1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Aspects
; use Aspects
;
28 with Checks
; use Checks
;
29 with Contracts
; use Contracts
;
30 with Debug
; use Debug
;
31 with Einfo
; use Einfo
;
32 with Errout
; use Errout
;
33 with Elists
; use Elists
;
34 with Expander
; use Expander
;
35 with Exp_Aggr
; use Exp_Aggr
;
36 with Exp_Atag
; use Exp_Atag
;
37 with Exp_Ch2
; use Exp_Ch2
;
38 with Exp_Ch3
; use Exp_Ch3
;
39 with Exp_Ch7
; use Exp_Ch7
;
40 with Exp_Ch9
; use Exp_Ch9
;
41 with Exp_Dbug
; use Exp_Dbug
;
42 with Exp_Disp
; use Exp_Disp
;
43 with Exp_Dist
; use Exp_Dist
;
44 with Exp_Intr
; use Exp_Intr
;
45 with Exp_Pakd
; use Exp_Pakd
;
46 with Exp_Tss
; use Exp_Tss
;
47 with Exp_Util
; use Exp_Util
;
48 with Freeze
; use Freeze
;
49 with Inline
; use Inline
;
50 with Itypes
; use Itypes
;
52 with Namet
; use Namet
;
53 with Nlists
; use Nlists
;
54 with Nmake
; use Nmake
;
56 with Restrict
; use Restrict
;
57 with Rident
; use Rident
;
58 with Rtsfind
; use Rtsfind
;
60 with Sem_Aux
; use Sem_Aux
;
61 with Sem_Ch6
; use Sem_Ch6
;
62 with Sem_Ch8
; use Sem_Ch8
;
63 with Sem_Ch12
; use Sem_Ch12
;
64 with Sem_Ch13
; use Sem_Ch13
;
65 with Sem_Dim
; use Sem_Dim
;
66 with Sem_Disp
; use Sem_Disp
;
67 with Sem_Dist
; use Sem_Dist
;
68 with Sem_Eval
; use Sem_Eval
;
69 with Sem_Mech
; use Sem_Mech
;
70 with Sem_Res
; use Sem_Res
;
71 with Sem_SCIL
; use Sem_SCIL
;
72 with Sem_Util
; use Sem_Util
;
73 with Sinfo
; use Sinfo
;
74 with Snames
; use Snames
;
75 with Stand
; use Stand
;
76 with Tbuild
; use Tbuild
;
77 with Uintp
; use Uintp
;
78 with Validsw
; use Validsw
;
80 package body Exp_Ch6
is
82 -----------------------
83 -- Local Subprograms --
84 -----------------------
86 procedure Add_Access_Actual_To_Build_In_Place_Call
87 (Function_Call
: Node_Id
;
88 Function_Id
: Entity_Id
;
89 Return_Object
: Node_Id
;
90 Is_Access
: Boolean := False);
91 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
92 -- object name given by Return_Object and add the attribute to the end of
93 -- the actual parameter list associated with the build-in-place function
94 -- call denoted by Function_Call. However, if Is_Access is True, then
95 -- Return_Object is already an access expression, in which case it's passed
96 -- along directly to the build-in-place function. Finally, if Return_Object
97 -- is empty, then pass a null literal as the actual.
99 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
100 (Function_Call
: Node_Id
;
101 Function_Id
: Entity_Id
;
102 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
103 Alloc_Form_Exp
: Node_Id
:= Empty
;
104 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
));
105 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
106 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
107 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
108 -- otherwise pass a literal corresponding to the Alloc_Form parameter
109 -- (which must not be Unspecified in that case). Pool_Actual is the
110 -- parameter to pass to BIP_Storage_Pool.
112 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
113 (Func_Call
: Node_Id
;
115 Ptr_Typ
: Entity_Id
:= Empty
;
116 Master_Exp
: Node_Id
:= Empty
);
117 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
118 -- finalization actions, add an actual parameter which is a pointer to the
119 -- finalization master of the caller. If Master_Exp is not Empty, then that
120 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
121 -- will result in an automatic "null" value for the actual.
123 procedure Add_Task_Actuals_To_Build_In_Place_Call
124 (Function_Call
: Node_Id
;
125 Function_Id
: Entity_Id
;
126 Master_Actual
: Node_Id
;
127 Chain
: Node_Id
:= Empty
);
128 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
129 -- contains tasks, add two actual parameters: the master, and a pointer to
130 -- the caller's activation chain. Master_Actual is the actual parameter
131 -- expression to pass for the master. In most cases, this is the current
132 -- master (_master). The two exceptions are: If the function call is the
133 -- initialization expression for an allocator, we pass the master of the
134 -- access type. If the function call is the initialization expression for a
135 -- return object, we pass along the master passed in by the caller. In most
136 -- contexts, the activation chain to pass is the local one, which is
137 -- indicated by No (Chain). However, in an allocator, the caller passes in
138 -- the activation Chain. Note: Master_Actual can be Empty, but only if
139 -- there are no tasks.
141 function Caller_Known_Size
142 (Func_Call
: Node_Id
;
143 Result_Subt
: Entity_Id
) return Boolean;
144 -- True if result subtype is definite, or has a size that does not require
145 -- secondary stack usage (i.e. no variant part or components whose type
146 -- depends on discriminants). In particular, untagged types with only
147 -- access discriminants do not require secondary stack use. Note we must
148 -- always use the secondary stack for dispatching-on-result calls.
150 procedure Check_Overriding_Operation
(Subp
: Entity_Id
);
151 -- Subp is a dispatching operation. Check whether it may override an
152 -- inherited private operation, in which case its DT entry is that of
153 -- the hidden operation, not the one it may have received earlier.
154 -- This must be done before emitting the code to set the corresponding
155 -- DT to the address of the subprogram. The actual placement of Subp in
156 -- the proper place in the list of primitive operations is done in
157 -- Declare_Inherited_Private_Subprograms, which also has to deal with
158 -- implicit operations. This duplication is unavoidable for now???
160 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
);
161 -- This procedure is called only if the subprogram body N, whose spec
162 -- has the given entity Spec, contains a parameterless recursive call.
163 -- It attempts to generate runtime code to detect if this a case of
164 -- infinite recursion.
166 -- The body is scanned to determine dependencies. If the only external
167 -- dependencies are on a small set of scalar variables, then the values
168 -- of these variables are captured on entry to the subprogram, and if
169 -- the values are not changed for the call, we know immediately that
170 -- we have an infinite recursion.
172 procedure Expand_Actuals
175 Post_Call
: out List_Id
);
176 -- Return a list of actions to take place after the call in Post_Call. The
177 -- call will later be rewritten as an Expression_With_Actions, with the
178 -- Post_Call actions inserted, and the call inside.
180 -- For each actual of an in-out or out parameter which is a numeric (view)
181 -- conversion of the form T (A), where A denotes a variable, we insert the
184 -- Temp : T[ := T (A)];
186 -- prior to the call. Then we replace the actual with a reference to Temp,
187 -- and append the assignment:
189 -- A := TypeA (Temp);
191 -- after the call. Here TypeA is the actual type of variable A. For out
192 -- parameters, the initial declaration has no expression. If A is not an
193 -- entity name, we generate instead:
195 -- Var : TypeA renames A;
196 -- Temp : T := Var; -- omitting expression for out parameter.
198 -- Var := TypeA (Temp);
200 -- For other in-out parameters, we emit the required constraint checks
201 -- before and/or after the call.
203 -- For all parameter modes, actuals that denote components and slices of
204 -- packed arrays are expanded into suitable temporaries.
206 -- For non-scalar objects that are possibly unaligned, add call by copy
207 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
209 -- For OUT and IN OUT parameters, add predicate checks after the call
210 -- based on the predicates of the actual type.
212 procedure Expand_Call_Helper
(N
: Node_Id
; Post_Call
: out List_Id
);
213 -- Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
215 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
);
216 -- N is a function call which returns a controlled object. Transform the
217 -- call into a temporary which retrieves the returned object from the
218 -- secondary stack using 'reference.
220 procedure Expand_Non_Function_Return
(N
: Node_Id
);
221 -- Expand a simple return statement found in a procedure body, entry body,
222 -- accept statement, or an extended return statement. Note that all non-
223 -- function returns are simple return statements.
225 function Expand_Protected_Object_Reference
227 Scop
: Entity_Id
) return Node_Id
;
229 procedure Expand_Protected_Subprogram_Call
233 -- A call to a protected subprogram within the protected object may appear
234 -- as a regular call. The list of actuals must be expanded to contain a
235 -- reference to the object itself, and the call becomes a call to the
236 -- corresponding protected subprogram.
238 procedure Expand_Simple_Function_Return
(N
: Node_Id
);
239 -- Expand simple return from function. In the case where we are returning
240 -- from a function body this is called by Expand_N_Simple_Return_Statement.
242 function Has_Unconstrained_Access_Discriminants
243 (Subtyp
: Entity_Id
) return Boolean;
244 -- Returns True if the given subtype is unconstrained and has one or more
245 -- access discriminants.
247 procedure Insert_Post_Call_Actions
(N
: Node_Id
; Post_Call
: List_Id
);
248 -- Insert the Post_Call list previously produced by routine Expand_Actuals
249 -- or Expand_Call_Helper into the tree.
251 procedure Replace_Renaming_Declaration_Id
253 Orig_Decl
: Node_Id
);
254 -- Replace the internal identifier of the new renaming declaration New_Decl
255 -- with the identifier of its original declaration Orig_Decl exchanging the
256 -- entities containing their defining identifiers to ensure the correct
257 -- replacement of the object declaration by the object renaming declaration
258 -- to avoid homograph conflicts (since the object declaration's defining
259 -- identifier was already entered in the current scope). The Next_Entity
260 -- links of the two entities are also swapped since the entities are part
261 -- of the return scope's entity list and the list structure would otherwise
262 -- be corrupted. The homonym chain is preserved as well.
264 procedure Rewrite_Function_Call_For_C
(N
: Node_Id
);
265 -- When generating C code, replace a call to a function that returns an
266 -- array into the generated procedure with an additional out parameter.
268 procedure Set_Enclosing_Sec_Stack_Return
(N
: Node_Id
);
269 -- N is a return statement for a function that returns its result on the
270 -- secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
271 -- function and all blocks and loops that the return statement is jumping
272 -- out of. This ensures that the secondary stack is not released; otherwise
273 -- the function result would be reclaimed before returning to the caller.
275 ----------------------------------------------
276 -- Add_Access_Actual_To_Build_In_Place_Call --
277 ----------------------------------------------
279 procedure Add_Access_Actual_To_Build_In_Place_Call
280 (Function_Call
: Node_Id
;
281 Function_Id
: Entity_Id
;
282 Return_Object
: Node_Id
;
283 Is_Access
: Boolean := False)
285 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
286 Obj_Address
: Node_Id
;
287 Obj_Acc_Formal
: Entity_Id
;
290 -- Locate the implicit access parameter in the called function
292 Obj_Acc_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
);
294 -- If no return object is provided, then pass null
296 if not Present
(Return_Object
) then
297 Obj_Address
:= Make_Null
(Loc
);
298 Set_Parent
(Obj_Address
, Function_Call
);
300 -- If Return_Object is already an expression of an access type, then use
301 -- it directly, since it must be an access value denoting the return
302 -- object, and couldn't possibly be the return object itself.
305 Obj_Address
:= Return_Object
;
306 Set_Parent
(Obj_Address
, Function_Call
);
308 -- Apply Unrestricted_Access to caller's return object
312 Make_Attribute_Reference
(Loc
,
313 Prefix
=> Return_Object
,
314 Attribute_Name
=> Name_Unrestricted_Access
);
316 Set_Parent
(Return_Object
, Obj_Address
);
317 Set_Parent
(Obj_Address
, Function_Call
);
320 Analyze_And_Resolve
(Obj_Address
, Etype
(Obj_Acc_Formal
));
322 -- Build the parameter association for the new actual and add it to the
323 -- end of the function's actuals.
325 Add_Extra_Actual_To_Call
(Function_Call
, Obj_Acc_Formal
, Obj_Address
);
326 end Add_Access_Actual_To_Build_In_Place_Call
;
328 ------------------------------------------------------
329 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
330 ------------------------------------------------------
332 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
333 (Function_Call
: Node_Id
;
334 Function_Id
: Entity_Id
;
335 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
336 Alloc_Form_Exp
: Node_Id
:= Empty
;
337 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
))
339 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
340 Alloc_Form_Actual
: Node_Id
;
341 Alloc_Form_Formal
: Node_Id
;
342 Pool_Formal
: Node_Id
;
345 -- The allocation form generally doesn't need to be passed in the case
346 -- of a constrained result subtype, since normally the caller performs
347 -- the allocation in that case. However this formal is still needed in
348 -- the case where the function has a tagged result, because generally
349 -- such functions can be called in a dispatching context and such calls
350 -- must be handled like calls to class-wide functions.
352 if Is_Constrained
(Underlying_Type
(Etype
(Function_Id
)))
353 and then not Is_Tagged_Type
(Underlying_Type
(Etype
(Function_Id
)))
358 -- Locate the implicit allocation form parameter in the called function.
359 -- Maybe it would be better for each implicit formal of a build-in-place
360 -- function to have a flag or a Uint attribute to identify it. ???
362 Alloc_Form_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Alloc_Form
);
364 if Present
(Alloc_Form_Exp
) then
365 pragma Assert
(Alloc_Form
= Unspecified
);
367 Alloc_Form_Actual
:= Alloc_Form_Exp
;
370 pragma Assert
(Alloc_Form
/= Unspecified
);
373 Make_Integer_Literal
(Loc
,
374 Intval
=> UI_From_Int
(BIP_Allocation_Form
'Pos (Alloc_Form
)));
377 Analyze_And_Resolve
(Alloc_Form_Actual
, Etype
(Alloc_Form_Formal
));
379 -- Build the parameter association for the new actual and add it to the
380 -- end of the function's actuals.
382 Add_Extra_Actual_To_Call
383 (Function_Call
, Alloc_Form_Formal
, Alloc_Form_Actual
);
385 -- Pass the Storage_Pool parameter. This parameter is omitted on
386 -- ZFP as those targets do not support pools.
388 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
389 Pool_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Storage_Pool
);
390 Analyze_And_Resolve
(Pool_Actual
, Etype
(Pool_Formal
));
391 Add_Extra_Actual_To_Call
392 (Function_Call
, Pool_Formal
, Pool_Actual
);
394 end Add_Unconstrained_Actuals_To_Build_In_Place_Call
;
396 -----------------------------------------------------------
397 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
398 -----------------------------------------------------------
400 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
401 (Func_Call
: Node_Id
;
403 Ptr_Typ
: Entity_Id
:= Empty
;
404 Master_Exp
: Node_Id
:= Empty
)
407 if not Needs_BIP_Finalization_Master
(Func_Id
) then
412 Formal
: constant Entity_Id
:=
413 Build_In_Place_Formal
(Func_Id
, BIP_Finalization_Master
);
414 Loc
: constant Source_Ptr
:= Sloc
(Func_Call
);
417 Desig_Typ
: Entity_Id
;
420 -- If there is a finalization master actual, such as the implicit
421 -- finalization master of an enclosing build-in-place function,
422 -- then this must be added as an extra actual of the call.
424 if Present
(Master_Exp
) then
425 Actual
:= Master_Exp
;
427 -- Case where the context does not require an actual master
429 elsif No
(Ptr_Typ
) then
430 Actual
:= Make_Null
(Loc
);
433 Desig_Typ
:= Directly_Designated_Type
(Ptr_Typ
);
435 -- Check for a library-level access type whose designated type has
436 -- suppressed finalization or the access type is subject to pragma
437 -- No_Heap_Finalization. Such an access type lacks a master. Pass
438 -- a null actual to callee in order to signal a missing master.
440 if Is_Library_Level_Entity
(Ptr_Typ
)
441 and then (Finalize_Storage_Only
(Desig_Typ
)
442 or else No_Heap_Finalization
(Ptr_Typ
))
444 Actual
:= Make_Null
(Loc
);
446 -- Types in need of finalization actions
448 elsif Needs_Finalization
(Desig_Typ
) then
450 -- The general mechanism of creating finalization masters for
451 -- anonymous access types is disabled by default, otherwise
452 -- finalization masters will pop all over the place. Such types
453 -- use context-specific masters.
455 if Ekind
(Ptr_Typ
) = E_Anonymous_Access_Type
456 and then No
(Finalization_Master
(Ptr_Typ
))
458 Build_Anonymous_Master
(Ptr_Typ
);
461 -- Access-to-controlled types should always have a master
463 pragma Assert
(Present
(Finalization_Master
(Ptr_Typ
)));
466 Make_Attribute_Reference
(Loc
,
468 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
469 Attribute_Name
=> Name_Unrestricted_Access
);
474 Actual
:= Make_Null
(Loc
);
478 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
480 -- Build the parameter association for the new actual and add it to
481 -- the end of the function's actuals.
483 Add_Extra_Actual_To_Call
(Func_Call
, Formal
, Actual
);
485 end Add_Finalization_Master_Actual_To_Build_In_Place_Call
;
487 ------------------------------
488 -- Add_Extra_Actual_To_Call --
489 ------------------------------
491 procedure Add_Extra_Actual_To_Call
492 (Subprogram_Call
: Node_Id
;
493 Extra_Formal
: Entity_Id
;
494 Extra_Actual
: Node_Id
)
496 Loc
: constant Source_Ptr
:= Sloc
(Subprogram_Call
);
497 Param_Assoc
: Node_Id
;
501 Make_Parameter_Association
(Loc
,
502 Selector_Name
=> New_Occurrence_Of
(Extra_Formal
, Loc
),
503 Explicit_Actual_Parameter
=> Extra_Actual
);
505 Set_Parent
(Param_Assoc
, Subprogram_Call
);
506 Set_Parent
(Extra_Actual
, Param_Assoc
);
508 if Present
(Parameter_Associations
(Subprogram_Call
)) then
509 if Nkind
(Last
(Parameter_Associations
(Subprogram_Call
))) =
510 N_Parameter_Association
513 -- Find last named actual, and append
518 L
:= First_Actual
(Subprogram_Call
);
519 while Present
(L
) loop
520 if No
(Next_Actual
(L
)) then
521 Set_Next_Named_Actual
(Parent
(L
), Extra_Actual
);
529 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
532 Append
(Param_Assoc
, To
=> Parameter_Associations
(Subprogram_Call
));
535 Set_Parameter_Associations
(Subprogram_Call
, New_List
(Param_Assoc
));
536 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
538 end Add_Extra_Actual_To_Call
;
540 ---------------------------------------------
541 -- Add_Task_Actuals_To_Build_In_Place_Call --
542 ---------------------------------------------
544 procedure Add_Task_Actuals_To_Build_In_Place_Call
545 (Function_Call
: Node_Id
;
546 Function_Id
: Entity_Id
;
547 Master_Actual
: Node_Id
;
548 Chain
: Node_Id
:= Empty
)
550 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
551 Result_Subt
: constant Entity_Id
:=
552 Available_View
(Etype
(Function_Id
));
554 Chain_Actual
: Node_Id
;
555 Chain_Formal
: Node_Id
;
556 Master_Formal
: Node_Id
;
559 -- No such extra parameters are needed if there are no tasks
561 if not Has_Task
(Result_Subt
) then
565 Actual
:= Master_Actual
;
567 -- Use a dummy _master actual in case of No_Task_Hierarchy
569 if Restriction_Active
(No_Task_Hierarchy
) then
570 Actual
:= New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
);
572 -- In the case where we use the master associated with an access type,
573 -- the actual is an entity and requires an explicit reference.
575 elsif Nkind
(Actual
) = N_Defining_Identifier
then
576 Actual
:= New_Occurrence_Of
(Actual
, Loc
);
579 -- Locate the implicit master parameter in the called function
581 Master_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Task_Master
);
582 Analyze_And_Resolve
(Actual
, Etype
(Master_Formal
));
584 -- Build the parameter association for the new actual and add it to the
585 -- end of the function's actuals.
587 Add_Extra_Actual_To_Call
(Function_Call
, Master_Formal
, Actual
);
589 -- Locate the implicit activation chain parameter in the called function
592 Build_In_Place_Formal
(Function_Id
, BIP_Activation_Chain
);
594 -- Create the actual which is a pointer to the current activation chain
598 Make_Attribute_Reference
(Loc
,
599 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
600 Attribute_Name
=> Name_Unrestricted_Access
);
602 -- Allocator case; make a reference to the Chain passed in by the caller
606 Make_Attribute_Reference
(Loc
,
607 Prefix
=> New_Occurrence_Of
(Chain
, Loc
),
608 Attribute_Name
=> Name_Unrestricted_Access
);
611 Analyze_And_Resolve
(Chain_Actual
, Etype
(Chain_Formal
));
613 -- Build the parameter association for the new actual and add it to the
614 -- end of the function's actuals.
616 Add_Extra_Actual_To_Call
(Function_Call
, Chain_Formal
, Chain_Actual
);
617 end Add_Task_Actuals_To_Build_In_Place_Call
;
619 -----------------------
620 -- BIP_Formal_Suffix --
621 -----------------------
623 function BIP_Formal_Suffix
(Kind
: BIP_Formal_Kind
) return String is
626 when BIP_Alloc_Form
=>
629 when BIP_Storage_Pool
=>
630 return "BIPstoragepool";
632 when BIP_Finalization_Master
=>
633 return "BIPfinalizationmaster";
635 when BIP_Task_Master
=>
636 return "BIPtaskmaster";
638 when BIP_Activation_Chain
=>
639 return "BIPactivationchain";
641 when BIP_Object_Access
=>
644 end BIP_Formal_Suffix
;
646 ---------------------------
647 -- Build_In_Place_Formal --
648 ---------------------------
650 function Build_In_Place_Formal
652 Kind
: BIP_Formal_Kind
) return Entity_Id
654 Formal_Suffix
: constant String := BIP_Formal_Suffix
(Kind
);
655 Extra_Formal
: Entity_Id
:= Extra_Formals
(Func
);
658 -- Maybe it would be better for each implicit formal of a build-in-place
659 -- function to have a flag or a Uint attribute to identify it. ???
661 -- The return type in the function declaration may have been a limited
662 -- view, and the extra formals for the function were not generated at
663 -- that point. At the point of call the full view must be available and
664 -- the extra formals can be created.
666 if No
(Extra_Formal
) then
667 Create_Extra_Formals
(Func
);
668 Extra_Formal
:= Extra_Formals
(Func
);
671 -- We search for a formal with a matching suffix. We can't search
672 -- for the full name, because of the code at the end of Sem_Ch6.-
673 -- Create_Extra_Formals, which copies the Extra_Formals over to
674 -- the Alias of an instance, which will cause the formals to have
675 -- "incorrect" names.
678 pragma Assert
(Present
(Extra_Formal
));
680 Name
: constant String := Get_Name_String
(Chars
(Extra_Formal
));
682 exit when Name
'Length >= Formal_Suffix
'Length
683 and then Formal_Suffix
=
684 Name
(Name
'Last - Formal_Suffix
'Length + 1 .. Name
'Last);
687 Next_Formal_With_Extras
(Extra_Formal
);
691 end Build_In_Place_Formal
;
693 -------------------------------
694 -- Build_Procedure_Body_Form --
695 -------------------------------
697 function Build_Procedure_Body_Form
698 (Func_Id
: Entity_Id
;
699 Func_Body
: Node_Id
) return Node_Id
701 Loc
: constant Source_Ptr
:= Sloc
(Func_Body
);
703 Proc_Decl
: constant Node_Id
:=
704 Next
(Unit_Declaration_Node
(Func_Id
));
705 -- It is assumed that the next node following the declaration of the
706 -- corresponding subprogram spec is the declaration of the procedure
709 Proc_Id
: constant Entity_Id
:= Defining_Entity
(Proc_Decl
);
711 procedure Replace_Returns
(Param_Id
: Entity_Id
; Stmts
: List_Id
);
712 -- Replace each return statement found in the list Stmts with an
713 -- assignment of the return expression to parameter Param_Id.
715 ---------------------
716 -- Replace_Returns --
717 ---------------------
719 procedure Replace_Returns
(Param_Id
: Entity_Id
; Stmts
: List_Id
) is
723 Stmt
:= First
(Stmts
);
724 while Present
(Stmt
) loop
725 if Nkind
(Stmt
) = N_Block_Statement
then
726 Replace_Returns
(Param_Id
,
727 Statements
(Handled_Statement_Sequence
(Stmt
)));
729 elsif Nkind
(Stmt
) = N_Case_Statement
then
733 Alt
:= First
(Alternatives
(Stmt
));
734 while Present
(Alt
) loop
735 Replace_Returns
(Param_Id
, Statements
(Alt
));
740 elsif Nkind
(Stmt
) = N_Extended_Return_Statement
then
742 Ret_Obj
: constant Entity_Id
:=
744 (First
(Return_Object_Declarations
(Stmt
)));
745 Assign
: constant Node_Id
:=
746 Make_Assignment_Statement
(Sloc
(Stmt
),
748 New_Occurrence_Of
(Param_Id
, Loc
),
750 New_Occurrence_Of
(Ret_Obj
, Sloc
(Stmt
)));
754 -- The extended return may just contain the declaration
756 if Present
(Handled_Statement_Sequence
(Stmt
)) then
757 Stmts
:= Statements
(Handled_Statement_Sequence
(Stmt
));
762 Set_Assignment_OK
(Name
(Assign
));
765 Make_Block_Statement
(Sloc
(Stmt
),
767 Return_Object_Declarations
(Stmt
),
768 Handled_Statement_Sequence
=>
769 Make_Handled_Sequence_Of_Statements
(Loc
,
770 Statements
=> Stmts
)));
772 Replace_Returns
(Param_Id
, Stmts
);
774 Append_To
(Stmts
, Assign
);
775 Append_To
(Stmts
, Make_Simple_Return_Statement
(Loc
));
778 elsif Nkind
(Stmt
) = N_If_Statement
then
779 Replace_Returns
(Param_Id
, Then_Statements
(Stmt
));
780 Replace_Returns
(Param_Id
, Else_Statements
(Stmt
));
785 Part
:= First
(Elsif_Parts
(Stmt
));
786 while Present
(Part
) loop
787 Replace_Returns
(Param_Id
, Then_Statements
(Part
));
792 elsif Nkind
(Stmt
) = N_Loop_Statement
then
793 Replace_Returns
(Param_Id
, Statements
(Stmt
));
795 elsif Nkind
(Stmt
) = N_Simple_Return_Statement
then
802 Make_Assignment_Statement
(Sloc
(Stmt
),
803 Name
=> New_Occurrence_Of
(Param_Id
, Loc
),
804 Expression
=> Relocate_Node
(Expression
(Stmt
))));
806 Insert_After
(Stmt
, Make_Simple_Return_Statement
(Loc
));
808 -- Skip the added return
822 -- Start of processing for Build_Procedure_Body_Form
825 -- This routine replaces the original function body:
827 -- function F (...) return Array_Typ is
833 -- with the following:
835 -- procedure P (..., Result : out Array_Typ) is
838 -- Result := Something;
842 Statements
(Handled_Statement_Sequence
(Func_Body
));
843 Replace_Returns
(Last_Entity
(Proc_Id
), Stmts
);
846 Make_Subprogram_Body
(Loc
,
848 Copy_Subprogram_Spec
(Specification
(Proc_Decl
)),
849 Declarations
=> Declarations
(Func_Body
),
850 Handled_Statement_Sequence
=>
851 Make_Handled_Sequence_Of_Statements
(Loc
,
852 Statements
=> Stmts
));
854 -- If the function is a generic instance, so is the new procedure.
855 -- Set flag accordingly so that the proper renaming declarations are
858 Set_Is_Generic_Instance
(Proc_Id
, Is_Generic_Instance
(Func_Id
));
860 end Build_Procedure_Body_Form
;
862 -----------------------
863 -- Caller_Known_Size --
864 -----------------------
866 function Caller_Known_Size
867 (Func_Call
: Node_Id
;
868 Result_Subt
: Entity_Id
) return Boolean
872 (Is_Definite_Subtype
(Underlying_Type
(Result_Subt
))
873 and then No
(Controlling_Argument
(Func_Call
)))
874 or else not Requires_Transient_Scope
(Underlying_Type
(Result_Subt
));
875 end Caller_Known_Size
;
877 --------------------------------
878 -- Check_Overriding_Operation --
879 --------------------------------
881 procedure Check_Overriding_Operation
(Subp
: Entity_Id
) is
882 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
883 Op_List
: constant Elist_Id
:= Primitive_Operations
(Typ
);
889 if Is_Derived_Type
(Typ
)
890 and then not Is_Private_Type
(Typ
)
891 and then In_Open_Scopes
(Scope
(Etype
(Typ
)))
892 and then Is_Base_Type
(Typ
)
894 -- Subp overrides an inherited private operation if there is an
895 -- inherited operation with a different name than Subp (see
896 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
897 -- same name as Subp.
899 Op_Elmt
:= First_Elmt
(Op_List
);
900 while Present
(Op_Elmt
) loop
901 Prim_Op
:= Node
(Op_Elmt
);
902 Par_Op
:= Alias
(Prim_Op
);
905 and then not Comes_From_Source
(Prim_Op
)
906 and then Chars
(Prim_Op
) /= Chars
(Par_Op
)
907 and then Chars
(Par_Op
) = Chars
(Subp
)
908 and then Is_Hidden
(Par_Op
)
909 and then Type_Conformant
(Prim_Op
, Subp
)
911 Set_DT_Position_Value
(Subp
, DT_Position
(Prim_Op
));
917 end Check_Overriding_Operation
;
919 -------------------------------
920 -- Detect_Infinite_Recursion --
921 -------------------------------
923 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
) is
924 Loc
: constant Source_Ptr
:= Sloc
(N
);
926 Var_List
: constant Elist_Id
:= New_Elmt_List
;
927 -- List of globals referenced by body of procedure
929 Call_List
: constant Elist_Id
:= New_Elmt_List
;
930 -- List of recursive calls in body of procedure
932 Shad_List
: constant Elist_Id
:= New_Elmt_List
;
933 -- List of entity id's for entities created to capture the value of
934 -- referenced globals on entry to the procedure.
936 Scop
: constant Uint
:= Scope_Depth
(Spec
);
937 -- This is used to record the scope depth of the current procedure, so
938 -- that we can identify global references.
940 Max_Vars
: constant := 4;
941 -- Do not test more than four global variables
943 Count_Vars
: Natural := 0;
944 -- Count variables found so far
956 function Process
(Nod
: Node_Id
) return Traverse_Result
;
957 -- Function to traverse the subprogram body (using Traverse_Func)
963 function Process
(Nod
: Node_Id
) return Traverse_Result
is
967 if Nkind
(Nod
) = N_Procedure_Call_Statement
then
969 -- Case of one of the detected recursive calls
971 if Is_Entity_Name
(Name
(Nod
))
972 and then Has_Recursive_Call
(Entity
(Name
(Nod
)))
973 and then Entity
(Name
(Nod
)) = Spec
975 Append_Elmt
(Nod
, Call_List
);
978 -- Any other procedure call may have side effects
984 -- A call to a pure function can always be ignored
986 elsif Nkind
(Nod
) = N_Function_Call
987 and then Is_Entity_Name
(Name
(Nod
))
988 and then Is_Pure
(Entity
(Name
(Nod
)))
992 -- Case of an identifier reference
994 elsif Nkind
(Nod
) = N_Identifier
then
997 -- If no entity, then ignore the reference
999 -- Not clear why this can happen. To investigate, remove this
1000 -- test and look at the crash that occurs here in 3401-004 ???
1005 -- Ignore entities with no Scope, again not clear how this
1006 -- can happen, to investigate, look at 4108-008 ???
1008 elsif No
(Scope
(Ent
)) then
1011 -- Ignore the reference if not to a more global object
1013 elsif Scope_Depth
(Scope
(Ent
)) >= Scop
then
1016 -- References to types, exceptions and constants are always OK
1019 or else Ekind
(Ent
) = E_Exception
1020 or else Ekind
(Ent
) = E_Constant
1024 -- If other than a non-volatile scalar variable, we have some
1025 -- kind of global reference (e.g. to a function) that we cannot
1026 -- deal with so we forget the attempt.
1028 elsif Ekind
(Ent
) /= E_Variable
1029 or else not Is_Scalar_Type
(Etype
(Ent
))
1030 or else Treat_As_Volatile
(Ent
)
1034 -- Otherwise we have a reference to a global scalar
1037 -- Loop through global entities already detected
1039 Elm
:= First_Elmt
(Var_List
);
1041 -- If not detected before, record this new global reference
1044 Count_Vars
:= Count_Vars
+ 1;
1046 if Count_Vars
<= Max_Vars
then
1047 Append_Elmt
(Entity
(Nod
), Var_List
);
1054 -- If recorded before, ignore
1056 elsif Node
(Elm
) = Entity
(Nod
) then
1059 -- Otherwise keep looking
1069 -- For all other node kinds, recursively visit syntactic children
1076 function Traverse_Body
is new Traverse_Func
(Process
);
1078 -- Start of processing for Detect_Infinite_Recursion
1081 -- Do not attempt detection in No_Implicit_Conditional mode, since we
1082 -- won't be able to generate the code to handle the recursion in any
1085 if Restriction_Active
(No_Implicit_Conditionals
) then
1089 -- Otherwise do traversal and quit if we get abandon signal
1091 if Traverse_Body
(N
) = Abandon
then
1094 -- We must have a call, since Has_Recursive_Call was set. If not just
1095 -- ignore (this is only an error check, so if we have a funny situation,
1096 -- due to bugs or errors, we do not want to bomb).
1098 elsif Is_Empty_Elmt_List
(Call_List
) then
1102 -- Here is the case where we detect recursion at compile time
1104 -- Push our current scope for analyzing the declarations and code that
1105 -- we will insert for the checking.
1109 -- This loop builds temporary variables for each of the referenced
1110 -- globals, so that at the end of the loop the list Shad_List contains
1111 -- these temporaries in one-to-one correspondence with the elements in
1115 Elm
:= First_Elmt
(Var_List
);
1116 while Present
(Elm
) loop
1118 Ent
:= Make_Temporary
(Loc
, 'S');
1119 Append_Elmt
(Ent
, Shad_List
);
1121 -- Insert a declaration for this temporary at the start of the
1122 -- declarations for the procedure. The temporaries are declared as
1123 -- constant objects initialized to the current values of the
1124 -- corresponding temporaries.
1127 Make_Object_Declaration
(Loc
,
1128 Defining_Identifier
=> Ent
,
1129 Object_Definition
=> New_Occurrence_Of
(Etype
(Var
), Loc
),
1130 Constant_Present
=> True,
1131 Expression
=> New_Occurrence_Of
(Var
, Loc
));
1134 Prepend
(Decl
, Declarations
(N
));
1136 Insert_After
(Last
, Decl
);
1144 -- Loop through calls
1146 Call
:= First_Elmt
(Call_List
);
1147 while Present
(Call
) loop
1149 -- Build a predicate expression of the form
1152 -- and then global1 = temp1
1153 -- and then global2 = temp2
1156 -- This predicate determines if any of the global values
1157 -- referenced by the procedure have changed since the
1158 -- current call, if not an infinite recursion is assured.
1160 Test
:= New_Occurrence_Of
(Standard_True
, Loc
);
1162 Elm1
:= First_Elmt
(Var_List
);
1163 Elm2
:= First_Elmt
(Shad_List
);
1164 while Present
(Elm1
) loop
1170 Left_Opnd
=> New_Occurrence_Of
(Node
(Elm1
), Loc
),
1171 Right_Opnd
=> New_Occurrence_Of
(Node
(Elm2
), Loc
)));
1177 -- Now we replace the call with the sequence
1179 -- if no-changes (see above) then
1180 -- raise Storage_Error;
1185 Rewrite
(Node
(Call
),
1186 Make_If_Statement
(Loc
,
1188 Then_Statements
=> New_List
(
1189 Make_Raise_Storage_Error
(Loc
,
1190 Reason
=> SE_Infinite_Recursion
)),
1192 Else_Statements
=> New_List
(
1193 Relocate_Node
(Node
(Call
)))));
1195 Analyze
(Node
(Call
));
1200 -- Remove temporary scope stack entry used for analysis
1203 end Detect_Infinite_Recursion
;
1205 --------------------
1206 -- Expand_Actuals --
1207 --------------------
1209 procedure Expand_Actuals
1212 Post_Call
: out List_Id
)
1214 Loc
: constant Source_Ptr
:= Sloc
(N
);
1218 E_Actual
: Entity_Id
;
1219 E_Formal
: Entity_Id
;
1221 procedure Add_Call_By_Copy_Code
;
1222 -- For cases where the parameter must be passed by copy, this routine
1223 -- generates a temporary variable into which the actual is copied and
1224 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1225 -- an assignment is also generated to copy the result back. The call
1226 -- also takes care of any constraint checks required for the type
1227 -- conversion case (on both the way in and the way out).
1229 procedure Add_Simple_Call_By_Copy_Code
;
1230 -- This is similar to the above, but is used in cases where we know
1231 -- that all that is needed is to simply create a temporary and copy
1232 -- the value in and out of the temporary.
1234 procedure Add_Validation_Call_By_Copy_Code
(Act
: Node_Id
);
1235 -- Perform copy-back for actual parameter Act which denotes a validation
1238 procedure Check_Fortran_Logical
;
1239 -- A value of type Logical that is passed through a formal parameter
1240 -- must be normalized because .TRUE. usually does not have the same
1241 -- representation as True. We assume that .FALSE. = False = 0.
1242 -- What about functions that return a logical type ???
1244 function Is_Legal_Copy
return Boolean;
1245 -- Check that an actual can be copied before generating the temporary
1246 -- to be used in the call. If the actual is of a by_reference type then
1247 -- the program is illegal (this can only happen in the presence of
1248 -- rep. clauses that force an incorrect alignment). If the formal is
1249 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1250 -- the effect that this might lead to unaligned arguments.
1252 function Make_Var
(Actual
: Node_Id
) return Entity_Id
;
1253 -- Returns an entity that refers to the given actual parameter, Actual
1254 -- (not including any type conversion). If Actual is an entity name,
1255 -- then this entity is returned unchanged, otherwise a renaming is
1256 -- created to provide an entity for the actual.
1258 procedure Reset_Packed_Prefix
;
1259 -- The expansion of a packed array component reference is delayed in
1260 -- the context of a call. Now we need to complete the expansion, so we
1261 -- unmark the analyzed bits in all prefixes.
1263 ---------------------------
1264 -- Add_Call_By_Copy_Code --
1265 ---------------------------
1267 procedure Add_Call_By_Copy_Code
is
1270 F_Typ
: Entity_Id
:= Etype
(Formal
);
1278 if not Is_Legal_Copy
then
1282 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1284 -- Handle formals whose type comes from the limited view
1286 if From_Limited_With
(F_Typ
)
1287 and then Has_Non_Limited_View
(F_Typ
)
1289 F_Typ
:= Non_Limited_View
(F_Typ
);
1292 -- Use formal type for temp, unless formal type is an unconstrained
1293 -- array, in which case we don't have to worry about bounds checks,
1294 -- and we use the actual type, since that has appropriate bounds.
1296 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1297 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1299 Indic
:= New_Occurrence_Of
(F_Typ
, Loc
);
1302 if Nkind
(Actual
) = N_Type_Conversion
then
1303 V_Typ
:= Etype
(Expression
(Actual
));
1305 -- If the formal is an (in-)out parameter, capture the name
1306 -- of the variable in order to build the post-call assignment.
1308 Var
:= Make_Var
(Expression
(Actual
));
1310 Crep
:= not Same_Representation
1311 (F_Typ
, Etype
(Expression
(Actual
)));
1314 V_Typ
:= Etype
(Actual
);
1315 Var
:= Make_Var
(Actual
);
1319 -- Setup initialization for case of in out parameter, or an out
1320 -- parameter where the formal is an unconstrained array (in the
1321 -- latter case, we have to pass in an object with bounds).
1323 -- If this is an out parameter, the initial copy is wasteful, so as
1324 -- an optimization for the one-dimensional case we extract the
1325 -- bounds of the actual and build an uninitialized temporary of the
1328 if Ekind
(Formal
) = E_In_Out_Parameter
1329 or else (Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
))
1331 if Nkind
(Actual
) = N_Type_Conversion
then
1332 if Conversion_OK
(Actual
) then
1333 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1335 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1338 elsif Ekind
(Formal
) = E_Out_Parameter
1339 and then Is_Array_Type
(F_Typ
)
1340 and then Number_Dimensions
(F_Typ
) = 1
1341 and then not Has_Non_Null_Base_Init_Proc
(F_Typ
)
1343 -- Actual is a one-dimensional array or slice, and the type
1344 -- requires no initialization. Create a temporary of the
1345 -- right size, but do not copy actual into it (optimization).
1349 Make_Subtype_Indication
(Loc
,
1350 Subtype_Mark
=> New_Occurrence_Of
(F_Typ
, Loc
),
1352 Make_Index_Or_Discriminant_Constraint
(Loc
,
1353 Constraints
=> New_List
(
1356 Make_Attribute_Reference
(Loc
,
1357 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1358 Attribute_Name
=> Name_First
),
1360 Make_Attribute_Reference
(Loc
,
1361 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1362 Attribute_Name
=> Name_Last
)))));
1365 Init
:= New_Occurrence_Of
(Var
, Loc
);
1368 -- An initialization is created for packed conversions as
1369 -- actuals for out parameters to enable Make_Object_Declaration
1370 -- to determine the proper subtype for N_Node. Note that this
1371 -- is wasteful because the extra copying on the call side is
1372 -- not required for such out parameters. ???
1374 elsif Ekind
(Formal
) = E_Out_Parameter
1375 and then Nkind
(Actual
) = N_Type_Conversion
1376 and then (Is_Bit_Packed_Array
(F_Typ
)
1378 Is_Bit_Packed_Array
(Etype
(Expression
(Actual
))))
1380 if Conversion_OK
(Actual
) then
1381 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1383 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1386 elsif Ekind
(Formal
) = E_In_Parameter
then
1388 -- Handle the case in which the actual is a type conversion
1390 if Nkind
(Actual
) = N_Type_Conversion
then
1391 if Conversion_OK
(Actual
) then
1392 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1394 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1397 Init
:= New_Occurrence_Of
(Var
, Loc
);
1405 Make_Object_Declaration
(Loc
,
1406 Defining_Identifier
=> Temp
,
1407 Object_Definition
=> Indic
,
1408 Expression
=> Init
);
1409 Set_Assignment_OK
(N_Node
);
1410 Insert_Action
(N
, N_Node
);
1412 -- Now, normally the deal here is that we use the defining
1413 -- identifier created by that object declaration. There is
1414 -- one exception to this. In the change of representation case
1415 -- the above declaration will end up looking like:
1417 -- temp : type := identifier;
1419 -- And in this case we might as well use the identifier directly
1420 -- and eliminate the temporary. Note that the analysis of the
1421 -- declaration was not a waste of time in that case, since it is
1422 -- what generated the necessary change of representation code. If
1423 -- the change of representation introduced additional code, as in
1424 -- a fixed-integer conversion, the expression is not an identifier
1425 -- and must be kept.
1428 and then Present
(Expression
(N_Node
))
1429 and then Is_Entity_Name
(Expression
(N_Node
))
1431 Temp
:= Entity
(Expression
(N_Node
));
1432 Rewrite
(N_Node
, Make_Null_Statement
(Loc
));
1435 -- For IN parameter, all we do is to replace the actual
1437 if Ekind
(Formal
) = E_In_Parameter
then
1438 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1441 -- Processing for OUT or IN OUT parameter
1444 -- Kill current value indications for the temporary variable we
1445 -- created, since we just passed it as an OUT parameter.
1447 Kill_Current_Values
(Temp
);
1448 Set_Is_Known_Valid
(Temp
, False);
1450 -- If type conversion, use reverse conversion on exit
1452 if Nkind
(Actual
) = N_Type_Conversion
then
1453 if Conversion_OK
(Actual
) then
1454 Expr
:= OK_Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1456 Expr
:= Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1459 Expr
:= New_Occurrence_Of
(Temp
, Loc
);
1462 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1465 -- If the actual is a conversion of a packed reference, it may
1466 -- already have been expanded by Remove_Side_Effects, and the
1467 -- resulting variable is a temporary which does not designate
1468 -- the proper out-parameter, which may not be addressable. In
1469 -- that case, generate an assignment to the original expression
1470 -- (before expansion of the packed reference) so that the proper
1471 -- expansion of assignment to a packed component can take place.
1478 if Is_Renaming_Of_Object
(Var
)
1479 and then Nkind
(Renamed_Object
(Var
)) = N_Selected_Component
1480 and then Nkind
(Original_Node
(Prefix
(Renamed_Object
(Var
))))
1481 = N_Indexed_Component
1483 Has_Non_Standard_Rep
(Etype
(Prefix
(Renamed_Object
(Var
))))
1485 Obj
:= Renamed_Object
(Var
);
1487 Make_Selected_Component
(Loc
,
1489 New_Copy_Tree
(Original_Node
(Prefix
(Obj
))),
1490 Selector_Name
=> New_Copy
(Selector_Name
(Obj
)));
1491 Reset_Analyzed_Flags
(Lhs
);
1494 Lhs
:= New_Occurrence_Of
(Var
, Loc
);
1497 Set_Assignment_OK
(Lhs
);
1499 if Is_Access_Type
(E_Formal
)
1500 and then Is_Entity_Name
(Lhs
)
1502 Present
(Effective_Extra_Accessibility
(Entity
(Lhs
)))
1504 -- Copyback target is an Ada 2012 stand-alone object of an
1505 -- anonymous access type.
1507 pragma Assert
(Ada_Version
>= Ada_2012
);
1509 if Type_Access_Level
(E_Formal
) >
1510 Object_Access_Level
(Lhs
)
1512 Append_To
(Post_Call
,
1513 Make_Raise_Program_Error
(Loc
,
1514 Reason
=> PE_Accessibility_Check_Failed
));
1517 Append_To
(Post_Call
,
1518 Make_Assignment_Statement
(Loc
,
1520 Expression
=> Expr
));
1522 -- We would like to somehow suppress generation of the
1523 -- extra_accessibility assignment generated by the expansion
1524 -- of the above assignment statement. It's not a correctness
1525 -- issue because the following assignment renders it dead,
1526 -- but generating back-to-back assignments to the same
1527 -- target is undesirable. ???
1529 Append_To
(Post_Call
,
1530 Make_Assignment_Statement
(Loc
,
1531 Name
=> New_Occurrence_Of
(
1532 Effective_Extra_Accessibility
(Entity
(Lhs
)), Loc
),
1533 Expression
=> Make_Integer_Literal
(Loc
,
1534 Type_Access_Level
(E_Formal
))));
1537 Append_To
(Post_Call
,
1538 Make_Assignment_Statement
(Loc
,
1540 Expression
=> Expr
));
1544 end Add_Call_By_Copy_Code
;
1546 ----------------------------------
1547 -- Add_Simple_Call_By_Copy_Code --
1548 ----------------------------------
1550 procedure Add_Simple_Call_By_Copy_Code
is
1552 F_Typ
: Entity_Id
:= Etype
(Formal
);
1561 if not Is_Legal_Copy
then
1565 -- Handle formals whose type comes from the limited view
1567 if From_Limited_With
(F_Typ
)
1568 and then Has_Non_Limited_View
(F_Typ
)
1570 F_Typ
:= Non_Limited_View
(F_Typ
);
1573 -- Use formal type for temp, unless formal type is an unconstrained
1574 -- array, in which case we don't have to worry about bounds checks,
1575 -- and we use the actual type, since that has appropriate bounds.
1577 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1578 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1580 Indic
:= New_Occurrence_Of
(F_Typ
, Loc
);
1583 -- Prepare to generate code
1585 Reset_Packed_Prefix
;
1587 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1588 Incod
:= Relocate_Node
(Actual
);
1589 Outcod
:= New_Copy_Tree
(Incod
);
1591 -- Generate declaration of temporary variable, initializing it
1592 -- with the input parameter unless we have an OUT formal or
1593 -- this is an initialization call.
1595 -- If the formal is an out parameter with discriminants, the
1596 -- discriminants must be captured even if the rest of the object
1597 -- is in principle uninitialized, because the discriminants may
1598 -- be read by the called subprogram.
1600 if Ekind
(Formal
) = E_Out_Parameter
then
1603 if Has_Discriminants
(F_Typ
) then
1604 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1607 elsif Inside_Init_Proc
then
1609 -- Could use a comment here to match comment below ???
1611 if Nkind
(Actual
) /= N_Selected_Component
1613 not Has_Discriminant_Dependent_Constraint
1614 (Entity
(Selector_Name
(Actual
)))
1618 -- Otherwise, keep the component in order to generate the proper
1619 -- actual subtype, that depends on enclosing discriminants.
1627 Make_Object_Declaration
(Loc
,
1628 Defining_Identifier
=> Temp
,
1629 Object_Definition
=> Indic
,
1630 Expression
=> Incod
);
1635 -- If the call is to initialize a component of a composite type,
1636 -- and the component does not depend on discriminants, use the
1637 -- actual type of the component. This is required in case the
1638 -- component is constrained, because in general the formal of the
1639 -- initialization procedure will be unconstrained. Note that if
1640 -- the component being initialized is constrained by an enclosing
1641 -- discriminant, the presence of the initialization in the
1642 -- declaration will generate an expression for the actual subtype.
1644 Set_No_Initialization
(Decl
);
1645 Set_Object_Definition
(Decl
,
1646 New_Occurrence_Of
(Etype
(Actual
), Loc
));
1649 Insert_Action
(N
, Decl
);
1651 -- The actual is simply a reference to the temporary
1653 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1655 -- Generate copy out if OUT or IN OUT parameter
1657 if Ekind
(Formal
) /= E_In_Parameter
then
1659 Rhs
:= New_Occurrence_Of
(Temp
, Loc
);
1661 -- Deal with conversion
1663 if Nkind
(Lhs
) = N_Type_Conversion
then
1664 Lhs
:= Expression
(Lhs
);
1665 Rhs
:= Convert_To
(Etype
(Actual
), Rhs
);
1668 Append_To
(Post_Call
,
1669 Make_Assignment_Statement
(Loc
,
1671 Expression
=> Rhs
));
1672 Set_Assignment_OK
(Name
(Last
(Post_Call
)));
1674 end Add_Simple_Call_By_Copy_Code
;
1676 --------------------------------------
1677 -- Add_Validation_Call_By_Copy_Code --
1678 --------------------------------------
1680 procedure Add_Validation_Call_By_Copy_Code
(Act
: Node_Id
) is
1683 Obj_Typ
: Entity_Id
;
1684 Var
: constant Node_Id
:= Unqual_Conv
(Act
);
1688 -- Copy the value of the validation variable back into the object
1691 if Is_Entity_Name
(Var
) then
1692 Var_Id
:= Entity
(Var
);
1693 Obj
:= Validated_Object
(Var_Id
);
1694 Obj_Typ
:= Etype
(Obj
);
1696 Expr
:= New_Occurrence_Of
(Var_Id
, Loc
);
1698 -- A type conversion is needed when the validation variable and
1699 -- the validated object carry different types. This case occurs
1700 -- when the actual is qualified in some fashion.
1703 -- subtype Int is Integer range ...;
1704 -- procedure Call (Val : in out Integer);
1708 -- Call (Integer (Object));
1712 -- Var : Integer := Object; -- conversion to base type
1713 -- if not Var'Valid then -- validity check
1714 -- Call (Var); -- modify Var
1715 -- Object := Int (Var); -- conversion to subtype
1717 if Etype
(Var_Id
) /= Obj_Typ
then
1719 Make_Type_Conversion
(Loc
,
1720 Subtype_Mark
=> New_Occurrence_Of
(Obj_Typ
, Loc
),
1721 Expression
=> Expr
);
1727 -- Object := Object_Type (Var);
1729 Append_To
(Post_Call
,
1730 Make_Assignment_Statement
(Loc
,
1732 Expression
=> Expr
));
1734 -- If the flow reaches this point, then this routine was invoked with
1735 -- an actual which does not denote a validation variable.
1738 pragma Assert
(False);
1741 end Add_Validation_Call_By_Copy_Code
;
1743 ---------------------------
1744 -- Check_Fortran_Logical --
1745 ---------------------------
1747 procedure Check_Fortran_Logical
is
1748 Logical
: constant Entity_Id
:= Etype
(Formal
);
1751 -- Note: this is very incomplete, e.g. it does not handle arrays
1752 -- of logical values. This is really not the right approach at all???)
1755 if Convention
(Subp
) = Convention_Fortran
1756 and then Root_Type
(Etype
(Formal
)) = Standard_Boolean
1757 and then Ekind
(Formal
) /= E_In_Parameter
1759 Var
:= Make_Var
(Actual
);
1760 Append_To
(Post_Call
,
1761 Make_Assignment_Statement
(Loc
,
1762 Name
=> New_Occurrence_Of
(Var
, Loc
),
1764 Unchecked_Convert_To
(
1767 Left_Opnd
=> New_Occurrence_Of
(Var
, Loc
),
1769 Unchecked_Convert_To
(
1771 New_Occurrence_Of
(Standard_False
, Loc
))))));
1773 end Check_Fortran_Logical
;
1779 function Is_Legal_Copy
return Boolean is
1781 -- An attempt to copy a value of such a type can only occur if
1782 -- representation clauses give the actual a misaligned address.
1784 if Is_By_Reference_Type
(Etype
(Formal
)) then
1786 -- The actual may in fact be properly aligned but there is not
1787 -- enough front-end information to determine this. In that case
1788 -- gigi will emit an error if a copy is not legal, or generate
1793 -- For users of Starlet, we assume that the specification of by-
1794 -- reference mechanism is mandatory. This may lead to unaligned
1795 -- objects but at least for DEC legacy code it is known to work.
1796 -- The warning will alert users of this code that a problem may
1799 elsif Mechanism
(Formal
) = By_Reference
1800 and then Is_Valued_Procedure
(Scope
(Formal
))
1803 ("by_reference actual may be misaligned??", Actual
);
1815 function Make_Var
(Actual
: Node_Id
) return Entity_Id
is
1819 if Is_Entity_Name
(Actual
) then
1820 return Entity
(Actual
);
1823 Var
:= Make_Temporary
(Loc
, 'T', Actual
);
1826 Make_Object_Renaming_Declaration
(Loc
,
1827 Defining_Identifier
=> Var
,
1829 New_Occurrence_Of
(Etype
(Actual
), Loc
),
1830 Name
=> Relocate_Node
(Actual
));
1832 Insert_Action
(N
, N_Node
);
1837 -------------------------
1838 -- Reset_Packed_Prefix --
1839 -------------------------
1841 procedure Reset_Packed_Prefix
is
1842 Pfx
: Node_Id
:= Actual
;
1845 Set_Analyzed
(Pfx
, False);
1847 not Nkind_In
(Pfx
, N_Selected_Component
, N_Indexed_Component
);
1848 Pfx
:= Prefix
(Pfx
);
1850 end Reset_Packed_Prefix
;
1852 -- Start of processing for Expand_Actuals
1855 Post_Call
:= New_List
;
1857 Formal
:= First_Formal
(Subp
);
1858 Actual
:= First_Actual
(N
);
1859 while Present
(Formal
) loop
1860 E_Formal
:= Etype
(Formal
);
1861 E_Actual
:= Etype
(Actual
);
1863 -- Handle formals whose type comes from the limited view
1865 if From_Limited_With
(E_Formal
)
1866 and then Has_Non_Limited_View
(E_Formal
)
1868 E_Formal
:= Non_Limited_View
(E_Formal
);
1871 if Is_Scalar_Type
(E_Formal
)
1872 or else Nkind
(Actual
) = N_Slice
1874 Check_Fortran_Logical
;
1878 elsif Ekind
(Formal
) /= E_Out_Parameter
then
1880 -- The unusual case of the current instance of a protected type
1881 -- requires special handling. This can only occur in the context
1882 -- of a call within the body of a protected operation.
1884 if Is_Entity_Name
(Actual
)
1885 and then Ekind
(Entity
(Actual
)) = E_Protected_Type
1886 and then In_Open_Scopes
(Entity
(Actual
))
1888 if Scope
(Subp
) /= Entity
(Actual
) then
1890 ("operation outside protected type may not "
1891 & "call back its protected operations??", Actual
);
1895 Expand_Protected_Object_Reference
(N
, Entity
(Actual
)));
1898 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1899 -- build-in-place function, then a temporary return object needs
1900 -- to be created and access to it must be passed to the function.
1901 -- Currently we limit such functions to those with inherently
1902 -- limited result subtypes, but eventually we plan to expand the
1903 -- functions that are treated as build-in-place to include other
1904 -- composite result types.
1906 if Is_Build_In_Place_Function_Call
(Actual
) then
1907 Make_Build_In_Place_Call_In_Anonymous_Context
(Actual
);
1909 -- Ada 2005 (AI-318-02): Specialization of the previous case for
1910 -- actuals containing build-in-place function calls whose returned
1911 -- object covers interface types.
1913 elsif Present
(Unqual_BIP_Iface_Function_Call
(Actual
)) then
1914 Make_Build_In_Place_Iface_Call_In_Anonymous_Context
(Actual
);
1917 Apply_Constraint_Check
(Actual
, E_Formal
);
1919 -- Out parameter case. No constraint checks on access type
1922 elsif Is_Access_Type
(E_Formal
) then
1927 elsif Has_Discriminants
(Base_Type
(E_Formal
))
1928 or else Has_Non_Null_Base_Init_Proc
(E_Formal
)
1930 Apply_Constraint_Check
(Actual
, E_Formal
);
1935 Apply_Constraint_Check
(Actual
, Base_Type
(E_Formal
));
1938 -- Processing for IN-OUT and OUT parameters
1940 if Ekind
(Formal
) /= E_In_Parameter
then
1942 -- For type conversions of arrays, apply length/range checks
1944 if Is_Array_Type
(E_Formal
)
1945 and then Nkind
(Actual
) = N_Type_Conversion
1947 if Is_Constrained
(E_Formal
) then
1948 Apply_Length_Check
(Expression
(Actual
), E_Formal
);
1950 Apply_Range_Check
(Expression
(Actual
), E_Formal
);
1954 -- The actual denotes a variable which captures the value of an
1955 -- object for validation purposes. Add a copy-back to reflect any
1956 -- potential changes in value back into the original object.
1958 -- Var : ... := Object;
1959 -- if not Var'Valid then -- validity check
1960 -- Call (Var); -- modify var
1961 -- Object := Var; -- update Object
1963 -- This case is given higher priority because the subsequent check
1964 -- for type conversion may add an extra copy of the variable and
1965 -- prevent proper value propagation back in the original object.
1967 if Is_Validation_Variable_Reference
(Actual
) then
1968 Add_Validation_Call_By_Copy_Code
(Actual
);
1970 -- If argument is a type conversion for a type that is passed by
1971 -- copy, then we must pass the parameter by copy.
1973 elsif Nkind
(Actual
) = N_Type_Conversion
1975 (Is_Numeric_Type
(E_Formal
)
1976 or else Is_Access_Type
(E_Formal
)
1977 or else Is_Enumeration_Type
(E_Formal
)
1978 or else Is_Bit_Packed_Array
(Etype
(Formal
))
1979 or else Is_Bit_Packed_Array
(Etype
(Expression
(Actual
)))
1981 -- Also pass by copy if change of representation
1983 or else not Same_Representation
1985 Etype
(Expression
(Actual
))))
1987 Add_Call_By_Copy_Code
;
1989 -- References to components of bit-packed arrays are expanded
1990 -- at this point, rather than at the point of analysis of the
1991 -- actuals, to handle the expansion of the assignment to
1992 -- [in] out parameters.
1994 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
1995 Add_Simple_Call_By_Copy_Code
;
1997 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1998 -- because the back-end cannot cope with such objects. In other
1999 -- cases where alignment forces a copy, the back-end generates
2000 -- it properly. It should not be generated unconditionally in the
2001 -- front-end because it does not know precisely the alignment
2002 -- requirements of the target, and makes too conservative an
2003 -- estimate, leading to superfluous copies or spurious errors
2004 -- on by-reference parameters.
2006 elsif Nkind
(Actual
) = N_Selected_Component
2008 Component_May_Be_Bit_Aligned
(Entity
(Selector_Name
(Actual
)))
2009 and then not Represented_As_Scalar
(Etype
(Formal
))
2011 Add_Simple_Call_By_Copy_Code
;
2013 -- References to slices of bit-packed arrays are expanded
2015 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
2016 Add_Call_By_Copy_Code
;
2018 -- References to possibly unaligned slices of arrays are expanded
2020 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
2021 Add_Call_By_Copy_Code
;
2023 -- Deal with access types where the actual subtype and the
2024 -- formal subtype are not the same, requiring a check.
2026 -- It is necessary to exclude tagged types because of "downward
2027 -- conversion" errors.
2029 elsif Is_Access_Type
(E_Formal
)
2030 and then not Same_Type
(E_Formal
, E_Actual
)
2031 and then not Is_Tagged_Type
(Designated_Type
(E_Formal
))
2033 Add_Call_By_Copy_Code
;
2035 -- If the actual is not a scalar and is marked for volatile
2036 -- treatment, whereas the formal is not volatile, then pass
2037 -- by copy unless it is a by-reference type.
2039 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
2040 -- because this is the enforcement of a language rule that applies
2041 -- only to "real" volatile variables, not e.g. to the address
2042 -- clause overlay case.
2044 elsif Is_Entity_Name
(Actual
)
2045 and then Is_Volatile
(Entity
(Actual
))
2046 and then not Is_By_Reference_Type
(E_Actual
)
2047 and then not Is_Scalar_Type
(Etype
(Entity
(Actual
)))
2048 and then not Is_Volatile
(E_Formal
)
2050 Add_Call_By_Copy_Code
;
2052 elsif Nkind
(Actual
) = N_Indexed_Component
2053 and then Is_Entity_Name
(Prefix
(Actual
))
2054 and then Has_Volatile_Components
(Entity
(Prefix
(Actual
)))
2056 Add_Call_By_Copy_Code
;
2058 -- Add call-by-copy code for the case of scalar out parameters
2059 -- when it is not known at compile time that the subtype of the
2060 -- formal is a subrange of the subtype of the actual (or vice
2061 -- versa for in out parameters), in order to get range checks
2062 -- on such actuals. (Maybe this case should be handled earlier
2063 -- in the if statement???)
2065 elsif Is_Scalar_Type
(E_Formal
)
2067 (not In_Subrange_Of
(E_Formal
, E_Actual
)
2069 (Ekind
(Formal
) = E_In_Out_Parameter
2070 and then not In_Subrange_Of
(E_Actual
, E_Formal
)))
2072 -- Perhaps the setting back to False should be done within
2073 -- Add_Call_By_Copy_Code, since it could get set on other
2074 -- cases occurring above???
2076 if Do_Range_Check
(Actual
) then
2077 Set_Do_Range_Check
(Actual
, False);
2080 Add_Call_By_Copy_Code
;
2083 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
2084 -- by-reference parameters on exit from the call. If the actual
2085 -- is a derived type and the operation is inherited, the body
2086 -- of the operation will not contain a call to the predicate
2087 -- function, so it must be done explicitly after the call. Ditto
2088 -- if the actual is an entity of a predicated subtype.
2090 -- The rule refers to by-reference types, but a check is needed
2091 -- for by-copy types as well. That check is subsumed by the rule
2092 -- for subtype conversion on assignment, but we can generate the
2093 -- required check now.
2095 -- Note also that Subp may be either a subprogram entity for
2096 -- direct calls, or a type entity for indirect calls, which must
2097 -- be handled separately because the name does not denote an
2098 -- overloadable entity.
2100 By_Ref_Predicate_Check
: declare
2101 Aund
: constant Entity_Id
:= Underlying_Type
(E_Actual
);
2104 function Is_Public_Subp
return Boolean;
2105 -- Check whether the subprogram being called is a visible
2106 -- operation of the type of the actual. Used to determine
2107 -- whether an invariant check must be generated on the
2110 ---------------------
2111 -- Is_Public_Subp --
2112 ---------------------
2114 function Is_Public_Subp
return Boolean is
2115 Pack
: constant Entity_Id
:= Scope
(Subp
);
2116 Subp_Decl
: Node_Id
;
2119 if not Is_Subprogram
(Subp
) then
2122 -- The operation may be inherited, or a primitive of the
2126 Nkind_In
(Parent
(Subp
), N_Private_Extension_Declaration
,
2127 N_Full_Type_Declaration
)
2129 Subp_Decl
:= Parent
(Subp
);
2132 Subp_Decl
:= Unit_Declaration_Node
(Subp
);
2135 return Ekind
(Pack
) = E_Package
2137 List_Containing
(Subp_Decl
) =
2138 Visible_Declarations
2139 (Specification
(Unit_Declaration_Node
(Pack
)));
2142 -- Start of processing for By_Ref_Predicate_Check
2151 if Has_Predicates
(Atyp
)
2152 and then Present
(Predicate_Function
(Atyp
))
2154 -- Skip predicate checks for special cases
2156 and then Predicate_Tests_On_Arguments
(Subp
)
2158 Append_To
(Post_Call
,
2159 Make_Predicate_Check
(Atyp
, Actual
));
2162 -- We generated caller-side invariant checks in two cases:
2164 -- a) when calling an inherited operation, where there is an
2165 -- implicit view conversion of the actual to the parent type.
2167 -- b) When the conversion is explicit
2169 -- We treat these cases separately because the required
2170 -- conversion for a) is added later when expanding the call.
2172 if Has_Invariants
(Etype
(Actual
))
2174 Nkind
(Parent
(Subp
)) = N_Private_Extension_Declaration
2176 if Comes_From_Source
(N
) and then Is_Public_Subp
then
2177 Append_To
(Post_Call
, Make_Invariant_Call
(Actual
));
2180 elsif Nkind
(Actual
) = N_Type_Conversion
2181 and then Has_Invariants
(Etype
(Expression
(Actual
)))
2183 if Comes_From_Source
(N
) and then Is_Public_Subp
then
2184 Append_To
(Post_Call
,
2185 Make_Invariant_Call
(Expression
(Actual
)));
2188 end By_Ref_Predicate_Check
;
2190 -- Processing for IN parameters
2193 -- For IN parameters in the bit-packed array case, we expand an
2194 -- indexed component (the circuit in Exp_Ch4 deliberately left
2195 -- indexed components appearing as actuals untouched, so that
2196 -- the special processing above for the OUT and IN OUT cases
2197 -- could be performed. We could make the test in Exp_Ch4 more
2198 -- complex and have it detect the parameter mode, but it is
2199 -- easier simply to handle all cases here.)
2201 if Nkind
(Actual
) = N_Indexed_Component
2202 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Actual
)))
2204 Reset_Packed_Prefix
;
2205 Expand_Packed_Element_Reference
(Actual
);
2207 -- If we have a reference to a bit-packed array, we copy it, since
2208 -- the actual must be byte aligned.
2210 -- Is this really necessary in all cases???
2212 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
2213 Add_Simple_Call_By_Copy_Code
;
2215 -- If a non-scalar actual is possibly unaligned, we need a copy
2217 elsif Is_Possibly_Unaligned_Object
(Actual
)
2218 and then not Represented_As_Scalar
(Etype
(Formal
))
2220 Add_Simple_Call_By_Copy_Code
;
2222 -- Similarly, we have to expand slices of packed arrays here
2223 -- because the result must be byte aligned.
2225 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
2226 Add_Call_By_Copy_Code
;
2228 -- Only processing remaining is to pass by copy if this is a
2229 -- reference to a possibly unaligned slice, since the caller
2230 -- expects an appropriately aligned argument.
2232 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
2233 Add_Call_By_Copy_Code
;
2235 -- An unusual case: a current instance of an enclosing task can be
2236 -- an actual, and must be replaced by a reference to self.
2238 elsif Is_Entity_Name
(Actual
)
2239 and then Is_Task_Type
(Entity
(Actual
))
2241 if In_Open_Scopes
(Entity
(Actual
)) then
2243 (Make_Function_Call
(Loc
,
2244 Name
=> New_Occurrence_Of
(RTE
(RE_Self
), Loc
))));
2247 -- A task type cannot otherwise appear as an actual
2250 raise Program_Error
;
2255 Next_Formal
(Formal
);
2256 Next_Actual
(Actual
);
2264 procedure Expand_Call
(N
: Node_Id
) is
2265 Post_Call
: List_Id
;
2268 pragma Assert
(Nkind_In
(N
, N_Entry_Call_Statement
,
2270 N_Procedure_Call_Statement
));
2272 Expand_Call_Helper
(N
, Post_Call
);
2273 Insert_Post_Call_Actions
(N
, Post_Call
);
2276 ------------------------
2277 -- Expand_Call_Helper --
2278 ------------------------
2280 -- This procedure handles expansion of function calls and procedure call
2281 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
2282 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
2284 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
2285 -- Provide values of actuals for all formals in Extra_Formals list
2286 -- Replace "call" to enumeration literal function by literal itself
2287 -- Rewrite call to predefined operator as operator
2288 -- Replace actuals to in-out parameters that are numeric conversions,
2289 -- with explicit assignment to temporaries before and after the call.
2291 -- Note that the list of actuals has been filled with default expressions
2292 -- during semantic analysis of the call. Only the extra actuals required
2293 -- for the 'Constrained attribute and for accessibility checks are added
2296 procedure Expand_Call_Helper
(N
: Node_Id
; Post_Call
: out List_Id
) is
2297 Loc
: constant Source_Ptr
:= Sloc
(N
);
2298 Call_Node
: Node_Id
:= N
;
2299 Extra_Actuals
: List_Id
:= No_List
;
2300 Prev
: Node_Id
:= Empty
;
2302 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
);
2303 -- Adds one entry to the end of the actual parameter list. Used for
2304 -- default parameters and for extra actuals (for Extra_Formals). The
2305 -- argument is an N_Parameter_Association node.
2307 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
);
2308 -- Adds an extra actual to the list of extra actuals. Expr is the
2309 -- expression for the value of the actual, EF is the entity for the
2312 procedure Add_View_Conversion_Invariants
2313 (Formal
: Entity_Id
;
2315 -- Adds invariant checks for every intermediate type between the range
2316 -- of a view converted argument to its ancestor (from parent to child).
2318 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
;
2319 -- Within an instance, a type derived from an untagged formal derived
2320 -- type inherits from the original parent, not from the actual. The
2321 -- current derivation mechanism has the derived type inherit from the
2322 -- actual, which is only correct outside of the instance. If the
2323 -- subprogram is inherited, we test for this particular case through a
2324 -- convoluted tree traversal before setting the proper subprogram to be
2327 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean;
2328 -- Return true if E comes from an instance that is not yet frozen
2330 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean;
2331 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2333 function New_Value
(From
: Node_Id
) return Node_Id
;
2334 -- From is the original Expression. New_Value is equivalent to a call
2335 -- to Duplicate_Subexpr with an explicit dereference when From is an
2336 -- access parameter.
2338 --------------------------
2339 -- Add_Actual_Parameter --
2340 --------------------------
2342 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
) is
2343 Actual_Expr
: constant Node_Id
:=
2344 Explicit_Actual_Parameter
(Insert_Param
);
2347 -- Case of insertion is first named actual
2349 if No
(Prev
) or else
2350 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
2352 Set_Next_Named_Actual
2353 (Insert_Param
, First_Named_Actual
(Call_Node
));
2354 Set_First_Named_Actual
(Call_Node
, Actual_Expr
);
2357 if No
(Parameter_Associations
(Call_Node
)) then
2358 Set_Parameter_Associations
(Call_Node
, New_List
);
2361 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2364 Insert_After
(Prev
, Insert_Param
);
2367 -- Case of insertion is not first named actual
2370 Set_Next_Named_Actual
2371 (Insert_Param
, Next_Named_Actual
(Parent
(Prev
)));
2372 Set_Next_Named_Actual
(Parent
(Prev
), Actual_Expr
);
2373 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2376 Prev
:= Actual_Expr
;
2377 end Add_Actual_Parameter
;
2379 ----------------------
2380 -- Add_Extra_Actual --
2381 ----------------------
2383 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
) is
2384 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2387 if Extra_Actuals
= No_List
then
2388 Extra_Actuals
:= New_List
;
2389 Set_Parent
(Extra_Actuals
, Call_Node
);
2392 Append_To
(Extra_Actuals
,
2393 Make_Parameter_Association
(Loc
,
2394 Selector_Name
=> New_Occurrence_Of
(EF
, Loc
),
2395 Explicit_Actual_Parameter
=> Expr
));
2397 Analyze_And_Resolve
(Expr
, Etype
(EF
));
2399 if Nkind
(Call_Node
) = N_Function_Call
then
2400 Set_Is_Accessibility_Actual
(Parent
(Expr
));
2402 end Add_Extra_Actual
;
2404 ------------------------------------
2405 -- Add_View_Conversion_Invariants --
2406 ------------------------------------
2408 procedure Add_View_Conversion_Invariants
2409 (Formal
: Entity_Id
;
2413 Curr_Typ
: Entity_Id
;
2414 Inv_Checks
: List_Id
;
2415 Par_Typ
: Entity_Id
;
2418 Inv_Checks
:= No_List
;
2420 -- Extract the argument from a potentially nested set of view
2424 while Nkind
(Arg
) = N_Type_Conversion
loop
2425 Arg
:= Expression
(Arg
);
2428 -- Move up the derivation chain starting with the type of the formal
2429 -- parameter down to the type of the actual object.
2432 Par_Typ
:= Etype
(Arg
);
2433 while Par_Typ
/= Etype
(Formal
) and Par_Typ
/= Curr_Typ
loop
2434 Curr_Typ
:= Par_Typ
;
2436 if Has_Invariants
(Curr_Typ
)
2437 and then Present
(Invariant_Procedure
(Curr_Typ
))
2439 -- Verify the invariate of the current type. Generate:
2441 -- <Curr_Typ>Invariant (Curr_Typ (Arg));
2443 Prepend_New_To
(Inv_Checks
,
2444 Make_Procedure_Call_Statement
(Loc
,
2447 (Invariant_Procedure
(Curr_Typ
), Loc
),
2448 Parameter_Associations
=> New_List
(
2449 Make_Type_Conversion
(Loc
,
2450 Subtype_Mark
=> New_Occurrence_Of
(Curr_Typ
, Loc
),
2451 Expression
=> New_Copy_Tree
(Arg
)))));
2454 Par_Typ
:= Base_Type
(Etype
(Curr_Typ
));
2457 if not Is_Empty_List
(Inv_Checks
) then
2458 Insert_Actions_After
(N
, Inv_Checks
);
2460 end Add_View_Conversion_Invariants
;
2462 ---------------------------
2463 -- Inherited_From_Formal --
2464 ---------------------------
2466 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
is
2468 Gen_Par
: Entity_Id
;
2469 Gen_Prim
: Elist_Id
;
2474 -- If the operation is inherited, it is attached to the corresponding
2475 -- type derivation. If the parent in the derivation is a generic
2476 -- actual, it is a subtype of the actual, and we have to recover the
2477 -- original derived type declaration to find the proper parent.
2479 if Nkind
(Parent
(S
)) /= N_Full_Type_Declaration
2480 or else not Is_Derived_Type
(Defining_Identifier
(Parent
(S
)))
2481 or else Nkind
(Type_Definition
(Original_Node
(Parent
(S
)))) /=
2482 N_Derived_Type_Definition
2483 or else not In_Instance
2490 (Type_Definition
(Original_Node
(Parent
(S
))));
2492 if Nkind
(Indic
) = N_Subtype_Indication
then
2493 Par
:= Entity
(Subtype_Mark
(Indic
));
2495 Par
:= Entity
(Indic
);
2499 if not Is_Generic_Actual_Type
(Par
)
2500 or else Is_Tagged_Type
(Par
)
2501 or else Nkind
(Parent
(Par
)) /= N_Subtype_Declaration
2502 or else not In_Open_Scopes
(Scope
(Par
))
2506 Gen_Par
:= Generic_Parent_Type
(Parent
(Par
));
2509 -- If the actual has no generic parent type, the formal is not
2510 -- a formal derived type, so nothing to inherit.
2512 if No
(Gen_Par
) then
2516 -- If the generic parent type is still the generic type, this is a
2517 -- private formal, not a derived formal, and there are no operations
2518 -- inherited from the formal.
2520 if Nkind
(Parent
(Gen_Par
)) = N_Formal_Type_Declaration
then
2524 Gen_Prim
:= Collect_Primitive_Operations
(Gen_Par
);
2526 Elmt
:= First_Elmt
(Gen_Prim
);
2527 while Present
(Elmt
) loop
2528 if Chars
(Node
(Elmt
)) = Chars
(S
) then
2534 F1
:= First_Formal
(S
);
2535 F2
:= First_Formal
(Node
(Elmt
));
2537 and then Present
(F2
)
2539 if Etype
(F1
) = Etype
(F2
)
2540 or else Etype
(F2
) = Gen_Par
2546 exit; -- not the right subprogram
2558 raise Program_Error
;
2559 end Inherited_From_Formal
;
2561 --------------------------
2562 -- In_Unfrozen_Instance --
2563 --------------------------
2565 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean is
2570 while Present
(S
) and then S
/= Standard_Standard
loop
2571 if Is_Generic_Instance
(S
)
2572 and then Present
(Freeze_Node
(S
))
2573 and then not Analyzed
(Freeze_Node
(S
))
2582 end In_Unfrozen_Instance
;
2584 -------------------------
2585 -- Is_Direct_Deep_Call --
2586 -------------------------
2588 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean is
2590 if Is_TSS
(Subp
, TSS_Deep_Adjust
)
2591 or else Is_TSS
(Subp
, TSS_Deep_Finalize
)
2592 or else Is_TSS
(Subp
, TSS_Deep_Initialize
)
2599 Actual
:= First
(Parameter_Associations
(N
));
2600 Formal
:= First_Formal
(Subp
);
2601 while Present
(Actual
)
2602 and then Present
(Formal
)
2604 if Nkind
(Actual
) = N_Identifier
2605 and then Is_Controlling_Actual
(Actual
)
2606 and then Etype
(Actual
) = Etype
(Formal
)
2612 Next_Formal
(Formal
);
2618 end Is_Direct_Deep_Call
;
2624 function New_Value
(From
: Node_Id
) return Node_Id
is
2625 Res
: constant Node_Id
:= Duplicate_Subexpr
(From
);
2627 if Is_Access_Type
(Etype
(From
)) then
2628 return Make_Explicit_Dereference
(Sloc
(From
), Prefix
=> Res
);
2636 Remote
: constant Boolean := Is_Remote_Call
(Call_Node
);
2639 Orig_Subp
: Entity_Id
:= Empty
;
2640 Param_Count
: Natural := 0;
2641 Parent_Formal
: Entity_Id
;
2642 Parent_Subp
: Entity_Id
;
2643 Pref_Entity
: Entity_Id
;
2647 Prev_Orig
: Node_Id
;
2648 -- Original node for an actual, which may have been rewritten. If the
2649 -- actual is a function call that has been transformed from a selected
2650 -- component, the original node is unanalyzed. Otherwise, it carries
2651 -- semantic information used to generate additional actuals.
2653 CW_Interface_Formals_Present
: Boolean := False;
2655 -- Start of processing for Expand_Call_Helper
2658 Post_Call
:= New_List
;
2660 -- Expand the function or procedure call if the first actual has a
2661 -- declared dimension aspect, and the subprogram is declared in one
2662 -- of the dimension I/O packages.
2664 if Ada_Version
>= Ada_2012
2666 Nkind_In
(Call_Node
, N_Procedure_Call_Statement
, N_Function_Call
)
2667 and then Present
(Parameter_Associations
(Call_Node
))
2669 Expand_Put_Call_With_Symbol
(Call_Node
);
2672 -- Ignore if previous error
2674 if Nkind
(Call_Node
) in N_Has_Etype
2675 and then Etype
(Call_Node
) = Any_Type
2680 -- Call using access to subprogram with explicit dereference
2682 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
2683 Subp
:= Etype
(Name
(Call_Node
));
2684 Parent_Subp
:= Empty
;
2686 -- Case of call to simple entry, where the Name is a selected component
2687 -- whose prefix is the task, and whose selector name is the entry name
2689 elsif Nkind
(Name
(Call_Node
)) = N_Selected_Component
then
2690 Subp
:= Entity
(Selector_Name
(Name
(Call_Node
)));
2691 Parent_Subp
:= Empty
;
2693 -- Case of call to member of entry family, where Name is an indexed
2694 -- component, with the prefix being a selected component giving the
2695 -- task and entry family name, and the index being the entry index.
2697 elsif Nkind
(Name
(Call_Node
)) = N_Indexed_Component
then
2698 Subp
:= Entity
(Selector_Name
(Prefix
(Name
(Call_Node
))));
2699 Parent_Subp
:= Empty
;
2704 Subp
:= Entity
(Name
(Call_Node
));
2705 Parent_Subp
:= Alias
(Subp
);
2707 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2708 -- if we can tell that the first parameter cannot possibly be null.
2709 -- This improves efficiency by avoiding a run-time test.
2711 -- We do not do this if Raise_Exception_Always does not exist, which
2712 -- can happen in configurable run time profiles which provide only a
2715 if Is_RTE
(Subp
, RE_Raise_Exception
)
2716 and then RTE_Available
(RE_Raise_Exception_Always
)
2719 FA
: constant Node_Id
:=
2720 Original_Node
(First_Actual
(Call_Node
));
2723 -- The case we catch is where the first argument is obtained
2724 -- using the Identity attribute (which must always be
2727 if Nkind
(FA
) = N_Attribute_Reference
2728 and then Attribute_Name
(FA
) = Name_Identity
2730 Subp
:= RTE
(RE_Raise_Exception_Always
);
2731 Set_Name
(Call_Node
, New_Occurrence_Of
(Subp
, Loc
));
2736 if Ekind
(Subp
) = E_Entry
then
2737 Parent_Subp
:= Empty
;
2741 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2742 -- alternative in an asynchronous select or as an entry call in
2743 -- a conditional or timed select. Check whether the procedure call
2744 -- is a renaming of an entry and rewrite it as an entry call.
2746 if Ada_Version
>= Ada_2005
2747 and then Nkind
(Call_Node
) = N_Procedure_Call_Statement
2749 ((Nkind
(Parent
(Call_Node
)) = N_Triggering_Alternative
2750 and then Triggering_Statement
(Parent
(Call_Node
)) = Call_Node
)
2752 (Nkind
(Parent
(Call_Node
)) = N_Entry_Call_Alternative
2753 and then Entry_Call_Statement
(Parent
(Call_Node
)) = Call_Node
))
2757 Ren_Root
: Entity_Id
:= Subp
;
2760 -- This may be a chain of renamings, find the root
2762 if Present
(Alias
(Ren_Root
)) then
2763 Ren_Root
:= Alias
(Ren_Root
);
2766 if Present
(Original_Node
(Parent
(Parent
(Ren_Root
)))) then
2767 Ren_Decl
:= Original_Node
(Parent
(Parent
(Ren_Root
)));
2769 if Nkind
(Ren_Decl
) = N_Subprogram_Renaming_Declaration
then
2771 Make_Entry_Call_Statement
(Loc
,
2773 New_Copy_Tree
(Name
(Ren_Decl
)),
2774 Parameter_Associations
=>
2776 (Parameter_Associations
(Call_Node
))));
2784 if Modify_Tree_For_C
2785 and then Nkind
(Call_Node
) = N_Function_Call
2786 and then Is_Entity_Name
(Name
(Call_Node
))
2789 Func_Id
: constant Entity_Id
:=
2790 Ultimate_Alias
(Entity
(Name
(Call_Node
)));
2792 -- When generating C code, transform a function call that returns
2793 -- a constrained array type into procedure form.
2795 if Rewritten_For_C
(Func_Id
) then
2797 -- For internally generated calls ensure that they reference
2798 -- the entity of the spec of the called function (needed since
2799 -- the expander may generate calls using the entity of their
2800 -- body). See for example Expand_Boolean_Operator().
2802 if not (Comes_From_Source
(Call_Node
))
2803 and then Nkind
(Unit_Declaration_Node
(Func_Id
)) =
2806 Set_Entity
(Name
(Call_Node
),
2807 Corresponding_Function
2808 (Corresponding_Procedure
(Func_Id
)));
2811 Rewrite_Function_Call_For_C
(Call_Node
);
2814 -- Also introduce a temporary for functions that return a record
2815 -- called within another procedure or function call, since records
2816 -- are passed by pointer in the generated C code, and we cannot
2817 -- take a pointer from a subprogram call.
2819 elsif Nkind
(Parent
(Call_Node
)) in N_Subprogram_Call
2820 and then Is_Record_Type
(Etype
(Func_Id
))
2823 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
2828 -- Temp : ... := Func_Call (...);
2831 Make_Object_Declaration
(Loc
,
2832 Defining_Identifier
=> Temp_Id
,
2833 Object_Definition
=>
2834 New_Occurrence_Of
(Etype
(Func_Id
), Loc
),
2836 Make_Function_Call
(Loc
,
2838 New_Occurrence_Of
(Func_Id
, Loc
),
2839 Parameter_Associations
=>
2840 Parameter_Associations
(Call_Node
)));
2842 Insert_Action
(Parent
(Call_Node
), Decl
);
2843 Rewrite
(Call_Node
, New_Occurrence_Of
(Temp_Id
, Loc
));
2850 -- First step, compute extra actuals, corresponding to any Extra_Formals
2851 -- present. Note that we do not access Extra_Formals directly, instead
2852 -- we simply note the presence of the extra formals as we process the
2853 -- regular formals collecting corresponding actuals in Extra_Actuals.
2855 -- We also generate any required range checks for actuals for in formals
2856 -- as we go through the loop, since this is a convenient place to do it.
2857 -- (Though it seems that this would be better done in Expand_Actuals???)
2859 -- Special case: Thunks must not compute the extra actuals; they must
2860 -- just propagate to the target primitive their extra actuals.
2862 if Is_Thunk
(Current_Scope
)
2863 and then Thunk_Entity
(Current_Scope
) = Subp
2864 and then Present
(Extra_Formals
(Subp
))
2866 pragma Assert
(Present
(Extra_Formals
(Current_Scope
)));
2869 Target_Formal
: Entity_Id
;
2870 Thunk_Formal
: Entity_Id
;
2873 Target_Formal
:= Extra_Formals
(Subp
);
2874 Thunk_Formal
:= Extra_Formals
(Current_Scope
);
2875 while Present
(Target_Formal
) loop
2877 (Expr
=> New_Occurrence_Of
(Thunk_Formal
, Loc
),
2878 EF
=> Thunk_Formal
);
2880 Target_Formal
:= Extra_Formal
(Target_Formal
);
2881 Thunk_Formal
:= Extra_Formal
(Thunk_Formal
);
2884 while Is_Non_Empty_List
(Extra_Actuals
) loop
2885 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
2888 Expand_Actuals
(Call_Node
, Subp
, Post_Call
);
2889 pragma Assert
(Is_Empty_List
(Post_Call
));
2894 Formal
:= First_Formal
(Subp
);
2895 Actual
:= First_Actual
(Call_Node
);
2897 while Present
(Formal
) loop
2899 -- Generate range check if required
2901 if Do_Range_Check
(Actual
)
2902 and then Ekind
(Formal
) = E_In_Parameter
2904 Generate_Range_Check
2905 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
2908 -- Prepare to examine current entry
2911 Prev_Orig
:= Original_Node
(Prev
);
2913 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2914 -- to expand it in a further round.
2916 CW_Interface_Formals_Present
:=
2917 CW_Interface_Formals_Present
2919 (Is_Class_Wide_Type
(Etype
(Formal
))
2920 and then Is_Interface
(Etype
(Etype
(Formal
))))
2922 (Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
2923 and then Is_Class_Wide_Type
(Directly_Designated_Type
2924 (Etype
(Etype
(Formal
))))
2925 and then Is_Interface
(Directly_Designated_Type
2926 (Etype
(Etype
(Formal
)))));
2928 -- Create possible extra actual for constrained case. Usually, the
2929 -- extra actual is of the form actual'constrained, but since this
2930 -- attribute is only available for unconstrained records, TRUE is
2931 -- expanded if the type of the formal happens to be constrained (for
2932 -- instance when this procedure is inherited from an unconstrained
2933 -- record to a constrained one) or if the actual has no discriminant
2934 -- (its type is constrained). An exception to this is the case of a
2935 -- private type without discriminants. In this case we pass FALSE
2936 -- because the object has underlying discriminants with defaults.
2938 if Present
(Extra_Constrained
(Formal
)) then
2939 if Ekind
(Etype
(Prev
)) in Private_Kind
2940 and then not Has_Discriminants
(Base_Type
(Etype
(Prev
)))
2943 (Expr
=> New_Occurrence_Of
(Standard_False
, Loc
),
2944 EF
=> Extra_Constrained
(Formal
));
2946 elsif Is_Constrained
(Etype
(Formal
))
2947 or else not Has_Discriminants
(Etype
(Prev
))
2950 (Expr
=> New_Occurrence_Of
(Standard_True
, Loc
),
2951 EF
=> Extra_Constrained
(Formal
));
2953 -- Do not produce extra actuals for Unchecked_Union parameters.
2954 -- Jump directly to the end of the loop.
2956 elsif Is_Unchecked_Union
(Base_Type
(Etype
(Actual
))) then
2957 goto Skip_Extra_Actual_Generation
;
2960 -- If the actual is a type conversion, then the constrained
2961 -- test applies to the actual, not the target type.
2967 -- Test for unchecked conversions as well, which can occur
2968 -- as out parameter actuals on calls to stream procedures.
2971 while Nkind_In
(Act_Prev
, N_Type_Conversion
,
2972 N_Unchecked_Type_Conversion
)
2974 Act_Prev
:= Expression
(Act_Prev
);
2977 -- If the expression is a conversion of a dereference, this
2978 -- is internally generated code that manipulates addresses,
2979 -- e.g. when building interface tables. No check should
2980 -- occur in this case, and the discriminated object is not
2983 if not Comes_From_Source
(Actual
)
2984 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2985 and then Nkind
(Act_Prev
) = N_Explicit_Dereference
2988 (Expr
=> New_Occurrence_Of
(Standard_False
, Loc
),
2989 EF
=> Extra_Constrained
(Formal
));
2994 Make_Attribute_Reference
(Sloc
(Prev
),
2996 Duplicate_Subexpr_No_Checks
2997 (Act_Prev
, Name_Req
=> True),
2998 Attribute_Name
=> Name_Constrained
),
2999 EF
=> Extra_Constrained
(Formal
));
3005 -- Create possible extra actual for accessibility level
3007 if Present
(Extra_Accessibility
(Formal
)) then
3009 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
3010 -- attribute, then the original actual may be an aliased object
3011 -- occurring as the prefix in a call using "Object.Operation"
3012 -- notation. In that case we must pass the level of the object,
3013 -- so Prev_Orig is reset to Prev and the attribute will be
3014 -- processed by the code for Access attributes further below.
3016 if Prev_Orig
/= Prev
3017 and then Nkind
(Prev
) = N_Attribute_Reference
3018 and then Get_Attribute_Id
(Attribute_Name
(Prev
)) =
3020 and then Is_Aliased_View
(Prev_Orig
)
3024 -- A class-wide precondition generates a test in which formals of
3025 -- the subprogram are replaced by actuals that came from source.
3026 -- In that case as well, the accessiblity comes from the actual.
3027 -- This is the one case in which there are references to formals
3028 -- outside of their subprogram.
3030 elsif Prev_Orig
/= Prev
3031 and then Is_Entity_Name
(Prev_Orig
)
3032 and then Present
(Entity
(Prev_Orig
))
3033 and then Is_Formal
(Entity
(Prev_Orig
))
3034 and then not In_Open_Scopes
(Scope
(Entity
(Prev_Orig
)))
3038 -- If the actual is a formal of an enclosing subprogram it is
3039 -- the right entity, even if it is a rewriting. This happens
3040 -- when the call is within an inherited condition or predicate.
3042 elsif Is_Entity_Name
(Actual
)
3043 and then Is_Formal
(Entity
(Actual
))
3044 and then In_Open_Scopes
(Scope
(Entity
(Actual
)))
3048 elsif Nkind
(Prev_Orig
) = N_Type_Conversion
then
3049 Prev_Orig
:= Expression
(Prev_Orig
);
3052 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
3053 -- accessibility levels.
3055 if Is_Thunk
(Current_Scope
) then
3057 Parm_Ent
: Entity_Id
;
3060 if Is_Controlling_Actual
(Actual
) then
3062 -- Find the corresponding actual of the thunk
3064 Parm_Ent
:= First_Entity
(Current_Scope
);
3065 for J
in 2 .. Param_Count
loop
3066 Next_Entity
(Parm_Ent
);
3069 -- Handle unchecked conversion of access types generated
3070 -- in thunks (cf. Expand_Interface_Thunk).
3072 elsif Is_Access_Type
(Etype
(Actual
))
3073 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
3075 Parm_Ent
:= Entity
(Expression
(Actual
));
3077 else pragma Assert
(Is_Entity_Name
(Actual
));
3078 Parm_Ent
:= Entity
(Actual
);
3083 New_Occurrence_Of
(Extra_Accessibility
(Parm_Ent
), Loc
),
3084 EF
=> Extra_Accessibility
(Formal
));
3087 elsif Is_Entity_Name
(Prev_Orig
) then
3089 -- When passing an access parameter, or a renaming of an access
3090 -- parameter, as the actual to another access parameter we need
3091 -- to pass along the actual's own access level parameter. This
3092 -- is done if we are within the scope of the formal access
3093 -- parameter (if this is an inlined body the extra formal is
3096 if (Is_Formal
(Entity
(Prev_Orig
))
3098 (Present
(Renamed_Object
(Entity
(Prev_Orig
)))
3100 Is_Entity_Name
(Renamed_Object
(Entity
(Prev_Orig
)))
3103 (Entity
(Renamed_Object
(Entity
(Prev_Orig
))))))
3104 and then Ekind
(Etype
(Prev_Orig
)) = E_Anonymous_Access_Type
3105 and then In_Open_Scopes
(Scope
(Entity
(Prev_Orig
)))
3108 Parm_Ent
: constant Entity_Id
:= Param_Entity
(Prev_Orig
);
3111 pragma Assert
(Present
(Parm_Ent
));
3113 if Present
(Extra_Accessibility
(Parm_Ent
)) then
3117 (Extra_Accessibility
(Parm_Ent
), Loc
),
3118 EF
=> Extra_Accessibility
(Formal
));
3120 -- If the actual access parameter does not have an
3121 -- associated extra formal providing its scope level,
3122 -- then treat the actual as having library-level
3128 Make_Integer_Literal
(Loc
,
3129 Intval
=> Scope_Depth
(Standard_Standard
)),
3130 EF
=> Extra_Accessibility
(Formal
));
3134 -- The actual is a normal access value, so just pass the level
3135 -- of the actual's access type.
3139 (Expr
=> Dynamic_Accessibility_Level
(Prev_Orig
),
3140 EF
=> Extra_Accessibility
(Formal
));
3143 -- If the actual is an access discriminant, then pass the level
3144 -- of the enclosing object (RM05-3.10.2(12.4/2)).
3146 elsif Nkind
(Prev_Orig
) = N_Selected_Component
3147 and then Ekind
(Entity
(Selector_Name
(Prev_Orig
))) =
3149 and then Ekind
(Etype
(Entity
(Selector_Name
(Prev_Orig
)))) =
3150 E_Anonymous_Access_Type
3154 Make_Integer_Literal
(Loc
,
3155 Intval
=> Object_Access_Level
(Prefix
(Prev_Orig
))),
3156 EF
=> Extra_Accessibility
(Formal
));
3161 case Nkind
(Prev_Orig
) is
3162 when N_Attribute_Reference
=>
3163 case Get_Attribute_Id
(Attribute_Name
(Prev_Orig
)) is
3165 -- For X'Access, pass on the level of the prefix X
3167 when Attribute_Access
=>
3169 -- Accessibility level of S'Access is that of A
3171 Prev_Orig
:= Prefix
(Prev_Orig
);
3173 -- If the expression is a view conversion, the
3174 -- accessibility level is that of the expression.
3176 if Nkind
(Original_Node
(Prev_Orig
)) =
3179 Nkind
(Expression
(Original_Node
(Prev_Orig
))) =
3180 N_Explicit_Dereference
3183 Expression
(Original_Node
(Prev_Orig
));
3186 -- If this is an Access attribute applied to the
3187 -- the current instance object passed to a type
3188 -- initialization procedure, then use the level
3189 -- of the type itself. This is not really correct,
3190 -- as there should be an extra level parameter
3191 -- passed in with _init formals (only in the case
3192 -- where the type is immutably limited), but we
3193 -- don't have an easy way currently to create such
3194 -- an extra formal (init procs aren't ever frozen).
3195 -- For now we just use the level of the type,
3196 -- which may be too shallow, but that works better
3197 -- than passing Object_Access_Level of the type,
3198 -- which can be one level too deep in some cases.
3201 -- A further case that requires special handling
3202 -- is the common idiom E.all'access. If E is a
3203 -- formal of the enclosing subprogram, the
3204 -- accessibility of the expression is that of E.
3206 if Is_Entity_Name
(Prev_Orig
) then
3207 Pref_Entity
:= Entity
(Prev_Orig
);
3209 elsif Nkind
(Prev_Orig
) = N_Explicit_Dereference
3210 and then Is_Entity_Name
(Prefix
(Prev_Orig
))
3212 Pref_Entity
:= Entity
(Prefix
((Prev_Orig
)));
3215 Pref_Entity
:= Empty
;
3218 if Is_Entity_Name
(Prev_Orig
)
3219 and then Is_Type
(Entity
(Prev_Orig
))
3223 Make_Integer_Literal
(Loc
,
3225 Type_Access_Level
(Pref_Entity
)),
3226 EF
=> Extra_Accessibility
(Formal
));
3228 elsif Nkind
(Prev_Orig
) = N_Explicit_Dereference
3229 and then Present
(Pref_Entity
)
3230 and then Is_Formal
(Pref_Entity
)
3232 (Extra_Accessibility
(Pref_Entity
))
3237 (Extra_Accessibility
(Pref_Entity
), Loc
),
3238 EF
=> Extra_Accessibility
(Formal
));
3243 Make_Integer_Literal
(Loc
,
3245 Object_Access_Level
(Prev_Orig
)),
3246 EF
=> Extra_Accessibility
(Formal
));
3249 -- Treat the unchecked attributes as library-level
3251 when Attribute_Unchecked_Access
3252 | Attribute_Unrestricted_Access
3256 Make_Integer_Literal
(Loc
,
3257 Intval
=> Scope_Depth
(Standard_Standard
)),
3258 EF
=> Extra_Accessibility
(Formal
));
3260 -- No other cases of attributes returning access
3261 -- values that can be passed to access parameters.
3264 raise Program_Error
;
3268 -- For allocators we pass the level of the execution of the
3269 -- called subprogram, which is one greater than the current
3275 Make_Integer_Literal
(Loc
,
3276 Intval
=> Scope_Depth
(Current_Scope
) + 1),
3277 EF
=> Extra_Accessibility
(Formal
));
3279 -- For most other cases we simply pass the level of the
3280 -- actual's access type. The type is retrieved from
3281 -- Prev rather than Prev_Orig, because in some cases
3282 -- Prev_Orig denotes an original expression that has
3283 -- not been analyzed.
3287 (Expr
=> Dynamic_Accessibility_Level
(Prev
),
3288 EF
=> Extra_Accessibility
(Formal
));
3293 -- Perform the check of 4.6(49) that prevents a null value from being
3294 -- passed as an actual to an access parameter. Note that the check
3295 -- is elided in the common cases of passing an access attribute or
3296 -- access parameter as an actual. Also, we currently don't enforce
3297 -- this check for expander-generated actuals and when -gnatdj is set.
3299 if Ada_Version
>= Ada_2005
then
3301 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3302 -- the intent of 6.4.1(13) is that null-exclusion checks should
3303 -- not be done for 'out' parameters, even though it refers only
3304 -- to constraint checks, and a null_exclusion is not a constraint.
3305 -- Note that AI05-0196-1 corrects this mistake in the RM.
3307 if Is_Access_Type
(Etype
(Formal
))
3308 and then Can_Never_Be_Null
(Etype
(Formal
))
3309 and then Ekind
(Formal
) /= E_Out_Parameter
3310 and then Nkind
(Prev
) /= N_Raise_Constraint_Error
3311 and then (Known_Null
(Prev
)
3312 or else not Can_Never_Be_Null
(Etype
(Prev
)))
3314 Install_Null_Excluding_Check
(Prev
);
3317 -- Ada_Version < Ada_2005
3320 if Ekind
(Etype
(Formal
)) /= E_Anonymous_Access_Type
3321 or else Access_Checks_Suppressed
(Subp
)
3325 elsif Debug_Flag_J
then
3328 elsif not Comes_From_Source
(Prev
) then
3331 elsif Is_Entity_Name
(Prev
)
3332 and then Ekind
(Etype
(Prev
)) = E_Anonymous_Access_Type
3336 elsif Nkind_In
(Prev
, N_Allocator
, N_Attribute_Reference
) then
3340 Install_Null_Excluding_Check
(Prev
);
3344 -- Perform appropriate validity checks on parameters that
3347 if Validity_Checks_On
then
3348 if (Ekind
(Formal
) = E_In_Parameter
3349 and then Validity_Check_In_Params
)
3351 (Ekind
(Formal
) = E_In_Out_Parameter
3352 and then Validity_Check_In_Out_Params
)
3354 -- If the actual is an indexed component of a packed type (or
3355 -- is an indexed or selected component whose prefix recursively
3356 -- meets this condition), it has not been expanded yet. It will
3357 -- be copied in the validity code that follows, and has to be
3358 -- expanded appropriately, so reanalyze it.
3360 -- What we do is just to unset analyzed bits on prefixes till
3361 -- we reach something that does not have a prefix.
3368 while Nkind_In
(Nod
, N_Indexed_Component
,
3369 N_Selected_Component
)
3371 Set_Analyzed
(Nod
, False);
3372 Nod
:= Prefix
(Nod
);
3376 Ensure_Valid
(Actual
);
3380 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3381 -- since this is a left side reference. We only do this for calls
3382 -- from the source program since we assume that compiler generated
3383 -- calls explicitly generate any required checks. We also need it
3384 -- only if we are doing standard validity checks, since clearly it is
3385 -- not needed if validity checks are off, and in subscript validity
3386 -- checking mode, all indexed components are checked with a call
3387 -- directly from Expand_N_Indexed_Component.
3389 if Comes_From_Source
(Call_Node
)
3390 and then Ekind
(Formal
) /= E_In_Parameter
3391 and then Validity_Checks_On
3392 and then Validity_Check_Default
3393 and then not Validity_Check_Subscripts
3395 Check_Valid_Lvalue_Subscripts
(Actual
);
3398 -- Mark any scalar OUT parameter that is a simple variable as no
3399 -- longer known to be valid (unless the type is always valid). This
3400 -- reflects the fact that if an OUT parameter is never set in a
3401 -- procedure, then it can become invalid on the procedure return.
3403 if Ekind
(Formal
) = E_Out_Parameter
3404 and then Is_Entity_Name
(Actual
)
3405 and then Ekind
(Entity
(Actual
)) = E_Variable
3406 and then not Is_Known_Valid
(Etype
(Actual
))
3408 Set_Is_Known_Valid
(Entity
(Actual
), False);
3411 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3412 -- clear current values, since they can be clobbered. We are probably
3413 -- doing this in more places than we need to, but better safe than
3414 -- sorry when it comes to retaining bad current values.
3416 if Ekind
(Formal
) /= E_In_Parameter
3417 and then Is_Entity_Name
(Actual
)
3418 and then Present
(Entity
(Actual
))
3421 Ent
: constant Entity_Id
:= Entity
(Actual
);
3425 -- For an OUT or IN OUT parameter that is an assignable entity,
3426 -- we do not want to clobber the Last_Assignment field, since
3427 -- if it is set, it was precisely because it is indeed an OUT
3428 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3429 -- since the subprogram could have returned in invalid value.
3431 if Ekind_In
(Formal
, E_Out_Parameter
, E_In_Out_Parameter
)
3432 and then Is_Assignable
(Ent
)
3434 Sav
:= Last_Assignment
(Ent
);
3435 Kill_Current_Values
(Ent
);
3436 Set_Last_Assignment
(Ent
, Sav
);
3437 Set_Is_Known_Valid
(Ent
, False);
3439 -- For all other cases, just kill the current values
3442 Kill_Current_Values
(Ent
);
3447 -- If the formal is class wide and the actual is an aggregate, force
3448 -- evaluation so that the back end who does not know about class-wide
3449 -- type, does not generate a temporary of the wrong size.
3451 if not Is_Class_Wide_Type
(Etype
(Formal
)) then
3454 elsif Nkind
(Actual
) = N_Aggregate
3455 or else (Nkind
(Actual
) = N_Qualified_Expression
3456 and then Nkind
(Expression
(Actual
)) = N_Aggregate
)
3458 Force_Evaluation
(Actual
);
3461 -- In a remote call, if the formal is of a class-wide type, check
3462 -- that the actual meets the requirements described in E.4(18).
3464 if Remote
and then Is_Class_Wide_Type
(Etype
(Formal
)) then
3465 Insert_Action
(Actual
,
3466 Make_Transportable_Check
(Loc
,
3467 Duplicate_Subexpr_Move_Checks
(Actual
)));
3470 -- Perform invariant checks for all intermediate types in a view
3471 -- conversion after successful return from a call that passes the
3472 -- view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
3473 -- 13/3, 14/3)). Consider only source conversion in order to avoid
3474 -- generating spurious checks on complex expansion such as object
3475 -- initialization through an extension aggregate.
3477 if Comes_From_Source
(N
)
3478 and then Ekind
(Formal
) /= E_In_Parameter
3479 and then Nkind
(Actual
) = N_Type_Conversion
3481 Add_View_Conversion_Invariants
(Formal
, Actual
);
3484 -- Generating C the initialization of an allocator is performed by
3485 -- means of individual statements, and hence it must be done before
3488 if Modify_Tree_For_C
3489 and then Nkind
(Actual
) = N_Allocator
3490 and then Nkind
(Expression
(Actual
)) = N_Qualified_Expression
3492 Remove_Side_Effects
(Actual
);
3495 -- This label is required when skipping extra actual generation for
3496 -- Unchecked_Union parameters.
3498 <<Skip_Extra_Actual_Generation
>>
3500 Param_Count
:= Param_Count
+ 1;
3501 Next_Actual
(Actual
);
3502 Next_Formal
(Formal
);
3505 -- If we are calling an Ada 2012 function which needs to have the
3506 -- "accessibility level determined by the point of call" (AI05-0234)
3507 -- passed in to it, then pass it in.
3509 if Ekind_In
(Subp
, E_Function
, E_Operator
, E_Subprogram_Type
)
3511 Present
(Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)))
3514 Ancestor
: Node_Id
:= Parent
(Call_Node
);
3515 Level
: Node_Id
:= Empty
;
3516 Defer
: Boolean := False;
3519 -- Unimplemented: if Subp returns an anonymous access type, then
3521 -- a) if the call is the operand of an explict conversion, then
3522 -- the target type of the conversion (a named access type)
3523 -- determines the accessibility level pass in;
3525 -- b) if the call defines an access discriminant of an object
3526 -- (e.g., the discriminant of an object being created by an
3527 -- allocator, or the discriminant of a function result),
3528 -- then the accessibility level to pass in is that of the
3529 -- discriminated object being initialized).
3533 while Nkind
(Ancestor
) = N_Qualified_Expression
3535 Ancestor
:= Parent
(Ancestor
);
3538 case Nkind
(Ancestor
) is
3541 -- At this point, we'd like to assign
3543 -- Level := Dynamic_Accessibility_Level (Ancestor);
3545 -- but Etype of Ancestor may not have been set yet,
3546 -- so that doesn't work.
3548 -- Handle this later in Expand_Allocator_Expression.
3552 when N_Object_Declaration
3553 | N_Object_Renaming_Declaration
3556 Def_Id
: constant Entity_Id
:=
3557 Defining_Identifier
(Ancestor
);
3560 if Is_Return_Object
(Def_Id
) then
3561 if Present
(Extra_Accessibility_Of_Result
3562 (Return_Applies_To
(Scope
(Def_Id
))))
3564 -- Pass along value that was passed in if the
3565 -- routine we are returning from also has an
3566 -- Accessibility_Of_Result formal.
3570 (Extra_Accessibility_Of_Result
3571 (Return_Applies_To
(Scope
(Def_Id
))), Loc
);
3575 Make_Integer_Literal
(Loc
,
3576 Intval
=> Object_Access_Level
(Def_Id
));
3580 when N_Simple_Return_Statement
=>
3581 if Present
(Extra_Accessibility_Of_Result
3583 (Return_Statement_Entity
(Ancestor
))))
3585 -- Pass along value that was passed in if the returned
3586 -- routine also has an Accessibility_Of_Result formal.
3590 (Extra_Accessibility_Of_Result
3592 (Return_Statement_Entity
(Ancestor
))), Loc
);
3600 if not Present
(Level
) then
3602 -- The "innermost master that evaluates the function call".
3604 -- ??? - Should we use Integer'Last here instead in order
3605 -- to deal with (some of) the problems associated with
3606 -- calls to subps whose enclosing scope is unknown (e.g.,
3607 -- Anon_Access_To_Subp_Param.all)?
3610 Make_Integer_Literal
(Loc
,
3611 Intval
=> Scope_Depth
(Current_Scope
) + 1);
3617 Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)));
3622 -- If we are expanding the RHS of an assignment we need to check if tag
3623 -- propagation is needed. You might expect this processing to be in
3624 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3625 -- assignment might be transformed to a declaration for an unconstrained
3626 -- value if the expression is classwide.
3628 if Nkind
(Call_Node
) = N_Function_Call
3629 and then Is_Tag_Indeterminate
(Call_Node
)
3630 and then Is_Entity_Name
(Name
(Call_Node
))
3633 Ass
: Node_Id
:= Empty
;
3636 if Nkind
(Parent
(Call_Node
)) = N_Assignment_Statement
then
3637 Ass
:= Parent
(Call_Node
);
3639 elsif Nkind
(Parent
(Call_Node
)) = N_Qualified_Expression
3640 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3641 N_Assignment_Statement
3643 Ass
:= Parent
(Parent
(Call_Node
));
3645 elsif Nkind
(Parent
(Call_Node
)) = N_Explicit_Dereference
3646 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3647 N_Assignment_Statement
3649 Ass
:= Parent
(Parent
(Call_Node
));
3653 and then Is_Class_Wide_Type
(Etype
(Name
(Ass
)))
3655 if Is_Access_Type
(Etype
(Call_Node
)) then
3656 if Designated_Type
(Etype
(Call_Node
)) /=
3657 Root_Type
(Etype
(Name
(Ass
)))
3660 ("tag-indeterminate expression must have designated "
3661 & "type& (RM 5.2 (6))",
3662 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3664 Propagate_Tag
(Name
(Ass
), Call_Node
);
3667 elsif Etype
(Call_Node
) /= Root_Type
(Etype
(Name
(Ass
))) then
3669 ("tag-indeterminate expression must have type & "
3671 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3674 Propagate_Tag
(Name
(Ass
), Call_Node
);
3677 -- The call will be rewritten as a dispatching call, and
3678 -- expanded as such.
3685 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3686 -- it to point to the correct secondary virtual table
3688 if Nkind
(Call_Node
) in N_Subprogram_Call
3689 and then CW_Interface_Formals_Present
3691 Expand_Interface_Actuals
(Call_Node
);
3694 -- Deals with Dispatch_Call if we still have a call, before expanding
3695 -- extra actuals since this will be done on the re-analysis of the
3696 -- dispatching call. Note that we do not try to shorten the actual list
3697 -- for a dispatching call, it would not make sense to do so. Expansion
3698 -- of dispatching calls is suppressed for VM targets, because the VM
3699 -- back-ends directly handle the generation of dispatching calls and
3700 -- would have to undo any expansion to an indirect call.
3702 if Nkind
(Call_Node
) in N_Subprogram_Call
3703 and then Present
(Controlling_Argument
(Call_Node
))
3706 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
3707 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
3708 Eq_Prim_Op
: Entity_Id
:= Empty
;
3711 Prev_Call
: Node_Id
;
3714 if not Is_Limited_Type
(Typ
) then
3715 Eq_Prim_Op
:= Find_Prim_Op
(Typ
, Name_Op_Eq
);
3718 if Tagged_Type_Expansion
then
3719 Expand_Dispatching_Call
(Call_Node
);
3721 -- The following return is worrisome. Is it really OK to skip
3722 -- all remaining processing in this procedure ???
3729 Apply_Tag_Checks
(Call_Node
);
3731 -- If this is a dispatching "=", we must first compare the
3732 -- tags so we generate: x.tag = y.tag and then x = y
3734 if Subp
= Eq_Prim_Op
then
3736 -- Mark the node as analyzed to avoid reanalyzing this
3737 -- dispatching call (which would cause a never-ending loop)
3739 Prev_Call
:= Relocate_Node
(Call_Node
);
3740 Set_Analyzed
(Prev_Call
);
3742 Param
:= First_Actual
(Call_Node
);
3748 Make_Selected_Component
(Loc
,
3749 Prefix
=> New_Value
(Param
),
3752 (First_Tag_Component
(Typ
), Loc
)),
3755 Make_Selected_Component
(Loc
,
3757 Unchecked_Convert_To
(Typ
,
3758 New_Value
(Next_Actual
(Param
))),
3761 (First_Tag_Component
(Typ
), Loc
))),
3762 Right_Opnd
=> Prev_Call
);
3764 Rewrite
(Call_Node
, New_Call
);
3767 (Call_Node
, Call_Typ
, Suppress
=> All_Checks
);
3770 -- Expansion of a dispatching call results in an indirect call,
3771 -- which in turn causes current values to be killed (see
3772 -- Resolve_Call), so on VM targets we do the call here to
3773 -- ensure consistent warnings between VM and non-VM targets.
3775 Kill_Current_Values
;
3778 -- If this is a dispatching "=" then we must update the reference
3779 -- to the call node because we generated:
3780 -- x.tag = y.tag and then x = y
3782 if Subp
= Eq_Prim_Op
then
3783 Call_Node
:= Right_Opnd
(Call_Node
);
3788 -- Similarly, expand calls to RCI subprograms on which pragma
3789 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3790 -- later. Do this only when the call comes from source since we
3791 -- do not want such a rewriting to occur in expanded code.
3793 if Is_All_Remote_Call
(Call_Node
) then
3794 Expand_All_Calls_Remote_Subprogram_Call
(Call_Node
);
3796 -- Similarly, do not add extra actuals for an entry call whose entity
3797 -- is a protected procedure, or for an internal protected subprogram
3798 -- call, because it will be rewritten as a protected subprogram call
3799 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3801 elsif Is_Protected_Type
(Scope
(Subp
))
3802 and then (Ekind
(Subp
) = E_Procedure
3803 or else Ekind
(Subp
) = E_Function
)
3807 -- During that loop we gathered the extra actuals (the ones that
3808 -- correspond to Extra_Formals), so now they can be appended.
3811 while Is_Non_Empty_List
(Extra_Actuals
) loop
3812 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
3816 -- At this point we have all the actuals, so this is the point at which
3817 -- the various expansion activities for actuals is carried out.
3819 Expand_Actuals
(Call_Node
, Subp
, Post_Call
);
3821 -- Verify that the actuals do not share storage. This check must be done
3822 -- on the caller side rather that inside the subprogram to avoid issues
3823 -- of parameter passing.
3825 if Check_Aliasing_Of_Parameters
then
3826 Apply_Parameter_Aliasing_Checks
(Call_Node
, Subp
);
3829 -- If the subprogram is a renaming, or if it is inherited, replace it in
3830 -- the call with the name of the actual subprogram being called. If this
3831 -- is a dispatching call, the run-time decides what to call. The Alias
3832 -- attribute does not apply to entries.
3834 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
3835 and then No
(Controlling_Argument
(Call_Node
))
3836 and then Present
(Parent_Subp
)
3837 and then not Is_Direct_Deep_Call
(Subp
)
3839 if Present
(Inherited_From_Formal
(Subp
)) then
3840 Parent_Subp
:= Inherited_From_Formal
(Subp
);
3842 Parent_Subp
:= Ultimate_Alias
(Parent_Subp
);
3845 -- The below setting of Entity is suspect, see F109-018 discussion???
3847 Set_Entity
(Name
(Call_Node
), Parent_Subp
);
3849 if Is_Abstract_Subprogram
(Parent_Subp
)
3850 and then not In_Instance
3853 ("cannot call abstract subprogram &!",
3854 Name
(Call_Node
), Parent_Subp
);
3857 -- Inspect all formals of derived subprogram Subp. Compare parameter
3858 -- types with the parent subprogram and check whether an actual may
3859 -- need a type conversion to the corresponding formal of the parent
3862 -- Not clear whether intrinsic subprograms need such conversions. ???
3864 if not Is_Intrinsic_Subprogram
(Parent_Subp
)
3865 or else Is_Generic_Instance
(Parent_Subp
)
3868 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
);
3869 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3870 -- and resolve the newly generated construct.
3876 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
) is
3878 Rewrite
(Act
, OK_Convert_To
(Typ
, Relocate_Node
(Act
)));
3885 Actual_Typ
: Entity_Id
;
3886 Formal_Typ
: Entity_Id
;
3887 Parent_Typ
: Entity_Id
;
3890 Actual
:= First_Actual
(Call_Node
);
3891 Formal
:= First_Formal
(Subp
);
3892 Parent_Formal
:= First_Formal
(Parent_Subp
);
3893 while Present
(Formal
) loop
3894 Actual_Typ
:= Etype
(Actual
);
3895 Formal_Typ
:= Etype
(Formal
);
3896 Parent_Typ
:= Etype
(Parent_Formal
);
3898 -- For an IN parameter of a scalar type, the parent formal
3899 -- type and derived formal type differ or the parent formal
3900 -- type and actual type do not match statically.
3902 if Is_Scalar_Type
(Formal_Typ
)
3903 and then Ekind
(Formal
) = E_In_Parameter
3904 and then Formal_Typ
/= Parent_Typ
3906 not Subtypes_Statically_Match
(Parent_Typ
, Actual_Typ
)
3907 and then not Raises_Constraint_Error
(Actual
)
3909 Convert
(Actual
, Parent_Typ
);
3910 Enable_Range_Check
(Actual
);
3912 -- If the actual has been marked as requiring a range
3913 -- check, then generate it here.
3915 if Do_Range_Check
(Actual
) then
3916 Generate_Range_Check
3917 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
3920 -- For access types, the parent formal type and actual type
3923 elsif Is_Access_Type
(Formal_Typ
)
3924 and then Base_Type
(Parent_Typ
) /= Base_Type
(Actual_Typ
)
3926 if Ekind
(Formal
) /= E_In_Parameter
then
3927 Convert
(Actual
, Parent_Typ
);
3929 elsif Ekind
(Parent_Typ
) = E_Anonymous_Access_Type
3930 and then Designated_Type
(Parent_Typ
) /=
3931 Designated_Type
(Actual_Typ
)
3932 and then not Is_Controlling_Formal
(Formal
)
3934 -- This unchecked conversion is not necessary unless
3935 -- inlining is enabled, because in that case the type
3936 -- mismatch may become visible in the body about to be
3940 Unchecked_Convert_To
(Parent_Typ
,
3941 Relocate_Node
(Actual
)));
3943 Resolve
(Actual
, Parent_Typ
);
3946 -- If there is a change of representation, then generate a
3947 -- warning, and do the change of representation.
3949 elsif not Same_Representation
(Formal_Typ
, Parent_Typ
) then
3951 ("??change of representation required", Actual
);
3952 Convert
(Actual
, Parent_Typ
);
3954 -- For array and record types, the parent formal type and
3955 -- derived formal type have different sizes or pragma Pack
3958 elsif ((Is_Array_Type
(Formal_Typ
)
3959 and then Is_Array_Type
(Parent_Typ
))
3961 (Is_Record_Type
(Formal_Typ
)
3962 and then Is_Record_Type
(Parent_Typ
)))
3964 (Esize
(Formal_Typ
) /= Esize
(Parent_Typ
)
3965 or else Has_Pragma_Pack
(Formal_Typ
) /=
3966 Has_Pragma_Pack
(Parent_Typ
))
3968 Convert
(Actual
, Parent_Typ
);
3971 Next_Actual
(Actual
);
3972 Next_Formal
(Formal
);
3973 Next_Formal
(Parent_Formal
);
3979 Subp
:= Parent_Subp
;
3982 -- Deal with case where call is an explicit dereference
3984 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
3986 -- Handle case of access to protected subprogram type
3988 if Is_Access_Protected_Subprogram_Type
3989 (Base_Type
(Etype
(Prefix
(Name
(Call_Node
)))))
3991 -- If this is a call through an access to protected operation, the
3992 -- prefix has the form (object'address, operation'access). Rewrite
3993 -- as a for other protected calls: the object is the 1st parameter
3994 -- of the list of actuals.
4001 Ptr
: constant Node_Id
:= Prefix
(Name
(Call_Node
));
4003 T
: constant Entity_Id
:=
4004 Equivalent_Type
(Base_Type
(Etype
(Ptr
)));
4006 D_T
: constant Entity_Id
:=
4007 Designated_Type
(Base_Type
(Etype
(Ptr
)));
4011 Make_Selected_Component
(Loc
,
4012 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
4014 New_Occurrence_Of
(First_Entity
(T
), Loc
));
4017 Make_Selected_Component
(Loc
,
4018 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
4020 New_Occurrence_Of
(Next_Entity
(First_Entity
(T
)), Loc
));
4023 Make_Explicit_Dereference
(Loc
,
4026 if Present
(Parameter_Associations
(Call_Node
)) then
4027 Parm
:= Parameter_Associations
(Call_Node
);
4032 Prepend
(Obj
, Parm
);
4034 if Etype
(D_T
) = Standard_Void_Type
then
4036 Make_Procedure_Call_Statement
(Loc
,
4038 Parameter_Associations
=> Parm
);
4041 Make_Function_Call
(Loc
,
4043 Parameter_Associations
=> Parm
);
4046 Set_First_Named_Actual
(Call
, First_Named_Actual
(Call_Node
));
4047 Set_Etype
(Call
, Etype
(D_T
));
4049 -- We do not re-analyze the call to avoid infinite recursion.
4050 -- We analyze separately the prefix and the object, and set
4051 -- the checks on the prefix that would otherwise be emitted
4052 -- when resolving a call.
4054 Rewrite
(Call_Node
, Call
);
4056 Apply_Access_Check
(Nam
);
4063 -- If this is a call to an intrinsic subprogram, then perform the
4064 -- appropriate expansion to the corresponding tree node and we
4065 -- are all done (since after that the call is gone).
4067 -- In the case where the intrinsic is to be processed by the back end,
4068 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
4069 -- since the idea in this case is to pass the call unchanged. If the
4070 -- intrinsic is an inherited unchecked conversion, and the derived type
4071 -- is the target type of the conversion, we must retain it as the return
4072 -- type of the expression. Otherwise the expansion below, which uses the
4073 -- parent operation, will yield the wrong type.
4075 if Is_Intrinsic_Subprogram
(Subp
) then
4076 Expand_Intrinsic_Call
(Call_Node
, Subp
);
4078 if Nkind
(Call_Node
) = N_Unchecked_Type_Conversion
4079 and then Parent_Subp
/= Orig_Subp
4080 and then Etype
(Parent_Subp
) /= Etype
(Orig_Subp
)
4082 Set_Etype
(Call_Node
, Etype
(Orig_Subp
));
4088 if Ekind_In
(Subp
, E_Function
, E_Procedure
) then
4090 -- We perform a simple optimization on calls for To_Address by
4091 -- replacing them with an unchecked conversion. Not only is this
4092 -- efficient, but it also avoids order of elaboration problems when
4093 -- address clauses are inlined (address expression elaborated at the
4096 -- We perform this optimization regardless of whether we are in the
4097 -- main unit or in a unit in the context of the main unit, to ensure
4098 -- that the generated tree is the same in both cases, for CodePeer
4101 if Is_RTE
(Subp
, RE_To_Address
) then
4103 Unchecked_Convert_To
4104 (RTE
(RE_Address
), Relocate_Node
(First_Actual
(Call_Node
))));
4107 -- A call to a null procedure is replaced by a null statement, but we
4108 -- are not allowed to ignore possible side effects of the call, so we
4109 -- make sure that actuals are evaluated.
4110 -- We also suppress this optimization for GNATCoverage.
4112 elsif Is_Null_Procedure
(Subp
)
4113 and then not Opt
.Suppress_Control_Flow_Optimizations
4115 Actual
:= First_Actual
(Call_Node
);
4116 while Present
(Actual
) loop
4117 Remove_Side_Effects
(Actual
);
4118 Next_Actual
(Actual
);
4121 Rewrite
(Call_Node
, Make_Null_Statement
(Loc
));
4125 -- Handle inlining. No action needed if the subprogram is not inlined
4127 if not Is_Inlined
(Subp
) then
4130 -- Frontend inlining of expression functions (performed also when
4131 -- backend inlining is enabled).
4133 elsif Is_Inlinable_Expression_Function
(Subp
) then
4134 Rewrite
(N
, New_Copy
(Expression_Of_Expression_Function
(Subp
)));
4138 -- Handle frontend inlining
4140 elsif not Back_End_Inlining
then
4141 Inlined_Subprogram
: declare
4143 Must_Inline
: Boolean := False;
4144 Spec
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
4147 -- Verify that the body to inline has already been seen, and
4148 -- that if the body is in the current unit the inlining does
4149 -- not occur earlier. This avoids order-of-elaboration problems
4152 -- This should be documented in sinfo/einfo ???
4155 or else Nkind
(Spec
) /= N_Subprogram_Declaration
4156 or else No
(Body_To_Inline
(Spec
))
4158 Must_Inline
:= False;
4160 -- If this an inherited function that returns a private type,
4161 -- do not inline if the full view is an unconstrained array,
4162 -- because such calls cannot be inlined.
4164 elsif Present
(Orig_Subp
)
4165 and then Is_Array_Type
(Etype
(Orig_Subp
))
4166 and then not Is_Constrained
(Etype
(Orig_Subp
))
4168 Must_Inline
:= False;
4170 elsif In_Unfrozen_Instance
(Scope
(Subp
)) then
4171 Must_Inline
:= False;
4174 Bod
:= Body_To_Inline
(Spec
);
4176 if (In_Extended_Main_Code_Unit
(Call_Node
)
4177 or else In_Extended_Main_Code_Unit
(Parent
(Call_Node
))
4178 or else Has_Pragma_Inline_Always
(Subp
))
4179 and then (not In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
4181 Earlier_In_Extended_Unit
(Sloc
(Bod
), Loc
))
4183 Must_Inline
:= True;
4185 -- If we are compiling a package body that is not the main
4186 -- unit, it must be for inlining/instantiation purposes,
4187 -- in which case we inline the call to insure that the same
4188 -- temporaries are generated when compiling the body by
4189 -- itself. Otherwise link errors can occur.
4191 -- If the function being called is itself in the main unit,
4192 -- we cannot inline, because there is a risk of double
4193 -- elaboration and/or circularity: the inlining can make
4194 -- visible a private entity in the body of the main unit,
4195 -- that gigi will see before its sees its proper definition.
4197 elsif not (In_Extended_Main_Code_Unit
(Call_Node
))
4198 and then In_Package_Body
4200 Must_Inline
:= not In_Extended_Main_Source_Unit
(Subp
);
4202 -- Inline calls to _postconditions when generating C code
4204 elsif Modify_Tree_For_C
4205 and then In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
4206 and then Chars
(Name
(N
)) = Name_uPostconditions
4208 Must_Inline
:= True;
4213 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
4216 -- Let the back end handle it
4218 Add_Inlined_Body
(Subp
, Call_Node
);
4220 if Front_End_Inlining
4221 and then Nkind
(Spec
) = N_Subprogram_Declaration
4222 and then (In_Extended_Main_Code_Unit
(Call_Node
))
4223 and then No
(Body_To_Inline
(Spec
))
4224 and then not Has_Completion
(Subp
)
4225 and then In_Same_Extended_Unit
(Sloc
(Spec
), Loc
)
4228 ("cannot inline& (body not seen yet)?",
4232 end Inlined_Subprogram
;
4234 -- Back end inlining: let the back end handle it
4236 elsif No
(Unit_Declaration_Node
(Subp
))
4237 or else Nkind
(Unit_Declaration_Node
(Subp
)) /=
4238 N_Subprogram_Declaration
4239 or else No
(Body_To_Inline
(Unit_Declaration_Node
(Subp
)))
4240 or else Nkind
(Body_To_Inline
(Unit_Declaration_Node
(Subp
))) in
4243 Add_Inlined_Body
(Subp
, Call_Node
);
4245 -- If the inlined call appears within an instantiation and some
4246 -- level of optimization is required, ensure that the enclosing
4247 -- instance body is available so that the back-end can actually
4248 -- perform the inlining.
4251 and then Comes_From_Source
(Subp
)
4252 and then Optimization_Level
> 0
4257 Inst_Node
: Node_Id
;
4260 Inst
:= Scope
(Subp
);
4262 -- Find enclosing instance
4264 while Present
(Inst
) and then Inst
/= Standard_Standard
loop
4265 exit when Is_Generic_Instance
(Inst
);
4266 Inst
:= Scope
(Inst
);
4270 and then Is_Generic_Instance
(Inst
)
4271 and then not Is_Inlined
(Inst
)
4273 Set_Is_Inlined
(Inst
);
4274 Decl
:= Unit_Declaration_Node
(Inst
);
4276 -- Do not add a pending instantiation if the body exits
4277 -- already, or if the instance is a compilation unit, or
4278 -- the instance node is missing.
4280 if Present
(Corresponding_Body
(Decl
))
4281 or else Nkind
(Parent
(Decl
)) = N_Compilation_Unit
4282 or else No
(Next
(Decl
))
4287 -- The instantiation node usually follows the package
4288 -- declaration for the instance. If the generic unit
4289 -- has aspect specifications, they are transformed
4290 -- into pragmas in the instance, and the instance node
4291 -- appears after them.
4293 Inst_Node
:= Next
(Decl
);
4295 while Nkind
(Inst_Node
) /= N_Package_Instantiation
loop
4296 Inst_Node
:= Next
(Inst_Node
);
4299 Add_Pending_Instantiation
(Inst_Node
, Decl
);
4305 -- Front end expansion of simple functions returning unconstrained
4306 -- types (see Check_And_Split_Unconstrained_Function). Note that the
4307 -- case of a simple renaming (Body_To_Inline in N_Entity above, see
4308 -- also Build_Renamed_Body) cannot be expanded here because this may
4309 -- give rise to order-of-elaboration issues for the types of the
4310 -- parameters of the subprogram, if any.
4313 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
4317 -- Check for protected subprogram. This is either an intra-object call,
4318 -- or a protected function call. Protected procedure calls are rewritten
4319 -- as entry calls and handled accordingly.
4321 -- In Ada 2005, this may be an indirect call to an access parameter that
4322 -- is an access_to_subprogram. In that case the anonymous type has a
4323 -- scope that is a protected operation, but the call is a regular one.
4324 -- In either case do not expand call if subprogram is eliminated.
4326 Scop
:= Scope
(Subp
);
4328 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
4329 and then Is_Protected_Type
(Scop
)
4330 and then Ekind
(Subp
) /= E_Subprogram_Type
4331 and then not Is_Eliminated
(Subp
)
4333 -- If the call is an internal one, it is rewritten as a call to the
4334 -- corresponding unprotected subprogram.
4336 Expand_Protected_Subprogram_Call
(Call_Node
, Subp
, Scop
);
4339 -- Functions returning controlled objects need special attention. If
4340 -- the return type is limited, then the context is initialization and
4341 -- different processing applies. If the call is to a protected function,
4342 -- the expansion above will call Expand_Call recursively. Otherwise the
4343 -- function call is transformed into a temporary which obtains the
4344 -- result from the secondary stack.
4346 if Needs_Finalization
(Etype
(Subp
)) then
4347 if not Is_Build_In_Place_Function_Call
(Call_Node
)
4349 (No
(First_Formal
(Subp
))
4351 not Is_Concurrent_Record_Type
(Etype
(First_Formal
(Subp
))))
4353 Expand_Ctrl_Function_Call
(Call_Node
);
4355 -- Build-in-place function calls which appear in anonymous contexts
4356 -- need a transient scope to ensure the proper finalization of the
4357 -- intermediate result after its use.
4359 elsif Is_Build_In_Place_Function_Call
(Call_Node
)
4360 and then Nkind_In
(Parent
(Unqual_Conv
(Call_Node
)),
4361 N_Attribute_Reference
,
4363 N_Indexed_Component
,
4364 N_Object_Renaming_Declaration
,
4365 N_Procedure_Call_Statement
,
4366 N_Selected_Component
,
4369 (Ekind
(Current_Scope
) /= E_Loop
4370 or else Nkind
(Parent
(N
)) /= N_Function_Call
4371 or else not Is_Build_In_Place_Function_Call
(Parent
(N
)))
4373 Establish_Transient_Scope
(Call_Node
, Manage_Sec_Stack
=> True);
4376 end Expand_Call_Helper
;
4378 -------------------------------
4379 -- Expand_Ctrl_Function_Call --
4380 -------------------------------
4382 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
) is
4383 function Is_Element_Reference
(N
: Node_Id
) return Boolean;
4384 -- Determine whether node N denotes a reference to an Ada 2012 container
4387 --------------------------
4388 -- Is_Element_Reference --
4389 --------------------------
4391 function Is_Element_Reference
(N
: Node_Id
) return Boolean is
4392 Ref
: constant Node_Id
:= Original_Node
(N
);
4395 -- Analysis marks an element reference by setting the generalized
4396 -- indexing attribute of an indexed component before the component
4397 -- is rewritten into a function call.
4400 Nkind
(Ref
) = N_Indexed_Component
4401 and then Present
(Generalized_Indexing
(Ref
));
4402 end Is_Element_Reference
;
4404 -- Start of processing for Expand_Ctrl_Function_Call
4407 -- Optimization, if the returned value (which is on the sec-stack) is
4408 -- returned again, no need to copy/readjust/finalize, we can just pass
4409 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4410 -- attachment is needed
4412 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
4416 -- Resolution is now finished, make sure we don't start analysis again
4417 -- because of the duplication.
4421 -- A function which returns a controlled object uses the secondary
4422 -- stack. Rewrite the call into a temporary which obtains the result of
4423 -- the function using 'reference.
4425 Remove_Side_Effects
(N
);
4427 -- The side effect removal of the function call produced a temporary.
4428 -- When the context is a case expression, if expression, or expression
4429 -- with actions, the lifetime of the temporary must be extended to match
4430 -- that of the context. Otherwise the function result will be finalized
4431 -- too early and affect the result of the expression. To prevent this
4432 -- unwanted effect, the temporary should not be considered for clean up
4433 -- actions by the general finalization machinery.
4435 -- Exception to this rule are references to Ada 2012 container elements.
4436 -- Such references must be finalized at the end of each iteration of the
4437 -- related quantified expression, otherwise the container will remain
4440 if Nkind
(N
) = N_Explicit_Dereference
4441 and then Within_Case_Or_If_Expression
(N
)
4442 and then not Is_Element_Reference
(N
)
4444 Set_Is_Ignored_Transient
(Entity
(Prefix
(N
)));
4446 end Expand_Ctrl_Function_Call
;
4448 ----------------------------------------
4449 -- Expand_N_Extended_Return_Statement --
4450 ----------------------------------------
4452 -- If there is a Handled_Statement_Sequence, we rewrite this:
4454 -- return Result : T := <expression> do
4455 -- <handled_seq_of_stms>
4461 -- Result : T := <expression>;
4463 -- <handled_seq_of_stms>
4467 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4469 -- return Result : T := <expression>;
4473 -- return <expression>;
4475 -- unless it's build-in-place or there's no <expression>, in which case
4479 -- Result : T := <expression>;
4484 -- Note that this case could have been written by the user as an extended
4485 -- return statement, or could have been transformed to this from a simple
4486 -- return statement.
4488 -- That is, we need to have a reified return object if there are statements
4489 -- (which might refer to it) or if we're doing build-in-place (so we can
4490 -- set its address to the final resting place or if there is no expression
4491 -- (in which case default initial values might need to be set).
4493 procedure Expand_N_Extended_Return_Statement
(N
: Node_Id
) is
4494 Loc
: constant Source_Ptr
:= Sloc
(N
);
4496 function Build_Heap_Allocator
4497 (Temp_Id
: Entity_Id
;
4498 Temp_Typ
: Entity_Id
;
4499 Func_Id
: Entity_Id
;
4500 Ret_Typ
: Entity_Id
;
4501 Alloc_Expr
: Node_Id
) return Node_Id
;
4502 -- Create the statements necessary to allocate a return object on the
4503 -- caller's master. The master is available through implicit parameter
4504 -- BIPfinalizationmaster.
4506 -- if BIPfinalizationmaster /= null then
4508 -- type Ptr_Typ is access Ret_Typ;
4509 -- for Ptr_Typ'Storage_Pool use
4510 -- Base_Pool (BIPfinalizationmaster.all).all;
4514 -- procedure Allocate (...) is
4516 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4519 -- Local := <Alloc_Expr>;
4520 -- Temp_Id := Temp_Typ (Local);
4524 -- Temp_Id is the temporary which is used to reference the internally
4525 -- created object in all allocation forms. Temp_Typ is the type of the
4526 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4527 -- type of Func_Id. Alloc_Expr is the actual allocator.
4529 function Move_Activation_Chain
(Func_Id
: Entity_Id
) return Node_Id
;
4530 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4532 -- From current activation chain
4533 -- To activation chain passed in by the caller
4534 -- New_Master master passed in by the caller
4536 -- Func_Id is the entity of the function where the extended return
4537 -- statement appears.
4539 --------------------------
4540 -- Build_Heap_Allocator --
4541 --------------------------
4543 function Build_Heap_Allocator
4544 (Temp_Id
: Entity_Id
;
4545 Temp_Typ
: Entity_Id
;
4546 Func_Id
: Entity_Id
;
4547 Ret_Typ
: Entity_Id
;
4548 Alloc_Expr
: Node_Id
) return Node_Id
4551 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
4553 -- Processing for build-in-place object allocation.
4555 if Needs_Finalization
(Ret_Typ
) then
4557 Decls
: constant List_Id
:= New_List
;
4558 Fin_Mas_Id
: constant Entity_Id
:=
4559 Build_In_Place_Formal
4560 (Func_Id
, BIP_Finalization_Master
);
4561 Stmts
: constant List_Id
:= New_List
;
4562 Desig_Typ
: Entity_Id
;
4563 Local_Id
: Entity_Id
;
4564 Pool_Id
: Entity_Id
;
4565 Ptr_Typ
: Entity_Id
;
4569 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4571 Pool_Id
:= Make_Temporary
(Loc
, 'P');
4574 Make_Object_Renaming_Declaration
(Loc
,
4575 Defining_Identifier
=> Pool_Id
,
4577 New_Occurrence_Of
(RTE
(RE_Root_Storage_Pool
), Loc
),
4579 Make_Explicit_Dereference
(Loc
,
4581 Make_Function_Call
(Loc
,
4583 New_Occurrence_Of
(RTE
(RE_Base_Pool
), Loc
),
4584 Parameter_Associations
=> New_List
(
4585 Make_Explicit_Dereference
(Loc
,
4587 New_Occurrence_Of
(Fin_Mas_Id
, Loc
)))))));
4589 -- Create an access type which uses the storage pool of the
4590 -- caller's master. This additional type is necessary because
4591 -- the finalization master cannot be associated with the type
4592 -- of the temporary. Otherwise the secondary stack allocation
4595 Desig_Typ
:= Ret_Typ
;
4597 -- Ensure that the build-in-place machinery uses a fat pointer
4598 -- when allocating an unconstrained array on the heap. In this
4599 -- case the result object type is a constrained array type even
4600 -- though the function type is unconstrained.
4602 if Ekind
(Desig_Typ
) = E_Array_Subtype
then
4603 Desig_Typ
:= Base_Type
(Desig_Typ
);
4607 -- type Ptr_Typ is access Desig_Typ;
4609 Ptr_Typ
:= Make_Temporary
(Loc
, 'P');
4612 Make_Full_Type_Declaration
(Loc
,
4613 Defining_Identifier
=> Ptr_Typ
,
4615 Make_Access_To_Object_Definition
(Loc
,
4616 Subtype_Indication
=>
4617 New_Occurrence_Of
(Desig_Typ
, Loc
))));
4619 -- Perform minor decoration in order to set the master and the
4620 -- storage pool attributes.
4622 Set_Ekind
(Ptr_Typ
, E_Access_Type
);
4623 Set_Finalization_Master
(Ptr_Typ
, Fin_Mas_Id
);
4624 Set_Associated_Storage_Pool
(Ptr_Typ
, Pool_Id
);
4626 -- Create the temporary, generate:
4627 -- Local_Id : Ptr_Typ;
4629 Local_Id
:= Make_Temporary
(Loc
, 'T');
4632 Make_Object_Declaration
(Loc
,
4633 Defining_Identifier
=> Local_Id
,
4634 Object_Definition
=>
4635 New_Occurrence_Of
(Ptr_Typ
, Loc
)));
4637 -- Allocate the object, generate:
4638 -- Local_Id := <Alloc_Expr>;
4641 Make_Assignment_Statement
(Loc
,
4642 Name
=> New_Occurrence_Of
(Local_Id
, Loc
),
4643 Expression
=> Alloc_Expr
));
4646 -- Temp_Id := Temp_Typ (Local_Id);
4649 Make_Assignment_Statement
(Loc
,
4650 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4652 Unchecked_Convert_To
(Temp_Typ
,
4653 New_Occurrence_Of
(Local_Id
, Loc
))));
4655 -- Wrap the allocation in a block. This is further conditioned
4656 -- by checking the caller finalization master at runtime. A
4657 -- null value indicates a non-existent master, most likely due
4658 -- to a Finalize_Storage_Only allocation.
4661 -- if BIPfinalizationmaster /= null then
4670 Make_If_Statement
(Loc
,
4673 Left_Opnd
=> New_Occurrence_Of
(Fin_Mas_Id
, Loc
),
4674 Right_Opnd
=> Make_Null
(Loc
)),
4676 Then_Statements
=> New_List
(
4677 Make_Block_Statement
(Loc
,
4678 Declarations
=> Decls
,
4679 Handled_Statement_Sequence
=>
4680 Make_Handled_Sequence_Of_Statements
(Loc
,
4681 Statements
=> Stmts
))));
4684 -- For all other cases, generate:
4685 -- Temp_Id := <Alloc_Expr>;
4689 Make_Assignment_Statement
(Loc
,
4690 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4691 Expression
=> Alloc_Expr
);
4693 end Build_Heap_Allocator
;
4695 ---------------------------
4696 -- Move_Activation_Chain --
4697 ---------------------------
4699 function Move_Activation_Chain
(Func_Id
: Entity_Id
) return Node_Id
is
4702 Make_Procedure_Call_Statement
(Loc
,
4704 New_Occurrence_Of
(RTE
(RE_Move_Activation_Chain
), Loc
),
4706 Parameter_Associations
=> New_List
(
4710 Make_Attribute_Reference
(Loc
,
4711 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
4712 Attribute_Name
=> Name_Unrestricted_Access
),
4714 -- Destination chain
4717 (Build_In_Place_Formal
(Func_Id
, BIP_Activation_Chain
), Loc
),
4722 (Build_In_Place_Formal
(Func_Id
, BIP_Task_Master
), Loc
)));
4723 end Move_Activation_Chain
;
4727 Func_Id
: constant Entity_Id
:=
4728 Return_Applies_To
(Return_Statement_Entity
(N
));
4729 Is_BIP_Func
: constant Boolean :=
4730 Is_Build_In_Place_Function
(Func_Id
);
4731 Ret_Obj_Id
: constant Entity_Id
:=
4732 First_Entity
(Return_Statement_Entity
(N
));
4733 Ret_Obj_Decl
: constant Node_Id
:= Parent
(Ret_Obj_Id
);
4734 Ret_Typ
: constant Entity_Id
:= Etype
(Func_Id
);
4741 Return_Stmt
: Node_Id
:= Empty
;
4742 -- Force initialization to facilitate static analysis
4744 -- Start of processing for Expand_N_Extended_Return_Statement
4747 -- Given that functionality of interface thunks is simple (just displace
4748 -- the pointer to the object) they are always handled by means of
4749 -- simple return statements.
4751 pragma Assert
(not Is_Thunk
(Current_Scope
));
4753 if Nkind
(Ret_Obj_Decl
) = N_Object_Declaration
then
4754 Exp
:= Expression
(Ret_Obj_Decl
);
4756 -- Assert that if F says "return R : T := G(...) do..."
4757 -- then F and G are both b-i-p, or neither b-i-p.
4759 if Nkind
(Exp
) = N_Function_Call
then
4760 pragma Assert
(Ekind
(Current_Scope
) = E_Function
);
4762 (Is_Build_In_Place_Function
(Current_Scope
) =
4763 Is_Build_In_Place_Function_Call
(Exp
));
4770 HSS
:= Handled_Statement_Sequence
(N
);
4772 -- If the returned object needs finalization actions, the function must
4773 -- perform the appropriate cleanup should it fail to return. The state
4774 -- of the function itself is tracked through a flag which is coupled
4775 -- with the scope finalizer. There is one flag per each return object
4776 -- in case of multiple returns.
4778 if Is_BIP_Func
and then Needs_Finalization
(Etype
(Ret_Obj_Id
)) then
4780 Flag_Decl
: Node_Id
;
4781 Flag_Id
: Entity_Id
;
4785 -- Recover the function body
4787 Func_Bod
:= Unit_Declaration_Node
(Func_Id
);
4789 if Nkind
(Func_Bod
) = N_Subprogram_Declaration
then
4790 Func_Bod
:= Parent
(Parent
(Corresponding_Body
(Func_Bod
)));
4793 if Nkind
(Func_Bod
) = N_Function_Specification
then
4794 Func_Bod
:= Parent
(Func_Bod
); -- one more level for child units
4797 pragma Assert
(Nkind
(Func_Bod
) = N_Subprogram_Body
);
4799 -- Create a flag to track the function state
4801 Flag_Id
:= Make_Temporary
(Loc
, 'F');
4802 Set_Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
, Flag_Id
);
4804 -- Insert the flag at the beginning of the function declarations,
4806 -- Fnn : Boolean := False;
4809 Make_Object_Declaration
(Loc
,
4810 Defining_Identifier
=> Flag_Id
,
4811 Object_Definition
=>
4812 New_Occurrence_Of
(Standard_Boolean
, Loc
),
4814 New_Occurrence_Of
(Standard_False
, Loc
));
4816 Prepend_To
(Declarations
(Func_Bod
), Flag_Decl
);
4817 Analyze
(Flag_Decl
);
4821 -- Build a simple_return_statement that returns the return object when
4822 -- there is a statement sequence, or no expression, or the result will
4823 -- be built in place. Note however that we currently do this for all
4824 -- composite cases, even though not all are built in place.
4827 or else Is_Composite_Type
(Ret_Typ
)
4833 -- If the extended return has a handled statement sequence, then wrap
4834 -- it in a block and use the block as the first statement.
4838 Make_Block_Statement
(Loc
,
4839 Declarations
=> New_List
,
4840 Handled_Statement_Sequence
=> HSS
));
4843 -- If the result type contains tasks, we call Move_Activation_Chain.
4844 -- Later, the cleanup code will call Complete_Master, which will
4845 -- terminate any unactivated tasks belonging to the return statement
4846 -- master. But Move_Activation_Chain updates their master to be that
4847 -- of the caller, so they will not be terminated unless the return
4848 -- statement completes unsuccessfully due to exception, abort, goto,
4849 -- or exit. As a formality, we test whether the function requires the
4850 -- result to be built in place, though that's necessarily true for
4851 -- the case of result types with task parts.
4853 if Is_BIP_Func
and then Has_Task
(Ret_Typ
) then
4855 -- The return expression is an aggregate for a complex type which
4856 -- contains tasks. This particular case is left unexpanded since
4857 -- the regular expansion would insert all temporaries and
4858 -- initialization code in the wrong block.
4860 if Nkind
(Exp
) = N_Aggregate
then
4861 Expand_N_Aggregate
(Exp
);
4864 -- Do not move the activation chain if the return object does not
4867 if Has_Task
(Etype
(Ret_Obj_Id
)) then
4868 Append_To
(Stmts
, Move_Activation_Chain
(Func_Id
));
4872 -- Update the state of the function right before the object is
4875 if Is_BIP_Func
and then Needs_Finalization
(Etype
(Ret_Obj_Id
)) then
4877 Flag_Id
: constant Entity_Id
:=
4878 Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
);
4885 Make_Assignment_Statement
(Loc
,
4886 Name
=> New_Occurrence_Of
(Flag_Id
, Loc
),
4887 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4891 -- Build a simple_return_statement that returns the return object
4894 Make_Simple_Return_Statement
(Loc
,
4895 Expression
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
));
4896 Append_To
(Stmts
, Return_Stmt
);
4898 HSS
:= Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
);
4901 -- Case where we build a return statement block
4903 if Present
(HSS
) then
4905 Make_Block_Statement
(Loc
,
4906 Declarations
=> Return_Object_Declarations
(N
),
4907 Handled_Statement_Sequence
=> HSS
);
4909 -- We set the entity of the new block statement to be that of the
4910 -- return statement. This is necessary so that various fields, such
4911 -- as Finalization_Chain_Entity carry over from the return statement
4912 -- to the block. Note that this block is unusual, in that its entity
4913 -- is an E_Return_Statement rather than an E_Block.
4916 (Result
, New_Occurrence_Of
(Return_Statement_Entity
(N
), Loc
));
4918 -- If the object decl was already rewritten as a renaming, then we
4919 -- don't want to do the object allocation and transformation of
4920 -- the return object declaration to a renaming. This case occurs
4921 -- when the return object is initialized by a call to another
4922 -- build-in-place function, and that function is responsible for
4923 -- the allocation of the return object.
4926 and then Nkind
(Ret_Obj_Decl
) = N_Object_Renaming_Declaration
4929 (Nkind
(Original_Node
(Ret_Obj_Decl
)) = N_Object_Declaration
4932 -- It is a regular BIP object declaration
4934 (Is_Build_In_Place_Function_Call
4935 (Expression
(Original_Node
(Ret_Obj_Decl
)))
4937 -- It is a BIP object declaration that displaces the pointer
4938 -- to the object to reference a convered interface type.
4941 Present
(Unqual_BIP_Iface_Function_Call
4942 (Expression
(Original_Node
(Ret_Obj_Decl
))))));
4944 -- Return the build-in-place result by reference
4946 Set_By_Ref
(Return_Stmt
);
4948 elsif Is_BIP_Func
then
4950 -- Locate the implicit access parameter associated with the
4951 -- caller-supplied return object and convert the return
4952 -- statement's return object declaration to a renaming of a
4953 -- dereference of the access parameter. If the return object's
4954 -- declaration includes an expression that has not already been
4955 -- expanded as separate assignments, then add an assignment
4956 -- statement to ensure the return object gets initialized.
4959 -- Result : T [:= <expression>];
4966 -- Result : T renames FuncRA.all;
4967 -- [Result := <expression;]
4972 Ret_Obj_Expr
: constant Node_Id
:= Expression
(Ret_Obj_Decl
);
4973 Ret_Obj_Typ
: constant Entity_Id
:= Etype
(Ret_Obj_Id
);
4975 Init_Assignment
: Node_Id
:= Empty
;
4976 Obj_Acc_Formal
: Entity_Id
;
4977 Obj_Acc_Deref
: Node_Id
;
4978 Obj_Alloc_Formal
: Entity_Id
;
4981 -- Build-in-place results must be returned by reference
4983 Set_By_Ref
(Return_Stmt
);
4985 -- Retrieve the implicit access parameter passed by the caller
4988 Build_In_Place_Formal
(Func_Id
, BIP_Object_Access
);
4990 -- If the return object's declaration includes an expression
4991 -- and the declaration isn't marked as No_Initialization, then
4992 -- we need to generate an assignment to the object and insert
4993 -- it after the declaration before rewriting it as a renaming
4994 -- (otherwise we'll lose the initialization). The case where
4995 -- the result type is an interface (or class-wide interface)
4996 -- is also excluded because the context of the function call
4997 -- must be unconstrained, so the initialization will always
4998 -- be done as part of an allocator evaluation (storage pool
4999 -- or secondary stack), never to a constrained target object
5000 -- passed in by the caller. Besides the assignment being
5001 -- unneeded in this case, it avoids problems with trying to
5002 -- generate a dispatching assignment when the return expression
5003 -- is a nonlimited descendant of a limited interface (the
5004 -- interface has no assignment operation).
5006 if Present
(Ret_Obj_Expr
)
5007 and then not No_Initialization
(Ret_Obj_Decl
)
5008 and then not Is_Interface
(Ret_Obj_Typ
)
5011 Make_Assignment_Statement
(Loc
,
5012 Name
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
),
5013 Expression
=> New_Copy_Tree
(Ret_Obj_Expr
));
5015 Set_Etype
(Name
(Init_Assignment
), Etype
(Ret_Obj_Id
));
5016 Set_Assignment_OK
(Name
(Init_Assignment
));
5017 Set_No_Ctrl_Actions
(Init_Assignment
);
5019 Set_Parent
(Name
(Init_Assignment
), Init_Assignment
);
5020 Set_Parent
(Expression
(Init_Assignment
), Init_Assignment
);
5022 Set_Expression
(Ret_Obj_Decl
, Empty
);
5024 if Is_Class_Wide_Type
(Etype
(Ret_Obj_Id
))
5025 and then not Is_Class_Wide_Type
5026 (Etype
(Expression
(Init_Assignment
)))
5028 Rewrite
(Expression
(Init_Assignment
),
5029 Make_Type_Conversion
(Loc
,
5031 New_Occurrence_Of
(Etype
(Ret_Obj_Id
), Loc
),
5033 Relocate_Node
(Expression
(Init_Assignment
))));
5036 -- In the case of functions where the calling context can
5037 -- determine the form of allocation needed, initialization
5038 -- is done with each part of the if statement that handles
5039 -- the different forms of allocation (this is true for
5040 -- unconstrained and tagged result subtypes).
5042 if Is_Constrained
(Ret_Typ
)
5043 and then not Is_Tagged_Type
(Underlying_Type
(Ret_Typ
))
5045 Insert_After
(Ret_Obj_Decl
, Init_Assignment
);
5049 -- When the function's subtype is unconstrained, a run-time
5050 -- test is needed to determine the form of allocation to use
5051 -- for the return object. The function has an implicit formal
5052 -- parameter indicating this. If the BIP_Alloc_Form formal has
5053 -- the value one, then the caller has passed access to an
5054 -- existing object for use as the return object. If the value
5055 -- is two, then the return object must be allocated on the
5056 -- secondary stack. Otherwise, the object must be allocated in
5057 -- a storage pool. We generate an if statement to test the
5058 -- implicit allocation formal and initialize a local access
5059 -- value appropriately, creating allocators in the secondary
5060 -- stack and global heap cases. The special formal also exists
5061 -- and must be tested when the function has a tagged result,
5062 -- even when the result subtype is constrained, because in
5063 -- general such functions can be called in dispatching contexts
5064 -- and must be handled similarly to functions with a class-wide
5067 if not Is_Constrained
(Ret_Typ
)
5068 or else Is_Tagged_Type
(Underlying_Type
(Ret_Typ
))
5071 Build_In_Place_Formal
(Func_Id
, BIP_Alloc_Form
);
5074 Pool_Id
: constant Entity_Id
:=
5075 Make_Temporary
(Loc
, 'P');
5076 Alloc_Obj_Id
: Entity_Id
;
5077 Alloc_Obj_Decl
: Node_Id
;
5078 Alloc_If_Stmt
: Node_Id
;
5079 Heap_Allocator
: Node_Id
;
5080 Pool_Decl
: Node_Id
;
5081 Pool_Allocator
: Node_Id
;
5082 Ptr_Type_Decl
: Node_Id
;
5083 Ref_Type
: Entity_Id
;
5084 SS_Allocator
: Node_Id
;
5087 -- Reuse the itype created for the function's implicit
5088 -- access formal. This avoids the need to create a new
5089 -- access type here, plus it allows assigning the access
5090 -- formal directly without applying a conversion.
5092 -- Ref_Type := Etype (Object_Access);
5094 -- Create an access type designating the function's
5097 Ref_Type
:= Make_Temporary
(Loc
, 'A');
5100 Make_Full_Type_Declaration
(Loc
,
5101 Defining_Identifier
=> Ref_Type
,
5103 Make_Access_To_Object_Definition
(Loc
,
5104 All_Present
=> True,
5105 Subtype_Indication
=>
5106 New_Occurrence_Of
(Ret_Obj_Typ
, Loc
)));
5108 Insert_Before
(Ret_Obj_Decl
, Ptr_Type_Decl
);
5110 -- Create an access object that will be initialized to an
5111 -- access value denoting the return object, either coming
5112 -- from an implicit access value passed in by the caller
5113 -- or from the result of an allocator.
5115 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
5116 Set_Etype
(Alloc_Obj_Id
, Ref_Type
);
5119 Make_Object_Declaration
(Loc
,
5120 Defining_Identifier
=> Alloc_Obj_Id
,
5121 Object_Definition
=>
5122 New_Occurrence_Of
(Ref_Type
, Loc
));
5124 Insert_Before
(Ret_Obj_Decl
, Alloc_Obj_Decl
);
5126 -- Create allocators for both the secondary stack and
5127 -- global heap. If there's an initialization expression,
5128 -- then create these as initialized allocators.
5130 if Present
(Ret_Obj_Expr
)
5131 and then not No_Initialization
(Ret_Obj_Decl
)
5133 -- Always use the type of the expression for the
5134 -- qualified expression, rather than the result type.
5135 -- In general we cannot always use the result type
5136 -- for the allocator, because the expression might be
5137 -- of a specific type, such as in the case of an
5138 -- aggregate or even a nonlimited object when the
5139 -- result type is a limited class-wide interface type.
5142 Make_Allocator
(Loc
,
5144 Make_Qualified_Expression
(Loc
,
5147 (Etype
(Ret_Obj_Expr
), Loc
),
5148 Expression
=> New_Copy_Tree
(Ret_Obj_Expr
)));
5151 -- If the function returns a class-wide type we cannot
5152 -- use the return type for the allocator. Instead we
5153 -- use the type of the expression, which must be an
5154 -- aggregate of a definite type.
5156 if Is_Class_Wide_Type
(Ret_Obj_Typ
) then
5158 Make_Allocator
(Loc
,
5161 (Etype
(Ret_Obj_Expr
), Loc
));
5164 Make_Allocator
(Loc
,
5166 New_Occurrence_Of
(Ret_Obj_Typ
, Loc
));
5169 -- If the object requires default initialization then
5170 -- that will happen later following the elaboration of
5171 -- the object renaming. If we don't turn it off here
5172 -- then the object will be default initialized twice.
5174 Set_No_Initialization
(Heap_Allocator
);
5177 -- Set the flag indicating that the allocator came from
5178 -- a build-in-place return statement, so we can avoid
5179 -- adjusting the allocated object. Note that this flag
5180 -- will be inherited by the copies made below.
5182 Set_Alloc_For_BIP_Return
(Heap_Allocator
);
5184 -- The Pool_Allocator is just like the Heap_Allocator,
5185 -- except we set Storage_Pool and Procedure_To_Call so
5186 -- it will use the user-defined storage pool.
5188 Pool_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
5189 pragma Assert
(Alloc_For_BIP_Return
(Pool_Allocator
));
5191 -- Do not generate the renaming of the build-in-place
5192 -- pool parameter on ZFP because the parameter is not
5193 -- created in the first place.
5195 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
5197 Make_Object_Renaming_Declaration
(Loc
,
5198 Defining_Identifier
=> Pool_Id
,
5201 (RTE
(RE_Root_Storage_Pool
), Loc
),
5203 Make_Explicit_Dereference
(Loc
,
5205 (Build_In_Place_Formal
5206 (Func_Id
, BIP_Storage_Pool
), Loc
)));
5207 Set_Storage_Pool
(Pool_Allocator
, Pool_Id
);
5208 Set_Procedure_To_Call
5209 (Pool_Allocator
, RTE
(RE_Allocate_Any
));
5211 Pool_Decl
:= Make_Null_Statement
(Loc
);
5214 -- If the No_Allocators restriction is active, then only
5215 -- an allocator for secondary stack allocation is needed.
5216 -- It's OK for such allocators to have Comes_From_Source
5217 -- set to False, because gigi knows not to flag them as
5218 -- being a violation of No_Implicit_Heap_Allocations.
5220 if Restriction_Active
(No_Allocators
) then
5221 SS_Allocator
:= Heap_Allocator
;
5222 Heap_Allocator
:= Make_Null
(Loc
);
5223 Pool_Allocator
:= Make_Null
(Loc
);
5225 -- Otherwise the heap and pool allocators may be needed,
5226 -- so we make another allocator for secondary stack
5230 SS_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
5231 pragma Assert
(Alloc_For_BIP_Return
(SS_Allocator
));
5233 -- The heap and pool allocators are marked as
5234 -- Comes_From_Source since they correspond to an
5235 -- explicit user-written allocator (that is, it will
5236 -- only be executed on behalf of callers that call the
5237 -- function as initialization for such an allocator).
5238 -- Prevents errors when No_Implicit_Heap_Allocations
5241 Set_Comes_From_Source
(Heap_Allocator
, True);
5242 Set_Comes_From_Source
(Pool_Allocator
, True);
5245 -- The allocator is returned on the secondary stack.
5247 Set_Storage_Pool
(SS_Allocator
, RTE
(RE_SS_Pool
));
5248 Set_Procedure_To_Call
5249 (SS_Allocator
, RTE
(RE_SS_Allocate
));
5251 -- The allocator is returned on the secondary stack,
5252 -- so indicate that the function return, as well as
5253 -- all blocks that encloses the allocator, must not
5254 -- release it. The flags must be set now because
5255 -- the decision to use the secondary stack is done
5256 -- very late in the course of expanding the return
5257 -- statement, past the point where these flags are
5260 Set_Uses_Sec_Stack
(Func_Id
);
5261 Set_Uses_Sec_Stack
(Return_Statement_Entity
(N
));
5262 Set_Sec_Stack_Needed_For_Return
5263 (Return_Statement_Entity
(N
));
5264 Set_Enclosing_Sec_Stack_Return
(N
);
5266 -- Create an if statement to test the BIP_Alloc_Form
5267 -- formal and initialize the access object to either the
5268 -- BIP_Object_Access formal (BIP_Alloc_Form =
5269 -- Caller_Allocation), the result of allocating the
5270 -- object in the secondary stack (BIP_Alloc_Form =
5271 -- Secondary_Stack), or else an allocator to create the
5272 -- return object in the heap or user-defined pool
5273 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
5275 -- ??? An unchecked type conversion must be made in the
5276 -- case of assigning the access object formal to the
5277 -- local access object, because a normal conversion would
5278 -- be illegal in some cases (such as converting access-
5279 -- to-unconstrained to access-to-constrained), but the
5280 -- the unchecked conversion will presumably fail to work
5281 -- right in just such cases. It's not clear at all how to
5285 Make_If_Statement
(Loc
,
5289 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5291 Make_Integer_Literal
(Loc
,
5292 UI_From_Int
(BIP_Allocation_Form
'Pos
5293 (Caller_Allocation
)))),
5295 Then_Statements
=> New_List
(
5296 Make_Assignment_Statement
(Loc
,
5298 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
5300 Make_Unchecked_Type_Conversion
(Loc
,
5302 New_Occurrence_Of
(Ref_Type
, Loc
),
5304 New_Occurrence_Of
(Obj_Acc_Formal
, Loc
)))),
5306 Elsif_Parts
=> New_List
(
5307 Make_Elsif_Part
(Loc
,
5311 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5313 Make_Integer_Literal
(Loc
,
5314 UI_From_Int
(BIP_Allocation_Form
'Pos
5315 (Secondary_Stack
)))),
5317 Then_Statements
=> New_List
(
5318 Make_Assignment_Statement
(Loc
,
5320 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
5321 Expression
=> SS_Allocator
))),
5323 Make_Elsif_Part
(Loc
,
5327 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5329 Make_Integer_Literal
(Loc
,
5330 UI_From_Int
(BIP_Allocation_Form
'Pos
5333 Then_Statements
=> New_List
(
5334 Build_Heap_Allocator
5335 (Temp_Id
=> Alloc_Obj_Id
,
5336 Temp_Typ
=> Ref_Type
,
5338 Ret_Typ
=> Ret_Obj_Typ
,
5339 Alloc_Expr
=> Heap_Allocator
))),
5341 -- ???If all is well, we can put the following
5342 -- 'elsif' in the 'else', but this is a useful
5343 -- self-check in case caller and callee don't agree
5344 -- on whether BIPAlloc and so on should be passed.
5346 Make_Elsif_Part
(Loc
,
5350 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5352 Make_Integer_Literal
(Loc
,
5353 UI_From_Int
(BIP_Allocation_Form
'Pos
5354 (User_Storage_Pool
)))),
5356 Then_Statements
=> New_List
(
5358 Build_Heap_Allocator
5359 (Temp_Id
=> Alloc_Obj_Id
,
5360 Temp_Typ
=> Ref_Type
,
5362 Ret_Typ
=> Ret_Obj_Typ
,
5363 Alloc_Expr
=> Pool_Allocator
)))),
5365 -- Raise Program_Error if it's none of the above;
5366 -- this is a compiler bug.
5368 Else_Statements
=> New_List
(
5369 Make_Raise_Program_Error
(Loc
,
5370 Reason
=> PE_Build_In_Place_Mismatch
)));
5372 -- If a separate initialization assignment was created
5373 -- earlier, append that following the assignment of the
5374 -- implicit access formal to the access object, to ensure
5375 -- that the return object is initialized in that case. In
5376 -- this situation, the target of the assignment must be
5377 -- rewritten to denote a dereference of the access to the
5378 -- return object passed in by the caller.
5380 if Present
(Init_Assignment
) then
5381 Rewrite
(Name
(Init_Assignment
),
5382 Make_Explicit_Dereference
(Loc
,
5383 Prefix
=> New_Occurrence_Of
(Alloc_Obj_Id
, Loc
)));
5386 (Original_Node
(Name
(Init_Assignment
))));
5387 Set_Assignment_OK
(Name
(Init_Assignment
));
5389 Set_Etype
(Name
(Init_Assignment
), Etype
(Ret_Obj_Id
));
5392 (Then_Statements
(Alloc_If_Stmt
), Init_Assignment
);
5395 Insert_Before
(Ret_Obj_Decl
, Alloc_If_Stmt
);
5397 -- Remember the local access object for use in the
5398 -- dereference of the renaming created below.
5400 Obj_Acc_Formal
:= Alloc_Obj_Id
;
5404 -- Replace the return object declaration with a renaming of a
5405 -- dereference of the access value designating the return
5409 Make_Explicit_Dereference
(Loc
,
5410 Prefix
=> New_Occurrence_Of
(Obj_Acc_Formal
, Loc
));
5412 Rewrite
(Ret_Obj_Decl
,
5413 Make_Object_Renaming_Declaration
(Loc
,
5414 Defining_Identifier
=> Ret_Obj_Id
,
5415 Access_Definition
=> Empty
,
5416 Subtype_Mark
=> New_Occurrence_Of
(Ret_Obj_Typ
, Loc
),
5417 Name
=> Obj_Acc_Deref
));
5419 Set_Renamed_Object
(Ret_Obj_Id
, Obj_Acc_Deref
);
5423 -- Case where we do not build a block
5426 -- We're about to drop Return_Object_Declarations on the floor, so
5427 -- we need to insert it, in case it got expanded into useful code.
5428 -- Remove side effects from expression, which may be duplicated in
5429 -- subsequent checks (see Expand_Simple_Function_Return).
5431 Insert_List_Before
(N
, Return_Object_Declarations
(N
));
5432 Remove_Side_Effects
(Exp
);
5434 -- Build simple_return_statement that returns the expression directly
5436 Return_Stmt
:= Make_Simple_Return_Statement
(Loc
, Expression
=> Exp
);
5437 Result
:= Return_Stmt
;
5440 -- Set the flag to prevent infinite recursion
5442 Set_Comes_From_Extended_Return_Statement
(Return_Stmt
);
5444 Rewrite
(N
, Result
);
5446 end Expand_N_Extended_Return_Statement
;
5448 ----------------------------
5449 -- Expand_N_Function_Call --
5450 ----------------------------
5452 procedure Expand_N_Function_Call
(N
: Node_Id
) is
5455 end Expand_N_Function_Call
;
5457 ---------------------------------------
5458 -- Expand_N_Procedure_Call_Statement --
5459 ---------------------------------------
5461 procedure Expand_N_Procedure_Call_Statement
(N
: Node_Id
) is
5464 end Expand_N_Procedure_Call_Statement
;
5466 --------------------------------------
5467 -- Expand_N_Simple_Return_Statement --
5468 --------------------------------------
5470 procedure Expand_N_Simple_Return_Statement
(N
: Node_Id
) is
5472 -- Defend against previous errors (i.e. the return statement calls a
5473 -- function that is not available in configurable runtime).
5475 if Present
(Expression
(N
))
5476 and then Nkind
(Expression
(N
)) = N_Empty
5478 Check_Error_Detected
;
5482 -- Distinguish the function and non-function cases:
5484 case Ekind
(Return_Applies_To
(Return_Statement_Entity
(N
))) is
5486 | E_Generic_Function
5488 Expand_Simple_Function_Return
(N
);
5492 | E_Generic_Procedure
5494 | E_Return_Statement
5496 Expand_Non_Function_Return
(N
);
5499 raise Program_Error
;
5503 when RE_Not_Available
=>
5505 end Expand_N_Simple_Return_Statement
;
5507 ------------------------------
5508 -- Expand_N_Subprogram_Body --
5509 ------------------------------
5511 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5514 -- Add dummy push/pop label nodes at start and end to clear any local
5515 -- exception indications if local-exception-to-goto optimization is active.
5517 -- Add return statement if last statement in body is not a return statement
5518 -- (this makes things easier on Gigi which does not want to have to handle
5519 -- a missing return).
5521 -- Add call to Activate_Tasks if body is a task activator
5523 -- Deal with possible detection of infinite recursion
5525 -- Eliminate body completely if convention stubbed
5527 -- Encode entity names within body, since we will not need to reference
5528 -- these entities any longer in the front end.
5530 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5532 -- Reset Pure indication if any parameter has root type System.Address
5533 -- or has any parameters of limited types, where limited means that the
5534 -- run-time view is limited (i.e. the full type is limited).
5538 procedure Expand_N_Subprogram_Body
(N
: Node_Id
) is
5539 Body_Id
: constant Entity_Id
:= Defining_Entity
(N
);
5540 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
5541 Loc
: constant Source_Ptr
:= Sloc
(N
);
5543 procedure Add_Return
(Spec_Id
: Entity_Id
; Stmts
: List_Id
);
5544 -- Append a return statement to the statement sequence Stmts if the last
5545 -- statement is not already a return or a goto statement. Note that the
5546 -- latter test is not critical, it does not matter if we add a few extra
5547 -- returns, since they get eliminated anyway later on. Spec_Id denotes
5548 -- the corresponding spec of the subprogram body.
5554 procedure Add_Return
(Spec_Id
: Entity_Id
; Stmts
: List_Id
) is
5555 Last_Stmt
: Node_Id
;
5560 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5561 -- not relevant in this context since they are not executable.
5563 Last_Stmt
:= Last
(Stmts
);
5564 while Nkind
(Last_Stmt
) in N_Pop_xxx_Label
loop
5568 -- Now insert return unless last statement is a transfer
5570 if not Is_Transfer
(Last_Stmt
) then
5572 -- The source location for the return is the end label of the
5573 -- procedure if present. Otherwise use the sloc of the last
5574 -- statement in the list. If the list comes from a generated
5575 -- exception handler and we are not debugging generated code,
5576 -- all the statements within the handler are made invisible
5579 if Nkind
(Parent
(Stmts
)) = N_Exception_Handler
5580 and then not Comes_From_Source
(Parent
(Stmts
))
5582 Loc
:= Sloc
(Last_Stmt
);
5583 elsif Present
(End_Label
(HSS
)) then
5584 Loc
:= Sloc
(End_Label
(HSS
));
5586 Loc
:= Sloc
(Last_Stmt
);
5589 -- Append return statement, and set analyzed manually. We can't
5590 -- call Analyze on this return since the scope is wrong.
5592 -- Note: it almost works to push the scope and then do the Analyze
5593 -- call, but something goes wrong in some weird cases and it is
5594 -- not worth worrying about ???
5596 Stmt
:= Make_Simple_Return_Statement
(Loc
);
5598 -- The return statement is handled properly, and the call to the
5599 -- postcondition, inserted below, does not require information
5600 -- from the body either. However, that call is analyzed in the
5601 -- enclosing scope, and an elaboration check might improperly be
5602 -- added to it. A guard in Sem_Elab is needed to prevent that
5603 -- spurious check, see Check_Elab_Call.
5605 Append_To
(Stmts
, Stmt
);
5606 Set_Analyzed
(Stmt
);
5608 -- Call the _Postconditions procedure if the related subprogram
5609 -- has contract assertions that need to be verified on exit.
5611 if Ekind
(Spec_Id
) = E_Procedure
5612 and then Present
(Postconditions_Proc
(Spec_Id
))
5614 Insert_Action
(Stmt
,
5615 Make_Procedure_Call_Statement
(Loc
,
5617 New_Occurrence_Of
(Postconditions_Proc
(Spec_Id
), Loc
)));
5626 Spec_Id
: Entity_Id
;
5628 -- Start of processing for Expand_N_Subprogram_Body
5631 if Present
(Corresponding_Spec
(N
)) then
5632 Spec_Id
:= Corresponding_Spec
(N
);
5637 -- If this is a Pure function which has any parameters whose root type
5638 -- is System.Address, reset the Pure indication.
5639 -- This check is also performed when the subprogram is frozen, but we
5640 -- repeat it on the body so that the indication is consistent, and so
5641 -- it applies as well to bodies without separate specifications.
5643 if Is_Pure
(Spec_Id
)
5644 and then Is_Subprogram
(Spec_Id
)
5645 and then not Has_Pragma_Pure_Function
(Spec_Id
)
5647 Check_Function_With_Address_Parameter
(Spec_Id
);
5649 if Spec_Id
/= Body_Id
then
5650 Set_Is_Pure
(Body_Id
, Is_Pure
(Spec_Id
));
5654 -- Set L to either the list of declarations if present, or to the list
5655 -- of statements if no declarations are present. This is used to insert
5656 -- new stuff at the start.
5658 if Is_Non_Empty_List
(Declarations
(N
)) then
5659 L
:= Declarations
(N
);
5661 L
:= Statements
(HSS
);
5664 -- If local-exception-to-goto optimization active, insert dummy push
5665 -- statements at start, and dummy pop statements at end, but inhibit
5666 -- this if we have No_Exception_Handlers, since they are useless and
5667 -- intefere with analysis, e.g. by codepeer.
5669 if (Debug_Flag_Dot_G
5670 or else Restriction_Active
(No_Exception_Propagation
))
5671 and then not Restriction_Active
(No_Exception_Handlers
)
5672 and then not CodePeer_Mode
5673 and then Is_Non_Empty_List
(L
)
5676 FS
: constant Node_Id
:= First
(L
);
5677 FL
: constant Source_Ptr
:= Sloc
(FS
);
5682 -- LS points to either last statement, if statements are present
5683 -- or to the last declaration if there are no statements present.
5684 -- It is the node after which the pop's are generated.
5686 if Is_Non_Empty_List
(Statements
(HSS
)) then
5687 LS
:= Last
(Statements
(HSS
));
5694 Insert_List_Before_And_Analyze
(FS
, New_List
(
5695 Make_Push_Constraint_Error_Label
(FL
),
5696 Make_Push_Program_Error_Label
(FL
),
5697 Make_Push_Storage_Error_Label
(FL
)));
5699 Insert_List_After_And_Analyze
(LS
, New_List
(
5700 Make_Pop_Constraint_Error_Label
(LL
),
5701 Make_Pop_Program_Error_Label
(LL
),
5702 Make_Pop_Storage_Error_Label
(LL
)));
5706 -- Need poll on entry to subprogram if polling enabled. We only do this
5707 -- for non-empty subprograms, since it does not seem necessary to poll
5708 -- for a dummy null subprogram.
5710 if Is_Non_Empty_List
(L
) then
5712 -- Do not add a polling call if the subprogram is to be inlined by
5713 -- the back-end, to avoid repeated calls with multiple inlinings.
5715 if Is_Inlined
(Spec_Id
)
5716 and then Front_End_Inlining
5717 and then Optimization_Level
> 1
5721 Generate_Poll_Call
(First
(L
));
5725 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5727 if Init_Or_Norm_Scalars
and then Is_Subprogram
(Spec_Id
) then
5733 -- Loop through formals
5735 F
:= First_Formal
(Spec_Id
);
5736 while Present
(F
) loop
5737 if Is_Scalar_Type
(Etype
(F
))
5738 and then Ekind
(F
) = E_Out_Parameter
5740 Check_Restriction
(No_Default_Initialization
, F
);
5742 -- Insert the initialization. We turn off validity checks
5743 -- for this assignment, since we do not want any check on
5744 -- the initial value itself (which may well be invalid).
5745 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5748 Make_Assignment_Statement
(Loc
,
5749 Name
=> New_Occurrence_Of
(F
, Loc
),
5750 Expression
=> Get_Simple_Init_Val
(Etype
(F
), N
));
5751 Set_Suppress_Assignment_Checks
(A
);
5753 Insert_Before_And_Analyze
(First
(L
),
5754 A
, Suppress
=> Validity_Check
);
5762 -- Clear out statement list for stubbed procedure
5764 if Present
(Corresponding_Spec
(N
)) then
5765 Set_Elaboration_Flag
(N
, Spec_Id
);
5767 if Convention
(Spec_Id
) = Convention_Stubbed
5768 or else Is_Eliminated
(Spec_Id
)
5770 Set_Declarations
(N
, Empty_List
);
5771 Set_Handled_Statement_Sequence
(N
,
5772 Make_Handled_Sequence_Of_Statements
(Loc
,
5773 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
5779 -- Create a set of discriminals for the next protected subprogram body
5781 if Is_List_Member
(N
)
5782 and then Present
(Parent
(List_Containing
(N
)))
5783 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5784 and then Present
(Next_Protected_Operation
(N
))
5786 Set_Discriminals
(Parent
(Base_Type
(Scope
(Spec_Id
))));
5789 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5790 -- subprograms with no specs are not frozen.
5793 Typ
: constant Entity_Id
:= Etype
(Spec_Id
);
5794 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5797 if Is_Limited_View
(Typ
) then
5798 Set_Returns_By_Ref
(Spec_Id
);
5800 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5801 Set_Returns_By_Ref
(Spec_Id
);
5805 -- For a procedure, we add a return for all possible syntactic ends of
5808 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
) then
5809 Add_Return
(Spec_Id
, Statements
(HSS
));
5811 if Present
(Exception_Handlers
(HSS
)) then
5812 Except_H
:= First_Non_Pragma
(Exception_Handlers
(HSS
));
5813 while Present
(Except_H
) loop
5814 Add_Return
(Spec_Id
, Statements
(Except_H
));
5815 Next_Non_Pragma
(Except_H
);
5819 -- For a function, we must deal with the case where there is at least
5820 -- one missing return. What we do is to wrap the entire body of the
5821 -- function in a block:
5834 -- raise Program_Error;
5837 -- This approach is necessary because the raise must be signalled to the
5838 -- caller, not handled by any local handler (RM 6.4(11)).
5840 -- Note: we do not need to analyze the constructed sequence here, since
5841 -- it has no handler, and an attempt to analyze the handled statement
5842 -- sequence twice is risky in various ways (e.g. the issue of expanding
5843 -- cleanup actions twice).
5845 elsif Has_Missing_Return
(Spec_Id
) then
5847 Hloc
: constant Source_Ptr
:= Sloc
(HSS
);
5848 Blok
: constant Node_Id
:=
5849 Make_Block_Statement
(Hloc
,
5850 Handled_Statement_Sequence
=> HSS
);
5851 Rais
: constant Node_Id
:=
5852 Make_Raise_Program_Error
(Hloc
,
5853 Reason
=> PE_Missing_Return
);
5856 Set_Handled_Statement_Sequence
(N
,
5857 Make_Handled_Sequence_Of_Statements
(Hloc
,
5858 Statements
=> New_List
(Blok
, Rais
)));
5860 Push_Scope
(Spec_Id
);
5867 -- If subprogram contains a parameterless recursive call, then we may
5868 -- have an infinite recursion, so see if we can generate code to check
5869 -- for this possibility if storage checks are not suppressed.
5871 if Ekind
(Spec_Id
) = E_Procedure
5872 and then Has_Recursive_Call
(Spec_Id
)
5873 and then not Storage_Checks_Suppressed
(Spec_Id
)
5875 Detect_Infinite_Recursion
(N
, Spec_Id
);
5878 -- Set to encode entity names in package body before gigi is called
5880 Qualify_Entity_Names
(N
);
5882 -- If the body belongs to a nonabstract library-level source primitive
5883 -- of a tagged type, install an elaboration check which ensures that a
5884 -- dispatching call targeting the primitive will not execute the body
5885 -- without it being previously elaborated.
5887 Install_Primitive_Elaboration_Check
(N
);
5888 end Expand_N_Subprogram_Body
;
5890 -----------------------------------
5891 -- Expand_N_Subprogram_Body_Stub --
5892 -----------------------------------
5894 procedure Expand_N_Subprogram_Body_Stub
(N
: Node_Id
) is
5898 if Present
(Corresponding_Body
(N
)) then
5899 Bod
:= Unit_Declaration_Node
(Corresponding_Body
(N
));
5901 -- The body may have been expanded already when it is analyzed
5902 -- through the subunit node. Do no expand again: it interferes
5903 -- with the construction of unnesting tables when generating C.
5905 if not Analyzed
(Bod
) then
5906 Expand_N_Subprogram_Body
(Bod
);
5909 -- Add full qualification to entities that may be created late
5910 -- during unnesting.
5912 Qualify_Entity_Names
(N
);
5914 end Expand_N_Subprogram_Body_Stub
;
5916 -------------------------------------
5917 -- Expand_N_Subprogram_Declaration --
5918 -------------------------------------
5920 -- If the declaration appears within a protected body, it is a private
5921 -- operation of the protected type. We must create the corresponding
5922 -- protected subprogram an associated formals. For a normal protected
5923 -- operation, this is done when expanding the protected type declaration.
5925 -- If the declaration is for a null procedure, emit null body
5927 procedure Expand_N_Subprogram_Declaration
(N
: Node_Id
) is
5928 Loc
: constant Source_Ptr
:= Sloc
(N
);
5929 Subp
: constant Entity_Id
:= Defining_Entity
(N
);
5933 Scop
: constant Entity_Id
:= Scope
(Subp
);
5935 Prot_Decl
: Node_Id
;
5936 Prot_Id
: Entity_Id
;
5938 -- Start of processing for Expand_N_Subprogram_Declaration
5941 -- In SPARK, subprogram declarations are only allowed in package
5944 if Nkind
(Parent
(N
)) /= N_Package_Specification
then
5945 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5946 Check_SPARK_05_Restriction
5947 ("subprogram declaration is not a library item", N
);
5949 elsif Present
(Next
(N
))
5950 and then Nkind
(Next
(N
)) = N_Pragma
5951 and then Get_Pragma_Id
(Next
(N
)) = Pragma_Import
5953 -- In SPARK, subprogram declarations are also permitted in
5954 -- declarative parts when immediately followed by a corresponding
5955 -- pragma Import. We only check here that there is some pragma
5960 Check_SPARK_05_Restriction
5961 ("subprogram declaration is not allowed here", N
);
5965 -- Deal with case of protected subprogram. Do not generate protected
5966 -- operation if operation is flagged as eliminated.
5968 if Is_List_Member
(N
)
5969 and then Present
(Parent
(List_Containing
(N
)))
5970 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5971 and then Is_Protected_Type
(Scop
)
5973 if No
(Protected_Body_Subprogram
(Subp
))
5974 and then not Is_Eliminated
(Subp
)
5977 Make_Subprogram_Declaration
(Loc
,
5979 Build_Protected_Sub_Specification
5980 (N
, Scop
, Unprotected_Mode
));
5982 -- The protected subprogram is declared outside of the protected
5983 -- body. Given that the body has frozen all entities so far, we
5984 -- analyze the subprogram and perform freezing actions explicitly.
5985 -- including the generation of an explicit freeze node, to ensure
5986 -- that gigi has the proper order of elaboration.
5987 -- If the body is a subunit, the insertion point is before the
5988 -- stub in the parent.
5990 Prot_Bod
:= Parent
(List_Containing
(N
));
5992 if Nkind
(Parent
(Prot_Bod
)) = N_Subunit
then
5993 Prot_Bod
:= Corresponding_Stub
(Parent
(Prot_Bod
));
5996 Insert_Before
(Prot_Bod
, Prot_Decl
);
5997 Prot_Id
:= Defining_Unit_Name
(Specification
(Prot_Decl
));
5998 Set_Has_Delayed_Freeze
(Prot_Id
);
6000 Push_Scope
(Scope
(Scop
));
6001 Analyze
(Prot_Decl
);
6002 Freeze_Before
(N
, Prot_Id
);
6003 Set_Protected_Body_Subprogram
(Subp
, Prot_Id
);
6005 -- Create protected operation as well. Even though the operation
6006 -- is only accessible within the body, it is possible to make it
6007 -- available outside of the protected object by using 'Access to
6008 -- provide a callback, so build protected version in all cases.
6011 Make_Subprogram_Declaration
(Loc
,
6013 Build_Protected_Sub_Specification
(N
, Scop
, Protected_Mode
));
6014 Insert_Before
(Prot_Bod
, Prot_Decl
);
6015 Analyze
(Prot_Decl
);
6020 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
6021 -- cases this is superfluous because calls to it will be automatically
6022 -- inlined, but we definitely need the body if preconditions for the
6023 -- procedure are present, or if performing coverage analysis.
6025 elsif Nkind
(Specification
(N
)) = N_Procedure_Specification
6026 and then Null_Present
(Specification
(N
))
6029 Bod
: constant Node_Id
:= Body_To_Inline
(N
);
6032 Set_Has_Completion
(Subp
, False);
6033 Append_Freeze_Action
(Subp
, Bod
);
6035 -- The body now contains raise statements, so calls to it will
6038 Set_Is_Inlined
(Subp
, False);
6042 -- When generating C code, transform a function that returns a
6043 -- constrained array type into a procedure with an out parameter
6044 -- that carries the return value.
6046 -- We skip this transformation for unchecked conversions, since they
6047 -- are not needed by the C generator (and this also produces cleaner
6050 if Modify_Tree_For_C
6051 and then Nkind
(Specification
(N
)) = N_Function_Specification
6052 and then Is_Array_Type
(Etype
(Subp
))
6053 and then Is_Constrained
(Etype
(Subp
))
6054 and then not Is_Unchecked_Conversion_Instance
(Subp
)
6056 Build_Procedure_Form
(N
);
6058 end Expand_N_Subprogram_Declaration
;
6060 --------------------------------
6061 -- Expand_Non_Function_Return --
6062 --------------------------------
6064 procedure Expand_Non_Function_Return
(N
: Node_Id
) is
6065 pragma Assert
(No
(Expression
(N
)));
6067 Loc
: constant Source_Ptr
:= Sloc
(N
);
6068 Scope_Id
: Entity_Id
:= Return_Applies_To
(Return_Statement_Entity
(N
));
6069 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
6072 Goto_Stat
: Node_Id
;
6076 -- Call the _Postconditions procedure if the related subprogram has
6077 -- contract assertions that need to be verified on exit.
6079 if Ekind_In
(Scope_Id
, E_Entry
, E_Entry_Family
, E_Procedure
)
6080 and then Present
(Postconditions_Proc
(Scope_Id
))
6083 Make_Procedure_Call_Statement
(Loc
,
6084 Name
=> New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
)));
6087 -- If it is a return from a procedure do no extra steps
6089 if Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
6092 -- If it is a nested return within an extended one, replace it with a
6093 -- return of the previously declared return object.
6095 elsif Kind
= E_Return_Statement
then
6097 Make_Simple_Return_Statement
(Loc
,
6099 New_Occurrence_Of
(First_Entity
(Scope_Id
), Loc
)));
6100 Set_Comes_From_Extended_Return_Statement
(N
);
6101 Set_Return_Statement_Entity
(N
, Scope_Id
);
6102 Expand_Simple_Function_Return
(N
);
6106 pragma Assert
(Is_Entry
(Scope_Id
));
6108 -- Look at the enclosing block to see whether the return is from an
6109 -- accept statement or an entry body.
6111 for J
in reverse 0 .. Scope_Stack
.Last
loop
6112 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
6113 exit when Is_Concurrent_Type
(Scope_Id
);
6116 -- If it is a return from accept statement it is expanded as call to
6117 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
6119 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6120 -- Expand_N_Accept_Alternative in exp_ch9.adb)
6122 if Is_Task_Type
(Scope_Id
) then
6125 Make_Procedure_Call_Statement
(Loc
,
6126 Name
=> New_Occurrence_Of
(RTE
(RE_Complete_Rendezvous
), Loc
));
6127 Insert_Before
(N
, Call
);
6128 -- why not insert actions here???
6131 Acc_Stat
:= Parent
(N
);
6132 while Nkind
(Acc_Stat
) /= N_Accept_Statement
loop
6133 Acc_Stat
:= Parent
(Acc_Stat
);
6136 Lab_Node
:= Last
(Statements
6137 (Handled_Statement_Sequence
(Acc_Stat
)));
6139 Goto_Stat
:= Make_Goto_Statement
(Loc
,
6140 Name
=> New_Occurrence_Of
6141 (Entity
(Identifier
(Lab_Node
)), Loc
));
6143 Set_Analyzed
(Goto_Stat
);
6145 Rewrite
(N
, Goto_Stat
);
6148 -- If it is a return from an entry body, put a Complete_Entry_Body call
6149 -- in front of the return.
6151 elsif Is_Protected_Type
(Scope_Id
) then
6153 Make_Procedure_Call_Statement
(Loc
,
6155 New_Occurrence_Of
(RTE
(RE_Complete_Entry_Body
), Loc
),
6156 Parameter_Associations
=> New_List
(
6157 Make_Attribute_Reference
(Loc
,
6160 (Find_Protection_Object
(Current_Scope
), Loc
),
6161 Attribute_Name
=> Name_Unchecked_Access
)));
6163 Insert_Before
(N
, Call
);
6166 end Expand_Non_Function_Return
;
6168 ---------------------------------------
6169 -- Expand_Protected_Object_Reference --
6170 ---------------------------------------
6172 function Expand_Protected_Object_Reference
6174 Scop
: Entity_Id
) return Node_Id
6176 Loc
: constant Source_Ptr
:= Sloc
(N
);
6183 Rec
:= Make_Identifier
(Loc
, Name_uObject
);
6184 Set_Etype
(Rec
, Corresponding_Record_Type
(Scop
));
6186 -- Find enclosing protected operation, and retrieve its first parameter,
6187 -- which denotes the enclosing protected object. If the enclosing
6188 -- operation is an entry, we are immediately within the protected body,
6189 -- and we can retrieve the object from the service entries procedure. A
6190 -- barrier function has the same signature as an entry. A barrier
6191 -- function is compiled within the protected object, but unlike
6192 -- protected operations its never needs locks, so that its protected
6193 -- body subprogram points to itself.
6195 Proc
:= Current_Scope
;
6196 while Present
(Proc
)
6197 and then Scope
(Proc
) /= Scop
6199 Proc
:= Scope
(Proc
);
6202 Corr
:= Protected_Body_Subprogram
(Proc
);
6206 -- Previous error left expansion incomplete.
6207 -- Nothing to do on this call.
6214 (First
(Parameter_Specifications
(Parent
(Corr
))));
6216 if Is_Subprogram
(Proc
) and then Proc
/= Corr
then
6218 -- Protected function or procedure
6220 Set_Entity
(Rec
, Param
);
6222 -- Rec is a reference to an entity which will not be in scope when
6223 -- the call is reanalyzed, and needs no further analysis.
6228 -- Entry or barrier function for entry body. The first parameter of
6229 -- the entry body procedure is pointer to the object. We create a
6230 -- local variable of the proper type, duplicating what is done to
6231 -- define _object later on.
6235 Obj_Ptr
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
6239 Make_Full_Type_Declaration
(Loc
,
6240 Defining_Identifier
=> Obj_Ptr
,
6242 Make_Access_To_Object_Definition
(Loc
,
6243 Subtype_Indication
=>
6245 (Corresponding_Record_Type
(Scop
), Loc
))));
6247 Insert_Actions
(N
, Decls
);
6248 Freeze_Before
(N
, Obj_Ptr
);
6251 Make_Explicit_Dereference
(Loc
,
6253 Unchecked_Convert_To
(Obj_Ptr
,
6254 New_Occurrence_Of
(Param
, Loc
)));
6256 -- Analyze new actual. Other actuals in calls are already analyzed
6257 -- and the list of actuals is not reanalyzed after rewriting.
6259 Set_Parent
(Rec
, N
);
6265 end Expand_Protected_Object_Reference
;
6267 --------------------------------------
6268 -- Expand_Protected_Subprogram_Call --
6269 --------------------------------------
6271 procedure Expand_Protected_Subprogram_Call
6278 procedure Expand_Internal_Init_Call
;
6279 -- A call to an operation of the type may occur in the initialization
6280 -- of a private component. In that case the prefix of the call is an
6281 -- entity name and the call is treated as internal even though it
6282 -- appears in code outside of the protected type.
6284 procedure Freeze_Called_Function
;
6285 -- If it is a function call it can appear in elaboration code and
6286 -- the called entity must be frozen before the call. This must be
6287 -- done before the call is expanded, as the expansion may rewrite it
6288 -- to something other than a call (e.g. a temporary initialized in a
6289 -- transient block).
6291 -------------------------------
6292 -- Expand_Internal_Init_Call --
6293 -------------------------------
6295 procedure Expand_Internal_Init_Call
is
6297 -- If the context is a protected object (rather than a protected
6298 -- type) the call itself is bound to raise program_error because
6299 -- the protected body will not have been elaborated yet. This is
6300 -- diagnosed subsequently in Sem_Elab.
6302 Freeze_Called_Function
;
6304 -- The target of the internal call is the first formal of the
6305 -- enclosing initialization procedure.
6307 Rec
:= New_Occurrence_Of
(First_Formal
(Current_Scope
), Sloc
(N
));
6308 Build_Protected_Subprogram_Call
(N
,
6313 Resolve
(N
, Etype
(Subp
));
6314 end Expand_Internal_Init_Call
;
6316 ----------------------------
6317 -- Freeze_Called_Function --
6318 ----------------------------
6320 procedure Freeze_Called_Function
is
6322 if Ekind
(Subp
) = E_Function
then
6323 Freeze_Expression
(Name
(N
));
6325 end Freeze_Called_Function
;
6327 -- Start of processing for Expand_Protected_Subprogram_Call
6330 -- If the protected object is not an enclosing scope, this is an inter-
6331 -- object function call. Inter-object procedure calls are expanded by
6332 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6333 -- subprogram being called is in the protected body being compiled, and
6334 -- if the protected object in the call is statically the enclosing type.
6335 -- The object may be a component of some other data structure, in which
6336 -- case this must be handled as an inter-object call.
6338 if not In_Open_Scopes
(Scop
)
6339 or else Is_Entry_Wrapper
(Current_Scope
)
6340 or else not Is_Entity_Name
(Name
(N
))
6342 if Nkind
(Name
(N
)) = N_Selected_Component
then
6343 Rec
:= Prefix
(Name
(N
));
6345 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
6346 Rec
:= Prefix
(Prefix
(Name
(N
)));
6348 -- If this is a call within an entry wrapper, it appears within a
6349 -- precondition that calls another primitive of the synchronized
6350 -- type. The target object of the call is the first actual on the
6351 -- wrapper. Note that this is an external call, because the wrapper
6352 -- is called outside of the synchronized object. This means that
6353 -- an entry call to an entry with preconditions involves two
6354 -- synchronized operations.
6356 elsif Ekind
(Current_Scope
) = E_Procedure
6357 and then Is_Entry_Wrapper
(Current_Scope
)
6359 Rec
:= New_Occurrence_Of
(First_Entity
(Current_Scope
), Sloc
(N
));
6362 -- If the context is the initialization procedure for a protected
6363 -- type, the call is legal because the called entity must be a
6364 -- function of that enclosing type, and this is treated as an
6368 (Is_Entity_Name
(Name
(N
)) and then Inside_Init_Proc
);
6370 Expand_Internal_Init_Call
;
6374 Freeze_Called_Function
;
6375 Build_Protected_Subprogram_Call
(N
,
6376 Name
=> New_Occurrence_Of
(Subp
, Sloc
(N
)),
6377 Rec
=> Convert_Concurrent
(Rec
, Etype
(Rec
)),
6381 Rec
:= Expand_Protected_Object_Reference
(N
, Scop
);
6387 Freeze_Called_Function
;
6388 Build_Protected_Subprogram_Call
(N
,
6394 -- Analyze and resolve the new call. The actuals have already been
6395 -- resolved, but expansion of a function call will add extra actuals
6396 -- if needed. Analysis of a procedure call already includes resolution.
6400 if Ekind
(Subp
) = E_Function
then
6401 Resolve
(N
, Etype
(Subp
));
6403 end Expand_Protected_Subprogram_Call
;
6405 -----------------------------------
6406 -- Expand_Simple_Function_Return --
6407 -----------------------------------
6409 -- The "simple" comes from the syntax rule simple_return_statement. The
6410 -- semantics are not at all simple.
6412 procedure Expand_Simple_Function_Return
(N
: Node_Id
) is
6413 Loc
: constant Source_Ptr
:= Sloc
(N
);
6415 Scope_Id
: constant Entity_Id
:=
6416 Return_Applies_To
(Return_Statement_Entity
(N
));
6417 -- The function we are returning from
6419 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
6420 -- The result type of the function
6422 Utyp
: constant Entity_Id
:= Underlying_Type
(R_Type
);
6424 Exp
: Node_Id
:= Expression
(N
);
6425 pragma Assert
(Present
(Exp
));
6427 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
6428 -- The type of the expression (not necessarily the same as R_Type)
6430 Subtype_Ind
: Node_Id
;
6431 -- If the result type of the function is class-wide and the expression
6432 -- has a specific type, then we use the expression's type as the type of
6433 -- the return object. In cases where the expression is an aggregate that
6434 -- is built in place, this avoids the need for an expensive conversion
6435 -- of the return object to the specific type on assignments to the
6436 -- individual components.
6439 if Is_Class_Wide_Type
(R_Type
)
6440 and then not Is_Class_Wide_Type
(Exptyp
)
6441 and then Nkind
(Exp
) /= N_Type_Conversion
6443 Subtype_Ind
:= New_Occurrence_Of
(Exptyp
, Loc
);
6445 Subtype_Ind
:= New_Occurrence_Of
(R_Type
, Loc
);
6447 -- If the result type is class-wide and the expression is a view
6448 -- conversion, the conversion plays no role in the expansion because
6449 -- it does not modify the tag of the object. Remove the conversion
6450 -- altogether to prevent tag overwriting.
6452 if Is_Class_Wide_Type
(R_Type
)
6453 and then not Is_Class_Wide_Type
(Exptyp
)
6454 and then Nkind
(Exp
) = N_Type_Conversion
6456 Exp
:= Expression
(Exp
);
6460 -- Assert that if F says "return G(...);"
6461 -- then F and G are both b-i-p, or neither b-i-p.
6463 if Nkind
(Exp
) = N_Function_Call
then
6464 pragma Assert
(Ekind
(Scope_Id
) = E_Function
);
6466 (Is_Build_In_Place_Function
(Scope_Id
) =
6467 Is_Build_In_Place_Function_Call
(Exp
));
6471 -- For the case of a simple return that does not come from an
6472 -- extended return, in the case of build-in-place, we rewrite
6473 -- "return <expression>;" to be:
6475 -- return _anon_ : <return_subtype> := <expression>
6477 -- The expansion produced by Expand_N_Extended_Return_Statement will
6478 -- contain simple return statements (for example, a block containing
6479 -- simple return of the return object), which brings us back here with
6480 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6481 -- checking for a simple return that does not come from an extended
6482 -- return is to avoid this infinite recursion.
6484 -- The reason for this design is that for Ada 2005 limited returns, we
6485 -- need to reify the return object, so we can build it "in place", and
6486 -- we need a block statement to hang finalization and tasking stuff.
6488 -- ??? In order to avoid disruption, we avoid translating to extended
6489 -- return except in the cases where we really need to (Ada 2005 for
6490 -- inherently limited). We might prefer to do this translation in all
6491 -- cases (except perhaps for the case of Ada 95 inherently limited),
6492 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6493 -- code. This would also allow us to do the build-in-place optimization
6494 -- for efficiency even in cases where it is semantically not required.
6496 -- As before, we check the type of the return expression rather than the
6497 -- return type of the function, because the latter may be a limited
6498 -- class-wide interface type, which is not a limited type, even though
6499 -- the type of the expression may be.
6502 (Comes_From_Extended_Return_Statement
(N
)
6503 or else not Is_Build_In_Place_Function_Call
(Exp
)
6504 or else Is_Build_In_Place_Function
(Scope_Id
));
6506 if not Comes_From_Extended_Return_Statement
(N
)
6507 and then Is_Build_In_Place_Function
(Scope_Id
)
6508 and then not Debug_Flag_Dot_L
6510 -- The functionality of interface thunks is simple and it is always
6511 -- handled by means of simple return statements. This leaves their
6512 -- expansion simple and clean.
6514 and then not Is_Thunk
(Current_Scope
)
6517 Return_Object_Entity
: constant Entity_Id
:=
6518 Make_Temporary
(Loc
, 'R', Exp
);
6520 Obj_Decl
: constant Node_Id
:=
6521 Make_Object_Declaration
(Loc
,
6522 Defining_Identifier
=> Return_Object_Entity
,
6523 Object_Definition
=> Subtype_Ind
,
6526 Ext
: constant Node_Id
:=
6527 Make_Extended_Return_Statement
(Loc
,
6528 Return_Object_Declarations
=> New_List
(Obj_Decl
));
6529 -- Do not perform this high-level optimization if the result type
6530 -- is an interface because the "this" pointer must be displaced.
6539 -- Here we have a simple return statement that is part of the expansion
6540 -- of an extended return statement (either written by the user, or
6541 -- generated by the above code).
6543 -- Always normalize C/Fortran boolean result. This is not always needed,
6544 -- but it seems a good idea to minimize the passing around of non-
6545 -- normalized values, and in any case this handles the processing of
6546 -- barrier functions for protected types, which turn the condition into
6547 -- a return statement.
6549 if Is_Boolean_Type
(Exptyp
)
6550 and then Nonzero_Is_True
(Exptyp
)
6552 Adjust_Condition
(Exp
);
6553 Adjust_Result_Type
(Exp
, Exptyp
);
6556 -- Do validity check if enabled for returns
6558 if Validity_Checks_On
6559 and then Validity_Check_Returns
6564 -- Check the result expression of a scalar function against the subtype
6565 -- of the function by inserting a conversion. This conversion must
6566 -- eventually be performed for other classes of types, but for now it's
6567 -- only done for scalars.
6570 if Is_Scalar_Type
(Exptyp
) then
6571 Rewrite
(Exp
, Convert_To
(R_Type
, Exp
));
6573 -- The expression is resolved to ensure that the conversion gets
6574 -- expanded to generate a possible constraint check.
6576 Analyze_And_Resolve
(Exp
, R_Type
);
6579 -- Deal with returning variable length objects and controlled types
6581 -- Nothing to do if we are returning by reference, or this is not a
6582 -- type that requires special processing (indicated by the fact that
6583 -- it requires a cleanup scope for the secondary stack case).
6585 if Is_Build_In_Place_Function
(Scope_Id
)
6586 or else Is_Limited_Interface
(Exptyp
)
6590 -- No copy needed for thunks returning interface type objects since
6591 -- the object is returned by reference and the maximum functionality
6592 -- required is just to displace the pointer.
6594 elsif Is_Thunk
(Current_Scope
) and then Is_Interface
(Exptyp
) then
6597 -- If the call is within a thunk and the type is a limited view, the
6598 -- backend will eventually see the non-limited view of the type.
6600 elsif Is_Thunk
(Current_Scope
) and then Is_Incomplete_Type
(Exptyp
) then
6603 elsif not Requires_Transient_Scope
(R_Type
) then
6605 -- Mutable records with variable-length components are not returned
6606 -- on the sec-stack, so we need to make sure that the back end will
6607 -- only copy back the size of the actual value, and not the maximum
6608 -- size. We create an actual subtype for this purpose. However we
6609 -- need not do it if the expression is a function call since this
6610 -- will be done in the called function and doing it here too would
6611 -- cause a temporary with maximum size to be created.
6614 Ubt
: constant Entity_Id
:= Underlying_Type
(Base_Type
(Exptyp
));
6618 if Nkind
(Exp
) /= N_Function_Call
6619 and then Has_Discriminants
(Ubt
)
6620 and then not Is_Constrained
(Ubt
)
6621 and then not Has_Unchecked_Union
(Ubt
)
6623 Decl
:= Build_Actual_Subtype
(Ubt
, Exp
);
6624 Ent
:= Defining_Identifier
(Decl
);
6625 Insert_Action
(Exp
, Decl
);
6626 Rewrite
(Exp
, Unchecked_Convert_To
(Ent
, Exp
));
6627 Analyze_And_Resolve
(Exp
);
6631 -- Here if secondary stack is used
6634 -- Prevent the reclamation of the secondary stack by all enclosing
6635 -- blocks and loops as well as the related function; otherwise the
6636 -- result would be reclaimed too early.
6638 Set_Enclosing_Sec_Stack_Return
(N
);
6640 -- Optimize the case where the result is a function call. In this
6641 -- case either the result is already on the secondary stack, or is
6642 -- already being returned with the stack pointer depressed and no
6643 -- further processing is required except to set the By_Ref flag
6644 -- to ensure that gigi does not attempt an extra unnecessary copy.
6645 -- (actually not just unnecessary but harmfully wrong in the case
6646 -- of a controlled type, where gigi does not know how to do a copy).
6647 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6648 -- for array types if the constrained status of the target type is
6649 -- different from that of the expression.
6651 if Requires_Transient_Scope
(Exptyp
)
6653 (not Is_Array_Type
(Exptyp
)
6654 or else Is_Constrained
(Exptyp
) = Is_Constrained
(R_Type
)
6655 or else CW_Or_Has_Controlled_Part
(Utyp
))
6656 and then Nkind
(Exp
) = N_Function_Call
6660 -- Remove side effects from the expression now so that other parts
6661 -- of the expander do not have to reanalyze this node without this
6664 Rewrite
(Exp
, Duplicate_Subexpr_No_Checks
(Exp
));
6666 -- Ada 2005 (AI-251): If the type of the returned object is
6667 -- an interface then add an implicit type conversion to force
6668 -- displacement of the "this" pointer.
6670 if Is_Interface
(R_Type
) then
6671 Rewrite
(Exp
, Convert_To
(R_Type
, Relocate_Node
(Exp
)));
6674 Analyze_And_Resolve
(Exp
, R_Type
);
6676 -- For controlled types, do the allocation on the secondary stack
6677 -- manually in order to call adjust at the right time:
6679 -- type Anon1 is access R_Type;
6680 -- for Anon1'Storage_pool use ss_pool;
6681 -- Anon2 : anon1 := new R_Type'(expr);
6682 -- return Anon2.all;
6684 -- We do the same for classwide types that are not potentially
6685 -- controlled (by the virtue of restriction No_Finalization) because
6686 -- gigi is not able to properly allocate class-wide types.
6688 elsif CW_Or_Has_Controlled_Part
(Utyp
) then
6690 Loc
: constant Source_Ptr
:= Sloc
(N
);
6691 Acc_Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
6692 Alloc_Node
: Node_Id
;
6696 Set_Ekind
(Acc_Typ
, E_Access_Type
);
6698 Set_Associated_Storage_Pool
(Acc_Typ
, RTE
(RE_SS_Pool
));
6700 -- This is an allocator for the secondary stack, and it's fine
6701 -- to have Comes_From_Source set False on it, as gigi knows not
6702 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6705 Make_Allocator
(Loc
,
6707 Make_Qualified_Expression
(Loc
,
6708 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Exp
), Loc
),
6709 Expression
=> Relocate_Node
(Exp
)));
6711 -- We do not want discriminant checks on the declaration,
6712 -- given that it gets its value from the allocator.
6714 Set_No_Initialization
(Alloc_Node
);
6716 Temp
:= Make_Temporary
(Loc
, 'R', Alloc_Node
);
6718 Insert_List_Before_And_Analyze
(N
, New_List
(
6719 Make_Full_Type_Declaration
(Loc
,
6720 Defining_Identifier
=> Acc_Typ
,
6722 Make_Access_To_Object_Definition
(Loc
,
6723 Subtype_Indication
=> Subtype_Ind
)),
6725 Make_Object_Declaration
(Loc
,
6726 Defining_Identifier
=> Temp
,
6727 Object_Definition
=> New_Occurrence_Of
(Acc_Typ
, Loc
),
6728 Expression
=> Alloc_Node
)));
6731 Make_Explicit_Dereference
(Loc
,
6732 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
6734 -- Ada 2005 (AI-251): If the type of the returned object is
6735 -- an interface then add an implicit type conversion to force
6736 -- displacement of the "this" pointer.
6738 if Is_Interface
(R_Type
) then
6739 Rewrite
(Exp
, Convert_To
(R_Type
, Relocate_Node
(Exp
)));
6742 Analyze_And_Resolve
(Exp
, R_Type
);
6745 -- Otherwise use the gigi mechanism to allocate result on the
6749 Check_Restriction
(No_Secondary_Stack
, N
);
6750 Set_Storage_Pool
(N
, RTE
(RE_SS_Pool
));
6751 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
6755 -- Implement the rules of 6.5(8-10), which require a tag check in
6756 -- the case of a limited tagged return type, and tag reassignment for
6757 -- nonlimited tagged results. These actions are needed when the return
6758 -- type is a specific tagged type and the result expression is a
6759 -- conversion or a formal parameter, because in that case the tag of
6760 -- the expression might differ from the tag of the specific result type.
6762 if Is_Tagged_Type
(Utyp
)
6763 and then not Is_Class_Wide_Type
(Utyp
)
6764 and then (Nkind_In
(Exp
, N_Type_Conversion
,
6765 N_Unchecked_Type_Conversion
)
6766 or else (Is_Entity_Name
(Exp
)
6767 and then Ekind
(Entity
(Exp
)) in Formal_Kind
))
6769 -- When the return type is limited, perform a check that the tag of
6770 -- the result is the same as the tag of the return type.
6772 if Is_Limited_Type
(R_Type
) then
6774 Make_Raise_Constraint_Error
(Loc
,
6778 Make_Selected_Component
(Loc
,
6779 Prefix
=> Duplicate_Subexpr
(Exp
),
6780 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6782 Make_Attribute_Reference
(Loc
,
6784 New_Occurrence_Of
(Base_Type
(Utyp
), Loc
),
6785 Attribute_Name
=> Name_Tag
)),
6786 Reason
=> CE_Tag_Check_Failed
));
6788 -- If the result type is a specific nonlimited tagged type, then we
6789 -- have to ensure that the tag of the result is that of the result
6790 -- type. This is handled by making a copy of the expression in
6791 -- the case where it might have a different tag, namely when the
6792 -- expression is a conversion or a formal parameter. We create a new
6793 -- object of the result type and initialize it from the expression,
6794 -- which will implicitly force the tag to be set appropriately.
6798 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6799 Result_Id
: constant Entity_Id
:=
6800 Make_Temporary
(Loc
, 'R', ExpR
);
6801 Result_Exp
: constant Node_Id
:=
6802 New_Occurrence_Of
(Result_Id
, Loc
);
6803 Result_Obj
: constant Node_Id
:=
6804 Make_Object_Declaration
(Loc
,
6805 Defining_Identifier
=> Result_Id
,
6806 Object_Definition
=>
6807 New_Occurrence_Of
(R_Type
, Loc
),
6808 Constant_Present
=> True,
6809 Expression
=> ExpR
);
6812 Set_Assignment_OK
(Result_Obj
);
6813 Insert_Action
(Exp
, Result_Obj
);
6815 Rewrite
(Exp
, Result_Exp
);
6816 Analyze_And_Resolve
(Exp
, R_Type
);
6820 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6821 -- a check that the level of the return expression's underlying type
6822 -- is not deeper than the level of the master enclosing the function.
6823 -- Always generate the check when the type of the return expression
6824 -- is class-wide, when it's a type conversion, or when it's a formal
6825 -- parameter. Otherwise, suppress the check in the case where the
6826 -- return expression has a specific type whose level is known not to
6827 -- be statically deeper than the function's result type.
6829 -- No runtime check needed in interface thunks since it is performed
6830 -- by the target primitive associated with the thunk.
6832 -- Note: accessibility check is skipped in the VM case, since there
6833 -- does not seem to be any practical way to implement this check.
6835 elsif Ada_Version
>= Ada_2005
6836 and then Tagged_Type_Expansion
6837 and then Is_Class_Wide_Type
(R_Type
)
6838 and then not Is_Thunk
(Current_Scope
)
6839 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
6841 (Is_Class_Wide_Type
(Etype
(Exp
))
6842 or else Nkind_In
(Exp
, N_Type_Conversion
,
6843 N_Unchecked_Type_Conversion
)
6844 or else (Is_Entity_Name
(Exp
)
6845 and then Ekind
(Entity
(Exp
)) in Formal_Kind
)
6846 or else Scope_Depth
(Enclosing_Dynamic_Scope
(Etype
(Exp
))) >
6847 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))
6853 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6854 -- "this" to reference the base of the object. This is required to
6855 -- get access to the TSD of the object.
6857 if Is_Class_Wide_Type
(Etype
(Exp
))
6858 and then Is_Interface
(Etype
(Exp
))
6860 -- If the expression is an explicit dereference then we can
6861 -- directly displace the pointer to reference the base of
6864 if Nkind
(Exp
) = N_Explicit_Dereference
then
6866 Make_Explicit_Dereference
(Loc
,
6868 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6869 Make_Function_Call
(Loc
,
6871 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6872 Parameter_Associations
=> New_List
(
6873 Unchecked_Convert_To
(RTE
(RE_Address
),
6874 Duplicate_Subexpr
(Prefix
(Exp
)))))));
6876 -- Similar case to the previous one but the expression is a
6877 -- renaming of an explicit dereference.
6879 elsif Nkind
(Exp
) = N_Identifier
6880 and then Present
(Renamed_Object
(Entity
(Exp
)))
6881 and then Nkind
(Renamed_Object
(Entity
(Exp
)))
6882 = N_Explicit_Dereference
6885 Make_Explicit_Dereference
(Loc
,
6887 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6888 Make_Function_Call
(Loc
,
6890 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6891 Parameter_Associations
=> New_List
(
6892 Unchecked_Convert_To
(RTE
(RE_Address
),
6895 (Renamed_Object
(Entity
(Exp
)))))))));
6897 -- Common case: obtain the address of the actual object and
6898 -- displace the pointer to reference the base of the object.
6902 Make_Explicit_Dereference
(Loc
,
6904 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6905 Make_Function_Call
(Loc
,
6907 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6908 Parameter_Associations
=> New_List
(
6909 Make_Attribute_Reference
(Loc
,
6910 Prefix
=> Duplicate_Subexpr
(Exp
),
6911 Attribute_Name
=> Name_Address
)))));
6915 Make_Attribute_Reference
(Loc
,
6916 Prefix
=> Duplicate_Subexpr
(Exp
),
6917 Attribute_Name
=> Name_Tag
);
6920 -- CodePeer does not do anything useful with
6921 -- Ada.Tags.Type_Specific_Data components.
6923 if not CodePeer_Mode
then
6925 Make_Raise_Program_Error
(Loc
,
6928 Left_Opnd
=> Build_Get_Access_Level
(Loc
, Tag_Node
),
6930 Make_Integer_Literal
(Loc
,
6931 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))),
6932 Reason
=> PE_Accessibility_Check_Failed
));
6936 -- AI05-0073: If function has a controlling access result, check that
6937 -- the tag of the return value, if it is not null, matches designated
6938 -- type of return type.
6940 -- The return expression is referenced twice in the code below, so it
6941 -- must be made free of side effects. Given that different compilers
6942 -- may evaluate these parameters in different order, both occurrences
6945 elsif Ekind
(R_Type
) = E_Anonymous_Access_Type
6946 and then Has_Controlling_Result
(Scope_Id
)
6949 Make_Raise_Constraint_Error
(Loc
,
6954 Left_Opnd
=> Duplicate_Subexpr
(Exp
),
6955 Right_Opnd
=> Make_Null
(Loc
)),
6957 Right_Opnd
=> Make_Op_Ne
(Loc
,
6959 Make_Selected_Component
(Loc
,
6960 Prefix
=> Duplicate_Subexpr
(Exp
),
6961 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6964 Make_Attribute_Reference
(Loc
,
6966 New_Occurrence_Of
(Designated_Type
(R_Type
), Loc
),
6967 Attribute_Name
=> Name_Tag
))),
6969 Reason
=> CE_Tag_Check_Failed
),
6970 Suppress
=> All_Checks
);
6973 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6974 -- ensure that the function result does not outlive an
6975 -- object designated by one of it discriminants.
6977 if Present
(Extra_Accessibility_Of_Result
(Scope_Id
))
6978 and then Has_Unconstrained_Access_Discriminants
(R_Type
)
6981 Discrim_Source
: Node_Id
;
6983 procedure Check_Against_Result_Level
(Level
: Node_Id
);
6984 -- Check the given accessibility level against the level
6985 -- determined by the point of call. (AI05-0234).
6987 --------------------------------
6988 -- Check_Against_Result_Level --
6989 --------------------------------
6991 procedure Check_Against_Result_Level
(Level
: Node_Id
) is
6994 Make_Raise_Program_Error
(Loc
,
7000 (Extra_Accessibility_Of_Result
(Scope_Id
), Loc
)),
7001 Reason
=> PE_Accessibility_Check_Failed
));
7002 end Check_Against_Result_Level
;
7005 Discrim_Source
:= Exp
;
7006 while Nkind
(Discrim_Source
) = N_Qualified_Expression
loop
7007 Discrim_Source
:= Expression
(Discrim_Source
);
7010 if Nkind
(Discrim_Source
) = N_Identifier
7011 and then Is_Return_Object
(Entity
(Discrim_Source
))
7013 Discrim_Source
:= Entity
(Discrim_Source
);
7015 if Is_Constrained
(Etype
(Discrim_Source
)) then
7016 Discrim_Source
:= Etype
(Discrim_Source
);
7018 Discrim_Source
:= Expression
(Parent
(Discrim_Source
));
7021 elsif Nkind
(Discrim_Source
) = N_Identifier
7022 and then Nkind_In
(Original_Node
(Discrim_Source
),
7023 N_Aggregate
, N_Extension_Aggregate
)
7025 Discrim_Source
:= Original_Node
(Discrim_Source
);
7027 elsif Nkind
(Discrim_Source
) = N_Explicit_Dereference
and then
7028 Nkind
(Original_Node
(Discrim_Source
)) = N_Function_Call
7030 Discrim_Source
:= Original_Node
(Discrim_Source
);
7033 Discrim_Source
:= Unqual_Conv
(Discrim_Source
);
7035 case Nkind
(Discrim_Source
) is
7036 when N_Defining_Identifier
=>
7037 pragma Assert
(Is_Composite_Type
(Discrim_Source
)
7038 and then Has_Discriminants
(Discrim_Source
)
7039 and then Is_Constrained
(Discrim_Source
));
7042 Discrim
: Entity_Id
:=
7043 First_Discriminant
(Base_Type
(R_Type
));
7044 Disc_Elmt
: Elmt_Id
:=
7045 First_Elmt
(Discriminant_Constraint
7049 if Ekind
(Etype
(Discrim
)) =
7050 E_Anonymous_Access_Type
7052 Check_Against_Result_Level
7053 (Dynamic_Accessibility_Level
(Node
(Disc_Elmt
)));
7056 Next_Elmt
(Disc_Elmt
);
7057 Next_Discriminant
(Discrim
);
7058 exit when not Present
(Discrim
);
7063 | N_Extension_Aggregate
7065 -- Unimplemented: extension aggregate case where discrims
7066 -- come from ancestor part, not extension part.
7069 Discrim
: Entity_Id
:=
7070 First_Discriminant
(Base_Type
(R_Type
));
7072 Disc_Exp
: Node_Id
:= Empty
;
7074 Positionals_Exhausted
7075 : Boolean := not Present
(Expressions
7078 function Associated_Expr
7079 (Comp_Id
: Entity_Id
;
7080 Associations
: List_Id
) return Node_Id
;
7082 -- Given a component and a component associations list,
7083 -- locate the expression for that component; returns
7084 -- Empty if no such expression is found.
7086 ---------------------
7087 -- Associated_Expr --
7088 ---------------------
7090 function Associated_Expr
7091 (Comp_Id
: Entity_Id
;
7092 Associations
: List_Id
) return Node_Id
7098 -- Simple linear search seems ok here
7100 Assoc
:= First
(Associations
);
7101 while Present
(Assoc
) loop
7102 Choice
:= First
(Choices
(Assoc
));
7103 while Present
(Choice
) loop
7104 if (Nkind
(Choice
) = N_Identifier
7105 and then Chars
(Choice
) = Chars
(Comp_Id
))
7106 or else (Nkind
(Choice
) = N_Others_Choice
)
7108 return Expression
(Assoc
);
7118 end Associated_Expr
;
7121 if not Positionals_Exhausted
then
7122 Disc_Exp
:= First
(Expressions
(Discrim_Source
));
7126 if Positionals_Exhausted
then
7130 Component_Associations
(Discrim_Source
));
7133 if Ekind
(Etype
(Discrim
)) =
7134 E_Anonymous_Access_Type
7136 Check_Against_Result_Level
7137 (Dynamic_Accessibility_Level
(Disc_Exp
));
7140 Next_Discriminant
(Discrim
);
7141 exit when not Present
(Discrim
);
7143 if not Positionals_Exhausted
then
7145 Positionals_Exhausted
:= not Present
(Disc_Exp
);
7150 when N_Function_Call
=>
7152 -- No check needed (check performed by callee)
7158 Level
: constant Node_Id
:=
7159 Make_Integer_Literal
(Loc
,
7160 Object_Access_Level
(Discrim_Source
));
7163 -- Unimplemented: check for name prefix that includes
7164 -- a dereference of an access value with a dynamic
7165 -- accessibility level (e.g., an access param or a
7166 -- saooaaat) and use dynamic level in that case. For
7168 -- return Access_Param.all(Some_Index).Some_Component;
7171 Set_Etype
(Level
, Standard_Natural
);
7172 Check_Against_Result_Level
(Level
);
7178 -- If we are returning an object that may not be bit-aligned, then copy
7179 -- the value into a temporary first. This copy may need to expand to a
7180 -- loop of component operations.
7182 if Is_Possibly_Unaligned_Slice
(Exp
)
7183 or else Is_Possibly_Unaligned_Object
(Exp
)
7186 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
7187 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', ExpR
);
7190 Make_Object_Declaration
(Loc
,
7191 Defining_Identifier
=> Tnn
,
7192 Constant_Present
=> True,
7193 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
7194 Expression
=> ExpR
),
7195 Suppress
=> All_Checks
);
7196 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
7200 -- Call the _Postconditions procedure if the related function has
7201 -- contract assertions that need to be verified on exit.
7203 if Ekind
(Scope_Id
) = E_Function
7204 and then Present
(Postconditions_Proc
(Scope_Id
))
7206 -- In the case of discriminated objects, we have created a
7207 -- constrained subtype above, and used the underlying type. This
7208 -- transformation is post-analysis and harmless, except that now the
7209 -- call to the post-condition will be analyzed and the type kinds
7212 if Nkind
(Exp
) = N_Unchecked_Type_Conversion
7213 and then Is_Private_Type
(R_Type
) /= Is_Private_Type
(Etype
(Exp
))
7215 Rewrite
(Exp
, Expression
(Relocate_Node
(Exp
)));
7218 -- We are going to reference the returned value twice in this case,
7219 -- once in the call to _Postconditions, and once in the actual return
7220 -- statement, but we can't have side effects happening twice.
7222 Force_Evaluation
(Exp
, Mode
=> Strict
);
7224 -- Generate call to _Postconditions
7227 Make_Procedure_Call_Statement
(Loc
,
7229 New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
),
7230 Parameter_Associations
=> New_List
(New_Copy_Tree
(Exp
))));
7233 -- Ada 2005 (AI-251): If this return statement corresponds with an
7234 -- simple return statement associated with an extended return statement
7235 -- and the type of the returned object is an interface then generate an
7236 -- implicit conversion to force displacement of the "this" pointer.
7238 if Ada_Version
>= Ada_2005
7239 and then Comes_From_Extended_Return_Statement
(N
)
7240 and then Nkind
(Expression
(N
)) = N_Identifier
7241 and then Is_Interface
(Utyp
)
7242 and then Utyp
/= Underlying_Type
(Exptyp
)
7244 Rewrite
(Exp
, Convert_To
(Utyp
, Relocate_Node
(Exp
)));
7245 Analyze_And_Resolve
(Exp
);
7247 end Expand_Simple_Function_Return
;
7249 --------------------------------------------
7250 -- Has_Unconstrained_Access_Discriminants --
7251 --------------------------------------------
7253 function Has_Unconstrained_Access_Discriminants
7254 (Subtyp
: Entity_Id
) return Boolean
7259 if Has_Discriminants
(Subtyp
)
7260 and then not Is_Constrained
(Subtyp
)
7262 Discr
:= First_Discriminant
(Subtyp
);
7263 while Present
(Discr
) loop
7264 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
then
7268 Next_Discriminant
(Discr
);
7273 end Has_Unconstrained_Access_Discriminants
;
7275 -----------------------------------
7276 -- Is_Build_In_Place_Result_Type --
7277 -----------------------------------
7279 function Is_Build_In_Place_Result_Type
(Typ
: Entity_Id
) return Boolean is
7281 if not Expander_Active
then
7285 -- In Ada 2005 all functions with an inherently limited return type
7286 -- must be handled using a build-in-place profile, including the case
7287 -- of a function with a limited interface result, where the function
7288 -- may return objects of nonlimited descendants.
7290 if Is_Limited_View
(Typ
) then
7291 return Ada_Version
>= Ada_2005
and then not Debug_Flag_Dot_L
;
7294 if Debug_Flag_Dot_9
then
7298 if Has_Interfaces
(Typ
) then
7303 T
: Entity_Id
:= Typ
;
7305 -- For T'Class, return True if it's True for T. This is necessary
7306 -- because a class-wide function might say "return F (...)", where
7307 -- F returns the corresponding specific type. We need a loop in
7308 -- case T is a subtype of a class-wide type.
7310 while Is_Class_Wide_Type
(T
) loop
7314 -- If this is a generic formal type in an instance, return True if
7315 -- it's True for the generic actual type.
7317 if Nkind
(Parent
(T
)) = N_Subtype_Declaration
7318 and then Present
(Generic_Parent_Type
(Parent
(T
)))
7320 T
:= Entity
(Subtype_Indication
(Parent
(T
)));
7322 if Present
(Full_View
(T
)) then
7327 if Present
(Underlying_Type
(T
)) then
7328 T
:= Underlying_Type
(T
);
7333 -- So we can stop here in the debugger
7335 -- ???For now, enable build-in-place for a very narrow set of
7336 -- controlled types. Change "if True" to "if False" to
7337 -- experiment with more controlled types. Eventually, we might
7338 -- like to enable build-in-place for all tagged types, all
7339 -- types that need finalization, and all caller-unknown-size
7343 Result
:= Is_Controlled
(T
)
7344 and then Present
(Enclosing_Subprogram
(T
))
7345 and then not Is_Compilation_Unit
(Enclosing_Subprogram
(T
))
7346 and then Ekind
(Enclosing_Subprogram
(T
)) = E_Procedure
;
7348 Result
:= Is_Controlled
(T
);
7355 end Is_Build_In_Place_Result_Type
;
7357 --------------------------------
7358 -- Is_Build_In_Place_Function --
7359 --------------------------------
7361 function Is_Build_In_Place_Function
(E
: Entity_Id
) return Boolean is
7363 -- This function is called from Expand_Subtype_From_Expr during
7364 -- semantic analysis, even when expansion is off. In those cases
7365 -- the build_in_place expansion will not take place.
7367 if not Expander_Active
then
7371 -- For now we test whether E denotes a function or access-to-function
7372 -- type whose result subtype is inherently limited. Later this test
7373 -- may be revised to allow composite nonlimited types. Functions with
7374 -- a foreign convention or whose result type has a foreign convention
7377 if Ekind_In
(E
, E_Function
, E_Generic_Function
)
7378 or else (Ekind
(E
) = E_Subprogram_Type
7379 and then Etype
(E
) /= Standard_Void_Type
)
7381 -- Note: If the function has a foreign convention, it cannot build
7382 -- its result in place, so you're on your own. On the other hand,
7383 -- if only the return type has a foreign convention, its layout is
7384 -- intended to be compatible with the other language, but the build-
7385 -- in place machinery can ensure that the object is not copied.
7387 return Is_Build_In_Place_Result_Type
(Etype
(E
))
7388 and then not Has_Foreign_Convention
(E
)
7389 and then not Debug_Flag_Dot_L
;
7394 end Is_Build_In_Place_Function
;
7396 -------------------------------------
7397 -- Is_Build_In_Place_Function_Call --
7398 -------------------------------------
7400 function Is_Build_In_Place_Function_Call
(N
: Node_Id
) return Boolean is
7401 Exp_Node
: constant Node_Id
:= Unqual_Conv
(N
);
7402 Function_Id
: Entity_Id
;
7405 -- Return False if the expander is currently inactive, since awareness
7406 -- of build-in-place treatment is only relevant during expansion. Note
7407 -- that Is_Build_In_Place_Function, which is called as part of this
7408 -- function, is also conditioned this way, but we need to check here as
7409 -- well to avoid blowing up on processing protected calls when expansion
7410 -- is disabled (such as with -gnatc) since those would trip over the
7411 -- raise of Program_Error below.
7413 -- In SPARK mode, build-in-place calls are not expanded, so that we
7414 -- may end up with a call that is neither resolved to an entity, nor
7415 -- an indirect call.
7417 if not Expander_Active
or else Nkind
(Exp_Node
) /= N_Function_Call
then
7421 if Is_Entity_Name
(Name
(Exp_Node
)) then
7422 Function_Id
:= Entity
(Name
(Exp_Node
));
7424 -- In the case of an explicitly dereferenced call, use the subprogram
7425 -- type generated for the dereference.
7427 elsif Nkind
(Name
(Exp_Node
)) = N_Explicit_Dereference
then
7428 Function_Id
:= Etype
(Name
(Exp_Node
));
7430 -- This may be a call to a protected function.
7432 elsif Nkind
(Name
(Exp_Node
)) = N_Selected_Component
then
7433 Function_Id
:= Etype
(Entity
(Selector_Name
(Name
(Exp_Node
))));
7436 raise Program_Error
;
7440 Result
: constant Boolean := Is_Build_In_Place_Function
(Function_Id
);
7441 -- So we can stop here in the debugger
7445 end Is_Build_In_Place_Function_Call
;
7447 -----------------------
7448 -- Freeze_Subprogram --
7449 -----------------------
7451 procedure Freeze_Subprogram
(N
: Node_Id
) is
7452 Loc
: constant Source_Ptr
:= Sloc
(N
);
7454 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
);
7455 -- (Ada 2005): Register a predefined primitive in all the secondary
7456 -- dispatch tables of its primitive type.
7458 ----------------------------------
7459 -- Register_Predefined_DT_Entry --
7460 ----------------------------------
7462 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
) is
7463 Iface_DT_Ptr
: Elmt_Id
;
7464 Tagged_Typ
: Entity_Id
;
7465 Thunk_Id
: Entity_Id
;
7466 Thunk_Code
: Node_Id
;
7469 Tagged_Typ
:= Find_Dispatching_Type
(Prim
);
7471 if No
(Access_Disp_Table
(Tagged_Typ
))
7472 or else not Has_Interfaces
(Tagged_Typ
)
7473 or else not RTE_Available
(RE_Interface_Tag
)
7474 or else Restriction_Active
(No_Dispatching_Calls
)
7479 -- Skip the first two access-to-dispatch-table pointers since they
7480 -- leads to the primary dispatch table (predefined DT and user
7481 -- defined DT). We are only concerned with the secondary dispatch
7482 -- table pointers. Note that the access-to- dispatch-table pointer
7483 -- corresponds to the first implemented interface retrieved below.
7486 Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(Tagged_Typ
))));
7488 while Present
(Iface_DT_Ptr
)
7489 and then Ekind
(Node
(Iface_DT_Ptr
)) = E_Constant
7491 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
7492 Expand_Interface_Thunk
(Prim
, Thunk_Id
, Thunk_Code
);
7494 if Present
(Thunk_Code
) then
7495 Insert_Actions_After
(N
, New_List
(
7498 Build_Set_Predefined_Prim_Op_Address
(Loc
,
7500 New_Occurrence_Of
(Node
(Next_Elmt
(Iface_DT_Ptr
)), Loc
),
7501 Position
=> DT_Position
(Prim
),
7503 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
7504 Make_Attribute_Reference
(Loc
,
7505 Prefix
=> New_Occurrence_Of
(Thunk_Id
, Loc
),
7506 Attribute_Name
=> Name_Unrestricted_Access
))),
7508 Build_Set_Predefined_Prim_Op_Address
(Loc
,
7511 (Node
(Next_Elmt
(Next_Elmt
(Next_Elmt
(Iface_DT_Ptr
)))),
7513 Position
=> DT_Position
(Prim
),
7515 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
7516 Make_Attribute_Reference
(Loc
,
7517 Prefix
=> New_Occurrence_Of
(Prim
, Loc
),
7518 Attribute_Name
=> Name_Unrestricted_Access
)))));
7521 -- Skip the tag of the predefined primitives dispatch table
7523 Next_Elmt
(Iface_DT_Ptr
);
7524 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
7526 -- Skip tag of the no-thunks dispatch table
7528 Next_Elmt
(Iface_DT_Ptr
);
7529 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
7531 -- Skip tag of predefined primitives no-thunks dispatch table
7533 Next_Elmt
(Iface_DT_Ptr
);
7534 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
7536 Next_Elmt
(Iface_DT_Ptr
);
7538 end Register_Predefined_DT_Entry
;
7542 Subp
: constant Entity_Id
:= Entity
(N
);
7544 -- Start of processing for Freeze_Subprogram
7547 -- We suppress the initialization of the dispatch table entry when
7548 -- not Tagged_Type_Expansion because the dispatching mechanism is
7549 -- handled internally by the target.
7551 if Is_Dispatching_Operation
(Subp
)
7552 and then not Is_Abstract_Subprogram
(Subp
)
7553 and then Present
(DTC_Entity
(Subp
))
7554 and then Present
(Scope
(DTC_Entity
(Subp
)))
7555 and then Tagged_Type_Expansion
7556 and then not Restriction_Active
(No_Dispatching_Calls
)
7557 and then RTE_Available
(RE_Tag
)
7560 Typ
: constant Entity_Id
:= Scope
(DTC_Entity
(Subp
));
7563 -- Handle private overridden primitives
7565 if not Is_CPP_Class
(Typ
) then
7566 Check_Overriding_Operation
(Subp
);
7569 -- We assume that imported CPP primitives correspond with objects
7570 -- whose constructor is in the CPP side; therefore we don't need
7571 -- to generate code to register them in the dispatch table.
7573 if Is_CPP_Class
(Typ
) then
7576 -- Handle CPP primitives found in derivations of CPP_Class types.
7577 -- These primitives must have been inherited from some parent, and
7578 -- there is no need to register them in the dispatch table because
7579 -- Build_Inherit_Prims takes care of initializing these slots.
7581 elsif Is_Imported
(Subp
)
7582 and then (Convention
(Subp
) = Convention_CPP
7583 or else Convention
(Subp
) = Convention_C
)
7587 -- Generate code to register the primitive in non statically
7588 -- allocated dispatch tables
7590 elsif not Building_Static_DT
(Scope
(DTC_Entity
(Subp
))) then
7592 -- When a primitive is frozen, enter its name in its dispatch
7595 if not Is_Interface
(Typ
)
7596 or else Present
(Interface_Alias
(Subp
))
7598 if Is_Predefined_Dispatching_Operation
(Subp
) then
7599 Register_Predefined_DT_Entry
(Subp
);
7602 Insert_Actions_After
(N
,
7603 Register_Primitive
(Loc
, Prim
=> Subp
));
7609 -- Mark functions that return by reference. Note that it cannot be part
7610 -- of the normal semantic analysis of the spec since the underlying
7611 -- returned type may not be known yet (for private types).
7614 Typ
: constant Entity_Id
:= Etype
(Subp
);
7615 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
7618 if Is_Limited_View
(Typ
) then
7619 Set_Returns_By_Ref
(Subp
);
7621 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
7622 Set_Returns_By_Ref
(Subp
);
7626 -- Wnen freezing a null procedure, analyze its delayed aspects now
7627 -- because we may not have reached the end of the declarative list when
7628 -- delayed aspects are normally analyzed. This ensures that dispatching
7629 -- calls are properly rewritten when the generated _Postcondition
7630 -- procedure is analyzed in the null procedure body.
7632 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
7633 and then Null_Present
(Parent
(Subp
))
7635 Analyze_Entry_Or_Subprogram_Contract
(Subp
);
7637 end Freeze_Subprogram
;
7639 ------------------------------
7640 -- Insert_Post_Call_Actions --
7641 ------------------------------
7643 procedure Insert_Post_Call_Actions
(N
: Node_Id
; Post_Call
: List_Id
) is
7644 Context
: constant Node_Id
:= Parent
(N
);
7647 if Is_Empty_List
(Post_Call
) then
7651 -- Cases where the call is not a member of a statement list. This
7652 -- includes the case where the call is an actual in another function
7653 -- call or indexing, i.e. an expression context as well.
7655 if not Is_List_Member
(N
)
7656 or else Nkind_In
(Context
, N_Function_Call
, N_Indexed_Component
)
7658 -- In Ada 2012 the call may be a function call in an expression
7659 -- (since OUT and IN OUT parameters are now allowed for such calls).
7660 -- The write-back of (in)-out parameters is handled by the back-end,
7661 -- but the constraint checks generated when subtypes of formal and
7662 -- actual don't match must be inserted in the form of assignments.
7664 if Nkind
(Original_Node
(N
)) = N_Function_Call
then
7665 pragma Assert
(Ada_Version
>= Ada_2012
);
7666 -- Functions with '[in] out' parameters are only allowed in Ada
7669 -- We used to handle this by climbing up parents to a
7670 -- non-statement/declaration and then simply making a call to
7671 -- Insert_Actions_After (P, Post_Call), but that doesn't work
7672 -- for Ada 2012. If we are in the middle of an expression, e.g.
7673 -- the condition of an IF, this call would insert after the IF
7674 -- statement, which is much too late to be doing the write back.
7677 -- if Clobber (X) then
7678 -- Put_Line (X'Img);
7683 -- Now assume Clobber changes X, if we put the write back after
7684 -- the IF, the Put_Line gets the wrong value and the goto causes
7685 -- the write back to be skipped completely.
7687 -- To deal with this, we replace the call by
7690 -- Tnnn : constant function-result-type := function-call;
7691 -- Post_Call actions
7697 Loc
: constant Source_Ptr
:= Sloc
(N
);
7698 Tnnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7699 FRTyp
: constant Entity_Id
:= Etype
(N
);
7700 Name
: constant Node_Id
:= Relocate_Node
(N
);
7703 Prepend_To
(Post_Call
,
7704 Make_Object_Declaration
(Loc
,
7705 Defining_Identifier
=> Tnnn
,
7706 Object_Definition
=> New_Occurrence_Of
(FRTyp
, Loc
),
7707 Constant_Present
=> True,
7708 Expression
=> Name
));
7711 Make_Expression_With_Actions
(Loc
,
7712 Actions
=> Post_Call
,
7713 Expression
=> New_Occurrence_Of
(Tnnn
, Loc
)));
7715 -- We don't want to just blindly call Analyze_And_Resolve
7716 -- because that would cause unwanted recursion on the call.
7717 -- So for a moment set the call as analyzed to prevent that
7718 -- recursion, and get the rest analyzed properly, then reset
7719 -- the analyzed flag, so our caller can continue.
7721 Set_Analyzed
(Name
, True);
7722 Analyze_And_Resolve
(N
, FRTyp
);
7723 Set_Analyzed
(Name
, False);
7726 -- If not the special Ada 2012 case of a function call, then we must
7727 -- have the triggering statement of a triggering alternative or an
7728 -- entry call alternative, and we can add the post call stuff to the
7729 -- corresponding statement list.
7732 pragma Assert
(Nkind_In
(Context
, N_Entry_Call_Alternative
,
7733 N_Triggering_Alternative
));
7735 if Is_Non_Empty_List
(Statements
(Context
)) then
7736 Insert_List_Before_And_Analyze
7737 (First
(Statements
(Context
)), Post_Call
);
7739 Set_Statements
(Context
, Post_Call
);
7743 -- A procedure call is always part of a declarative or statement list,
7744 -- however a function call may appear nested within a construct. Most
7745 -- cases of function call nesting are handled in the special case above.
7746 -- The only exception is when the function call acts as an actual in a
7747 -- procedure call. In this case the function call is in a list, but the
7748 -- post-call actions must be inserted after the procedure call.
7750 elsif Nkind
(Context
) = N_Procedure_Call_Statement
then
7751 Insert_Actions_After
(Context
, Post_Call
);
7753 -- Otherwise, normal case where N is in a statement sequence, just put
7754 -- the post-call stuff after the call statement.
7757 Insert_Actions_After
(N
, Post_Call
);
7759 end Insert_Post_Call_Actions
;
7761 -----------------------
7762 -- Is_Null_Procedure --
7763 -----------------------
7765 function Is_Null_Procedure
(Subp
: Entity_Id
) return Boolean is
7766 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
7769 if Ekind
(Subp
) /= E_Procedure
then
7772 -- Check if this is a declared null procedure
7774 elsif Nkind
(Decl
) = N_Subprogram_Declaration
then
7775 if not Null_Present
(Specification
(Decl
)) then
7778 elsif No
(Body_To_Inline
(Decl
)) then
7781 -- Check if the body contains only a null statement, followed by
7782 -- the return statement added during expansion.
7786 Orig_Bod
: constant Node_Id
:= Body_To_Inline
(Decl
);
7792 if Nkind
(Orig_Bod
) /= N_Subprogram_Body
then
7795 -- We must skip SCIL nodes because they are currently
7796 -- implemented as special N_Null_Statement nodes.
7800 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
7801 Stat2
:= Next_Non_SCIL_Node
(Stat
);
7804 Is_Empty_List
(Declarations
(Orig_Bod
))
7805 and then Nkind
(Stat
) = N_Null_Statement
7809 (Nkind
(Stat2
) = N_Simple_Return_Statement
7810 and then No
(Next
(Stat2
))));
7818 end Is_Null_Procedure
;
7820 -------------------------------------------
7821 -- Make_Build_In_Place_Call_In_Allocator --
7822 -------------------------------------------
7824 procedure Make_Build_In_Place_Call_In_Allocator
7825 (Allocator
: Node_Id
;
7826 Function_Call
: Node_Id
)
7828 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
7829 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
7830 Func_Call
: Node_Id
:= Function_Call
;
7831 Ref_Func_Call
: Node_Id
;
7832 Function_Id
: Entity_Id
;
7833 Result_Subt
: Entity_Id
;
7834 New_Allocator
: Node_Id
;
7835 Return_Obj_Access
: Entity_Id
; -- temp for function result
7836 Temp_Init
: Node_Id
; -- initial value of Return_Obj_Access
7837 Alloc_Form
: BIP_Allocation_Form
;
7838 Pool
: Node_Id
; -- nonnull if Alloc_Form = User_Storage_Pool
7839 Return_Obj_Actual
: Node_Id
; -- the temp.all, in caller-allocates case
7840 Chain
: Entity_Id
; -- activation chain, in case of tasks
7843 -- Step past qualification or unchecked conversion (the latter can occur
7844 -- in cases of calls to 'Input).
7846 if Nkind_In
(Func_Call
,
7847 N_Qualified_Expression
,
7849 N_Unchecked_Type_Conversion
)
7851 Func_Call
:= Expression
(Func_Call
);
7854 -- Mark the call as processed as a build-in-place call
7856 pragma Assert
(not Is_Expanded_Build_In_Place_Call
(Func_Call
));
7857 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
7859 if Is_Entity_Name
(Name
(Func_Call
)) then
7860 Function_Id
:= Entity
(Name
(Func_Call
));
7862 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
7863 Function_Id
:= Etype
(Name
(Func_Call
));
7866 raise Program_Error
;
7869 Result_Subt
:= Available_View
(Etype
(Function_Id
));
7871 -- Create a temp for the function result. In the caller-allocates case,
7872 -- this will be initialized to the result of a new uninitialized
7873 -- allocator. Note: we do not use Allocator as the Related_Node of
7874 -- Return_Obj_Access in call to Make_Temporary below as this would
7875 -- create a sort of infinite "recursion".
7877 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
7878 Set_Etype
(Return_Obj_Access
, Acc_Type
);
7879 Set_Can_Never_Be_Null
(Acc_Type
, False);
7880 -- It gets initialized to null, so we can't have that
7882 -- When the result subtype is constrained, the return object is
7883 -- allocated on the caller side, and access to it is passed to the
7886 -- Here and in related routines, we must examine the full view of the
7887 -- type, because the view at the point of call may differ from that
7888 -- that in the function body, and the expansion mechanism depends on
7889 -- the characteristics of the full view.
7891 if Is_Constrained
(Underlying_Type
(Result_Subt
)) then
7892 -- Replace the initialized allocator of form "new T'(Func (...))"
7893 -- with an uninitialized allocator of form "new T", where T is the
7894 -- result subtype of the called function. The call to the function
7895 -- is handled separately further below.
7898 Make_Allocator
(Loc
,
7899 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
7900 Set_No_Initialization
(New_Allocator
);
7902 -- Copy attributes to new allocator. Note that the new allocator
7903 -- logically comes from source if the original one did, so copy the
7904 -- relevant flag. This ensures proper treatment of the restriction
7905 -- No_Implicit_Heap_Allocations in this case.
7907 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
7908 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
7909 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
7911 Rewrite
(Allocator
, New_Allocator
);
7913 -- Initial value of the temp is the result of the uninitialized
7914 -- allocator. Unchecked_Convert is needed for T'Input where T is
7915 -- derived from a controlled type.
7917 Temp_Init
:= Relocate_Node
(Allocator
);
7920 (Function_Call
, N_Type_Conversion
, N_Unchecked_Type_Conversion
)
7922 Temp_Init
:= Unchecked_Convert_To
(Acc_Type
, Temp_Init
);
7925 -- Indicate that caller allocates, and pass in the return object
7927 Alloc_Form
:= Caller_Allocation
;
7928 Pool
:= Make_Null
(No_Location
);
7929 Return_Obj_Actual
:=
7930 Make_Unchecked_Type_Conversion
(Loc
,
7931 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
7933 Make_Explicit_Dereference
(Loc
,
7934 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)));
7936 -- When the result subtype is unconstrained, the function itself must
7937 -- perform the allocation of the return object, so we pass parameters
7943 -- Case of a user-defined storage pool. Pass an allocation parameter
7944 -- indicating that the function should allocate its result in the
7945 -- pool, and pass the pool. Use 'Unrestricted_Access because the
7946 -- pool may not be aliased.
7948 if Present
(Associated_Storage_Pool
(Acc_Type
)) then
7949 Alloc_Form
:= User_Storage_Pool
;
7951 Make_Attribute_Reference
(Loc
,
7954 (Associated_Storage_Pool
(Acc_Type
), Loc
),
7955 Attribute_Name
=> Name_Unrestricted_Access
);
7957 -- No user-defined pool; pass an allocation parameter indicating that
7958 -- the function should allocate its result on the heap.
7961 Alloc_Form
:= Global_Heap
;
7962 Pool
:= Make_Null
(No_Location
);
7965 -- The caller does not provide the return object in this case, so we
7966 -- have to pass null for the object access actual.
7968 Return_Obj_Actual
:= Empty
;
7971 -- Declare the temp object
7973 Insert_Action
(Allocator
,
7974 Make_Object_Declaration
(Loc
,
7975 Defining_Identifier
=> Return_Obj_Access
,
7976 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
7977 Expression
=> Temp_Init
));
7979 Ref_Func_Call
:= Make_Reference
(Loc
, Func_Call
);
7981 -- Ada 2005 (AI-251): If the type of the allocator is an interface
7982 -- then generate an implicit conversion to force displacement of the
7985 if Is_Interface
(Designated_Type
(Acc_Type
)) then
7988 OK_Convert_To
(Acc_Type
, Ref_Func_Call
));
7990 -- If the types are incompatible, we need an unchecked conversion. Note
7991 -- that the full types will be compatible, but the types not visibly
7995 (Function_Call
, N_Type_Conversion
, N_Unchecked_Type_Conversion
)
7997 Ref_Func_Call
:= Unchecked_Convert_To
(Acc_Type
, Ref_Func_Call
);
8001 Assign
: constant Node_Id
:=
8002 Make_Assignment_Statement
(Loc
,
8003 Name
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
),
8004 Expression
=> Ref_Func_Call
);
8005 -- Assign the result of the function call into the temp. In the
8006 -- caller-allocates case, this is overwriting the temp with its
8007 -- initial value, which has no effect. In the callee-allocates case,
8008 -- this is setting the temp to point to the object allocated by the
8009 -- callee. Unchecked_Convert is needed for T'Input where T is derived
8010 -- from a controlled type.
8013 -- Actions to be inserted. If there are no tasks, this is just the
8014 -- assignment statement. If the allocated object has tasks, we need
8015 -- to wrap the assignment in a block that activates them. The
8016 -- activation chain of that block must be passed to the function,
8017 -- rather than some outer chain.
8019 if Has_Task
(Result_Subt
) then
8020 Actions
:= New_List
;
8021 Build_Task_Allocate_Block_With_Init_Stmts
8022 (Actions
, Allocator
, Init_Stmts
=> New_List
(Assign
));
8023 Chain
:= Activation_Chain_Entity
(Last
(Actions
));
8025 Actions
:= New_List
(Assign
);
8029 Insert_Actions
(Allocator
, Actions
);
8032 -- When the function has a controlling result, an allocation-form
8033 -- parameter must be passed indicating that the caller is allocating
8034 -- the result object. This is needed because such a function can be
8035 -- called as a dispatching operation and must be treated similarly
8036 -- to functions with unconstrained result subtypes.
8038 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8039 (Func_Call
, Function_Id
, Alloc_Form
, Pool_Actual
=> Pool
);
8041 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8042 (Func_Call
, Function_Id
, Acc_Type
);
8044 Add_Task_Actuals_To_Build_In_Place_Call
8045 (Func_Call
, Function_Id
, Master_Actual
=> Master_Id
(Acc_Type
),
8048 -- Add an implicit actual to the function call that provides access
8049 -- to the allocated object. An unchecked conversion to the (specific)
8050 -- result subtype of the function is inserted to handle cases where
8051 -- the access type of the allocator has a class-wide designated type.
8053 Add_Access_Actual_To_Build_In_Place_Call
8054 (Func_Call
, Function_Id
, Return_Obj_Actual
);
8056 -- Finally, replace the allocator node with a reference to the temp
8058 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
8060 Analyze_And_Resolve
(Allocator
, Acc_Type
);
8061 end Make_Build_In_Place_Call_In_Allocator
;
8063 ---------------------------------------------------
8064 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8065 ---------------------------------------------------
8067 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8068 (Function_Call
: Node_Id
)
8070 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8071 Func_Call
: constant Node_Id
:= Unqual_Conv
(Function_Call
);
8072 Function_Id
: Entity_Id
;
8073 Result_Subt
: Entity_Id
;
8074 Return_Obj_Id
: Entity_Id
;
8075 Return_Obj_Decl
: Entity_Id
;
8078 -- If the call has already been processed to add build-in-place actuals
8079 -- then return. One place this can occur is for calls to build-in-place
8080 -- functions that occur within a call to a protected operation, where
8081 -- due to rewriting and expansion of the protected call there can be
8082 -- more than one call to Expand_Actuals for the same set of actuals.
8084 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8088 -- Mark the call as processed as a build-in-place call
8090 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8092 if Is_Entity_Name
(Name
(Func_Call
)) then
8093 Function_Id
:= Entity
(Name
(Func_Call
));
8095 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8096 Function_Id
:= Etype
(Name
(Func_Call
));
8099 raise Program_Error
;
8102 Result_Subt
:= Etype
(Function_Id
);
8104 -- If the build-in-place function returns a controlled object, then the
8105 -- object needs to be finalized immediately after the context. Since
8106 -- this case produces a transient scope, the servicing finalizer needs
8107 -- to name the returned object. Create a temporary which is initialized
8108 -- with the function call:
8110 -- Temp_Id : Func_Type := BIP_Func_Call;
8112 -- The initialization expression of the temporary will be rewritten by
8113 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8114 -- Call_In_Object_Declaration.
8116 if Needs_Finalization
(Result_Subt
) then
8118 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
8119 Temp_Decl
: Node_Id
;
8122 -- Reset the guard on the function call since the following does
8123 -- not perform actual call expansion.
8125 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
, False);
8128 Make_Object_Declaration
(Loc
,
8129 Defining_Identifier
=> Temp_Id
,
8130 Object_Definition
=>
8131 New_Occurrence_Of
(Result_Subt
, Loc
),
8133 New_Copy_Tree
(Function_Call
));
8135 Insert_Action
(Function_Call
, Temp_Decl
);
8137 Rewrite
(Function_Call
, New_Occurrence_Of
(Temp_Id
, Loc
));
8138 Analyze
(Function_Call
);
8141 -- When the result subtype is definite, an object of the subtype is
8142 -- declared and an access value designating it is passed as an actual.
8144 elsif Caller_Known_Size
(Func_Call
, Result_Subt
) then
8146 -- Create a temporary object to hold the function result
8148 Return_Obj_Id
:= Make_Temporary
(Loc
, 'R');
8149 Set_Etype
(Return_Obj_Id
, Result_Subt
);
8152 Make_Object_Declaration
(Loc
,
8153 Defining_Identifier
=> Return_Obj_Id
,
8154 Aliased_Present
=> True,
8155 Object_Definition
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8157 Set_No_Initialization
(Return_Obj_Decl
);
8159 Insert_Action
(Func_Call
, Return_Obj_Decl
);
8161 -- When the function has a controlling result, an allocation-form
8162 -- parameter must be passed indicating that the caller is allocating
8163 -- the result object. This is needed because such a function can be
8164 -- called as a dispatching operation and must be treated similarly
8165 -- to functions with unconstrained result subtypes.
8167 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8168 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8170 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8171 (Func_Call
, Function_Id
);
8173 Add_Task_Actuals_To_Build_In_Place_Call
8174 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8176 -- Add an implicit actual to the function call that provides access
8177 -- to the caller's return object.
8179 Add_Access_Actual_To_Build_In_Place_Call
8180 (Func_Call
, Function_Id
, New_Occurrence_Of
(Return_Obj_Id
, Loc
));
8182 -- When the result subtype is unconstrained, the function must allocate
8183 -- the return object in the secondary stack, so appropriate implicit
8184 -- parameters are added to the call to indicate that. A transient
8185 -- scope is established to ensure eventual cleanup of the result.
8188 -- Pass an allocation parameter indicating that the function should
8189 -- allocate its result on the secondary stack.
8191 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8192 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
8194 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8195 (Func_Call
, Function_Id
);
8197 Add_Task_Actuals_To_Build_In_Place_Call
8198 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8200 -- Pass a null value to the function since no return object is
8201 -- available on the caller side.
8203 Add_Access_Actual_To_Build_In_Place_Call
8204 (Func_Call
, Function_Id
, Empty
);
8206 end Make_Build_In_Place_Call_In_Anonymous_Context
;
8208 --------------------------------------------
8209 -- Make_Build_In_Place_Call_In_Assignment --
8210 --------------------------------------------
8212 procedure Make_Build_In_Place_Call_In_Assignment
8214 Function_Call
: Node_Id
)
8216 Func_Call
: constant Node_Id
:= Unqual_Conv
(Function_Call
);
8217 Lhs
: constant Node_Id
:= Name
(Assign
);
8218 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8219 Func_Id
: Entity_Id
;
8222 Ptr_Typ
: Entity_Id
;
8223 Ptr_Typ_Decl
: Node_Id
;
8225 Result_Subt
: Entity_Id
;
8228 -- Mark the call as processed as a build-in-place call
8230 pragma Assert
(not Is_Expanded_Build_In_Place_Call
(Func_Call
));
8231 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8233 if Is_Entity_Name
(Name
(Func_Call
)) then
8234 Func_Id
:= Entity
(Name
(Func_Call
));
8236 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8237 Func_Id
:= Etype
(Name
(Func_Call
));
8240 raise Program_Error
;
8243 Result_Subt
:= Etype
(Func_Id
);
8245 -- When the result subtype is unconstrained, an additional actual must
8246 -- be passed to indicate that the caller is providing the return object.
8247 -- This parameter must also be passed when the called function has a
8248 -- controlling result, because dispatching calls to the function needs
8249 -- to be treated effectively the same as calls to class-wide functions.
8251 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8252 (Func_Call
, Func_Id
, Alloc_Form
=> Caller_Allocation
);
8254 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8255 (Func_Call
, Func_Id
);
8257 Add_Task_Actuals_To_Build_In_Place_Call
8258 (Func_Call
, Func_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8260 -- Add an implicit actual to the function call that provides access to
8261 -- the caller's return object.
8263 Add_Access_Actual_To_Build_In_Place_Call
8266 Make_Unchecked_Type_Conversion
(Loc
,
8267 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8268 Expression
=> Relocate_Node
(Lhs
)));
8270 -- Create an access type designating the function's result subtype
8272 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8275 Make_Full_Type_Declaration
(Loc
,
8276 Defining_Identifier
=> Ptr_Typ
,
8278 Make_Access_To_Object_Definition
(Loc
,
8279 All_Present
=> True,
8280 Subtype_Indication
=>
8281 New_Occurrence_Of
(Result_Subt
, Loc
)));
8282 Insert_After_And_Analyze
(Assign
, Ptr_Typ_Decl
);
8284 -- Finally, create an access object initialized to a reference to the
8285 -- function call. We know this access value is non-null, so mark the
8286 -- entity accordingly to suppress junk access checks.
8288 New_Expr
:= Make_Reference
(Loc
, Relocate_Node
(Func_Call
));
8290 -- Add a conversion if it's the wrong type
8292 if Etype
(New_Expr
) /= Ptr_Typ
then
8294 Make_Unchecked_Type_Conversion
(Loc
,
8295 New_Occurrence_Of
(Ptr_Typ
, Loc
), New_Expr
);
8298 Obj_Id
:= Make_Temporary
(Loc
, 'R', New_Expr
);
8299 Set_Etype
(Obj_Id
, Ptr_Typ
);
8300 Set_Is_Known_Non_Null
(Obj_Id
);
8303 Make_Object_Declaration
(Loc
,
8304 Defining_Identifier
=> Obj_Id
,
8305 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8306 Expression
=> New_Expr
);
8307 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Obj_Decl
);
8309 Rewrite
(Assign
, Make_Null_Statement
(Loc
));
8310 end Make_Build_In_Place_Call_In_Assignment
;
8312 ----------------------------------------------------
8313 -- Make_Build_In_Place_Call_In_Object_Declaration --
8314 ----------------------------------------------------
8316 procedure Make_Build_In_Place_Call_In_Object_Declaration
8317 (Obj_Decl
: Node_Id
;
8318 Function_Call
: Node_Id
)
8320 function Get_Function_Id
(Func_Call
: Node_Id
) return Entity_Id
;
8321 -- Get the value of Function_Id, below
8323 ---------------------
8324 -- Get_Function_Id --
8325 ---------------------
8327 function Get_Function_Id
(Func_Call
: Node_Id
) return Entity_Id
is
8329 if Is_Entity_Name
(Name
(Func_Call
)) then
8330 return Entity
(Name
(Func_Call
));
8332 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8333 return Etype
(Name
(Func_Call
));
8336 raise Program_Error
;
8338 end Get_Function_Id
;
8342 Func_Call
: constant Node_Id
:= Unqual_Conv
(Function_Call
);
8343 Function_Id
: constant Entity_Id
:= Get_Function_Id
(Func_Call
);
8344 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8345 Obj_Loc
: constant Source_Ptr
:= Sloc
(Obj_Decl
);
8346 Obj_Def_Id
: constant Entity_Id
:= Defining_Identifier
(Obj_Decl
);
8347 Obj_Typ
: constant Entity_Id
:= Etype
(Obj_Def_Id
);
8348 Encl_Func
: constant Entity_Id
:= Enclosing_Subprogram
(Obj_Def_Id
);
8349 Result_Subt
: constant Entity_Id
:= Etype
(Function_Id
);
8351 Call_Deref
: Node_Id
;
8352 Caller_Object
: Node_Id
;
8354 Designated_Type
: Entity_Id
;
8355 Fmaster_Actual
: Node_Id
:= Empty
;
8356 Pool_Actual
: Node_Id
;
8357 Ptr_Typ
: Entity_Id
;
8358 Ptr_Typ_Decl
: Node_Id
;
8359 Pass_Caller_Acc
: Boolean := False;
8362 Definite
: constant Boolean :=
8363 Caller_Known_Size
(Func_Call
, Result_Subt
)
8364 and then not Is_Class_Wide_Type
(Obj_Typ
);
8365 -- In the case of "X : T'Class := F(...);", where F returns a
8366 -- Caller_Known_Size (specific) tagged type, we treat it as
8367 -- indefinite, because the code for the Definite case below sets the
8368 -- initialization expression of the object to Empty, which would be
8369 -- illegal Ada, and would cause gigi to misallocate X.
8371 -- Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
8374 -- If the call has already been processed to add build-in-place actuals
8377 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8381 -- Mark the call as processed as a build-in-place call
8383 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8385 -- Create an access type designating the function's result subtype.
8386 -- We use the type of the original call because it may be a call to an
8387 -- inherited operation, which the expansion has replaced with the parent
8388 -- operation that yields the parent type. Note that this access type
8389 -- must be declared before we establish a transient scope, so that it
8390 -- receives the proper accessibility level.
8392 if Is_Class_Wide_Type
(Obj_Typ
)
8393 and then not Is_Interface
(Obj_Typ
)
8394 and then not Is_Class_Wide_Type
(Etype
(Function_Call
))
8396 Designated_Type
:= Obj_Typ
;
8398 Designated_Type
:= Etype
(Function_Call
);
8401 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8403 Make_Full_Type_Declaration
(Loc
,
8404 Defining_Identifier
=> Ptr_Typ
,
8406 Make_Access_To_Object_Definition
(Loc
,
8407 All_Present
=> True,
8408 Subtype_Indication
=>
8409 New_Occurrence_Of
(Designated_Type
, Loc
)));
8411 -- The access type and its accompanying object must be inserted after
8412 -- the object declaration in the constrained case, so that the function
8413 -- call can be passed access to the object. In the indefinite case, or
8414 -- if the object declaration is for a return object, the access type and
8415 -- object must be inserted before the object, since the object
8416 -- declaration is rewritten to be a renaming of a dereference of the
8417 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8418 -- the result object is in a different (transient) scope, so won't cause
8421 if Definite
and then not Is_Return_Object
(Obj_Def_Id
) then
8423 -- The presence of an address clause complicates the build-in-place
8424 -- expansion because the indicated address must be processed before
8425 -- the indirect call is generated (including the definition of a
8426 -- local pointer to the object). The address clause may come from
8427 -- an aspect specification or from an explicit attribute
8428 -- specification appearing after the object declaration. These two
8429 -- cases require different processing.
8431 if Has_Aspect
(Obj_Def_Id
, Aspect_Address
) then
8433 -- Skip non-delayed pragmas that correspond to other aspects, if
8434 -- any, to find proper insertion point for freeze node of object.
8437 D
: Node_Id
:= Obj_Decl
;
8438 N
: Node_Id
:= Next
(D
);
8442 and then Nkind_In
(N
, N_Pragma
, N_Attribute_Reference
)
8449 Insert_After
(D
, Ptr_Typ_Decl
);
8451 -- Freeze object before pointer declaration, to ensure that
8452 -- generated attribute for address is inserted at the proper
8455 Freeze_Before
(Ptr_Typ_Decl
, Obj_Def_Id
);
8458 Analyze
(Ptr_Typ_Decl
);
8460 elsif Present
(Following_Address_Clause
(Obj_Decl
)) then
8462 -- Locate explicit address clause, which may also follow pragmas
8463 -- generated by other aspect specifications.
8466 Addr
: constant Node_Id
:= Following_Address_Clause
(Obj_Decl
);
8467 D
: Node_Id
:= Next
(Obj_Decl
);
8470 while Present
(D
) loop
8476 Insert_After_And_Analyze
(Addr
, Ptr_Typ_Decl
);
8480 Insert_After_And_Analyze
(Obj_Decl
, Ptr_Typ_Decl
);
8483 Insert_Action
(Obj_Decl
, Ptr_Typ_Decl
);
8486 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8487 -- elaborated in an inner (transient) scope and thus won't cause
8488 -- freezing by itself. It's not an itype, but it needs to be frozen
8489 -- inside the current subprogram (see Freeze_Outside in freeze.adb).
8491 Freeze_Itype
(Ptr_Typ
, Ptr_Typ_Decl
);
8493 -- If the object is a return object of an enclosing build-in-place
8494 -- function, then the implicit build-in-place parameters of the
8495 -- enclosing function are simply passed along to the called function.
8496 -- (Unfortunately, this won't cover the case of extension aggregates
8497 -- where the ancestor part is a build-in-place indefinite function
8498 -- call that should be passed along the caller's parameters.
8499 -- Currently those get mishandled by reassigning the result of the
8500 -- call to the aggregate return object, when the call result should
8501 -- really be directly built in place in the aggregate and not in a
8504 if Is_Return_Object
(Obj_Def_Id
) then
8505 Pass_Caller_Acc
:= True;
8507 -- When the enclosing function has a BIP_Alloc_Form formal then we
8508 -- pass it along to the callee (such as when the enclosing function
8509 -- has an unconstrained or tagged result type).
8511 if Needs_BIP_Alloc_Form
(Encl_Func
) then
8512 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
8515 (Build_In_Place_Formal
8516 (Encl_Func
, BIP_Storage_Pool
), Loc
);
8518 -- The build-in-place pool formal is not built on e.g. ZFP
8521 Pool_Actual
:= Empty
;
8524 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8525 (Function_Call
=> Func_Call
,
8526 Function_Id
=> Function_Id
,
8529 (Build_In_Place_Formal
(Encl_Func
, BIP_Alloc_Form
), Loc
),
8530 Pool_Actual
=> Pool_Actual
);
8532 -- Otherwise, if enclosing function has a definite result subtype,
8533 -- then caller allocation will be used.
8536 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8537 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8540 if Needs_BIP_Finalization_Master
(Encl_Func
) then
8543 (Build_In_Place_Formal
8544 (Encl_Func
, BIP_Finalization_Master
), Loc
);
8547 -- Retrieve the BIPacc formal from the enclosing function and convert
8548 -- it to the access type of the callee's BIP_Object_Access formal.
8551 Make_Unchecked_Type_Conversion
(Loc
,
8554 (Etype
(Build_In_Place_Formal
8555 (Function_Id
, BIP_Object_Access
)),
8559 (Build_In_Place_Formal
(Encl_Func
, BIP_Object_Access
),
8562 -- In the definite case, add an implicit actual to the function call
8563 -- that provides access to the declared object. An unchecked conversion
8564 -- to the (specific) result type of the function is inserted to handle
8565 -- the case where the object is declared with a class-wide type.
8569 Make_Unchecked_Type_Conversion
(Loc
,
8570 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8571 Expression
=> New_Occurrence_Of
(Obj_Def_Id
, Loc
));
8573 -- When the function has a controlling result, an allocation-form
8574 -- parameter must be passed indicating that the caller is allocating
8575 -- the result object. This is needed because such a function can be
8576 -- called as a dispatching operation and must be treated similarly to
8577 -- functions with indefinite result subtypes.
8579 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8580 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8582 -- The allocation for indefinite library-level objects occurs on the
8583 -- heap as opposed to the secondary stack. This accommodates DLLs where
8584 -- the secondary stack is destroyed after each library unload. This is a
8585 -- hybrid mechanism where a stack-allocated object lives on the heap.
8587 elsif Is_Library_Level_Entity
(Obj_Def_Id
)
8588 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
8590 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8591 (Func_Call
, Function_Id
, Alloc_Form
=> Global_Heap
);
8592 Caller_Object
:= Empty
;
8594 -- Create a finalization master for the access result type to ensure
8595 -- that the heap allocation can properly chain the object and later
8596 -- finalize it when the library unit goes out of scope.
8598 if Needs_Finalization
(Etype
(Func_Call
)) then
8599 Build_Finalization_Master
8601 For_Lib_Level
=> True,
8602 Insertion_Node
=> Ptr_Typ_Decl
);
8605 Make_Attribute_Reference
(Loc
,
8607 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
8608 Attribute_Name
=> Name_Unrestricted_Access
);
8611 -- In other indefinite cases, pass an indication to do the allocation
8612 -- on the secondary stack and set Caller_Object to Empty so that a null
8613 -- value will be passed for the caller's object address. A transient
8614 -- scope is established to ensure eventual cleanup of the result.
8617 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8618 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
8619 Caller_Object
:= Empty
;
8621 Establish_Transient_Scope
(Obj_Decl
, Manage_Sec_Stack
=> True);
8624 -- Pass along any finalization master actual, which is needed in the
8625 -- case where the called function initializes a return object of an
8626 -- enclosing build-in-place function.
8628 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8629 (Func_Call
=> Func_Call
,
8630 Func_Id
=> Function_Id
,
8631 Master_Exp
=> Fmaster_Actual
);
8633 if Nkind
(Parent
(Obj_Decl
)) = N_Extended_Return_Statement
8634 and then Has_Task
(Result_Subt
)
8636 -- Here we're passing along the master that was passed in to this
8639 Add_Task_Actuals_To_Build_In_Place_Call
8640 (Func_Call
, Function_Id
,
8643 (Build_In_Place_Formal
(Encl_Func
, BIP_Task_Master
), Loc
));
8646 Add_Task_Actuals_To_Build_In_Place_Call
8647 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8650 Add_Access_Actual_To_Build_In_Place_Call
8654 Is_Access
=> Pass_Caller_Acc
);
8656 -- Finally, create an access object initialized to a reference to the
8657 -- function call. We know this access value cannot be null, so mark the
8658 -- entity accordingly to suppress the access check.
8660 Def_Id
:= Make_Temporary
(Loc
, 'R', Func_Call
);
8661 Set_Etype
(Def_Id
, Ptr_Typ
);
8662 Set_Is_Known_Non_Null
(Def_Id
);
8664 if Nkind_In
(Function_Call
, N_Type_Conversion
,
8665 N_Unchecked_Type_Conversion
)
8668 Make_Object_Declaration
(Loc
,
8669 Defining_Identifier
=> Def_Id
,
8670 Constant_Present
=> True,
8671 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8673 Make_Unchecked_Type_Conversion
(Loc
,
8674 New_Occurrence_Of
(Ptr_Typ
, Loc
),
8675 Make_Reference
(Loc
, Relocate_Node
(Func_Call
))));
8678 Make_Object_Declaration
(Loc
,
8679 Defining_Identifier
=> Def_Id
,
8680 Constant_Present
=> True,
8681 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8683 Make_Reference
(Loc
, Relocate_Node
(Func_Call
)));
8686 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Res_Decl
);
8688 -- If the result subtype of the called function is definite and is not
8689 -- itself the return expression of an enclosing BIP function, then mark
8690 -- the object as having no initialization.
8692 if Definite
and then not Is_Return_Object
(Obj_Def_Id
) then
8694 -- The related object declaration is encased in a transient block
8695 -- because the build-in-place function call contains at least one
8696 -- nested function call that produces a controlled transient
8699 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8701 -- Since the build-in-place expansion decouples the call from the
8702 -- object declaration, the finalization machinery lacks the context
8703 -- which prompted the generation of the transient block. To resolve
8704 -- this scenario, store the build-in-place call.
8706 if Scope_Is_Transient
and then Node_To_Be_Wrapped
= Obj_Decl
then
8707 Set_BIP_Initialization_Call
(Obj_Def_Id
, Res_Decl
);
8710 Set_Expression
(Obj_Decl
, Empty
);
8711 Set_No_Initialization
(Obj_Decl
);
8713 -- In case of an indefinite result subtype, or if the call is the
8714 -- return expression of an enclosing BIP function, rewrite the object
8715 -- declaration as an object renaming where the renamed object is a
8716 -- dereference of <function_Call>'reference:
8718 -- Obj : Subt renames <function_call>'Ref.all;
8722 Make_Explicit_Dereference
(Obj_Loc
,
8723 Prefix
=> New_Occurrence_Of
(Def_Id
, Obj_Loc
));
8726 Make_Object_Renaming_Declaration
(Obj_Loc
,
8727 Defining_Identifier
=> Make_Temporary
(Obj_Loc
, 'D'),
8729 New_Occurrence_Of
(Designated_Type
, Obj_Loc
),
8730 Name
=> Call_Deref
));
8732 -- At this point, Defining_Identifier (Obj_Decl) is no longer equal
8735 Set_Renamed_Object
(Defining_Identifier
(Obj_Decl
), Call_Deref
);
8737 -- If the original entity comes from source, then mark the new
8738 -- entity as needing debug information, even though it's defined
8739 -- by a generated renaming that does not come from source, so that
8740 -- the Materialize_Entity flag will be set on the entity when
8741 -- Debug_Renaming_Declaration is called during analysis.
8743 if Comes_From_Source
(Obj_Def_Id
) then
8744 Set_Debug_Info_Needed
(Defining_Identifier
(Obj_Decl
));
8748 Replace_Renaming_Declaration_Id
8749 (Obj_Decl
, Original_Node
(Obj_Decl
));
8751 end Make_Build_In_Place_Call_In_Object_Declaration
;
8753 -------------------------------------------------
8754 -- Make_Build_In_Place_Iface_Call_In_Allocator --
8755 -------------------------------------------------
8757 procedure Make_Build_In_Place_Iface_Call_In_Allocator
8758 (Allocator
: Node_Id
;
8759 Function_Call
: Node_Id
)
8761 BIP_Func_Call
: constant Node_Id
:=
8762 Unqual_BIP_Iface_Function_Call
(Function_Call
);
8763 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8765 Anon_Type
: Entity_Id
;
8770 -- No action of the call has already been processed
8772 if Is_Expanded_Build_In_Place_Call
(BIP_Func_Call
) then
8776 Tmp_Id
:= Make_Temporary
(Loc
, 'D');
8778 -- Insert a temporary before N initialized with the BIP function call
8779 -- without its enclosing type conversions and analyze it without its
8780 -- expansion. This temporary facilitates us reusing the BIP machinery,
8781 -- which takes care of adding the extra build-in-place actuals and
8782 -- transforms this object declaration into an object renaming
8785 Anon_Type
:= Create_Itype
(E_Anonymous_Access_Type
, Function_Call
);
8786 Set_Directly_Designated_Type
(Anon_Type
, Etype
(BIP_Func_Call
));
8787 Set_Etype
(Anon_Type
, Anon_Type
);
8790 Make_Object_Declaration
(Loc
,
8791 Defining_Identifier
=> Tmp_Id
,
8792 Object_Definition
=> New_Occurrence_Of
(Anon_Type
, Loc
),
8794 Make_Allocator
(Loc
,
8796 Make_Qualified_Expression
(Loc
,
8798 New_Occurrence_Of
(Etype
(BIP_Func_Call
), Loc
),
8799 Expression
=> New_Copy_Tree
(BIP_Func_Call
))));
8801 Expander_Mode_Save_And_Set
(False);
8802 Insert_Action
(Allocator
, Tmp_Decl
);
8803 Expander_Mode_Restore
;
8805 Make_Build_In_Place_Call_In_Allocator
8806 (Allocator
=> Expression
(Tmp_Decl
),
8807 Function_Call
=> Expression
(Expression
(Tmp_Decl
)));
8809 Rewrite
(Allocator
, New_Occurrence_Of
(Tmp_Id
, Loc
));
8810 end Make_Build_In_Place_Iface_Call_In_Allocator
;
8812 ---------------------------------------------------------
8813 -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
8814 ---------------------------------------------------------
8816 procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
8817 (Function_Call
: Node_Id
)
8819 BIP_Func_Call
: constant Node_Id
:=
8820 Unqual_BIP_Iface_Function_Call
(Function_Call
);
8821 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8827 -- No action of the call has already been processed
8829 if Is_Expanded_Build_In_Place_Call
(BIP_Func_Call
) then
8833 pragma Assert
(Needs_Finalization
(Etype
(BIP_Func_Call
)));
8835 -- Insert a temporary before the call initialized with function call to
8836 -- reuse the BIP machinery which takes care of adding the extra build-in
8837 -- place actuals and transforms this object declaration into an object
8838 -- renaming declaration.
8840 Tmp_Id
:= Make_Temporary
(Loc
, 'D');
8843 Make_Object_Declaration
(Loc
,
8844 Defining_Identifier
=> Tmp_Id
,
8845 Object_Definition
=>
8846 New_Occurrence_Of
(Etype
(Function_Call
), Loc
),
8847 Expression
=> Relocate_Node
(Function_Call
));
8849 Expander_Mode_Save_And_Set
(False);
8850 Insert_Action
(Function_Call
, Tmp_Decl
);
8851 Expander_Mode_Restore
;
8853 Make_Build_In_Place_Iface_Call_In_Object_Declaration
8854 (Obj_Decl
=> Tmp_Decl
,
8855 Function_Call
=> Expression
(Tmp_Decl
));
8856 end Make_Build_In_Place_Iface_Call_In_Anonymous_Context
;
8858 ----------------------------------------------------------
8859 -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
8860 ----------------------------------------------------------
8862 procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
8863 (Obj_Decl
: Node_Id
;
8864 Function_Call
: Node_Id
)
8866 BIP_Func_Call
: constant Node_Id
:=
8867 Unqual_BIP_Iface_Function_Call
(Function_Call
);
8868 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8869 Obj_Id
: constant Entity_Id
:= Defining_Entity
(Obj_Decl
);
8875 -- No action of the call has already been processed
8877 if Is_Expanded_Build_In_Place_Call
(BIP_Func_Call
) then
8881 Tmp_Id
:= Make_Temporary
(Loc
, 'D');
8883 -- Insert a temporary before N initialized with the BIP function call
8884 -- without its enclosing type conversions and analyze it without its
8885 -- expansion. This temporary facilitates us reusing the BIP machinery,
8886 -- which takes care of adding the extra build-in-place actuals and
8887 -- transforms this object declaration into an object renaming
8891 Make_Object_Declaration
(Loc
,
8892 Defining_Identifier
=> Tmp_Id
,
8893 Object_Definition
=>
8894 New_Occurrence_Of
(Etype
(BIP_Func_Call
), Loc
),
8895 Expression
=> New_Copy_Tree
(BIP_Func_Call
));
8897 Expander_Mode_Save_And_Set
(False);
8898 Insert_Action
(Obj_Decl
, Tmp_Decl
);
8899 Expander_Mode_Restore
;
8901 Make_Build_In_Place_Call_In_Object_Declaration
8902 (Obj_Decl
=> Tmp_Decl
,
8903 Function_Call
=> Expression
(Tmp_Decl
));
8905 pragma Assert
(Nkind
(Tmp_Decl
) = N_Object_Renaming_Declaration
);
8907 -- Replace the original build-in-place function call by a reference to
8908 -- the resulting temporary object renaming declaration. In this way,
8909 -- all the interface conversions performed in the original Function_Call
8910 -- on the build-in-place object are preserved.
8912 Rewrite
(BIP_Func_Call
, New_Occurrence_Of
(Tmp_Id
, Loc
));
8914 -- Replace the original object declaration by an internal object
8915 -- renaming declaration. This leaves the generated code more clean (the
8916 -- build-in-place function call in an object renaming declaration and
8917 -- displacements of the pointer to the build-in-place object in another
8918 -- renaming declaration) and allows us to invoke the routine that takes
8919 -- care of replacing the identifier of the renaming declaration (routine
8920 -- originally developed for the regular build-in-place management).
8923 Make_Object_Renaming_Declaration
(Loc
,
8924 Defining_Identifier
=> Make_Temporary
(Loc
, 'D'),
8925 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Obj_Id
), Loc
),
8926 Name
=> Function_Call
));
8929 Replace_Renaming_Declaration_Id
(Obj_Decl
, Original_Node
(Obj_Decl
));
8930 end Make_Build_In_Place_Iface_Call_In_Object_Declaration
;
8932 --------------------------------------------
8933 -- Make_CPP_Constructor_Call_In_Allocator --
8934 --------------------------------------------
8936 procedure Make_CPP_Constructor_Call_In_Allocator
8937 (Allocator
: Node_Id
;
8938 Function_Call
: Node_Id
)
8940 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8941 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
8942 Function_Id
: constant Entity_Id
:= Entity
(Name
(Function_Call
));
8943 Result_Subt
: constant Entity_Id
:= Available_View
(Etype
(Function_Id
));
8945 New_Allocator
: Node_Id
;
8946 Return_Obj_Access
: Entity_Id
;
8950 pragma Assert
(Nkind
(Allocator
) = N_Allocator
8951 and then Nkind
(Function_Call
) = N_Function_Call
);
8952 pragma Assert
(Convention
(Function_Id
) = Convention_CPP
8953 and then Is_Constructor
(Function_Id
));
8954 pragma Assert
(Is_Constrained
(Underlying_Type
(Result_Subt
)));
8956 -- Replace the initialized allocator of form "new T'(Func (...))" with
8957 -- an uninitialized allocator of form "new T", where T is the result
8958 -- subtype of the called function. The call to the function is handled
8959 -- separately further below.
8962 Make_Allocator
(Loc
,
8963 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8964 Set_No_Initialization
(New_Allocator
);
8966 -- Copy attributes to new allocator. Note that the new allocator
8967 -- logically comes from source if the original one did, so copy the
8968 -- relevant flag. This ensures proper treatment of the restriction
8969 -- No_Implicit_Heap_Allocations in this case.
8971 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
8972 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
8973 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
8975 Rewrite
(Allocator
, New_Allocator
);
8977 -- Create a new access object and initialize it to the result of the
8978 -- new uninitialized allocator. Note: we do not use Allocator as the
8979 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
8980 -- as this would create a sort of infinite "recursion".
8982 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
8983 Set_Etype
(Return_Obj_Access
, Acc_Type
);
8986 -- Rnnn : constant ptr_T := new (T);
8987 -- Init (Rnn.all,...);
8990 Make_Object_Declaration
(Loc
,
8991 Defining_Identifier
=> Return_Obj_Access
,
8992 Constant_Present
=> True,
8993 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
8994 Expression
=> Relocate_Node
(Allocator
));
8995 Insert_Action
(Allocator
, Tmp_Obj
);
8997 Insert_List_After_And_Analyze
(Tmp_Obj
,
8998 Build_Initialization_Call
(Loc
,
9000 Make_Explicit_Dereference
(Loc
,
9001 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)),
9002 Typ
=> Etype
(Function_Id
),
9003 Constructor_Ref
=> Function_Call
));
9005 -- Finally, replace the allocator node with a reference to the result of
9006 -- the function call itself (which will effectively be an access to the
9007 -- object created by the allocator).
9009 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
9011 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9012 -- generate an implicit conversion to force displacement of the "this"
9015 if Is_Interface
(Designated_Type
(Acc_Type
)) then
9016 Rewrite
(Allocator
, Convert_To
(Acc_Type
, Relocate_Node
(Allocator
)));
9019 Analyze_And_Resolve
(Allocator
, Acc_Type
);
9020 end Make_CPP_Constructor_Call_In_Allocator
;
9022 -----------------------------------
9023 -- Needs_BIP_Finalization_Master --
9024 -----------------------------------
9026 function Needs_BIP_Finalization_Master
9027 (Func_Id
: Entity_Id
) return Boolean
9029 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
9030 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9032 -- A formal giving the finalization master is needed for build-in-place
9033 -- functions whose result type needs finalization or is a tagged type.
9034 -- Tagged primitive build-in-place functions need such a formal because
9035 -- they can be called by a dispatching call, and extensions may require
9036 -- finalization even if the root type doesn't. This means they're also
9037 -- needed for tagged nonprimitive build-in-place functions with tagged
9038 -- results, since such functions can be called via access-to-function
9039 -- types, and those can be used to call primitives, so masters have to
9040 -- be passed to all such build-in-place functions, primitive or not.
9043 not Restriction_Active
(No_Finalization
)
9044 and then (Needs_Finalization
(Func_Typ
)
9045 or else Is_Tagged_Type
(Func_Typ
));
9046 end Needs_BIP_Finalization_Master
;
9048 --------------------------
9049 -- Needs_BIP_Alloc_Form --
9050 --------------------------
9052 function Needs_BIP_Alloc_Form
(Func_Id
: Entity_Id
) return Boolean is
9053 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
9054 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9056 return not Is_Constrained
(Func_Typ
) or else Is_Tagged_Type
(Func_Typ
);
9057 end Needs_BIP_Alloc_Form
;
9059 --------------------------------------
9060 -- Needs_Result_Accessibility_Level --
9061 --------------------------------------
9063 function Needs_Result_Accessibility_Level
9064 (Func_Id
: Entity_Id
) return Boolean
9066 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9068 function Has_Unconstrained_Access_Discriminant_Component
9069 (Comp_Typ
: Entity_Id
) return Boolean;
9070 -- Returns True if any component of the type has an unconstrained access
9073 -----------------------------------------------------
9074 -- Has_Unconstrained_Access_Discriminant_Component --
9075 -----------------------------------------------------
9077 function Has_Unconstrained_Access_Discriminant_Component
9078 (Comp_Typ
: Entity_Id
) return Boolean
9081 if not Is_Limited_Type
(Comp_Typ
) then
9084 -- Only limited types can have access discriminants with
9087 elsif Has_Unconstrained_Access_Discriminants
(Comp_Typ
) then
9090 elsif Is_Array_Type
(Comp_Typ
) then
9091 return Has_Unconstrained_Access_Discriminant_Component
9092 (Underlying_Type
(Component_Type
(Comp_Typ
)));
9094 elsif Is_Record_Type
(Comp_Typ
) then
9099 Comp
:= First_Component
(Comp_Typ
);
9100 while Present
(Comp
) loop
9101 if Has_Unconstrained_Access_Discriminant_Component
9102 (Underlying_Type
(Etype
(Comp
)))
9107 Next_Component
(Comp
);
9113 end Has_Unconstrained_Access_Discriminant_Component
;
9115 Feature_Disabled
: constant Boolean := True;
9118 -- Start of processing for Needs_Result_Accessibility_Level
9121 -- False if completion unavailable (how does this happen???)
9123 if not Present
(Func_Typ
) then
9126 elsif Feature_Disabled
then
9129 -- False if not a function, also handle enum-lit renames case
9131 elsif Func_Typ
= Standard_Void_Type
9132 or else Is_Scalar_Type
(Func_Typ
)
9136 -- Handle a corner case, a cross-dialect subp renaming. For example,
9137 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9138 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9140 elsif Present
(Alias
(Func_Id
)) then
9142 -- Unimplemented: a cross-dialect subp renaming which does not set
9143 -- the Alias attribute (e.g., a rename of a dereference of an access
9144 -- to subprogram value). ???
9146 return Present
(Extra_Accessibility_Of_Result
(Alias
(Func_Id
)));
9148 -- Remaining cases require Ada 2012 mode
9150 elsif Ada_Version
< Ada_2012
then
9153 elsif Ekind
(Func_Typ
) = E_Anonymous_Access_Type
9154 or else Is_Tagged_Type
(Func_Typ
)
9156 -- In the case of, say, a null tagged record result type, the need
9157 -- for this extra parameter might not be obvious. This function
9158 -- returns True for all tagged types for compatibility reasons.
9159 -- A function with, say, a tagged null controlling result type might
9160 -- be overridden by a primitive of an extension having an access
9161 -- discriminant and the overrider and overridden must have compatible
9162 -- calling conventions (including implicitly declared parameters).
9163 -- Similarly, values of one access-to-subprogram type might designate
9164 -- both a primitive subprogram of a given type and a function
9165 -- which is, for example, not a primitive subprogram of any type.
9166 -- Again, this requires calling convention compatibility.
9167 -- It might be possible to solve these issues by introducing
9168 -- wrappers, but that is not the approach that was chosen.
9172 elsif Has_Unconstrained_Access_Discriminants
(Func_Typ
) then
9175 elsif Has_Unconstrained_Access_Discriminant_Component
(Func_Typ
) then
9178 -- False for all other cases
9183 end Needs_Result_Accessibility_Level
;
9185 -------------------------------------
9186 -- Replace_Renaming_Declaration_Id --
9187 -------------------------------------
9189 procedure Replace_Renaming_Declaration_Id
9190 (New_Decl
: Node_Id
;
9191 Orig_Decl
: Node_Id
)
9193 New_Id
: constant Entity_Id
:= Defining_Entity
(New_Decl
);
9194 Orig_Id
: constant Entity_Id
:= Defining_Entity
(Orig_Decl
);
9197 Set_Chars
(New_Id
, Chars
(Orig_Id
));
9199 -- Swap next entity links in preparation for exchanging entities
9202 Next_Id
: constant Entity_Id
:= Next_Entity
(New_Id
);
9204 Set_Next_Entity
(New_Id
, Next_Entity
(Orig_Id
));
9205 Set_Next_Entity
(Orig_Id
, Next_Id
);
9208 Set_Homonym
(New_Id
, Homonym
(Orig_Id
));
9209 Exchange_Entities
(New_Id
, Orig_Id
);
9211 -- Preserve source indication of original declaration, so that xref
9212 -- information is properly generated for the right entity.
9214 Preserve_Comes_From_Source
(New_Decl
, Orig_Decl
);
9215 Preserve_Comes_From_Source
(Orig_Id
, Orig_Decl
);
9217 Set_Comes_From_Source
(New_Id
, False);
9218 end Replace_Renaming_Declaration_Id
;
9220 ---------------------------------
9221 -- Rewrite_Function_Call_For_C --
9222 ---------------------------------
9224 procedure Rewrite_Function_Call_For_C
(N
: Node_Id
) is
9225 Orig_Func
: constant Entity_Id
:= Entity
(Name
(N
));
9226 Func_Id
: constant Entity_Id
:= Ultimate_Alias
(Orig_Func
);
9227 Par
: constant Node_Id
:= Parent
(N
);
9228 Proc_Id
: constant Entity_Id
:= Corresponding_Procedure
(Func_Id
);
9229 Loc
: constant Source_Ptr
:= Sloc
(Par
);
9231 Last_Actual
: Node_Id
;
9232 Last_Formal
: Entity_Id
;
9234 -- Start of processing for Rewrite_Function_Call_For_C
9237 -- The actuals may be given by named associations, so the added actual
9238 -- that is the target of the return value of the call must be a named
9239 -- association as well, so we retrieve the name of the generated
9242 Last_Formal
:= First_Formal
(Proc_Id
);
9243 while Present
(Next_Formal
(Last_Formal
)) loop
9244 Last_Formal
:= Next_Formal
(Last_Formal
);
9247 Actuals
:= Parameter_Associations
(N
);
9249 -- The original function may lack parameters
9251 if No
(Actuals
) then
9252 Actuals
:= New_List
;
9255 -- If the function call is the expression of an assignment statement,
9256 -- transform the assignment into a procedure call. Generate:
9258 -- LHS := Func_Call (...);
9260 -- Proc_Call (..., LHS);
9262 -- If function is inherited, a conversion may be necessary.
9264 if Nkind
(Par
) = N_Assignment_Statement
then
9265 Last_Actual
:= Name
(Par
);
9267 if not Comes_From_Source
(Orig_Func
)
9268 and then Etype
(Orig_Func
) /= Etype
(Func_Id
)
9271 Make_Type_Conversion
(Loc
,
9272 New_Occurrence_Of
(Etype
(Func_Id
), Loc
),
9277 Make_Parameter_Association
(Loc
,
9279 Make_Identifier
(Loc
, Chars
(Last_Formal
)),
9280 Explicit_Actual_Parameter
=> Last_Actual
));
9283 Make_Procedure_Call_Statement
(Loc
,
9284 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
9285 Parameter_Associations
=> Actuals
));
9288 -- Otherwise the context is an expression. Generate a temporary and a
9289 -- procedure call to obtain the function result. Generate:
9291 -- ... Func_Call (...) ...
9294 -- Proc_Call (..., Temp);
9299 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
9308 Make_Object_Declaration
(Loc
,
9309 Defining_Identifier
=> Temp_Id
,
9310 Object_Definition
=>
9311 New_Occurrence_Of
(Etype
(Func_Id
), Loc
));
9314 -- Proc_Call (..., Temp);
9317 Make_Parameter_Association
(Loc
,
9319 Make_Identifier
(Loc
, Chars
(Last_Formal
)),
9320 Explicit_Actual_Parameter
=>
9321 New_Occurrence_Of
(Temp_Id
, Loc
)));
9324 Make_Procedure_Call_Statement
(Loc
,
9325 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
9326 Parameter_Associations
=> Actuals
);
9328 Insert_Actions
(Par
, New_List
(Decl
, Call
));
9329 Rewrite
(N
, New_Occurrence_Of
(Temp_Id
, Loc
));
9332 end Rewrite_Function_Call_For_C
;
9334 ------------------------------------
9335 -- Set_Enclosing_Sec_Stack_Return --
9336 ------------------------------------
9338 procedure Set_Enclosing_Sec_Stack_Return
(N
: Node_Id
) is
9342 -- Due to a possible mix of internally generated blocks, source blocks
9343 -- and loops, the scope stack may not be contiguous as all labels are
9344 -- inserted at the top level within the related function. Instead,
9345 -- perform a parent-based traversal and mark all appropriate constructs.
9347 while Present
(P
) loop
9349 -- Mark the label of a source or internally generated block or
9352 if Nkind_In
(P
, N_Block_Statement
, N_Loop_Statement
) then
9353 Set_Sec_Stack_Needed_For_Return
(Entity
(Identifier
(P
)));
9355 -- Mark the enclosing function
9357 elsif Nkind
(P
) = N_Subprogram_Body
then
9358 if Present
(Corresponding_Spec
(P
)) then
9359 Set_Sec_Stack_Needed_For_Return
(Corresponding_Spec
(P
));
9361 Set_Sec_Stack_Needed_For_Return
(Defining_Entity
(P
));
9364 -- Do not go beyond the enclosing function
9371 end Set_Enclosing_Sec_Stack_Return
;
9373 ------------------------------------
9374 -- Unqual_BIP_Iface_Function_Call --
9375 ------------------------------------
9377 function Unqual_BIP_Iface_Function_Call
(Expr
: Node_Id
) return Node_Id
is
9378 Has_Pointer_Displacement
: Boolean := False;
9379 On_Object_Declaration
: Boolean := False;
9380 -- Remember if processing the renaming expressions on recursion we have
9381 -- traversed an object declaration, since we can traverse many object
9382 -- declaration renamings but just one regular object declaration.
9384 function Unqual_BIP_Function_Call
(Expr
: Node_Id
) return Node_Id
;
9385 -- Search for a build-in-place function call skipping any qualification
9386 -- including qualified expressions, type conversions, references, calls
9387 -- to displace the pointer to the object, and renamings. Return Empty if
9388 -- no build-in-place function call is found.
9390 ------------------------------
9391 -- Unqual_BIP_Function_Call --
9392 ------------------------------
9394 function Unqual_BIP_Function_Call
(Expr
: Node_Id
) return Node_Id
is
9396 -- Recurse to handle case of multiple levels of qualification and/or
9399 if Nkind_In
(Expr
, N_Qualified_Expression
,
9401 N_Unchecked_Type_Conversion
)
9403 return Unqual_BIP_Function_Call
(Expression
(Expr
));
9405 -- Recurse to handle case of multiple levels of references and
9406 -- explicit dereferences.
9408 elsif Nkind_In
(Expr
, N_Attribute_Reference
,
9409 N_Explicit_Dereference
,
9412 return Unqual_BIP_Function_Call
(Prefix
(Expr
));
9414 -- Recurse on object renamings
9416 elsif Nkind
(Expr
) = N_Identifier
9417 and then Present
(Entity
(Expr
))
9418 and then Ekind_In
(Entity
(Expr
), E_Constant
, E_Variable
)
9419 and then Nkind
(Parent
(Entity
(Expr
))) =
9420 N_Object_Renaming_Declaration
9421 and then Present
(Renamed_Object
(Entity
(Expr
)))
9423 return Unqual_BIP_Function_Call
(Renamed_Object
(Entity
(Expr
)));
9425 -- Recurse on the initializing expression of the first reference of
9426 -- an object declaration.
9428 elsif not On_Object_Declaration
9429 and then Nkind
(Expr
) = N_Identifier
9430 and then Present
(Entity
(Expr
))
9431 and then Ekind_In
(Entity
(Expr
), E_Constant
, E_Variable
)
9432 and then Nkind
(Parent
(Entity
(Expr
))) = N_Object_Declaration
9433 and then Present
(Expression
(Parent
(Entity
(Expr
))))
9435 On_Object_Declaration
:= True;
9437 Unqual_BIP_Function_Call
(Expression
(Parent
(Entity
(Expr
))));
9439 -- Recurse to handle calls to displace the pointer to the object to
9440 -- reference a secondary dispatch table.
9442 elsif Nkind
(Expr
) = N_Function_Call
9443 and then Nkind
(Name
(Expr
)) in N_Has_Entity
9444 and then Present
(Entity
(Name
(Expr
)))
9445 and then RTU_Loaded
(Ada_Tags
)
9446 and then RTE_Available
(RE_Displace
)
9447 and then Is_RTE
(Entity
(Name
(Expr
)), RE_Displace
)
9449 Has_Pointer_Displacement
:= True;
9451 Unqual_BIP_Function_Call
(First
(Parameter_Associations
(Expr
)));
9453 -- Normal case: check if the inner expression is a BIP function call
9454 -- and the pointer to the object is displaced.
9456 elsif Has_Pointer_Displacement
9457 and then Is_Build_In_Place_Function_Call
(Expr
)
9464 end Unqual_BIP_Function_Call
;
9466 -- Start of processing for Unqual_BIP_Iface_Function_Call
9469 if Nkind
(Expr
) = N_Identifier
and then No
(Entity
(Expr
)) then
9471 -- Can happen for X'Elab_Spec in the binder-generated file
9476 return Unqual_BIP_Function_Call
(Expr
);
9477 end Unqual_BIP_Iface_Function_Call
;