2014-08-01 Javier Miranda <miranda@adacore.com>
[official-gcc.git] / gcc / ada / exp_ch6.adb
blob44488fbafceee68669e900b82e5d5a175547122f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Elists; use Elists;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Atag; use Exp_Atag;
34 with Exp_Ch2; use Exp_Ch2;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Dist; use Exp_Dist;
41 with Exp_Intr; use Exp_Intr;
42 with Exp_Pakd; use Exp_Pakd;
43 with Exp_Prag; use Exp_Prag;
44 with Exp_Tss; use Exp_Tss;
45 with Exp_Util; use Exp_Util;
46 with Fname; use Fname;
47 with Freeze; use Freeze;
48 with Inline; use Inline;
49 with Lib; use Lib;
50 with Namet; use Namet;
51 with Nlists; use Nlists;
52 with Nmake; use Nmake;
53 with Opt; use Opt;
54 with Restrict; use Restrict;
55 with Rident; use Rident;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Ch6; use Sem_Ch6;
60 with Sem_Ch8; use Sem_Ch8;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Res; use Sem_Res;
68 with Sem_SCIL; use Sem_SCIL;
69 with Sem_Util; use Sem_Util;
70 with Sinfo; use Sinfo;
71 with Snames; use Snames;
72 with Stand; use Stand;
73 with Stringt; use Stringt;
74 with Targparm; use Targparm;
75 with Tbuild; use Tbuild;
76 with Uintp; use Uintp;
77 with Validsw; use Validsw;
79 package body Exp_Ch6 is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call : Node_Id;
87 Function_Id : Entity_Id;
88 Return_Object : Node_Id;
89 Is_Access : Boolean := False);
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
99 (Function_Call : Node_Id;
100 Function_Id : Entity_Id;
101 Alloc_Form : BIP_Allocation_Form := Unspecified;
102 Alloc_Form_Exp : Node_Id := Empty;
103 Pool_Actual : Node_Id := Make_Null (No_Location));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
112 (Func_Call : Node_Id;
113 Func_Id : Entity_Id;
114 Ptr_Typ : Entity_Id := Empty;
115 Master_Exp : Node_Id := Empty);
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call : Node_Id;
124 Function_Id : Entity_Id;
125 Master_Actual : Node_Id;
126 Chain : Node_Id := Empty);
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
133 -- access type. If the function call is the initialization expression for a
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
140 procedure Check_Overriding_Operation (Subp : Entity_Id);
141 -- Subp is a dispatching operation. Check whether it may override an
142 -- inherited private operation, in which case its DT entry is that of
143 -- the hidden operation, not the one it may have received earlier.
144 -- This must be done before emitting the code to set the corresponding
145 -- DT to the address of the subprogram. The actual placement of Subp in
146 -- the proper place in the list of primitive operations is done in
147 -- Declare_Inherited_Private_Subprograms, which also has to deal with
148 -- implicit operations. This duplication is unavoidable for now???
150 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
151 -- This procedure is called only if the subprogram body N, whose spec
152 -- has the given entity Spec, contains a parameterless recursive call.
153 -- It attempts to generate runtime code to detect if this a case of
154 -- infinite recursion.
156 -- The body is scanned to determine dependencies. If the only external
157 -- dependencies are on a small set of scalar variables, then the values
158 -- of these variables are captured on entry to the subprogram, and if
159 -- the values are not changed for the call, we know immediately that
160 -- we have an infinite recursion.
162 procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id);
163 -- For each actual of an in-out or out parameter which is a numeric
164 -- (view) conversion of the form T (A), where A denotes a variable,
165 -- we insert the declaration:
167 -- Temp : T[ := T (A)];
169 -- prior to the call. Then we replace the actual with a reference to Temp,
170 -- and append the assignment:
172 -- A := TypeA (Temp);
174 -- after the call. Here TypeA is the actual type of variable A. For out
175 -- parameters, the initial declaration has no expression. If A is not an
176 -- entity name, we generate instead:
178 -- Var : TypeA renames A;
179 -- Temp : T := Var; -- omitting expression for out parameter.
180 -- ...
181 -- Var := TypeA (Temp);
183 -- For other in-out parameters, we emit the required constraint checks
184 -- before and/or after the call.
186 -- For all parameter modes, actuals that denote components and slices of
187 -- packed arrays are expanded into suitable temporaries.
189 -- For non-scalar objects that are possibly unaligned, add call by copy
190 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
192 -- For OUT and IN OUT parameters, add predicate checks after the call
193 -- based on the predicates of the actual type.
195 -- The parameter N is IN OUT because in some cases, the expansion code
196 -- rewrites the call as an expression actions with the call inside. In
197 -- this case N is reset to point to the inside call so that the caller
198 -- can continue processing of this call.
200 procedure Expand_Ctrl_Function_Call (N : Node_Id);
201 -- N is a function call which returns a controlled object. Transform the
202 -- call into a temporary which retrieves the returned object from the
203 -- secondary stack using 'reference.
205 procedure Expand_Non_Function_Return (N : Node_Id);
206 -- Called by Expand_N_Simple_Return_Statement in case we're returning from
207 -- a procedure body, entry body, accept statement, or extended return
208 -- statement. Note that all non-function returns are simple return
209 -- statements.
211 function Expand_Protected_Object_Reference
212 (N : Node_Id;
213 Scop : Entity_Id) return Node_Id;
215 procedure Expand_Protected_Subprogram_Call
216 (N : Node_Id;
217 Subp : Entity_Id;
218 Scop : Entity_Id);
219 -- A call to a protected subprogram within the protected object may appear
220 -- as a regular call. The list of actuals must be expanded to contain a
221 -- reference to the object itself, and the call becomes a call to the
222 -- corresponding protected subprogram.
224 function Has_Unconstrained_Access_Discriminants
225 (Subtyp : Entity_Id) return Boolean;
226 -- Returns True if the given subtype is unconstrained and has one
227 -- or more access discriminants.
229 procedure Expand_Simple_Function_Return (N : Node_Id);
230 -- Expand simple return from function. In the case where we are returning
231 -- from a function body this is called by Expand_N_Simple_Return_Statement.
233 ----------------------------------------------
234 -- Add_Access_Actual_To_Build_In_Place_Call --
235 ----------------------------------------------
237 procedure Add_Access_Actual_To_Build_In_Place_Call
238 (Function_Call : Node_Id;
239 Function_Id : Entity_Id;
240 Return_Object : Node_Id;
241 Is_Access : Boolean := False)
243 Loc : constant Source_Ptr := Sloc (Function_Call);
244 Obj_Address : Node_Id;
245 Obj_Acc_Formal : Entity_Id;
247 begin
248 -- Locate the implicit access parameter in the called function
250 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
252 -- If no return object is provided, then pass null
254 if not Present (Return_Object) then
255 Obj_Address := Make_Null (Loc);
256 Set_Parent (Obj_Address, Function_Call);
258 -- If Return_Object is already an expression of an access type, then use
259 -- it directly, since it must be an access value denoting the return
260 -- object, and couldn't possibly be the return object itself.
262 elsif Is_Access then
263 Obj_Address := Return_Object;
264 Set_Parent (Obj_Address, Function_Call);
266 -- Apply Unrestricted_Access to caller's return object
268 else
269 Obj_Address :=
270 Make_Attribute_Reference (Loc,
271 Prefix => Return_Object,
272 Attribute_Name => Name_Unrestricted_Access);
274 Set_Parent (Return_Object, Obj_Address);
275 Set_Parent (Obj_Address, Function_Call);
276 end if;
278 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
280 -- Build the parameter association for the new actual and add it to the
281 -- end of the function's actuals.
283 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
284 end Add_Access_Actual_To_Build_In_Place_Call;
286 ------------------------------------------------------
287 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
288 ------------------------------------------------------
290 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
291 (Function_Call : Node_Id;
292 Function_Id : Entity_Id;
293 Alloc_Form : BIP_Allocation_Form := Unspecified;
294 Alloc_Form_Exp : Node_Id := Empty;
295 Pool_Actual : Node_Id := Make_Null (No_Location))
297 Loc : constant Source_Ptr := Sloc (Function_Call);
298 Alloc_Form_Actual : Node_Id;
299 Alloc_Form_Formal : Node_Id;
300 Pool_Formal : Node_Id;
302 begin
303 -- The allocation form generally doesn't need to be passed in the case
304 -- of a constrained result subtype, since normally the caller performs
305 -- the allocation in that case. However this formal is still needed in
306 -- the case where the function has a tagged result, because generally
307 -- such functions can be called in a dispatching context and such calls
308 -- must be handled like calls to class-wide functions.
310 if Is_Constrained (Underlying_Type (Etype (Function_Id)))
311 and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
312 then
313 return;
314 end if;
316 -- Locate the implicit allocation form parameter in the called function.
317 -- Maybe it would be better for each implicit formal of a build-in-place
318 -- function to have a flag or a Uint attribute to identify it. ???
320 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
322 if Present (Alloc_Form_Exp) then
323 pragma Assert (Alloc_Form = Unspecified);
325 Alloc_Form_Actual := Alloc_Form_Exp;
327 else
328 pragma Assert (Alloc_Form /= Unspecified);
330 Alloc_Form_Actual :=
331 Make_Integer_Literal (Loc,
332 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
333 end if;
335 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
337 -- Build the parameter association for the new actual and add it to the
338 -- end of the function's actuals.
340 Add_Extra_Actual_To_Call
341 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
343 -- Pass the Storage_Pool parameter. This parameter is omitted on
344 -- .NET/JVM/ZFP as those targets do not support pools.
346 if VM_Target = No_VM
347 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
348 then
349 Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
350 Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
351 Add_Extra_Actual_To_Call
352 (Function_Call, Pool_Formal, Pool_Actual);
353 end if;
354 end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
356 -----------------------------------------------------------
357 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
358 -----------------------------------------------------------
360 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
361 (Func_Call : Node_Id;
362 Func_Id : Entity_Id;
363 Ptr_Typ : Entity_Id := Empty;
364 Master_Exp : Node_Id := Empty)
366 begin
367 if not Needs_BIP_Finalization_Master (Func_Id) then
368 return;
369 end if;
371 declare
372 Formal : constant Entity_Id :=
373 Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
374 Loc : constant Source_Ptr := Sloc (Func_Call);
376 Actual : Node_Id;
377 Desig_Typ : Entity_Id;
379 begin
380 -- If there is a finalization master actual, such as the implicit
381 -- finalization master of an enclosing build-in-place function,
382 -- then this must be added as an extra actual of the call.
384 if Present (Master_Exp) then
385 Actual := Master_Exp;
387 -- Case where the context does not require an actual master
389 elsif No (Ptr_Typ) then
390 Actual := Make_Null (Loc);
392 else
393 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
395 -- Check for a library-level access type whose designated type has
396 -- supressed finalization. Such an access types lack a master.
397 -- Pass a null actual to the callee in order to signal a missing
398 -- master.
400 if Is_Library_Level_Entity (Ptr_Typ)
401 and then Finalize_Storage_Only (Desig_Typ)
402 then
403 Actual := Make_Null (Loc);
405 -- Types in need of finalization actions
407 elsif Needs_Finalization (Desig_Typ) then
409 -- The general mechanism of creating finalization masters for
410 -- anonymous access types is disabled by default, otherwise
411 -- finalization masters will pop all over the place. Such types
412 -- use context-specific masters.
414 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
415 and then No (Finalization_Master (Ptr_Typ))
416 then
417 Build_Finalization_Master
418 (Typ => Ptr_Typ,
419 Ins_Node => Associated_Node_For_Itype (Ptr_Typ),
420 Encl_Scope => Scope (Ptr_Typ));
421 end if;
423 -- Access-to-controlled types should always have a master
425 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
427 Actual :=
428 Make_Attribute_Reference (Loc,
429 Prefix =>
430 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
431 Attribute_Name => Name_Unrestricted_Access);
433 -- Tagged types
435 else
436 Actual := Make_Null (Loc);
437 end if;
438 end if;
440 Analyze_And_Resolve (Actual, Etype (Formal));
442 -- Build the parameter association for the new actual and add it to
443 -- the end of the function's actuals.
445 Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
446 end;
447 end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
449 ------------------------------
450 -- Add_Extra_Actual_To_Call --
451 ------------------------------
453 procedure Add_Extra_Actual_To_Call
454 (Subprogram_Call : Node_Id;
455 Extra_Formal : Entity_Id;
456 Extra_Actual : Node_Id)
458 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
459 Param_Assoc : Node_Id;
461 begin
462 Param_Assoc :=
463 Make_Parameter_Association (Loc,
464 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
465 Explicit_Actual_Parameter => Extra_Actual);
467 Set_Parent (Param_Assoc, Subprogram_Call);
468 Set_Parent (Extra_Actual, Param_Assoc);
470 if Present (Parameter_Associations (Subprogram_Call)) then
471 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
472 N_Parameter_Association
473 then
475 -- Find last named actual, and append
477 declare
478 L : Node_Id;
479 begin
480 L := First_Actual (Subprogram_Call);
481 while Present (L) loop
482 if No (Next_Actual (L)) then
483 Set_Next_Named_Actual (Parent (L), Extra_Actual);
484 exit;
485 end if;
486 Next_Actual (L);
487 end loop;
488 end;
490 else
491 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
492 end if;
494 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
496 else
497 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
498 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
499 end if;
500 end Add_Extra_Actual_To_Call;
502 ---------------------------------------------
503 -- Add_Task_Actuals_To_Build_In_Place_Call --
504 ---------------------------------------------
506 procedure Add_Task_Actuals_To_Build_In_Place_Call
507 (Function_Call : Node_Id;
508 Function_Id : Entity_Id;
509 Master_Actual : Node_Id;
510 Chain : Node_Id := Empty)
512 Loc : constant Source_Ptr := Sloc (Function_Call);
513 Result_Subt : constant Entity_Id :=
514 Available_View (Etype (Function_Id));
515 Actual : Node_Id;
516 Chain_Actual : Node_Id;
517 Chain_Formal : Node_Id;
518 Master_Formal : Node_Id;
520 begin
521 -- No such extra parameters are needed if there are no tasks
523 if not Has_Task (Result_Subt) then
524 return;
525 end if;
527 Actual := Master_Actual;
529 -- Use a dummy _master actual in case of No_Task_Hierarchy
531 if Restriction_Active (No_Task_Hierarchy) then
532 Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
534 -- In the case where we use the master associated with an access type,
535 -- the actual is an entity and requires an explicit reference.
537 elsif Nkind (Actual) = N_Defining_Identifier then
538 Actual := New_Occurrence_Of (Actual, Loc);
539 end if;
541 -- Locate the implicit master parameter in the called function
543 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
544 Analyze_And_Resolve (Actual, Etype (Master_Formal));
546 -- Build the parameter association for the new actual and add it to the
547 -- end of the function's actuals.
549 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
551 -- Locate the implicit activation chain parameter in the called function
553 Chain_Formal :=
554 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
556 -- Create the actual which is a pointer to the current activation chain
558 if No (Chain) then
559 Chain_Actual :=
560 Make_Attribute_Reference (Loc,
561 Prefix => Make_Identifier (Loc, Name_uChain),
562 Attribute_Name => Name_Unrestricted_Access);
564 -- Allocator case; make a reference to the Chain passed in by the caller
566 else
567 Chain_Actual :=
568 Make_Attribute_Reference (Loc,
569 Prefix => New_Occurrence_Of (Chain, Loc),
570 Attribute_Name => Name_Unrestricted_Access);
571 end if;
573 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
575 -- Build the parameter association for the new actual and add it to the
576 -- end of the function's actuals.
578 Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
579 end Add_Task_Actuals_To_Build_In_Place_Call;
581 -----------------------
582 -- BIP_Formal_Suffix --
583 -----------------------
585 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
586 begin
587 case Kind is
588 when BIP_Alloc_Form =>
589 return "BIPalloc";
590 when BIP_Storage_Pool =>
591 return "BIPstoragepool";
592 when BIP_Finalization_Master =>
593 return "BIPfinalizationmaster";
594 when BIP_Task_Master =>
595 return "BIPtaskmaster";
596 when BIP_Activation_Chain =>
597 return "BIPactivationchain";
598 when BIP_Object_Access =>
599 return "BIPaccess";
600 end case;
601 end BIP_Formal_Suffix;
603 ---------------------------
604 -- Build_In_Place_Formal --
605 ---------------------------
607 function Build_In_Place_Formal
608 (Func : Entity_Id;
609 Kind : BIP_Formal_Kind) return Entity_Id
611 Formal_Name : constant Name_Id :=
612 New_External_Name
613 (Chars (Func), BIP_Formal_Suffix (Kind));
614 Extra_Formal : Entity_Id := Extra_Formals (Func);
616 begin
617 -- Maybe it would be better for each implicit formal of a build-in-place
618 -- function to have a flag or a Uint attribute to identify it. ???
620 -- The return type in the function declaration may have been a limited
621 -- view, and the extra formals for the function were not generated at
622 -- that point. At the point of call the full view must be available and
623 -- the extra formals can be created.
625 if No (Extra_Formal) then
626 Create_Extra_Formals (Func);
627 Extra_Formal := Extra_Formals (Func);
628 end if;
630 loop
631 pragma Assert (Present (Extra_Formal));
632 exit when Chars (Extra_Formal) = Formal_Name;
634 Next_Formal_With_Extras (Extra_Formal);
635 end loop;
637 return Extra_Formal;
638 end Build_In_Place_Formal;
640 --------------------------------
641 -- Check_Overriding_Operation --
642 --------------------------------
644 procedure Check_Overriding_Operation (Subp : Entity_Id) is
645 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
646 Op_List : constant Elist_Id := Primitive_Operations (Typ);
647 Op_Elmt : Elmt_Id;
648 Prim_Op : Entity_Id;
649 Par_Op : Entity_Id;
651 begin
652 if Is_Derived_Type (Typ)
653 and then not Is_Private_Type (Typ)
654 and then In_Open_Scopes (Scope (Etype (Typ)))
655 and then Is_Base_Type (Typ)
656 then
657 -- Subp overrides an inherited private operation if there is an
658 -- inherited operation with a different name than Subp (see
659 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
660 -- same name as Subp.
662 Op_Elmt := First_Elmt (Op_List);
663 while Present (Op_Elmt) loop
664 Prim_Op := Node (Op_Elmt);
665 Par_Op := Alias (Prim_Op);
667 if Present (Par_Op)
668 and then not Comes_From_Source (Prim_Op)
669 and then Chars (Prim_Op) /= Chars (Par_Op)
670 and then Chars (Par_Op) = Chars (Subp)
671 and then Is_Hidden (Par_Op)
672 and then Type_Conformant (Prim_Op, Subp)
673 then
674 Set_DT_Position (Subp, DT_Position (Prim_Op));
675 end if;
677 Next_Elmt (Op_Elmt);
678 end loop;
679 end if;
680 end Check_Overriding_Operation;
682 -------------------------------
683 -- Detect_Infinite_Recursion --
684 -------------------------------
686 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
687 Loc : constant Source_Ptr := Sloc (N);
689 Var_List : constant Elist_Id := New_Elmt_List;
690 -- List of globals referenced by body of procedure
692 Call_List : constant Elist_Id := New_Elmt_List;
693 -- List of recursive calls in body of procedure
695 Shad_List : constant Elist_Id := New_Elmt_List;
696 -- List of entity id's for entities created to capture the value of
697 -- referenced globals on entry to the procedure.
699 Scop : constant Uint := Scope_Depth (Spec);
700 -- This is used to record the scope depth of the current procedure, so
701 -- that we can identify global references.
703 Max_Vars : constant := 4;
704 -- Do not test more than four global variables
706 Count_Vars : Natural := 0;
707 -- Count variables found so far
709 Var : Entity_Id;
710 Elm : Elmt_Id;
711 Ent : Entity_Id;
712 Call : Elmt_Id;
713 Decl : Node_Id;
714 Test : Node_Id;
715 Elm1 : Elmt_Id;
716 Elm2 : Elmt_Id;
717 Last : Node_Id;
719 function Process (Nod : Node_Id) return Traverse_Result;
720 -- Function to traverse the subprogram body (using Traverse_Func)
722 -------------
723 -- Process --
724 -------------
726 function Process (Nod : Node_Id) return Traverse_Result is
727 begin
728 -- Procedure call
730 if Nkind (Nod) = N_Procedure_Call_Statement then
732 -- Case of one of the detected recursive calls
734 if Is_Entity_Name (Name (Nod))
735 and then Has_Recursive_Call (Entity (Name (Nod)))
736 and then Entity (Name (Nod)) = Spec
737 then
738 Append_Elmt (Nod, Call_List);
739 return Skip;
741 -- Any other procedure call may have side effects
743 else
744 return Abandon;
745 end if;
747 -- A call to a pure function can always be ignored
749 elsif Nkind (Nod) = N_Function_Call
750 and then Is_Entity_Name (Name (Nod))
751 and then Is_Pure (Entity (Name (Nod)))
752 then
753 return Skip;
755 -- Case of an identifier reference
757 elsif Nkind (Nod) = N_Identifier then
758 Ent := Entity (Nod);
760 -- If no entity, then ignore the reference
762 -- Not clear why this can happen. To investigate, remove this
763 -- test and look at the crash that occurs here in 3401-004 ???
765 if No (Ent) then
766 return Skip;
768 -- Ignore entities with no Scope, again not clear how this
769 -- can happen, to investigate, look at 4108-008 ???
771 elsif No (Scope (Ent)) then
772 return Skip;
774 -- Ignore the reference if not to a more global object
776 elsif Scope_Depth (Scope (Ent)) >= Scop then
777 return Skip;
779 -- References to types, exceptions and constants are always OK
781 elsif Is_Type (Ent)
782 or else Ekind (Ent) = E_Exception
783 or else Ekind (Ent) = E_Constant
784 then
785 return Skip;
787 -- If other than a non-volatile scalar variable, we have some
788 -- kind of global reference (e.g. to a function) that we cannot
789 -- deal with so we forget the attempt.
791 elsif Ekind (Ent) /= E_Variable
792 or else not Is_Scalar_Type (Etype (Ent))
793 or else Treat_As_Volatile (Ent)
794 then
795 return Abandon;
797 -- Otherwise we have a reference to a global scalar
799 else
800 -- Loop through global entities already detected
802 Elm := First_Elmt (Var_List);
803 loop
804 -- If not detected before, record this new global reference
806 if No (Elm) then
807 Count_Vars := Count_Vars + 1;
809 if Count_Vars <= Max_Vars then
810 Append_Elmt (Entity (Nod), Var_List);
811 else
812 return Abandon;
813 end if;
815 exit;
817 -- If recorded before, ignore
819 elsif Node (Elm) = Entity (Nod) then
820 return Skip;
822 -- Otherwise keep looking
824 else
825 Next_Elmt (Elm);
826 end if;
827 end loop;
829 return Skip;
830 end if;
832 -- For all other node kinds, recursively visit syntactic children
834 else
835 return OK;
836 end if;
837 end Process;
839 function Traverse_Body is new Traverse_Func (Process);
841 -- Start of processing for Detect_Infinite_Recursion
843 begin
844 -- Do not attempt detection in No_Implicit_Conditional mode, since we
845 -- won't be able to generate the code to handle the recursion in any
846 -- case.
848 if Restriction_Active (No_Implicit_Conditionals) then
849 return;
850 end if;
852 -- Otherwise do traversal and quit if we get abandon signal
854 if Traverse_Body (N) = Abandon then
855 return;
857 -- We must have a call, since Has_Recursive_Call was set. If not just
858 -- ignore (this is only an error check, so if we have a funny situation,
859 -- due to bugs or errors, we do not want to bomb).
861 elsif Is_Empty_Elmt_List (Call_List) then
862 return;
863 end if;
865 -- Here is the case where we detect recursion at compile time
867 -- Push our current scope for analyzing the declarations and code that
868 -- we will insert for the checking.
870 Push_Scope (Spec);
872 -- This loop builds temporary variables for each of the referenced
873 -- globals, so that at the end of the loop the list Shad_List contains
874 -- these temporaries in one-to-one correspondence with the elements in
875 -- Var_List.
877 Last := Empty;
878 Elm := First_Elmt (Var_List);
879 while Present (Elm) loop
880 Var := Node (Elm);
881 Ent := Make_Temporary (Loc, 'S');
882 Append_Elmt (Ent, Shad_List);
884 -- Insert a declaration for this temporary at the start of the
885 -- declarations for the procedure. The temporaries are declared as
886 -- constant objects initialized to the current values of the
887 -- corresponding temporaries.
889 Decl :=
890 Make_Object_Declaration (Loc,
891 Defining_Identifier => Ent,
892 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
893 Constant_Present => True,
894 Expression => New_Occurrence_Of (Var, Loc));
896 if No (Last) then
897 Prepend (Decl, Declarations (N));
898 else
899 Insert_After (Last, Decl);
900 end if;
902 Last := Decl;
903 Analyze (Decl);
904 Next_Elmt (Elm);
905 end loop;
907 -- Loop through calls
909 Call := First_Elmt (Call_List);
910 while Present (Call) loop
912 -- Build a predicate expression of the form
914 -- True
915 -- and then global1 = temp1
916 -- and then global2 = temp2
917 -- ...
919 -- This predicate determines if any of the global values
920 -- referenced by the procedure have changed since the
921 -- current call, if not an infinite recursion is assured.
923 Test := New_Occurrence_Of (Standard_True, Loc);
925 Elm1 := First_Elmt (Var_List);
926 Elm2 := First_Elmt (Shad_List);
927 while Present (Elm1) loop
928 Test :=
929 Make_And_Then (Loc,
930 Left_Opnd => Test,
931 Right_Opnd =>
932 Make_Op_Eq (Loc,
933 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
934 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
936 Next_Elmt (Elm1);
937 Next_Elmt (Elm2);
938 end loop;
940 -- Now we replace the call with the sequence
942 -- if no-changes (see above) then
943 -- raise Storage_Error;
944 -- else
945 -- original-call
946 -- end if;
948 Rewrite (Node (Call),
949 Make_If_Statement (Loc,
950 Condition => Test,
951 Then_Statements => New_List (
952 Make_Raise_Storage_Error (Loc,
953 Reason => SE_Infinite_Recursion)),
955 Else_Statements => New_List (
956 Relocate_Node (Node (Call)))));
958 Analyze (Node (Call));
960 Next_Elmt (Call);
961 end loop;
963 -- Remove temporary scope stack entry used for analysis
965 Pop_Scope;
966 end Detect_Infinite_Recursion;
968 --------------------
969 -- Expand_Actuals --
970 --------------------
972 procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id) is
973 Loc : constant Source_Ptr := Sloc (N);
974 Actual : Node_Id;
975 Formal : Entity_Id;
976 N_Node : Node_Id;
977 Post_Call : List_Id;
978 E_Actual : Entity_Id;
979 E_Formal : Entity_Id;
981 procedure Add_Call_By_Copy_Code;
982 -- For cases where the parameter must be passed by copy, this routine
983 -- generates a temporary variable into which the actual is copied and
984 -- then passes this as the parameter. For an OUT or IN OUT parameter,
985 -- an assignment is also generated to copy the result back. The call
986 -- also takes care of any constraint checks required for the type
987 -- conversion case (on both the way in and the way out).
989 procedure Add_Simple_Call_By_Copy_Code;
990 -- This is similar to the above, but is used in cases where we know
991 -- that all that is needed is to simply create a temporary and copy
992 -- the value in and out of the temporary.
994 procedure Check_Fortran_Logical;
995 -- A value of type Logical that is passed through a formal parameter
996 -- must be normalized because .TRUE. usually does not have the same
997 -- representation as True. We assume that .FALSE. = False = 0.
998 -- What about functions that return a logical type ???
1000 function Is_Legal_Copy return Boolean;
1001 -- Check that an actual can be copied before generating the temporary
1002 -- to be used in the call. If the actual is of a by_reference type then
1003 -- the program is illegal (this can only happen in the presence of
1004 -- rep. clauses that force an incorrect alignment). If the formal is
1005 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1006 -- the effect that this might lead to unaligned arguments.
1008 function Make_Var (Actual : Node_Id) return Entity_Id;
1009 -- Returns an entity that refers to the given actual parameter, Actual
1010 -- (not including any type conversion). If Actual is an entity name,
1011 -- then this entity is returned unchanged, otherwise a renaming is
1012 -- created to provide an entity for the actual.
1014 procedure Reset_Packed_Prefix;
1015 -- The expansion of a packed array component reference is delayed in
1016 -- the context of a call. Now we need to complete the expansion, so we
1017 -- unmark the analyzed bits in all prefixes.
1019 ---------------------------
1020 -- Add_Call_By_Copy_Code --
1021 ---------------------------
1023 procedure Add_Call_By_Copy_Code is
1024 Expr : Node_Id;
1025 Init : Node_Id;
1026 Temp : Entity_Id;
1027 Indic : Node_Id;
1028 Var : Entity_Id;
1029 F_Typ : constant Entity_Id := Etype (Formal);
1030 V_Typ : Entity_Id;
1031 Crep : Boolean;
1033 begin
1034 if not Is_Legal_Copy then
1035 return;
1036 end if;
1038 Temp := Make_Temporary (Loc, 'T', Actual);
1040 -- Use formal type for temp, unless formal type is an unconstrained
1041 -- array, in which case we don't have to worry about bounds checks,
1042 -- and we use the actual type, since that has appropriate bounds.
1044 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1045 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1046 else
1047 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1048 end if;
1050 if Nkind (Actual) = N_Type_Conversion then
1051 V_Typ := Etype (Expression (Actual));
1053 -- If the formal is an (in-)out parameter, capture the name
1054 -- of the variable in order to build the post-call assignment.
1056 Var := Make_Var (Expression (Actual));
1058 Crep := not Same_Representation
1059 (F_Typ, Etype (Expression (Actual)));
1061 else
1062 V_Typ := Etype (Actual);
1063 Var := Make_Var (Actual);
1064 Crep := False;
1065 end if;
1067 -- Setup initialization for case of in out parameter, or an out
1068 -- parameter where the formal is an unconstrained array (in the
1069 -- latter case, we have to pass in an object with bounds).
1071 -- If this is an out parameter, the initial copy is wasteful, so as
1072 -- an optimization for the one-dimensional case we extract the
1073 -- bounds of the actual and build an uninitialized temporary of the
1074 -- right size.
1076 if Ekind (Formal) = E_In_Out_Parameter
1077 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1078 then
1079 if Nkind (Actual) = N_Type_Conversion then
1080 if Conversion_OK (Actual) then
1081 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1082 else
1083 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1084 end if;
1086 elsif Ekind (Formal) = E_Out_Parameter
1087 and then Is_Array_Type (F_Typ)
1088 and then Number_Dimensions (F_Typ) = 1
1089 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1090 then
1091 -- Actual is a one-dimensional array or slice, and the type
1092 -- requires no initialization. Create a temporary of the
1093 -- right size, but do not copy actual into it (optimization).
1095 Init := Empty;
1096 Indic :=
1097 Make_Subtype_Indication (Loc,
1098 Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1099 Constraint =>
1100 Make_Index_Or_Discriminant_Constraint (Loc,
1101 Constraints => New_List (
1102 Make_Range (Loc,
1103 Low_Bound =>
1104 Make_Attribute_Reference (Loc,
1105 Prefix => New_Occurrence_Of (Var, Loc),
1106 Attribute_Name => Name_First),
1107 High_Bound =>
1108 Make_Attribute_Reference (Loc,
1109 Prefix => New_Occurrence_Of (Var, Loc),
1110 Attribute_Name => Name_Last)))));
1112 else
1113 Init := New_Occurrence_Of (Var, Loc);
1114 end if;
1116 -- An initialization is created for packed conversions as
1117 -- actuals for out parameters to enable Make_Object_Declaration
1118 -- to determine the proper subtype for N_Node. Note that this
1119 -- is wasteful because the extra copying on the call side is
1120 -- not required for such out parameters. ???
1122 elsif Ekind (Formal) = E_Out_Parameter
1123 and then Nkind (Actual) = N_Type_Conversion
1124 and then (Is_Bit_Packed_Array (F_Typ)
1125 or else
1126 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1127 then
1128 if Conversion_OK (Actual) then
1129 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1130 else
1131 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1132 end if;
1134 elsif Ekind (Formal) = E_In_Parameter then
1136 -- Handle the case in which the actual is a type conversion
1138 if Nkind (Actual) = N_Type_Conversion then
1139 if Conversion_OK (Actual) then
1140 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1141 else
1142 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1143 end if;
1144 else
1145 Init := New_Occurrence_Of (Var, Loc);
1146 end if;
1148 else
1149 Init := Empty;
1150 end if;
1152 N_Node :=
1153 Make_Object_Declaration (Loc,
1154 Defining_Identifier => Temp,
1155 Object_Definition => Indic,
1156 Expression => Init);
1157 Set_Assignment_OK (N_Node);
1158 Insert_Action (N, N_Node);
1160 -- Now, normally the deal here is that we use the defining
1161 -- identifier created by that object declaration. There is
1162 -- one exception to this. In the change of representation case
1163 -- the above declaration will end up looking like:
1165 -- temp : type := identifier;
1167 -- And in this case we might as well use the identifier directly
1168 -- and eliminate the temporary. Note that the analysis of the
1169 -- declaration was not a waste of time in that case, since it is
1170 -- what generated the necessary change of representation code. If
1171 -- the change of representation introduced additional code, as in
1172 -- a fixed-integer conversion, the expression is not an identifier
1173 -- and must be kept.
1175 if Crep
1176 and then Present (Expression (N_Node))
1177 and then Is_Entity_Name (Expression (N_Node))
1178 then
1179 Temp := Entity (Expression (N_Node));
1180 Rewrite (N_Node, Make_Null_Statement (Loc));
1181 end if;
1183 -- For IN parameter, all we do is to replace the actual
1185 if Ekind (Formal) = E_In_Parameter then
1186 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1187 Analyze (Actual);
1189 -- Processing for OUT or IN OUT parameter
1191 else
1192 -- Kill current value indications for the temporary variable we
1193 -- created, since we just passed it as an OUT parameter.
1195 Kill_Current_Values (Temp);
1196 Set_Is_Known_Valid (Temp, False);
1198 -- If type conversion, use reverse conversion on exit
1200 if Nkind (Actual) = N_Type_Conversion then
1201 if Conversion_OK (Actual) then
1202 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1203 else
1204 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1205 end if;
1206 else
1207 Expr := New_Occurrence_Of (Temp, Loc);
1208 end if;
1210 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1211 Analyze (Actual);
1213 -- If the actual is a conversion of a packed reference, it may
1214 -- already have been expanded by Remove_Side_Effects, and the
1215 -- resulting variable is a temporary which does not designate
1216 -- the proper out-parameter, which may not be addressable. In
1217 -- that case, generate an assignment to the original expression
1218 -- (before expansion of the packed reference) so that the proper
1219 -- expansion of assignment to a packed component can take place.
1221 declare
1222 Obj : Node_Id;
1223 Lhs : Node_Id;
1225 begin
1226 if Is_Renaming_Of_Object (Var)
1227 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1228 and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
1229 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1230 = N_Indexed_Component
1231 and then
1232 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1233 then
1234 Obj := Renamed_Object (Var);
1235 Lhs :=
1236 Make_Selected_Component (Loc,
1237 Prefix =>
1238 New_Copy_Tree (Original_Node (Prefix (Obj))),
1239 Selector_Name => New_Copy (Selector_Name (Obj)));
1240 Reset_Analyzed_Flags (Lhs);
1242 else
1243 Lhs := New_Occurrence_Of (Var, Loc);
1244 end if;
1246 Set_Assignment_OK (Lhs);
1248 if Is_Access_Type (E_Formal)
1249 and then Is_Entity_Name (Lhs)
1250 and then
1251 Present (Effective_Extra_Accessibility (Entity (Lhs)))
1252 then
1253 -- Copyback target is an Ada 2012 stand-alone object of an
1254 -- anonymous access type.
1256 pragma Assert (Ada_Version >= Ada_2012);
1258 if Type_Access_Level (E_Formal) >
1259 Object_Access_Level (Lhs)
1260 then
1261 Append_To (Post_Call,
1262 Make_Raise_Program_Error (Loc,
1263 Reason => PE_Accessibility_Check_Failed));
1264 end if;
1266 Append_To (Post_Call,
1267 Make_Assignment_Statement (Loc,
1268 Name => Lhs,
1269 Expression => Expr));
1271 -- We would like to somehow suppress generation of the
1272 -- extra_accessibility assignment generated by the expansion
1273 -- of the above assignment statement. It's not a correctness
1274 -- issue because the following assignment renders it dead,
1275 -- but generating back-to-back assignments to the same
1276 -- target is undesirable. ???
1278 Append_To (Post_Call,
1279 Make_Assignment_Statement (Loc,
1280 Name => New_Occurrence_Of (
1281 Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1282 Expression => Make_Integer_Literal (Loc,
1283 Type_Access_Level (E_Formal))));
1285 else
1286 Append_To (Post_Call,
1287 Make_Assignment_Statement (Loc,
1288 Name => Lhs,
1289 Expression => Expr));
1290 end if;
1291 end;
1292 end if;
1293 end Add_Call_By_Copy_Code;
1295 ----------------------------------
1296 -- Add_Simple_Call_By_Copy_Code --
1297 ----------------------------------
1299 procedure Add_Simple_Call_By_Copy_Code is
1300 Temp : Entity_Id;
1301 Decl : Node_Id;
1302 Incod : Node_Id;
1303 Outcod : Node_Id;
1304 Lhs : Node_Id;
1305 Rhs : Node_Id;
1306 Indic : Node_Id;
1307 F_Typ : constant Entity_Id := Etype (Formal);
1309 begin
1310 if not Is_Legal_Copy then
1311 return;
1312 end if;
1314 -- Use formal type for temp, unless formal type is an unconstrained
1315 -- array, in which case we don't have to worry about bounds checks,
1316 -- and we use the actual type, since that has appropriate bounds.
1318 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1319 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1320 else
1321 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1322 end if;
1324 -- Prepare to generate code
1326 Reset_Packed_Prefix;
1328 Temp := Make_Temporary (Loc, 'T', Actual);
1329 Incod := Relocate_Node (Actual);
1330 Outcod := New_Copy_Tree (Incod);
1332 -- Generate declaration of temporary variable, initializing it
1333 -- with the input parameter unless we have an OUT formal or
1334 -- this is an initialization call.
1336 -- If the formal is an out parameter with discriminants, the
1337 -- discriminants must be captured even if the rest of the object
1338 -- is in principle uninitialized, because the discriminants may
1339 -- be read by the called subprogram.
1341 if Ekind (Formal) = E_Out_Parameter then
1342 Incod := Empty;
1344 if Has_Discriminants (Etype (Formal)) then
1345 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1346 end if;
1348 elsif Inside_Init_Proc then
1350 -- Could use a comment here to match comment below ???
1352 if Nkind (Actual) /= N_Selected_Component
1353 or else
1354 not Has_Discriminant_Dependent_Constraint
1355 (Entity (Selector_Name (Actual)))
1356 then
1357 Incod := Empty;
1359 -- Otherwise, keep the component in order to generate the proper
1360 -- actual subtype, that depends on enclosing discriminants.
1362 else
1363 null;
1364 end if;
1365 end if;
1367 Decl :=
1368 Make_Object_Declaration (Loc,
1369 Defining_Identifier => Temp,
1370 Object_Definition => Indic,
1371 Expression => Incod);
1373 if Inside_Init_Proc
1374 and then No (Incod)
1375 then
1376 -- If the call is to initialize a component of a composite type,
1377 -- and the component does not depend on discriminants, use the
1378 -- actual type of the component. This is required in case the
1379 -- component is constrained, because in general the formal of the
1380 -- initialization procedure will be unconstrained. Note that if
1381 -- the component being initialized is constrained by an enclosing
1382 -- discriminant, the presence of the initialization in the
1383 -- declaration will generate an expression for the actual subtype.
1385 Set_No_Initialization (Decl);
1386 Set_Object_Definition (Decl,
1387 New_Occurrence_Of (Etype (Actual), Loc));
1388 end if;
1390 Insert_Action (N, Decl);
1392 -- The actual is simply a reference to the temporary
1394 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1396 -- Generate copy out if OUT or IN OUT parameter
1398 if Ekind (Formal) /= E_In_Parameter then
1399 Lhs := Outcod;
1400 Rhs := New_Occurrence_Of (Temp, Loc);
1402 -- Deal with conversion
1404 if Nkind (Lhs) = N_Type_Conversion then
1405 Lhs := Expression (Lhs);
1406 Rhs := Convert_To (Etype (Actual), Rhs);
1407 end if;
1409 Append_To (Post_Call,
1410 Make_Assignment_Statement (Loc,
1411 Name => Lhs,
1412 Expression => Rhs));
1413 Set_Assignment_OK (Name (Last (Post_Call)));
1414 end if;
1415 end Add_Simple_Call_By_Copy_Code;
1417 ---------------------------
1418 -- Check_Fortran_Logical --
1419 ---------------------------
1421 procedure Check_Fortran_Logical is
1422 Logical : constant Entity_Id := Etype (Formal);
1423 Var : Entity_Id;
1425 -- Note: this is very incomplete, e.g. it does not handle arrays
1426 -- of logical values. This is really not the right approach at all???)
1428 begin
1429 if Convention (Subp) = Convention_Fortran
1430 and then Root_Type (Etype (Formal)) = Standard_Boolean
1431 and then Ekind (Formal) /= E_In_Parameter
1432 then
1433 Var := Make_Var (Actual);
1434 Append_To (Post_Call,
1435 Make_Assignment_Statement (Loc,
1436 Name => New_Occurrence_Of (Var, Loc),
1437 Expression =>
1438 Unchecked_Convert_To (
1439 Logical,
1440 Make_Op_Ne (Loc,
1441 Left_Opnd => New_Occurrence_Of (Var, Loc),
1442 Right_Opnd =>
1443 Unchecked_Convert_To (
1444 Logical,
1445 New_Occurrence_Of (Standard_False, Loc))))));
1446 end if;
1447 end Check_Fortran_Logical;
1449 -------------------
1450 -- Is_Legal_Copy --
1451 -------------------
1453 function Is_Legal_Copy return Boolean is
1454 begin
1455 -- An attempt to copy a value of such a type can only occur if
1456 -- representation clauses give the actual a misaligned address.
1458 if Is_By_Reference_Type (Etype (Formal)) then
1460 -- If the front-end does not perform full type layout, the actual
1461 -- may in fact be properly aligned but there is not enough front-
1462 -- end information to determine this. In that case gigi will emit
1463 -- an error if a copy is not legal, or generate the proper code.
1464 -- For other backends we report the error now.
1466 -- Seems wrong to be issuing an error in the expander, since it
1467 -- will be missed in -gnatc mode ???
1469 if Frontend_Layout_On_Target then
1470 Error_Msg_N
1471 ("misaligned actual cannot be passed by reference", Actual);
1472 end if;
1474 return False;
1476 -- For users of Starlet, we assume that the specification of by-
1477 -- reference mechanism is mandatory. This may lead to unaligned
1478 -- objects but at least for DEC legacy code it is known to work.
1479 -- The warning will alert users of this code that a problem may
1480 -- be lurking.
1482 elsif Mechanism (Formal) = By_Reference
1483 and then Is_Valued_Procedure (Scope (Formal))
1484 then
1485 Error_Msg_N
1486 ("by_reference actual may be misaligned??", Actual);
1487 return False;
1489 else
1490 return True;
1491 end if;
1492 end Is_Legal_Copy;
1494 --------------
1495 -- Make_Var --
1496 --------------
1498 function Make_Var (Actual : Node_Id) return Entity_Id is
1499 Var : Entity_Id;
1501 begin
1502 if Is_Entity_Name (Actual) then
1503 return Entity (Actual);
1505 else
1506 Var := Make_Temporary (Loc, 'T', Actual);
1508 N_Node :=
1509 Make_Object_Renaming_Declaration (Loc,
1510 Defining_Identifier => Var,
1511 Subtype_Mark =>
1512 New_Occurrence_Of (Etype (Actual), Loc),
1513 Name => Relocate_Node (Actual));
1515 Insert_Action (N, N_Node);
1516 return Var;
1517 end if;
1518 end Make_Var;
1520 -------------------------
1521 -- Reset_Packed_Prefix --
1522 -------------------------
1524 procedure Reset_Packed_Prefix is
1525 Pfx : Node_Id := Actual;
1526 begin
1527 loop
1528 Set_Analyzed (Pfx, False);
1529 exit when
1530 not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1531 Pfx := Prefix (Pfx);
1532 end loop;
1533 end Reset_Packed_Prefix;
1535 -- Start of processing for Expand_Actuals
1537 begin
1538 Post_Call := New_List;
1540 Formal := First_Formal (Subp);
1541 Actual := First_Actual (N);
1542 while Present (Formal) loop
1543 E_Formal := Etype (Formal);
1544 E_Actual := Etype (Actual);
1546 if Is_Scalar_Type (E_Formal)
1547 or else Nkind (Actual) = N_Slice
1548 then
1549 Check_Fortran_Logical;
1551 -- RM 6.4.1 (11)
1553 elsif Ekind (Formal) /= E_Out_Parameter then
1555 -- The unusual case of the current instance of a protected type
1556 -- requires special handling. This can only occur in the context
1557 -- of a call within the body of a protected operation.
1559 if Is_Entity_Name (Actual)
1560 and then Ekind (Entity (Actual)) = E_Protected_Type
1561 and then In_Open_Scopes (Entity (Actual))
1562 then
1563 if Scope (Subp) /= Entity (Actual) then
1564 Error_Msg_N
1565 ("operation outside protected type may not "
1566 & "call back its protected operations??", Actual);
1567 end if;
1569 Rewrite (Actual,
1570 Expand_Protected_Object_Reference (N, Entity (Actual)));
1571 end if;
1573 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1574 -- build-in-place function, then a temporary return object needs
1575 -- to be created and access to it must be passed to the function.
1576 -- Currently we limit such functions to those with inherently
1577 -- limited result subtypes, but eventually we plan to expand the
1578 -- functions that are treated as build-in-place to include other
1579 -- composite result types.
1581 if Is_Build_In_Place_Function_Call (Actual) then
1582 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1583 end if;
1585 Apply_Constraint_Check (Actual, E_Formal);
1587 -- Out parameter case. No constraint checks on access type
1588 -- RM 6.4.1 (13)
1590 elsif Is_Access_Type (E_Formal) then
1591 null;
1593 -- RM 6.4.1 (14)
1595 elsif Has_Discriminants (Base_Type (E_Formal))
1596 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1597 then
1598 Apply_Constraint_Check (Actual, E_Formal);
1600 -- RM 6.4.1 (15)
1602 else
1603 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1604 end if;
1606 -- Processing for IN-OUT and OUT parameters
1608 if Ekind (Formal) /= E_In_Parameter then
1610 -- For type conversions of arrays, apply length/range checks
1612 if Is_Array_Type (E_Formal)
1613 and then Nkind (Actual) = N_Type_Conversion
1614 then
1615 if Is_Constrained (E_Formal) then
1616 Apply_Length_Check (Expression (Actual), E_Formal);
1617 else
1618 Apply_Range_Check (Expression (Actual), E_Formal);
1619 end if;
1620 end if;
1622 -- If argument is a type conversion for a type that is passed
1623 -- by copy, then we must pass the parameter by copy.
1625 if Nkind (Actual) = N_Type_Conversion
1626 and then
1627 (Is_Numeric_Type (E_Formal)
1628 or else Is_Access_Type (E_Formal)
1629 or else Is_Enumeration_Type (E_Formal)
1630 or else Is_Bit_Packed_Array (Etype (Formal))
1631 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1633 -- Also pass by copy if change of representation
1635 or else not Same_Representation
1636 (Etype (Formal),
1637 Etype (Expression (Actual))))
1638 then
1639 Add_Call_By_Copy_Code;
1641 -- References to components of bit packed arrays are expanded
1642 -- at this point, rather than at the point of analysis of the
1643 -- actuals, to handle the expansion of the assignment to
1644 -- [in] out parameters.
1646 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1647 Add_Simple_Call_By_Copy_Code;
1649 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1650 -- because the back-end cannot cope with such objects. In other
1651 -- cases where alignment forces a copy, the back-end generates
1652 -- it properly. It should not be generated unconditionally in the
1653 -- front-end because it does not know precisely the alignment
1654 -- requirements of the target, and makes too conservative an
1655 -- estimate, leading to superfluous copies or spurious errors
1656 -- on by-reference parameters.
1658 elsif Nkind (Actual) = N_Selected_Component
1659 and then
1660 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
1661 and then not Represented_As_Scalar (Etype (Formal))
1662 then
1663 Add_Simple_Call_By_Copy_Code;
1665 -- References to slices of bit packed arrays are expanded
1667 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1668 Add_Call_By_Copy_Code;
1670 -- References to possibly unaligned slices of arrays are expanded
1672 elsif Is_Possibly_Unaligned_Slice (Actual) then
1673 Add_Call_By_Copy_Code;
1675 -- Deal with access types where the actual subtype and the
1676 -- formal subtype are not the same, requiring a check.
1678 -- It is necessary to exclude tagged types because of "downward
1679 -- conversion" errors.
1681 elsif Is_Access_Type (E_Formal)
1682 and then not Same_Type (E_Formal, E_Actual)
1683 and then not Is_Tagged_Type (Designated_Type (E_Formal))
1684 then
1685 Add_Call_By_Copy_Code;
1687 -- If the actual is not a scalar and is marked for volatile
1688 -- treatment, whereas the formal is not volatile, then pass
1689 -- by copy unless it is a by-reference type.
1691 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1692 -- because this is the enforcement of a language rule that applies
1693 -- only to "real" volatile variables, not e.g. to the address
1694 -- clause overlay case.
1696 elsif Is_Entity_Name (Actual)
1697 and then Is_Volatile (Entity (Actual))
1698 and then not Is_By_Reference_Type (E_Actual)
1699 and then not Is_Scalar_Type (Etype (Entity (Actual)))
1700 and then not Is_Volatile (E_Formal)
1701 then
1702 Add_Call_By_Copy_Code;
1704 elsif Nkind (Actual) = N_Indexed_Component
1705 and then Is_Entity_Name (Prefix (Actual))
1706 and then Has_Volatile_Components (Entity (Prefix (Actual)))
1707 then
1708 Add_Call_By_Copy_Code;
1710 -- Add call-by-copy code for the case of scalar out parameters
1711 -- when it is not known at compile time that the subtype of the
1712 -- formal is a subrange of the subtype of the actual (or vice
1713 -- versa for in out parameters), in order to get range checks
1714 -- on such actuals. (Maybe this case should be handled earlier
1715 -- in the if statement???)
1717 elsif Is_Scalar_Type (E_Formal)
1718 and then
1719 (not In_Subrange_Of (E_Formal, E_Actual)
1720 or else
1721 (Ekind (Formal) = E_In_Out_Parameter
1722 and then not In_Subrange_Of (E_Actual, E_Formal)))
1723 then
1724 -- Perhaps the setting back to False should be done within
1725 -- Add_Call_By_Copy_Code, since it could get set on other
1726 -- cases occurring above???
1728 if Do_Range_Check (Actual) then
1729 Set_Do_Range_Check (Actual, False);
1730 end if;
1732 Add_Call_By_Copy_Code;
1733 end if;
1735 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
1736 -- by-reference parameters on exit from the call. If the actual
1737 -- is a derived type and the operation is inherited, the body
1738 -- of the operation will not contain a call to the predicate
1739 -- function, so it must be done explicitly after the call. Ditto
1740 -- if the actual is an entity of a predicated subtype.
1742 -- The rule refers to by-reference types, but a check is needed
1743 -- for by-copy types as well. That check is subsumed by the rule
1744 -- for subtype conversion on assignment, but we can generate the
1745 -- required check now.
1747 -- Note also that Subp may be either a subprogram entity for
1748 -- direct calls, or a type entity for indirect calls, which must
1749 -- be handled separately because the name does not denote an
1750 -- overloadable entity.
1752 declare
1753 Aund : constant Entity_Id := Underlying_Type (E_Actual);
1754 Atyp : Entity_Id;
1756 begin
1757 if No (Aund) then
1758 Atyp := E_Actual;
1759 else
1760 Atyp := Aund;
1761 end if;
1763 if Has_Predicates (Atyp)
1764 and then Present (Predicate_Function (Atyp))
1766 -- Skip predicate checks for special cases
1768 and then Predicate_Tests_On_Arguments (Subp)
1769 then
1770 Append_To (Post_Call,
1771 Make_Predicate_Check (Atyp, Actual));
1772 end if;
1773 end;
1775 -- Processing for IN parameters
1777 else
1778 -- For IN parameters is in the packed array case, we expand an
1779 -- indexed component (the circuit in Exp_Ch4 deliberately left
1780 -- indexed components appearing as actuals untouched, so that
1781 -- the special processing above for the OUT and IN OUT cases
1782 -- could be performed. We could make the test in Exp_Ch4 more
1783 -- complex and have it detect the parameter mode, but it is
1784 -- easier simply to handle all cases here.)
1786 if Nkind (Actual) = N_Indexed_Component
1787 and then Is_Packed (Etype (Prefix (Actual)))
1788 then
1789 Reset_Packed_Prefix;
1790 Expand_Packed_Element_Reference (Actual);
1792 -- If we have a reference to a bit packed array, we copy it, since
1793 -- the actual must be byte aligned.
1795 -- Is this really necessary in all cases???
1797 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1798 Add_Simple_Call_By_Copy_Code;
1800 -- If a non-scalar actual is possibly unaligned, we need a copy
1802 elsif Is_Possibly_Unaligned_Object (Actual)
1803 and then not Represented_As_Scalar (Etype (Formal))
1804 then
1805 Add_Simple_Call_By_Copy_Code;
1807 -- Similarly, we have to expand slices of packed arrays here
1808 -- because the result must be byte aligned.
1810 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1811 Add_Call_By_Copy_Code;
1813 -- Only processing remaining is to pass by copy if this is a
1814 -- reference to a possibly unaligned slice, since the caller
1815 -- expects an appropriately aligned argument.
1817 elsif Is_Possibly_Unaligned_Slice (Actual) then
1818 Add_Call_By_Copy_Code;
1820 -- An unusual case: a current instance of an enclosing task can be
1821 -- an actual, and must be replaced by a reference to self.
1823 elsif Is_Entity_Name (Actual)
1824 and then Is_Task_Type (Entity (Actual))
1825 then
1826 if In_Open_Scopes (Entity (Actual)) then
1827 Rewrite (Actual,
1828 (Make_Function_Call (Loc,
1829 Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
1830 Analyze (Actual);
1832 -- A task type cannot otherwise appear as an actual
1834 else
1835 raise Program_Error;
1836 end if;
1837 end if;
1838 end if;
1840 Next_Formal (Formal);
1841 Next_Actual (Actual);
1842 end loop;
1844 -- Find right place to put post call stuff if it is present
1846 if not Is_Empty_List (Post_Call) then
1848 -- Cases where the call is not a member of a statement list
1850 if not Is_List_Member (N) then
1852 -- In Ada 2012 the call may be a function call in an expression
1853 -- (since OUT and IN OUT parameters are now allowed for such
1854 -- calls). The write-back of (in)-out parameters is handled
1855 -- by the back-end, but the constraint checks generated when
1856 -- subtypes of formal and actual don't match must be inserted
1857 -- in the form of assignments.
1859 if Ada_Version >= Ada_2012
1860 and then Nkind (N) = N_Function_Call
1861 then
1862 -- We used to just do handle this by climbing up parents to
1863 -- a non-statement/declaration and then simply making a call
1864 -- to Insert_Actions_After (P, Post_Call), but that doesn't
1865 -- work. If we are in the middle of an expression, e.g. the
1866 -- condition of an IF, this call would insert after the IF
1867 -- statement, which is much too late to be doing the write
1868 -- back. For example:
1870 -- if Clobber (X) then
1871 -- Put_Line (X'Img);
1872 -- else
1873 -- goto Junk
1874 -- end if;
1876 -- Now assume Clobber changes X, if we put the write back
1877 -- after the IF, the Put_Line gets the wrong value and the
1878 -- goto causes the write back to be skipped completely.
1880 -- To deal with this, we replace the call by
1882 -- do
1883 -- Tnnn : function-result-type renames function-call;
1884 -- Post_Call actions
1885 -- in
1886 -- Tnnn;
1887 -- end;
1889 -- Note: this won't do in Modify_Tree_For_C mode, but we
1890 -- will deal with that later (it will require creating a
1891 -- declaration for Temp, using Insert_Declaration) ???
1893 declare
1894 Tnnn : constant Entity_Id := Make_Temporary (Loc, 'T');
1895 FRTyp : constant Entity_Id := Etype (N);
1896 Name : constant Node_Id := Relocate_Node (N);
1898 begin
1899 Prepend_To (Post_Call,
1900 Make_Object_Renaming_Declaration (Loc,
1901 Defining_Identifier => Tnnn,
1902 Subtype_Mark => New_Occurrence_Of (FRTyp, Loc),
1903 Name => Name));
1905 Rewrite (N,
1906 Make_Expression_With_Actions (Loc,
1907 Actions => Post_Call,
1908 Expression => New_Occurrence_Of (Tnnn, Loc)));
1910 -- We don't want to just blindly call Analyze_And_Resolve
1911 -- because that would cause unwanted recursion on the call.
1912 -- So for a moment set the call as analyzed to prevent that
1913 -- recursion, and get the rest analyzed properly, then reset
1914 -- the analyzed flag, so our caller can continue.
1916 Set_Analyzed (Name, True);
1917 Analyze_And_Resolve (N, FRTyp);
1918 Set_Analyzed (Name, False);
1920 -- Reset calling argument to point to function call inside
1921 -- the expression with actions so the caller can continue
1922 -- to process the call.
1924 N := Name;
1925 end;
1927 -- If not the special Ada 2012 case of a function call, then
1928 -- we must have the triggering statement of a triggering
1929 -- alternative or an entry call alternative, and we can add
1930 -- the post call stuff to the corresponding statement list.
1932 else
1933 declare
1934 P : Node_Id;
1936 begin
1937 P := Parent (N);
1938 pragma Assert (Nkind_In (P, N_Triggering_Alternative,
1939 N_Entry_Call_Alternative));
1941 if Is_Non_Empty_List (Statements (P)) then
1942 Insert_List_Before_And_Analyze
1943 (First (Statements (P)), Post_Call);
1944 else
1945 Set_Statements (P, Post_Call);
1946 end if;
1948 return;
1949 end;
1950 end if;
1952 -- Otherwise, normal case where N is in a statement sequence,
1953 -- just put the post-call stuff after the call statement.
1955 else
1956 Insert_Actions_After (N, Post_Call);
1957 return;
1958 end if;
1959 end if;
1961 -- The call node itself is re-analyzed in Expand_Call
1963 end Expand_Actuals;
1965 -----------------
1966 -- Expand_Call --
1967 -----------------
1969 -- This procedure handles expansion of function calls and procedure call
1970 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
1971 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
1973 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
1974 -- Provide values of actuals for all formals in Extra_Formals list
1975 -- Replace "call" to enumeration literal function by literal itself
1976 -- Rewrite call to predefined operator as operator
1977 -- Replace actuals to in-out parameters that are numeric conversions,
1978 -- with explicit assignment to temporaries before and after the call.
1980 -- Note that the list of actuals has been filled with default expressions
1981 -- during semantic analysis of the call. Only the extra actuals required
1982 -- for the 'Constrained attribute and for accessibility checks are added
1983 -- at this point.
1985 procedure Expand_Call (N : Node_Id) is
1986 Loc : constant Source_Ptr := Sloc (N);
1987 Call_Node : Node_Id := N;
1988 Extra_Actuals : List_Id := No_List;
1989 Prev : Node_Id := Empty;
1991 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
1992 -- Adds one entry to the end of the actual parameter list. Used for
1993 -- default parameters and for extra actuals (for Extra_Formals). The
1994 -- argument is an N_Parameter_Association node.
1996 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
1997 -- Adds an extra actual to the list of extra actuals. Expr is the
1998 -- expression for the value of the actual, EF is the entity for the
1999 -- extra formal.
2001 procedure Do_Inline (Subp : Entity_Id; Orig_Subp : Entity_Id);
2002 -- Check and inline the body of Subp. Invoked when compiling with
2003 -- optimizations enabled and Subp has pragma inline or inline always.
2004 -- If the subprogram is a renaming, or if it is inherited, then Subp
2005 -- references the renamed entity and Orig_Subp is the entity of the
2006 -- call node N.
2008 procedure Do_Inline_Always (Subp : Entity_Id; Orig_Subp : Entity_Id);
2009 -- Check and inline the body of Subp. Invoked when compiling without
2010 -- optimizations and Subp has pragma inline always. If the subprogram is
2011 -- a renaming, or if it is inherited, then Subp references the renamed
2012 -- entity and Orig_Subp is the entity of the call node N.
2014 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
2015 -- Within an instance, a type derived from an untagged formal derived
2016 -- type inherits from the original parent, not from the actual. The
2017 -- current derivation mechanism has the derived type inherit from the
2018 -- actual, which is only correct outside of the instance. If the
2019 -- subprogram is inherited, we test for this particular case through a
2020 -- convoluted tree traversal before setting the proper subprogram to be
2021 -- called.
2023 function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2024 -- Return true if E comes from an instance that is not yet frozen
2026 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2027 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2029 function New_Value (From : Node_Id) return Node_Id;
2030 -- From is the original Expression. New_Value is equivalent to a call
2031 -- to Duplicate_Subexpr with an explicit dereference when From is an
2032 -- access parameter.
2034 --------------------------
2035 -- Add_Actual_Parameter --
2036 --------------------------
2038 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2039 Actual_Expr : constant Node_Id :=
2040 Explicit_Actual_Parameter (Insert_Param);
2042 begin
2043 -- Case of insertion is first named actual
2045 if No (Prev) or else
2046 Nkind (Parent (Prev)) /= N_Parameter_Association
2047 then
2048 Set_Next_Named_Actual
2049 (Insert_Param, First_Named_Actual (Call_Node));
2050 Set_First_Named_Actual (Call_Node, Actual_Expr);
2052 if No (Prev) then
2053 if No (Parameter_Associations (Call_Node)) then
2054 Set_Parameter_Associations (Call_Node, New_List);
2055 end if;
2057 Append (Insert_Param, Parameter_Associations (Call_Node));
2059 else
2060 Insert_After (Prev, Insert_Param);
2061 end if;
2063 -- Case of insertion is not first named actual
2065 else
2066 Set_Next_Named_Actual
2067 (Insert_Param, Next_Named_Actual (Parent (Prev)));
2068 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
2069 Append (Insert_Param, Parameter_Associations (Call_Node));
2070 end if;
2072 Prev := Actual_Expr;
2073 end Add_Actual_Parameter;
2075 ----------------------
2076 -- Add_Extra_Actual --
2077 ----------------------
2079 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2080 Loc : constant Source_Ptr := Sloc (Expr);
2082 begin
2083 if Extra_Actuals = No_List then
2084 Extra_Actuals := New_List;
2085 Set_Parent (Extra_Actuals, Call_Node);
2086 end if;
2088 Append_To (Extra_Actuals,
2089 Make_Parameter_Association (Loc,
2090 Selector_Name => New_Occurrence_Of (EF, Loc),
2091 Explicit_Actual_Parameter => Expr));
2093 Analyze_And_Resolve (Expr, Etype (EF));
2095 if Nkind (Call_Node) = N_Function_Call then
2096 Set_Is_Accessibility_Actual (Parent (Expr));
2097 end if;
2098 end Add_Extra_Actual;
2100 ----------------
2101 -- Do_Inline --
2102 ----------------
2104 procedure Do_Inline (Subp : Entity_Id; Orig_Subp : Entity_Id) is
2105 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
2107 procedure Do_Backend_Inline;
2108 -- Check that the call can be safely passed to the backend. If true
2109 -- then register the enclosing unit of Subp to Inlined_Bodies so that
2110 -- the body of Subp can be retrieved and analyzed by the backend.
2112 -----------------------
2113 -- Do_Backend_Inline --
2114 -----------------------
2116 procedure Do_Backend_Inline is
2117 begin
2118 -- No extra test needed for init subprograms since we know they
2119 -- are available to the backend.
2121 if Is_Init_Proc (Subp) then
2122 Add_Inlined_Body (Subp);
2123 Register_Backend_Call (Call_Node);
2125 -- Verify that if the body to inline is located in the current
2126 -- unit the inlining does not occur earlier. This avoids
2127 -- order-of-elaboration problems in the back end.
2129 elsif In_Same_Extended_Unit (Call_Node, Subp)
2130 and then Nkind (Spec) = N_Subprogram_Declaration
2131 and then Earlier_In_Extended_Unit
2132 (Loc, Sloc (Body_To_Inline (Spec)))
2133 then
2134 Error_Msg_NE
2135 ("cannot inline& (body not seen yet)??", Call_Node, Subp);
2137 else
2138 declare
2139 Backend_Inline : Boolean := True;
2141 begin
2142 -- If we are compiling a package body that is not the
2143 -- main unit, it must be for inlining/instantiation
2144 -- purposes, in which case we inline the call to insure
2145 -- that the same temporaries are generated when compiling
2146 -- the body by itself. Otherwise link errors can occur.
2148 -- If the function being called is itself in the main
2149 -- unit, we cannot inline, because there is a risk of
2150 -- double elaboration and/or circularity: the inlining
2151 -- can make visible a private entity in the body of the
2152 -- main unit, that gigi will see before its sees its
2153 -- proper definition.
2155 if not (In_Extended_Main_Code_Unit (Call_Node))
2156 and then In_Package_Body
2157 then
2158 Backend_Inline :=
2159 not In_Extended_Main_Source_Unit (Subp);
2160 end if;
2162 if Backend_Inline then
2163 Add_Inlined_Body (Subp);
2164 Register_Backend_Call (Call_Node);
2165 end if;
2166 end;
2167 end if;
2168 end Do_Backend_Inline;
2170 -- Start of processing for Do_Inline
2172 begin
2173 -- Verify that the body to inline has already been seen
2175 if No (Spec)
2176 or else Nkind (Spec) /= N_Subprogram_Declaration
2177 or else No (Body_To_Inline (Spec))
2178 then
2179 if Comes_From_Source (Subp)
2180 and then Must_Inline (Subp)
2181 then
2182 Cannot_Inline
2183 ("cannot inline& (body not seen yet)?", Call_Node, Subp);
2185 -- Let the back end handle it
2187 else
2188 Do_Backend_Inline;
2189 return;
2190 end if;
2192 -- If this an inherited function that returns a private type, do not
2193 -- inline if the full view is an unconstrained array, because such
2194 -- calls cannot be inlined.
2196 elsif Present (Orig_Subp)
2197 and then Is_Array_Type (Etype (Orig_Subp))
2198 and then not Is_Constrained (Etype (Orig_Subp))
2199 then
2200 Cannot_Inline
2201 ("cannot inline& (unconstrained array)?", Call_Node, Subp);
2203 else
2204 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
2205 end if;
2206 end Do_Inline;
2208 ----------------------
2209 -- Do_Inline_Always --
2210 ----------------------
2212 procedure Do_Inline_Always (Subp : Entity_Id; Orig_Subp : Entity_Id) is
2213 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
2214 Body_Id : Entity_Id;
2216 begin
2217 if No (Spec)
2218 or else Nkind (Spec) /= N_Subprogram_Declaration
2219 or else No (Body_To_Inline (Spec))
2220 or else Serious_Errors_Detected /= 0
2221 then
2222 return;
2223 end if;
2225 Body_Id := Corresponding_Body (Spec);
2227 -- Verify that the body to inline has already been seen
2229 if No (Body_Id)
2230 or else not Analyzed (Body_Id)
2231 then
2232 Set_Is_Inlined (Subp, False);
2234 if Comes_From_Source (Subp) then
2236 -- Report a warning only if the call is located in the unit of
2237 -- the called subprogram; otherwise it is an error.
2239 if not In_Same_Extended_Unit (Call_Node, Subp) then
2240 Cannot_Inline
2241 ("cannot inline& (body not seen yet)?", Call_Node, Subp,
2242 Is_Serious => True);
2244 elsif In_Open_Scopes (Subp) then
2246 -- For backward compatibility we generate the same error
2247 -- or warning of the previous implementation. This will
2248 -- be changed when we definitely incorporate the new
2249 -- support ???
2251 if Front_End_Inlining
2252 and then Optimization_Level = 0
2253 then
2254 Error_Msg_N
2255 ("call to recursive subprogram cannot be inlined?p?",
2258 -- Do not emit error compiling runtime packages
2260 elsif Is_Predefined_File_Name
2261 (Unit_File_Name (Get_Source_Unit (Subp)))
2262 then
2263 Error_Msg_N
2264 ("call to recursive subprogram cannot be inlined??",
2267 else
2268 Error_Msg_N
2269 ("call to recursive subprogram cannot be inlined",
2271 end if;
2273 else
2274 Cannot_Inline
2275 ("cannot inline& (body not seen yet)?", Call_Node, Subp);
2276 end if;
2277 end if;
2279 return;
2281 -- If this an inherited function that returns a private type, do not
2282 -- inline if the full view is an unconstrained array, because such
2283 -- calls cannot be inlined.
2285 elsif Present (Orig_Subp)
2286 and then Is_Array_Type (Etype (Orig_Subp))
2287 and then not Is_Constrained (Etype (Orig_Subp))
2288 then
2289 Cannot_Inline
2290 ("cannot inline& (unconstrained array)?", Call_Node, Subp);
2292 -- If the called subprogram comes from an instance in the same
2293 -- unit, and the instance is not yet frozen, inlining might
2294 -- trigger order-of-elaboration problems.
2296 elsif In_Unfrozen_Instance (Scope (Subp)) then
2297 Cannot_Inline
2298 ("cannot inline& (unfrozen instance)?", Call_Node, Subp);
2300 else
2301 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
2302 end if;
2303 end Do_Inline_Always;
2305 ---------------------------
2306 -- Inherited_From_Formal --
2307 ---------------------------
2309 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2310 Par : Entity_Id;
2311 Gen_Par : Entity_Id;
2312 Gen_Prim : Elist_Id;
2313 Elmt : Elmt_Id;
2314 Indic : Node_Id;
2316 begin
2317 -- If the operation is inherited, it is attached to the corresponding
2318 -- type derivation. If the parent in the derivation is a generic
2319 -- actual, it is a subtype of the actual, and we have to recover the
2320 -- original derived type declaration to find the proper parent.
2322 if Nkind (Parent (S)) /= N_Full_Type_Declaration
2323 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2324 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2325 N_Derived_Type_Definition
2326 or else not In_Instance
2327 then
2328 return Empty;
2330 else
2331 Indic :=
2332 Subtype_Indication
2333 (Type_Definition (Original_Node (Parent (S))));
2335 if Nkind (Indic) = N_Subtype_Indication then
2336 Par := Entity (Subtype_Mark (Indic));
2337 else
2338 Par := Entity (Indic);
2339 end if;
2340 end if;
2342 if not Is_Generic_Actual_Type (Par)
2343 or else Is_Tagged_Type (Par)
2344 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2345 or else not In_Open_Scopes (Scope (Par))
2346 then
2347 return Empty;
2348 else
2349 Gen_Par := Generic_Parent_Type (Parent (Par));
2350 end if;
2352 -- If the actual has no generic parent type, the formal is not
2353 -- a formal derived type, so nothing to inherit.
2355 if No (Gen_Par) then
2356 return Empty;
2357 end if;
2359 -- If the generic parent type is still the generic type, this is a
2360 -- private formal, not a derived formal, and there are no operations
2361 -- inherited from the formal.
2363 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2364 return Empty;
2365 end if;
2367 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
2369 Elmt := First_Elmt (Gen_Prim);
2370 while Present (Elmt) loop
2371 if Chars (Node (Elmt)) = Chars (S) then
2372 declare
2373 F1 : Entity_Id;
2374 F2 : Entity_Id;
2376 begin
2377 F1 := First_Formal (S);
2378 F2 := First_Formal (Node (Elmt));
2379 while Present (F1)
2380 and then Present (F2)
2381 loop
2382 if Etype (F1) = Etype (F2)
2383 or else Etype (F2) = Gen_Par
2384 then
2385 Next_Formal (F1);
2386 Next_Formal (F2);
2387 else
2388 Next_Elmt (Elmt);
2389 exit; -- not the right subprogram
2390 end if;
2392 return Node (Elmt);
2393 end loop;
2394 end;
2396 else
2397 Next_Elmt (Elmt);
2398 end if;
2399 end loop;
2401 raise Program_Error;
2402 end Inherited_From_Formal;
2404 --------------------------
2405 -- In_Unfrozen_Instance --
2406 --------------------------
2408 function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
2409 S : Entity_Id;
2411 begin
2412 S := E;
2413 while Present (S) and then S /= Standard_Standard loop
2414 if Is_Generic_Instance (S)
2415 and then Present (Freeze_Node (S))
2416 and then not Analyzed (Freeze_Node (S))
2417 then
2418 return True;
2419 end if;
2421 S := Scope (S);
2422 end loop;
2424 return False;
2425 end In_Unfrozen_Instance;
2427 -------------------------
2428 -- Is_Direct_Deep_Call --
2429 -------------------------
2431 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2432 begin
2433 if Is_TSS (Subp, TSS_Deep_Adjust)
2434 or else Is_TSS (Subp, TSS_Deep_Finalize)
2435 or else Is_TSS (Subp, TSS_Deep_Initialize)
2436 then
2437 declare
2438 Actual : Node_Id;
2439 Formal : Node_Id;
2441 begin
2442 Actual := First (Parameter_Associations (N));
2443 Formal := First_Formal (Subp);
2444 while Present (Actual)
2445 and then Present (Formal)
2446 loop
2447 if Nkind (Actual) = N_Identifier
2448 and then Is_Controlling_Actual (Actual)
2449 and then Etype (Actual) = Etype (Formal)
2450 then
2451 return True;
2452 end if;
2454 Next (Actual);
2455 Next_Formal (Formal);
2456 end loop;
2457 end;
2458 end if;
2460 return False;
2461 end Is_Direct_Deep_Call;
2463 ---------------
2464 -- New_Value --
2465 ---------------
2467 function New_Value (From : Node_Id) return Node_Id is
2468 Res : constant Node_Id := Duplicate_Subexpr (From);
2469 begin
2470 if Is_Access_Type (Etype (From)) then
2471 return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
2472 else
2473 return Res;
2474 end if;
2475 end New_Value;
2477 -- Local variables
2479 Curr_S : constant Entity_Id := Current_Scope;
2480 Remote : constant Boolean := Is_Remote_Call (Call_Node);
2481 Actual : Node_Id;
2482 Formal : Entity_Id;
2483 Orig_Subp : Entity_Id := Empty;
2484 Param_Count : Natural := 0;
2485 Parent_Formal : Entity_Id;
2486 Parent_Subp : Entity_Id;
2487 Scop : Entity_Id;
2488 Subp : Entity_Id;
2490 Prev_Orig : Node_Id;
2491 -- Original node for an actual, which may have been rewritten. If the
2492 -- actual is a function call that has been transformed from a selected
2493 -- component, the original node is unanalyzed. Otherwise, it carries
2494 -- semantic information used to generate additional actuals.
2496 CW_Interface_Formals_Present : Boolean := False;
2498 -- Start of processing for Expand_Call
2500 begin
2501 -- Expand the procedure call if the first actual has a dimension and if
2502 -- the procedure is Put (Ada 2012).
2504 if Ada_Version >= Ada_2012
2505 and then Nkind (Call_Node) = N_Procedure_Call_Statement
2506 and then Present (Parameter_Associations (Call_Node))
2507 then
2508 Expand_Put_Call_With_Symbol (Call_Node);
2509 end if;
2511 -- Ignore if previous error
2513 if Nkind (Call_Node) in N_Has_Etype
2514 and then Etype (Call_Node) = Any_Type
2515 then
2516 return;
2517 end if;
2519 -- Call using access to subprogram with explicit dereference
2521 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2522 Subp := Etype (Name (Call_Node));
2523 Parent_Subp := Empty;
2525 -- Case of call to simple entry, where the Name is a selected component
2526 -- whose prefix is the task, and whose selector name is the entry name
2528 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2529 Subp := Entity (Selector_Name (Name (Call_Node)));
2530 Parent_Subp := Empty;
2532 -- Case of call to member of entry family, where Name is an indexed
2533 -- component, with the prefix being a selected component giving the
2534 -- task and entry family name, and the index being the entry index.
2536 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2537 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
2538 Parent_Subp := Empty;
2540 -- Normal case
2542 else
2543 Subp := Entity (Name (Call_Node));
2544 Parent_Subp := Alias (Subp);
2546 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2547 -- if we can tell that the first parameter cannot possibly be null.
2548 -- This improves efficiency by avoiding a run-time test.
2550 -- We do not do this if Raise_Exception_Always does not exist, which
2551 -- can happen in configurable run time profiles which provide only a
2552 -- Raise_Exception.
2554 if Is_RTE (Subp, RE_Raise_Exception)
2555 and then RTE_Available (RE_Raise_Exception_Always)
2556 then
2557 declare
2558 FA : constant Node_Id :=
2559 Original_Node (First_Actual (Call_Node));
2561 begin
2562 -- The case we catch is where the first argument is obtained
2563 -- using the Identity attribute (which must always be
2564 -- non-null).
2566 if Nkind (FA) = N_Attribute_Reference
2567 and then Attribute_Name (FA) = Name_Identity
2568 then
2569 Subp := RTE (RE_Raise_Exception_Always);
2570 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
2571 end if;
2572 end;
2573 end if;
2575 if Ekind (Subp) = E_Entry then
2576 Parent_Subp := Empty;
2577 end if;
2578 end if;
2580 -- Detect the following code in System.Finalization_Masters only on
2581 -- .NET/JVM targets:
2583 -- procedure Finalize (Master : in out Finalization_Master) is
2584 -- begin
2585 -- . . .
2586 -- begin
2587 -- Finalize (Curr_Ptr.all);
2589 -- Since .NET/JVM compilers lack address arithmetic and Deep_Finalize
2590 -- cannot be named in library or user code, the compiler has to deal
2591 -- with this by transforming the call to Finalize into Deep_Finalize.
2593 if VM_Target /= No_VM
2594 and then Chars (Subp) = Name_Finalize
2595 and then Ekind (Curr_S) = E_Block
2596 and then Ekind (Scope (Curr_S)) = E_Procedure
2597 and then Chars (Scope (Curr_S)) = Name_Finalize
2598 and then Etype (First_Formal (Scope (Curr_S))) =
2599 RTE (RE_Finalization_Master)
2600 then
2601 declare
2602 Deep_Fin : constant Entity_Id :=
2603 Find_Prim_Op (RTE (RE_Root_Controlled),
2604 TSS_Deep_Finalize);
2605 begin
2606 -- Since Root_Controlled is a tagged type, the compiler should
2607 -- always generate Deep_Finalize for it.
2609 pragma Assert (Present (Deep_Fin));
2611 -- Generate:
2612 -- Deep_Finalize (Curr_Ptr.all);
2614 Rewrite (N,
2615 Make_Procedure_Call_Statement (Loc,
2616 Name =>
2617 New_Occurrence_Of (Deep_Fin, Loc),
2618 Parameter_Associations =>
2619 New_Copy_List_Tree (Parameter_Associations (N))));
2621 Analyze (N);
2622 return;
2623 end;
2624 end if;
2626 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2627 -- alternative in an asynchronous select or as an entry call in
2628 -- a conditional or timed select. Check whether the procedure call
2629 -- is a renaming of an entry and rewrite it as an entry call.
2631 if Ada_Version >= Ada_2005
2632 and then Nkind (Call_Node) = N_Procedure_Call_Statement
2633 and then
2634 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
2635 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
2636 or else
2637 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
2638 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
2639 then
2640 declare
2641 Ren_Decl : Node_Id;
2642 Ren_Root : Entity_Id := Subp;
2644 begin
2645 -- This may be a chain of renamings, find the root
2647 if Present (Alias (Ren_Root)) then
2648 Ren_Root := Alias (Ren_Root);
2649 end if;
2651 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2652 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2654 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2655 Rewrite (Call_Node,
2656 Make_Entry_Call_Statement (Loc,
2657 Name =>
2658 New_Copy_Tree (Name (Ren_Decl)),
2659 Parameter_Associations =>
2660 New_Copy_List_Tree
2661 (Parameter_Associations (Call_Node))));
2663 return;
2664 end if;
2665 end if;
2666 end;
2667 end if;
2669 -- First step, compute extra actuals, corresponding to any Extra_Formals
2670 -- present. Note that we do not access Extra_Formals directly, instead
2671 -- we simply note the presence of the extra formals as we process the
2672 -- regular formals collecting corresponding actuals in Extra_Actuals.
2674 -- We also generate any required range checks for actuals for in formals
2675 -- as we go through the loop, since this is a convenient place to do it.
2676 -- (Though it seems that this would be better done in Expand_Actuals???)
2678 -- Special case: Thunks must not compute the extra actuals; they must
2679 -- just propagate to the target primitive their extra actuals.
2681 if Is_Thunk (Current_Scope)
2682 and then Thunk_Entity (Current_Scope) = Subp
2683 and then Present (Extra_Formals (Subp))
2684 then
2685 pragma Assert (Present (Extra_Formals (Current_Scope)));
2687 declare
2688 Target_Formal : Entity_Id;
2689 Thunk_Formal : Entity_Id;
2691 begin
2692 Target_Formal := Extra_Formals (Subp);
2693 Thunk_Formal := Extra_Formals (Current_Scope);
2694 while Present (Target_Formal) loop
2695 Add_Extra_Actual
2696 (New_Occurrence_Of (Thunk_Formal, Loc), Thunk_Formal);
2698 Target_Formal := Extra_Formal (Target_Formal);
2699 Thunk_Formal := Extra_Formal (Thunk_Formal);
2700 end loop;
2702 while Is_Non_Empty_List (Extra_Actuals) loop
2703 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2704 end loop;
2706 Expand_Actuals (Call_Node, Subp);
2707 return;
2708 end;
2709 end if;
2711 Formal := First_Formal (Subp);
2712 Actual := First_Actual (Call_Node);
2713 Param_Count := 1;
2714 while Present (Formal) loop
2716 -- Generate range check if required
2718 if Do_Range_Check (Actual)
2719 and then Ekind (Formal) = E_In_Parameter
2720 then
2721 Generate_Range_Check
2722 (Actual, Etype (Formal), CE_Range_Check_Failed);
2723 end if;
2725 -- Prepare to examine current entry
2727 Prev := Actual;
2728 Prev_Orig := Original_Node (Prev);
2730 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2731 -- to expand it in a further round.
2733 CW_Interface_Formals_Present :=
2734 CW_Interface_Formals_Present
2735 or else
2736 (Ekind (Etype (Formal)) = E_Class_Wide_Type
2737 and then Is_Interface (Etype (Etype (Formal))))
2738 or else
2739 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2740 and then Is_Interface (Directly_Designated_Type
2741 (Etype (Etype (Formal)))));
2743 -- Create possible extra actual for constrained case. Usually, the
2744 -- extra actual is of the form actual'constrained, but since this
2745 -- attribute is only available for unconstrained records, TRUE is
2746 -- expanded if the type of the formal happens to be constrained (for
2747 -- instance when this procedure is inherited from an unconstrained
2748 -- record to a constrained one) or if the actual has no discriminant
2749 -- (its type is constrained). An exception to this is the case of a
2750 -- private type without discriminants. In this case we pass FALSE
2751 -- because the object has underlying discriminants with defaults.
2753 if Present (Extra_Constrained (Formal)) then
2754 if Ekind (Etype (Prev)) in Private_Kind
2755 and then not Has_Discriminants (Base_Type (Etype (Prev)))
2756 then
2757 Add_Extra_Actual
2758 (New_Occurrence_Of (Standard_False, Loc),
2759 Extra_Constrained (Formal));
2761 elsif Is_Constrained (Etype (Formal))
2762 or else not Has_Discriminants (Etype (Prev))
2763 then
2764 Add_Extra_Actual
2765 (New_Occurrence_Of (Standard_True, Loc),
2766 Extra_Constrained (Formal));
2768 -- Do not produce extra actuals for Unchecked_Union parameters.
2769 -- Jump directly to the end of the loop.
2771 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2772 goto Skip_Extra_Actual_Generation;
2774 else
2775 -- If the actual is a type conversion, then the constrained
2776 -- test applies to the actual, not the target type.
2778 declare
2779 Act_Prev : Node_Id;
2781 begin
2782 -- Test for unchecked conversions as well, which can occur
2783 -- as out parameter actuals on calls to stream procedures.
2785 Act_Prev := Prev;
2786 while Nkind_In (Act_Prev, N_Type_Conversion,
2787 N_Unchecked_Type_Conversion)
2788 loop
2789 Act_Prev := Expression (Act_Prev);
2790 end loop;
2792 -- If the expression is a conversion of a dereference, this
2793 -- is internally generated code that manipulates addresses,
2794 -- e.g. when building interface tables. No check should
2795 -- occur in this case, and the discriminated object is not
2796 -- directly a hand.
2798 if not Comes_From_Source (Actual)
2799 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2800 and then Nkind (Act_Prev) = N_Explicit_Dereference
2801 then
2802 Add_Extra_Actual
2803 (New_Occurrence_Of (Standard_False, Loc),
2804 Extra_Constrained (Formal));
2806 else
2807 Add_Extra_Actual
2808 (Make_Attribute_Reference (Sloc (Prev),
2809 Prefix =>
2810 Duplicate_Subexpr_No_Checks
2811 (Act_Prev, Name_Req => True),
2812 Attribute_Name => Name_Constrained),
2813 Extra_Constrained (Formal));
2814 end if;
2815 end;
2816 end if;
2817 end if;
2819 -- Create possible extra actual for accessibility level
2821 if Present (Extra_Accessibility (Formal)) then
2823 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2824 -- attribute, then the original actual may be an aliased object
2825 -- occurring as the prefix in a call using "Object.Operation"
2826 -- notation. In that case we must pass the level of the object,
2827 -- so Prev_Orig is reset to Prev and the attribute will be
2828 -- processed by the code for Access attributes further below.
2830 if Prev_Orig /= Prev
2831 and then Nkind (Prev) = N_Attribute_Reference
2832 and then
2833 Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
2834 and then Is_Aliased_View (Prev_Orig)
2835 then
2836 Prev_Orig := Prev;
2837 end if;
2839 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2840 -- accessibility levels.
2842 if Is_Thunk (Current_Scope) then
2843 declare
2844 Parm_Ent : Entity_Id;
2846 begin
2847 if Is_Controlling_Actual (Actual) then
2849 -- Find the corresponding actual of the thunk
2851 Parm_Ent := First_Entity (Current_Scope);
2852 for J in 2 .. Param_Count loop
2853 Next_Entity (Parm_Ent);
2854 end loop;
2856 -- Handle unchecked conversion of access types generated
2857 -- in thunks (cf. Expand_Interface_Thunk).
2859 elsif Is_Access_Type (Etype (Actual))
2860 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2861 then
2862 Parm_Ent := Entity (Expression (Actual));
2864 else pragma Assert (Is_Entity_Name (Actual));
2865 Parm_Ent := Entity (Actual);
2866 end if;
2868 Add_Extra_Actual
2869 (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
2870 Extra_Accessibility (Formal));
2871 end;
2873 elsif Is_Entity_Name (Prev_Orig) then
2875 -- When passing an access parameter, or a renaming of an access
2876 -- parameter, as the actual to another access parameter we need
2877 -- to pass along the actual's own access level parameter. This
2878 -- is done if we are within the scope of the formal access
2879 -- parameter (if this is an inlined body the extra formal is
2880 -- irrelevant).
2882 if (Is_Formal (Entity (Prev_Orig))
2883 or else
2884 (Present (Renamed_Object (Entity (Prev_Orig)))
2885 and then
2886 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
2887 and then
2888 Is_Formal
2889 (Entity (Renamed_Object (Entity (Prev_Orig))))))
2890 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
2891 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
2892 then
2893 declare
2894 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
2896 begin
2897 pragma Assert (Present (Parm_Ent));
2899 if Present (Extra_Accessibility (Parm_Ent)) then
2900 Add_Extra_Actual
2901 (New_Occurrence_Of
2902 (Extra_Accessibility (Parm_Ent), Loc),
2903 Extra_Accessibility (Formal));
2905 -- If the actual access parameter does not have an
2906 -- associated extra formal providing its scope level,
2907 -- then treat the actual as having library-level
2908 -- accessibility.
2910 else
2911 Add_Extra_Actual
2912 (Make_Integer_Literal (Loc,
2913 Intval => Scope_Depth (Standard_Standard)),
2914 Extra_Accessibility (Formal));
2915 end if;
2916 end;
2918 -- The actual is a normal access value, so just pass the level
2919 -- of the actual's access type.
2921 else
2922 Add_Extra_Actual
2923 (Dynamic_Accessibility_Level (Prev_Orig),
2924 Extra_Accessibility (Formal));
2925 end if;
2927 -- If the actual is an access discriminant, then pass the level
2928 -- of the enclosing object (RM05-3.10.2(12.4/2)).
2930 elsif Nkind (Prev_Orig) = N_Selected_Component
2931 and then Ekind (Entity (Selector_Name (Prev_Orig))) =
2932 E_Discriminant
2933 and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
2934 E_Anonymous_Access_Type
2935 then
2936 Add_Extra_Actual
2937 (Make_Integer_Literal (Loc,
2938 Intval => Object_Access_Level (Prefix (Prev_Orig))),
2939 Extra_Accessibility (Formal));
2941 -- All other cases
2943 else
2944 case Nkind (Prev_Orig) is
2946 when N_Attribute_Reference =>
2947 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
2949 -- For X'Access, pass on the level of the prefix X
2951 when Attribute_Access =>
2953 -- If this is an Access attribute applied to the
2954 -- the current instance object passed to a type
2955 -- initialization procedure, then use the level
2956 -- of the type itself. This is not really correct,
2957 -- as there should be an extra level parameter
2958 -- passed in with _init formals (only in the case
2959 -- where the type is immutably limited), but we
2960 -- don't have an easy way currently to create such
2961 -- an extra formal (init procs aren't ever frozen).
2962 -- For now we just use the level of the type,
2963 -- which may be too shallow, but that works better
2964 -- than passing Object_Access_Level of the type,
2965 -- which can be one level too deep in some cases.
2966 -- ???
2968 if Is_Entity_Name (Prefix (Prev_Orig))
2969 and then Is_Type (Entity (Prefix (Prev_Orig)))
2970 then
2971 Add_Extra_Actual
2972 (Make_Integer_Literal (Loc,
2973 Intval =>
2974 Type_Access_Level
2975 (Entity (Prefix (Prev_Orig)))),
2976 Extra_Accessibility (Formal));
2978 else
2979 Add_Extra_Actual
2980 (Make_Integer_Literal (Loc,
2981 Intval =>
2982 Object_Access_Level
2983 (Prefix (Prev_Orig))),
2984 Extra_Accessibility (Formal));
2985 end if;
2987 -- Treat the unchecked attributes as library-level
2989 when Attribute_Unchecked_Access |
2990 Attribute_Unrestricted_Access =>
2991 Add_Extra_Actual
2992 (Make_Integer_Literal (Loc,
2993 Intval => Scope_Depth (Standard_Standard)),
2994 Extra_Accessibility (Formal));
2996 -- No other cases of attributes returning access
2997 -- values that can be passed to access parameters.
2999 when others =>
3000 raise Program_Error;
3002 end case;
3004 -- For allocators we pass the level of the execution of the
3005 -- called subprogram, which is one greater than the current
3006 -- scope level.
3008 when N_Allocator =>
3009 Add_Extra_Actual
3010 (Make_Integer_Literal (Loc,
3011 Intval => Scope_Depth (Current_Scope) + 1),
3012 Extra_Accessibility (Formal));
3014 -- For most other cases we simply pass the level of the
3015 -- actual's access type. The type is retrieved from
3016 -- Prev rather than Prev_Orig, because in some cases
3017 -- Prev_Orig denotes an original expression that has
3018 -- not been analyzed.
3020 when others =>
3021 Add_Extra_Actual
3022 (Dynamic_Accessibility_Level (Prev),
3023 Extra_Accessibility (Formal));
3024 end case;
3025 end if;
3026 end if;
3028 -- Perform the check of 4.6(49) that prevents a null value from being
3029 -- passed as an actual to an access parameter. Note that the check
3030 -- is elided in the common cases of passing an access attribute or
3031 -- access parameter as an actual. Also, we currently don't enforce
3032 -- this check for expander-generated actuals and when -gnatdj is set.
3034 if Ada_Version >= Ada_2005 then
3036 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3037 -- the intent of 6.4.1(13) is that null-exclusion checks should
3038 -- not be done for 'out' parameters, even though it refers only
3039 -- to constraint checks, and a null_exclusion is not a constraint.
3040 -- Note that AI05-0196-1 corrects this mistake in the RM.
3042 if Is_Access_Type (Etype (Formal))
3043 and then Can_Never_Be_Null (Etype (Formal))
3044 and then Ekind (Formal) /= E_Out_Parameter
3045 and then Nkind (Prev) /= N_Raise_Constraint_Error
3046 and then (Known_Null (Prev)
3047 or else not Can_Never_Be_Null (Etype (Prev)))
3048 then
3049 Install_Null_Excluding_Check (Prev);
3050 end if;
3052 -- Ada_Version < Ada_2005
3054 else
3055 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3056 or else Access_Checks_Suppressed (Subp)
3057 then
3058 null;
3060 elsif Debug_Flag_J then
3061 null;
3063 elsif not Comes_From_Source (Prev) then
3064 null;
3066 elsif Is_Entity_Name (Prev)
3067 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3068 then
3069 null;
3071 elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
3072 null;
3074 -- Suppress null checks when passing to access parameters of Java
3075 -- and CIL subprograms. (Should this be done for other foreign
3076 -- conventions as well ???)
3078 elsif Convention (Subp) = Convention_Java
3079 or else Convention (Subp) = Convention_CIL
3080 then
3081 null;
3083 else
3084 Install_Null_Excluding_Check (Prev);
3085 end if;
3086 end if;
3088 -- Perform appropriate validity checks on parameters that
3089 -- are entities.
3091 if Validity_Checks_On then
3092 if (Ekind (Formal) = E_In_Parameter
3093 and then Validity_Check_In_Params)
3094 or else
3095 (Ekind (Formal) = E_In_Out_Parameter
3096 and then Validity_Check_In_Out_Params)
3097 then
3098 -- If the actual is an indexed component of a packed type (or
3099 -- is an indexed or selected component whose prefix recursively
3100 -- meets this condition), it has not been expanded yet. It will
3101 -- be copied in the validity code that follows, and has to be
3102 -- expanded appropriately, so reanalyze it.
3104 -- What we do is just to unset analyzed bits on prefixes till
3105 -- we reach something that does not have a prefix.
3107 declare
3108 Nod : Node_Id;
3110 begin
3111 Nod := Actual;
3112 while Nkind_In (Nod, N_Indexed_Component,
3113 N_Selected_Component)
3114 loop
3115 Set_Analyzed (Nod, False);
3116 Nod := Prefix (Nod);
3117 end loop;
3118 end;
3120 Ensure_Valid (Actual);
3121 end if;
3122 end if;
3124 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3125 -- since this is a left side reference. We only do this for calls
3126 -- from the source program since we assume that compiler generated
3127 -- calls explicitly generate any required checks. We also need it
3128 -- only if we are doing standard validity checks, since clearly it is
3129 -- not needed if validity checks are off, and in subscript validity
3130 -- checking mode, all indexed components are checked with a call
3131 -- directly from Expand_N_Indexed_Component.
3133 if Comes_From_Source (Call_Node)
3134 and then Ekind (Formal) /= E_In_Parameter
3135 and then Validity_Checks_On
3136 and then Validity_Check_Default
3137 and then not Validity_Check_Subscripts
3138 then
3139 Check_Valid_Lvalue_Subscripts (Actual);
3140 end if;
3142 -- Mark any scalar OUT parameter that is a simple variable as no
3143 -- longer known to be valid (unless the type is always valid). This
3144 -- reflects the fact that if an OUT parameter is never set in a
3145 -- procedure, then it can become invalid on the procedure return.
3147 if Ekind (Formal) = E_Out_Parameter
3148 and then Is_Entity_Name (Actual)
3149 and then Ekind (Entity (Actual)) = E_Variable
3150 and then not Is_Known_Valid (Etype (Actual))
3151 then
3152 Set_Is_Known_Valid (Entity (Actual), False);
3153 end if;
3155 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3156 -- clear current values, since they can be clobbered. We are probably
3157 -- doing this in more places than we need to, but better safe than
3158 -- sorry when it comes to retaining bad current values.
3160 if Ekind (Formal) /= E_In_Parameter
3161 and then Is_Entity_Name (Actual)
3162 and then Present (Entity (Actual))
3163 then
3164 declare
3165 Ent : constant Entity_Id := Entity (Actual);
3166 Sav : Node_Id;
3168 begin
3169 -- For an OUT or IN OUT parameter that is an assignable entity,
3170 -- we do not want to clobber the Last_Assignment field, since
3171 -- if it is set, it was precisely because it is indeed an OUT
3172 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3173 -- since the subprogram could have returned in invalid value.
3175 if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
3176 and then Is_Assignable (Ent)
3177 then
3178 Sav := Last_Assignment (Ent);
3179 Kill_Current_Values (Ent);
3180 Set_Last_Assignment (Ent, Sav);
3181 Set_Is_Known_Valid (Ent, False);
3183 -- For all other cases, just kill the current values
3185 else
3186 Kill_Current_Values (Ent);
3187 end if;
3188 end;
3189 end if;
3191 -- If the formal is class wide and the actual is an aggregate, force
3192 -- evaluation so that the back end who does not know about class-wide
3193 -- type, does not generate a temporary of the wrong size.
3195 if not Is_Class_Wide_Type (Etype (Formal)) then
3196 null;
3198 elsif Nkind (Actual) = N_Aggregate
3199 or else (Nkind (Actual) = N_Qualified_Expression
3200 and then Nkind (Expression (Actual)) = N_Aggregate)
3201 then
3202 Force_Evaluation (Actual);
3203 end if;
3205 -- In a remote call, if the formal is of a class-wide type, check
3206 -- that the actual meets the requirements described in E.4(18).
3208 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
3209 Insert_Action (Actual,
3210 Make_Transportable_Check (Loc,
3211 Duplicate_Subexpr_Move_Checks (Actual)));
3212 end if;
3214 -- This label is required when skipping extra actual generation for
3215 -- Unchecked_Union parameters.
3217 <<Skip_Extra_Actual_Generation>>
3219 Param_Count := Param_Count + 1;
3220 Next_Actual (Actual);
3221 Next_Formal (Formal);
3222 end loop;
3224 -- If we are calling an Ada 2012 function which needs to have the
3225 -- "accessibility level determined by the point of call" (AI05-0234)
3226 -- passed in to it, then pass it in.
3228 if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
3229 and then
3230 Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
3231 then
3232 declare
3233 Ancestor : Node_Id := Parent (Call_Node);
3234 Level : Node_Id := Empty;
3235 Defer : Boolean := False;
3237 begin
3238 -- Unimplemented: if Subp returns an anonymous access type, then
3240 -- a) if the call is the operand of an explict conversion, then
3241 -- the target type of the conversion (a named access type)
3242 -- determines the accessibility level pass in;
3244 -- b) if the call defines an access discriminant of an object
3245 -- (e.g., the discriminant of an object being created by an
3246 -- allocator, or the discriminant of a function result),
3247 -- then the accessibility level to pass in is that of the
3248 -- discriminated object being initialized).
3250 -- ???
3252 while Nkind (Ancestor) = N_Qualified_Expression
3253 loop
3254 Ancestor := Parent (Ancestor);
3255 end loop;
3257 case Nkind (Ancestor) is
3258 when N_Allocator =>
3260 -- At this point, we'd like to assign
3262 -- Level := Dynamic_Accessibility_Level (Ancestor);
3264 -- but Etype of Ancestor may not have been set yet,
3265 -- so that doesn't work.
3267 -- Handle this later in Expand_Allocator_Expression.
3269 Defer := True;
3271 when N_Object_Declaration | N_Object_Renaming_Declaration =>
3272 declare
3273 Def_Id : constant Entity_Id :=
3274 Defining_Identifier (Ancestor);
3276 begin
3277 if Is_Return_Object (Def_Id) then
3278 if Present (Extra_Accessibility_Of_Result
3279 (Return_Applies_To (Scope (Def_Id))))
3280 then
3281 -- Pass along value that was passed in if the
3282 -- routine we are returning from also has an
3283 -- Accessibility_Of_Result formal.
3285 Level :=
3286 New_Occurrence_Of
3287 (Extra_Accessibility_Of_Result
3288 (Return_Applies_To (Scope (Def_Id))), Loc);
3289 end if;
3290 else
3291 Level :=
3292 Make_Integer_Literal (Loc,
3293 Intval => Object_Access_Level (Def_Id));
3294 end if;
3295 end;
3297 when N_Simple_Return_Statement =>
3298 if Present (Extra_Accessibility_Of_Result
3299 (Return_Applies_To
3300 (Return_Statement_Entity (Ancestor))))
3301 then
3302 -- Pass along value that was passed in if the returned
3303 -- routine also has an Accessibility_Of_Result formal.
3305 Level :=
3306 New_Occurrence_Of
3307 (Extra_Accessibility_Of_Result
3308 (Return_Applies_To
3309 (Return_Statement_Entity (Ancestor))), Loc);
3310 end if;
3312 when others =>
3313 null;
3314 end case;
3316 if not Defer then
3317 if not Present (Level) then
3319 -- The "innermost master that evaluates the function call".
3321 -- ??? - Should we use Integer'Last here instead in order
3322 -- to deal with (some of) the problems associated with
3323 -- calls to subps whose enclosing scope is unknown (e.g.,
3324 -- Anon_Access_To_Subp_Param.all)?
3326 Level := Make_Integer_Literal (Loc,
3327 Scope_Depth (Current_Scope) + 1);
3328 end if;
3330 Add_Extra_Actual
3331 (Level,
3332 Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
3333 end if;
3334 end;
3335 end if;
3337 -- If we are expanding the RHS of an assignment we need to check if tag
3338 -- propagation is needed. You might expect this processing to be in
3339 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3340 -- assignment might be transformed to a declaration for an unconstrained
3341 -- value if the expression is classwide.
3343 if Nkind (Call_Node) = N_Function_Call
3344 and then Is_Tag_Indeterminate (Call_Node)
3345 and then Is_Entity_Name (Name (Call_Node))
3346 then
3347 declare
3348 Ass : Node_Id := Empty;
3350 begin
3351 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3352 Ass := Parent (Call_Node);
3354 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3355 and then Nkind (Parent (Parent (Call_Node))) =
3356 N_Assignment_Statement
3357 then
3358 Ass := Parent (Parent (Call_Node));
3360 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3361 and then Nkind (Parent (Parent (Call_Node))) =
3362 N_Assignment_Statement
3363 then
3364 Ass := Parent (Parent (Call_Node));
3365 end if;
3367 if Present (Ass)
3368 and then Is_Class_Wide_Type (Etype (Name (Ass)))
3369 then
3370 if Is_Access_Type (Etype (Call_Node)) then
3371 if Designated_Type (Etype (Call_Node)) /=
3372 Root_Type (Etype (Name (Ass)))
3373 then
3374 Error_Msg_NE
3375 ("tag-indeterminate expression "
3376 & " must have designated type& (RM 5.2 (6))",
3377 Call_Node, Root_Type (Etype (Name (Ass))));
3378 else
3379 Propagate_Tag (Name (Ass), Call_Node);
3380 end if;
3382 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
3383 Error_Msg_NE
3384 ("tag-indeterminate expression must have type&"
3385 & "(RM 5.2 (6))",
3386 Call_Node, Root_Type (Etype (Name (Ass))));
3388 else
3389 Propagate_Tag (Name (Ass), Call_Node);
3390 end if;
3392 -- The call will be rewritten as a dispatching call, and
3393 -- expanded as such.
3395 return;
3396 end if;
3397 end;
3398 end if;
3400 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3401 -- it to point to the correct secondary virtual table
3403 if Nkind (Call_Node) in N_Subprogram_Call
3404 and then CW_Interface_Formals_Present
3405 then
3406 Expand_Interface_Actuals (Call_Node);
3407 end if;
3409 -- Deals with Dispatch_Call if we still have a call, before expanding
3410 -- extra actuals since this will be done on the re-analysis of the
3411 -- dispatching call. Note that we do not try to shorten the actual list
3412 -- for a dispatching call, it would not make sense to do so. Expansion
3413 -- of dispatching calls is suppressed when VM_Target, because the VM
3414 -- back-ends directly handle the generation of dispatching calls and
3415 -- would have to undo any expansion to an indirect call.
3417 if Nkind (Call_Node) in N_Subprogram_Call
3418 and then Present (Controlling_Argument (Call_Node))
3419 then
3420 declare
3421 Call_Typ : constant Entity_Id := Etype (Call_Node);
3422 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
3423 Eq_Prim_Op : Entity_Id := Empty;
3424 New_Call : Node_Id;
3425 Param : Node_Id;
3426 Prev_Call : Node_Id;
3428 begin
3429 if not Is_Limited_Type (Typ) then
3430 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3431 end if;
3433 if Tagged_Type_Expansion then
3434 Expand_Dispatching_Call (Call_Node);
3436 -- The following return is worrisome. Is it really OK to skip
3437 -- all remaining processing in this procedure ???
3439 return;
3441 -- VM targets
3443 else
3444 Apply_Tag_Checks (Call_Node);
3446 -- If this is a dispatching "=", we must first compare the
3447 -- tags so we generate: x.tag = y.tag and then x = y
3449 if Subp = Eq_Prim_Op then
3451 -- Mark the node as analyzed to avoid reanalizing this
3452 -- dispatching call (which would cause a never-ending loop)
3454 Prev_Call := Relocate_Node (Call_Node);
3455 Set_Analyzed (Prev_Call);
3457 Param := First_Actual (Call_Node);
3458 New_Call :=
3459 Make_And_Then (Loc,
3460 Left_Opnd =>
3461 Make_Op_Eq (Loc,
3462 Left_Opnd =>
3463 Make_Selected_Component (Loc,
3464 Prefix => New_Value (Param),
3465 Selector_Name =>
3466 New_Occurrence_Of
3467 (First_Tag_Component (Typ), Loc)),
3469 Right_Opnd =>
3470 Make_Selected_Component (Loc,
3471 Prefix =>
3472 Unchecked_Convert_To (Typ,
3473 New_Value (Next_Actual (Param))),
3474 Selector_Name =>
3475 New_Occurrence_Of
3476 (First_Tag_Component (Typ), Loc))),
3477 Right_Opnd => Prev_Call);
3479 Rewrite (Call_Node, New_Call);
3481 Analyze_And_Resolve
3482 (Call_Node, Call_Typ, Suppress => All_Checks);
3483 end if;
3485 -- Expansion of a dispatching call results in an indirect call,
3486 -- which in turn causes current values to be killed (see
3487 -- Resolve_Call), so on VM targets we do the call here to
3488 -- ensure consistent warnings between VM and non-VM targets.
3490 Kill_Current_Values;
3491 end if;
3493 -- If this is a dispatching "=" then we must update the reference
3494 -- to the call node because we generated:
3495 -- x.tag = y.tag and then x = y
3497 if Subp = Eq_Prim_Op then
3498 Call_Node := Right_Opnd (Call_Node);
3499 end if;
3500 end;
3501 end if;
3503 -- Similarly, expand calls to RCI subprograms on which pragma
3504 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3505 -- later. Do this only when the call comes from source since we
3506 -- do not want such a rewriting to occur in expanded code.
3508 if Is_All_Remote_Call (Call_Node) then
3509 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
3511 -- Similarly, do not add extra actuals for an entry call whose entity
3512 -- is a protected procedure, or for an internal protected subprogram
3513 -- call, because it will be rewritten as a protected subprogram call
3514 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3516 elsif Is_Protected_Type (Scope (Subp))
3517 and then (Ekind (Subp) = E_Procedure
3518 or else Ekind (Subp) = E_Function)
3519 then
3520 null;
3522 -- During that loop we gathered the extra actuals (the ones that
3523 -- correspond to Extra_Formals), so now they can be appended.
3525 else
3526 while Is_Non_Empty_List (Extra_Actuals) loop
3527 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3528 end loop;
3529 end if;
3531 -- At this point we have all the actuals, so this is the point at which
3532 -- the various expansion activities for actuals is carried out.
3534 Expand_Actuals (Call_Node, Subp);
3536 -- Verify that the actuals do not share storage. This check must be done
3537 -- on the caller side rather that inside the subprogram to avoid issues
3538 -- of parameter passing.
3540 if Check_Aliasing_Of_Parameters then
3541 Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3542 end if;
3544 -- If the subprogram is a renaming, or if it is inherited, replace it in
3545 -- the call with the name of the actual subprogram being called. If this
3546 -- is a dispatching call, the run-time decides what to call. The Alias
3547 -- attribute does not apply to entries.
3549 if Nkind (Call_Node) /= N_Entry_Call_Statement
3550 and then No (Controlling_Argument (Call_Node))
3551 and then Present (Parent_Subp)
3552 and then not Is_Direct_Deep_Call (Subp)
3553 then
3554 if Present (Inherited_From_Formal (Subp)) then
3555 Parent_Subp := Inherited_From_Formal (Subp);
3556 else
3557 Parent_Subp := Ultimate_Alias (Parent_Subp);
3558 end if;
3560 -- The below setting of Entity is suspect, see F109-018 discussion???
3562 Set_Entity (Name (Call_Node), Parent_Subp);
3564 if Is_Abstract_Subprogram (Parent_Subp)
3565 and then not In_Instance
3566 then
3567 Error_Msg_NE
3568 ("cannot call abstract subprogram &!",
3569 Name (Call_Node), Parent_Subp);
3570 end if;
3572 -- Inspect all formals of derived subprogram Subp. Compare parameter
3573 -- types with the parent subprogram and check whether an actual may
3574 -- need a type conversion to the corresponding formal of the parent
3575 -- subprogram.
3577 -- Not clear whether intrinsic subprograms need such conversions. ???
3579 if not Is_Intrinsic_Subprogram (Parent_Subp)
3580 or else Is_Generic_Instance (Parent_Subp)
3581 then
3582 declare
3583 procedure Convert (Act : Node_Id; Typ : Entity_Id);
3584 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3585 -- and resolve the newly generated construct.
3587 -------------
3588 -- Convert --
3589 -------------
3591 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3592 begin
3593 Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3594 Analyze (Act);
3595 Resolve (Act, Typ);
3596 end Convert;
3598 -- Local variables
3600 Actual_Typ : Entity_Id;
3601 Formal_Typ : Entity_Id;
3602 Parent_Typ : Entity_Id;
3604 begin
3605 Actual := First_Actual (Call_Node);
3606 Formal := First_Formal (Subp);
3607 Parent_Formal := First_Formal (Parent_Subp);
3608 while Present (Formal) loop
3609 Actual_Typ := Etype (Actual);
3610 Formal_Typ := Etype (Formal);
3611 Parent_Typ := Etype (Parent_Formal);
3613 -- For an IN parameter of a scalar type, the parent formal
3614 -- type and derived formal type differ or the parent formal
3615 -- type and actual type do not match statically.
3617 if Is_Scalar_Type (Formal_Typ)
3618 and then Ekind (Formal) = E_In_Parameter
3619 and then Formal_Typ /= Parent_Typ
3620 and then
3621 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3622 and then not Raises_Constraint_Error (Actual)
3623 then
3624 Convert (Actual, Parent_Typ);
3625 Enable_Range_Check (Actual);
3627 -- If the actual has been marked as requiring a range
3628 -- check, then generate it here.
3630 if Do_Range_Check (Actual) then
3631 Generate_Range_Check
3632 (Actual, Etype (Formal), CE_Range_Check_Failed);
3633 end if;
3635 -- For access types, the parent formal type and actual type
3636 -- differ.
3638 elsif Is_Access_Type (Formal_Typ)
3639 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
3640 then
3641 if Ekind (Formal) /= E_In_Parameter then
3642 Convert (Actual, Parent_Typ);
3644 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3645 and then Designated_Type (Parent_Typ) /=
3646 Designated_Type (Actual_Typ)
3647 and then not Is_Controlling_Formal (Formal)
3648 then
3649 -- This unchecked conversion is not necessary unless
3650 -- inlining is enabled, because in that case the type
3651 -- mismatch may become visible in the body about to be
3652 -- inlined.
3654 Rewrite (Actual,
3655 Unchecked_Convert_To (Parent_Typ,
3656 Relocate_Node (Actual)));
3657 Analyze (Actual);
3658 Resolve (Actual, Parent_Typ);
3659 end if;
3661 -- If there is a change of representation, then generate a
3662 -- warning, and do the change of representation.
3664 elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3665 Error_Msg_N
3666 ("??change of representation required", Actual);
3667 Convert (Actual, Parent_Typ);
3669 -- For array and record types, the parent formal type and
3670 -- derived formal type have different sizes or pragma Pack
3671 -- status.
3673 elsif ((Is_Array_Type (Formal_Typ)
3674 and then Is_Array_Type (Parent_Typ))
3675 or else
3676 (Is_Record_Type (Formal_Typ)
3677 and then Is_Record_Type (Parent_Typ)))
3678 and then
3679 (Esize (Formal_Typ) /= Esize (Parent_Typ)
3680 or else Has_Pragma_Pack (Formal_Typ) /=
3681 Has_Pragma_Pack (Parent_Typ))
3682 then
3683 Convert (Actual, Parent_Typ);
3684 end if;
3686 Next_Actual (Actual);
3687 Next_Formal (Formal);
3688 Next_Formal (Parent_Formal);
3689 end loop;
3690 end;
3691 end if;
3693 Orig_Subp := Subp;
3694 Subp := Parent_Subp;
3695 end if;
3697 -- Deal with case where call is an explicit dereference
3699 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3701 -- Handle case of access to protected subprogram type
3703 if Is_Access_Protected_Subprogram_Type
3704 (Base_Type (Etype (Prefix (Name (Call_Node)))))
3705 then
3706 -- If this is a call through an access to protected operation, the
3707 -- prefix has the form (object'address, operation'access). Rewrite
3708 -- as a for other protected calls: the object is the 1st parameter
3709 -- of the list of actuals.
3711 declare
3712 Call : Node_Id;
3713 Parm : List_Id;
3714 Nam : Node_Id;
3715 Obj : Node_Id;
3716 Ptr : constant Node_Id := Prefix (Name (Call_Node));
3718 T : constant Entity_Id :=
3719 Equivalent_Type (Base_Type (Etype (Ptr)));
3721 D_T : constant Entity_Id :=
3722 Designated_Type (Base_Type (Etype (Ptr)));
3724 begin
3725 Obj :=
3726 Make_Selected_Component (Loc,
3727 Prefix => Unchecked_Convert_To (T, Ptr),
3728 Selector_Name =>
3729 New_Occurrence_Of (First_Entity (T), Loc));
3731 Nam :=
3732 Make_Selected_Component (Loc,
3733 Prefix => Unchecked_Convert_To (T, Ptr),
3734 Selector_Name =>
3735 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
3737 Nam :=
3738 Make_Explicit_Dereference (Loc,
3739 Prefix => Nam);
3741 if Present (Parameter_Associations (Call_Node)) then
3742 Parm := Parameter_Associations (Call_Node);
3743 else
3744 Parm := New_List;
3745 end if;
3747 Prepend (Obj, Parm);
3749 if Etype (D_T) = Standard_Void_Type then
3750 Call :=
3751 Make_Procedure_Call_Statement (Loc,
3752 Name => Nam,
3753 Parameter_Associations => Parm);
3754 else
3755 Call :=
3756 Make_Function_Call (Loc,
3757 Name => Nam,
3758 Parameter_Associations => Parm);
3759 end if;
3761 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
3762 Set_Etype (Call, Etype (D_T));
3764 -- We do not re-analyze the call to avoid infinite recursion.
3765 -- We analyze separately the prefix and the object, and set
3766 -- the checks on the prefix that would otherwise be emitted
3767 -- when resolving a call.
3769 Rewrite (Call_Node, Call);
3770 Analyze (Nam);
3771 Apply_Access_Check (Nam);
3772 Analyze (Obj);
3773 return;
3774 end;
3775 end if;
3776 end if;
3778 -- If this is a call to an intrinsic subprogram, then perform the
3779 -- appropriate expansion to the corresponding tree node and we
3780 -- are all done (since after that the call is gone).
3782 -- In the case where the intrinsic is to be processed by the back end,
3783 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
3784 -- since the idea in this case is to pass the call unchanged. If the
3785 -- intrinsic is an inherited unchecked conversion, and the derived type
3786 -- is the target type of the conversion, we must retain it as the return
3787 -- type of the expression. Otherwise the expansion below, which uses the
3788 -- parent operation, will yield the wrong type.
3790 if Is_Intrinsic_Subprogram (Subp) then
3791 Expand_Intrinsic_Call (Call_Node, Subp);
3793 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
3794 and then Parent_Subp /= Orig_Subp
3795 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
3796 then
3797 Set_Etype (Call_Node, Etype (Orig_Subp));
3798 end if;
3800 return;
3801 end if;
3803 if Ekind_In (Subp, E_Function, E_Procedure) then
3805 -- We perform two simple optimization on calls:
3807 -- a) replace calls to null procedures unconditionally;
3809 -- b) for To_Address, just do an unchecked conversion. Not only is
3810 -- this efficient, but it also avoids order of elaboration problems
3811 -- when address clauses are inlined (address expression elaborated
3812 -- at the wrong point).
3814 -- We perform these optimization regardless of whether we are in the
3815 -- main unit or in a unit in the context of the main unit, to ensure
3816 -- that tree generated is the same in both cases, for CodePeer use.
3818 if Is_RTE (Subp, RE_To_Address) then
3819 Rewrite (Call_Node,
3820 Unchecked_Convert_To
3821 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
3822 return;
3824 elsif Is_Null_Procedure (Subp) then
3825 Rewrite (Call_Node, Make_Null_Statement (Loc));
3826 return;
3827 end if;
3829 -- Handle inlining. No action needed if the subprogram is not inlined
3831 if not Is_Inlined (Subp) then
3832 null;
3834 -- Handle frontend inlining
3836 elsif not Back_End_Inlining then
3837 Inlined_Subprogram : declare
3838 Bod : Node_Id;
3839 Must_Inline : Boolean := False;
3840 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
3842 begin
3843 -- Verify that the body to inline has already been seen, and
3844 -- that if the body is in the current unit the inlining does
3845 -- not occur earlier. This avoids order-of-elaboration problems
3846 -- in the back end.
3848 -- This should be documented in sinfo/einfo ???
3850 if No (Spec)
3851 or else Nkind (Spec) /= N_Subprogram_Declaration
3852 or else No (Body_To_Inline (Spec))
3853 then
3854 Must_Inline := False;
3856 -- If this an inherited function that returns a private type,
3857 -- do not inline if the full view is an unconstrained array,
3858 -- because such calls cannot be inlined.
3860 elsif Present (Orig_Subp)
3861 and then Is_Array_Type (Etype (Orig_Subp))
3862 and then not Is_Constrained (Etype (Orig_Subp))
3863 then
3864 Must_Inline := False;
3866 elsif In_Unfrozen_Instance (Scope (Subp)) then
3867 Must_Inline := False;
3869 else
3870 Bod := Body_To_Inline (Spec);
3872 if (In_Extended_Main_Code_Unit (Call_Node)
3873 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
3874 or else Has_Pragma_Inline_Always (Subp))
3875 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
3876 or else
3877 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
3878 then
3879 Must_Inline := True;
3881 -- If we are compiling a package body that is not the main
3882 -- unit, it must be for inlining/instantiation purposes,
3883 -- in which case we inline the call to insure that the same
3884 -- temporaries are generated when compiling the body by
3885 -- itself. Otherwise link errors can occur.
3887 -- If the function being called is itself in the main unit,
3888 -- we cannot inline, because there is a risk of double
3889 -- elaboration and/or circularity: the inlining can make
3890 -- visible a private entity in the body of the main unit,
3891 -- that gigi will see before its sees its proper definition.
3893 elsif not (In_Extended_Main_Code_Unit (Call_Node))
3894 and then In_Package_Body
3895 then
3896 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
3897 end if;
3898 end if;
3900 if Must_Inline then
3901 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
3903 else
3904 -- Let the back end handle it
3906 Add_Inlined_Body (Subp);
3908 if Front_End_Inlining
3909 and then Nkind (Spec) = N_Subprogram_Declaration
3910 and then (In_Extended_Main_Code_Unit (Call_Node))
3911 and then No (Body_To_Inline (Spec))
3912 and then not Has_Completion (Subp)
3913 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
3914 then
3915 Cannot_Inline
3916 ("cannot inline& (body not seen yet)?",
3917 Call_Node, Subp);
3918 end if;
3919 end if;
3920 end Inlined_Subprogram;
3922 -- Back end inlining: let the back end handle it
3924 elsif No (Unit_Declaration_Node (Subp))
3925 or else Nkind (Unit_Declaration_Node (Subp)) /=
3926 N_Subprogram_Declaration
3927 or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
3928 then
3929 Add_Inlined_Body (Subp);
3930 Register_Backend_Call (Call_Node);
3932 -- Frontend expansion of supported functions returning unconstrained
3933 -- types and simple renamings inlined by the frontend (see Freeze.
3934 -- Build_Renamed_Entity).
3936 else
3937 declare
3938 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
3940 begin
3941 if Must_Inline (Subp) then
3942 if In_Extended_Main_Code_Unit (Call_Node)
3943 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
3944 and then not Has_Completion (Subp)
3945 then
3946 Cannot_Inline
3947 ("cannot inline& (body not seen yet)?",
3948 Call_Node, Subp);
3950 else
3951 Do_Inline_Always (Subp, Orig_Subp);
3952 end if;
3954 elsif Optimization_Level > 0 then
3955 Do_Inline (Subp, Orig_Subp);
3956 end if;
3958 -- The call may have been inlined or may have been passed to
3959 -- the backend. No further action needed if it was inlined.
3961 if Nkind (N) /= N_Function_Call then
3962 return;
3963 end if;
3964 end;
3965 end if;
3966 end if;
3968 -- Check for protected subprogram. This is either an intra-object call,
3969 -- or a protected function call. Protected procedure calls are rewritten
3970 -- as entry calls and handled accordingly.
3972 -- In Ada 2005, this may be an indirect call to an access parameter that
3973 -- is an access_to_subprogram. In that case the anonymous type has a
3974 -- scope that is a protected operation, but the call is a regular one.
3975 -- In either case do not expand call if subprogram is eliminated.
3977 Scop := Scope (Subp);
3979 if Nkind (Call_Node) /= N_Entry_Call_Statement
3980 and then Is_Protected_Type (Scop)
3981 and then Ekind (Subp) /= E_Subprogram_Type
3982 and then not Is_Eliminated (Subp)
3983 then
3984 -- If the call is an internal one, it is rewritten as a call to the
3985 -- corresponding unprotected subprogram.
3987 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
3988 end if;
3990 -- Functions returning controlled objects need special attention. If
3991 -- the return type is limited, then the context is initialization and
3992 -- different processing applies. If the call is to a protected function,
3993 -- the expansion above will call Expand_Call recursively. Otherwise the
3994 -- function call is transformed into a temporary which obtains the
3995 -- result from the secondary stack.
3997 if Needs_Finalization (Etype (Subp)) then
3998 if not Is_Limited_View (Etype (Subp))
3999 and then
4000 (No (First_Formal (Subp))
4001 or else
4002 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
4003 then
4004 Expand_Ctrl_Function_Call (Call_Node);
4006 -- Build-in-place function calls which appear in anonymous contexts
4007 -- need a transient scope to ensure the proper finalization of the
4008 -- intermediate result after its use.
4010 elsif Is_Build_In_Place_Function_Call (Call_Node)
4011 and then
4012 Nkind_In (Parent (Call_Node), N_Attribute_Reference,
4013 N_Function_Call,
4014 N_Indexed_Component,
4015 N_Object_Renaming_Declaration,
4016 N_Procedure_Call_Statement,
4017 N_Selected_Component,
4018 N_Slice)
4019 then
4020 Establish_Transient_Scope (Call_Node, Sec_Stack => True);
4021 end if;
4022 end if;
4023 end Expand_Call;
4025 -------------------------------
4026 -- Expand_Ctrl_Function_Call --
4027 -------------------------------
4029 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
4030 function Is_Element_Reference (N : Node_Id) return Boolean;
4031 -- Determine whether node N denotes a reference to an Ada 2012 container
4032 -- element.
4034 --------------------------
4035 -- Is_Element_Reference --
4036 --------------------------
4038 function Is_Element_Reference (N : Node_Id) return Boolean is
4039 Ref : constant Node_Id := Original_Node (N);
4041 begin
4042 -- Analysis marks an element reference by setting the generalized
4043 -- indexing attribute of an indexed component before the component
4044 -- is rewritten into a function call.
4046 return
4047 Nkind (Ref) = N_Indexed_Component
4048 and then Present (Generalized_Indexing (Ref));
4049 end Is_Element_Reference;
4051 -- Local variables
4053 Is_Elem_Ref : constant Boolean := Is_Element_Reference (N);
4055 -- Start of processing for Expand_Ctrl_Function_Call
4057 begin
4058 -- Optimization, if the returned value (which is on the sec-stack) is
4059 -- returned again, no need to copy/readjust/finalize, we can just pass
4060 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4061 -- attachment is needed
4063 if Nkind (Parent (N)) = N_Simple_Return_Statement then
4064 return;
4065 end if;
4067 -- Resolution is now finished, make sure we don't start analysis again
4068 -- because of the duplication.
4070 Set_Analyzed (N);
4072 -- A function which returns a controlled object uses the secondary
4073 -- stack. Rewrite the call into a temporary which obtains the result of
4074 -- the function using 'reference.
4076 Remove_Side_Effects (N);
4078 -- When the temporary function result appears inside a case expression
4079 -- or an if expression, its lifetime must be extended to match that of
4080 -- the context. If not, the function result will be finalized too early
4081 -- and the evaluation of the expression could yield incorrect result. An
4082 -- exception to this rule are references to Ada 2012 container elements.
4083 -- Such references must be finalized at the end of each iteration of the
4084 -- related quantified expression, otherwise the container will remain
4085 -- busy.
4087 if not Is_Elem_Ref
4088 and then Within_Case_Or_If_Expression (N)
4089 and then Nkind (N) = N_Explicit_Dereference
4090 then
4091 Set_Is_Processed_Transient (Entity (Prefix (N)));
4092 end if;
4093 end Expand_Ctrl_Function_Call;
4095 ----------------------------------------
4096 -- Expand_N_Extended_Return_Statement --
4097 ----------------------------------------
4099 -- If there is a Handled_Statement_Sequence, we rewrite this:
4101 -- return Result : T := <expression> do
4102 -- <handled_seq_of_stms>
4103 -- end return;
4105 -- to be:
4107 -- declare
4108 -- Result : T := <expression>;
4109 -- begin
4110 -- <handled_seq_of_stms>
4111 -- return Result;
4112 -- end;
4114 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4116 -- return Result : T := <expression>;
4118 -- to be:
4120 -- return <expression>;
4122 -- unless it's build-in-place or there's no <expression>, in which case
4123 -- we generate:
4125 -- declare
4126 -- Result : T := <expression>;
4127 -- begin
4128 -- return Result;
4129 -- end;
4131 -- Note that this case could have been written by the user as an extended
4132 -- return statement, or could have been transformed to this from a simple
4133 -- return statement.
4135 -- That is, we need to have a reified return object if there are statements
4136 -- (which might refer to it) or if we're doing build-in-place (so we can
4137 -- set its address to the final resting place or if there is no expression
4138 -- (in which case default initial values might need to be set).
4140 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4141 Loc : constant Source_Ptr := Sloc (N);
4143 Par_Func : constant Entity_Id :=
4144 Return_Applies_To (Return_Statement_Entity (N));
4145 Result_Subt : constant Entity_Id := Etype (Par_Func);
4146 Ret_Obj_Id : constant Entity_Id :=
4147 First_Entity (Return_Statement_Entity (N));
4148 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
4150 Is_Build_In_Place : constant Boolean :=
4151 Is_Build_In_Place_Function (Par_Func);
4153 Exp : Node_Id;
4154 HSS : Node_Id;
4155 Result : Node_Id;
4156 Return_Stmt : Node_Id;
4157 Stmts : List_Id;
4159 function Build_Heap_Allocator
4160 (Temp_Id : Entity_Id;
4161 Temp_Typ : Entity_Id;
4162 Func_Id : Entity_Id;
4163 Ret_Typ : Entity_Id;
4164 Alloc_Expr : Node_Id) return Node_Id;
4165 -- Create the statements necessary to allocate a return object on the
4166 -- caller's master. The master is available through implicit parameter
4167 -- BIPfinalizationmaster.
4169 -- if BIPfinalizationmaster /= null then
4170 -- declare
4171 -- type Ptr_Typ is access Ret_Typ;
4172 -- for Ptr_Typ'Storage_Pool use
4173 -- Base_Pool (BIPfinalizationmaster.all).all;
4174 -- Local : Ptr_Typ;
4176 -- begin
4177 -- procedure Allocate (...) is
4178 -- begin
4179 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4180 -- end Allocate;
4182 -- Local := <Alloc_Expr>;
4183 -- Temp_Id := Temp_Typ (Local);
4184 -- end;
4185 -- end if;
4187 -- Temp_Id is the temporary which is used to reference the internally
4188 -- created object in all allocation forms. Temp_Typ is the type of the
4189 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4190 -- type of Func_Id. Alloc_Expr is the actual allocator.
4192 function Move_Activation_Chain return Node_Id;
4193 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4194 -- with parameters:
4195 -- From current activation chain
4196 -- To activation chain passed in by the caller
4197 -- New_Master master passed in by the caller
4199 --------------------------
4200 -- Build_Heap_Allocator --
4201 --------------------------
4203 function Build_Heap_Allocator
4204 (Temp_Id : Entity_Id;
4205 Temp_Typ : Entity_Id;
4206 Func_Id : Entity_Id;
4207 Ret_Typ : Entity_Id;
4208 Alloc_Expr : Node_Id) return Node_Id
4210 begin
4211 pragma Assert (Is_Build_In_Place_Function (Func_Id));
4213 -- Processing for build-in-place object allocation. This is disabled
4214 -- on .NET/JVM because the targets do not support pools.
4216 if VM_Target = No_VM
4217 and then Needs_Finalization (Ret_Typ)
4218 then
4219 declare
4220 Decls : constant List_Id := New_List;
4221 Fin_Mas_Id : constant Entity_Id :=
4222 Build_In_Place_Formal
4223 (Func_Id, BIP_Finalization_Master);
4224 Stmts : constant List_Id := New_List;
4225 Desig_Typ : Entity_Id;
4226 Local_Id : Entity_Id;
4227 Pool_Id : Entity_Id;
4228 Ptr_Typ : Entity_Id;
4230 begin
4231 -- Generate:
4232 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4234 Pool_Id := Make_Temporary (Loc, 'P');
4236 Append_To (Decls,
4237 Make_Object_Renaming_Declaration (Loc,
4238 Defining_Identifier => Pool_Id,
4239 Subtype_Mark =>
4240 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
4241 Name =>
4242 Make_Explicit_Dereference (Loc,
4243 Prefix =>
4244 Make_Function_Call (Loc,
4245 Name =>
4246 New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
4247 Parameter_Associations => New_List (
4248 Make_Explicit_Dereference (Loc,
4249 Prefix =>
4250 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
4252 -- Create an access type which uses the storage pool of the
4253 -- caller's master. This additional type is necessary because
4254 -- the finalization master cannot be associated with the type
4255 -- of the temporary. Otherwise the secondary stack allocation
4256 -- will fail.
4258 Desig_Typ := Ret_Typ;
4260 -- Ensure that the build-in-place machinery uses a fat pointer
4261 -- when allocating an unconstrained array on the heap. In this
4262 -- case the result object type is a constrained array type even
4263 -- though the function type is unconstrained.
4265 if Ekind (Desig_Typ) = E_Array_Subtype then
4266 Desig_Typ := Base_Type (Desig_Typ);
4267 end if;
4269 -- Generate:
4270 -- type Ptr_Typ is access Desig_Typ;
4272 Ptr_Typ := Make_Temporary (Loc, 'P');
4274 Append_To (Decls,
4275 Make_Full_Type_Declaration (Loc,
4276 Defining_Identifier => Ptr_Typ,
4277 Type_Definition =>
4278 Make_Access_To_Object_Definition (Loc,
4279 Subtype_Indication =>
4280 New_Occurrence_Of (Desig_Typ, Loc))));
4282 -- Perform minor decoration in order to set the master and the
4283 -- storage pool attributes.
4285 Set_Ekind (Ptr_Typ, E_Access_Type);
4286 Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
4287 Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4289 -- Create the temporary, generate:
4290 -- Local_Id : Ptr_Typ;
4292 Local_Id := Make_Temporary (Loc, 'T');
4294 Append_To (Decls,
4295 Make_Object_Declaration (Loc,
4296 Defining_Identifier => Local_Id,
4297 Object_Definition =>
4298 New_Occurrence_Of (Ptr_Typ, Loc)));
4300 -- Allocate the object, generate:
4301 -- Local_Id := <Alloc_Expr>;
4303 Append_To (Stmts,
4304 Make_Assignment_Statement (Loc,
4305 Name => New_Occurrence_Of (Local_Id, Loc),
4306 Expression => Alloc_Expr));
4308 -- Generate:
4309 -- Temp_Id := Temp_Typ (Local_Id);
4311 Append_To (Stmts,
4312 Make_Assignment_Statement (Loc,
4313 Name => New_Occurrence_Of (Temp_Id, Loc),
4314 Expression =>
4315 Unchecked_Convert_To (Temp_Typ,
4316 New_Occurrence_Of (Local_Id, Loc))));
4318 -- Wrap the allocation in a block. This is further conditioned
4319 -- by checking the caller finalization master at runtime. A
4320 -- null value indicates a non-existent master, most likely due
4321 -- to a Finalize_Storage_Only allocation.
4323 -- Generate:
4324 -- if BIPfinalizationmaster /= null then
4325 -- declare
4326 -- <Decls>
4327 -- begin
4328 -- <Stmts>
4329 -- end;
4330 -- end if;
4332 return
4333 Make_If_Statement (Loc,
4334 Condition =>
4335 Make_Op_Ne (Loc,
4336 Left_Opnd => New_Occurrence_Of (Fin_Mas_Id, Loc),
4337 Right_Opnd => Make_Null (Loc)),
4339 Then_Statements => New_List (
4340 Make_Block_Statement (Loc,
4341 Declarations => Decls,
4342 Handled_Statement_Sequence =>
4343 Make_Handled_Sequence_Of_Statements (Loc,
4344 Statements => Stmts))));
4345 end;
4347 -- For all other cases, generate:
4348 -- Temp_Id := <Alloc_Expr>;
4350 else
4351 return
4352 Make_Assignment_Statement (Loc,
4353 Name => New_Occurrence_Of (Temp_Id, Loc),
4354 Expression => Alloc_Expr);
4355 end if;
4356 end Build_Heap_Allocator;
4358 ---------------------------
4359 -- Move_Activation_Chain --
4360 ---------------------------
4362 function Move_Activation_Chain return Node_Id is
4363 begin
4364 return
4365 Make_Procedure_Call_Statement (Loc,
4366 Name =>
4367 New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
4369 Parameter_Associations => New_List (
4371 -- Source chain
4373 Make_Attribute_Reference (Loc,
4374 Prefix => Make_Identifier (Loc, Name_uChain),
4375 Attribute_Name => Name_Unrestricted_Access),
4377 -- Destination chain
4379 New_Occurrence_Of
4380 (Build_In_Place_Formal (Par_Func, BIP_Activation_Chain), Loc),
4382 -- New master
4384 New_Occurrence_Of
4385 (Build_In_Place_Formal (Par_Func, BIP_Task_Master), Loc)));
4386 end Move_Activation_Chain;
4388 -- Start of processing for Expand_N_Extended_Return_Statement
4390 begin
4391 -- Given that functionality of interface thunks is simple (just displace
4392 -- the pointer to the object) they are always handled by means of
4393 -- simple return statements.
4395 pragma Assert (not Is_Thunk (Current_Scope));
4397 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4398 Exp := Expression (Ret_Obj_Decl);
4399 else
4400 Exp := Empty;
4401 end if;
4403 HSS := Handled_Statement_Sequence (N);
4405 -- If the returned object needs finalization actions, the function must
4406 -- perform the appropriate cleanup should it fail to return. The state
4407 -- of the function itself is tracked through a flag which is coupled
4408 -- with the scope finalizer. There is one flag per each return object
4409 -- in case of multiple returns.
4411 if Is_Build_In_Place
4412 and then Needs_Finalization (Etype (Ret_Obj_Id))
4413 then
4414 declare
4415 Flag_Decl : Node_Id;
4416 Flag_Id : Entity_Id;
4417 Func_Bod : Node_Id;
4419 begin
4420 -- Recover the function body
4422 Func_Bod := Unit_Declaration_Node (Par_Func);
4424 if Nkind (Func_Bod) = N_Subprogram_Declaration then
4425 Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4426 end if;
4428 -- Create a flag to track the function state
4430 Flag_Id := Make_Temporary (Loc, 'F');
4431 Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
4433 -- Insert the flag at the beginning of the function declarations,
4434 -- generate:
4435 -- Fnn : Boolean := False;
4437 Flag_Decl :=
4438 Make_Object_Declaration (Loc,
4439 Defining_Identifier => Flag_Id,
4440 Object_Definition =>
4441 New_Occurrence_Of (Standard_Boolean, Loc),
4442 Expression =>
4443 New_Occurrence_Of (Standard_False, Loc));
4445 Prepend_To (Declarations (Func_Bod), Flag_Decl);
4446 Analyze (Flag_Decl);
4447 end;
4448 end if;
4450 -- Build a simple_return_statement that returns the return object when
4451 -- there is a statement sequence, or no expression, or the result will
4452 -- be built in place. Note however that we currently do this for all
4453 -- composite cases, even though nonlimited composite results are not yet
4454 -- built in place (though we plan to do so eventually).
4456 if Present (HSS)
4457 or else Is_Composite_Type (Result_Subt)
4458 or else No (Exp)
4459 then
4460 if No (HSS) then
4461 Stmts := New_List;
4463 -- If the extended return has a handled statement sequence, then wrap
4464 -- it in a block and use the block as the first statement.
4466 else
4467 Stmts := New_List (
4468 Make_Block_Statement (Loc,
4469 Declarations => New_List,
4470 Handled_Statement_Sequence => HSS));
4471 end if;
4473 -- If the result type contains tasks, we call Move_Activation_Chain.
4474 -- Later, the cleanup code will call Complete_Master, which will
4475 -- terminate any unactivated tasks belonging to the return statement
4476 -- master. But Move_Activation_Chain updates their master to be that
4477 -- of the caller, so they will not be terminated unless the return
4478 -- statement completes unsuccessfully due to exception, abort, goto,
4479 -- or exit. As a formality, we test whether the function requires the
4480 -- result to be built in place, though that's necessarily true for
4481 -- the case of result types with task parts.
4483 if Is_Build_In_Place
4484 and then Has_Task (Result_Subt)
4485 then
4486 -- The return expression is an aggregate for a complex type which
4487 -- contains tasks. This particular case is left unexpanded since
4488 -- the regular expansion would insert all temporaries and
4489 -- initialization code in the wrong block.
4491 if Nkind (Exp) = N_Aggregate then
4492 Expand_N_Aggregate (Exp);
4493 end if;
4495 -- Do not move the activation chain if the return object does not
4496 -- contain tasks.
4498 if Has_Task (Etype (Ret_Obj_Id)) then
4499 Append_To (Stmts, Move_Activation_Chain);
4500 end if;
4501 end if;
4503 -- Update the state of the function right before the object is
4504 -- returned.
4506 if Is_Build_In_Place
4507 and then Needs_Finalization (Etype (Ret_Obj_Id))
4508 then
4509 declare
4510 Flag_Id : constant Entity_Id :=
4511 Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4513 begin
4514 -- Generate:
4515 -- Fnn := True;
4517 Append_To (Stmts,
4518 Make_Assignment_Statement (Loc,
4519 Name => New_Occurrence_Of (Flag_Id, Loc),
4520 Expression => New_Occurrence_Of (Standard_True, Loc)));
4521 end;
4522 end if;
4524 -- Build a simple_return_statement that returns the return object
4526 Return_Stmt :=
4527 Make_Simple_Return_Statement (Loc,
4528 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
4529 Append_To (Stmts, Return_Stmt);
4531 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
4532 end if;
4534 -- Case where we build a return statement block
4536 if Present (HSS) then
4537 Result :=
4538 Make_Block_Statement (Loc,
4539 Declarations => Return_Object_Declarations (N),
4540 Handled_Statement_Sequence => HSS);
4542 -- We set the entity of the new block statement to be that of the
4543 -- return statement. This is necessary so that various fields, such
4544 -- as Finalization_Chain_Entity carry over from the return statement
4545 -- to the block. Note that this block is unusual, in that its entity
4546 -- is an E_Return_Statement rather than an E_Block.
4548 Set_Identifier
4549 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4551 -- If the object decl was already rewritten as a renaming, then we
4552 -- don't want to do the object allocation and transformation of of
4553 -- the return object declaration to a renaming. This case occurs
4554 -- when the return object is initialized by a call to another
4555 -- build-in-place function, and that function is responsible for
4556 -- the allocation of the return object.
4558 if Is_Build_In_Place
4559 and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
4560 then
4561 pragma Assert
4562 (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4563 and then Is_Build_In_Place_Function_Call
4564 (Expression (Original_Node (Ret_Obj_Decl))));
4566 -- Return the build-in-place result by reference
4568 Set_By_Ref (Return_Stmt);
4570 elsif Is_Build_In_Place then
4572 -- Locate the implicit access parameter associated with the
4573 -- caller-supplied return object and convert the return
4574 -- statement's return object declaration to a renaming of a
4575 -- dereference of the access parameter. If the return object's
4576 -- declaration includes an expression that has not already been
4577 -- expanded as separate assignments, then add an assignment
4578 -- statement to ensure the return object gets initialized.
4580 -- declare
4581 -- Result : T [:= <expression>];
4582 -- begin
4583 -- ...
4585 -- is converted to
4587 -- declare
4588 -- Result : T renames FuncRA.all;
4589 -- [Result := <expression;]
4590 -- begin
4591 -- ...
4593 declare
4594 Return_Obj_Id : constant Entity_Id :=
4595 Defining_Identifier (Ret_Obj_Decl);
4596 Return_Obj_Typ : constant Entity_Id := Etype (Return_Obj_Id);
4597 Return_Obj_Expr : constant Node_Id :=
4598 Expression (Ret_Obj_Decl);
4599 Constr_Result : constant Boolean :=
4600 Is_Constrained (Result_Subt);
4601 Obj_Alloc_Formal : Entity_Id;
4602 Object_Access : Entity_Id;
4603 Obj_Acc_Deref : Node_Id;
4604 Init_Assignment : Node_Id := Empty;
4606 begin
4607 -- Build-in-place results must be returned by reference
4609 Set_By_Ref (Return_Stmt);
4611 -- Retrieve the implicit access parameter passed by the caller
4613 Object_Access :=
4614 Build_In_Place_Formal (Par_Func, BIP_Object_Access);
4616 -- If the return object's declaration includes an expression
4617 -- and the declaration isn't marked as No_Initialization, then
4618 -- we need to generate an assignment to the object and insert
4619 -- it after the declaration before rewriting it as a renaming
4620 -- (otherwise we'll lose the initialization). The case where
4621 -- the result type is an interface (or class-wide interface)
4622 -- is also excluded because the context of the function call
4623 -- must be unconstrained, so the initialization will always
4624 -- be done as part of an allocator evaluation (storage pool
4625 -- or secondary stack), never to a constrained target object
4626 -- passed in by the caller. Besides the assignment being
4627 -- unneeded in this case, it avoids problems with trying to
4628 -- generate a dispatching assignment when the return expression
4629 -- is a nonlimited descendant of a limited interface (the
4630 -- interface has no assignment operation).
4632 if Present (Return_Obj_Expr)
4633 and then not No_Initialization (Ret_Obj_Decl)
4634 and then not Is_Interface (Return_Obj_Typ)
4635 then
4636 Init_Assignment :=
4637 Make_Assignment_Statement (Loc,
4638 Name => New_Occurrence_Of (Return_Obj_Id, Loc),
4639 Expression => Relocate_Node (Return_Obj_Expr));
4641 Set_Etype (Name (Init_Assignment), Etype (Return_Obj_Id));
4642 Set_Assignment_OK (Name (Init_Assignment));
4643 Set_No_Ctrl_Actions (Init_Assignment);
4645 Set_Parent (Name (Init_Assignment), Init_Assignment);
4646 Set_Parent (Expression (Init_Assignment), Init_Assignment);
4648 Set_Expression (Ret_Obj_Decl, Empty);
4650 if Is_Class_Wide_Type (Etype (Return_Obj_Id))
4651 and then not Is_Class_Wide_Type
4652 (Etype (Expression (Init_Assignment)))
4653 then
4654 Rewrite (Expression (Init_Assignment),
4655 Make_Type_Conversion (Loc,
4656 Subtype_Mark =>
4657 New_Occurrence_Of (Etype (Return_Obj_Id), Loc),
4658 Expression =>
4659 Relocate_Node (Expression (Init_Assignment))));
4660 end if;
4662 -- In the case of functions where the calling context can
4663 -- determine the form of allocation needed, initialization
4664 -- is done with each part of the if statement that handles
4665 -- the different forms of allocation (this is true for
4666 -- unconstrained and tagged result subtypes).
4668 if Constr_Result
4669 and then not Is_Tagged_Type (Underlying_Type (Result_Subt))
4670 then
4671 Insert_After (Ret_Obj_Decl, Init_Assignment);
4672 end if;
4673 end if;
4675 -- When the function's subtype is unconstrained, a run-time
4676 -- test is needed to determine the form of allocation to use
4677 -- for the return object. The function has an implicit formal
4678 -- parameter indicating this. If the BIP_Alloc_Form formal has
4679 -- the value one, then the caller has passed access to an
4680 -- existing object for use as the return object. If the value
4681 -- is two, then the return object must be allocated on the
4682 -- secondary stack. Otherwise, the object must be allocated in
4683 -- a storage pool (currently only supported for the global
4684 -- heap, user-defined storage pools TBD ???). We generate an
4685 -- if statement to test the implicit allocation formal and
4686 -- initialize a local access value appropriately, creating
4687 -- allocators in the secondary stack and global heap cases.
4688 -- The special formal also exists and must be tested when the
4689 -- function has a tagged result, even when the result subtype
4690 -- is constrained, because in general such functions can be
4691 -- called in dispatching contexts and must be handled similarly
4692 -- to functions with a class-wide result.
4694 if not Constr_Result
4695 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
4696 then
4697 Obj_Alloc_Formal :=
4698 Build_In_Place_Formal (Par_Func, BIP_Alloc_Form);
4700 declare
4701 Pool_Id : constant Entity_Id :=
4702 Make_Temporary (Loc, 'P');
4703 Alloc_Obj_Id : Entity_Id;
4704 Alloc_Obj_Decl : Node_Id;
4705 Alloc_If_Stmt : Node_Id;
4706 Heap_Allocator : Node_Id;
4707 Pool_Decl : Node_Id;
4708 Pool_Allocator : Node_Id;
4709 Ptr_Type_Decl : Node_Id;
4710 Ref_Type : Entity_Id;
4711 SS_Allocator : Node_Id;
4713 begin
4714 -- Reuse the itype created for the function's implicit
4715 -- access formal. This avoids the need to create a new
4716 -- access type here, plus it allows assigning the access
4717 -- formal directly without applying a conversion.
4719 -- Ref_Type := Etype (Object_Access);
4721 -- Create an access type designating the function's
4722 -- result subtype.
4724 Ref_Type := Make_Temporary (Loc, 'A');
4726 Ptr_Type_Decl :=
4727 Make_Full_Type_Declaration (Loc,
4728 Defining_Identifier => Ref_Type,
4729 Type_Definition =>
4730 Make_Access_To_Object_Definition (Loc,
4731 All_Present => True,
4732 Subtype_Indication =>
4733 New_Occurrence_Of (Return_Obj_Typ, Loc)));
4735 Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
4737 -- Create an access object that will be initialized to an
4738 -- access value denoting the return object, either coming
4739 -- from an implicit access value passed in by the caller
4740 -- or from the result of an allocator.
4742 Alloc_Obj_Id := Make_Temporary (Loc, 'R');
4743 Set_Etype (Alloc_Obj_Id, Ref_Type);
4745 Alloc_Obj_Decl :=
4746 Make_Object_Declaration (Loc,
4747 Defining_Identifier => Alloc_Obj_Id,
4748 Object_Definition =>
4749 New_Occurrence_Of (Ref_Type, Loc));
4751 Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
4753 -- Create allocators for both the secondary stack and
4754 -- global heap. If there's an initialization expression,
4755 -- then create these as initialized allocators.
4757 if Present (Return_Obj_Expr)
4758 and then not No_Initialization (Ret_Obj_Decl)
4759 then
4760 -- Always use the type of the expression for the
4761 -- qualified expression, rather than the result type.
4762 -- In general we cannot always use the result type
4763 -- for the allocator, because the expression might be
4764 -- of a specific type, such as in the case of an
4765 -- aggregate or even a nonlimited object when the
4766 -- result type is a limited class-wide interface type.
4768 Heap_Allocator :=
4769 Make_Allocator (Loc,
4770 Expression =>
4771 Make_Qualified_Expression (Loc,
4772 Subtype_Mark =>
4773 New_Occurrence_Of
4774 (Etype (Return_Obj_Expr), Loc),
4775 Expression =>
4776 New_Copy_Tree (Return_Obj_Expr)));
4778 else
4779 -- If the function returns a class-wide type we cannot
4780 -- use the return type for the allocator. Instead we
4781 -- use the type of the expression, which must be an
4782 -- aggregate of a definite type.
4784 if Is_Class_Wide_Type (Return_Obj_Typ) then
4785 Heap_Allocator :=
4786 Make_Allocator (Loc,
4787 Expression =>
4788 New_Occurrence_Of
4789 (Etype (Return_Obj_Expr), Loc));
4790 else
4791 Heap_Allocator :=
4792 Make_Allocator (Loc,
4793 Expression =>
4794 New_Occurrence_Of (Return_Obj_Typ, Loc));
4795 end if;
4797 -- If the object requires default initialization then
4798 -- that will happen later following the elaboration of
4799 -- the object renaming. If we don't turn it off here
4800 -- then the object will be default initialized twice.
4802 Set_No_Initialization (Heap_Allocator);
4803 end if;
4805 -- The Pool_Allocator is just like the Heap_Allocator,
4806 -- except we set Storage_Pool and Procedure_To_Call so
4807 -- it will use the user-defined storage pool.
4809 Pool_Allocator := New_Copy_Tree (Heap_Allocator);
4811 -- Do not generate the renaming of the build-in-place
4812 -- pool parameter on .NET/JVM/ZFP because the parameter
4813 -- is not created in the first place.
4815 if VM_Target = No_VM
4816 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
4817 then
4818 Pool_Decl :=
4819 Make_Object_Renaming_Declaration (Loc,
4820 Defining_Identifier => Pool_Id,
4821 Subtype_Mark =>
4822 New_Occurrence_Of
4823 (RTE (RE_Root_Storage_Pool), Loc),
4824 Name =>
4825 Make_Explicit_Dereference (Loc,
4826 New_Occurrence_Of
4827 (Build_In_Place_Formal
4828 (Par_Func, BIP_Storage_Pool), Loc)));
4829 Set_Storage_Pool (Pool_Allocator, Pool_Id);
4830 Set_Procedure_To_Call
4831 (Pool_Allocator, RTE (RE_Allocate_Any));
4832 else
4833 Pool_Decl := Make_Null_Statement (Loc);
4834 end if;
4836 -- If the No_Allocators restriction is active, then only
4837 -- an allocator for secondary stack allocation is needed.
4838 -- It's OK for such allocators to have Comes_From_Source
4839 -- set to False, because gigi knows not to flag them as
4840 -- being a violation of No_Implicit_Heap_Allocations.
4842 if Restriction_Active (No_Allocators) then
4843 SS_Allocator := Heap_Allocator;
4844 Heap_Allocator := Make_Null (Loc);
4845 Pool_Allocator := Make_Null (Loc);
4847 -- Otherwise the heap and pool allocators may be needed,
4848 -- so we make another allocator for secondary stack
4849 -- allocation.
4851 else
4852 SS_Allocator := New_Copy_Tree (Heap_Allocator);
4854 -- The heap and pool allocators are marked as
4855 -- Comes_From_Source since they correspond to an
4856 -- explicit user-written allocator (that is, it will
4857 -- only be executed on behalf of callers that call the
4858 -- function as initialization for such an allocator).
4859 -- Prevents errors when No_Implicit_Heap_Allocations
4860 -- is in force.
4862 Set_Comes_From_Source (Heap_Allocator, True);
4863 Set_Comes_From_Source (Pool_Allocator, True);
4864 end if;
4866 -- The allocator is returned on the secondary stack. We
4867 -- don't do this on VM targets, since the SS is not used.
4869 if VM_Target = No_VM then
4870 Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
4871 Set_Procedure_To_Call
4872 (SS_Allocator, RTE (RE_SS_Allocate));
4874 -- The allocator is returned on the secondary stack,
4875 -- so indicate that the function return, as well as
4876 -- the block that encloses the allocator, must not
4877 -- release it. The flags must be set now because
4878 -- the decision to use the secondary stack is done
4879 -- very late in the course of expanding the return
4880 -- statement, past the point where these flags are
4881 -- normally set.
4883 Set_Sec_Stack_Needed_For_Return (Par_Func);
4884 Set_Sec_Stack_Needed_For_Return
4885 (Return_Statement_Entity (N));
4886 Set_Uses_Sec_Stack (Par_Func);
4887 Set_Uses_Sec_Stack (Return_Statement_Entity (N));
4888 end if;
4890 -- Create an if statement to test the BIP_Alloc_Form
4891 -- formal and initialize the access object to either the
4892 -- BIP_Object_Access formal (BIP_Alloc_Form =
4893 -- Caller_Allocation), the result of allocating the
4894 -- object in the secondary stack (BIP_Alloc_Form =
4895 -- Secondary_Stack), or else an allocator to create the
4896 -- return object in the heap or user-defined pool
4897 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
4899 -- ??? An unchecked type conversion must be made in the
4900 -- case of assigning the access object formal to the
4901 -- local access object, because a normal conversion would
4902 -- be illegal in some cases (such as converting access-
4903 -- to-unconstrained to access-to-constrained), but the
4904 -- the unchecked conversion will presumably fail to work
4905 -- right in just such cases. It's not clear at all how to
4906 -- handle this. ???
4908 Alloc_If_Stmt :=
4909 Make_If_Statement (Loc,
4910 Condition =>
4911 Make_Op_Eq (Loc,
4912 Left_Opnd =>
4913 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4914 Right_Opnd =>
4915 Make_Integer_Literal (Loc,
4916 UI_From_Int (BIP_Allocation_Form'Pos
4917 (Caller_Allocation)))),
4919 Then_Statements => New_List (
4920 Make_Assignment_Statement (Loc,
4921 Name =>
4922 New_Occurrence_Of (Alloc_Obj_Id, Loc),
4923 Expression =>
4924 Make_Unchecked_Type_Conversion (Loc,
4925 Subtype_Mark =>
4926 New_Occurrence_Of (Ref_Type, Loc),
4927 Expression =>
4928 New_Occurrence_Of (Object_Access, Loc)))),
4930 Elsif_Parts => New_List (
4931 Make_Elsif_Part (Loc,
4932 Condition =>
4933 Make_Op_Eq (Loc,
4934 Left_Opnd =>
4935 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4936 Right_Opnd =>
4937 Make_Integer_Literal (Loc,
4938 UI_From_Int (BIP_Allocation_Form'Pos
4939 (Secondary_Stack)))),
4941 Then_Statements => New_List (
4942 Make_Assignment_Statement (Loc,
4943 Name =>
4944 New_Occurrence_Of (Alloc_Obj_Id, Loc),
4945 Expression => SS_Allocator))),
4947 Make_Elsif_Part (Loc,
4948 Condition =>
4949 Make_Op_Eq (Loc,
4950 Left_Opnd =>
4951 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4952 Right_Opnd =>
4953 Make_Integer_Literal (Loc,
4954 UI_From_Int (BIP_Allocation_Form'Pos
4955 (Global_Heap)))),
4957 Then_Statements => New_List (
4958 Build_Heap_Allocator
4959 (Temp_Id => Alloc_Obj_Id,
4960 Temp_Typ => Ref_Type,
4961 Func_Id => Par_Func,
4962 Ret_Typ => Return_Obj_Typ,
4963 Alloc_Expr => Heap_Allocator)))),
4965 Else_Statements => New_List (
4966 Pool_Decl,
4967 Build_Heap_Allocator
4968 (Temp_Id => Alloc_Obj_Id,
4969 Temp_Typ => Ref_Type,
4970 Func_Id => Par_Func,
4971 Ret_Typ => Return_Obj_Typ,
4972 Alloc_Expr => Pool_Allocator)));
4974 -- If a separate initialization assignment was created
4975 -- earlier, append that following the assignment of the
4976 -- implicit access formal to the access object, to ensure
4977 -- that the return object is initialized in that case. In
4978 -- this situation, the target of the assignment must be
4979 -- rewritten to denote a dereference of the access to the
4980 -- return object passed in by the caller.
4982 if Present (Init_Assignment) then
4983 Rewrite (Name (Init_Assignment),
4984 Make_Explicit_Dereference (Loc,
4985 Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
4987 Set_Etype
4988 (Name (Init_Assignment), Etype (Return_Obj_Id));
4990 Append_To
4991 (Then_Statements (Alloc_If_Stmt), Init_Assignment);
4992 end if;
4994 Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
4996 -- Remember the local access object for use in the
4997 -- dereference of the renaming created below.
4999 Object_Access := Alloc_Obj_Id;
5000 end;
5001 end if;
5003 -- Replace the return object declaration with a renaming of a
5004 -- dereference of the access value designating the return
5005 -- object.
5007 Obj_Acc_Deref :=
5008 Make_Explicit_Dereference (Loc,
5009 Prefix => New_Occurrence_Of (Object_Access, Loc));
5011 Rewrite (Ret_Obj_Decl,
5012 Make_Object_Renaming_Declaration (Loc,
5013 Defining_Identifier => Return_Obj_Id,
5014 Access_Definition => Empty,
5015 Subtype_Mark =>
5016 New_Occurrence_Of (Return_Obj_Typ, Loc),
5017 Name => Obj_Acc_Deref));
5019 Set_Renamed_Object (Return_Obj_Id, Obj_Acc_Deref);
5020 end;
5021 end if;
5023 -- Case where we do not build a block
5025 else
5026 -- We're about to drop Return_Object_Declarations on the floor, so
5027 -- we need to insert it, in case it got expanded into useful code.
5028 -- Remove side effects from expression, which may be duplicated in
5029 -- subsequent checks (see Expand_Simple_Function_Return).
5031 Insert_List_Before (N, Return_Object_Declarations (N));
5032 Remove_Side_Effects (Exp);
5034 -- Build simple_return_statement that returns the expression directly
5036 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5037 Result := Return_Stmt;
5038 end if;
5040 -- Set the flag to prevent infinite recursion
5042 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
5044 Rewrite (N, Result);
5045 Analyze (N);
5046 end Expand_N_Extended_Return_Statement;
5048 ----------------------------
5049 -- Expand_N_Function_Call --
5050 ----------------------------
5052 procedure Expand_N_Function_Call (N : Node_Id) is
5053 begin
5054 Expand_Call (N);
5055 end Expand_N_Function_Call;
5057 ---------------------------------------
5058 -- Expand_N_Procedure_Call_Statement --
5059 ---------------------------------------
5061 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5062 begin
5063 Expand_Call (N);
5064 end Expand_N_Procedure_Call_Statement;
5066 --------------------------------------
5067 -- Expand_N_Simple_Return_Statement --
5068 --------------------------------------
5070 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5071 begin
5072 -- Defend against previous errors (i.e. the return statement calls a
5073 -- function that is not available in configurable runtime).
5075 if Present (Expression (N))
5076 and then Nkind (Expression (N)) = N_Empty
5077 then
5078 Check_Error_Detected;
5079 return;
5080 end if;
5082 -- Distinguish the function and non-function cases:
5084 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5086 when E_Function |
5087 E_Generic_Function =>
5088 Expand_Simple_Function_Return (N);
5090 when E_Procedure |
5091 E_Generic_Procedure |
5092 E_Entry |
5093 E_Entry_Family |
5094 E_Return_Statement =>
5095 Expand_Non_Function_Return (N);
5097 when others =>
5098 raise Program_Error;
5099 end case;
5101 exception
5102 when RE_Not_Available =>
5103 return;
5104 end Expand_N_Simple_Return_Statement;
5106 ------------------------------
5107 -- Expand_N_Subprogram_Body --
5108 ------------------------------
5110 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5111 -- by the back-end.
5113 -- Add dummy push/pop label nodes at start and end to clear any local
5114 -- exception indications if local-exception-to-goto optimization is active.
5116 -- Add return statement if last statement in body is not a return statement
5117 -- (this makes things easier on Gigi which does not want to have to handle
5118 -- a missing return).
5120 -- Add call to Activate_Tasks if body is a task activator
5122 -- Deal with possible detection of infinite recursion
5124 -- Eliminate body completely if convention stubbed
5126 -- Encode entity names within body, since we will not need to reference
5127 -- these entities any longer in the front end.
5129 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5131 -- Reset Pure indication if any parameter has root type System.Address
5132 -- or has any parameters of limited types, where limited means that the
5133 -- run-time view is limited (i.e. the full type is limited).
5135 -- Wrap thread body
5137 procedure Expand_N_Subprogram_Body (N : Node_Id) is
5138 Loc : constant Source_Ptr := Sloc (N);
5139 H : constant Node_Id := Handled_Statement_Sequence (N);
5140 Body_Id : Entity_Id;
5141 Except_H : Node_Id;
5142 L : List_Id;
5143 Spec_Id : Entity_Id;
5145 procedure Add_Return (S : List_Id);
5146 -- Append a return statement to the statement sequence S if the last
5147 -- statement is not already a return or a goto statement. Note that
5148 -- the latter test is not critical, it does not matter if we add a few
5149 -- extra returns, since they get eliminated anyway later on.
5151 ----------------
5152 -- Add_Return --
5153 ----------------
5155 procedure Add_Return (S : List_Id) is
5156 Last_Stm : Node_Id;
5157 Loc : Source_Ptr;
5159 begin
5160 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5161 -- not relevant in this context since they are not executable.
5163 Last_Stm := Last (S);
5164 while Nkind (Last_Stm) in N_Pop_xxx_Label loop
5165 Prev (Last_Stm);
5166 end loop;
5168 -- Now insert return unless last statement is a transfer
5170 if not Is_Transfer (Last_Stm) then
5172 -- The source location for the return is the end label of the
5173 -- procedure if present. Otherwise use the sloc of the last
5174 -- statement in the list. If the list comes from a generated
5175 -- exception handler and we are not debugging generated code,
5176 -- all the statements within the handler are made invisible
5177 -- to the debugger.
5179 if Nkind (Parent (S)) = N_Exception_Handler
5180 and then not Comes_From_Source (Parent (S))
5181 then
5182 Loc := Sloc (Last_Stm);
5183 elsif Present (End_Label (H)) then
5184 Loc := Sloc (End_Label (H));
5185 else
5186 Loc := Sloc (Last_Stm);
5187 end if;
5189 declare
5190 Rtn : constant Node_Id := Make_Simple_Return_Statement (Loc);
5192 begin
5193 -- Append return statement, and set analyzed manually. We can't
5194 -- call Analyze on this return since the scope is wrong.
5196 -- Note: it almost works to push the scope and then do the
5197 -- Analyze call, but something goes wrong in some weird cases
5198 -- and it is not worth worrying about ???
5200 Append_To (S, Rtn);
5201 Set_Analyzed (Rtn);
5203 -- Call _Postconditions procedure if appropriate. We need to
5204 -- do this explicitly because we did not analyze the generated
5205 -- return statement above, so the call did not get inserted.
5207 if Ekind (Spec_Id) = E_Procedure
5208 and then Has_Postconditions (Spec_Id)
5209 then
5210 pragma Assert (Present (Postcondition_Proc (Spec_Id)));
5211 Insert_Action (Rtn,
5212 Make_Procedure_Call_Statement (Loc,
5213 Name =>
5214 New_Occurrence_Of
5215 (Postcondition_Proc (Spec_Id), Loc)));
5216 end if;
5217 end;
5218 end if;
5219 end Add_Return;
5221 -- Start of processing for Expand_N_Subprogram_Body
5223 begin
5224 -- Set L to either the list of declarations if present, or to the list
5225 -- of statements if no declarations are present. This is used to insert
5226 -- new stuff at the start.
5228 if Is_Non_Empty_List (Declarations (N)) then
5229 L := Declarations (N);
5230 else
5231 L := Statements (H);
5232 end if;
5234 -- If local-exception-to-goto optimization active, insert dummy push
5235 -- statements at start, and dummy pop statements at end, but inhibit
5236 -- this if we have No_Exception_Handlers, since they are useless and
5237 -- intefere with analysis, e.g. by codepeer.
5239 if (Debug_Flag_Dot_G
5240 or else Restriction_Active (No_Exception_Propagation))
5241 and then not Restriction_Active (No_Exception_Handlers)
5242 and then not CodePeer_Mode
5243 and then Is_Non_Empty_List (L)
5244 then
5245 declare
5246 FS : constant Node_Id := First (L);
5247 FL : constant Source_Ptr := Sloc (FS);
5248 LS : Node_Id;
5249 LL : Source_Ptr;
5251 begin
5252 -- LS points to either last statement, if statements are present
5253 -- or to the last declaration if there are no statements present.
5254 -- It is the node after which the pop's are generated.
5256 if Is_Non_Empty_List (Statements (H)) then
5257 LS := Last (Statements (H));
5258 else
5259 LS := Last (L);
5260 end if;
5262 LL := Sloc (LS);
5264 Insert_List_Before_And_Analyze (FS, New_List (
5265 Make_Push_Constraint_Error_Label (FL),
5266 Make_Push_Program_Error_Label (FL),
5267 Make_Push_Storage_Error_Label (FL)));
5269 Insert_List_After_And_Analyze (LS, New_List (
5270 Make_Pop_Constraint_Error_Label (LL),
5271 Make_Pop_Program_Error_Label (LL),
5272 Make_Pop_Storage_Error_Label (LL)));
5273 end;
5274 end if;
5276 -- Find entity for subprogram
5278 Body_Id := Defining_Entity (N);
5280 if Present (Corresponding_Spec (N)) then
5281 Spec_Id := Corresponding_Spec (N);
5282 else
5283 Spec_Id := Body_Id;
5284 end if;
5286 -- Need poll on entry to subprogram if polling enabled. We only do this
5287 -- for non-empty subprograms, since it does not seem necessary to poll
5288 -- for a dummy null subprogram.
5290 if Is_Non_Empty_List (L) then
5292 -- Do not add a polling call if the subprogram is to be inlined by
5293 -- the back-end, to avoid repeated calls with multiple inlinings.
5295 if Is_Inlined (Spec_Id)
5296 and then Front_End_Inlining
5297 and then Optimization_Level > 1
5298 then
5299 null;
5300 else
5301 Generate_Poll_Call (First (L));
5302 end if;
5303 end if;
5305 -- If this is a Pure function which has any parameters whose root type
5306 -- is System.Address, reset the Pure indication, since it will likely
5307 -- cause incorrect code to be generated as the parameter is probably
5308 -- a pointer, and the fact that the same pointer is passed does not mean
5309 -- that the same value is being referenced.
5311 -- Note that if the programmer gave an explicit Pure_Function pragma,
5312 -- then we believe the programmer, and leave the subprogram Pure.
5314 -- This code should probably be at the freeze point, so that it happens
5315 -- even on a -gnatc (or more importantly -gnatt) compile, so that the
5316 -- semantic tree has Is_Pure set properly ???
5318 if Is_Pure (Spec_Id)
5319 and then Is_Subprogram (Spec_Id)
5320 and then not Has_Pragma_Pure_Function (Spec_Id)
5321 then
5322 declare
5323 F : Entity_Id;
5325 begin
5326 F := First_Formal (Spec_Id);
5327 while Present (F) loop
5328 if Is_Descendent_Of_Address (Etype (F))
5330 -- Note that this test is being made in the body of the
5331 -- subprogram, not the spec, so we are testing the full
5332 -- type for being limited here, as required.
5334 or else Is_Limited_Type (Etype (F))
5335 then
5336 Set_Is_Pure (Spec_Id, False);
5338 if Spec_Id /= Body_Id then
5339 Set_Is_Pure (Body_Id, False);
5340 end if;
5342 exit;
5343 end if;
5345 Next_Formal (F);
5346 end loop;
5347 end;
5348 end if;
5350 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5352 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5353 declare
5354 F : Entity_Id;
5355 A : Node_Id;
5357 begin
5358 -- Loop through formals
5360 F := First_Formal (Spec_Id);
5361 while Present (F) loop
5362 if Is_Scalar_Type (Etype (F))
5363 and then Ekind (F) = E_Out_Parameter
5364 then
5365 Check_Restriction (No_Default_Initialization, F);
5367 -- Insert the initialization. We turn off validity checks
5368 -- for this assignment, since we do not want any check on
5369 -- the initial value itself (which may well be invalid).
5370 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5372 A := Make_Assignment_Statement (Loc,
5373 Name => New_Occurrence_Of (F, Loc),
5374 Expression => Get_Simple_Init_Val (Etype (F), N));
5375 Set_Suppress_Assignment_Checks (A);
5377 Insert_Before_And_Analyze (First (L),
5378 A, Suppress => Validity_Check);
5379 end if;
5381 Next_Formal (F);
5382 end loop;
5383 end;
5384 end if;
5386 -- Clear out statement list for stubbed procedure
5388 if Present (Corresponding_Spec (N)) then
5389 Set_Elaboration_Flag (N, Spec_Id);
5391 if Convention (Spec_Id) = Convention_Stubbed
5392 or else Is_Eliminated (Spec_Id)
5393 then
5394 Set_Declarations (N, Empty_List);
5395 Set_Handled_Statement_Sequence (N,
5396 Make_Handled_Sequence_Of_Statements (Loc,
5397 Statements => New_List (Make_Null_Statement (Loc))));
5398 return;
5399 end if;
5400 end if;
5402 -- Create a set of discriminals for the next protected subprogram body
5404 if Is_List_Member (N)
5405 and then Present (Parent (List_Containing (N)))
5406 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5407 and then Present (Next_Protected_Operation (N))
5408 then
5409 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5410 end if;
5412 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5413 -- subprograms with no specs are not frozen.
5415 declare
5416 Typ : constant Entity_Id := Etype (Spec_Id);
5417 Utyp : constant Entity_Id := Underlying_Type (Typ);
5419 begin
5420 if not Acts_As_Spec (N)
5421 and then Nkind (Parent (Parent (Spec_Id))) /=
5422 N_Subprogram_Body_Stub
5423 then
5424 null;
5426 elsif Is_Limited_View (Typ) then
5427 Set_Returns_By_Ref (Spec_Id);
5429 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5430 Set_Returns_By_Ref (Spec_Id);
5431 end if;
5432 end;
5434 -- For a procedure, we add a return for all possible syntactic ends of
5435 -- the subprogram.
5437 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
5438 Add_Return (Statements (H));
5440 if Present (Exception_Handlers (H)) then
5441 Except_H := First_Non_Pragma (Exception_Handlers (H));
5442 while Present (Except_H) loop
5443 Add_Return (Statements (Except_H));
5444 Next_Non_Pragma (Except_H);
5445 end loop;
5446 end if;
5448 -- For a function, we must deal with the case where there is at least
5449 -- one missing return. What we do is to wrap the entire body of the
5450 -- function in a block:
5452 -- begin
5453 -- ...
5454 -- end;
5456 -- becomes
5458 -- begin
5459 -- begin
5460 -- ...
5461 -- end;
5463 -- raise Program_Error;
5464 -- end;
5466 -- This approach is necessary because the raise must be signalled to the
5467 -- caller, not handled by any local handler (RM 6.4(11)).
5469 -- Note: we do not need to analyze the constructed sequence here, since
5470 -- it has no handler, and an attempt to analyze the handled statement
5471 -- sequence twice is risky in various ways (e.g. the issue of expanding
5472 -- cleanup actions twice).
5474 elsif Has_Missing_Return (Spec_Id) then
5475 declare
5476 Hloc : constant Source_Ptr := Sloc (H);
5477 Blok : constant Node_Id :=
5478 Make_Block_Statement (Hloc,
5479 Handled_Statement_Sequence => H);
5480 Rais : constant Node_Id :=
5481 Make_Raise_Program_Error (Hloc,
5482 Reason => PE_Missing_Return);
5484 begin
5485 Set_Handled_Statement_Sequence (N,
5486 Make_Handled_Sequence_Of_Statements (Hloc,
5487 Statements => New_List (Blok, Rais)));
5489 Push_Scope (Spec_Id);
5490 Analyze (Blok);
5491 Analyze (Rais);
5492 Pop_Scope;
5493 end;
5494 end if;
5496 -- If subprogram contains a parameterless recursive call, then we may
5497 -- have an infinite recursion, so see if we can generate code to check
5498 -- for this possibility if storage checks are not suppressed.
5500 if Ekind (Spec_Id) = E_Procedure
5501 and then Has_Recursive_Call (Spec_Id)
5502 and then not Storage_Checks_Suppressed (Spec_Id)
5503 then
5504 Detect_Infinite_Recursion (N, Spec_Id);
5505 end if;
5507 -- Set to encode entity names in package body before gigi is called
5509 Qualify_Entity_Names (N);
5510 end Expand_N_Subprogram_Body;
5512 -----------------------------------
5513 -- Expand_N_Subprogram_Body_Stub --
5514 -----------------------------------
5516 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5517 begin
5518 if Present (Corresponding_Body (N)) then
5519 Expand_N_Subprogram_Body (
5520 Unit_Declaration_Node (Corresponding_Body (N)));
5521 end if;
5522 end Expand_N_Subprogram_Body_Stub;
5524 -------------------------------------
5525 -- Expand_N_Subprogram_Declaration --
5526 -------------------------------------
5528 -- If the declaration appears within a protected body, it is a private
5529 -- operation of the protected type. We must create the corresponding
5530 -- protected subprogram an associated formals. For a normal protected
5531 -- operation, this is done when expanding the protected type declaration.
5533 -- If the declaration is for a null procedure, emit null body
5535 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
5536 Loc : constant Source_Ptr := Sloc (N);
5537 Subp : constant Entity_Id := Defining_Entity (N);
5538 Scop : constant Entity_Id := Scope (Subp);
5539 Prot_Decl : Node_Id;
5540 Prot_Bod : Node_Id;
5541 Prot_Id : Entity_Id;
5543 begin
5544 -- In SPARK, subprogram declarations are only allowed in package
5545 -- specifications.
5547 if Nkind (Parent (N)) /= N_Package_Specification then
5548 if Nkind (Parent (N)) = N_Compilation_Unit then
5549 Check_SPARK_Restriction
5550 ("subprogram declaration is not a library item", N);
5552 elsif Present (Next (N))
5553 and then Nkind (Next (N)) = N_Pragma
5554 and then Get_Pragma_Id (Pragma_Name (Next (N))) = Pragma_Import
5555 then
5556 -- In SPARK, subprogram declarations are also permitted in
5557 -- declarative parts when immediately followed by a corresponding
5558 -- pragma Import. We only check here that there is some pragma
5559 -- Import.
5561 null;
5562 else
5563 Check_SPARK_Restriction
5564 ("subprogram declaration is not allowed here", N);
5565 end if;
5566 end if;
5568 -- Deal with case of protected subprogram. Do not generate protected
5569 -- operation if operation is flagged as eliminated.
5571 if Is_List_Member (N)
5572 and then Present (Parent (List_Containing (N)))
5573 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5574 and then Is_Protected_Type (Scop)
5575 then
5576 if No (Protected_Body_Subprogram (Subp))
5577 and then not Is_Eliminated (Subp)
5578 then
5579 Prot_Decl :=
5580 Make_Subprogram_Declaration (Loc,
5581 Specification =>
5582 Build_Protected_Sub_Specification
5583 (N, Scop, Unprotected_Mode));
5585 -- The protected subprogram is declared outside of the protected
5586 -- body. Given that the body has frozen all entities so far, we
5587 -- analyze the subprogram and perform freezing actions explicitly.
5588 -- including the generation of an explicit freeze node, to ensure
5589 -- that gigi has the proper order of elaboration.
5590 -- If the body is a subunit, the insertion point is before the
5591 -- stub in the parent.
5593 Prot_Bod := Parent (List_Containing (N));
5595 if Nkind (Parent (Prot_Bod)) = N_Subunit then
5596 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
5597 end if;
5599 Insert_Before (Prot_Bod, Prot_Decl);
5600 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
5601 Set_Has_Delayed_Freeze (Prot_Id);
5603 Push_Scope (Scope (Scop));
5604 Analyze (Prot_Decl);
5605 Freeze_Before (N, Prot_Id);
5606 Set_Protected_Body_Subprogram (Subp, Prot_Id);
5608 -- Create protected operation as well. Even though the operation
5609 -- is only accessible within the body, it is possible to make it
5610 -- available outside of the protected object by using 'Access to
5611 -- provide a callback, so build protected version in all cases.
5613 Prot_Decl :=
5614 Make_Subprogram_Declaration (Loc,
5615 Specification =>
5616 Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
5617 Insert_Before (Prot_Bod, Prot_Decl);
5618 Analyze (Prot_Decl);
5620 Pop_Scope;
5621 end if;
5623 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5624 -- cases this is superfluous because calls to it will be automatically
5625 -- inlined, but we definitely need the body if preconditions for the
5626 -- procedure are present.
5628 elsif Nkind (Specification (N)) = N_Procedure_Specification
5629 and then Null_Present (Specification (N))
5630 then
5631 declare
5632 Bod : constant Node_Id := Body_To_Inline (N);
5634 begin
5635 Set_Has_Completion (Subp, False);
5636 Append_Freeze_Action (Subp, Bod);
5638 -- The body now contains raise statements, so calls to it will
5639 -- not be inlined.
5641 Set_Is_Inlined (Subp, False);
5642 end;
5643 end if;
5644 end Expand_N_Subprogram_Declaration;
5646 --------------------------------
5647 -- Expand_Non_Function_Return --
5648 --------------------------------
5650 procedure Expand_Non_Function_Return (N : Node_Id) is
5651 pragma Assert (No (Expression (N)));
5653 Loc : constant Source_Ptr := Sloc (N);
5654 Scope_Id : Entity_Id :=
5655 Return_Applies_To (Return_Statement_Entity (N));
5656 Kind : constant Entity_Kind := Ekind (Scope_Id);
5657 Call : Node_Id;
5658 Acc_Stat : Node_Id;
5659 Goto_Stat : Node_Id;
5660 Lab_Node : Node_Id;
5662 begin
5663 -- Call _Postconditions procedure if procedure with active
5664 -- postconditions. Here, we use the Postcondition_Proc attribute,
5665 -- which is needed for implicitly-generated returns. Functions
5666 -- never have implicitly-generated returns, and there's no
5667 -- room for Postcondition_Proc in E_Function, so we look up the
5668 -- identifier Name_uPostconditions for function returns (see
5669 -- Expand_Simple_Function_Return).
5671 if Ekind (Scope_Id) = E_Procedure
5672 and then Has_Postconditions (Scope_Id)
5673 then
5674 pragma Assert (Present (Postcondition_Proc (Scope_Id)));
5675 Insert_Action (N,
5676 Make_Procedure_Call_Statement (Loc,
5677 Name => New_Occurrence_Of (Postcondition_Proc (Scope_Id), Loc)));
5678 end if;
5680 -- If it is a return from a procedure do no extra steps
5682 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
5683 return;
5685 -- If it is a nested return within an extended one, replace it with a
5686 -- return of the previously declared return object.
5688 elsif Kind = E_Return_Statement then
5689 Rewrite (N,
5690 Make_Simple_Return_Statement (Loc,
5691 Expression =>
5692 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
5693 Set_Comes_From_Extended_Return_Statement (N);
5694 Set_Return_Statement_Entity (N, Scope_Id);
5695 Expand_Simple_Function_Return (N);
5696 return;
5697 end if;
5699 pragma Assert (Is_Entry (Scope_Id));
5701 -- Look at the enclosing block to see whether the return is from an
5702 -- accept statement or an entry body.
5704 for J in reverse 0 .. Scope_Stack.Last loop
5705 Scope_Id := Scope_Stack.Table (J).Entity;
5706 exit when Is_Concurrent_Type (Scope_Id);
5707 end loop;
5709 -- If it is a return from accept statement it is expanded as call to
5710 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
5712 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5713 -- Expand_N_Accept_Alternative in exp_ch9.adb)
5715 if Is_Task_Type (Scope_Id) then
5717 Call :=
5718 Make_Procedure_Call_Statement (Loc,
5719 Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
5720 Insert_Before (N, Call);
5721 -- why not insert actions here???
5722 Analyze (Call);
5724 Acc_Stat := Parent (N);
5725 while Nkind (Acc_Stat) /= N_Accept_Statement loop
5726 Acc_Stat := Parent (Acc_Stat);
5727 end loop;
5729 Lab_Node := Last (Statements
5730 (Handled_Statement_Sequence (Acc_Stat)));
5732 Goto_Stat := Make_Goto_Statement (Loc,
5733 Name => New_Occurrence_Of
5734 (Entity (Identifier (Lab_Node)), Loc));
5736 Set_Analyzed (Goto_Stat);
5738 Rewrite (N, Goto_Stat);
5739 Analyze (N);
5741 -- If it is a return from an entry body, put a Complete_Entry_Body call
5742 -- in front of the return.
5744 elsif Is_Protected_Type (Scope_Id) then
5745 Call :=
5746 Make_Procedure_Call_Statement (Loc,
5747 Name =>
5748 New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
5749 Parameter_Associations => New_List (
5750 Make_Attribute_Reference (Loc,
5751 Prefix =>
5752 New_Occurrence_Of
5753 (Find_Protection_Object (Current_Scope), Loc),
5754 Attribute_Name => Name_Unchecked_Access)));
5756 Insert_Before (N, Call);
5757 Analyze (Call);
5758 end if;
5759 end Expand_Non_Function_Return;
5761 ---------------------------------------
5762 -- Expand_Protected_Object_Reference --
5763 ---------------------------------------
5765 function Expand_Protected_Object_Reference
5766 (N : Node_Id;
5767 Scop : Entity_Id) return Node_Id
5769 Loc : constant Source_Ptr := Sloc (N);
5770 Corr : Entity_Id;
5771 Rec : Node_Id;
5772 Param : Entity_Id;
5773 Proc : Entity_Id;
5775 begin
5776 Rec := Make_Identifier (Loc, Name_uObject);
5777 Set_Etype (Rec, Corresponding_Record_Type (Scop));
5779 -- Find enclosing protected operation, and retrieve its first parameter,
5780 -- which denotes the enclosing protected object. If the enclosing
5781 -- operation is an entry, we are immediately within the protected body,
5782 -- and we can retrieve the object from the service entries procedure. A
5783 -- barrier function has the same signature as an entry. A barrier
5784 -- function is compiled within the protected object, but unlike
5785 -- protected operations its never needs locks, so that its protected
5786 -- body subprogram points to itself.
5788 Proc := Current_Scope;
5789 while Present (Proc)
5790 and then Scope (Proc) /= Scop
5791 loop
5792 Proc := Scope (Proc);
5793 end loop;
5795 Corr := Protected_Body_Subprogram (Proc);
5797 if No (Corr) then
5799 -- Previous error left expansion incomplete.
5800 -- Nothing to do on this call.
5802 return Empty;
5803 end if;
5805 Param :=
5806 Defining_Identifier
5807 (First (Parameter_Specifications (Parent (Corr))));
5809 if Is_Subprogram (Proc)
5810 and then Proc /= Corr
5811 then
5812 -- Protected function or procedure
5814 Set_Entity (Rec, Param);
5816 -- Rec is a reference to an entity which will not be in scope when
5817 -- the call is reanalyzed, and needs no further analysis.
5819 Set_Analyzed (Rec);
5821 else
5822 -- Entry or barrier function for entry body. The first parameter of
5823 -- the entry body procedure is pointer to the object. We create a
5824 -- local variable of the proper type, duplicating what is done to
5825 -- define _object later on.
5827 declare
5828 Decls : List_Id;
5829 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
5831 begin
5832 Decls := New_List (
5833 Make_Full_Type_Declaration (Loc,
5834 Defining_Identifier => Obj_Ptr,
5835 Type_Definition =>
5836 Make_Access_To_Object_Definition (Loc,
5837 Subtype_Indication =>
5838 New_Occurrence_Of
5839 (Corresponding_Record_Type (Scop), Loc))));
5841 Insert_Actions (N, Decls);
5842 Freeze_Before (N, Obj_Ptr);
5844 Rec :=
5845 Make_Explicit_Dereference (Loc,
5846 Prefix =>
5847 Unchecked_Convert_To (Obj_Ptr,
5848 New_Occurrence_Of (Param, Loc)));
5850 -- Analyze new actual. Other actuals in calls are already analyzed
5851 -- and the list of actuals is not reanalyzed after rewriting.
5853 Set_Parent (Rec, N);
5854 Analyze (Rec);
5855 end;
5856 end if;
5858 return Rec;
5859 end Expand_Protected_Object_Reference;
5861 --------------------------------------
5862 -- Expand_Protected_Subprogram_Call --
5863 --------------------------------------
5865 procedure Expand_Protected_Subprogram_Call
5866 (N : Node_Id;
5867 Subp : Entity_Id;
5868 Scop : Entity_Id)
5870 Rec : Node_Id;
5872 procedure Freeze_Called_Function;
5873 -- If it is a function call it can appear in elaboration code and
5874 -- the called entity must be frozen before the call. This must be
5875 -- done before the call is expanded, as the expansion may rewrite it
5876 -- to something other than a call (e.g. a temporary initialized in a
5877 -- transient block).
5879 ----------------------------
5880 -- Freeze_Called_Function --
5881 ----------------------------
5883 procedure Freeze_Called_Function is
5884 begin
5885 if Ekind (Subp) = E_Function then
5886 Freeze_Expression (Name (N));
5887 end if;
5888 end Freeze_Called_Function;
5890 -- Start of processing for Expand_Protected_Subprogram_Call
5892 begin
5893 -- If the protected object is not an enclosing scope, this is an inter-
5894 -- object function call. Inter-object procedure calls are expanded by
5895 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
5896 -- subprogram being called is in the protected body being compiled, and
5897 -- if the protected object in the call is statically the enclosing type.
5898 -- The object may be an component of some other data structure, in which
5899 -- case this must be handled as an inter-object call.
5901 if not In_Open_Scopes (Scop)
5902 or else not Is_Entity_Name (Name (N))
5903 then
5904 if Nkind (Name (N)) = N_Selected_Component then
5905 Rec := Prefix (Name (N));
5907 else
5908 pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
5909 Rec := Prefix (Prefix (Name (N)));
5910 end if;
5912 Freeze_Called_Function;
5913 Build_Protected_Subprogram_Call (N,
5914 Name => New_Occurrence_Of (Subp, Sloc (N)),
5915 Rec => Convert_Concurrent (Rec, Etype (Rec)),
5916 External => True);
5918 else
5919 Rec := Expand_Protected_Object_Reference (N, Scop);
5921 if No (Rec) then
5922 return;
5923 end if;
5925 Freeze_Called_Function;
5926 Build_Protected_Subprogram_Call (N,
5927 Name => Name (N),
5928 Rec => Rec,
5929 External => False);
5931 end if;
5933 -- Analyze and resolve the new call. The actuals have already been
5934 -- resolved, but expansion of a function call will add extra actuals
5935 -- if needed. Analysis of a procedure call already includes resolution.
5937 Analyze (N);
5939 if Ekind (Subp) = E_Function then
5940 Resolve (N, Etype (Subp));
5941 end if;
5942 end Expand_Protected_Subprogram_Call;
5944 --------------------------------------------
5945 -- Has_Unconstrained_Access_Discriminants --
5946 --------------------------------------------
5948 function Has_Unconstrained_Access_Discriminants
5949 (Subtyp : Entity_Id) return Boolean
5951 Discr : Entity_Id;
5953 begin
5954 if Has_Discriminants (Subtyp)
5955 and then not Is_Constrained (Subtyp)
5956 then
5957 Discr := First_Discriminant (Subtyp);
5958 while Present (Discr) loop
5959 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
5960 return True;
5961 end if;
5963 Next_Discriminant (Discr);
5964 end loop;
5965 end if;
5967 return False;
5968 end Has_Unconstrained_Access_Discriminants;
5970 -----------------------------------
5971 -- Expand_Simple_Function_Return --
5972 -----------------------------------
5974 -- The "simple" comes from the syntax rule simple_return_statement. The
5975 -- semantics are not at all simple.
5977 procedure Expand_Simple_Function_Return (N : Node_Id) is
5978 Loc : constant Source_Ptr := Sloc (N);
5980 Scope_Id : constant Entity_Id :=
5981 Return_Applies_To (Return_Statement_Entity (N));
5982 -- The function we are returning from
5984 R_Type : constant Entity_Id := Etype (Scope_Id);
5985 -- The result type of the function
5987 Utyp : constant Entity_Id := Underlying_Type (R_Type);
5989 Exp : constant Node_Id := Expression (N);
5990 pragma Assert (Present (Exp));
5992 Exptyp : constant Entity_Id := Etype (Exp);
5993 -- The type of the expression (not necessarily the same as R_Type)
5995 Subtype_Ind : Node_Id;
5996 -- If the result type of the function is class-wide and the expression
5997 -- has a specific type, then we use the expression's type as the type of
5998 -- the return object. In cases where the expression is an aggregate that
5999 -- is built in place, this avoids the need for an expensive conversion
6000 -- of the return object to the specific type on assignments to the
6001 -- individual components.
6003 begin
6004 if Is_Class_Wide_Type (R_Type)
6005 and then not Is_Class_Wide_Type (Etype (Exp))
6006 then
6007 Subtype_Ind := New_Occurrence_Of (Etype (Exp), Loc);
6008 else
6009 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6010 end if;
6012 -- For the case of a simple return that does not come from an extended
6013 -- return, in the case of Ada 2005 where we are returning a limited
6014 -- type, we rewrite "return <expression>;" to be:
6016 -- return _anon_ : <return_subtype> := <expression>
6018 -- The expansion produced by Expand_N_Extended_Return_Statement will
6019 -- contain simple return statements (for example, a block containing
6020 -- simple return of the return object), which brings us back here with
6021 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6022 -- checking for a simple return that does not come from an extended
6023 -- return is to avoid this infinite recursion.
6025 -- The reason for this design is that for Ada 2005 limited returns, we
6026 -- need to reify the return object, so we can build it "in place", and
6027 -- we need a block statement to hang finalization and tasking stuff.
6029 -- ??? In order to avoid disruption, we avoid translating to extended
6030 -- return except in the cases where we really need to (Ada 2005 for
6031 -- inherently limited). We might prefer to do this translation in all
6032 -- cases (except perhaps for the case of Ada 95 inherently limited),
6033 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6034 -- code. This would also allow us to do the build-in-place optimization
6035 -- for efficiency even in cases where it is semantically not required.
6037 -- As before, we check the type of the return expression rather than the
6038 -- return type of the function, because the latter may be a limited
6039 -- class-wide interface type, which is not a limited type, even though
6040 -- the type of the expression may be.
6042 if not Comes_From_Extended_Return_Statement (N)
6043 and then Is_Limited_View (Etype (Expression (N)))
6044 and then Ada_Version >= Ada_2005
6045 and then not Debug_Flag_Dot_L
6047 -- The functionality of interface thunks is simple and it is always
6048 -- handled by means of simple return statements. This leaves their
6049 -- expansion simple and clean.
6051 and then not Is_Thunk (Current_Scope)
6052 then
6053 declare
6054 Return_Object_Entity : constant Entity_Id :=
6055 Make_Temporary (Loc, 'R', Exp);
6057 Obj_Decl : constant Node_Id :=
6058 Make_Object_Declaration (Loc,
6059 Defining_Identifier => Return_Object_Entity,
6060 Object_Definition => Subtype_Ind,
6061 Expression => Exp);
6063 Ext : constant Node_Id :=
6064 Make_Extended_Return_Statement (Loc,
6065 Return_Object_Declarations => New_List (Obj_Decl));
6066 -- Do not perform this high-level optimization if the result type
6067 -- is an interface because the "this" pointer must be displaced.
6069 begin
6070 Rewrite (N, Ext);
6071 Analyze (N);
6072 return;
6073 end;
6074 end if;
6076 -- Here we have a simple return statement that is part of the expansion
6077 -- of an extended return statement (either written by the user, or
6078 -- generated by the above code).
6080 -- Always normalize C/Fortran boolean result. This is not always needed,
6081 -- but it seems a good idea to minimize the passing around of non-
6082 -- normalized values, and in any case this handles the processing of
6083 -- barrier functions for protected types, which turn the condition into
6084 -- a return statement.
6086 if Is_Boolean_Type (Exptyp)
6087 and then Nonzero_Is_True (Exptyp)
6088 then
6089 Adjust_Condition (Exp);
6090 Adjust_Result_Type (Exp, Exptyp);
6091 end if;
6093 -- Do validity check if enabled for returns
6095 if Validity_Checks_On
6096 and then Validity_Check_Returns
6097 then
6098 Ensure_Valid (Exp);
6099 end if;
6101 -- Check the result expression of a scalar function against the subtype
6102 -- of the function by inserting a conversion. This conversion must
6103 -- eventually be performed for other classes of types, but for now it's
6104 -- only done for scalars.
6105 -- ???
6107 if Is_Scalar_Type (Exptyp) then
6108 Rewrite (Exp, Convert_To (R_Type, Exp));
6110 -- The expression is resolved to ensure that the conversion gets
6111 -- expanded to generate a possible constraint check.
6113 Analyze_And_Resolve (Exp, R_Type);
6114 end if;
6116 -- Deal with returning variable length objects and controlled types
6118 -- Nothing to do if we are returning by reference, or this is not a
6119 -- type that requires special processing (indicated by the fact that
6120 -- it requires a cleanup scope for the secondary stack case).
6122 if Is_Limited_View (Exptyp)
6123 or else Is_Limited_Interface (Exptyp)
6124 then
6125 null;
6127 -- No copy needed for thunks returning interface type objects since
6128 -- the object is returned by reference and the maximum functionality
6129 -- required is just to displace the pointer.
6131 elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
6132 null;
6134 elsif not Requires_Transient_Scope (R_Type) then
6136 -- Mutable records with no variable length components are not
6137 -- returned on the sec-stack, so we need to make sure that the
6138 -- backend will only copy back the size of the actual value, and not
6139 -- the maximum size. We create an actual subtype for this purpose.
6141 declare
6142 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6143 Decl : Node_Id;
6144 Ent : Entity_Id;
6145 begin
6146 if Has_Discriminants (Ubt)
6147 and then not Is_Constrained (Ubt)
6148 and then not Has_Unchecked_Union (Ubt)
6149 then
6150 Decl := Build_Actual_Subtype (Ubt, Exp);
6151 Ent := Defining_Identifier (Decl);
6152 Insert_Action (Exp, Decl);
6153 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6154 Analyze_And_Resolve (Exp);
6155 end if;
6156 end;
6158 -- Here if secondary stack is used
6160 else
6161 -- Prevent the reclamation of the secondary stack by all enclosing
6162 -- blocks and loops as well as the related function, otherwise the
6163 -- result will be reclaimed too early or even clobbered. Due to a
6164 -- possible mix of internally generated blocks, source blocks and
6165 -- loops, the scope stack may not be contiguous as all labels are
6166 -- inserted at the top level within the related function. Instead,
6167 -- perform a parent-based traversal and mark all appropriate
6168 -- constructs.
6170 declare
6171 P : Node_Id;
6173 begin
6174 P := N;
6175 while Present (P) loop
6177 -- Mark the label of a source or internally generated block or
6178 -- loop.
6180 if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
6181 Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
6183 -- Mark the enclosing function
6185 elsif Nkind (P) = N_Subprogram_Body then
6186 if Present (Corresponding_Spec (P)) then
6187 Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
6188 else
6189 Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
6190 end if;
6192 -- Do not go beyond the enclosing function
6194 exit;
6195 end if;
6197 P := Parent (P);
6198 end loop;
6199 end;
6201 -- Optimize the case where the result is a function call. In this
6202 -- case either the result is already on the secondary stack, or is
6203 -- already being returned with the stack pointer depressed and no
6204 -- further processing is required except to set the By_Ref flag
6205 -- to ensure that gigi does not attempt an extra unnecessary copy.
6206 -- (actually not just unnecessary but harmfully wrong in the case
6207 -- of a controlled type, where gigi does not know how to do a copy).
6208 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6209 -- for array types if the constrained status of the target type is
6210 -- different from that of the expression.
6212 if Requires_Transient_Scope (Exptyp)
6213 and then
6214 (not Is_Array_Type (Exptyp)
6215 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6216 or else CW_Or_Has_Controlled_Part (Utyp))
6217 and then Nkind (Exp) = N_Function_Call
6218 then
6219 Set_By_Ref (N);
6221 -- Remove side effects from the expression now so that other parts
6222 -- of the expander do not have to reanalyze this node without this
6223 -- optimization
6225 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6227 -- For controlled types, do the allocation on the secondary stack
6228 -- manually in order to call adjust at the right time:
6230 -- type Anon1 is access R_Type;
6231 -- for Anon1'Storage_pool use ss_pool;
6232 -- Anon2 : anon1 := new R_Type'(expr);
6233 -- return Anon2.all;
6235 -- We do the same for classwide types that are not potentially
6236 -- controlled (by the virtue of restriction No_Finalization) because
6237 -- gigi is not able to properly allocate class-wide types.
6239 elsif CW_Or_Has_Controlled_Part (Utyp) then
6240 declare
6241 Loc : constant Source_Ptr := Sloc (N);
6242 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
6243 Alloc_Node : Node_Id;
6244 Temp : Entity_Id;
6246 begin
6247 Set_Ekind (Acc_Typ, E_Access_Type);
6249 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6251 -- This is an allocator for the secondary stack, and it's fine
6252 -- to have Comes_From_Source set False on it, as gigi knows not
6253 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6255 Alloc_Node :=
6256 Make_Allocator (Loc,
6257 Expression =>
6258 Make_Qualified_Expression (Loc,
6259 Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
6260 Expression => Relocate_Node (Exp)));
6262 -- We do not want discriminant checks on the declaration,
6263 -- given that it gets its value from the allocator.
6265 Set_No_Initialization (Alloc_Node);
6267 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6269 Insert_List_Before_And_Analyze (N, New_List (
6270 Make_Full_Type_Declaration (Loc,
6271 Defining_Identifier => Acc_Typ,
6272 Type_Definition =>
6273 Make_Access_To_Object_Definition (Loc,
6274 Subtype_Indication => Subtype_Ind)),
6276 Make_Object_Declaration (Loc,
6277 Defining_Identifier => Temp,
6278 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
6279 Expression => Alloc_Node)));
6281 Rewrite (Exp,
6282 Make_Explicit_Dereference (Loc,
6283 Prefix => New_Occurrence_Of (Temp, Loc)));
6285 -- Ada 2005 (AI-251): If the type of the returned object is
6286 -- an interface then add an implicit type conversion to force
6287 -- displacement of the "this" pointer.
6289 if Is_Interface (R_Type) then
6290 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6291 end if;
6293 Analyze_And_Resolve (Exp, R_Type);
6294 end;
6296 -- Otherwise use the gigi mechanism to allocate result on the
6297 -- secondary stack.
6299 else
6300 Check_Restriction (No_Secondary_Stack, N);
6301 Set_Storage_Pool (N, RTE (RE_SS_Pool));
6303 -- If we are generating code for the VM do not use
6304 -- SS_Allocate since everything is heap-allocated anyway.
6306 if VM_Target = No_VM then
6307 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6308 end if;
6309 end if;
6310 end if;
6312 -- Implement the rules of 6.5(8-10), which require a tag check in
6313 -- the case of a limited tagged return type, and tag reassignment for
6314 -- nonlimited tagged results. These actions are needed when the return
6315 -- type is a specific tagged type and the result expression is a
6316 -- conversion or a formal parameter, because in that case the tag of
6317 -- the expression might differ from the tag of the specific result type.
6319 if Is_Tagged_Type (Utyp)
6320 and then not Is_Class_Wide_Type (Utyp)
6321 and then (Nkind_In (Exp, N_Type_Conversion,
6322 N_Unchecked_Type_Conversion)
6323 or else (Is_Entity_Name (Exp)
6324 and then Ekind (Entity (Exp)) in Formal_Kind))
6325 then
6326 -- When the return type is limited, perform a check that the tag of
6327 -- the result is the same as the tag of the return type.
6329 if Is_Limited_Type (R_Type) then
6330 Insert_Action (Exp,
6331 Make_Raise_Constraint_Error (Loc,
6332 Condition =>
6333 Make_Op_Ne (Loc,
6334 Left_Opnd =>
6335 Make_Selected_Component (Loc,
6336 Prefix => Duplicate_Subexpr (Exp),
6337 Selector_Name => Make_Identifier (Loc, Name_uTag)),
6338 Right_Opnd =>
6339 Make_Attribute_Reference (Loc,
6340 Prefix =>
6341 New_Occurrence_Of (Base_Type (Utyp), Loc),
6342 Attribute_Name => Name_Tag)),
6343 Reason => CE_Tag_Check_Failed));
6345 -- If the result type is a specific nonlimited tagged type, then we
6346 -- have to ensure that the tag of the result is that of the result
6347 -- type. This is handled by making a copy of the expression in
6348 -- the case where it might have a different tag, namely when the
6349 -- expression is a conversion or a formal parameter. We create a new
6350 -- object of the result type and initialize it from the expression,
6351 -- which will implicitly force the tag to be set appropriately.
6353 else
6354 declare
6355 ExpR : constant Node_Id := Relocate_Node (Exp);
6356 Result_Id : constant Entity_Id :=
6357 Make_Temporary (Loc, 'R', ExpR);
6358 Result_Exp : constant Node_Id :=
6359 New_Occurrence_Of (Result_Id, Loc);
6360 Result_Obj : constant Node_Id :=
6361 Make_Object_Declaration (Loc,
6362 Defining_Identifier => Result_Id,
6363 Object_Definition =>
6364 New_Occurrence_Of (R_Type, Loc),
6365 Constant_Present => True,
6366 Expression => ExpR);
6368 begin
6369 Set_Assignment_OK (Result_Obj);
6370 Insert_Action (Exp, Result_Obj);
6372 Rewrite (Exp, Result_Exp);
6373 Analyze_And_Resolve (Exp, R_Type);
6374 end;
6375 end if;
6377 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6378 -- a check that the level of the return expression's underlying type
6379 -- is not deeper than the level of the master enclosing the function.
6380 -- Always generate the check when the type of the return expression
6381 -- is class-wide, when it's a type conversion, or when it's a formal
6382 -- parameter. Otherwise, suppress the check in the case where the
6383 -- return expression has a specific type whose level is known not to
6384 -- be statically deeper than the function's result type.
6386 -- No runtime check needed in interface thunks since it is performed
6387 -- by the target primitive associated with the thunk.
6389 -- Note: accessibility check is skipped in the VM case, since there
6390 -- does not seem to be any practical way to implement this check.
6392 elsif Ada_Version >= Ada_2005
6393 and then Tagged_Type_Expansion
6394 and then Is_Class_Wide_Type (R_Type)
6395 and then not Is_Thunk (Current_Scope)
6396 and then not Scope_Suppress.Suppress (Accessibility_Check)
6397 and then
6398 (Is_Class_Wide_Type (Etype (Exp))
6399 or else Nkind_In (Exp, N_Type_Conversion,
6400 N_Unchecked_Type_Conversion)
6401 or else (Is_Entity_Name (Exp)
6402 and then Ekind (Entity (Exp)) in Formal_Kind)
6403 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6404 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6405 then
6406 declare
6407 Tag_Node : Node_Id;
6409 begin
6410 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6411 -- "this" to reference the base of the object. This is required to
6412 -- get access to the TSD of the object.
6414 if Is_Class_Wide_Type (Etype (Exp))
6415 and then Is_Interface (Etype (Exp))
6416 and then Nkind (Exp) = N_Explicit_Dereference
6417 then
6418 Tag_Node :=
6419 Make_Explicit_Dereference (Loc,
6420 Prefix =>
6421 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6422 Make_Function_Call (Loc,
6423 Name =>
6424 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6425 Parameter_Associations => New_List (
6426 Unchecked_Convert_To (RTE (RE_Address),
6427 Duplicate_Subexpr (Prefix (Exp)))))));
6428 else
6429 Tag_Node :=
6430 Make_Attribute_Reference (Loc,
6431 Prefix => Duplicate_Subexpr (Exp),
6432 Attribute_Name => Name_Tag);
6433 end if;
6435 Insert_Action (Exp,
6436 Make_Raise_Program_Error (Loc,
6437 Condition =>
6438 Make_Op_Gt (Loc,
6439 Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
6440 Right_Opnd =>
6441 Make_Integer_Literal (Loc,
6442 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
6443 Reason => PE_Accessibility_Check_Failed));
6444 end;
6446 -- AI05-0073: If function has a controlling access result, check that
6447 -- the tag of the return value, if it is not null, matches designated
6448 -- type of return type.
6450 -- The return expression is referenced twice in the code below, so it
6451 -- must be made free of side effects. Given that different compilers
6452 -- may evaluate these parameters in different order, both occurrences
6453 -- perform a copy.
6455 elsif Ekind (R_Type) = E_Anonymous_Access_Type
6456 and then Has_Controlling_Result (Scope_Id)
6457 then
6458 Insert_Action (N,
6459 Make_Raise_Constraint_Error (Loc,
6460 Condition =>
6461 Make_And_Then (Loc,
6462 Left_Opnd =>
6463 Make_Op_Ne (Loc,
6464 Left_Opnd => Duplicate_Subexpr (Exp),
6465 Right_Opnd => Make_Null (Loc)),
6467 Right_Opnd => Make_Op_Ne (Loc,
6468 Left_Opnd =>
6469 Make_Selected_Component (Loc,
6470 Prefix => Duplicate_Subexpr (Exp),
6471 Selector_Name => Make_Identifier (Loc, Name_uTag)),
6473 Right_Opnd =>
6474 Make_Attribute_Reference (Loc,
6475 Prefix =>
6476 New_Occurrence_Of (Designated_Type (R_Type), Loc),
6477 Attribute_Name => Name_Tag))),
6479 Reason => CE_Tag_Check_Failed),
6480 Suppress => All_Checks);
6481 end if;
6483 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6484 -- ensure that the function result does not outlive an
6485 -- object designated by one of it discriminants.
6487 if Present (Extra_Accessibility_Of_Result (Scope_Id))
6488 and then Has_Unconstrained_Access_Discriminants (R_Type)
6489 then
6490 declare
6491 Discrim_Source : Node_Id;
6493 procedure Check_Against_Result_Level (Level : Node_Id);
6494 -- Check the given accessibility level against the level
6495 -- determined by the point of call. (AI05-0234).
6497 --------------------------------
6498 -- Check_Against_Result_Level --
6499 --------------------------------
6501 procedure Check_Against_Result_Level (Level : Node_Id) is
6502 begin
6503 Insert_Action (N,
6504 Make_Raise_Program_Error (Loc,
6505 Condition =>
6506 Make_Op_Gt (Loc,
6507 Left_Opnd => Level,
6508 Right_Opnd =>
6509 New_Occurrence_Of
6510 (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
6511 Reason => PE_Accessibility_Check_Failed));
6512 end Check_Against_Result_Level;
6514 begin
6515 Discrim_Source := Exp;
6516 while Nkind (Discrim_Source) = N_Qualified_Expression loop
6517 Discrim_Source := Expression (Discrim_Source);
6518 end loop;
6520 if Nkind (Discrim_Source) = N_Identifier
6521 and then Is_Return_Object (Entity (Discrim_Source))
6522 then
6523 Discrim_Source := Entity (Discrim_Source);
6525 if Is_Constrained (Etype (Discrim_Source)) then
6526 Discrim_Source := Etype (Discrim_Source);
6527 else
6528 Discrim_Source := Expression (Parent (Discrim_Source));
6529 end if;
6531 elsif Nkind (Discrim_Source) = N_Identifier
6532 and then Nkind_In (Original_Node (Discrim_Source),
6533 N_Aggregate, N_Extension_Aggregate)
6534 then
6535 Discrim_Source := Original_Node (Discrim_Source);
6537 elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
6538 Nkind (Original_Node (Discrim_Source)) = N_Function_Call
6539 then
6540 Discrim_Source := Original_Node (Discrim_Source);
6541 end if;
6543 while Nkind_In (Discrim_Source, N_Qualified_Expression,
6544 N_Type_Conversion,
6545 N_Unchecked_Type_Conversion)
6546 loop
6547 Discrim_Source := Expression (Discrim_Source);
6548 end loop;
6550 case Nkind (Discrim_Source) is
6551 when N_Defining_Identifier =>
6553 pragma Assert (Is_Composite_Type (Discrim_Source)
6554 and then Has_Discriminants (Discrim_Source)
6555 and then Is_Constrained (Discrim_Source));
6557 declare
6558 Discrim : Entity_Id :=
6559 First_Discriminant (Base_Type (R_Type));
6560 Disc_Elmt : Elmt_Id :=
6561 First_Elmt (Discriminant_Constraint
6562 (Discrim_Source));
6563 begin
6564 loop
6565 if Ekind (Etype (Discrim)) =
6566 E_Anonymous_Access_Type
6567 then
6568 Check_Against_Result_Level
6569 (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
6570 end if;
6572 Next_Elmt (Disc_Elmt);
6573 Next_Discriminant (Discrim);
6574 exit when not Present (Discrim);
6575 end loop;
6576 end;
6578 when N_Aggregate | N_Extension_Aggregate =>
6580 -- Unimplemented: extension aggregate case where discrims
6581 -- come from ancestor part, not extension part.
6583 declare
6584 Discrim : Entity_Id :=
6585 First_Discriminant (Base_Type (R_Type));
6587 Disc_Exp : Node_Id := Empty;
6589 Positionals_Exhausted
6590 : Boolean := not Present (Expressions
6591 (Discrim_Source));
6593 function Associated_Expr
6594 (Comp_Id : Entity_Id;
6595 Associations : List_Id) return Node_Id;
6597 -- Given a component and a component associations list,
6598 -- locate the expression for that component; returns
6599 -- Empty if no such expression is found.
6601 ---------------------
6602 -- Associated_Expr --
6603 ---------------------
6605 function Associated_Expr
6606 (Comp_Id : Entity_Id;
6607 Associations : List_Id) return Node_Id
6609 Assoc : Node_Id;
6610 Choice : Node_Id;
6612 begin
6613 -- Simple linear search seems ok here
6615 Assoc := First (Associations);
6616 while Present (Assoc) loop
6617 Choice := First (Choices (Assoc));
6618 while Present (Choice) loop
6619 if (Nkind (Choice) = N_Identifier
6620 and then Chars (Choice) = Chars (Comp_Id))
6621 or else (Nkind (Choice) = N_Others_Choice)
6622 then
6623 return Expression (Assoc);
6624 end if;
6626 Next (Choice);
6627 end loop;
6629 Next (Assoc);
6630 end loop;
6632 return Empty;
6633 end Associated_Expr;
6635 -- Start of processing for Expand_Simple_Function_Return
6637 begin
6638 if not Positionals_Exhausted then
6639 Disc_Exp := First (Expressions (Discrim_Source));
6640 end if;
6642 loop
6643 if Positionals_Exhausted then
6644 Disc_Exp :=
6645 Associated_Expr
6646 (Discrim,
6647 Component_Associations (Discrim_Source));
6648 end if;
6650 if Ekind (Etype (Discrim)) =
6651 E_Anonymous_Access_Type
6652 then
6653 Check_Against_Result_Level
6654 (Dynamic_Accessibility_Level (Disc_Exp));
6655 end if;
6657 Next_Discriminant (Discrim);
6658 exit when not Present (Discrim);
6660 if not Positionals_Exhausted then
6661 Next (Disc_Exp);
6662 Positionals_Exhausted := not Present (Disc_Exp);
6663 end if;
6664 end loop;
6665 end;
6667 when N_Function_Call =>
6669 -- No check needed (check performed by callee)
6671 null;
6673 when others =>
6675 declare
6676 Level : constant Node_Id :=
6677 Make_Integer_Literal (Loc,
6678 Object_Access_Level (Discrim_Source));
6680 begin
6681 -- Unimplemented: check for name prefix that includes
6682 -- a dereference of an access value with a dynamic
6683 -- accessibility level (e.g., an access param or a
6684 -- saooaaat) and use dynamic level in that case. For
6685 -- example:
6686 -- return Access_Param.all(Some_Index).Some_Component;
6687 -- ???
6689 Set_Etype (Level, Standard_Natural);
6690 Check_Against_Result_Level (Level);
6691 end;
6693 end case;
6694 end;
6695 end if;
6697 -- If we are returning an object that may not be bit-aligned, then copy
6698 -- the value into a temporary first. This copy may need to expand to a
6699 -- loop of component operations.
6701 if Is_Possibly_Unaligned_Slice (Exp)
6702 or else Is_Possibly_Unaligned_Object (Exp)
6703 then
6704 declare
6705 ExpR : constant Node_Id := Relocate_Node (Exp);
6706 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6707 begin
6708 Insert_Action (Exp,
6709 Make_Object_Declaration (Loc,
6710 Defining_Identifier => Tnn,
6711 Constant_Present => True,
6712 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6713 Expression => ExpR),
6714 Suppress => All_Checks);
6715 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6716 end;
6717 end if;
6719 -- Generate call to postcondition checks if they are present
6721 if Ekind (Scope_Id) = E_Function
6722 and then Has_Postconditions (Scope_Id)
6723 then
6724 -- We are going to reference the returned value twice in this case,
6725 -- once in the call to _Postconditions, and once in the actual return
6726 -- statement, but we can't have side effects happening twice, and in
6727 -- any case for efficiency we don't want to do the computation twice.
6729 -- If the returned expression is an entity name, we don't need to
6730 -- worry since it is efficient and safe to reference it twice, that's
6731 -- also true for literals other than string literals, and for the
6732 -- case of X.all where X is an entity name.
6734 if Is_Entity_Name (Exp)
6735 or else Nkind_In (Exp, N_Character_Literal,
6736 N_Integer_Literal,
6737 N_Real_Literal)
6738 or else (Nkind (Exp) = N_Explicit_Dereference
6739 and then Is_Entity_Name (Prefix (Exp)))
6740 then
6741 null;
6743 -- Otherwise we are going to need a temporary to capture the value
6745 else
6746 declare
6747 ExpR : Node_Id := Relocate_Node (Exp);
6748 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6750 begin
6751 -- In the case of discriminated objects, we have created a
6752 -- constrained subtype above, and used the underlying type.
6753 -- This transformation is post-analysis and harmless, except
6754 -- that now the call to the post-condition will be analyzed and
6755 -- type kinds have to match.
6757 if Nkind (ExpR) = N_Unchecked_Type_Conversion
6758 and then
6759 Is_Private_Type (R_Type) /= Is_Private_Type (Etype (ExpR))
6760 then
6761 ExpR := Expression (ExpR);
6762 end if;
6764 -- For a complex expression of an elementary type, capture
6765 -- value in the temporary and use it as the reference.
6767 if Is_Elementary_Type (R_Type) then
6768 Insert_Action (Exp,
6769 Make_Object_Declaration (Loc,
6770 Defining_Identifier => Tnn,
6771 Constant_Present => True,
6772 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6773 Expression => ExpR),
6774 Suppress => All_Checks);
6776 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6778 -- If we have something we can rename, generate a renaming of
6779 -- the object and replace the expression with a reference
6781 elsif Is_Object_Reference (Exp) then
6782 Insert_Action (Exp,
6783 Make_Object_Renaming_Declaration (Loc,
6784 Defining_Identifier => Tnn,
6785 Subtype_Mark => New_Occurrence_Of (R_Type, Loc),
6786 Name => ExpR),
6787 Suppress => All_Checks);
6789 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6791 -- Otherwise we have something like a string literal or an
6792 -- aggregate. We could copy the value, but that would be
6793 -- inefficient. Instead we make a reference to the value and
6794 -- capture this reference with a renaming, the expression is
6795 -- then replaced by a dereference of this renaming.
6797 else
6798 -- For now, copy the value, since the code below does not
6799 -- seem to work correctly ???
6801 Insert_Action (Exp,
6802 Make_Object_Declaration (Loc,
6803 Defining_Identifier => Tnn,
6804 Constant_Present => True,
6805 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6806 Expression => Relocate_Node (Exp)),
6807 Suppress => All_Checks);
6809 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6811 -- Insert_Action (Exp,
6812 -- Make_Object_Renaming_Declaration (Loc,
6813 -- Defining_Identifier => Tnn,
6814 -- Access_Definition =>
6815 -- Make_Access_Definition (Loc,
6816 -- All_Present => True,
6817 -- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
6818 -- Name =>
6819 -- Make_Reference (Loc,
6820 -- Prefix => Relocate_Node (Exp))),
6821 -- Suppress => All_Checks);
6823 -- Rewrite (Exp,
6824 -- Make_Explicit_Dereference (Loc,
6825 -- Prefix => New_Occurrence_Of (Tnn, Loc)));
6826 end if;
6827 end;
6828 end if;
6830 -- Generate call to _postconditions
6832 Insert_Action (Exp,
6833 Make_Procedure_Call_Statement (Loc,
6834 Name => Make_Identifier (Loc, Name_uPostconditions),
6835 Parameter_Associations => New_List (Duplicate_Subexpr (Exp))));
6836 end if;
6838 -- Ada 2005 (AI-251): If this return statement corresponds with an
6839 -- simple return statement associated with an extended return statement
6840 -- and the type of the returned object is an interface then generate an
6841 -- implicit conversion to force displacement of the "this" pointer.
6843 if Ada_Version >= Ada_2005
6844 and then Comes_From_Extended_Return_Statement (N)
6845 and then Nkind (Expression (N)) = N_Identifier
6846 and then Is_Interface (Utyp)
6847 and then Utyp /= Underlying_Type (Exptyp)
6848 then
6849 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
6850 Analyze_And_Resolve (Exp);
6851 end if;
6852 end Expand_Simple_Function_Return;
6854 --------------------------------
6855 -- Expand_Subprogram_Contract --
6856 --------------------------------
6858 procedure Expand_Subprogram_Contract
6859 (N : Node_Id;
6860 Spec_Id : Entity_Id;
6861 Body_Id : Entity_Id)
6863 procedure Add_Invariant_And_Predicate_Checks
6864 (Subp_Id : Entity_Id;
6865 Stmts : in out List_Id;
6866 Result : out Node_Id);
6867 -- Process the result of function Subp_Id (if applicable) and all its
6868 -- formals. Add invariant and predicate checks where applicable. The
6869 -- routine appends all the checks to list Stmts. If Subp_Id denotes a
6870 -- function, Result contains the entity of parameter _Result, to be
6871 -- used in the creation of procedure _Postconditions.
6873 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id);
6874 -- Append a node to a list. If there is no list, create a new one. When
6875 -- the item denotes a pragma, it is added to the list only when it is
6876 -- enabled.
6878 procedure Build_Postconditions_Procedure
6879 (Subp_Id : Entity_Id;
6880 Stmts : List_Id;
6881 Result : Entity_Id);
6882 -- Create the body of procedure _Postconditions which handles various
6883 -- assertion actions on exit from subprogram Subp_Id. Stmts is the list
6884 -- of statements to be checked on exit. Parameter Result is the entity
6885 -- of parameter _Result when Subp_Id denotes a function.
6887 function Build_Pragma_Check_Equivalent
6888 (Prag : Node_Id;
6889 Subp_Id : Entity_Id := Empty;
6890 Inher_Id : Entity_Id := Empty) return Node_Id;
6891 -- Transform a [refined] pre- or postcondition denoted by Prag into an
6892 -- equivalent pragma Check. When the pre- or postcondition is inherited,
6893 -- the routine corrects the references of all formals of Inher_Id to
6894 -- point to the formals of Subp_Id.
6896 procedure Collect_Body_Postconditions (Stmts : in out List_Id);
6897 -- Process all postconditions found in the declarations of the body. The
6898 -- routine appends the pragma Check equivalents to list Stmts.
6900 procedure Collect_Spec_Postconditions
6901 (Subp_Id : Entity_Id;
6902 Stmts : in out List_Id);
6903 -- Process all [inherited] postconditions of subprogram spec Subp_Id.
6904 -- The routine appends the pragma Check equivalents to list Stmts.
6906 procedure Collect_Spec_Preconditions (Subp_Id : Entity_Id);
6907 -- Process all [inherited] preconditions of subprogram spec Subp_Id. The
6908 -- routine prepends the pragma Check equivalents to the declarations of
6909 -- the body.
6911 procedure Prepend_To_Declarations (Item : Node_Id);
6912 -- Prepend a single item to the declarations of the subprogram body
6914 procedure Process_Contract_Cases
6915 (Subp_Id : Entity_Id;
6916 Stmts : in out List_Id);
6917 -- Process pragma Contract_Cases of subprogram spec Subp_Id. The routine
6918 -- appends the expanded code to list Stmts.
6920 ----------------------------------------
6921 -- Add_Invariant_And_Predicate_Checks --
6922 ----------------------------------------
6924 procedure Add_Invariant_And_Predicate_Checks
6925 (Subp_Id : Entity_Id;
6926 Stmts : in out List_Id;
6927 Result : out Node_Id)
6929 procedure Add_Invariant_Access_Checks (Id : Entity_Id);
6930 -- Id denotes the return value of a function or a formal parameter.
6931 -- Add an invariant check if the type of Id is access to a type with
6932 -- invariants. The routine appends the generated code to Stmts.
6934 function Invariant_Checks_OK (Typ : Entity_Id) return Boolean;
6935 -- Determine whether type Typ can benefit from invariant checks. To
6936 -- qualify, the type must have a non-null invariant procedure and
6937 -- subprogram Subp_Id must appear visible from the point of view of
6938 -- the type.
6940 ---------------------------------
6941 -- Add_Invariant_Access_Checks --
6942 ---------------------------------
6944 procedure Add_Invariant_Access_Checks (Id : Entity_Id) is
6945 Loc : constant Source_Ptr := Sloc (N);
6946 Ref : Node_Id;
6947 Typ : Entity_Id;
6949 begin
6950 Typ := Etype (Id);
6952 if Is_Access_Type (Typ) and then not Is_Access_Constant (Typ) then
6953 Typ := Designated_Type (Typ);
6955 if Invariant_Checks_OK (Typ) then
6956 Ref :=
6957 Make_Explicit_Dereference (Loc,
6958 Prefix => New_Occurrence_Of (Id, Loc));
6959 Set_Etype (Ref, Typ);
6961 -- Generate:
6962 -- if <Id> /= null then
6963 -- <invariant_call (<Ref>)>
6964 -- end if;
6966 Append_Enabled_Item
6967 (Item =>
6968 Make_If_Statement (Loc,
6969 Condition =>
6970 Make_Op_Ne (Loc,
6971 Left_Opnd => New_Occurrence_Of (Id, Loc),
6972 Right_Opnd => Make_Null (Loc)),
6973 Then_Statements => New_List (
6974 Make_Invariant_Call (Ref))),
6975 List => Stmts);
6976 end if;
6977 end if;
6978 end Add_Invariant_Access_Checks;
6980 -------------------------
6981 -- Invariant_Checks_OK --
6982 -------------------------
6984 function Invariant_Checks_OK (Typ : Entity_Id) return Boolean is
6985 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
6986 -- Determine whether the body of procedure Proc_Id contains a sole
6987 -- null statement, possibly followed by an optional return.
6989 function Has_Public_Visibility_Of_Subprogram return Boolean;
6990 -- Determine whether type Typ has public visibility of subprogram
6991 -- Subp_Id.
6993 -------------------
6994 -- Has_Null_Body --
6995 -------------------
6997 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
6998 Body_Id : Entity_Id;
6999 Decl : Node_Id;
7000 Spec : Node_Id;
7001 Stmt1 : Node_Id;
7002 Stmt2 : Node_Id;
7004 begin
7005 Spec := Parent (Proc_Id);
7006 Decl := Parent (Spec);
7008 -- Retrieve the entity of the invariant procedure body
7010 if Nkind (Spec) = N_Procedure_Specification
7011 and then Nkind (Decl) = N_Subprogram_Declaration
7012 then
7013 Body_Id := Corresponding_Body (Decl);
7015 -- The body acts as a spec
7017 else
7018 Body_Id := Proc_Id;
7019 end if;
7021 -- The body will be generated later
7023 if No (Body_Id) then
7024 return False;
7025 end if;
7027 Spec := Parent (Body_Id);
7028 Decl := Parent (Spec);
7030 pragma Assert
7031 (Nkind (Spec) = N_Procedure_Specification
7032 and then Nkind (Decl) = N_Subprogram_Body);
7034 Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
7036 -- Look for a null statement followed by an optional return
7037 -- statement.
7039 if Nkind (Stmt1) = N_Null_Statement then
7040 Stmt2 := Next (Stmt1);
7042 if Present (Stmt2) then
7043 return Nkind (Stmt2) = N_Simple_Return_Statement;
7044 else
7045 return True;
7046 end if;
7047 end if;
7049 return False;
7050 end Has_Null_Body;
7052 -----------------------------------------
7053 -- Has_Public_Visibility_Of_Subprogram --
7054 -----------------------------------------
7056 function Has_Public_Visibility_Of_Subprogram return Boolean is
7057 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
7059 begin
7060 -- An Initialization procedure must be considered visible even
7061 -- though it is internally generated.
7063 if Is_Init_Proc (Defining_Entity (Subp_Decl)) then
7064 return True;
7066 elsif Ekind (Scope (Typ)) /= E_Package then
7067 return False;
7069 -- Internally generated code is never publicly visible except
7070 -- for a subprogram that is the implementation of an expression
7071 -- function. In that case the visibility is determined by the
7072 -- last check.
7074 elsif not Comes_From_Source (Subp_Decl)
7075 and then
7076 (Nkind (Original_Node (Subp_Decl)) /= N_Expression_Function
7077 or else not
7078 Comes_From_Source (Defining_Entity (Subp_Decl)))
7079 then
7080 return False;
7082 -- Determine whether the subprogram is declared in the visible
7083 -- declarations of the package containing the type.
7085 else
7086 return List_Containing (Subp_Decl) =
7087 Visible_Declarations
7088 (Specification (Unit_Declaration_Node (Scope (Typ))));
7089 end if;
7090 end Has_Public_Visibility_Of_Subprogram;
7092 -- Start of processing for Invariant_Checks_OK
7094 begin
7095 return
7096 Has_Invariants (Typ)
7097 and then Present (Invariant_Procedure (Typ))
7098 and then not Has_Null_Body (Invariant_Procedure (Typ))
7099 and then Has_Public_Visibility_Of_Subprogram;
7100 end Invariant_Checks_OK;
7102 -- Local variables
7104 Loc : constant Source_Ptr := Sloc (N);
7105 -- Source location of subprogram contract
7107 Formal : Entity_Id;
7108 Typ : Entity_Id;
7110 -- Start of processing for Add_Invariant_And_Predicate_Checks
7112 begin
7113 Result := Empty;
7115 -- Do not generate any checks if no code is being generated
7117 if not Expander_Active then
7118 return;
7119 end if;
7121 -- Process the result of a function
7123 if Ekind_In (Subp_Id, E_Function, E_Generic_Function) then
7124 Typ := Etype (Subp_Id);
7126 -- Generate _Result which is used in procedure _Postconditions to
7127 -- verify the return value.
7129 Result := Make_Defining_Identifier (Loc, Name_uResult);
7130 Set_Etype (Result, Typ);
7132 -- Add an invariant check when the return type has invariants and
7133 -- the related function is visible to the outside.
7135 if Invariant_Checks_OK (Typ) then
7136 Append_Enabled_Item
7137 (Item =>
7138 Make_Invariant_Call (New_Occurrence_Of (Result, Loc)),
7139 List => Stmts);
7140 end if;
7142 -- Add an invariant check when the return type is an access to a
7143 -- type with invariants.
7145 Add_Invariant_Access_Checks (Result);
7146 end if;
7148 -- Add invariant and predicates for all formals that qualify
7150 Formal := First_Formal (Subp_Id);
7151 while Present (Formal) loop
7152 Typ := Etype (Formal);
7154 if Ekind (Formal) /= E_In_Parameter
7155 or else Is_Access_Type (Typ)
7156 then
7157 if Invariant_Checks_OK (Typ) then
7158 Append_Enabled_Item
7159 (Item =>
7160 Make_Invariant_Call (New_Occurrence_Of (Formal, Loc)),
7161 List => Stmts);
7162 end if;
7164 Add_Invariant_Access_Checks (Formal);
7166 -- Note: we used to add predicate checks for OUT and IN OUT
7167 -- formals here, but that was misguided, since such checks are
7168 -- performed on the caller side, based on the predicate of the
7169 -- actual, rather than the predicate of the formal.
7171 end if;
7173 Next_Formal (Formal);
7174 end loop;
7175 end Add_Invariant_And_Predicate_Checks;
7177 -------------------------
7178 -- Append_Enabled_Item --
7179 -------------------------
7181 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id) is
7182 begin
7183 -- Do not chain ignored or disabled pragmas
7185 if Nkind (Item) = N_Pragma
7186 and then (Is_Ignored (Item) or else Is_Disabled (Item))
7187 then
7188 null;
7190 -- Otherwise, add the item
7192 else
7193 if No (List) then
7194 List := New_List;
7195 end if;
7197 -- If the pragma is a conjunct in a composite postcondition, it
7198 -- has been processed in reverse order. In the postcondition body
7199 -- if must appear before the others.
7201 if Nkind (Item) = N_Pragma
7202 and then From_Aspect_Specification (Item)
7203 and then Split_PPC (Item)
7204 then
7205 Prepend (Item, List);
7206 else
7207 Append (Item, List);
7208 end if;
7209 end if;
7210 end Append_Enabled_Item;
7212 ------------------------------------
7213 -- Build_Postconditions_Procedure --
7214 ------------------------------------
7216 procedure Build_Postconditions_Procedure
7217 (Subp_Id : Entity_Id;
7218 Stmts : List_Id;
7219 Result : Entity_Id)
7221 procedure Insert_Before_First_Source_Declaration (Stmt : Node_Id);
7222 -- Insert node Stmt before the first source declaration of the
7223 -- related subprogram's body. If no such declaration exists, Stmt
7224 -- becomes the last declaration.
7226 --------------------------------------------
7227 -- Insert_Before_First_Source_Declaration --
7228 --------------------------------------------
7230 procedure Insert_Before_First_Source_Declaration (Stmt : Node_Id) is
7231 Decls : constant List_Id := Declarations (N);
7232 Decl : Node_Id;
7234 begin
7235 -- Inspect the declarations of the related subprogram body looking
7236 -- for the first source declaration.
7238 if Present (Decls) then
7239 Decl := First (Decls);
7240 while Present (Decl) loop
7241 if Comes_From_Source (Decl) then
7242 Insert_Before (Decl, Stmt);
7243 return;
7244 end if;
7246 Next (Decl);
7247 end loop;
7249 -- If we get there, then the subprogram body lacks any source
7250 -- declarations. The body of _Postconditions now acts as the
7251 -- last declaration.
7253 Append (Stmt, Decls);
7255 -- Ensure that the body has a declaration list
7257 else
7258 Set_Declarations (N, New_List (Stmt));
7259 end if;
7260 end Insert_Before_First_Source_Declaration;
7262 -- Local variables
7264 Loc : constant Source_Ptr := Sloc (N);
7265 Params : List_Id := No_List;
7266 Proc_Id : Entity_Id;
7268 -- Start of processing for Build_Postconditions_Procedure
7270 begin
7271 -- Do not create the routine if no code is being generated
7273 if not Expander_Active then
7274 return;
7276 -- Nothing to do if there are no actions to check on exit
7278 elsif No (Stmts) then
7279 return;
7280 end if;
7282 Proc_Id := Make_Defining_Identifier (Loc, Name_uPostconditions);
7284 -- The related subprogram is a function, create the specification of
7285 -- parameter _Result.
7287 if Present (Result) then
7288 Params := New_List (
7289 Make_Parameter_Specification (Loc,
7290 Defining_Identifier => Result,
7291 Parameter_Type =>
7292 New_Occurrence_Of (Etype (Result), Loc)));
7293 end if;
7295 -- Insert _Postconditions before the first source declaration of the
7296 -- body. This ensures that the body will not cause any premature
7297 -- freezing as it may mention types:
7299 -- procedure Proc (Obj : Array_Typ) is
7300 -- procedure _postconditions is
7301 -- begin
7302 -- ... Obj ...
7303 -- end _postconditions;
7305 -- subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
7306 -- begin
7308 -- In the example above, Obj is of type T but the incorrect placement
7309 -- of _Postconditions will cause a crash in gigi due to an out of
7310 -- order reference. The body of _Postconditions must be placed after
7311 -- the declaration of Temp to preserve correct visibility.
7313 -- Note that we set an explicit End_Label in order to override the
7314 -- sloc of the implicit RETURN statement, and prevent it from
7315 -- inheriting the sloc of one of the postconditions: this would cause
7316 -- confusing debug info to be produced, interfering with coverage
7317 -- analysis tools.
7319 Insert_Before_First_Source_Declaration (
7320 Make_Subprogram_Body (Loc,
7321 Specification =>
7322 Make_Procedure_Specification (Loc,
7323 Defining_Unit_Name => Proc_Id,
7324 Parameter_Specifications => Params),
7326 Declarations => Empty_List,
7327 Handled_Statement_Sequence =>
7328 Make_Handled_Sequence_Of_Statements (Loc,
7329 Statements => Stmts,
7330 End_Label => Make_Identifier (Loc, Chars (Proc_Id)))));
7332 -- Set the attributes of the related subprogram to capture the
7333 -- generated procedure.
7335 if Ekind_In (Subp_Id, E_Generic_Procedure, E_Procedure) then
7336 Set_Postcondition_Proc (Subp_Id, Proc_Id);
7337 end if;
7339 Set_Has_Postconditions (Subp_Id);
7340 end Build_Postconditions_Procedure;
7342 -----------------------------------
7343 -- Build_Pragma_Check_Equivalent --
7344 -----------------------------------
7346 function Build_Pragma_Check_Equivalent
7347 (Prag : Node_Id;
7348 Subp_Id : Entity_Id := Empty;
7349 Inher_Id : Entity_Id := Empty) return Node_Id
7351 Loc : constant Source_Ptr := Sloc (Prag);
7352 Prag_Nam : constant Name_Id := Pragma_Name (Prag);
7353 Check_Prag : Node_Id;
7354 Formals_Map : Elist_Id;
7355 Inher_Formal : Entity_Id;
7356 Msg_Arg : Node_Id;
7357 Nam : Name_Id;
7358 Subp_Formal : Entity_Id;
7360 begin
7361 Formals_Map := No_Elist;
7363 -- When the pre- or postcondition is inherited, map the formals of
7364 -- the inherited subprogram to those of the current subprogram.
7366 if Present (Inher_Id) then
7367 pragma Assert (Present (Subp_Id));
7369 Formals_Map := New_Elmt_List;
7371 -- Create a relation <inherited formal> => <subprogram formal>
7373 Inher_Formal := First_Formal (Inher_Id);
7374 Subp_Formal := First_Formal (Subp_Id);
7375 while Present (Inher_Formal) and then Present (Subp_Formal) loop
7376 Append_Elmt (Inher_Formal, Formals_Map);
7377 Append_Elmt (Subp_Formal, Formals_Map);
7379 Next_Formal (Inher_Formal);
7380 Next_Formal (Subp_Formal);
7381 end loop;
7382 end if;
7384 -- Copy the original pragma while performing substitutions (if
7385 -- applicable).
7387 Check_Prag :=
7388 New_Copy_Tree
7389 (Source => Prag,
7390 Map => Formals_Map,
7391 New_Scope => Current_Scope);
7393 -- Mark the pragma as being internally generated and reset the
7394 -- Analyzed flag.
7396 Set_Comes_From_Source (Check_Prag, False);
7397 Set_Analyzed (Check_Prag, False);
7399 -- For a postcondition pragma within a generic, preserve the pragma
7400 -- for later expansion. This is also used when an error was detected,
7401 -- thus setting Expander_Active to False.
7403 if Prag_Nam = Name_Postcondition and then not Expander_Active then
7404 return Check_Prag;
7405 end if;
7407 if Present (Corresponding_Aspect (Prag)) then
7408 Nam := Chars (Identifier (Corresponding_Aspect (Prag)));
7409 else
7410 Nam := Prag_Nam;
7411 end if;
7413 -- Convert the copy into pragma Check by correcting the name and
7414 -- adding a check_kind argument.
7416 Set_Pragma_Identifier
7417 (Check_Prag, Make_Identifier (Loc, Name_Check));
7419 Prepend_To (Pragma_Argument_Associations (Check_Prag),
7420 Make_Pragma_Argument_Association (Loc,
7421 Expression => Make_Identifier (Loc, Nam)));
7423 -- Update the error message when the pragma is inherited
7425 if Present (Inher_Id) then
7426 Msg_Arg := Last (Pragma_Argument_Associations (Check_Prag));
7428 if Chars (Msg_Arg) = Name_Message then
7429 String_To_Name_Buffer (Strval (Expression (Msg_Arg)));
7431 -- Insert "inherited" to improve the error message
7433 if Name_Buffer (1 .. 8) = "failed p" then
7434 Insert_Str_In_Name_Buffer ("inherited ", 8);
7435 Set_Strval (Expression (Msg_Arg), String_From_Name_Buffer);
7436 end if;
7437 end if;
7438 end if;
7440 return Check_Prag;
7441 end Build_Pragma_Check_Equivalent;
7443 ---------------------------------
7444 -- Collect_Body_Postconditions --
7445 ---------------------------------
7447 procedure Collect_Body_Postconditions (Stmts : in out List_Id) is
7448 procedure Collect_Body_Postconditions_Of_Kind (Post_Nam : Name_Id);
7449 -- Process all postconditions of the kind denoted by Post_Nam
7451 -----------------------------------------
7452 -- Collect_Body_Postconditions_Of_Kind --
7453 -----------------------------------------
7455 procedure Collect_Body_Postconditions_Of_Kind (Post_Nam : Name_Id) is
7456 procedure Collect_Body_Postconditions_In_Decls
7457 (First_Decl : Node_Id);
7458 -- Process all postconditions found in a declarative list starting
7459 -- with declaration First_Decl.
7461 ------------------------------------------
7462 -- Collect_Body_Postconditions_In_Decls --
7463 ------------------------------------------
7465 procedure Collect_Body_Postconditions_In_Decls
7466 (First_Decl : Node_Id)
7468 Check_Prag : Node_Id;
7469 Decl : Node_Id;
7471 begin
7472 -- Inspect the declarative list looking for a pragma that
7473 -- matches the desired name.
7475 Decl := First_Decl;
7476 while Present (Decl) loop
7478 -- Note that non-matching pragmas are skipped
7480 if Nkind (Decl) = N_Pragma then
7481 if Pragma_Name (Decl) = Post_Nam then
7482 if not Analyzed (Decl) then
7483 Analyze (Decl);
7484 end if;
7486 Check_Prag := Build_Pragma_Check_Equivalent (Decl);
7488 if Expander_Active then
7489 Append_Enabled_Item
7490 (Item => Check_Prag,
7491 List => Stmts);
7493 -- If analyzing a generic unit, save pragma for later
7495 else
7496 Prepend_To_Declarations (Check_Prag);
7497 end if;
7498 end if;
7500 -- Skip internally generated code
7502 elsif not Comes_From_Source (Decl) then
7503 null;
7505 -- Postcondition pragmas are usually grouped together. There
7506 -- is no need to inspect the whole declarative list.
7508 else
7509 exit;
7510 end if;
7512 Next (Decl);
7513 end loop;
7514 end Collect_Body_Postconditions_In_Decls;
7516 -- Local variables
7518 Unit_Decl : constant Node_Id := Parent (N);
7520 -- Start of processing for Collect_Body_Postconditions_Of_Kind
7522 begin
7523 pragma Assert (Nam_In (Post_Nam, Name_Postcondition,
7524 Name_Refined_Post));
7526 -- Inspect the declarations of the subprogram body looking for a
7527 -- pragma that matches the desired name.
7529 Collect_Body_Postconditions_In_Decls
7530 (First_Decl => First (Declarations (N)));
7532 -- The subprogram body being processed is actually the proper body
7533 -- of a stub with a corresponding spec. The subprogram stub may
7534 -- carry a postcondition pragma in which case it must be taken
7535 -- into account. The pragma appears after the stub.
7537 if Present (Spec_Id) and then Nkind (Unit_Decl) = N_Subunit then
7538 Collect_Body_Postconditions_In_Decls
7539 (First_Decl => Next (Corresponding_Stub (Unit_Decl)));
7540 end if;
7541 end Collect_Body_Postconditions_Of_Kind;
7543 -- Start of processing for Collect_Body_Postconditions
7545 begin
7546 Collect_Body_Postconditions_Of_Kind (Name_Refined_Post);
7547 Collect_Body_Postconditions_Of_Kind (Name_Postcondition);
7548 end Collect_Body_Postconditions;
7550 ---------------------------------
7551 -- Collect_Spec_Postconditions --
7552 ---------------------------------
7554 procedure Collect_Spec_Postconditions
7555 (Subp_Id : Entity_Id;
7556 Stmts : in out List_Id)
7558 Inher_Subps : constant Subprogram_List :=
7559 Inherited_Subprograms (Subp_Id);
7560 Check_Prag : Node_Id;
7561 Prag : Node_Id;
7562 Inher_Subp_Id : Entity_Id;
7564 begin
7565 -- Process the contract of the spec
7567 Prag := Pre_Post_Conditions (Contract (Subp_Id));
7568 while Present (Prag) loop
7569 if Pragma_Name (Prag) = Name_Postcondition then
7570 Check_Prag := Build_Pragma_Check_Equivalent (Prag);
7572 if Expander_Active then
7573 Append_Enabled_Item
7574 (Item => Check_Prag,
7575 List => Stmts);
7577 -- When analyzing a generic unit, save the pragma for later
7579 else
7580 Prepend_To_Declarations (Check_Prag);
7581 end if;
7582 end if;
7584 Prag := Next_Pragma (Prag);
7585 end loop;
7587 -- Process the contracts of all inherited subprograms, looking for
7588 -- class-wide postconditions.
7590 for Index in Inher_Subps'Range loop
7591 Inher_Subp_Id := Inher_Subps (Index);
7593 Prag := Pre_Post_Conditions (Contract (Inher_Subp_Id));
7594 while Present (Prag) loop
7595 if Pragma_Name (Prag) = Name_Postcondition
7596 and then Class_Present (Prag)
7597 then
7598 Check_Prag :=
7599 Build_Pragma_Check_Equivalent
7600 (Prag => Prag,
7601 Subp_Id => Subp_Id,
7602 Inher_Id => Inher_Subp_Id);
7604 if Expander_Active then
7605 Append_Enabled_Item
7606 (Item => Check_Prag,
7607 List => Stmts);
7609 -- When analyzing a generic unit, save the pragma for later
7611 else
7612 Prepend_To_Declarations (Check_Prag);
7613 end if;
7614 end if;
7616 Prag := Next_Pragma (Prag);
7617 end loop;
7618 end loop;
7619 end Collect_Spec_Postconditions;
7621 --------------------------------
7622 -- Collect_Spec_Preconditions --
7623 --------------------------------
7625 procedure Collect_Spec_Preconditions (Subp_Id : Entity_Id) is
7626 Class_Pre : Node_Id := Empty;
7627 -- The sole class-wide precondition pragma that applies to the
7628 -- subprogram.
7630 procedure Add_Or_Save_Precondition (Prag : Node_Id);
7631 -- Save a class-wide precondition or add a regulat precondition to
7632 -- the declarative list of the body.
7634 procedure Merge_Preconditions (From : Node_Id; Into : Node_Id);
7635 -- Merge two class-wide preconditions by "or else"-ing them. The
7636 -- changes are accumulated in parameter Into. Update the error
7637 -- message of Into.
7639 ------------------------------
7640 -- Add_Or_Save_Precondition --
7641 ------------------------------
7643 procedure Add_Or_Save_Precondition (Prag : Node_Id) is
7644 Check_Prag : Node_Id;
7646 begin
7647 Check_Prag := Build_Pragma_Check_Equivalent (Prag);
7649 -- Save the sole class-wide precondition (if any) for the next
7650 -- step where it will be merged with inherited preconditions.
7652 if Class_Present (Prag) then
7653 pragma Assert (No (Class_Pre));
7654 Class_Pre := Check_Prag;
7656 -- Accumulate the corresponding Check pragmas to the top of the
7657 -- declarations. Prepending the items ensures that they will be
7658 -- evaluated in their original order.
7660 else
7661 Prepend_To_Declarations (Check_Prag);
7662 end if;
7663 end Add_Or_Save_Precondition;
7665 -------------------------
7666 -- Merge_Preconditions --
7667 -------------------------
7669 procedure Merge_Preconditions (From : Node_Id; Into : Node_Id) is
7670 function Expression_Arg (Prag : Node_Id) return Node_Id;
7671 -- Return the boolean expression argument of a precondition while
7672 -- updating its parenteses count for the subsequent merge.
7674 function Message_Arg (Prag : Node_Id) return Node_Id;
7675 -- Return the message argument of a precondition
7677 --------------------
7678 -- Expression_Arg --
7679 --------------------
7681 function Expression_Arg (Prag : Node_Id) return Node_Id is
7682 Args : constant List_Id := Pragma_Argument_Associations (Prag);
7683 Arg : constant Node_Id := Get_Pragma_Arg (Next (First (Args)));
7685 begin
7686 if Paren_Count (Arg) = 0 then
7687 Set_Paren_Count (Arg, 1);
7688 end if;
7690 return Arg;
7691 end Expression_Arg;
7693 -----------------
7694 -- Message_Arg --
7695 -----------------
7697 function Message_Arg (Prag : Node_Id) return Node_Id is
7698 Args : constant List_Id := Pragma_Argument_Associations (Prag);
7699 begin
7700 return Get_Pragma_Arg (Last (Args));
7701 end Message_Arg;
7703 -- Local variables
7705 From_Expr : constant Node_Id := Expression_Arg (From);
7706 From_Msg : constant Node_Id := Message_Arg (From);
7707 Into_Expr : constant Node_Id := Expression_Arg (Into);
7708 Into_Msg : constant Node_Id := Message_Arg (Into);
7709 Loc : constant Source_Ptr := Sloc (Into);
7711 -- Start of processing for Merge_Preconditions
7713 begin
7714 -- Merge the two preconditions by "or else"-ing them
7716 Rewrite (Into_Expr,
7717 Make_Or_Else (Loc,
7718 Right_Opnd => Relocate_Node (Into_Expr),
7719 Left_Opnd => From_Expr));
7721 -- Merge the two error messages to produce a single message of the
7722 -- form:
7724 -- failed precondition from ...
7725 -- also failed inherited precondition from ...
7727 if not Exception_Locations_Suppressed then
7728 Start_String (Strval (Into_Msg));
7729 Store_String_Char (ASCII.LF);
7730 Store_String_Chars (" also ");
7731 Store_String_Chars (Strval (From_Msg));
7733 Set_Strval (Into_Msg, End_String);
7734 end if;
7735 end Merge_Preconditions;
7737 -- Local variables
7739 Inher_Subps : constant Subprogram_List :=
7740 Inherited_Subprograms (Subp_Id);
7741 Subp_Decl : constant Node_Id := Parent (Parent (Subp_Id));
7742 Check_Prag : Node_Id;
7743 Decl : Node_Id;
7744 Inher_Subp_Id : Entity_Id;
7745 Prag : Node_Id;
7747 -- Start of processing for Collect_Spec_Preconditions
7749 begin
7750 -- Process the contract of the spec
7752 Prag := Pre_Post_Conditions (Contract (Subp_Id));
7753 while Present (Prag) loop
7754 if Pragma_Name (Prag) = Name_Precondition then
7755 Add_Or_Save_Precondition (Prag);
7756 end if;
7758 Prag := Next_Pragma (Prag);
7759 end loop;
7761 -- The subprogram declaration being processed is actually a body
7762 -- stub. The stub may carry a precondition pragma in which case it
7763 -- must be taken into account. The pragma appears after the stub.
7765 if Nkind (Subp_Decl) = N_Subprogram_Body_Stub then
7767 -- Inspect the declarations following the body stub
7769 Decl := Next (Subp_Decl);
7770 while Present (Decl) loop
7772 -- Note that non-matching pragmas are skipped
7774 if Nkind (Decl) = N_Pragma then
7775 if Pragma_Name (Decl) = Name_Precondition then
7776 if not Analyzed (Decl) then
7777 Analyze (Decl);
7778 end if;
7780 Add_Or_Save_Precondition (Decl);
7781 end if;
7783 -- Skip internally generated code
7785 elsif not Comes_From_Source (Decl) then
7786 null;
7788 -- Preconditions are usually grouped together. There is no need
7789 -- to inspect the whole declarative list.
7791 else
7792 exit;
7793 end if;
7795 Next (Decl);
7796 end loop;
7797 end if;
7799 -- Process the contracts of all inherited subprograms, looking for
7800 -- class-wide preconditions.
7802 for Index in Inher_Subps'Range loop
7803 Inher_Subp_Id := Inher_Subps (Index);
7805 Prag := Pre_Post_Conditions (Contract (Inher_Subp_Id));
7806 while Present (Prag) loop
7807 if Pragma_Name (Prag) = Name_Precondition
7808 and then Class_Present (Prag)
7809 then
7810 Check_Prag :=
7811 Build_Pragma_Check_Equivalent
7812 (Prag => Prag,
7813 Subp_Id => Subp_Id,
7814 Inher_Id => Inher_Subp_Id);
7816 -- The spec or an inherited subprogram already yielded a
7817 -- class-wide precondition. Merge the existing precondition
7818 -- with the current one using "or else".
7820 if Present (Class_Pre) then
7821 Merge_Preconditions (Check_Prag, Class_Pre);
7822 else
7823 Class_Pre := Check_Prag;
7824 end if;
7825 end if;
7827 Prag := Next_Pragma (Prag);
7828 end loop;
7829 end loop;
7831 -- Add the merged class-wide preconditions (if any)
7833 if Present (Class_Pre) then
7834 Prepend_To_Declarations (Class_Pre);
7835 end if;
7836 end Collect_Spec_Preconditions;
7838 -----------------------------
7839 -- Prepend_To_Declarations --
7840 -----------------------------
7842 procedure Prepend_To_Declarations (Item : Node_Id) is
7843 Decls : List_Id := Declarations (N);
7845 begin
7846 -- Ensure that the body has a declarative list
7848 if No (Decls) then
7849 Decls := New_List;
7850 Set_Declarations (N, Decls);
7851 end if;
7853 Prepend_To (Decls, Item);
7854 end Prepend_To_Declarations;
7856 ----------------------------
7857 -- Process_Contract_Cases --
7858 ----------------------------
7860 procedure Process_Contract_Cases
7861 (Subp_Id : Entity_Id;
7862 Stmts : in out List_Id)
7864 Prag : Node_Id;
7866 begin
7867 -- Do not build the Contract_Cases circuitry if no code is being
7868 -- generated.
7870 if not Expander_Active then
7871 return;
7872 end if;
7874 Prag := Contract_Test_Cases (Contract (Subp_Id));
7875 while Present (Prag) loop
7876 if Pragma_Name (Prag) = Name_Contract_Cases then
7877 Expand_Contract_Cases
7878 (CCs => Prag,
7879 Subp_Id => Subp_Id,
7880 Decls => Declarations (N),
7881 Stmts => Stmts);
7882 end if;
7884 Prag := Next_Pragma (Prag);
7885 end loop;
7886 end Process_Contract_Cases;
7888 -- Local variables
7890 Post_Stmts : List_Id := No_List;
7891 Result : Entity_Id;
7892 Subp_Id : Entity_Id;
7894 -- Start of processing for Expand_Subprogram_Contract
7896 begin
7897 if Present (Spec_Id) then
7898 Subp_Id := Spec_Id;
7899 else
7900 Subp_Id := Body_Id;
7901 end if;
7903 -- Do not process a predicate function as its body will end up with a
7904 -- recursive call to itself and blow up the stack.
7906 if Ekind (Subp_Id) = E_Function
7907 and then Is_Predicate_Function (Subp_Id)
7908 then
7909 return;
7911 -- Do not process TSS subprograms
7913 elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
7914 return;
7915 end if;
7917 -- The expansion of a subprogram contract involves the relocation of
7918 -- various contract assertions to the declarations of the body in a
7919 -- particular order. The order is as follows:
7921 -- function Example (...) return ... is
7922 -- procedure _Postconditions (...) is
7923 -- begin
7924 -- <refined postconditions from body>
7925 -- <postconditions from body>
7926 -- <postconditions from spec>
7927 -- <inherited postconditions>
7928 -- <contract case consequences>
7929 -- <invariant check of function result (if applicable)>
7930 -- <invariant and predicate checks of parameters>
7931 -- end _Postconditions;
7933 -- <inherited preconditions>
7934 -- <preconditions from spec>
7935 -- <preconditions from body>
7936 -- <refined preconditions from body>
7937 -- <contract case conditions>
7939 -- <source declarations>
7940 -- begin
7941 -- <source statements>
7943 -- _Preconditions (Result);
7944 -- return Result;
7945 -- end Example;
7947 -- Routine _Postconditions holds all contract assertions that must be
7948 -- verified on exit from the related routine.
7950 -- Collect all [inherited] preconditions from the spec, transform them
7951 -- into Check pragmas and add them to the declarations of the body in
7952 -- the order outlined above.
7954 if Present (Spec_Id) then
7955 Collect_Spec_Preconditions (Spec_Id);
7956 end if;
7958 -- Transform all [refined] postconditions of the body into Check
7959 -- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
7961 Collect_Body_Postconditions (Post_Stmts);
7963 -- Transform all [inherited] postconditions from the spec into Check
7964 -- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
7966 if Present (Spec_Id) then
7967 Collect_Spec_Postconditions (Spec_Id, Post_Stmts);
7969 -- Transform pragma Contract_Cases from the spec into its circuitry
7971 Process_Contract_Cases (Spec_Id, Post_Stmts);
7972 end if;
7974 -- Apply invariant and predicate checks on the result of a function (if
7975 -- applicable) and all formals. The resulting checks are accumulated in
7976 -- list Post_Stmts.
7978 Add_Invariant_And_Predicate_Checks (Subp_Id, Post_Stmts, Result);
7980 -- Construct procedure _Postconditions
7982 Build_Postconditions_Procedure (Subp_Id, Post_Stmts, Result);
7983 end Expand_Subprogram_Contract;
7985 --------------------------------
7986 -- Is_Build_In_Place_Function --
7987 --------------------------------
7989 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
7990 begin
7991 -- This function is called from Expand_Subtype_From_Expr during
7992 -- semantic analysis, even when expansion is off. In those cases
7993 -- the build_in_place expansion will not take place.
7995 if not Expander_Active then
7996 return False;
7997 end if;
7999 -- For now we test whether E denotes a function or access-to-function
8000 -- type whose result subtype is inherently limited. Later this test
8001 -- may be revised to allow composite nonlimited types. Functions with
8002 -- a foreign convention or whose result type has a foreign convention
8003 -- never qualify.
8005 if Ekind_In (E, E_Function, E_Generic_Function)
8006 or else (Ekind (E) = E_Subprogram_Type
8007 and then Etype (E) /= Standard_Void_Type)
8008 then
8009 -- Note: If the function has a foreign convention, it cannot build
8010 -- its result in place, so you're on your own. On the other hand,
8011 -- if only the return type has a foreign convention, its layout is
8012 -- intended to be compatible with the other language, but the build-
8013 -- in place machinery can ensure that the object is not copied.
8015 if Has_Foreign_Convention (E) then
8016 return False;
8018 -- In Ada 2005 all functions with an inherently limited return type
8019 -- must be handled using a build-in-place profile, including the case
8020 -- of a function with a limited interface result, where the function
8021 -- may return objects of nonlimited descendants.
8023 else
8024 return Is_Limited_View (Etype (E))
8025 and then Ada_Version >= Ada_2005
8026 and then not Debug_Flag_Dot_L;
8027 end if;
8029 else
8030 return False;
8031 end if;
8032 end Is_Build_In_Place_Function;
8034 -------------------------------------
8035 -- Is_Build_In_Place_Function_Call --
8036 -------------------------------------
8038 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
8039 Exp_Node : Node_Id := N;
8040 Function_Id : Entity_Id;
8042 begin
8043 -- Return False if the expander is currently inactive, since awareness
8044 -- of build-in-place treatment is only relevant during expansion. Note
8045 -- that Is_Build_In_Place_Function, which is called as part of this
8046 -- function, is also conditioned this way, but we need to check here as
8047 -- well to avoid blowing up on processing protected calls when expansion
8048 -- is disabled (such as with -gnatc) since those would trip over the
8049 -- raise of Program_Error below.
8051 -- In SPARK mode, build-in-place calls are not expanded, so that we
8052 -- may end up with a call that is neither resolved to an entity, nor
8053 -- an indirect call.
8055 if not Expander_Active then
8056 return False;
8057 end if;
8059 -- Step past qualification or unchecked conversion (the latter can occur
8060 -- in cases of calls to 'Input).
8062 if Nkind_In (Exp_Node, N_Qualified_Expression,
8063 N_Unchecked_Type_Conversion)
8064 then
8065 Exp_Node := Expression (N);
8066 end if;
8068 if Nkind (Exp_Node) /= N_Function_Call then
8069 return False;
8071 else
8072 if Is_Entity_Name (Name (Exp_Node)) then
8073 Function_Id := Entity (Name (Exp_Node));
8075 -- In the case of an explicitly dereferenced call, use the subprogram
8076 -- type generated for the dereference.
8078 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
8079 Function_Id := Etype (Name (Exp_Node));
8081 -- This may be a call to a protected function.
8083 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
8084 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
8086 else
8087 raise Program_Error;
8088 end if;
8090 return Is_Build_In_Place_Function (Function_Id);
8091 end if;
8092 end Is_Build_In_Place_Function_Call;
8094 -----------------------
8095 -- Freeze_Subprogram --
8096 -----------------------
8098 procedure Freeze_Subprogram (N : Node_Id) is
8099 Loc : constant Source_Ptr := Sloc (N);
8101 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
8102 -- (Ada 2005): Register a predefined primitive in all the secondary
8103 -- dispatch tables of its primitive type.
8105 ----------------------------------
8106 -- Register_Predefined_DT_Entry --
8107 ----------------------------------
8109 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
8110 Iface_DT_Ptr : Elmt_Id;
8111 Tagged_Typ : Entity_Id;
8112 Thunk_Id : Entity_Id;
8113 Thunk_Code : Node_Id;
8115 begin
8116 Tagged_Typ := Find_Dispatching_Type (Prim);
8118 if No (Access_Disp_Table (Tagged_Typ))
8119 or else not Has_Interfaces (Tagged_Typ)
8120 or else not RTE_Available (RE_Interface_Tag)
8121 or else Restriction_Active (No_Dispatching_Calls)
8122 then
8123 return;
8124 end if;
8126 -- Skip the first two access-to-dispatch-table pointers since they
8127 -- leads to the primary dispatch table (predefined DT and user
8128 -- defined DT). We are only concerned with the secondary dispatch
8129 -- table pointers. Note that the access-to- dispatch-table pointer
8130 -- corresponds to the first implemented interface retrieved below.
8132 Iface_DT_Ptr :=
8133 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
8135 while Present (Iface_DT_Ptr)
8136 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
8137 loop
8138 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
8139 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
8141 if Present (Thunk_Code) then
8142 Insert_Actions_After (N, New_List (
8143 Thunk_Code,
8145 Build_Set_Predefined_Prim_Op_Address (Loc,
8146 Tag_Node =>
8147 New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
8148 Position => DT_Position (Prim),
8149 Address_Node =>
8150 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
8151 Make_Attribute_Reference (Loc,
8152 Prefix => New_Occurrence_Of (Thunk_Id, Loc),
8153 Attribute_Name => Name_Unrestricted_Access))),
8155 Build_Set_Predefined_Prim_Op_Address (Loc,
8156 Tag_Node =>
8157 New_Occurrence_Of
8158 (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
8159 Loc),
8160 Position => DT_Position (Prim),
8161 Address_Node =>
8162 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
8163 Make_Attribute_Reference (Loc,
8164 Prefix => New_Occurrence_Of (Prim, Loc),
8165 Attribute_Name => Name_Unrestricted_Access)))));
8166 end if;
8168 -- Skip the tag of the predefined primitives dispatch table
8170 Next_Elmt (Iface_DT_Ptr);
8171 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
8173 -- Skip tag of the no-thunks dispatch table
8175 Next_Elmt (Iface_DT_Ptr);
8176 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
8178 -- Skip tag of predefined primitives no-thunks dispatch table
8180 Next_Elmt (Iface_DT_Ptr);
8181 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
8183 Next_Elmt (Iface_DT_Ptr);
8184 end loop;
8185 end Register_Predefined_DT_Entry;
8187 -- Local variables
8189 Subp : constant Entity_Id := Entity (N);
8191 -- Start of processing for Freeze_Subprogram
8193 begin
8194 -- We suppress the initialization of the dispatch table entry when
8195 -- VM_Target because the dispatching mechanism is handled internally
8196 -- by the VM.
8198 if Is_Dispatching_Operation (Subp)
8199 and then not Is_Abstract_Subprogram (Subp)
8200 and then Present (DTC_Entity (Subp))
8201 and then Present (Scope (DTC_Entity (Subp)))
8202 and then Tagged_Type_Expansion
8203 and then not Restriction_Active (No_Dispatching_Calls)
8204 and then RTE_Available (RE_Tag)
8205 then
8206 declare
8207 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
8209 begin
8210 -- Handle private overridden primitives
8212 if not Is_CPP_Class (Typ) then
8213 Check_Overriding_Operation (Subp);
8214 end if;
8216 -- We assume that imported CPP primitives correspond with objects
8217 -- whose constructor is in the CPP side; therefore we don't need
8218 -- to generate code to register them in the dispatch table.
8220 if Is_CPP_Class (Typ) then
8221 null;
8223 -- Handle CPP primitives found in derivations of CPP_Class types.
8224 -- These primitives must have been inherited from some parent, and
8225 -- there is no need to register them in the dispatch table because
8226 -- Build_Inherit_Prims takes care of initializing these slots.
8228 elsif Is_Imported (Subp)
8229 and then (Convention (Subp) = Convention_CPP
8230 or else Convention (Subp) = Convention_C)
8231 then
8232 null;
8234 -- Generate code to register the primitive in non statically
8235 -- allocated dispatch tables
8237 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
8239 -- When a primitive is frozen, enter its name in its dispatch
8240 -- table slot.
8242 if not Is_Interface (Typ)
8243 or else Present (Interface_Alias (Subp))
8244 then
8245 if Is_Predefined_Dispatching_Operation (Subp) then
8246 Register_Predefined_DT_Entry (Subp);
8247 end if;
8249 Insert_Actions_After (N,
8250 Register_Primitive (Loc, Prim => Subp));
8251 end if;
8252 end if;
8253 end;
8254 end if;
8256 -- Mark functions that return by reference. Note that it cannot be part
8257 -- of the normal semantic analysis of the spec since the underlying
8258 -- returned type may not be known yet (for private types).
8260 declare
8261 Typ : constant Entity_Id := Etype (Subp);
8262 Utyp : constant Entity_Id := Underlying_Type (Typ);
8263 begin
8264 if Is_Limited_View (Typ) then
8265 Set_Returns_By_Ref (Subp);
8266 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
8267 Set_Returns_By_Ref (Subp);
8268 end if;
8269 end;
8271 -- Wnen freezing a null procedure, analyze its delayed aspects now
8272 -- because we may not have reached the end of the declarative list when
8273 -- delayed aspects are normally analyzed. This ensures that dispatching
8274 -- calls are properly rewritten when the generated _Postcondition
8275 -- procedure is analyzed in the null procedure body.
8277 if Nkind (Parent (Subp)) = N_Procedure_Specification
8278 and then Null_Present (Parent (Subp))
8279 then
8280 Analyze_Subprogram_Contract (Subp);
8281 end if;
8282 end Freeze_Subprogram;
8284 -----------------------
8285 -- Is_Null_Procedure --
8286 -----------------------
8288 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
8289 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
8291 begin
8292 if Ekind (Subp) /= E_Procedure then
8293 return False;
8295 -- Check if this is a declared null procedure
8297 elsif Nkind (Decl) = N_Subprogram_Declaration then
8298 if not Null_Present (Specification (Decl)) then
8299 return False;
8301 elsif No (Body_To_Inline (Decl)) then
8302 return False;
8304 -- Check if the body contains only a null statement, followed by
8305 -- the return statement added during expansion.
8307 else
8308 declare
8309 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
8311 Stat : Node_Id;
8312 Stat2 : Node_Id;
8314 begin
8315 if Nkind (Orig_Bod) /= N_Subprogram_Body then
8316 return False;
8317 else
8318 -- We must skip SCIL nodes because they are currently
8319 -- implemented as special N_Null_Statement nodes.
8321 Stat :=
8322 First_Non_SCIL_Node
8323 (Statements (Handled_Statement_Sequence (Orig_Bod)));
8324 Stat2 := Next_Non_SCIL_Node (Stat);
8326 return
8327 Is_Empty_List (Declarations (Orig_Bod))
8328 and then Nkind (Stat) = N_Null_Statement
8329 and then
8330 (No (Stat2)
8331 or else
8332 (Nkind (Stat2) = N_Simple_Return_Statement
8333 and then No (Next (Stat2))));
8334 end if;
8335 end;
8336 end if;
8338 else
8339 return False;
8340 end if;
8341 end Is_Null_Procedure;
8343 -------------------------------------------
8344 -- Make_Build_In_Place_Call_In_Allocator --
8345 -------------------------------------------
8347 procedure Make_Build_In_Place_Call_In_Allocator
8348 (Allocator : Node_Id;
8349 Function_Call : Node_Id)
8351 Acc_Type : constant Entity_Id := Etype (Allocator);
8352 Loc : Source_Ptr;
8353 Func_Call : Node_Id := Function_Call;
8354 Ref_Func_Call : Node_Id;
8355 Function_Id : Entity_Id;
8356 Result_Subt : Entity_Id;
8357 New_Allocator : Node_Id;
8358 Return_Obj_Access : Entity_Id; -- temp for function result
8359 Temp_Init : Node_Id; -- initial value of Return_Obj_Access
8360 Alloc_Form : BIP_Allocation_Form;
8361 Pool : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
8362 Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
8363 Chain : Entity_Id; -- activation chain, in case of tasks
8365 begin
8366 -- Step past qualification or unchecked conversion (the latter can occur
8367 -- in cases of calls to 'Input).
8369 if Nkind_In (Func_Call,
8370 N_Qualified_Expression,
8371 N_Unchecked_Type_Conversion)
8372 then
8373 Func_Call := Expression (Func_Call);
8374 end if;
8376 -- If the call has already been processed to add build-in-place actuals
8377 -- then return. This should not normally occur in an allocator context,
8378 -- but we add the protection as a defensive measure.
8380 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8381 return;
8382 end if;
8384 -- Mark the call as processed as a build-in-place call
8386 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8388 Loc := Sloc (Function_Call);
8390 if Is_Entity_Name (Name (Func_Call)) then
8391 Function_Id := Entity (Name (Func_Call));
8393 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8394 Function_Id := Etype (Name (Func_Call));
8396 else
8397 raise Program_Error;
8398 end if;
8400 Result_Subt := Available_View (Etype (Function_Id));
8402 -- Create a temp for the function result. In the caller-allocates case,
8403 -- this will be initialized to the result of a new uninitialized
8404 -- allocator. Note: we do not use Allocator as the Related_Node of
8405 -- Return_Obj_Access in call to Make_Temporary below as this would
8406 -- create a sort of infinite "recursion".
8408 Return_Obj_Access := Make_Temporary (Loc, 'R');
8409 Set_Etype (Return_Obj_Access, Acc_Type);
8411 -- When the result subtype is constrained, the return object is
8412 -- allocated on the caller side, and access to it is passed to the
8413 -- function.
8415 -- Here and in related routines, we must examine the full view of the
8416 -- type, because the view at the point of call may differ from that
8417 -- that in the function body, and the expansion mechanism depends on
8418 -- the characteristics of the full view.
8420 if Is_Constrained (Underlying_Type (Result_Subt)) then
8422 -- Replace the initialized allocator of form "new T'(Func (...))"
8423 -- with an uninitialized allocator of form "new T", where T is the
8424 -- result subtype of the called function. The call to the function
8425 -- is handled separately further below.
8427 New_Allocator :=
8428 Make_Allocator (Loc,
8429 Expression => New_Occurrence_Of (Result_Subt, Loc));
8430 Set_No_Initialization (New_Allocator);
8432 -- Copy attributes to new allocator. Note that the new allocator
8433 -- logically comes from source if the original one did, so copy the
8434 -- relevant flag. This ensures proper treatment of the restriction
8435 -- No_Implicit_Heap_Allocations in this case.
8437 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
8438 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8439 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8441 Rewrite (Allocator, New_Allocator);
8443 -- Initial value of the temp is the result of the uninitialized
8444 -- allocator
8446 Temp_Init := Relocate_Node (Allocator);
8448 -- Indicate that caller allocates, and pass in the return object
8450 Alloc_Form := Caller_Allocation;
8451 Pool := Make_Null (No_Location);
8452 Return_Obj_Actual :=
8453 Make_Unchecked_Type_Conversion (Loc,
8454 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8455 Expression =>
8456 Make_Explicit_Dereference (Loc,
8457 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
8459 -- When the result subtype is unconstrained, the function itself must
8460 -- perform the allocation of the return object, so we pass parameters
8461 -- indicating that.
8463 else
8464 Temp_Init := Empty;
8466 -- Case of a user-defined storage pool. Pass an allocation parameter
8467 -- indicating that the function should allocate its result in the
8468 -- pool, and pass the pool. Use 'Unrestricted_Access because the
8469 -- pool may not be aliased.
8471 if VM_Target = No_VM
8472 and then Present (Associated_Storage_Pool (Acc_Type))
8473 then
8474 Alloc_Form := User_Storage_Pool;
8475 Pool :=
8476 Make_Attribute_Reference (Loc,
8477 Prefix =>
8478 New_Occurrence_Of
8479 (Associated_Storage_Pool (Acc_Type), Loc),
8480 Attribute_Name => Name_Unrestricted_Access);
8482 -- No user-defined pool; pass an allocation parameter indicating that
8483 -- the function should allocate its result on the heap.
8485 else
8486 Alloc_Form := Global_Heap;
8487 Pool := Make_Null (No_Location);
8488 end if;
8490 -- The caller does not provide the return object in this case, so we
8491 -- have to pass null for the object access actual.
8493 Return_Obj_Actual := Empty;
8494 end if;
8496 -- Declare the temp object
8498 Insert_Action (Allocator,
8499 Make_Object_Declaration (Loc,
8500 Defining_Identifier => Return_Obj_Access,
8501 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
8502 Expression => Temp_Init));
8504 Ref_Func_Call := Make_Reference (Loc, Func_Call);
8506 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8507 -- then generate an implicit conversion to force displacement of the
8508 -- "this" pointer.
8510 if Is_Interface (Designated_Type (Acc_Type)) then
8511 Rewrite
8512 (Ref_Func_Call,
8513 OK_Convert_To (Acc_Type, Ref_Func_Call));
8514 end if;
8516 declare
8517 Assign : constant Node_Id :=
8518 Make_Assignment_Statement (Loc,
8519 Name => New_Occurrence_Of (Return_Obj_Access, Loc),
8520 Expression => Ref_Func_Call);
8521 -- Assign the result of the function call into the temp. In the
8522 -- caller-allocates case, this is overwriting the temp with its
8523 -- initial value, which has no effect. In the callee-allocates case,
8524 -- this is setting the temp to point to the object allocated by the
8525 -- callee.
8527 Actions : List_Id;
8528 -- Actions to be inserted. If there are no tasks, this is just the
8529 -- assignment statement. If the allocated object has tasks, we need
8530 -- to wrap the assignment in a block that activates them. The
8531 -- activation chain of that block must be passed to the function,
8532 -- rather than some outer chain.
8533 begin
8534 if Has_Task (Result_Subt) then
8535 Actions := New_List;
8536 Build_Task_Allocate_Block_With_Init_Stmts
8537 (Actions, Allocator, Init_Stmts => New_List (Assign));
8538 Chain := Activation_Chain_Entity (Last (Actions));
8539 else
8540 Actions := New_List (Assign);
8541 Chain := Empty;
8542 end if;
8544 Insert_Actions (Allocator, Actions);
8545 end;
8547 -- When the function has a controlling result, an allocation-form
8548 -- parameter must be passed indicating that the caller is allocating
8549 -- the result object. This is needed because such a function can be
8550 -- called as a dispatching operation and must be treated similarly
8551 -- to functions with unconstrained result subtypes.
8553 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8554 (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8556 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8557 (Func_Call, Function_Id, Acc_Type);
8559 Add_Task_Actuals_To_Build_In_Place_Call
8560 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8561 Chain => Chain);
8563 -- Add an implicit actual to the function call that provides access
8564 -- to the allocated object. An unchecked conversion to the (specific)
8565 -- result subtype of the function is inserted to handle cases where
8566 -- the access type of the allocator has a class-wide designated type.
8568 Add_Access_Actual_To_Build_In_Place_Call
8569 (Func_Call, Function_Id, Return_Obj_Actual);
8571 -- If the build-in-place function call returns a controlled object,
8572 -- the finalization master will require a reference to routine
8573 -- Finalize_Address of the designated type. Setting this attribute
8574 -- is done in the same manner to expansion of allocators.
8576 if Needs_Finalization (Result_Subt) then
8578 -- Controlled types with supressed finalization do not need to
8579 -- associate the address of their Finalize_Address primitives with
8580 -- a master since they do not need a master to begin with.
8582 if Is_Library_Level_Entity (Acc_Type)
8583 and then Finalize_Storage_Only (Result_Subt)
8584 then
8585 null;
8587 -- Do not generate the call to Set_Finalize_Address in CodePeer mode
8588 -- because Finalize_Address is never built.
8590 elsif not CodePeer_Mode then
8591 Insert_Action (Allocator,
8592 Make_Set_Finalize_Address_Call (Loc,
8593 Typ => Etype (Function_Id),
8594 Ptr_Typ => Acc_Type));
8595 end if;
8596 end if;
8598 -- Finally, replace the allocator node with a reference to the temp
8600 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8602 Analyze_And_Resolve (Allocator, Acc_Type);
8603 end Make_Build_In_Place_Call_In_Allocator;
8605 ---------------------------------------------------
8606 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8607 ---------------------------------------------------
8609 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8610 (Function_Call : Node_Id)
8612 Loc : Source_Ptr;
8613 Func_Call : Node_Id := Function_Call;
8614 Function_Id : Entity_Id;
8615 Result_Subt : Entity_Id;
8616 Return_Obj_Id : Entity_Id;
8617 Return_Obj_Decl : Entity_Id;
8619 begin
8620 -- Step past qualification or unchecked conversion (the latter can occur
8621 -- in cases of calls to 'Input).
8623 if Nkind_In (Func_Call, N_Qualified_Expression,
8624 N_Unchecked_Type_Conversion)
8625 then
8626 Func_Call := Expression (Func_Call);
8627 end if;
8629 -- If the call has already been processed to add build-in-place actuals
8630 -- then return. One place this can occur is for calls to build-in-place
8631 -- functions that occur within a call to a protected operation, where
8632 -- due to rewriting and expansion of the protected call there can be
8633 -- more than one call to Expand_Actuals for the same set of actuals.
8635 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8636 return;
8637 end if;
8639 -- Mark the call as processed as a build-in-place call
8641 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8643 Loc := Sloc (Function_Call);
8645 if Is_Entity_Name (Name (Func_Call)) then
8646 Function_Id := Entity (Name (Func_Call));
8648 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8649 Function_Id := Etype (Name (Func_Call));
8651 else
8652 raise Program_Error;
8653 end if;
8655 Result_Subt := Etype (Function_Id);
8657 -- If the build-in-place function returns a controlled object, then the
8658 -- object needs to be finalized immediately after the context. Since
8659 -- this case produces a transient scope, the servicing finalizer needs
8660 -- to name the returned object. Create a temporary which is initialized
8661 -- with the function call:
8663 -- Temp_Id : Func_Type := BIP_Func_Call;
8665 -- The initialization expression of the temporary will be rewritten by
8666 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8667 -- Call_In_Object_Declaration.
8669 if Needs_Finalization (Result_Subt) then
8670 declare
8671 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
8672 Temp_Decl : Node_Id;
8674 begin
8675 -- Reset the guard on the function call since the following does
8676 -- not perform actual call expansion.
8678 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8680 Temp_Decl :=
8681 Make_Object_Declaration (Loc,
8682 Defining_Identifier => Temp_Id,
8683 Object_Definition =>
8684 New_Occurrence_Of (Result_Subt, Loc),
8685 Expression =>
8686 New_Copy_Tree (Function_Call));
8688 Insert_Action (Function_Call, Temp_Decl);
8690 Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
8691 Analyze (Function_Call);
8692 end;
8694 -- When the result subtype is constrained, an object of the subtype is
8695 -- declared and an access value designating it is passed as an actual.
8697 elsif Is_Constrained (Underlying_Type (Result_Subt)) then
8699 -- Create a temporary object to hold the function result
8701 Return_Obj_Id := Make_Temporary (Loc, 'R');
8702 Set_Etype (Return_Obj_Id, Result_Subt);
8704 Return_Obj_Decl :=
8705 Make_Object_Declaration (Loc,
8706 Defining_Identifier => Return_Obj_Id,
8707 Aliased_Present => True,
8708 Object_Definition => New_Occurrence_Of (Result_Subt, Loc));
8710 Set_No_Initialization (Return_Obj_Decl);
8712 Insert_Action (Func_Call, Return_Obj_Decl);
8714 -- When the function has a controlling result, an allocation-form
8715 -- parameter must be passed indicating that the caller is allocating
8716 -- the result object. This is needed because such a function can be
8717 -- called as a dispatching operation and must be treated similarly
8718 -- to functions with unconstrained result subtypes.
8720 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8721 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8723 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8724 (Func_Call, Function_Id);
8726 Add_Task_Actuals_To_Build_In_Place_Call
8727 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8729 -- Add an implicit actual to the function call that provides access
8730 -- to the caller's return object.
8732 Add_Access_Actual_To_Build_In_Place_Call
8733 (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
8735 -- When the result subtype is unconstrained, the function must allocate
8736 -- the return object in the secondary stack, so appropriate implicit
8737 -- parameters are added to the call to indicate that. A transient
8738 -- scope is established to ensure eventual cleanup of the result.
8740 else
8741 -- Pass an allocation parameter indicating that the function should
8742 -- allocate its result on the secondary stack.
8744 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8745 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8747 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8748 (Func_Call, Function_Id);
8750 Add_Task_Actuals_To_Build_In_Place_Call
8751 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8753 -- Pass a null value to the function since no return object is
8754 -- available on the caller side.
8756 Add_Access_Actual_To_Build_In_Place_Call
8757 (Func_Call, Function_Id, Empty);
8758 end if;
8759 end Make_Build_In_Place_Call_In_Anonymous_Context;
8761 --------------------------------------------
8762 -- Make_Build_In_Place_Call_In_Assignment --
8763 --------------------------------------------
8765 procedure Make_Build_In_Place_Call_In_Assignment
8766 (Assign : Node_Id;
8767 Function_Call : Node_Id)
8769 Lhs : constant Node_Id := Name (Assign);
8770 Func_Call : Node_Id := Function_Call;
8771 Func_Id : Entity_Id;
8772 Loc : Source_Ptr;
8773 Obj_Decl : Node_Id;
8774 Obj_Id : Entity_Id;
8775 Ptr_Typ : Entity_Id;
8776 Ptr_Typ_Decl : Node_Id;
8777 New_Expr : Node_Id;
8778 Result_Subt : Entity_Id;
8779 Target : Node_Id;
8781 begin
8782 -- Step past qualification or unchecked conversion (the latter can occur
8783 -- in cases of calls to 'Input).
8785 if Nkind_In (Func_Call, N_Qualified_Expression,
8786 N_Unchecked_Type_Conversion)
8787 then
8788 Func_Call := Expression (Func_Call);
8789 end if;
8791 -- If the call has already been processed to add build-in-place actuals
8792 -- then return. This should not normally occur in an assignment context,
8793 -- but we add the protection as a defensive measure.
8795 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8796 return;
8797 end if;
8799 -- Mark the call as processed as a build-in-place call
8801 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8803 Loc := Sloc (Function_Call);
8805 if Is_Entity_Name (Name (Func_Call)) then
8806 Func_Id := Entity (Name (Func_Call));
8808 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8809 Func_Id := Etype (Name (Func_Call));
8811 else
8812 raise Program_Error;
8813 end if;
8815 Result_Subt := Etype (Func_Id);
8817 -- When the result subtype is unconstrained, an additional actual must
8818 -- be passed to indicate that the caller is providing the return object.
8819 -- This parameter must also be passed when the called function has a
8820 -- controlling result, because dispatching calls to the function needs
8821 -- to be treated effectively the same as calls to class-wide functions.
8823 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8824 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
8826 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8827 (Func_Call, Func_Id);
8829 Add_Task_Actuals_To_Build_In_Place_Call
8830 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
8832 -- Add an implicit actual to the function call that provides access to
8833 -- the caller's return object.
8835 Add_Access_Actual_To_Build_In_Place_Call
8836 (Func_Call,
8837 Func_Id,
8838 Make_Unchecked_Type_Conversion (Loc,
8839 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8840 Expression => Relocate_Node (Lhs)));
8842 -- Create an access type designating the function's result subtype
8844 Ptr_Typ := Make_Temporary (Loc, 'A');
8846 Ptr_Typ_Decl :=
8847 Make_Full_Type_Declaration (Loc,
8848 Defining_Identifier => Ptr_Typ,
8849 Type_Definition =>
8850 Make_Access_To_Object_Definition (Loc,
8851 All_Present => True,
8852 Subtype_Indication =>
8853 New_Occurrence_Of (Result_Subt, Loc)));
8854 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8856 -- Finally, create an access object initialized to a reference to the
8857 -- function call. We know this access value is non-null, so mark the
8858 -- entity accordingly to suppress junk access checks.
8860 New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8862 Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
8863 Set_Etype (Obj_Id, Ptr_Typ);
8864 Set_Is_Known_Non_Null (Obj_Id);
8866 Obj_Decl :=
8867 Make_Object_Declaration (Loc,
8868 Defining_Identifier => Obj_Id,
8869 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8870 Expression => New_Expr);
8871 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
8873 Rewrite (Assign, Make_Null_Statement (Loc));
8875 -- Retrieve the target of the assignment
8877 if Nkind (Lhs) = N_Selected_Component then
8878 Target := Selector_Name (Lhs);
8879 elsif Nkind (Lhs) = N_Type_Conversion then
8880 Target := Expression (Lhs);
8881 else
8882 Target := Lhs;
8883 end if;
8885 -- If we are assigning to a return object or this is an expression of
8886 -- an extension aggregate, the target should either be an identifier
8887 -- or a simple expression. All other cases imply a different scenario.
8889 if Nkind (Target) in N_Has_Entity then
8890 Target := Entity (Target);
8891 else
8892 return;
8893 end if;
8894 end Make_Build_In_Place_Call_In_Assignment;
8896 ----------------------------------------------------
8897 -- Make_Build_In_Place_Call_In_Object_Declaration --
8898 ----------------------------------------------------
8900 procedure Make_Build_In_Place_Call_In_Object_Declaration
8901 (Object_Decl : Node_Id;
8902 Function_Call : Node_Id)
8904 Loc : Source_Ptr;
8905 Obj_Def_Id : constant Entity_Id :=
8906 Defining_Identifier (Object_Decl);
8907 Enclosing_Func : constant Entity_Id :=
8908 Enclosing_Subprogram (Obj_Def_Id);
8909 Call_Deref : Node_Id;
8910 Caller_Object : Node_Id;
8911 Def_Id : Entity_Id;
8912 Fmaster_Actual : Node_Id := Empty;
8913 Func_Call : Node_Id := Function_Call;
8914 Function_Id : Entity_Id;
8915 Pool_Actual : Node_Id;
8916 Ptr_Typ : Entity_Id;
8917 Ptr_Typ_Decl : Node_Id;
8918 Pass_Caller_Acc : Boolean := False;
8919 Res_Decl : Node_Id;
8920 Result_Subt : Entity_Id;
8922 begin
8923 -- Step past qualification or unchecked conversion (the latter can occur
8924 -- in cases of calls to 'Input).
8926 if Nkind_In (Func_Call, N_Qualified_Expression,
8927 N_Unchecked_Type_Conversion)
8928 then
8929 Func_Call := Expression (Func_Call);
8930 end if;
8932 -- If the call has already been processed to add build-in-place actuals
8933 -- then return. This should not normally occur in an object declaration,
8934 -- but we add the protection as a defensive measure.
8936 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8937 return;
8938 end if;
8940 -- Mark the call as processed as a build-in-place call
8942 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8944 Loc := Sloc (Function_Call);
8946 if Is_Entity_Name (Name (Func_Call)) then
8947 Function_Id := Entity (Name (Func_Call));
8949 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8950 Function_Id := Etype (Name (Func_Call));
8952 else
8953 raise Program_Error;
8954 end if;
8956 Result_Subt := Etype (Function_Id);
8958 -- Create an access type designating the function's result subtype. We
8959 -- use the type of the original call because it may be a call to an
8960 -- inherited operation, which the expansion has replaced with the parent
8961 -- operation that yields the parent type. Note that this access type
8962 -- must be declared before we establish a transient scope, so that it
8963 -- receives the proper accessibility level.
8965 Ptr_Typ := Make_Temporary (Loc, 'A');
8966 Ptr_Typ_Decl :=
8967 Make_Full_Type_Declaration (Loc,
8968 Defining_Identifier => Ptr_Typ,
8969 Type_Definition =>
8970 Make_Access_To_Object_Definition (Loc,
8971 All_Present => True,
8972 Subtype_Indication =>
8973 New_Occurrence_Of (Etype (Function_Call), Loc)));
8975 -- The access type and its accompanying object must be inserted after
8976 -- the object declaration in the constrained case, so that the function
8977 -- call can be passed access to the object. In the unconstrained case,
8978 -- or if the object declaration is for a return object, the access type
8979 -- and object must be inserted before the object, since the object
8980 -- declaration is rewritten to be a renaming of a dereference of the
8981 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8982 -- the result object is in a different (transient) scope, so won't
8983 -- cause freezing.
8985 if Is_Constrained (Underlying_Type (Result_Subt))
8986 and then not Is_Return_Object (Defining_Identifier (Object_Decl))
8987 then
8988 Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
8989 else
8990 Insert_Action (Object_Decl, Ptr_Typ_Decl);
8991 end if;
8993 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8994 -- elaborated in an inner (transient) scope and thus won't cause
8995 -- freezing by itself.
8997 declare
8998 Ptr_Typ_Freeze_Ref : constant Node_Id :=
8999 New_Occurrence_Of (Ptr_Typ, Loc);
9000 begin
9001 Set_Parent (Ptr_Typ_Freeze_Ref, Ptr_Typ_Decl);
9002 Freeze_Expression (Ptr_Typ_Freeze_Ref);
9003 end;
9005 -- If the the object is a return object of an enclosing build-in-place
9006 -- function, then the implicit build-in-place parameters of the
9007 -- enclosing function are simply passed along to the called function.
9008 -- (Unfortunately, this won't cover the case of extension aggregates
9009 -- where the ancestor part is a build-in-place unconstrained function
9010 -- call that should be passed along the caller's parameters. Currently
9011 -- those get mishandled by reassigning the result of the call to the
9012 -- aggregate return object, when the call result should really be
9013 -- directly built in place in the aggregate and not in a temporary. ???)
9015 if Is_Return_Object (Defining_Identifier (Object_Decl)) then
9016 Pass_Caller_Acc := True;
9018 -- When the enclosing function has a BIP_Alloc_Form formal then we
9019 -- pass it along to the callee (such as when the enclosing function
9020 -- has an unconstrained or tagged result type).
9022 if Needs_BIP_Alloc_Form (Enclosing_Func) then
9023 if VM_Target = No_VM and then
9024 RTE_Available (RE_Root_Storage_Pool_Ptr)
9025 then
9026 Pool_Actual :=
9027 New_Occurrence_Of (Build_In_Place_Formal
9028 (Enclosing_Func, BIP_Storage_Pool), Loc);
9030 -- The build-in-place pool formal is not built on .NET/JVM
9032 else
9033 Pool_Actual := Empty;
9034 end if;
9036 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9037 (Func_Call,
9038 Function_Id,
9039 Alloc_Form_Exp =>
9040 New_Occurrence_Of
9041 (Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
9042 Loc),
9043 Pool_Actual => Pool_Actual);
9045 -- Otherwise, if enclosing function has a constrained result subtype,
9046 -- then caller allocation will be used.
9048 else
9049 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9050 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
9051 end if;
9053 if Needs_BIP_Finalization_Master (Enclosing_Func) then
9054 Fmaster_Actual :=
9055 New_Occurrence_Of
9056 (Build_In_Place_Formal
9057 (Enclosing_Func, BIP_Finalization_Master), Loc);
9058 end if;
9060 -- Retrieve the BIPacc formal from the enclosing function and convert
9061 -- it to the access type of the callee's BIP_Object_Access formal.
9063 Caller_Object :=
9064 Make_Unchecked_Type_Conversion (Loc,
9065 Subtype_Mark =>
9066 New_Occurrence_Of
9067 (Etype
9068 (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
9069 Loc),
9070 Expression =>
9071 New_Occurrence_Of
9072 (Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
9073 Loc));
9075 -- In the constrained case, add an implicit actual to the function call
9076 -- that provides access to the declared object. An unchecked conversion
9077 -- to the (specific) result type of the function is inserted to handle
9078 -- the case where the object is declared with a class-wide type.
9080 elsif Is_Constrained (Underlying_Type (Result_Subt)) then
9081 Caller_Object :=
9082 Make_Unchecked_Type_Conversion (Loc,
9083 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
9084 Expression => New_Occurrence_Of (Obj_Def_Id, Loc));
9086 -- When the function has a controlling result, an allocation-form
9087 -- parameter must be passed indicating that the caller is allocating
9088 -- the result object. This is needed because such a function can be
9089 -- called as a dispatching operation and must be treated similarly
9090 -- to functions with unconstrained result subtypes.
9092 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9093 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
9095 -- In other unconstrained cases, pass an indication to do the allocation
9096 -- on the secondary stack and set Caller_Object to Empty so that a null
9097 -- value will be passed for the caller's object address. A transient
9098 -- scope is established to ensure eventual cleanup of the result.
9100 else
9101 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9102 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
9103 Caller_Object := Empty;
9105 Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
9106 end if;
9108 -- Pass along any finalization master actual, which is needed in the
9109 -- case where the called function initializes a return object of an
9110 -- enclosing build-in-place function.
9112 Add_Finalization_Master_Actual_To_Build_In_Place_Call
9113 (Func_Call => Func_Call,
9114 Func_Id => Function_Id,
9115 Master_Exp => Fmaster_Actual);
9117 if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
9118 and then Has_Task (Result_Subt)
9119 then
9120 -- Here we're passing along the master that was passed in to this
9121 -- function.
9123 Add_Task_Actuals_To_Build_In_Place_Call
9124 (Func_Call, Function_Id,
9125 Master_Actual =>
9126 New_Occurrence_Of (Build_In_Place_Formal
9127 (Enclosing_Func, BIP_Task_Master), Loc));
9129 else
9130 Add_Task_Actuals_To_Build_In_Place_Call
9131 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
9132 end if;
9134 Add_Access_Actual_To_Build_In_Place_Call
9135 (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
9137 -- Finally, create an access object initialized to a reference to the
9138 -- function call. We know this access value cannot be null, so mark the
9139 -- entity accordingly to suppress the access check.
9141 Def_Id := Make_Temporary (Loc, 'R', Func_Call);
9142 Set_Etype (Def_Id, Ptr_Typ);
9143 Set_Is_Known_Non_Null (Def_Id);
9145 Res_Decl :=
9146 Make_Object_Declaration (Loc,
9147 Defining_Identifier => Def_Id,
9148 Constant_Present => True,
9149 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
9150 Expression =>
9151 Make_Reference (Loc, Relocate_Node (Func_Call)));
9153 Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
9155 -- If the result subtype of the called function is constrained and
9156 -- is not itself the return expression of an enclosing BIP function,
9157 -- then mark the object as having no initialization.
9159 if Is_Constrained (Underlying_Type (Result_Subt))
9160 and then not Is_Return_Object (Defining_Identifier (Object_Decl))
9161 then
9162 -- The related object declaration is encased in a transient block
9163 -- because the build-in-place function call contains at least one
9164 -- nested function call that produces a controlled transient
9165 -- temporary:
9167 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
9169 -- Since the build-in-place expansion decouples the call from the
9170 -- object declaration, the finalization machinery lacks the context
9171 -- which prompted the generation of the transient block. To resolve
9172 -- this scenario, store the build-in-place call.
9174 if Scope_Is_Transient
9175 and then Node_To_Be_Wrapped = Object_Decl
9176 then
9177 Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
9178 end if;
9180 Set_Expression (Object_Decl, Empty);
9181 Set_No_Initialization (Object_Decl);
9183 -- In case of an unconstrained result subtype, or if the call is the
9184 -- return expression of an enclosing BIP function, rewrite the object
9185 -- declaration as an object renaming where the renamed object is a
9186 -- dereference of <function_Call>'reference:
9188 -- Obj : Subt renames <function_call>'Ref.all;
9190 else
9191 Call_Deref :=
9192 Make_Explicit_Dereference (Loc,
9193 Prefix => New_Occurrence_Of (Def_Id, Loc));
9195 Loc := Sloc (Object_Decl);
9196 Rewrite (Object_Decl,
9197 Make_Object_Renaming_Declaration (Loc,
9198 Defining_Identifier => Make_Temporary (Loc, 'D'),
9199 Access_Definition => Empty,
9200 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
9201 Name => Call_Deref));
9203 Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
9205 Analyze (Object_Decl);
9207 -- Replace the internal identifier of the renaming declaration's
9208 -- entity with identifier of the original object entity. We also have
9209 -- to exchange the entities containing their defining identifiers to
9210 -- ensure the correct replacement of the object declaration by the
9211 -- object renaming declaration to avoid homograph conflicts (since
9212 -- the object declaration's defining identifier was already entered
9213 -- in current scope). The Next_Entity links of the two entities also
9214 -- have to be swapped since the entities are part of the return
9215 -- scope's entity list and the list structure would otherwise be
9216 -- corrupted. Finally, the homonym chain must be preserved as well.
9218 declare
9219 Renaming_Def_Id : constant Entity_Id :=
9220 Defining_Identifier (Object_Decl);
9221 Next_Entity_Temp : constant Entity_Id :=
9222 Next_Entity (Renaming_Def_Id);
9223 begin
9224 Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
9226 -- Swap next entity links in preparation for exchanging entities
9228 Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
9229 Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
9230 Set_Homonym (Renaming_Def_Id, Homonym (Obj_Def_Id));
9232 Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
9234 -- Preserve source indication of original declaration, so that
9235 -- xref information is properly generated for the right entity.
9237 Preserve_Comes_From_Source
9238 (Object_Decl, Original_Node (Object_Decl));
9240 Preserve_Comes_From_Source
9241 (Obj_Def_Id, Original_Node (Object_Decl));
9243 Set_Comes_From_Source (Renaming_Def_Id, False);
9244 end;
9245 end if;
9247 -- If the object entity has a class-wide Etype, then we need to change
9248 -- it to the result subtype of the function call, because otherwise the
9249 -- object will be class-wide without an explicit initialization and
9250 -- won't be allocated properly by the back end. It seems unclean to make
9251 -- such a revision to the type at this point, and we should try to
9252 -- improve this treatment when build-in-place functions with class-wide
9253 -- results are implemented. ???
9255 if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
9256 Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
9257 end if;
9258 end Make_Build_In_Place_Call_In_Object_Declaration;
9260 --------------------------------------------
9261 -- Make_CPP_Constructor_Call_In_Allocator --
9262 --------------------------------------------
9264 procedure Make_CPP_Constructor_Call_In_Allocator
9265 (Allocator : Node_Id;
9266 Function_Call : Node_Id)
9268 Loc : constant Source_Ptr := Sloc (Function_Call);
9269 Acc_Type : constant Entity_Id := Etype (Allocator);
9270 Function_Id : constant Entity_Id := Entity (Name (Function_Call));
9271 Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
9273 New_Allocator : Node_Id;
9274 Return_Obj_Access : Entity_Id;
9275 Tmp_Obj : Node_Id;
9277 begin
9278 pragma Assert (Nkind (Allocator) = N_Allocator
9279 and then Nkind (Function_Call) = N_Function_Call);
9280 pragma Assert (Convention (Function_Id) = Convention_CPP
9281 and then Is_Constructor (Function_Id));
9282 pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
9284 -- Replace the initialized allocator of form "new T'(Func (...))" with
9285 -- an uninitialized allocator of form "new T", where T is the result
9286 -- subtype of the called function. The call to the function is handled
9287 -- separately further below.
9289 New_Allocator :=
9290 Make_Allocator (Loc,
9291 Expression => New_Occurrence_Of (Result_Subt, Loc));
9292 Set_No_Initialization (New_Allocator);
9294 -- Copy attributes to new allocator. Note that the new allocator
9295 -- logically comes from source if the original one did, so copy the
9296 -- relevant flag. This ensures proper treatment of the restriction
9297 -- No_Implicit_Heap_Allocations in this case.
9299 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
9300 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
9301 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
9303 Rewrite (Allocator, New_Allocator);
9305 -- Create a new access object and initialize it to the result of the
9306 -- new uninitialized allocator. Note: we do not use Allocator as the
9307 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9308 -- as this would create a sort of infinite "recursion".
9310 Return_Obj_Access := Make_Temporary (Loc, 'R');
9311 Set_Etype (Return_Obj_Access, Acc_Type);
9313 -- Generate:
9314 -- Rnnn : constant ptr_T := new (T);
9315 -- Init (Rnn.all,...);
9317 Tmp_Obj :=
9318 Make_Object_Declaration (Loc,
9319 Defining_Identifier => Return_Obj_Access,
9320 Constant_Present => True,
9321 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
9322 Expression => Relocate_Node (Allocator));
9323 Insert_Action (Allocator, Tmp_Obj);
9325 Insert_List_After_And_Analyze (Tmp_Obj,
9326 Build_Initialization_Call (Loc,
9327 Id_Ref =>
9328 Make_Explicit_Dereference (Loc,
9329 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
9330 Typ => Etype (Function_Id),
9331 Constructor_Ref => Function_Call));
9333 -- Finally, replace the allocator node with a reference to the result of
9334 -- the function call itself (which will effectively be an access to the
9335 -- object created by the allocator).
9337 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
9339 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9340 -- generate an implicit conversion to force displacement of the "this"
9341 -- pointer.
9343 if Is_Interface (Designated_Type (Acc_Type)) then
9344 Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9345 end if;
9347 Analyze_And_Resolve (Allocator, Acc_Type);
9348 end Make_CPP_Constructor_Call_In_Allocator;
9350 -----------------------------------
9351 -- Needs_BIP_Finalization_Master --
9352 -----------------------------------
9354 function Needs_BIP_Finalization_Master
9355 (Func_Id : Entity_Id) return Boolean
9357 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9358 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9359 begin
9360 return
9361 not Restriction_Active (No_Finalization)
9362 and then Needs_Finalization (Func_Typ);
9363 end Needs_BIP_Finalization_Master;
9365 --------------------------
9366 -- Needs_BIP_Alloc_Form --
9367 --------------------------
9369 function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9370 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9371 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9372 begin
9373 return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
9374 end Needs_BIP_Alloc_Form;
9376 --------------------------------------
9377 -- Needs_Result_Accessibility_Level --
9378 --------------------------------------
9380 function Needs_Result_Accessibility_Level
9381 (Func_Id : Entity_Id) return Boolean
9383 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9385 function Has_Unconstrained_Access_Discriminant_Component
9386 (Comp_Typ : Entity_Id) return Boolean;
9387 -- Returns True if any component of the type has an unconstrained access
9388 -- discriminant.
9390 -----------------------------------------------------
9391 -- Has_Unconstrained_Access_Discriminant_Component --
9392 -----------------------------------------------------
9394 function Has_Unconstrained_Access_Discriminant_Component
9395 (Comp_Typ : Entity_Id) return Boolean
9397 begin
9398 if not Is_Limited_Type (Comp_Typ) then
9399 return False;
9401 -- Only limited types can have access discriminants with
9402 -- defaults.
9404 elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
9405 return True;
9407 elsif Is_Array_Type (Comp_Typ) then
9408 return Has_Unconstrained_Access_Discriminant_Component
9409 (Underlying_Type (Component_Type (Comp_Typ)));
9411 elsif Is_Record_Type (Comp_Typ) then
9412 declare
9413 Comp : Entity_Id;
9415 begin
9416 Comp := First_Component (Comp_Typ);
9417 while Present (Comp) loop
9418 if Has_Unconstrained_Access_Discriminant_Component
9419 (Underlying_Type (Etype (Comp)))
9420 then
9421 return True;
9422 end if;
9424 Next_Component (Comp);
9425 end loop;
9426 end;
9427 end if;
9429 return False;
9430 end Has_Unconstrained_Access_Discriminant_Component;
9432 Feature_Disabled : constant Boolean := True;
9433 -- Temporary
9435 -- Start of processing for Needs_Result_Accessibility_Level
9437 begin
9438 -- False if completion unavailable (how does this happen???)
9440 if not Present (Func_Typ) then
9441 return False;
9443 elsif Feature_Disabled then
9444 return False;
9446 -- False if not a function, also handle enum-lit renames case
9448 elsif Func_Typ = Standard_Void_Type
9449 or else Is_Scalar_Type (Func_Typ)
9450 then
9451 return False;
9453 -- Handle a corner case, a cross-dialect subp renaming. For example,
9454 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9455 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9457 elsif Present (Alias (Func_Id)) then
9459 -- Unimplemented: a cross-dialect subp renaming which does not set
9460 -- the Alias attribute (e.g., a rename of a dereference of an access
9461 -- to subprogram value). ???
9463 return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
9465 -- Remaining cases require Ada 2012 mode
9467 elsif Ada_Version < Ada_2012 then
9468 return False;
9470 elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
9471 or else Is_Tagged_Type (Func_Typ)
9472 then
9473 -- In the case of, say, a null tagged record result type, the need
9474 -- for this extra parameter might not be obvious. This function
9475 -- returns True for all tagged types for compatibility reasons.
9476 -- A function with, say, a tagged null controlling result type might
9477 -- be overridden by a primitive of an extension having an access
9478 -- discriminant and the overrider and overridden must have compatible
9479 -- calling conventions (including implicitly declared parameters).
9480 -- Similarly, values of one access-to-subprogram type might designate
9481 -- both a primitive subprogram of a given type and a function
9482 -- which is, for example, not a primitive subprogram of any type.
9483 -- Again, this requires calling convention compatibility.
9484 -- It might be possible to solve these issues by introducing
9485 -- wrappers, but that is not the approach that was chosen.
9487 return True;
9489 elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
9490 return True;
9492 elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
9493 return True;
9495 -- False for all other cases
9497 else
9498 return False;
9499 end if;
9500 end Needs_Result_Accessibility_Level;
9502 end Exp_Ch6;