_Node
(E
)) = N_Object_Declaration
then
2598 -- For object created by object declaration, perform required
2599 -- categorization (preelaborate and pure) checks. Defer these
2600 -- checks to freeze time since pragma Import inhibits default
2601 -- initialization and thus pragma Import affects these checks.
2603 Validate_Object_Declaration
(Declaration_Node
(E
));
2605 -- If there is an address clause, check it is valid
2607 Check_Address_Clause
(E
);
2609 -- For imported objects, set Is_Public unless there is also an
2610 -- address clause, which means that there is no external symbol
2611 -- needed for the Import (Is_Public may still be set for other
2612 -- unrelated reasons). Note that we delayed this processing
2613 -- till freeze time so that we can be sure not to set the flag
2614 -- if there is an address clause. If there is such a clause,
2615 -- then the only purpose of the Import pragma is to suppress
2616 -- implicit initialization.
2619 and then No
(Address_Clause
(E
))
2624 -- For convention C objects of an enumeration type, warn if
2625 -- the size is not integer size and no explicit size given.
2626 -- Skip warning for Boolean, and Character, assume programmer
2627 -- expects 8-bit sizes for these cases.
2629 if (Convention
(E
) = Convention_C
2631 Convention
(E
) = Convention_CPP
)
2632 and then Is_Enumeration_Type
(Etype
(E
))
2633 and then not Is_Character_Type
(Etype
(E
))
2634 and then not Is_Boolean_Type
(Etype
(E
))
2635 and then Esize
(Etype
(E
)) < Standard_Integer_Size
2636 and then not Has_Size_Clause
(E
)
2638 Error_Msg_Uint_1
:= UI_From_Int
(Standard_Integer_Size
);
2640 ("?convention C enumeration object has size less than ^",
2642 Error_Msg_N
("\?use explicit size clause to set size", E
);
2646 -- Check that a constant which has a pragma Volatile[_Components]
2647 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
2649 -- Note: Atomic[_Components] also sets Volatile[_Components]
2651 if Ekind
(E
) = E_Constant
2652 and then (Has_Volatile_Components
(E
) or else Is_Volatile
(E
))
2653 and then not Is_Imported
(E
)
2655 -- Make sure we actually have a pragma, and have not merely
2656 -- inherited the indication from elsewhere (e.g. an address
2657 -- clause, which is not good enough in RM terms!)
2659 if Has_Rep_Pragma
(E
, Name_Atomic
)
2661 Has_Rep_Pragma
(E
, Name_Atomic_Components
)
2664 ("stand alone atomic constant must be " &
2665 "imported (RM C.6(13))", E
);
2667 elsif Has_Rep_Pragma
(E
, Name_Volatile
)
2669 Has_Rep_Pragma
(E
, Name_Volatile_Components
)
2672 ("stand alone volatile constant must be " &
2673 "imported (RM C.6(13))", E
);
2677 -- Static objects require special handling
2679 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
2680 and then Is_Statically_Allocated
(E
)
2682 Freeze_Static_Object
(E
);
2685 -- Remaining step is to layout objects
2687 if Ekind
(E
) = E_Variable
2689 Ekind
(E
) = E_Constant
2691 Ekind
(E
) = E_Loop_Parameter
2699 -- Case of a type or subtype being frozen
2702 -- We used to check here that a full type must have preelaborable
2703 -- initialization if it completes a private type specified with
2704 -- pragma Preelaborable_Intialization, but that missed cases where
2705 -- the types occur within a generic package, since the freezing
2706 -- that occurs within a containing scope generally skips traversal
2707 -- of a generic unit's declarations (those will be frozen within
2708 -- instances). This check was moved to Analyze_Package_Specification.
2710 -- The type may be defined in a generic unit. This can occur when
2711 -- freezing a generic function that returns the type (which is
2712 -- defined in a parent unit). It is clearly meaningless to freeze
2713 -- this type. However, if it is a subtype, its size may be determi-
2714 -- nable and used in subsequent checks, so might as well try to
2717 if Present
(Scope
(E
))
2718 and then Is_Generic_Unit
(Scope
(E
))
2720 Check_Compile_Time_Size
(E
);
2724 -- Deal with special cases of freezing for subtype
2726 if E
/= Base_Type
(E
) then
2728 -- Before we do anything else, a specialized test for the case of
2729 -- a size given for an array where the array needs to be packed,
2730 -- but was not so the size cannot be honored. This would of course
2731 -- be caught by the backend, and indeed we don't catch all cases.
2732 -- The point is that we can give a better error message in those
2733 -- cases that we do catch with the circuitry here. Also if pragma
2734 -- Implicit_Packing is set, this is where the packing occurs.
2736 -- The reason we do this so early is that the processing in the
2737 -- automatic packing case affects the layout of the base type, so
2738 -- it must be done before we freeze the base type.
2740 if Is_Array_Type
(E
) then
2743 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
2746 -- Check enabling conditions. These are straightforward
2747 -- except for the test for a limited composite type. This
2748 -- eliminates the rare case of a array of limited components
2749 -- where there are issues of whether or not we can go ahead
2750 -- and pack the array (since we can't freely pack and unpack
2751 -- arrays if they are limited).
2753 -- Note that we check the root type explicitly because the
2754 -- whole point is we are doing this test before we have had
2755 -- a chance to freeze the base type (and it is that freeze
2756 -- action that causes stuff to be inherited).
2758 if Present
(Size_Clause
(E
))
2759 and then Known_Static_Esize
(E
)
2760 and then not Is_Packed
(E
)
2761 and then not Has_Pragma_Pack
(E
)
2762 and then Number_Dimensions
(E
) = 1
2763 and then not Has_Component_Size_Clause
(E
)
2764 and then Known_Static_Esize
(Ctyp
)
2765 and then not Is_Limited_Composite
(E
)
2766 and then not Is_Packed
(Root_Type
(E
))
2767 and then not Has_Component_Size_Clause
(Root_Type
(E
))
2769 Get_Index_Bounds
(First_Index
(E
), Lo
, Hi
);
2771 if Compile_Time_Known_Value
(Lo
)
2772 and then Compile_Time_Known_Value
(Hi
)
2773 and then Known_Static_RM_Size
(Ctyp
)
2774 and then RM_Size
(Ctyp
) < 64
2777 Lov
: constant Uint
:= Expr_Value
(Lo
);
2778 Hiv
: constant Uint
:= Expr_Value
(Hi
);
2779 Len
: constant Uint
:= UI_Max
2782 Rsiz
: constant Uint
:= RM_Size
(Ctyp
);
2783 SZ
: constant Node_Id
:= Size_Clause
(E
);
2784 Btyp
: constant Entity_Id
:= Base_Type
(E
);
2786 -- What we are looking for here is the situation where
2787 -- the RM_Size given would be exactly right if there
2788 -- was a pragma Pack (resulting in the component size
2789 -- being the same as the RM_Size). Furthermore, the
2790 -- component type size must be an odd size (not a
2791 -- multiple of storage unit)
2794 if RM_Size
(E
) = Len
* Rsiz
2795 and then Rsiz
mod System_Storage_Unit
/= 0
2797 -- For implicit packing mode, just set the
2798 -- component size silently
2800 if Implicit_Packing
then
2801 Set_Component_Size
(Btyp
, Rsiz
);
2802 Set_Is_Bit_Packed_Array
(Btyp
);
2803 Set_Is_Packed
(Btyp
);
2804 Set_Has_Non_Standard_Rep
(Btyp
);
2806 -- Otherwise give an error message
2810 ("size given for& too small", SZ
, E
);
2812 ("\use explicit pragma Pack "
2813 & "or use pragma Implicit_Packing", SZ
);
2822 -- If ancestor subtype present, freeze that first. Note that this
2823 -- will also get the base type frozen.
2825 Atype
:= Ancestor_Subtype
(E
);
2827 if Present
(Atype
) then
2828 Freeze_And_Append
(Atype
, Loc
, Result
);
2830 -- Otherwise freeze the base type of the entity before freezing
2831 -- the entity itself (RM 13.14(15)).
2833 elsif E
/= Base_Type
(E
) then
2834 Freeze_And_Append
(Base_Type
(E
), Loc
, Result
);
2837 -- For a derived type, freeze its parent type first (RM 13.14(15))
2839 elsif Is_Derived_Type
(E
) then
2840 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
2841 Freeze_And_Append
(First_Subtype
(Etype
(E
)), Loc
, Result
);
2844 -- For array type, freeze index types and component type first
2845 -- before freezing the array (RM 13.14(15)).
2847 if Is_Array_Type
(E
) then
2849 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
2851 Non_Standard_Enum
: Boolean := False;
2852 -- Set true if any of the index types is an enumeration type
2853 -- with a non-standard representation.
2856 Freeze_And_Append
(Ctyp
, Loc
, Result
);
2858 Indx
:= First_Index
(E
);
2859 while Present
(Indx
) loop
2860 Freeze_And_Append
(Etype
(Indx
), Loc
, Result
);
2862 if Is_Enumeration_Type
(Etype
(Indx
))
2863 and then Has_Non_Standard_Rep
(Etype
(Indx
))
2865 Non_Standard_Enum
:= True;
2871 -- Processing that is done only for base types
2873 if Ekind
(E
) = E_Array_Type
then
2875 -- Propagate flags for component type
2877 if Is_Controlled
(Component_Type
(E
))
2878 or else Has_Controlled_Component
(Ctyp
)
2880 Set_Has_Controlled_Component
(E
);
2883 if Has_Unchecked_Union
(Component_Type
(E
)) then
2884 Set_Has_Unchecked_Union
(E
);
2887 -- If packing was requested or if the component size was set
2888 -- explicitly, then see if bit packing is required. This
2889 -- processing is only done for base types, since all the
2890 -- representation aspects involved are type-related. This
2891 -- is not just an optimization, if we start processing the
2892 -- subtypes, they intefere with the settings on the base
2893 -- type (this is because Is_Packed has a slightly different
2894 -- meaning before and after freezing).
2901 if (Is_Packed
(E
) or else Has_Pragma_Pack
(E
))
2902 and then not Has_Atomic_Components
(E
)
2903 and then Known_Static_RM_Size
(Ctyp
)
2905 Csiz
:= UI_Max
(RM_Size
(Ctyp
), 1);
2907 elsif Known_Component_Size
(E
) then
2908 Csiz
:= Component_Size
(E
);
2910 elsif not Known_Static_Esize
(Ctyp
) then
2914 Esiz
:= Esize
(Ctyp
);
2916 -- We can set the component size if it is less than
2917 -- 16, rounding it up to the next storage unit size.
2921 elsif Esiz
<= 16 then
2927 -- Set component size up to match alignment if it
2928 -- would otherwise be less than the alignment. This
2929 -- deals with cases of types whose alignment exceeds
2930 -- their size (padded types).
2934 A
: constant Uint
:= Alignment_In_Bits
(Ctyp
);
2943 -- Case of component size that may result in packing
2945 if 1 <= Csiz
and then Csiz
<= 64 then
2947 Ent
: constant Entity_Id
:=
2949 Pack_Pragma
: constant Node_Id
:=
2950 Get_Rep_Pragma
(Ent
, Name_Pack
);
2951 Comp_Size_C
: constant Node_Id
:=
2952 Get_Attribute_Definition_Clause
2953 (Ent
, Attribute_Component_Size
);
2955 -- Warn if we have pack and component size so that
2956 -- the pack is ignored.
2958 -- Note: here we must check for the presence of a
2959 -- component size before checking for a Pack pragma
2960 -- to deal with the case where the array type is a
2961 -- derived type whose parent is currently private.
2963 if Present
(Comp_Size_C
)
2964 and then Has_Pragma_Pack
(Ent
)
2966 Error_Msg_Sloc
:= Sloc
(Comp_Size_C
);
2968 ("?pragma Pack for& ignored!",
2971 ("\?explicit component size given#!",
2975 -- Set component size if not already set by a
2976 -- component size clause.
2978 if not Present
(Comp_Size_C
) then
2979 Set_Component_Size
(E
, Csiz
);
2982 -- Check for base type of 8, 16, 32 bits, where an
2983 -- unsigned subtype has a length one less than the
2984 -- base type (e.g. Natural subtype of Integer).
2986 -- In such cases, if a component size was not set
2987 -- explicitly, then generate a warning.
2989 if Has_Pragma_Pack
(E
)
2990 and then not Present
(Comp_Size_C
)
2992 (Csiz
= 7 or else Csiz
= 15 or else Csiz
= 31)
2993 and then Esize
(Base_Type
(Ctyp
)) = Csiz
+ 1
2995 Error_Msg_Uint_1
:= Csiz
;
2997 if Present
(Pack_Pragma
) then
2999 ("?pragma Pack causes component size "
3000 & "to be ^!", Pack_Pragma
);
3002 ("\?use Component_Size to set "
3003 & "desired value!", Pack_Pragma
);
3007 -- Actual packing is not needed for 8, 16, 32, 64.
3008 -- Also not needed for 24 if alignment is 1.
3014 or else (Csiz
= 24 and then Alignment
(Ctyp
) = 1)
3016 -- Here the array was requested to be packed,
3017 -- but the packing request had no effect, so
3018 -- Is_Packed is reset.
3020 -- Note: semantically this means that we lose
3021 -- track of the fact that a derived type
3022 -- inherited a pragma Pack that was non-
3023 -- effective, but that seems fine.
3025 -- We regard a Pack pragma as a request to set
3026 -- a representation characteristic, and this
3027 -- request may be ignored.
3029 Set_Is_Packed
(Base_Type
(E
), False);
3031 -- In all other cases, packing is indeed needed
3034 Set_Has_Non_Standard_Rep
(Base_Type
(E
));
3035 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
3036 Set_Is_Packed
(Base_Type
(E
));
3042 -- Processing that is done only for subtypes
3045 -- Acquire alignment from base type
3047 if Unknown_Alignment
(E
) then
3048 Set_Alignment
(E
, Alignment
(Base_Type
(E
)));
3049 Adjust_Esize_Alignment
(E
);
3053 -- For bit-packed arrays, check the size
3055 if Is_Bit_Packed_Array
(E
)
3056 and then Known_RM_Size
(E
)
3059 SizC
: constant Node_Id
:= Size_Clause
(E
);
3062 pragma Warnings
(Off
, Discard
);
3065 -- It is not clear if it is possible to have no size
3066 -- clause at this stage, but it is not worth worrying
3067 -- about. Post error on the entity name in the size
3068 -- clause if present, else on the type entity itself.
3070 if Present
(SizC
) then
3071 Check_Size
(Name
(SizC
), E
, RM_Size
(E
), Discard
);
3073 Check_Size
(E
, E
, RM_Size
(E
), Discard
);
3078 -- If any of the index types was an enumeration type with
3079 -- a non-standard rep clause, then we indicate that the
3080 -- array type is always packed (even if it is not bit packed).
3082 if Non_Standard_Enum
then
3083 Set_Has_Non_Standard_Rep
(Base_Type
(E
));
3084 Set_Is_Packed
(Base_Type
(E
));
3087 Set_Component_Alignment_If_Not_Set
(E
);
3089 -- If the array is packed, we must create the packed array
3090 -- type to be used to actually implement the type. This is
3091 -- only needed for real array types (not for string literal
3092 -- types, since they are present only for the front end).
3095 and then Ekind
(E
) /= E_String_Literal_Subtype
3097 Create_Packed_Array_Type
(E
);
3098 Freeze_And_Append
(Packed_Array_Type
(E
), Loc
, Result
);
3100 -- Size information of packed array type is copied to the
3101 -- array type, since this is really the representation. But
3102 -- do not override explicit existing size values. If the
3103 -- ancestor subtype is constrained the packed_array_type
3104 -- will be inherited from it, but the size may have been
3105 -- provided already, and must not be overridden either.
3107 if not Has_Size_Clause
(E
)
3109 (No
(Ancestor_Subtype
(E
))
3110 or else not Has_Size_Clause
(Ancestor_Subtype
(E
)))
3112 Set_Esize
(E
, Esize
(Packed_Array_Type
(E
)));
3113 Set_RM_Size
(E
, RM_Size
(Packed_Array_Type
(E
)));
3116 if not Has_Alignment_Clause
(E
) then
3117 Set_Alignment
(E
, Alignment
(Packed_Array_Type
(E
)));
3121 -- For non-packed arrays set the alignment of the array to the
3122 -- alignment of the component type if it is unknown. Skip this
3123 -- in atomic case (atomic arrays may need larger alignments).
3125 if not Is_Packed
(E
)
3126 and then Unknown_Alignment
(E
)
3127 and then Known_Alignment
(Ctyp
)
3128 and then Known_Static_Component_Size
(E
)
3129 and then Known_Static_Esize
(Ctyp
)
3130 and then Esize
(Ctyp
) = Component_Size
(E
)
3131 and then not Is_Atomic
(E
)
3133 Set_Alignment
(E
, Alignment
(Component_Type
(E
)));
3137 -- For a class-wide type, the corresponding specific type is
3138 -- frozen as well (RM 13.14(15))
3140 elsif Is_Class_Wide_Type
(E
) then
3141 Freeze_And_Append
(Root_Type
(E
), Loc
, Result
);
3143 -- If the base type of the class-wide type is still incomplete,
3144 -- the class-wide remains unfrozen as well. This is legal when
3145 -- E is the formal of a primitive operation of some other type
3146 -- which is being frozen.
3148 if not Is_Frozen
(Root_Type
(E
)) then
3149 Set_Is_Frozen
(E
, False);
3153 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3154 -- parent of a derived type) and it is a library-level entity,
3155 -- generate an itype reference for it. Otherwise, its first
3156 -- explicit reference may be in an inner scope, which will be
3157 -- rejected by the back-end.
3160 and then Is_Compilation_Unit
(Scope
(E
))
3163 Ref
: constant Node_Id
:= Make_Itype_Reference
(Loc
);
3168 Result
:= New_List
(Ref
);
3170 Append
(Ref
, Result
);
3175 -- The equivalent type associated with a class-wide subtype needs
3176 -- to be frozen to ensure that its layout is done. Class-wide
3177 -- subtypes are currently only frozen on targets requiring
3178 -- front-end layout (see New_Class_Wide_Subtype and
3179 -- Make_CW_Equivalent_Type in exp_util.adb).
3181 if Ekind
(E
) = E_Class_Wide_Subtype
3182 and then Present
(Equivalent_Type
(E
))
3184 Freeze_And_Append
(Equivalent_Type
(E
), Loc
, Result
);
3187 -- For a record (sub)type, freeze all the component types (RM
3188 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3189 -- Is_Record_Type, because we don't want to attempt the freeze for
3190 -- the case of a private type with record extension (we will do that
3191 -- later when the full type is frozen).
3193 elsif Ekind
(E
) = E_Record_Type
3194 or else Ekind
(E
) = E_Record_Subtype
3196 Freeze_Record_Type
(E
);
3198 -- For a concurrent type, freeze corresponding record type. This
3199 -- does not correpond to any specific rule in the RM, but the
3200 -- record type is essentially part of the concurrent type.
3201 -- Freeze as well all local entities. This includes record types
3202 -- created for entry parameter blocks, and whatever local entities
3203 -- may appear in the private part.
3205 elsif Is_Concurrent_Type
(E
) then
3206 if Present
(Corresponding_Record_Type
(E
)) then
3208 (Corresponding_Record_Type
(E
), Loc
, Result
);
3211 Comp
:= First_Entity
(E
);
3213 while Present
(Comp
) loop
3214 if Is_Type
(Comp
) then
3215 Freeze_And_Append
(Comp
, Loc
, Result
);
3217 elsif (Ekind
(Comp
)) /= E_Function
then
3218 if Is_Itype
(Etype
(Comp
))
3219 and then Underlying_Type
(Scope
(Etype
(Comp
))) = E
3221 Undelay_Type
(Etype
(Comp
));
3224 Freeze_And_Append
(Etype
(Comp
), Loc
, Result
);
3230 -- Private types are required to point to the same freeze node as
3231 -- their corresponding full views. The freeze node itself has to
3232 -- point to the partial view of the entity (because from the partial
3233 -- view, we can retrieve the full view, but not the reverse).
3234 -- However, in order to freeze correctly, we need to freeze the full
3235 -- view. If we are freezing at the end of a scope (or within the
3236 -- scope of the private type), the partial and full views will have
3237 -- been swapped, the full view appears first in the entity chain and
3238 -- the swapping mechanism ensures that the pointers are properly set
3241 -- If we encounter the partial view before the full view (e.g. when
3242 -- freezing from another scope), we freeze the full view, and then
3243 -- set the pointers appropriately since we cannot rely on swapping to
3244 -- fix things up (subtypes in an outer scope might not get swapped).
3246 elsif Is_Incomplete_Or_Private_Type
(E
)
3247 and then not Is_Generic_Type
(E
)
3249 -- The construction of the dispatch table associated with library
3250 -- level tagged types forces freezing of all the primitives of the
3251 -- type, which may cause premature freezing of the partial view.
3255 -- type T is tagged private;
3256 -- type DT is new T with private;
3257 -- procedure Prim (X : in out T; Y : in out DT'class);
3259 -- type T is tagged null record;
3261 -- type DT is new T with null record;
3264 -- In this case the type will be frozen later by the usual
3265 -- mechanism: an object declaration, an instantiation, or the
3266 -- end of a declarative part.
3268 if Is_Library_Level_Tagged_Type
(E
)
3269 and then not Present
(Full_View
(E
))
3271 Set_Is_Frozen
(E
, False);
3274 -- Case of full view present
3276 elsif Present
(Full_View
(E
)) then
3278 -- If full view has already been frozen, then no further
3279 -- processing is required
3281 if Is_Frozen
(Full_View
(E
)) then
3283 Set_Has_Delayed_Freeze
(E
, False);
3284 Set_Freeze_Node
(E
, Empty
);
3285 Check_Debug_Info_Needed
(E
);
3287 -- Otherwise freeze full view and patch the pointers so that
3288 -- the freeze node will elaborate both views in the back-end.
3292 Full
: constant Entity_Id
:= Full_View
(E
);
3295 if Is_Private_Type
(Full
)
3296 and then Present
(Underlying_Full_View
(Full
))
3299 (Underlying_Full_View
(Full
), Loc
, Result
);
3302 Freeze_And_Append
(Full
, Loc
, Result
);
3304 if Has_Delayed_Freeze
(E
) then
3305 F_Node
:= Freeze_Node
(Full
);
3307 if Present
(F_Node
) then
3308 Set_Freeze_Node
(E
, F_Node
);
3309 Set_Entity
(F_Node
, E
);
3312 -- {Incomplete,Private}_Subtypes with Full_Views
3313 -- constrained by discriminants.
3315 Set_Has_Delayed_Freeze
(E
, False);
3316 Set_Freeze_Node
(E
, Empty
);
3321 Check_Debug_Info_Needed
(E
);
3324 -- AI-117 requires that the convention of a partial view be the
3325 -- same as the convention of the full view. Note that this is a
3326 -- recognized breach of privacy, but it's essential for logical
3327 -- consistency of representation, and the lack of a rule in
3328 -- RM95 was an oversight.
3330 Set_Convention
(E
, Convention
(Full_View
(E
)));
3332 Set_Size_Known_At_Compile_Time
(E
,
3333 Size_Known_At_Compile_Time
(Full_View
(E
)));
3335 -- Size information is copied from the full view to the
3336 -- incomplete or private view for consistency.
3338 -- We skip this is the full view is not a type. This is very
3339 -- strange of course, and can only happen as a result of
3340 -- certain illegalities, such as a premature attempt to derive
3341 -- from an incomplete type.
3343 if Is_Type
(Full_View
(E
)) then
3344 Set_Size_Info
(E
, Full_View
(E
));
3345 Set_RM_Size
(E
, RM_Size
(Full_View
(E
)));
3350 -- Case of no full view present. If entity is derived or subtype,
3351 -- it is safe to freeze, correctness depends on the frozen status
3352 -- of parent. Otherwise it is either premature usage, or a Taft
3353 -- amendment type, so diagnosis is at the point of use and the
3354 -- type might be frozen later.
3356 elsif E
/= Base_Type
(E
)
3357 or else Is_Derived_Type
(E
)
3362 Set_Is_Frozen
(E
, False);
3366 -- For access subprogram, freeze types of all formals, the return
3367 -- type was already frozen, since it is the Etype of the function.
3369 elsif Ekind
(E
) = E_Subprogram_Type
then
3370 Formal
:= First_Formal
(E
);
3371 while Present
(Formal
) loop
3372 Freeze_And_Append
(Etype
(Formal
), Loc
, Result
);
3373 Next_Formal
(Formal
);
3376 Freeze_Subprogram
(E
);
3378 -- Ada 2005 (AI-326): Check wrong use of tag incomplete type
3380 -- type T is tagged;
3381 -- type Acc is access function (X : T) return T; -- ERROR
3383 if Ekind
(Etype
(E
)) = E_Incomplete_Type
3384 and then Is_Tagged_Type
(Etype
(E
))
3385 and then No
(Full_View
(Etype
(E
)))
3386 and then not Is_Value_Type
(Etype
(E
))
3389 ("(Ada 2005): invalid use of tagged incomplete type", E
);
3392 -- For access to a protected subprogram, freeze the equivalent type
3393 -- (however this is not set if we are not generating code or if this
3394 -- is an anonymous type used just for resolution).
3396 elsif Is_Access_Protected_Subprogram_Type
(E
) then
3398 -- AI-326: Check wrong use of tagged incomplete types
3400 -- type T is tagged;
3401 -- type As3D is access protected
3402 -- function (X : Float) return T; -- ERROR
3408 Etyp
:= Etype
(Directly_Designated_Type
(E
));
3410 if Is_Class_Wide_Type
(Etyp
) then
3411 Etyp
:= Etype
(Etyp
);
3414 if Ekind
(Etyp
) = E_Incomplete_Type
3415 and then Is_Tagged_Type
(Etyp
)
3416 and then No
(Full_View
(Etyp
))
3417 and then not Is_Value_Type
(Etype
(E
))
3420 ("(Ada 2005): invalid use of tagged incomplete type", E
);
3424 if Present
(Equivalent_Type
(E
)) then
3425 Freeze_And_Append
(Equivalent_Type
(E
), Loc
, Result
);
3429 -- Generic types are never seen by the back-end, and are also not
3430 -- processed by the expander (since the expander is turned off for
3431 -- generic processing), so we never need freeze nodes for them.
3433 if Is_Generic_Type
(E
) then
3437 -- Some special processing for non-generic types to complete
3438 -- representation details not known till the freeze point.
3440 if Is_Fixed_Point_Type
(E
) then
3441 Freeze_Fixed_Point_Type
(E
);
3443 -- Some error checks required for ordinary fixed-point type. Defer
3444 -- these till the freeze-point since we need the small and range
3445 -- values. We only do these checks for base types
3447 if Is_Ordinary_Fixed_Point_Type
(E
)
3448 and then E
= Base_Type
(E
)
3450 if Small_Value
(E
) < Ureal_2_M_80
then
3451 Error_Msg_Name_1
:= Name_Small
;
3453 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E
);
3455 elsif Small_Value
(E
) > Ureal_2_80
then
3456 Error_Msg_Name_1
:= Name_Small
;
3458 ("`&''%` too large, maximum allowed is 2.0'*'*80", E
);
3461 if Expr_Value_R
(Type_Low_Bound
(E
)) < Ureal_M_10_36
then
3462 Error_Msg_Name_1
:= Name_First
;
3464 ("`&''%` too small, minimum allowed is -10.0'*'*36", E
);
3467 if Expr_Value_R
(Type_High_Bound
(E
)) > Ureal_10_36
then
3468 Error_Msg_Name_1
:= Name_Last
;
3470 ("`&''%` too large, maximum allowed is 10.0'*'*36", E
);
3474 elsif Is_Enumeration_Type
(E
) then
3475 Freeze_Enumeration_Type
(E
);
3477 elsif Is_Integer_Type
(E
) then
3478 Adjust_Esize_For_Alignment
(E
);
3480 elsif Is_Access_Type
(E
) then
3482 -- Check restriction for standard storage pool
3484 if No
(Associated_Storage_Pool
(E
)) then
3485 Check_Restriction
(No_Standard_Storage_Pools
, E
);
3488 -- Deal with error message for pure access type. This is not an
3489 -- error in Ada 2005 if there is no pool (see AI-366).
3491 if Is_Pure_Unit_Access_Type
(E
)
3492 and then (Ada_Version
< Ada_05
3493 or else not No_Pool_Assigned
(E
))
3495 Error_Msg_N
("named access type not allowed in pure unit", E
);
3499 -- Case of composite types
3501 if Is_Composite_Type
(E
) then
3503 -- AI-117 requires that all new primitives of a tagged type must
3504 -- inherit the convention of the full view of the type. Inherited
3505 -- and overriding operations are defined to inherit the convention
3506 -- of their parent or overridden subprogram (also specified in
3507 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3508 -- and New_Overloaded_Entity). Here we set the convention of
3509 -- primitives that are still convention Ada, which will ensure
3510 -- that any new primitives inherit the type's convention. Class-
3511 -- wide types can have a foreign convention inherited from their
3512 -- specific type, but are excluded from this since they don't have
3513 -- any associated primitives.
3515 if Is_Tagged_Type
(E
)
3516 and then not Is_Class_Wide_Type
(E
)
3517 and then Convention
(E
) /= Convention_Ada
3520 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
3523 Prim
:= First_Elmt
(Prim_List
);
3524 while Present
(Prim
) loop
3525 if Convention
(Node
(Prim
)) = Convention_Ada
then
3526 Set_Convention
(Node
(Prim
), Convention
(E
));
3535 -- Generate primitive operation references for a tagged type
3537 if Is_Tagged_Type
(E
)
3538 and then not Is_Class_Wide_Type
(E
)
3541 Prim_List
: Elist_Id
;
3549 if Ekind
(E
) = E_Protected_Subtype
3550 or else Ekind
(E
) = E_Task_Subtype
3557 -- Ada 2005 (AI-345): In case of concurrent type generate
3558 -- reference to the wrapper that allow us to dispatch calls
3559 -- through their implemented abstract interface types.
3561 -- The check for Present here is to protect against previously
3562 -- reported critical errors.
3564 if Is_Concurrent_Type
(Aux_E
)
3565 and then Present
(Corresponding_Record_Type
(Aux_E
))
3567 Prim_List
:= Primitive_Operations
3568 (Corresponding_Record_Type
(Aux_E
));
3570 Prim_List
:= Primitive_Operations
(Aux_E
);
3573 -- Loop to generate references for primitive operations
3575 if Present
(Prim_List
) then
3576 Prim
:= First_Elmt
(Prim_List
);
3577 while Present
(Prim
) loop
3579 -- If the operation is derived, get the original for
3580 -- cross-reference purposes (it is the original for
3581 -- which we want the xref, and for which the comes
3582 -- from source test needs to be performed).
3585 while Present
(Alias
(Ent
)) loop
3589 Generate_Reference
(E
, Ent
, 'p', Set_Ref
=> False);
3596 -- Now that all types from which E may depend are frozen, see if the
3597 -- size is known at compile time, if it must be unsigned, or if
3598 -- strict alignment is required
3600 Check_Compile_Time_Size
(E
);
3601 Check_Unsigned_Type
(E
);
3603 if Base_Type
(E
) = E
then
3604 Check_Strict_Alignment
(E
);
3607 -- Do not allow a size clause for a type which does not have a size
3608 -- that is known at compile time
3610 if Has_Size_Clause
(E
)
3611 and then not Size_Known_At_Compile_Time
(E
)
3613 -- Supress this message if errors posted on E, even if we are
3614 -- in all errors mode, since this is often a junk message
3616 if not Error_Posted
(E
) then
3618 ("size clause not allowed for variable length type",
3623 -- Remaining process is to set/verify the representation information,
3624 -- in particular the size and alignment values. This processing is
3625 -- not required for generic types, since generic types do not play
3626 -- any part in code generation, and so the size and alignment values
3627 -- for such types are irrelevant.
3629 if Is_Generic_Type
(E
) then
3632 -- Otherwise we call the layout procedure
3638 -- End of freeze processing for type entities
3641 -- Here is where we logically freeze the current entity. If it has a
3642 -- freeze node, then this is the point at which the freeze node is
3643 -- linked into the result list.
3645 if Has_Delayed_Freeze
(E
) then
3647 -- If a freeze node is already allocated, use it, otherwise allocate
3648 -- a new one. The preallocation happens in the case of anonymous base
3649 -- types, where we preallocate so that we can set First_Subtype_Link.
3650 -- Note that we reset the Sloc to the current freeze location.
3652 if Present
(Freeze_Node
(E
)) then
3653 F_Node
:= Freeze_Node
(E
);
3654 Set_Sloc
(F_Node
, Loc
);
3657 F_Node
:= New_Node
(N_Freeze_Entity
, Loc
);
3658 Set_Freeze_Node
(E
, F_Node
);
3659 Set_Access_Types_To_Process
(F_Node
, No_Elist
);
3660 Set_TSS_Elist
(F_Node
, No_Elist
);
3661 Set_Actions
(F_Node
, No_List
);
3664 Set_Entity
(F_Node
, E
);
3666 if Result
= No_List
then
3667 Result
:= New_List
(F_Node
);
3669 Append
(F_Node
, Result
);
3672 -- A final pass over record types with discriminants. If the type
3673 -- has an incomplete declaration, there may be constrained access
3674 -- subtypes declared elsewhere, which do not depend on the discrimi-
3675 -- nants of the type, and which are used as component types (i.e.
3676 -- the full view is a recursive type). The designated types of these
3677 -- subtypes can only be elaborated after the type itself, and they
3678 -- need an itype reference.
3680 if Ekind
(E
) = E_Record_Type
3681 and then Has_Discriminants
(E
)
3689 Comp
:= First_Component
(E
);
3691 while Present
(Comp
) loop
3692 Typ
:= Etype
(Comp
);
3694 if Ekind
(Comp
) = E_Component
3695 and then Is_Access_Type
(Typ
)
3696 and then Scope
(Typ
) /= E
3697 and then Base_Type
(Designated_Type
(Typ
)) = E
3698 and then Is_Itype
(Designated_Type
(Typ
))
3700 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
3701 Set_Itype
(IR
, Designated_Type
(Typ
));
3702 Append
(IR
, Result
);
3705 Next_Component
(Comp
);
3711 -- When a type is frozen, the first subtype of the type is frozen as
3712 -- well (RM 13.14(15)). This has to be done after freezing the type,
3713 -- since obviously the first subtype depends on its own base type.
3716 Freeze_And_Append
(First_Subtype
(E
), Loc
, Result
);
3718 -- If we just froze a tagged non-class wide record, then freeze the
3719 -- corresponding class-wide type. This must be done after the tagged
3720 -- type itself is frozen, because the class-wide type refers to the
3721 -- tagged type which generates the class.
3723 if Is_Tagged_Type
(E
)
3724 and then not Is_Class_Wide_Type
(E
)
3725 and then Present
(Class_Wide_Type
(E
))
3727 Freeze_And_Append
(Class_Wide_Type
(E
), Loc
, Result
);
3731 Check_Debug_Info_Needed
(E
);
3733 -- Special handling for subprograms
3735 if Is_Subprogram
(E
) then
3737 -- If subprogram has address clause then reset Is_Public flag, since
3738 -- we do not want the backend to generate external references.
3740 if Present
(Address_Clause
(E
))
3741 and then not Is_Library_Level_Entity
(E
)
3743 Set_Is_Public
(E
, False);
3745 -- If no address clause and not intrinsic, then for imported
3746 -- subprogram in main unit, generate descriptor if we are in
3747 -- Propagate_Exceptions mode.
3749 elsif Propagate_Exceptions
3750 and then Is_Imported
(E
)
3751 and then not Is_Intrinsic_Subprogram
(E
)
3752 and then Convention
(E
) /= Convention_Stubbed
3754 if Result
= No_List
then
3755 Result
:= Empty_List
;
3763 -----------------------------
3764 -- Freeze_Enumeration_Type --
3765 -----------------------------
3767 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
) is
3769 if Has_Foreign_Convention
(Typ
)
3770 and then not Has_Size_Clause
(Typ
)
3771 and then Esize
(Typ
) < Standard_Integer_Size
3773 Init_Esize
(Typ
, Standard_Integer_Size
);
3775 Adjust_Esize_For_Alignment
(Typ
);
3777 end Freeze_Enumeration_Type
;
3779 -----------------------
3780 -- Freeze_Expression --
3781 -----------------------
3783 procedure Freeze_Expression
(N
: Node_Id
) is
3784 In_Def_Exp
: constant Boolean := In_Default_Expression
;
3787 Desig_Typ
: Entity_Id
;
3791 Freeze_Outside
: Boolean := False;
3792 -- This flag is set true if the entity must be frozen outside the
3793 -- current subprogram. This happens in the case of expander generated
3794 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3795 -- not freeze all entities like other bodies, but which nevertheless
3796 -- may reference entities that have to be frozen before the body and
3797 -- obviously cannot be frozen inside the body.
3799 function In_Exp_Body
(N
: Node_Id
) return Boolean;
3800 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3801 -- it is the handled statement sequence of an expander-generated
3802 -- subprogram (init proc, stream subprogram, or renaming as body).
3803 -- If so, this is not a freezing context.
3809 function In_Exp_Body
(N
: Node_Id
) return Boolean is
3814 if Nkind
(N
) = N_Subprogram_Body
then
3820 if Nkind
(P
) /= N_Subprogram_Body
then
3824 Id
:= Defining_Unit_Name
(Specification
(P
));
3826 if Nkind
(Id
) = N_Defining_Identifier
3827 and then (Is_Init_Proc
(Id
) or else
3828 Is_TSS
(Id
, TSS_Stream_Input
) or else
3829 Is_TSS
(Id
, TSS_Stream_Output
) or else
3830 Is_TSS
(Id
, TSS_Stream_Read
) or else
3831 Is_TSS
(Id
, TSS_Stream_Write
) or else
3832 Nkind
(Original_Node
(P
)) =
3833 N_Subprogram_Renaming_Declaration
)
3842 -- Start of processing for Freeze_Expression
3845 -- Immediate return if freezing is inhibited. This flag is set by the
3846 -- analyzer to stop freezing on generated expressions that would cause
3847 -- freezing if they were in the source program, but which are not
3848 -- supposed to freeze, since they are created.
3850 if Must_Not_Freeze
(N
) then
3854 -- If expression is non-static, then it does not freeze in a default
3855 -- expression, see section "Handling of Default Expressions" in the
3856 -- spec of package Sem for further details. Note that we have to
3857 -- make sure that we actually have a real expression (if we have
3858 -- a subtype indication, we can't test Is_Static_Expression!)
3861 and then Nkind
(N
) in N_Subexpr
3862 and then not Is_Static_Expression
(N
)
3867 -- Freeze type of expression if not frozen already
3871 if Nkind
(N
) in N_Has_Etype
then
3872 if not Is_Frozen
(Etype
(N
)) then
3875 -- Base type may be an derived numeric type that is frozen at
3876 -- the point of declaration, but first_subtype is still unfrozen.
3878 elsif not Is_Frozen
(First_Subtype
(Etype
(N
))) then
3879 Typ
:= First_Subtype
(Etype
(N
));
3883 -- For entity name, freeze entity if not frozen already. A special
3884 -- exception occurs for an identifier that did not come from source.
3885 -- We don't let such identifiers freeze a non-internal entity, i.e.
3886 -- an entity that did come from source, since such an identifier was
3887 -- generated by the expander, and cannot have any semantic effect on
3888 -- the freezing semantics. For example, this stops the parameter of
3889 -- an initialization procedure from freezing the variable.
3891 if Is_Entity_Name
(N
)
3892 and then not Is_Frozen
(Entity
(N
))
3893 and then (Nkind
(N
) /= N_Identifier
3894 or else Comes_From_Source
(N
)
3895 or else not Comes_From_Source
(Entity
(N
)))
3902 -- For an allocator freeze designated type if not frozen already
3904 -- For an aggregate whose component type is an access type, freeze the
3905 -- designated type now, so that its freeze does not appear within the
3906 -- loop that might be created in the expansion of the aggregate. If the
3907 -- designated type is a private type without full view, the expression
3908 -- cannot contain an allocator, so the type is not frozen.
3914 Desig_Typ
:= Designated_Type
(Etype
(N
));
3917 if Is_Array_Type
(Etype
(N
))
3918 and then Is_Access_Type
(Component_Type
(Etype
(N
)))
3920 Desig_Typ
:= Designated_Type
(Component_Type
(Etype
(N
)));
3923 when N_Selected_Component |
3924 N_Indexed_Component |
3927 if Is_Access_Type
(Etype
(Prefix
(N
))) then
3928 Desig_Typ
:= Designated_Type
(Etype
(Prefix
(N
)));
3935 if Desig_Typ
/= Empty
3936 and then (Is_Frozen
(Desig_Typ
)
3937 or else (not Is_Fully_Defined
(Desig_Typ
)))
3942 -- All done if nothing needs freezing
3946 and then No
(Desig_Typ
)
3951 -- Loop for looking at the right place to insert the freeze nodes
3952 -- exiting from the loop when it is appropriate to insert the freeze
3953 -- node before the current node P.
3955 -- Also checks some special exceptions to the freezing rules. These
3956 -- cases result in a direct return, bypassing the freeze action.
3960 Parent_P
:= Parent
(P
);
3962 -- If we don't have a parent, then we are not in a well-formed tree.
3963 -- This is an unusual case, but there are some legitimate situations
3964 -- in which this occurs, notably when the expressions in the range of
3965 -- a type declaration are resolved. We simply ignore the freeze
3966 -- request in this case. Is this right ???
3968 if No
(Parent_P
) then
3972 -- See if we have got to an appropriate point in the tree
3974 case Nkind
(Parent_P
) is
3976 -- A special test for the exception of (RM 13.14(8)) for the case
3977 -- of per-object expressions (RM 3.8(18)) occurring in component
3978 -- definition or a discrete subtype definition. Note that we test
3979 -- for a component declaration which includes both cases we are
3980 -- interested in, and furthermore the tree does not have explicit
3981 -- nodes for either of these two constructs.
3983 when N_Component_Declaration
=>
3985 -- The case we want to test for here is an identifier that is
3986 -- a per-object expression, this is either a discriminant that
3987 -- appears in a context other than the component declaration
3988 -- or it is a reference to the type of the enclosing construct.
3990 -- For either of these cases, we skip the freezing
3992 if not In_Default_Expression
3993 and then Nkind
(N
) = N_Identifier
3994 and then (Present
(Entity
(N
)))
3996 -- We recognize the discriminant case by just looking for
3997 -- a reference to a discriminant. It can only be one for
3998 -- the enclosing construct. Skip freezing in this case.
4000 if Ekind
(Entity
(N
)) = E_Discriminant
then
4003 -- For the case of a reference to the enclosing record,
4004 -- (or task or protected type), we look for a type that
4005 -- matches the current scope.
4007 elsif Entity
(N
) = Current_Scope
then
4012 -- If we have an enumeration literal that appears as the choice in
4013 -- the aggregate of an enumeration representation clause, then
4014 -- freezing does not occur (RM 13.14(10)).
4016 when N_Enumeration_Representation_Clause
=>
4018 -- The case we are looking for is an enumeration literal
4020 if (Nkind
(N
) = N_Identifier
or Nkind
(N
) = N_Character_Literal
)
4021 and then Is_Enumeration_Type
(Etype
(N
))
4023 -- If enumeration literal appears directly as the choice,
4024 -- do not freeze (this is the normal non-overloade case)
4026 if Nkind
(Parent
(N
)) = N_Component_Association
4027 and then First
(Choices
(Parent
(N
))) = N
4031 -- If enumeration literal appears as the name of function
4032 -- which is the choice, then also do not freeze. This
4033 -- happens in the overloaded literal case, where the
4034 -- enumeration literal is temporarily changed to a function
4035 -- call for overloading analysis purposes.
4037 elsif Nkind
(Parent
(N
)) = N_Function_Call
4039 Nkind
(Parent
(Parent
(N
))) = N_Component_Association
4041 First
(Choices
(Parent
(Parent
(N
)))) = Parent
(N
)
4047 -- Normally if the parent is a handled sequence of statements,
4048 -- then the current node must be a statement, and that is an
4049 -- appropriate place to insert a freeze node.
4051 when N_Handled_Sequence_Of_Statements
=>
4053 -- An exception occurs when the sequence of statements is for
4054 -- an expander generated body that did not do the usual freeze
4055 -- all operation. In this case we usually want to freeze
4056 -- outside this body, not inside it, and we skip past the
4057 -- subprogram body that we are inside.
4059 if In_Exp_Body
(Parent_P
) then
4061 -- However, we *do* want to freeze at this point if we have
4062 -- an entity to freeze, and that entity is declared *inside*
4063 -- the body of the expander generated procedure. This case
4064 -- is recognized by the scope of the type, which is either
4065 -- the spec for some enclosing body, or (in the case of
4066 -- init_procs, for which there are no separate specs) the
4070 Subp
: constant Node_Id
:= Parent
(Parent_P
);
4074 if Nkind
(Subp
) = N_Subprogram_Body
then
4075 Cspc
:= Corresponding_Spec
(Subp
);
4077 if (Present
(Typ
) and then Scope
(Typ
) = Cspc
)
4079 (Present
(Nam
) and then Scope
(Nam
) = Cspc
)
4084 and then Scope
(Typ
) = Current_Scope
4085 and then Current_Scope
= Defining_Entity
(Subp
)
4092 -- If not that exception to the exception, then this is
4093 -- where we delay the freeze till outside the body.
4095 Parent_P
:= Parent
(Parent_P
);
4096 Freeze_Outside
:= True;
4098 -- Here if normal case where we are in handled statement
4099 -- sequence and want to do the insertion right there.
4105 -- If parent is a body or a spec or a block, then the current node
4106 -- is a statement or declaration and we can insert the freeze node
4109 when N_Package_Specification |
4115 N_Block_Statement
=> exit;
4117 -- The expander is allowed to define types in any statements list,
4118 -- so any of the following parent nodes also mark a freezing point
4119 -- if the actual node is in a list of statements or declarations.
4121 when N_Exception_Handler |
4124 N_Case_Statement_Alternative |
4125 N_Compilation_Unit_Aux |
4126 N_Selective_Accept |
4127 N_Accept_Alternative |
4128 N_Delay_Alternative |
4129 N_Conditional_Entry_Call |
4130 N_Entry_Call_Alternative |
4131 N_Triggering_Alternative |
4135 exit when Is_List_Member
(P
);
4137 -- Note: The N_Loop_Statement is a special case. A type that
4138 -- appears in the source can never be frozen in a loop (this
4139 -- occurs only because of a loop expanded by the expander), so we
4140 -- keep on going. Otherwise we terminate the search. Same is true
4141 -- of any entity which comes from source. (if they have predefined
4142 -- type, that type does not appear to come from source, but the
4143 -- entity should not be frozen here).
4145 when N_Loop_Statement
=>
4146 exit when not Comes_From_Source
(Etype
(N
))
4147 and then (No
(Nam
) or else not Comes_From_Source
(Nam
));
4149 -- For all other cases, keep looking at parents
4155 -- We fall through the case if we did not yet find the proper
4156 -- place in the free for inserting the freeze node, so climb!
4161 -- If the expression appears in a record or an initialization procedure,
4162 -- the freeze nodes are collected and attached to the current scope, to
4163 -- be inserted and analyzed on exit from the scope, to insure that
4164 -- generated entities appear in the correct scope. If the expression is
4165 -- a default for a discriminant specification, the scope is still void.
4166 -- The expression can also appear in the discriminant part of a private
4167 -- or concurrent type.
4169 -- If the expression appears in a constrained subcomponent of an
4170 -- enclosing record declaration, the freeze nodes must be attached to
4171 -- the outer record type so they can eventually be placed in the
4172 -- enclosing declaration list.
4174 -- The other case requiring this special handling is if we are in a
4175 -- default expression, since in that case we are about to freeze a
4176 -- static type, and the freeze scope needs to be the outer scope, not
4177 -- the scope of the subprogram with the default parameter.
4179 -- For default expressions in generic units, the Move_Freeze_Nodes
4180 -- mechanism (see sem_ch12.adb) takes care of placing them at the proper
4181 -- place, after the generic unit.
4183 if (In_Def_Exp
and not Inside_A_Generic
)
4184 or else Freeze_Outside
4185 or else (Is_Type
(Current_Scope
)
4186 and then (not Is_Concurrent_Type
(Current_Scope
)
4187 or else not Has_Completion
(Current_Scope
)))
4188 or else Ekind
(Current_Scope
) = E_Void
4191 Loc
: constant Source_Ptr
:= Sloc
(Current_Scope
);
4192 Freeze_Nodes
: List_Id
:= No_List
;
4193 Pos
: Int
:= Scope_Stack
.Last
;
4196 if Present
(Desig_Typ
) then
4197 Freeze_And_Append
(Desig_Typ
, Loc
, Freeze_Nodes
);
4200 if Present
(Typ
) then
4201 Freeze_And_Append
(Typ
, Loc
, Freeze_Nodes
);
4204 if Present
(Nam
) then
4205 Freeze_And_Append
(Nam
, Loc
, Freeze_Nodes
);
4208 -- The current scope may be that of a constrained component of
4209 -- an enclosing record declaration, which is above the current
4210 -- scope in the scope stack.
4212 if Is_Record_Type
(Scope
(Current_Scope
)) then
4216 if Is_Non_Empty_List
(Freeze_Nodes
) then
4217 if No
(Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
) then
4218 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
:=
4221 Append_List
(Freeze_Nodes
, Scope_Stack
.Table
4222 (Pos
).Pending_Freeze_Actions
);
4230 -- Now we have the right place to do the freezing. First, a special
4231 -- adjustment, if we are in default expression analysis mode, these
4232 -- freeze actions must not be thrown away (normally all inserted actions
4233 -- are thrown away in this mode. However, the freeze actions are from
4234 -- static expressions and one of the important reasons we are doing this
4235 -- special analysis is to get these freeze actions. Therefore we turn
4236 -- off the In_Default_Expression mode to propagate these freeze actions.
4237 -- This also means they get properly analyzed and expanded.
4239 In_Default_Expression
:= False;
4241 -- Freeze the designated type of an allocator (RM 13.14(13))
4243 if Present
(Desig_Typ
) then
4244 Freeze_Before
(P
, Desig_Typ
);
4247 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
4248 -- the enumeration representation clause exception in the loop above.
4250 if Present
(Typ
) then
4251 Freeze_Before
(P
, Typ
);
4254 -- Freeze name if one is present (RM 13.14(11))
4256 if Present
(Nam
) then
4257 Freeze_Before
(P
, Nam
);
4260 In_Default_Expression
:= In_Def_Exp
;
4261 end Freeze_Expression
;
4263 -----------------------------
4264 -- Freeze_Fixed_Point_Type --
4265 -----------------------------
4267 -- Certain fixed-point types and subtypes, including implicit base types
4268 -- and declared first subtypes, have not yet set up a range. This is
4269 -- because the range cannot be set until the Small and Size values are
4270 -- known, and these are not known till the type is frozen.
4272 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4273 -- whose bounds are unanalyzed real literals. This routine will recognize
4274 -- this case, and transform this range node into a properly typed range
4275 -- with properly analyzed and resolved values.
4277 procedure Freeze_Fixed_Point_Type
(Typ
: Entity_Id
) is
4278 Rng
: constant Node_Id
:= Scalar_Range
(Typ
);
4279 Lo
: constant Node_Id
:= Low_Bound
(Rng
);
4280 Hi
: constant Node_Id
:= High_Bound
(Rng
);
4281 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
4282 Brng
: constant Node_Id
:= Scalar_Range
(Btyp
);
4283 BLo
: constant Node_Id
:= Low_Bound
(Brng
);
4284 BHi
: constant Node_Id
:= High_Bound
(Brng
);
4285 Small
: constant Ureal
:= Small_Value
(Typ
);
4292 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
;
4293 -- Returns size of type with given bounds. Also leaves these
4294 -- bounds set as the current bounds of the Typ.
4300 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
is
4302 Set_Realval
(Lo
, Lov
);
4303 Set_Realval
(Hi
, Hiv
);
4304 return Minimum_Size
(Typ
);
4307 -- Start of processing for Freeze_Fixed_Point_Type
4310 -- If Esize of a subtype has not previously been set, set it now
4312 if Unknown_Esize
(Typ
) then
4313 Atype
:= Ancestor_Subtype
(Typ
);
4315 if Present
(Atype
) then
4316 Set_Esize
(Typ
, Esize
(Atype
));
4318 Set_Esize
(Typ
, Esize
(Base_Type
(Typ
)));
4322 -- Immediate return if the range is already analyzed. This means that
4323 -- the range is already set, and does not need to be computed by this
4326 if Analyzed
(Rng
) then
4330 -- Immediate return if either of the bounds raises Constraint_Error
4332 if Raises_Constraint_Error
(Lo
)
4333 or else Raises_Constraint_Error
(Hi
)
4338 Loval
:= Realval
(Lo
);
4339 Hival
:= Realval
(Hi
);
4341 -- Ordinary fixed-point case
4343 if Is_Ordinary_Fixed_Point_Type
(Typ
) then
4345 -- For the ordinary fixed-point case, we are allowed to fudge the
4346 -- end-points up or down by small. Generally we prefer to fudge up,
4347 -- i.e. widen the bounds for non-model numbers so that the end points
4348 -- are included. However there are cases in which this cannot be
4349 -- done, and indeed cases in which we may need to narrow the bounds.
4350 -- The following circuit makes the decision.
4352 -- Note: our terminology here is that Incl_EP means that the bounds
4353 -- are widened by Small if necessary to include the end points, and
4354 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4355 -- end-points if this reduces the size.
4357 -- Note that in the Incl case, all we care about is including the
4358 -- end-points. In the Excl case, we want to narrow the bounds as
4359 -- much as permitted by the RM, to give the smallest possible size.
4362 Loval_Incl_EP
: Ureal
;
4363 Hival_Incl_EP
: Ureal
;
4365 Loval_Excl_EP
: Ureal
;
4366 Hival_Excl_EP
: Ureal
;
4372 First_Subt
: Entity_Id
;
4377 -- First step. Base types are required to be symmetrical. Right
4378 -- now, the base type range is a copy of the first subtype range.
4379 -- This will be corrected before we are done, but right away we
4380 -- need to deal with the case where both bounds are non-negative.
4381 -- In this case, we set the low bound to the negative of the high
4382 -- bound, to make sure that the size is computed to include the
4383 -- required sign. Note that we do not need to worry about the
4384 -- case of both bounds negative, because the sign will be dealt
4385 -- with anyway. Furthermore we can't just go making such a bound
4386 -- symmetrical, since in a twos-complement system, there is an
4387 -- extra negative value which could not be accomodated on the
4391 and then not UR_Is_Negative
(Loval
)
4392 and then Hival
> Loval
4395 Set_Realval
(Lo
, Loval
);
4398 -- Compute the fudged bounds. If the number is a model number,
4399 -- then we do nothing to include it, but we are allowed to backoff
4400 -- to the next adjacent model number when we exclude it. If it is
4401 -- not a model number then we straddle the two values with the
4402 -- model numbers on either side.
4404 Model_Num
:= UR_Trunc
(Loval
/ Small
) * Small
;
4406 if Loval
= Model_Num
then
4407 Loval_Incl_EP
:= Model_Num
;
4409 Loval_Incl_EP
:= Model_Num
- Small
;
4412 -- The low value excluding the end point is Small greater, but
4413 -- we do not do this exclusion if the low value is positive,
4414 -- since it can't help the size and could actually hurt by
4415 -- crossing the high bound.
4417 if UR_Is_Negative
(Loval_Incl_EP
) then
4418 Loval_Excl_EP
:= Loval_Incl_EP
+ Small
;
4420 -- If the value went from negative to zero, then we have the
4421 -- case where Loval_Incl_EP is the model number just below
4422 -- zero, so we want to stick to the negative value for the
4423 -- base type to maintain the condition that the size will
4424 -- include signed values.
4427 and then UR_Is_Zero
(Loval_Excl_EP
)
4429 Loval_Excl_EP
:= Loval_Incl_EP
;
4433 Loval_Excl_EP
:= Loval_Incl_EP
;
4436 -- Similar processing for upper bound and high value
4438 Model_Num
:= UR_Trunc
(Hival
/ Small
) * Small
;
4440 if Hival
= Model_Num
then
4441 Hival_Incl_EP
:= Model_Num
;
4443 Hival_Incl_EP
:= Model_Num
+ Small
;
4446 if UR_Is_Positive
(Hival_Incl_EP
) then
4447 Hival_Excl_EP
:= Hival_Incl_EP
- Small
;
4449 Hival_Excl_EP
:= Hival_Incl_EP
;
4452 -- One further adjustment is needed. In the case of subtypes, we
4453 -- cannot go outside the range of the base type, or we get
4454 -- peculiarities, and the base type range is already set. This
4455 -- only applies to the Incl values, since clearly the Excl values
4456 -- are already as restricted as they are allowed to be.
4459 Loval_Incl_EP
:= UR_Max
(Loval_Incl_EP
, Realval
(BLo
));
4460 Hival_Incl_EP
:= UR_Min
(Hival_Incl_EP
, Realval
(BHi
));
4463 -- Get size including and excluding end points
4465 Size_Incl_EP
:= Fsize
(Loval_Incl_EP
, Hival_Incl_EP
);
4466 Size_Excl_EP
:= Fsize
(Loval_Excl_EP
, Hival_Excl_EP
);
4468 -- No need to exclude end-points if it does not reduce size
4470 if Fsize
(Loval_Incl_EP
, Hival_Excl_EP
) = Size_Excl_EP
then
4471 Loval_Excl_EP
:= Loval_Incl_EP
;
4474 if Fsize
(Loval_Excl_EP
, Hival_Incl_EP
) = Size_Excl_EP
then
4475 Hival_Excl_EP
:= Hival_Incl_EP
;
4478 -- Now we set the actual size to be used. We want to use the
4479 -- bounds fudged up to include the end-points but only if this
4480 -- can be done without violating a specifically given size
4481 -- size clause or causing an unacceptable increase in size.
4483 -- Case of size clause given
4485 if Has_Size_Clause
(Typ
) then
4487 -- Use the inclusive size only if it is consistent with
4488 -- the explicitly specified size.
4490 if Size_Incl_EP
<= RM_Size
(Typ
) then
4491 Actual_Lo
:= Loval_Incl_EP
;
4492 Actual_Hi
:= Hival_Incl_EP
;
4493 Actual_Size
:= Size_Incl_EP
;
4495 -- If the inclusive size is too large, we try excluding
4496 -- the end-points (will be caught later if does not work).
4499 Actual_Lo
:= Loval_Excl_EP
;
4500 Actual_Hi
:= Hival_Excl_EP
;
4501 Actual_Size
:= Size_Excl_EP
;
4504 -- Case of size clause not given
4507 -- If we have a base type whose corresponding first subtype
4508 -- has an explicit size that is large enough to include our
4509 -- end-points, then do so. There is no point in working hard
4510 -- to get a base type whose size is smaller than the specified
4511 -- size of the first subtype.
4513 First_Subt
:= First_Subtype
(Typ
);
4515 if Has_Size_Clause
(First_Subt
)
4516 and then Size_Incl_EP
<= Esize
(First_Subt
)
4518 Actual_Size
:= Size_Incl_EP
;
4519 Actual_Lo
:= Loval_Incl_EP
;
4520 Actual_Hi
:= Hival_Incl_EP
;
4522 -- If excluding the end-points makes the size smaller and
4523 -- results in a size of 8,16,32,64, then we take the smaller
4524 -- size. For the 64 case, this is compulsory. For the other
4525 -- cases, it seems reasonable. We like to include end points
4526 -- if we can, but not at the expense of moving to the next
4527 -- natural boundary of size.
4529 elsif Size_Incl_EP
/= Size_Excl_EP
4531 (Size_Excl_EP
= 8 or else
4532 Size_Excl_EP
= 16 or else
4533 Size_Excl_EP
= 32 or else
4536 Actual_Size
:= Size_Excl_EP
;
4537 Actual_Lo
:= Loval_Excl_EP
;
4538 Actual_Hi
:= Hival_Excl_EP
;
4540 -- Otherwise we can definitely include the end points
4543 Actual_Size
:= Size_Incl_EP
;
4544 Actual_Lo
:= Loval_Incl_EP
;
4545 Actual_Hi
:= Hival_Incl_EP
;
4548 -- One pathological case: normally we never fudge a low bound
4549 -- down, since it would seem to increase the size (if it has
4550 -- any effect), but for ranges containing single value, or no
4551 -- values, the high bound can be small too large. Consider:
4553 -- type t is delta 2.0**(-14)
4554 -- range 131072.0 .. 0;
4556 -- That lower bound is *just* outside the range of 32 bits, and
4557 -- does need fudging down in this case. Note that the bounds
4558 -- will always have crossed here, since the high bound will be
4559 -- fudged down if necessary, as in the case of:
4561 -- type t is delta 2.0**(-14)
4562 -- range 131072.0 .. 131072.0;
4564 -- So we detect the situation by looking for crossed bounds,
4565 -- and if the bounds are crossed, and the low bound is greater
4566 -- than zero, we will always back it off by small, since this
4567 -- is completely harmless.
4569 if Actual_Lo
> Actual_Hi
then
4570 if UR_Is_Positive
(Actual_Lo
) then
4571 Actual_Lo
:= Loval_Incl_EP
- Small
;
4572 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
4574 -- And of course, we need to do exactly the same parallel
4575 -- fudge for flat ranges in the negative region.
4577 elsif UR_Is_Negative
(Actual_Hi
) then
4578 Actual_Hi
:= Hival_Incl_EP
+ Small
;
4579 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
4584 Set_Realval
(Lo
, Actual_Lo
);
4585 Set_Realval
(Hi
, Actual_Hi
);
4588 -- For the decimal case, none of this fudging is required, since there
4589 -- are no end-point problems in the decimal case (the end-points are
4590 -- always included).
4593 Actual_Size
:= Fsize
(Loval
, Hival
);
4596 -- At this stage, the actual size has been calculated and the proper
4597 -- required bounds are stored in the low and high bounds.
4599 if Actual_Size
> 64 then
4600 Error_Msg_Uint_1
:= UI_From_Int
(Actual_Size
);
4602 ("size required (^) for type& too large, maximum allowed is 64",
4607 -- Check size against explicit given size
4609 if Has_Size_Clause
(Typ
) then
4610 if Actual_Size
> RM_Size
(Typ
) then
4611 Error_Msg_Uint_1
:= RM_Size
(Typ
);
4612 Error_Msg_Uint_2
:= UI_From_Int
(Actual_Size
);
4614 ("size given (^) for type& too small, minimum allowed is ^",
4615 Size_Clause
(Typ
), Typ
);
4618 Actual_Size
:= UI_To_Int
(Esize
(Typ
));
4621 -- Increase size to next natural boundary if no size clause given
4624 if Actual_Size
<= 8 then
4626 elsif Actual_Size
<= 16 then
4628 elsif Actual_Size
<= 32 then
4634 Init_Esize
(Typ
, Actual_Size
);
4635 Adjust_Esize_For_Alignment
(Typ
);
4638 -- If we have a base type, then expand the bounds so that they extend to
4639 -- the full width of the allocated size in bits, to avoid junk range
4640 -- checks on intermediate computations.
4642 if Base_Type
(Typ
) = Typ
then
4643 Set_Realval
(Lo
, -(Small
* (Uint_2
** (Actual_Size
- 1))));
4644 Set_Realval
(Hi
, (Small
* (Uint_2
** (Actual_Size
- 1) - 1)));
4647 -- Final step is to reanalyze the bounds using the proper type
4648 -- and set the Corresponding_Integer_Value fields of the literals.
4650 Set_Etype
(Lo
, Empty
);
4651 Set_Analyzed
(Lo
, False);
4654 -- Resolve with universal fixed if the base type, and the base type if
4655 -- it is a subtype. Note we can't resolve the base type with itself,
4656 -- that would be a reference before definition.
4659 Resolve
(Lo
, Universal_Fixed
);
4664 -- Set corresponding integer value for bound
4666 Set_Corresponding_Integer_Value
4667 (Lo
, UR_To_Uint
(Realval
(Lo
) / Small
));
4669 -- Similar processing for high bound
4671 Set_Etype
(Hi
, Empty
);
4672 Set_Analyzed
(Hi
, False);
4676 Resolve
(Hi
, Universal_Fixed
);
4681 Set_Corresponding_Integer_Value
4682 (Hi
, UR_To_Uint
(Realval
(Hi
) / Small
));
4684 -- Set type of range to correspond to bounds
4686 Set_Etype
(Rng
, Etype
(Lo
));
4688 -- Set Esize to calculated size if not set already
4690 if Unknown_Esize
(Typ
) then
4691 Init_Esize
(Typ
, Actual_Size
);
4694 -- Set RM_Size if not already set. If already set, check value
4697 Minsiz
: constant Uint
:= UI_From_Int
(Minimum_Size
(Typ
));
4700 if RM_Size
(Typ
) /= Uint_0
then
4701 if RM_Size
(Typ
) < Minsiz
then
4702 Error_Msg_Uint_1
:= RM_Size
(Typ
);
4703 Error_Msg_Uint_2
:= Minsiz
;
4705 ("size given (^) for type& too small, minimum allowed is ^",
4706 Size_Clause
(Typ
), Typ
);
4710 Set_RM_Size
(Typ
, Minsiz
);
4713 end Freeze_Fixed_Point_Type
;
4719 procedure Freeze_Itype
(T
: Entity_Id
; N
: Node_Id
) is
4723 Set_Has_Delayed_Freeze
(T
);
4724 L
:= Freeze_Entity
(T
, Sloc
(N
));
4726 if Is_Non_Empty_List
(L
) then
4727 Insert_Actions
(N
, L
);
4731 --------------------------
4732 -- Freeze_Static_Object --
4733 --------------------------
4735 procedure Freeze_Static_Object
(E
: Entity_Id
) is
4737 Cannot_Be_Static
: exception;
4738 -- Exception raised if the type of a static object cannot be made
4739 -- static. This happens if the type depends on non-global objects.
4741 procedure Ensure_Expression_Is_SA
(N
: Node_Id
);
4742 -- Called to ensure that an expression used as part of a type definition
4743 -- is statically allocatable, which means that the expression type is
4744 -- statically allocatable, and the expression is either static, or a
4745 -- reference to a library level constant.
4747 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
);
4748 -- Called to mark a type as static, checking that it is possible
4749 -- to set the type as static. If it is not possible, then the
4750 -- exception Cannot_Be_Static is raised.
4752 -----------------------------
4753 -- Ensure_Expression_Is_SA --
4754 -----------------------------
4756 procedure Ensure_Expression_Is_SA
(N
: Node_Id
) is
4760 Ensure_Type_Is_SA
(Etype
(N
));
4762 if Is_Static_Expression
(N
) then
4765 elsif Nkind
(N
) = N_Identifier
then
4769 and then Ekind
(Ent
) = E_Constant
4770 and then Is_Library_Level_Entity
(Ent
)
4776 raise Cannot_Be_Static
;
4777 end Ensure_Expression_Is_SA
;
4779 -----------------------
4780 -- Ensure_Type_Is_SA --
4781 -----------------------
4783 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
) is
4788 -- If type is library level, we are all set
4790 if Is_Library_Level_Entity
(Typ
) then
4794 -- We are also OK if the type already marked as statically allocated,
4795 -- which means we processed it before.
4797 if Is_Statically_Allocated
(Typ
) then
4801 -- Mark type as statically allocated
4803 Set_Is_Statically_Allocated
(Typ
);
4805 -- Check that it is safe to statically allocate this type
4807 if Is_Scalar_Type
(Typ
) or else Is_Real_Type
(Typ
) then
4808 Ensure_Expression_Is_SA
(Type_Low_Bound
(Typ
));
4809 Ensure_Expression_Is_SA
(Type_High_Bound
(Typ
));
4811 elsif Is_Array_Type
(Typ
) then
4812 N
:= First_Index
(Typ
);
4813 while Present
(N
) loop
4814 Ensure_Type_Is_SA
(Etype
(N
));
4818 Ensure_Type_Is_SA
(Component_Type
(Typ
));
4820 elsif Is_Access_Type
(Typ
) then
4821 if Ekind
(Designated_Type
(Typ
)) = E_Subprogram_Type
then
4825 T
: constant Entity_Id
:= Etype
(Designated_Type
(Typ
));
4828 if T
/= Standard_Void_Type
then
4829 Ensure_Type_Is_SA
(T
);
4832 F
:= First_Formal
(Designated_Type
(Typ
));
4834 while Present
(F
) loop
4835 Ensure_Type_Is_SA
(Etype
(F
));
4841 Ensure_Type_Is_SA
(Designated_Type
(Typ
));
4844 elsif Is_Record_Type
(Typ
) then
4845 C
:= First_Entity
(Typ
);
4846 while Present
(C
) loop
4847 if Ekind
(C
) = E_Discriminant
4848 or else Ekind
(C
) = E_Component
4850 Ensure_Type_Is_SA
(Etype
(C
));
4852 elsif Is_Type
(C
) then
4853 Ensure_Type_Is_SA
(C
);
4859 elsif Ekind
(Typ
) = E_Subprogram_Type
then
4860 Ensure_Type_Is_SA
(Etype
(Typ
));
4862 C
:= First_Formal
(Typ
);
4863 while Present
(C
) loop
4864 Ensure_Type_Is_SA
(Etype
(C
));
4869 raise Cannot_Be_Static
;
4871 end Ensure_Type_Is_SA
;
4873 -- Start of processing for Freeze_Static_Object
4876 Ensure_Type_Is_SA
(Etype
(E
));
4879 when Cannot_Be_Static
=>
4881 -- If the object that cannot be static is imported or exported,
4882 -- then we give an error message saying that this object cannot
4883 -- be imported or exported.
4885 if Is_Imported
(E
) then
4887 ("& cannot be imported (local type is not constant)", E
);
4889 -- Otherwise must be exported, something is wrong if compiler
4890 -- is marking something as statically allocated which cannot be).
4892 else pragma Assert
(Is_Exported
(E
));
4894 ("& cannot be exported (local type is not constant)", E
);
4896 end Freeze_Static_Object
;
4898 -----------------------
4899 -- Freeze_Subprogram --
4900 -----------------------
4902 procedure Freeze_Subprogram
(E
: Entity_Id
) is
4907 -- Subprogram may not have an address clause unless it is imported
4909 if Present
(Address_Clause
(E
)) then
4910 if not Is_Imported
(E
) then
4912 ("address clause can only be given " &
4913 "for imported subprogram",
4914 Name
(Address_Clause
(E
)));
4918 -- Reset the Pure indication on an imported subprogram unless an
4919 -- explicit Pure_Function pragma was present. We do this because
4920 -- otherwise it is an insidious error to call a non-pure function from
4921 -- pure unit and have calls mysteriously optimized away. What happens
4922 -- here is that the Import can bypass the normal check to ensure that
4923 -- pure units call only pure subprograms.
4926 and then Is_Pure
(E
)
4927 and then not Has_Pragma_Pure_Function
(E
)
4929 Set_Is_Pure
(E
, False);
4932 -- For non-foreign convention subprograms, this is where we create
4933 -- the extra formals (for accessibility level and constrained bit
4934 -- information). We delay this till the freeze point precisely so
4935 -- that we know the convention!
4937 if not Has_Foreign_Convention
(E
) then
4938 Create_Extra_Formals
(E
);
4941 -- If this is convention Ada and a Valued_Procedure, that's odd
4943 if Ekind
(E
) = E_Procedure
4944 and then Is_Valued_Procedure
(E
)
4945 and then Convention
(E
) = Convention_Ada
4946 and then Warn_On_Export_Import
4949 ("?Valued_Procedure has no effect for convention Ada", E
);
4950 Set_Is_Valued_Procedure
(E
, False);
4953 -- Case of foreign convention
4958 -- For foreign conventions, warn about return of an
4959 -- unconstrained array.
4961 -- Note: we *do* allow a return by descriptor for the VMS case,
4962 -- though here there is probably more to be done ???
4964 if Ekind
(E
) = E_Function
then
4965 Retype
:= Underlying_Type
(Etype
(E
));
4967 -- If no return type, probably some other error, e.g. a
4968 -- missing full declaration, so ignore.
4973 -- If the return type is generic, we have emitted a warning
4974 -- earlier on, and there is nothing else to check here. Specific
4975 -- instantiations may lead to erroneous behavior.
4977 elsif Is_Generic_Type
(Etype
(E
)) then
4980 elsif Is_Array_Type
(Retype
)
4981 and then not Is_Constrained
(Retype
)
4982 and then Mechanism
(E
) not in Descriptor_Codes
4983 and then Warn_On_Export_Import
4986 ("?foreign convention function& should not return " &
4987 "unconstrained array", E
);
4992 -- If any of the formals for an exported foreign convention
4993 -- subprogram have defaults, then emit an appropriate warning since
4994 -- this is odd (default cannot be used from non-Ada code)
4996 if Is_Exported
(E
) then
4997 F
:= First_Formal
(E
);
4998 while Present
(F
) loop
4999 if Warn_On_Export_Import
5000 and then Present
(Default_Value
(F
))
5003 ("?parameter cannot be defaulted in non-Ada call",
5012 -- For VMS, descriptor mechanisms for parameters are allowed only
5013 -- for imported/exported subprograms. Moreover, the NCA descriptor
5014 -- is not allowed for parameters of exported subprograms.
5016 if OpenVMS_On_Target
then
5017 if Is_Exported
(E
) then
5018 F
:= First_Formal
(E
);
5019 while Present
(F
) loop
5020 if Mechanism
(F
) = By_Descriptor_NCA
then
5022 ("'N'C'A' descriptor for parameter not permitted", F
);
5024 ("\can only be used for imported subprogram", F
);
5030 elsif not Is_Imported
(E
) then
5031 F
:= First_Formal
(E
);
5032 while Present
(F
) loop
5033 if Mechanism
(F
) in Descriptor_Codes
then
5035 ("descriptor mechanism for parameter not permitted", F
);
5037 ("\can only be used for imported/exported subprogram", F
);
5045 -- Pragma Inline_Always is disallowed for dispatching subprograms
5046 -- because the address of such subprograms is saved in the dispatch
5047 -- table to support dispatching calls, and dispatching calls cannot
5048 -- be inlined. This is consistent with the restriction against using
5049 -- 'Access or 'Address on an Inline_Always subprogram.
5051 if Is_Dispatching_Operation
(E
)
5052 and then Has_Pragma_Inline_Always
(E
)
5055 ("pragma Inline_Always not allowed for dispatching subprograms", E
);
5057 end Freeze_Subprogram
;
5059 ----------------------
5060 -- Is_Fully_Defined --
5061 ----------------------
5063 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean is
5065 if Ekind
(T
) = E_Class_Wide_Type
then
5066 return Is_Fully_Defined
(Etype
(T
));
5068 elsif Is_Array_Type
(T
) then
5069 return Is_Fully_Defined
(Component_Type
(T
));
5071 elsif Is_Record_Type
(T
)
5072 and not Is_Private_Type
(T
)
5074 -- Verify that the record type has no components with private types
5075 -- without completion.
5081 Comp
:= First_Component
(T
);
5083 while Present
(Comp
) loop
5084 if not Is_Fully_Defined
(Etype
(Comp
)) then
5088 Next_Component
(Comp
);
5094 return not Is_Private_Type
(T
)
5095 or else Present
(Full_View
(Base_Type
(T
)));
5097 end Is_Fully_Defined
;
5099 ---------------------------------
5100 -- Process_Default_Expressions --
5101 ---------------------------------
5103 procedure Process_Default_Expressions
5105 After
: in out Node_Id
)
5107 Loc
: constant Source_Ptr
:= Sloc
(E
);
5114 Set_Default_Expressions_Processed
(E
);
5116 -- A subprogram instance and its associated anonymous subprogram share
5117 -- their signature. The default expression functions are defined in the
5118 -- wrapper packages for the anonymous subprogram, and should not be
5119 -- generated again for the instance.
5121 if Is_Generic_Instance
(E
)
5122 and then Present
(Alias
(E
))
5123 and then Default_Expressions_Processed
(Alias
(E
))
5128 Formal
:= First_Formal
(E
);
5129 while Present
(Formal
) loop
5130 if Present
(Default_Value
(Formal
)) then
5132 -- We work with a copy of the default expression because we
5133 -- do not want to disturb the original, since this would mess
5134 -- up the conformance checking.
5136 Dcopy
:= New_Copy_Tree
(Default_Value
(Formal
));
5138 -- The analysis of the expression may generate insert actions,
5139 -- which of course must not be executed. We wrap those actions
5140 -- in a procedure that is not called, and later on eliminated.
5141 -- The following cases have no side-effects, and are analyzed
5144 if Nkind
(Dcopy
) = N_Identifier
5145 or else Nkind
(Dcopy
) = N_Expanded_Name
5146 or else Nkind
(Dcopy
) = N_Integer_Literal
5147 or else (Nkind
(Dcopy
) = N_Real_Literal
5148 and then not Vax_Float
(Etype
(Dcopy
)))
5149 or else Nkind
(Dcopy
) = N_Character_Literal
5150 or else Nkind
(Dcopy
) = N_String_Literal
5151 or else Known_Null
(Dcopy
)
5152 or else (Nkind
(Dcopy
) = N_Attribute_Reference
5154 Attribute_Name
(Dcopy
) = Name_Null_Parameter
)
5157 -- If there is no default function, we must still do a full
5158 -- analyze call on the default value, to ensure that all error
5159 -- checks are performed, e.g. those associated with static
5160 -- evaluation. Note: this branch will always be taken if the
5161 -- analyzer is turned off (but we still need the error checks).
5163 -- Note: the setting of parent here is to meet the requirement
5164 -- that we can only analyze the expression while attached to
5165 -- the tree. Really the requirement is that the parent chain
5166 -- be set, we don't actually need to be in the tree.
5168 Set_Parent
(Dcopy
, Declaration_Node
(Formal
));
5171 -- Default expressions are resolved with their own type if the
5172 -- context is generic, to avoid anomalies with private types.
5174 if Ekind
(Scope
(E
)) = E_Generic_Package
then
5177 Resolve
(Dcopy
, Etype
(Formal
));
5180 -- If that resolved expression will raise constraint error,
5181 -- then flag the default value as raising constraint error.
5182 -- This allows a proper error message on the calls.
5184 if Raises_Constraint_Error
(Dcopy
) then
5185 Set_Raises_Constraint_Error
(Default_Value
(Formal
));
5188 -- If the default is a parameterless call, we use the name of
5189 -- the called function directly, and there is no body to build.
5191 elsif Nkind
(Dcopy
) = N_Function_Call
5192 and then No
(Parameter_Associations
(Dcopy
))
5196 -- Else construct and analyze the body of a wrapper procedure
5197 -- that contains an object declaration to hold the expression.
5198 -- Given that this is done only to complete the analysis, it
5199 -- simpler to build a procedure than a function which might
5200 -- involve secondary stack expansion.
5204 Make_Defining_Identifier
(Loc
, New_Internal_Name
('D'));
5207 Make_Subprogram_Body
(Loc
,
5209 Make_Procedure_Specification
(Loc
,
5210 Defining_Unit_Name
=> Dnam
),
5212 Declarations
=> New_List
(
5213 Make_Object_Declaration
(Loc
,
5214 Defining_Identifier
=>
5215 Make_Defining_Identifier
(Loc
,
5216 New_Internal_Name
('T')),
5217 Object_Definition
=>
5218 New_Occurrence_Of
(Etype
(Formal
), Loc
),
5219 Expression
=> New_Copy_Tree
(Dcopy
))),
5221 Handled_Statement_Sequence
=>
5222 Make_Handled_Sequence_Of_Statements
(Loc
,
5223 Statements
=> New_List
));
5225 Set_Scope
(Dnam
, Scope
(E
));
5226 Set_Assignment_OK
(First
(Declarations
(Dbody
)));
5227 Set_Is_Eliminated
(Dnam
);
5228 Insert_After
(After
, Dbody
);
5234 Next_Formal
(Formal
);
5237 end Process_Default_Expressions
;
5239 ----------------------------------------
5240 -- Set_Component_Alignment_If_Not_Set --
5241 ----------------------------------------
5243 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
) is
5245 -- Ignore if not base type, subtypes don't need anything
5247 if Typ
/= Base_Type
(Typ
) then
5251 -- Do not override existing representation
5253 if Is_Packed
(Typ
) then
5256 elsif Has_Specified_Layout
(Typ
) then
5259 elsif Component_Alignment
(Typ
) /= Calign_Default
then
5263 Set_Component_Alignment
5264 (Typ
, Scope_Stack
.Table
5265 (Scope_Stack
.Last
).Component_Alignment_Default
);
5267 end Set_Component_Alignment_If_Not_Set
;
5269 ---------------------------
5270 -- Set_Debug_Info_Needed --
5271 ---------------------------
5273 procedure Set_Debug_Info_Needed
(T
: Entity_Id
) is
5276 or else Needs_Debug_Info
(T
)
5277 or else Debug_Info_Off
(T
)
5281 Set_Needs_Debug_Info
(T
);
5284 if Is_Object
(T
) then
5285 Set_Debug_Info_Needed
(Etype
(T
));
5287 elsif Is_Type
(T
) then
5288 Set_Debug_Info_Needed
(Etype
(T
));
5290 if Is_Record_Type
(T
) then
5292 Ent
: Entity_Id
:= First_Entity
(T
);
5294 while Present
(Ent
) loop
5295 Set_Debug_Info_Needed
(Ent
);
5300 elsif Is_Array_Type
(T
) then
5301 Set_Debug_Info_Needed
(Component_Type
(T
));
5304 Indx
: Node_Id
:= First_Index
(T
);
5306 while Present
(Indx
) loop
5307 Set_Debug_Info_Needed
(Etype
(Indx
));
5308 Indx
:= Next_Index
(Indx
);
5312 if Is_Packed
(T
) then
5313 Set_Debug_Info_Needed
(Packed_Array_Type
(T
));
5316 elsif Is_Access_Type
(T
) then
5317 Set_Debug_Info_Needed
(Directly_Designated_Type
(T
));
5319 elsif Is_Private_Type
(T
) then
5320 Set_Debug_Info_Needed
(Full_View
(T
));
5322 elsif Is_Protected_Type
(T
) then
5323 Set_Debug_Info_Needed
(Corresponding_Record_Type
(T
));
5326 end Set_Debug_Info_Needed
;
5332 procedure Undelay_Type
(T
: Entity_Id
) is
5334 Set_Has_Delayed_Freeze
(T
, False);
5335 Set_Freeze_Node
(T
, Empty
);
5337 -- Since we don't want T to have a Freeze_Node, we don't want its
5338 -- Full_View or Corresponding_Record_Type to have one either.
5340 -- ??? Fundamentally, this whole handling is a kludge. What we really
5341 -- want is to be sure that for an Itype that's part of record R and is a
5342 -- subtype of type T, that it's frozen after the later of the freeze
5343 -- points of R and T. We have no way of doing that directly, so what we
5344 -- do is force most such Itypes to be frozen as part of freezing R via
5345 -- this procedure and only delay the ones that need to be delayed
5346 -- (mostly the designated types of access types that are defined as part
5349 if Is_Private_Type
(T
)
5350 and then Present
(Full_View
(T
))
5351 and then Is_Itype
(Full_View
(T
))
5352 and then Is_Record_Type
(Scope
(Full_View
(T
)))
5354 Undelay_Type
(Full_View
(T
));
5357 if Is_Concurrent_Type
(T
)
5358 and then Present
(Corresponding_Record_Type
(T
))
5359 and then Is_Itype
(Corresponding_Record_Type
(T
))
5360 and then Is_Record_Type
(Scope
(Corresponding_Record_Type
(T
)))
5362 Undelay_Type
(Corresponding_Record_Type
(T
));
5370 procedure Warn_Overlay
5375 Ent
: constant Entity_Id
:= Entity
(Nam
);
5376 -- The object to which the address clause applies
5379 Old
: Entity_Id
:= Empty
;
5383 -- No warning if address clause overlay warnings are off
5385 if not Address_Clause_Overlay_Warnings
then
5389 -- No warning if there is an explicit initialization
5391 Init
:= Original_Node
(Expression
(Declaration_Node
(Ent
)));
5393 if Present
(Init
) and then Comes_From_Source
(Init
) then
5397 -- We only give the warning for non-imported entities of a type for
5398 -- which a non-null base init proc is defined (or for access types which
5399 -- have implicit null initialization).
5402 and then (Has_Non_Null_Base_Init_Proc
(Typ
)
5403 or else Is_Access_Type
(Typ
))
5404 and then not Is_Imported
(Ent
)
5406 if Nkind
(Expr
) = N_Attribute_Reference
5407 and then Is_Entity_Name
(Prefix
(Expr
))
5409 Old
:= Entity
(Prefix
(Expr
));
5411 elsif Is_Entity_Name
(Expr
)
5412 and then Ekind
(Entity
(Expr
)) = E_Constant
5414 Decl
:= Declaration_Node
(Entity
(Expr
));
5416 if Nkind
(Decl
) = N_Object_Declaration
5417 and then Present
(Expression
(Decl
))
5418 and then Nkind
(Expression
(Decl
)) = N_Attribute_Reference
5419 and then Is_Entity_Name
(Prefix
(Expression
(Decl
)))
5421 Old
:= Entity
(Prefix
(Expression
(Decl
)));
5423 elsif Nkind
(Expr
) = N_Function_Call
then
5427 -- A function call (most likely to To_Address) is probably not an
5428 -- overlay, so skip warning. Ditto if the function call was inlined
5429 -- and transformed into an entity.
5431 elsif Nkind
(Original_Node
(Expr
)) = N_Function_Call
then
5435 Decl
:= Next
(Parent
(Expr
));
5437 -- If a pragma Import follows, we assume that it is for the current
5438 -- target of the address clause, and skip the warning.
5441 and then Nkind
(Decl
) = N_Pragma
5442 and then Chars
(Decl
) = Name_Import
5447 if Present
(Old
) then
5448 Error_Msg_Node_2
:= Old
;
5450 ("default initialization of & may modify &?",
5454 ("default initialization of & may modify overlaid storage?",
5458 -- Add friendly warning if initialization comes from a packed array
5461 if Is_Record_Type
(Typ
) then
5466 Comp
:= First_Component
(Typ
);
5468 while Present
(Comp
) loop
5469 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
5470 and then Present
(Expression
(Parent
(Comp
)))
5473 elsif Is_Array_Type
(Etype
(Comp
))
5474 and then Present
(Packed_Array_Type
(Etype
(Comp
)))
5477 ("\packed array component& " &
5478 "will be initialized to zero?",
5482 Next_Component
(Comp
);
5489 ("\use pragma Import for & to " &
5490 "suppress initialization (RM B.1(24))?",