1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Elists
; use Elists
;
32 with Exp_Aggr
; use Exp_Aggr
;
33 with Exp_Atag
; use Exp_Atag
;
34 with Exp_Ch2
; use Exp_Ch2
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch7
; use Exp_Ch7
;
37 with Exp_Ch9
; use Exp_Ch9
;
38 with Exp_Dbug
; use Exp_Dbug
;
39 with Exp_Disp
; use Exp_Disp
;
40 with Exp_Dist
; use Exp_Dist
;
41 with Exp_Intr
; use Exp_Intr
;
42 with Exp_Pakd
; use Exp_Pakd
;
43 with Exp_Prag
; use Exp_Prag
;
44 with Exp_Tss
; use Exp_Tss
;
45 with Exp_Util
; use Exp_Util
;
46 with Fname
; use Fname
;
47 with Freeze
; use Freeze
;
48 with Inline
; use Inline
;
50 with Namet
; use Namet
;
51 with Nlists
; use Nlists
;
52 with Nmake
; use Nmake
;
54 with Restrict
; use Restrict
;
55 with Rident
; use Rident
;
56 with Rtsfind
; use Rtsfind
;
58 with Sem_Aux
; use Sem_Aux
;
59 with Sem_Ch6
; use Sem_Ch6
;
60 with Sem_Ch8
; use Sem_Ch8
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Dim
; use Sem_Dim
;
63 with Sem_Disp
; use Sem_Disp
;
64 with Sem_Dist
; use Sem_Dist
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Mech
; use Sem_Mech
;
67 with Sem_Res
; use Sem_Res
;
68 with Sem_SCIL
; use Sem_SCIL
;
69 with Sem_Util
; use Sem_Util
;
70 with Sinfo
; use Sinfo
;
71 with Snames
; use Snames
;
72 with Stand
; use Stand
;
73 with Stringt
; use Stringt
;
74 with Targparm
; use Targparm
;
75 with Tbuild
; use Tbuild
;
76 with Uintp
; use Uintp
;
77 with Validsw
; use Validsw
;
79 package body Exp_Ch6
is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call
: Node_Id
;
87 Function_Id
: Entity_Id
;
88 Return_Object
: Node_Id
;
89 Is_Access
: Boolean := False);
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
99 (Function_Call
: Node_Id
;
100 Function_Id
: Entity_Id
;
101 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
102 Alloc_Form_Exp
: Node_Id
:= Empty
;
103 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
112 (Func_Call
: Node_Id
;
114 Ptr_Typ
: Entity_Id
:= Empty
;
115 Master_Exp
: Node_Id
:= Empty
);
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call
: Node_Id
;
124 Function_Id
: Entity_Id
;
125 Master_Actual
: Node_Id
;
126 Chain
: Node_Id
:= Empty
);
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
133 -- access type. If the function call is the initialization expression for a
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
140 procedure Check_Overriding_Operation
(Subp
: Entity_Id
);
141 -- Subp is a dispatching operation. Check whether it may override an
142 -- inherited private operation, in which case its DT entry is that of
143 -- the hidden operation, not the one it may have received earlier.
144 -- This must be done before emitting the code to set the corresponding
145 -- DT to the address of the subprogram. The actual placement of Subp in
146 -- the proper place in the list of primitive operations is done in
147 -- Declare_Inherited_Private_Subprograms, which also has to deal with
148 -- implicit operations. This duplication is unavoidable for now???
150 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
);
151 -- This procedure is called only if the subprogram body N, whose spec
152 -- has the given entity Spec, contains a parameterless recursive call.
153 -- It attempts to generate runtime code to detect if this a case of
154 -- infinite recursion.
156 -- The body is scanned to determine dependencies. If the only external
157 -- dependencies are on a small set of scalar variables, then the values
158 -- of these variables are captured on entry to the subprogram, and if
159 -- the values are not changed for the call, we know immediately that
160 -- we have an infinite recursion.
162 procedure Expand_Actuals
(N
: in out Node_Id
; Subp
: Entity_Id
);
163 -- For each actual of an in-out or out parameter which is a numeric
164 -- (view) conversion of the form T (A), where A denotes a variable,
165 -- we insert the declaration:
167 -- Temp : T[ := T (A)];
169 -- prior to the call. Then we replace the actual with a reference to Temp,
170 -- and append the assignment:
172 -- A := TypeA (Temp);
174 -- after the call. Here TypeA is the actual type of variable A. For out
175 -- parameters, the initial declaration has no expression. If A is not an
176 -- entity name, we generate instead:
178 -- Var : TypeA renames A;
179 -- Temp : T := Var; -- omitting expression for out parameter.
181 -- Var := TypeA (Temp);
183 -- For other in-out parameters, we emit the required constraint checks
184 -- before and/or after the call.
186 -- For all parameter modes, actuals that denote components and slices of
187 -- packed arrays are expanded into suitable temporaries.
189 -- For non-scalar objects that are possibly unaligned, add call by copy
190 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
192 -- For OUT and IN OUT parameters, add predicate checks after the call
193 -- based on the predicates of the actual type.
195 -- The parameter N is IN OUT because in some cases, the expansion code
196 -- rewrites the call as an expression actions with the call inside. In
197 -- this case N is reset to point to the inside call so that the caller
198 -- can continue processing of this call.
200 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
);
201 -- N is a function call which returns a controlled object. Transform the
202 -- call into a temporary which retrieves the returned object from the
203 -- secondary stack using 'reference.
205 procedure Expand_Non_Function_Return
(N
: Node_Id
);
206 -- Called by Expand_N_Simple_Return_Statement in case we're returning from
207 -- a procedure body, entry body, accept statement, or extended return
208 -- statement. Note that all non-function returns are simple return
211 function Expand_Protected_Object_Reference
213 Scop
: Entity_Id
) return Node_Id
;
215 procedure Expand_Protected_Subprogram_Call
219 -- A call to a protected subprogram within the protected object may appear
220 -- as a regular call. The list of actuals must be expanded to contain a
221 -- reference to the object itself, and the call becomes a call to the
222 -- corresponding protected subprogram.
224 function Has_Unconstrained_Access_Discriminants
225 (Subtyp
: Entity_Id
) return Boolean;
226 -- Returns True if the given subtype is unconstrained and has one
227 -- or more access discriminants.
229 procedure Expand_Simple_Function_Return
(N
: Node_Id
);
230 -- Expand simple return from function. In the case where we are returning
231 -- from a function body this is called by Expand_N_Simple_Return_Statement.
233 ----------------------------------------------
234 -- Add_Access_Actual_To_Build_In_Place_Call --
235 ----------------------------------------------
237 procedure Add_Access_Actual_To_Build_In_Place_Call
238 (Function_Call
: Node_Id
;
239 Function_Id
: Entity_Id
;
240 Return_Object
: Node_Id
;
241 Is_Access
: Boolean := False)
243 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
244 Obj_Address
: Node_Id
;
245 Obj_Acc_Formal
: Entity_Id
;
248 -- Locate the implicit access parameter in the called function
250 Obj_Acc_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
);
252 -- If no return object is provided, then pass null
254 if not Present
(Return_Object
) then
255 Obj_Address
:= Make_Null
(Loc
);
256 Set_Parent
(Obj_Address
, Function_Call
);
258 -- If Return_Object is already an expression of an access type, then use
259 -- it directly, since it must be an access value denoting the return
260 -- object, and couldn't possibly be the return object itself.
263 Obj_Address
:= Return_Object
;
264 Set_Parent
(Obj_Address
, Function_Call
);
266 -- Apply Unrestricted_Access to caller's return object
270 Make_Attribute_Reference
(Loc
,
271 Prefix
=> Return_Object
,
272 Attribute_Name
=> Name_Unrestricted_Access
);
274 Set_Parent
(Return_Object
, Obj_Address
);
275 Set_Parent
(Obj_Address
, Function_Call
);
278 Analyze_And_Resolve
(Obj_Address
, Etype
(Obj_Acc_Formal
));
280 -- Build the parameter association for the new actual and add it to the
281 -- end of the function's actuals.
283 Add_Extra_Actual_To_Call
(Function_Call
, Obj_Acc_Formal
, Obj_Address
);
284 end Add_Access_Actual_To_Build_In_Place_Call
;
286 ------------------------------------------------------
287 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
288 ------------------------------------------------------
290 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
291 (Function_Call
: Node_Id
;
292 Function_Id
: Entity_Id
;
293 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
294 Alloc_Form_Exp
: Node_Id
:= Empty
;
295 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
))
297 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
298 Alloc_Form_Actual
: Node_Id
;
299 Alloc_Form_Formal
: Node_Id
;
300 Pool_Formal
: Node_Id
;
303 -- The allocation form generally doesn't need to be passed in the case
304 -- of a constrained result subtype, since normally the caller performs
305 -- the allocation in that case. However this formal is still needed in
306 -- the case where the function has a tagged result, because generally
307 -- such functions can be called in a dispatching context and such calls
308 -- must be handled like calls to class-wide functions.
310 if Is_Constrained
(Underlying_Type
(Etype
(Function_Id
)))
311 and then not Is_Tagged_Type
(Underlying_Type
(Etype
(Function_Id
)))
316 -- Locate the implicit allocation form parameter in the called function.
317 -- Maybe it would be better for each implicit formal of a build-in-place
318 -- function to have a flag or a Uint attribute to identify it. ???
320 Alloc_Form_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Alloc_Form
);
322 if Present
(Alloc_Form_Exp
) then
323 pragma Assert
(Alloc_Form
= Unspecified
);
325 Alloc_Form_Actual
:= Alloc_Form_Exp
;
328 pragma Assert
(Alloc_Form
/= Unspecified
);
331 Make_Integer_Literal
(Loc
,
332 Intval
=> UI_From_Int
(BIP_Allocation_Form
'Pos (Alloc_Form
)));
335 Analyze_And_Resolve
(Alloc_Form_Actual
, Etype
(Alloc_Form_Formal
));
337 -- Build the parameter association for the new actual and add it to the
338 -- end of the function's actuals.
340 Add_Extra_Actual_To_Call
341 (Function_Call
, Alloc_Form_Formal
, Alloc_Form_Actual
);
343 -- Pass the Storage_Pool parameter. This parameter is omitted on
344 -- .NET/JVM/ZFP as those targets do not support pools.
347 and then RTE_Available
(RE_Root_Storage_Pool_Ptr
)
349 Pool_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Storage_Pool
);
350 Analyze_And_Resolve
(Pool_Actual
, Etype
(Pool_Formal
));
351 Add_Extra_Actual_To_Call
352 (Function_Call
, Pool_Formal
, Pool_Actual
);
354 end Add_Unconstrained_Actuals_To_Build_In_Place_Call
;
356 -----------------------------------------------------------
357 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
358 -----------------------------------------------------------
360 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
361 (Func_Call
: Node_Id
;
363 Ptr_Typ
: Entity_Id
:= Empty
;
364 Master_Exp
: Node_Id
:= Empty
)
367 if not Needs_BIP_Finalization_Master
(Func_Id
) then
372 Formal
: constant Entity_Id
:=
373 Build_In_Place_Formal
(Func_Id
, BIP_Finalization_Master
);
374 Loc
: constant Source_Ptr
:= Sloc
(Func_Call
);
377 Desig_Typ
: Entity_Id
;
380 -- If there is a finalization master actual, such as the implicit
381 -- finalization master of an enclosing build-in-place function,
382 -- then this must be added as an extra actual of the call.
384 if Present
(Master_Exp
) then
385 Actual
:= Master_Exp
;
387 -- Case where the context does not require an actual master
389 elsif No
(Ptr_Typ
) then
390 Actual
:= Make_Null
(Loc
);
393 Desig_Typ
:= Directly_Designated_Type
(Ptr_Typ
);
395 -- Check for a library-level access type whose designated type has
396 -- supressed finalization. Such an access types lack a master.
397 -- Pass a null actual to the callee in order to signal a missing
400 if Is_Library_Level_Entity
(Ptr_Typ
)
401 and then Finalize_Storage_Only
(Desig_Typ
)
403 Actual
:= Make_Null
(Loc
);
405 -- Types in need of finalization actions
407 elsif Needs_Finalization
(Desig_Typ
) then
409 -- The general mechanism of creating finalization masters for
410 -- anonymous access types is disabled by default, otherwise
411 -- finalization masters will pop all over the place. Such types
412 -- use context-specific masters.
414 if Ekind
(Ptr_Typ
) = E_Anonymous_Access_Type
415 and then No
(Finalization_Master
(Ptr_Typ
))
417 Build_Finalization_Master
419 Ins_Node
=> Associated_Node_For_Itype
(Ptr_Typ
),
420 Encl_Scope
=> Scope
(Ptr_Typ
));
423 -- Access-to-controlled types should always have a master
425 pragma Assert
(Present
(Finalization_Master
(Ptr_Typ
)));
428 Make_Attribute_Reference
(Loc
,
430 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
431 Attribute_Name
=> Name_Unrestricted_Access
);
436 Actual
:= Make_Null
(Loc
);
440 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
442 -- Build the parameter association for the new actual and add it to
443 -- the end of the function's actuals.
445 Add_Extra_Actual_To_Call
(Func_Call
, Formal
, Actual
);
447 end Add_Finalization_Master_Actual_To_Build_In_Place_Call
;
449 ------------------------------
450 -- Add_Extra_Actual_To_Call --
451 ------------------------------
453 procedure Add_Extra_Actual_To_Call
454 (Subprogram_Call
: Node_Id
;
455 Extra_Formal
: Entity_Id
;
456 Extra_Actual
: Node_Id
)
458 Loc
: constant Source_Ptr
:= Sloc
(Subprogram_Call
);
459 Param_Assoc
: Node_Id
;
463 Make_Parameter_Association
(Loc
,
464 Selector_Name
=> New_Occurrence_Of
(Extra_Formal
, Loc
),
465 Explicit_Actual_Parameter
=> Extra_Actual
);
467 Set_Parent
(Param_Assoc
, Subprogram_Call
);
468 Set_Parent
(Extra_Actual
, Param_Assoc
);
470 if Present
(Parameter_Associations
(Subprogram_Call
)) then
471 if Nkind
(Last
(Parameter_Associations
(Subprogram_Call
))) =
472 N_Parameter_Association
475 -- Find last named actual, and append
480 L
:= First_Actual
(Subprogram_Call
);
481 while Present
(L
) loop
482 if No
(Next_Actual
(L
)) then
483 Set_Next_Named_Actual
(Parent
(L
), Extra_Actual
);
491 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
494 Append
(Param_Assoc
, To
=> Parameter_Associations
(Subprogram_Call
));
497 Set_Parameter_Associations
(Subprogram_Call
, New_List
(Param_Assoc
));
498 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
500 end Add_Extra_Actual_To_Call
;
502 ---------------------------------------------
503 -- Add_Task_Actuals_To_Build_In_Place_Call --
504 ---------------------------------------------
506 procedure Add_Task_Actuals_To_Build_In_Place_Call
507 (Function_Call
: Node_Id
;
508 Function_Id
: Entity_Id
;
509 Master_Actual
: Node_Id
;
510 Chain
: Node_Id
:= Empty
)
512 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
513 Result_Subt
: constant Entity_Id
:=
514 Available_View
(Etype
(Function_Id
));
516 Chain_Actual
: Node_Id
;
517 Chain_Formal
: Node_Id
;
518 Master_Formal
: Node_Id
;
521 -- No such extra parameters are needed if there are no tasks
523 if not Has_Task
(Result_Subt
) then
527 Actual
:= Master_Actual
;
529 -- Use a dummy _master actual in case of No_Task_Hierarchy
531 if Restriction_Active
(No_Task_Hierarchy
) then
532 Actual
:= New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
);
534 -- In the case where we use the master associated with an access type,
535 -- the actual is an entity and requires an explicit reference.
537 elsif Nkind
(Actual
) = N_Defining_Identifier
then
538 Actual
:= New_Occurrence_Of
(Actual
, Loc
);
541 -- Locate the implicit master parameter in the called function
543 Master_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Task_Master
);
544 Analyze_And_Resolve
(Actual
, Etype
(Master_Formal
));
546 -- Build the parameter association for the new actual and add it to the
547 -- end of the function's actuals.
549 Add_Extra_Actual_To_Call
(Function_Call
, Master_Formal
, Actual
);
551 -- Locate the implicit activation chain parameter in the called function
554 Build_In_Place_Formal
(Function_Id
, BIP_Activation_Chain
);
556 -- Create the actual which is a pointer to the current activation chain
560 Make_Attribute_Reference
(Loc
,
561 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
562 Attribute_Name
=> Name_Unrestricted_Access
);
564 -- Allocator case; make a reference to the Chain passed in by the caller
568 Make_Attribute_Reference
(Loc
,
569 Prefix
=> New_Occurrence_Of
(Chain
, Loc
),
570 Attribute_Name
=> Name_Unrestricted_Access
);
573 Analyze_And_Resolve
(Chain_Actual
, Etype
(Chain_Formal
));
575 -- Build the parameter association for the new actual and add it to the
576 -- end of the function's actuals.
578 Add_Extra_Actual_To_Call
(Function_Call
, Chain_Formal
, Chain_Actual
);
579 end Add_Task_Actuals_To_Build_In_Place_Call
;
581 -----------------------
582 -- BIP_Formal_Suffix --
583 -----------------------
585 function BIP_Formal_Suffix
(Kind
: BIP_Formal_Kind
) return String is
588 when BIP_Alloc_Form
=>
590 when BIP_Storage_Pool
=>
591 return "BIPstoragepool";
592 when BIP_Finalization_Master
=>
593 return "BIPfinalizationmaster";
594 when BIP_Task_Master
=>
595 return "BIPtaskmaster";
596 when BIP_Activation_Chain
=>
597 return "BIPactivationchain";
598 when BIP_Object_Access
=>
601 end BIP_Formal_Suffix
;
603 ---------------------------
604 -- Build_In_Place_Formal --
605 ---------------------------
607 function Build_In_Place_Formal
609 Kind
: BIP_Formal_Kind
) return Entity_Id
611 Formal_Name
: constant Name_Id
:=
613 (Chars
(Func
), BIP_Formal_Suffix
(Kind
));
614 Extra_Formal
: Entity_Id
:= Extra_Formals
(Func
);
617 -- Maybe it would be better for each implicit formal of a build-in-place
618 -- function to have a flag or a Uint attribute to identify it. ???
620 -- The return type in the function declaration may have been a limited
621 -- view, and the extra formals for the function were not generated at
622 -- that point. At the point of call the full view must be available and
623 -- the extra formals can be created.
625 if No
(Extra_Formal
) then
626 Create_Extra_Formals
(Func
);
627 Extra_Formal
:= Extra_Formals
(Func
);
631 pragma Assert
(Present
(Extra_Formal
));
632 exit when Chars
(Extra_Formal
) = Formal_Name
;
634 Next_Formal_With_Extras
(Extra_Formal
);
638 end Build_In_Place_Formal
;
640 --------------------------------
641 -- Check_Overriding_Operation --
642 --------------------------------
644 procedure Check_Overriding_Operation
(Subp
: Entity_Id
) is
645 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
646 Op_List
: constant Elist_Id
:= Primitive_Operations
(Typ
);
652 if Is_Derived_Type
(Typ
)
653 and then not Is_Private_Type
(Typ
)
654 and then In_Open_Scopes
(Scope
(Etype
(Typ
)))
655 and then Is_Base_Type
(Typ
)
657 -- Subp overrides an inherited private operation if there is an
658 -- inherited operation with a different name than Subp (see
659 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
660 -- same name as Subp.
662 Op_Elmt
:= First_Elmt
(Op_List
);
663 while Present
(Op_Elmt
) loop
664 Prim_Op
:= Node
(Op_Elmt
);
665 Par_Op
:= Alias
(Prim_Op
);
668 and then not Comes_From_Source
(Prim_Op
)
669 and then Chars
(Prim_Op
) /= Chars
(Par_Op
)
670 and then Chars
(Par_Op
) = Chars
(Subp
)
671 and then Is_Hidden
(Par_Op
)
672 and then Type_Conformant
(Prim_Op
, Subp
)
674 Set_DT_Position
(Subp
, DT_Position
(Prim_Op
));
680 end Check_Overriding_Operation
;
682 -------------------------------
683 -- Detect_Infinite_Recursion --
684 -------------------------------
686 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
) is
687 Loc
: constant Source_Ptr
:= Sloc
(N
);
689 Var_List
: constant Elist_Id
:= New_Elmt_List
;
690 -- List of globals referenced by body of procedure
692 Call_List
: constant Elist_Id
:= New_Elmt_List
;
693 -- List of recursive calls in body of procedure
695 Shad_List
: constant Elist_Id
:= New_Elmt_List
;
696 -- List of entity id's for entities created to capture the value of
697 -- referenced globals on entry to the procedure.
699 Scop
: constant Uint
:= Scope_Depth
(Spec
);
700 -- This is used to record the scope depth of the current procedure, so
701 -- that we can identify global references.
703 Max_Vars
: constant := 4;
704 -- Do not test more than four global variables
706 Count_Vars
: Natural := 0;
707 -- Count variables found so far
719 function Process
(Nod
: Node_Id
) return Traverse_Result
;
720 -- Function to traverse the subprogram body (using Traverse_Func)
726 function Process
(Nod
: Node_Id
) return Traverse_Result
is
730 if Nkind
(Nod
) = N_Procedure_Call_Statement
then
732 -- Case of one of the detected recursive calls
734 if Is_Entity_Name
(Name
(Nod
))
735 and then Has_Recursive_Call
(Entity
(Name
(Nod
)))
736 and then Entity
(Name
(Nod
)) = Spec
738 Append_Elmt
(Nod
, Call_List
);
741 -- Any other procedure call may have side effects
747 -- A call to a pure function can always be ignored
749 elsif Nkind
(Nod
) = N_Function_Call
750 and then Is_Entity_Name
(Name
(Nod
))
751 and then Is_Pure
(Entity
(Name
(Nod
)))
755 -- Case of an identifier reference
757 elsif Nkind
(Nod
) = N_Identifier
then
760 -- If no entity, then ignore the reference
762 -- Not clear why this can happen. To investigate, remove this
763 -- test and look at the crash that occurs here in 3401-004 ???
768 -- Ignore entities with no Scope, again not clear how this
769 -- can happen, to investigate, look at 4108-008 ???
771 elsif No
(Scope
(Ent
)) then
774 -- Ignore the reference if not to a more global object
776 elsif Scope_Depth
(Scope
(Ent
)) >= Scop
then
779 -- References to types, exceptions and constants are always OK
782 or else Ekind
(Ent
) = E_Exception
783 or else Ekind
(Ent
) = E_Constant
787 -- If other than a non-volatile scalar variable, we have some
788 -- kind of global reference (e.g. to a function) that we cannot
789 -- deal with so we forget the attempt.
791 elsif Ekind
(Ent
) /= E_Variable
792 or else not Is_Scalar_Type
(Etype
(Ent
))
793 or else Treat_As_Volatile
(Ent
)
797 -- Otherwise we have a reference to a global scalar
800 -- Loop through global entities already detected
802 Elm
:= First_Elmt
(Var_List
);
804 -- If not detected before, record this new global reference
807 Count_Vars
:= Count_Vars
+ 1;
809 if Count_Vars
<= Max_Vars
then
810 Append_Elmt
(Entity
(Nod
), Var_List
);
817 -- If recorded before, ignore
819 elsif Node
(Elm
) = Entity
(Nod
) then
822 -- Otherwise keep looking
832 -- For all other node kinds, recursively visit syntactic children
839 function Traverse_Body
is new Traverse_Func
(Process
);
841 -- Start of processing for Detect_Infinite_Recursion
844 -- Do not attempt detection in No_Implicit_Conditional mode, since we
845 -- won't be able to generate the code to handle the recursion in any
848 if Restriction_Active
(No_Implicit_Conditionals
) then
852 -- Otherwise do traversal and quit if we get abandon signal
854 if Traverse_Body
(N
) = Abandon
then
857 -- We must have a call, since Has_Recursive_Call was set. If not just
858 -- ignore (this is only an error check, so if we have a funny situation,
859 -- due to bugs or errors, we do not want to bomb).
861 elsif Is_Empty_Elmt_List
(Call_List
) then
865 -- Here is the case where we detect recursion at compile time
867 -- Push our current scope for analyzing the declarations and code that
868 -- we will insert for the checking.
872 -- This loop builds temporary variables for each of the referenced
873 -- globals, so that at the end of the loop the list Shad_List contains
874 -- these temporaries in one-to-one correspondence with the elements in
878 Elm
:= First_Elmt
(Var_List
);
879 while Present
(Elm
) loop
881 Ent
:= Make_Temporary
(Loc
, 'S');
882 Append_Elmt
(Ent
, Shad_List
);
884 -- Insert a declaration for this temporary at the start of the
885 -- declarations for the procedure. The temporaries are declared as
886 -- constant objects initialized to the current values of the
887 -- corresponding temporaries.
890 Make_Object_Declaration
(Loc
,
891 Defining_Identifier
=> Ent
,
892 Object_Definition
=> New_Occurrence_Of
(Etype
(Var
), Loc
),
893 Constant_Present
=> True,
894 Expression
=> New_Occurrence_Of
(Var
, Loc
));
897 Prepend
(Decl
, Declarations
(N
));
899 Insert_After
(Last
, Decl
);
907 -- Loop through calls
909 Call
:= First_Elmt
(Call_List
);
910 while Present
(Call
) loop
912 -- Build a predicate expression of the form
915 -- and then global1 = temp1
916 -- and then global2 = temp2
919 -- This predicate determines if any of the global values
920 -- referenced by the procedure have changed since the
921 -- current call, if not an infinite recursion is assured.
923 Test
:= New_Occurrence_Of
(Standard_True
, Loc
);
925 Elm1
:= First_Elmt
(Var_List
);
926 Elm2
:= First_Elmt
(Shad_List
);
927 while Present
(Elm1
) loop
933 Left_Opnd
=> New_Occurrence_Of
(Node
(Elm1
), Loc
),
934 Right_Opnd
=> New_Occurrence_Of
(Node
(Elm2
), Loc
)));
940 -- Now we replace the call with the sequence
942 -- if no-changes (see above) then
943 -- raise Storage_Error;
948 Rewrite
(Node
(Call
),
949 Make_If_Statement
(Loc
,
951 Then_Statements
=> New_List
(
952 Make_Raise_Storage_Error
(Loc
,
953 Reason
=> SE_Infinite_Recursion
)),
955 Else_Statements
=> New_List
(
956 Relocate_Node
(Node
(Call
)))));
958 Analyze
(Node
(Call
));
963 -- Remove temporary scope stack entry used for analysis
966 end Detect_Infinite_Recursion
;
972 procedure Expand_Actuals
(N
: in out Node_Id
; Subp
: Entity_Id
) is
973 Loc
: constant Source_Ptr
:= Sloc
(N
);
978 E_Actual
: Entity_Id
;
979 E_Formal
: Entity_Id
;
981 procedure Add_Call_By_Copy_Code
;
982 -- For cases where the parameter must be passed by copy, this routine
983 -- generates a temporary variable into which the actual is copied and
984 -- then passes this as the parameter. For an OUT or IN OUT parameter,
985 -- an assignment is also generated to copy the result back. The call
986 -- also takes care of any constraint checks required for the type
987 -- conversion case (on both the way in and the way out).
989 procedure Add_Simple_Call_By_Copy_Code
;
990 -- This is similar to the above, but is used in cases where we know
991 -- that all that is needed is to simply create a temporary and copy
992 -- the value in and out of the temporary.
994 procedure Check_Fortran_Logical
;
995 -- A value of type Logical that is passed through a formal parameter
996 -- must be normalized because .TRUE. usually does not have the same
997 -- representation as True. We assume that .FALSE. = False = 0.
998 -- What about functions that return a logical type ???
1000 function Is_Legal_Copy
return Boolean;
1001 -- Check that an actual can be copied before generating the temporary
1002 -- to be used in the call. If the actual is of a by_reference type then
1003 -- the program is illegal (this can only happen in the presence of
1004 -- rep. clauses that force an incorrect alignment). If the formal is
1005 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1006 -- the effect that this might lead to unaligned arguments.
1008 function Make_Var
(Actual
: Node_Id
) return Entity_Id
;
1009 -- Returns an entity that refers to the given actual parameter, Actual
1010 -- (not including any type conversion). If Actual is an entity name,
1011 -- then this entity is returned unchanged, otherwise a renaming is
1012 -- created to provide an entity for the actual.
1014 procedure Reset_Packed_Prefix
;
1015 -- The expansion of a packed array component reference is delayed in
1016 -- the context of a call. Now we need to complete the expansion, so we
1017 -- unmark the analyzed bits in all prefixes.
1019 ---------------------------
1020 -- Add_Call_By_Copy_Code --
1021 ---------------------------
1023 procedure Add_Call_By_Copy_Code
is
1029 F_Typ
: constant Entity_Id
:= Etype
(Formal
);
1034 if not Is_Legal_Copy
then
1038 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1040 -- Use formal type for temp, unless formal type is an unconstrained
1041 -- array, in which case we don't have to worry about bounds checks,
1042 -- and we use the actual type, since that has appropriate bounds.
1044 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1045 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1047 Indic
:= New_Occurrence_Of
(Etype
(Formal
), Loc
);
1050 if Nkind
(Actual
) = N_Type_Conversion
then
1051 V_Typ
:= Etype
(Expression
(Actual
));
1053 -- If the formal is an (in-)out parameter, capture the name
1054 -- of the variable in order to build the post-call assignment.
1056 Var
:= Make_Var
(Expression
(Actual
));
1058 Crep
:= not Same_Representation
1059 (F_Typ
, Etype
(Expression
(Actual
)));
1062 V_Typ
:= Etype
(Actual
);
1063 Var
:= Make_Var
(Actual
);
1067 -- Setup initialization for case of in out parameter, or an out
1068 -- parameter where the formal is an unconstrained array (in the
1069 -- latter case, we have to pass in an object with bounds).
1071 -- If this is an out parameter, the initial copy is wasteful, so as
1072 -- an optimization for the one-dimensional case we extract the
1073 -- bounds of the actual and build an uninitialized temporary of the
1076 if Ekind
(Formal
) = E_In_Out_Parameter
1077 or else (Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
))
1079 if Nkind
(Actual
) = N_Type_Conversion
then
1080 if Conversion_OK
(Actual
) then
1081 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1083 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1086 elsif Ekind
(Formal
) = E_Out_Parameter
1087 and then Is_Array_Type
(F_Typ
)
1088 and then Number_Dimensions
(F_Typ
) = 1
1089 and then not Has_Non_Null_Base_Init_Proc
(F_Typ
)
1091 -- Actual is a one-dimensional array or slice, and the type
1092 -- requires no initialization. Create a temporary of the
1093 -- right size, but do not copy actual into it (optimization).
1097 Make_Subtype_Indication
(Loc
,
1098 Subtype_Mark
=> New_Occurrence_Of
(F_Typ
, Loc
),
1100 Make_Index_Or_Discriminant_Constraint
(Loc
,
1101 Constraints
=> New_List
(
1104 Make_Attribute_Reference
(Loc
,
1105 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1106 Attribute_Name
=> Name_First
),
1108 Make_Attribute_Reference
(Loc
,
1109 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1110 Attribute_Name
=> Name_Last
)))));
1113 Init
:= New_Occurrence_Of
(Var
, Loc
);
1116 -- An initialization is created for packed conversions as
1117 -- actuals for out parameters to enable Make_Object_Declaration
1118 -- to determine the proper subtype for N_Node. Note that this
1119 -- is wasteful because the extra copying on the call side is
1120 -- not required for such out parameters. ???
1122 elsif Ekind
(Formal
) = E_Out_Parameter
1123 and then Nkind
(Actual
) = N_Type_Conversion
1124 and then (Is_Bit_Packed_Array
(F_Typ
)
1126 Is_Bit_Packed_Array
(Etype
(Expression
(Actual
))))
1128 if Conversion_OK
(Actual
) then
1129 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1131 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1134 elsif Ekind
(Formal
) = E_In_Parameter
then
1136 -- Handle the case in which the actual is a type conversion
1138 if Nkind
(Actual
) = N_Type_Conversion
then
1139 if Conversion_OK
(Actual
) then
1140 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1142 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1145 Init
:= New_Occurrence_Of
(Var
, Loc
);
1153 Make_Object_Declaration
(Loc
,
1154 Defining_Identifier
=> Temp
,
1155 Object_Definition
=> Indic
,
1156 Expression
=> Init
);
1157 Set_Assignment_OK
(N_Node
);
1158 Insert_Action
(N
, N_Node
);
1160 -- Now, normally the deal here is that we use the defining
1161 -- identifier created by that object declaration. There is
1162 -- one exception to this. In the change of representation case
1163 -- the above declaration will end up looking like:
1165 -- temp : type := identifier;
1167 -- And in this case we might as well use the identifier directly
1168 -- and eliminate the temporary. Note that the analysis of the
1169 -- declaration was not a waste of time in that case, since it is
1170 -- what generated the necessary change of representation code. If
1171 -- the change of representation introduced additional code, as in
1172 -- a fixed-integer conversion, the expression is not an identifier
1173 -- and must be kept.
1176 and then Present
(Expression
(N_Node
))
1177 and then Is_Entity_Name
(Expression
(N_Node
))
1179 Temp
:= Entity
(Expression
(N_Node
));
1180 Rewrite
(N_Node
, Make_Null_Statement
(Loc
));
1183 -- For IN parameter, all we do is to replace the actual
1185 if Ekind
(Formal
) = E_In_Parameter
then
1186 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1189 -- Processing for OUT or IN OUT parameter
1192 -- Kill current value indications for the temporary variable we
1193 -- created, since we just passed it as an OUT parameter.
1195 Kill_Current_Values
(Temp
);
1196 Set_Is_Known_Valid
(Temp
, False);
1198 -- If type conversion, use reverse conversion on exit
1200 if Nkind
(Actual
) = N_Type_Conversion
then
1201 if Conversion_OK
(Actual
) then
1202 Expr
:= OK_Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1204 Expr
:= Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1207 Expr
:= New_Occurrence_Of
(Temp
, Loc
);
1210 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1213 -- If the actual is a conversion of a packed reference, it may
1214 -- already have been expanded by Remove_Side_Effects, and the
1215 -- resulting variable is a temporary which does not designate
1216 -- the proper out-parameter, which may not be addressable. In
1217 -- that case, generate an assignment to the original expression
1218 -- (before expansion of the packed reference) so that the proper
1219 -- expansion of assignment to a packed component can take place.
1226 if Is_Renaming_Of_Object
(Var
)
1227 and then Nkind
(Renamed_Object
(Var
)) = N_Selected_Component
1228 and then Is_Entity_Name
(Prefix
(Renamed_Object
(Var
)))
1229 and then Nkind
(Original_Node
(Prefix
(Renamed_Object
(Var
))))
1230 = N_Indexed_Component
1232 Has_Non_Standard_Rep
(Etype
(Prefix
(Renamed_Object
(Var
))))
1234 Obj
:= Renamed_Object
(Var
);
1236 Make_Selected_Component
(Loc
,
1238 New_Copy_Tree
(Original_Node
(Prefix
(Obj
))),
1239 Selector_Name
=> New_Copy
(Selector_Name
(Obj
)));
1240 Reset_Analyzed_Flags
(Lhs
);
1243 Lhs
:= New_Occurrence_Of
(Var
, Loc
);
1246 Set_Assignment_OK
(Lhs
);
1248 if Is_Access_Type
(E_Formal
)
1249 and then Is_Entity_Name
(Lhs
)
1251 Present
(Effective_Extra_Accessibility
(Entity
(Lhs
)))
1253 -- Copyback target is an Ada 2012 stand-alone object of an
1254 -- anonymous access type.
1256 pragma Assert
(Ada_Version
>= Ada_2012
);
1258 if Type_Access_Level
(E_Formal
) >
1259 Object_Access_Level
(Lhs
)
1261 Append_To
(Post_Call
,
1262 Make_Raise_Program_Error
(Loc
,
1263 Reason
=> PE_Accessibility_Check_Failed
));
1266 Append_To
(Post_Call
,
1267 Make_Assignment_Statement
(Loc
,
1269 Expression
=> Expr
));
1271 -- We would like to somehow suppress generation of the
1272 -- extra_accessibility assignment generated by the expansion
1273 -- of the above assignment statement. It's not a correctness
1274 -- issue because the following assignment renders it dead,
1275 -- but generating back-to-back assignments to the same
1276 -- target is undesirable. ???
1278 Append_To
(Post_Call
,
1279 Make_Assignment_Statement
(Loc
,
1280 Name
=> New_Occurrence_Of
(
1281 Effective_Extra_Accessibility
(Entity
(Lhs
)), Loc
),
1282 Expression
=> Make_Integer_Literal
(Loc
,
1283 Type_Access_Level
(E_Formal
))));
1286 Append_To
(Post_Call
,
1287 Make_Assignment_Statement
(Loc
,
1289 Expression
=> Expr
));
1293 end Add_Call_By_Copy_Code
;
1295 ----------------------------------
1296 -- Add_Simple_Call_By_Copy_Code --
1297 ----------------------------------
1299 procedure Add_Simple_Call_By_Copy_Code
is
1307 F_Typ
: constant Entity_Id
:= Etype
(Formal
);
1310 if not Is_Legal_Copy
then
1314 -- Use formal type for temp, unless formal type is an unconstrained
1315 -- array, in which case we don't have to worry about bounds checks,
1316 -- and we use the actual type, since that has appropriate bounds.
1318 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1319 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1321 Indic
:= New_Occurrence_Of
(Etype
(Formal
), Loc
);
1324 -- Prepare to generate code
1326 Reset_Packed_Prefix
;
1328 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1329 Incod
:= Relocate_Node
(Actual
);
1330 Outcod
:= New_Copy_Tree
(Incod
);
1332 -- Generate declaration of temporary variable, initializing it
1333 -- with the input parameter unless we have an OUT formal or
1334 -- this is an initialization call.
1336 -- If the formal is an out parameter with discriminants, the
1337 -- discriminants must be captured even if the rest of the object
1338 -- is in principle uninitialized, because the discriminants may
1339 -- be read by the called subprogram.
1341 if Ekind
(Formal
) = E_Out_Parameter
then
1344 if Has_Discriminants
(Etype
(Formal
)) then
1345 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1348 elsif Inside_Init_Proc
then
1350 -- Could use a comment here to match comment below ???
1352 if Nkind
(Actual
) /= N_Selected_Component
1354 not Has_Discriminant_Dependent_Constraint
1355 (Entity
(Selector_Name
(Actual
)))
1359 -- Otherwise, keep the component in order to generate the proper
1360 -- actual subtype, that depends on enclosing discriminants.
1368 Make_Object_Declaration
(Loc
,
1369 Defining_Identifier
=> Temp
,
1370 Object_Definition
=> Indic
,
1371 Expression
=> Incod
);
1376 -- If the call is to initialize a component of a composite type,
1377 -- and the component does not depend on discriminants, use the
1378 -- actual type of the component. This is required in case the
1379 -- component is constrained, because in general the formal of the
1380 -- initialization procedure will be unconstrained. Note that if
1381 -- the component being initialized is constrained by an enclosing
1382 -- discriminant, the presence of the initialization in the
1383 -- declaration will generate an expression for the actual subtype.
1385 Set_No_Initialization
(Decl
);
1386 Set_Object_Definition
(Decl
,
1387 New_Occurrence_Of
(Etype
(Actual
), Loc
));
1390 Insert_Action
(N
, Decl
);
1392 -- The actual is simply a reference to the temporary
1394 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1396 -- Generate copy out if OUT or IN OUT parameter
1398 if Ekind
(Formal
) /= E_In_Parameter
then
1400 Rhs
:= New_Occurrence_Of
(Temp
, Loc
);
1402 -- Deal with conversion
1404 if Nkind
(Lhs
) = N_Type_Conversion
then
1405 Lhs
:= Expression
(Lhs
);
1406 Rhs
:= Convert_To
(Etype
(Actual
), Rhs
);
1409 Append_To
(Post_Call
,
1410 Make_Assignment_Statement
(Loc
,
1412 Expression
=> Rhs
));
1413 Set_Assignment_OK
(Name
(Last
(Post_Call
)));
1415 end Add_Simple_Call_By_Copy_Code
;
1417 ---------------------------
1418 -- Check_Fortran_Logical --
1419 ---------------------------
1421 procedure Check_Fortran_Logical
is
1422 Logical
: constant Entity_Id
:= Etype
(Formal
);
1425 -- Note: this is very incomplete, e.g. it does not handle arrays
1426 -- of logical values. This is really not the right approach at all???)
1429 if Convention
(Subp
) = Convention_Fortran
1430 and then Root_Type
(Etype
(Formal
)) = Standard_Boolean
1431 and then Ekind
(Formal
) /= E_In_Parameter
1433 Var
:= Make_Var
(Actual
);
1434 Append_To
(Post_Call
,
1435 Make_Assignment_Statement
(Loc
,
1436 Name
=> New_Occurrence_Of
(Var
, Loc
),
1438 Unchecked_Convert_To
(
1441 Left_Opnd
=> New_Occurrence_Of
(Var
, Loc
),
1443 Unchecked_Convert_To
(
1445 New_Occurrence_Of
(Standard_False
, Loc
))))));
1447 end Check_Fortran_Logical
;
1453 function Is_Legal_Copy
return Boolean is
1455 -- An attempt to copy a value of such a type can only occur if
1456 -- representation clauses give the actual a misaligned address.
1458 if Is_By_Reference_Type
(Etype
(Formal
)) then
1460 -- If the front-end does not perform full type layout, the actual
1461 -- may in fact be properly aligned but there is not enough front-
1462 -- end information to determine this. In that case gigi will emit
1463 -- an error if a copy is not legal, or generate the proper code.
1464 -- For other backends we report the error now.
1466 -- Seems wrong to be issuing an error in the expander, since it
1467 -- will be missed in -gnatc mode ???
1469 if Frontend_Layout_On_Target
then
1471 ("misaligned actual cannot be passed by reference", Actual
);
1476 -- For users of Starlet, we assume that the specification of by-
1477 -- reference mechanism is mandatory. This may lead to unaligned
1478 -- objects but at least for DEC legacy code it is known to work.
1479 -- The warning will alert users of this code that a problem may
1482 elsif Mechanism
(Formal
) = By_Reference
1483 and then Is_Valued_Procedure
(Scope
(Formal
))
1486 ("by_reference actual may be misaligned??", Actual
);
1498 function Make_Var
(Actual
: Node_Id
) return Entity_Id
is
1502 if Is_Entity_Name
(Actual
) then
1503 return Entity
(Actual
);
1506 Var
:= Make_Temporary
(Loc
, 'T', Actual
);
1509 Make_Object_Renaming_Declaration
(Loc
,
1510 Defining_Identifier
=> Var
,
1512 New_Occurrence_Of
(Etype
(Actual
), Loc
),
1513 Name
=> Relocate_Node
(Actual
));
1515 Insert_Action
(N
, N_Node
);
1520 -------------------------
1521 -- Reset_Packed_Prefix --
1522 -------------------------
1524 procedure Reset_Packed_Prefix
is
1525 Pfx
: Node_Id
:= Actual
;
1528 Set_Analyzed
(Pfx
, False);
1530 not Nkind_In
(Pfx
, N_Selected_Component
, N_Indexed_Component
);
1531 Pfx
:= Prefix
(Pfx
);
1533 end Reset_Packed_Prefix
;
1535 -- Start of processing for Expand_Actuals
1538 Post_Call
:= New_List
;
1540 Formal
:= First_Formal
(Subp
);
1541 Actual
:= First_Actual
(N
);
1542 while Present
(Formal
) loop
1543 E_Formal
:= Etype
(Formal
);
1544 E_Actual
:= Etype
(Actual
);
1546 if Is_Scalar_Type
(E_Formal
)
1547 or else Nkind
(Actual
) = N_Slice
1549 Check_Fortran_Logical
;
1553 elsif Ekind
(Formal
) /= E_Out_Parameter
then
1555 -- The unusual case of the current instance of a protected type
1556 -- requires special handling. This can only occur in the context
1557 -- of a call within the body of a protected operation.
1559 if Is_Entity_Name
(Actual
)
1560 and then Ekind
(Entity
(Actual
)) = E_Protected_Type
1561 and then In_Open_Scopes
(Entity
(Actual
))
1563 if Scope
(Subp
) /= Entity
(Actual
) then
1565 ("operation outside protected type may not "
1566 & "call back its protected operations??", Actual
);
1570 Expand_Protected_Object_Reference
(N
, Entity
(Actual
)));
1573 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1574 -- build-in-place function, then a temporary return object needs
1575 -- to be created and access to it must be passed to the function.
1576 -- Currently we limit such functions to those with inherently
1577 -- limited result subtypes, but eventually we plan to expand the
1578 -- functions that are treated as build-in-place to include other
1579 -- composite result types.
1581 if Is_Build_In_Place_Function_Call
(Actual
) then
1582 Make_Build_In_Place_Call_In_Anonymous_Context
(Actual
);
1585 Apply_Constraint_Check
(Actual
, E_Formal
);
1587 -- Out parameter case. No constraint checks on access type
1590 elsif Is_Access_Type
(E_Formal
) then
1595 elsif Has_Discriminants
(Base_Type
(E_Formal
))
1596 or else Has_Non_Null_Base_Init_Proc
(E_Formal
)
1598 Apply_Constraint_Check
(Actual
, E_Formal
);
1603 Apply_Constraint_Check
(Actual
, Base_Type
(E_Formal
));
1606 -- Processing for IN-OUT and OUT parameters
1608 if Ekind
(Formal
) /= E_In_Parameter
then
1610 -- For type conversions of arrays, apply length/range checks
1612 if Is_Array_Type
(E_Formal
)
1613 and then Nkind
(Actual
) = N_Type_Conversion
1615 if Is_Constrained
(E_Formal
) then
1616 Apply_Length_Check
(Expression
(Actual
), E_Formal
);
1618 Apply_Range_Check
(Expression
(Actual
), E_Formal
);
1622 -- If argument is a type conversion for a type that is passed
1623 -- by copy, then we must pass the parameter by copy.
1625 if Nkind
(Actual
) = N_Type_Conversion
1627 (Is_Numeric_Type
(E_Formal
)
1628 or else Is_Access_Type
(E_Formal
)
1629 or else Is_Enumeration_Type
(E_Formal
)
1630 or else Is_Bit_Packed_Array
(Etype
(Formal
))
1631 or else Is_Bit_Packed_Array
(Etype
(Expression
(Actual
)))
1633 -- Also pass by copy if change of representation
1635 or else not Same_Representation
1637 Etype
(Expression
(Actual
))))
1639 Add_Call_By_Copy_Code
;
1641 -- References to components of bit packed arrays are expanded
1642 -- at this point, rather than at the point of analysis of the
1643 -- actuals, to handle the expansion of the assignment to
1644 -- [in] out parameters.
1646 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
1647 Add_Simple_Call_By_Copy_Code
;
1649 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1650 -- because the back-end cannot cope with such objects. In other
1651 -- cases where alignment forces a copy, the back-end generates
1652 -- it properly. It should not be generated unconditionally in the
1653 -- front-end because it does not know precisely the alignment
1654 -- requirements of the target, and makes too conservative an
1655 -- estimate, leading to superfluous copies or spurious errors
1656 -- on by-reference parameters.
1658 elsif Nkind
(Actual
) = N_Selected_Component
1660 Component_May_Be_Bit_Aligned
(Entity
(Selector_Name
(Actual
)))
1661 and then not Represented_As_Scalar
(Etype
(Formal
))
1663 Add_Simple_Call_By_Copy_Code
;
1665 -- References to slices of bit packed arrays are expanded
1667 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
1668 Add_Call_By_Copy_Code
;
1670 -- References to possibly unaligned slices of arrays are expanded
1672 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
1673 Add_Call_By_Copy_Code
;
1675 -- Deal with access types where the actual subtype and the
1676 -- formal subtype are not the same, requiring a check.
1678 -- It is necessary to exclude tagged types because of "downward
1679 -- conversion" errors.
1681 elsif Is_Access_Type
(E_Formal
)
1682 and then not Same_Type
(E_Formal
, E_Actual
)
1683 and then not Is_Tagged_Type
(Designated_Type
(E_Formal
))
1685 Add_Call_By_Copy_Code
;
1687 -- If the actual is not a scalar and is marked for volatile
1688 -- treatment, whereas the formal is not volatile, then pass
1689 -- by copy unless it is a by-reference type.
1691 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1692 -- because this is the enforcement of a language rule that applies
1693 -- only to "real" volatile variables, not e.g. to the address
1694 -- clause overlay case.
1696 elsif Is_Entity_Name
(Actual
)
1697 and then Is_Volatile
(Entity
(Actual
))
1698 and then not Is_By_Reference_Type
(E_Actual
)
1699 and then not Is_Scalar_Type
(Etype
(Entity
(Actual
)))
1700 and then not Is_Volatile
(E_Formal
)
1702 Add_Call_By_Copy_Code
;
1704 elsif Nkind
(Actual
) = N_Indexed_Component
1705 and then Is_Entity_Name
(Prefix
(Actual
))
1706 and then Has_Volatile_Components
(Entity
(Prefix
(Actual
)))
1708 Add_Call_By_Copy_Code
;
1710 -- Add call-by-copy code for the case of scalar out parameters
1711 -- when it is not known at compile time that the subtype of the
1712 -- formal is a subrange of the subtype of the actual (or vice
1713 -- versa for in out parameters), in order to get range checks
1714 -- on such actuals. (Maybe this case should be handled earlier
1715 -- in the if statement???)
1717 elsif Is_Scalar_Type
(E_Formal
)
1719 (not In_Subrange_Of
(E_Formal
, E_Actual
)
1721 (Ekind
(Formal
) = E_In_Out_Parameter
1722 and then not In_Subrange_Of
(E_Actual
, E_Formal
)))
1724 -- Perhaps the setting back to False should be done within
1725 -- Add_Call_By_Copy_Code, since it could get set on other
1726 -- cases occurring above???
1728 if Do_Range_Check
(Actual
) then
1729 Set_Do_Range_Check
(Actual
, False);
1732 Add_Call_By_Copy_Code
;
1735 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
1736 -- by-reference parameters on exit from the call. If the actual
1737 -- is a derived type and the operation is inherited, the body
1738 -- of the operation will not contain a call to the predicate
1739 -- function, so it must be done explicitly after the call. Ditto
1740 -- if the actual is an entity of a predicated subtype.
1742 -- The rule refers to by-reference types, but a check is needed
1743 -- for by-copy types as well. That check is subsumed by the rule
1744 -- for subtype conversion on assignment, but we can generate the
1745 -- required check now.
1747 -- Note also that Subp may be either a subprogram entity for
1748 -- direct calls, or a type entity for indirect calls, which must
1749 -- be handled separately because the name does not denote an
1750 -- overloadable entity.
1753 Aund
: constant Entity_Id
:= Underlying_Type
(E_Actual
);
1763 if Has_Predicates
(Atyp
)
1764 and then Present
(Predicate_Function
(Atyp
))
1766 -- Skip predicate checks for special cases
1768 and then Predicate_Tests_On_Arguments
(Subp
)
1770 Append_To
(Post_Call
,
1771 Make_Predicate_Check
(Atyp
, Actual
));
1775 -- Processing for IN parameters
1778 -- For IN parameters is in the packed array case, we expand an
1779 -- indexed component (the circuit in Exp_Ch4 deliberately left
1780 -- indexed components appearing as actuals untouched, so that
1781 -- the special processing above for the OUT and IN OUT cases
1782 -- could be performed. We could make the test in Exp_Ch4 more
1783 -- complex and have it detect the parameter mode, but it is
1784 -- easier simply to handle all cases here.)
1786 if Nkind
(Actual
) = N_Indexed_Component
1787 and then Is_Packed
(Etype
(Prefix
(Actual
)))
1789 Reset_Packed_Prefix
;
1790 Expand_Packed_Element_Reference
(Actual
);
1792 -- If we have a reference to a bit packed array, we copy it, since
1793 -- the actual must be byte aligned.
1795 -- Is this really necessary in all cases???
1797 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
1798 Add_Simple_Call_By_Copy_Code
;
1800 -- If a non-scalar actual is possibly unaligned, we need a copy
1802 elsif Is_Possibly_Unaligned_Object
(Actual
)
1803 and then not Represented_As_Scalar
(Etype
(Formal
))
1805 Add_Simple_Call_By_Copy_Code
;
1807 -- Similarly, we have to expand slices of packed arrays here
1808 -- because the result must be byte aligned.
1810 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
1811 Add_Call_By_Copy_Code
;
1813 -- Only processing remaining is to pass by copy if this is a
1814 -- reference to a possibly unaligned slice, since the caller
1815 -- expects an appropriately aligned argument.
1817 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
1818 Add_Call_By_Copy_Code
;
1820 -- An unusual case: a current instance of an enclosing task can be
1821 -- an actual, and must be replaced by a reference to self.
1823 elsif Is_Entity_Name
(Actual
)
1824 and then Is_Task_Type
(Entity
(Actual
))
1826 if In_Open_Scopes
(Entity
(Actual
)) then
1828 (Make_Function_Call
(Loc
,
1829 Name
=> New_Occurrence_Of
(RTE
(RE_Self
), Loc
))));
1832 -- A task type cannot otherwise appear as an actual
1835 raise Program_Error
;
1840 Next_Formal
(Formal
);
1841 Next_Actual
(Actual
);
1844 -- Find right place to put post call stuff if it is present
1846 if not Is_Empty_List
(Post_Call
) then
1848 -- Cases where the call is not a member of a statement list
1850 if not Is_List_Member
(N
) then
1852 -- In Ada 2012 the call may be a function call in an expression
1853 -- (since OUT and IN OUT parameters are now allowed for such
1854 -- calls). The write-back of (in)-out parameters is handled
1855 -- by the back-end, but the constraint checks generated when
1856 -- subtypes of formal and actual don't match must be inserted
1857 -- in the form of assignments.
1859 if Ada_Version
>= Ada_2012
1860 and then Nkind
(N
) = N_Function_Call
1862 -- We used to just do handle this by climbing up parents to
1863 -- a non-statement/declaration and then simply making a call
1864 -- to Insert_Actions_After (P, Post_Call), but that doesn't
1865 -- work. If we are in the middle of an expression, e.g. the
1866 -- condition of an IF, this call would insert after the IF
1867 -- statement, which is much too late to be doing the write
1868 -- back. For example:
1870 -- if Clobber (X) then
1871 -- Put_Line (X'Img);
1876 -- Now assume Clobber changes X, if we put the write back
1877 -- after the IF, the Put_Line gets the wrong value and the
1878 -- goto causes the write back to be skipped completely.
1880 -- To deal with this, we replace the call by
1883 -- Tnnn : function-result-type renames function-call;
1884 -- Post_Call actions
1889 -- Note: this won't do in Modify_Tree_For_C mode, but we
1890 -- will deal with that later (it will require creating a
1891 -- declaration for Temp, using Insert_Declaration) ???
1894 Tnnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
1895 FRTyp
: constant Entity_Id
:= Etype
(N
);
1896 Name
: constant Node_Id
:= Relocate_Node
(N
);
1899 Prepend_To
(Post_Call
,
1900 Make_Object_Renaming_Declaration
(Loc
,
1901 Defining_Identifier
=> Tnnn
,
1902 Subtype_Mark
=> New_Occurrence_Of
(FRTyp
, Loc
),
1906 Make_Expression_With_Actions
(Loc
,
1907 Actions
=> Post_Call
,
1908 Expression
=> New_Occurrence_Of
(Tnnn
, Loc
)));
1910 -- We don't want to just blindly call Analyze_And_Resolve
1911 -- because that would cause unwanted recursion on the call.
1912 -- So for a moment set the call as analyzed to prevent that
1913 -- recursion, and get the rest analyzed properly, then reset
1914 -- the analyzed flag, so our caller can continue.
1916 Set_Analyzed
(Name
, True);
1917 Analyze_And_Resolve
(N
, FRTyp
);
1918 Set_Analyzed
(Name
, False);
1920 -- Reset calling argument to point to function call inside
1921 -- the expression with actions so the caller can continue
1922 -- to process the call.
1927 -- If not the special Ada 2012 case of a function call, then
1928 -- we must have the triggering statement of a triggering
1929 -- alternative or an entry call alternative, and we can add
1930 -- the post call stuff to the corresponding statement list.
1938 pragma Assert
(Nkind_In
(P
, N_Triggering_Alternative
,
1939 N_Entry_Call_Alternative
));
1941 if Is_Non_Empty_List
(Statements
(P
)) then
1942 Insert_List_Before_And_Analyze
1943 (First
(Statements
(P
)), Post_Call
);
1945 Set_Statements
(P
, Post_Call
);
1952 -- Otherwise, normal case where N is in a statement sequence,
1953 -- just put the post-call stuff after the call statement.
1956 Insert_Actions_After
(N
, Post_Call
);
1961 -- The call node itself is re-analyzed in Expand_Call
1969 -- This procedure handles expansion of function calls and procedure call
1970 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
1971 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
1973 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
1974 -- Provide values of actuals for all formals in Extra_Formals list
1975 -- Replace "call" to enumeration literal function by literal itself
1976 -- Rewrite call to predefined operator as operator
1977 -- Replace actuals to in-out parameters that are numeric conversions,
1978 -- with explicit assignment to temporaries before and after the call.
1980 -- Note that the list of actuals has been filled with default expressions
1981 -- during semantic analysis of the call. Only the extra actuals required
1982 -- for the 'Constrained attribute and for accessibility checks are added
1985 procedure Expand_Call
(N
: Node_Id
) is
1986 Loc
: constant Source_Ptr
:= Sloc
(N
);
1987 Call_Node
: Node_Id
:= N
;
1988 Extra_Actuals
: List_Id
:= No_List
;
1989 Prev
: Node_Id
:= Empty
;
1991 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
);
1992 -- Adds one entry to the end of the actual parameter list. Used for
1993 -- default parameters and for extra actuals (for Extra_Formals). The
1994 -- argument is an N_Parameter_Association node.
1996 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
);
1997 -- Adds an extra actual to the list of extra actuals. Expr is the
1998 -- expression for the value of the actual, EF is the entity for the
2001 procedure Do_Inline
(Subp
: Entity_Id
; Orig_Subp
: Entity_Id
);
2002 -- Check and inline the body of Subp. Invoked when compiling with
2003 -- optimizations enabled and Subp has pragma inline or inline always.
2004 -- If the subprogram is a renaming, or if it is inherited, then Subp
2005 -- references the renamed entity and Orig_Subp is the entity of the
2008 procedure Do_Inline_Always
(Subp
: Entity_Id
; Orig_Subp
: Entity_Id
);
2009 -- Check and inline the body of Subp. Invoked when compiling without
2010 -- optimizations and Subp has pragma inline always. If the subprogram is
2011 -- a renaming, or if it is inherited, then Subp references the renamed
2012 -- entity and Orig_Subp is the entity of the call node N.
2014 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
;
2015 -- Within an instance, a type derived from an untagged formal derived
2016 -- type inherits from the original parent, not from the actual. The
2017 -- current derivation mechanism has the derived type inherit from the
2018 -- actual, which is only correct outside of the instance. If the
2019 -- subprogram is inherited, we test for this particular case through a
2020 -- convoluted tree traversal before setting the proper subprogram to be
2023 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean;
2024 -- Return true if E comes from an instance that is not yet frozen
2026 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean;
2027 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2029 function New_Value
(From
: Node_Id
) return Node_Id
;
2030 -- From is the original Expression. New_Value is equivalent to a call
2031 -- to Duplicate_Subexpr with an explicit dereference when From is an
2032 -- access parameter.
2034 --------------------------
2035 -- Add_Actual_Parameter --
2036 --------------------------
2038 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
) is
2039 Actual_Expr
: constant Node_Id
:=
2040 Explicit_Actual_Parameter
(Insert_Param
);
2043 -- Case of insertion is first named actual
2045 if No
(Prev
) or else
2046 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
2048 Set_Next_Named_Actual
2049 (Insert_Param
, First_Named_Actual
(Call_Node
));
2050 Set_First_Named_Actual
(Call_Node
, Actual_Expr
);
2053 if No
(Parameter_Associations
(Call_Node
)) then
2054 Set_Parameter_Associations
(Call_Node
, New_List
);
2057 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2060 Insert_After
(Prev
, Insert_Param
);
2063 -- Case of insertion is not first named actual
2066 Set_Next_Named_Actual
2067 (Insert_Param
, Next_Named_Actual
(Parent
(Prev
)));
2068 Set_Next_Named_Actual
(Parent
(Prev
), Actual_Expr
);
2069 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2072 Prev
:= Actual_Expr
;
2073 end Add_Actual_Parameter
;
2075 ----------------------
2076 -- Add_Extra_Actual --
2077 ----------------------
2079 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
) is
2080 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2083 if Extra_Actuals
= No_List
then
2084 Extra_Actuals
:= New_List
;
2085 Set_Parent
(Extra_Actuals
, Call_Node
);
2088 Append_To
(Extra_Actuals
,
2089 Make_Parameter_Association
(Loc
,
2090 Selector_Name
=> New_Occurrence_Of
(EF
, Loc
),
2091 Explicit_Actual_Parameter
=> Expr
));
2093 Analyze_And_Resolve
(Expr
, Etype
(EF
));
2095 if Nkind
(Call_Node
) = N_Function_Call
then
2096 Set_Is_Accessibility_Actual
(Parent
(Expr
));
2098 end Add_Extra_Actual
;
2104 procedure Do_Inline
(Subp
: Entity_Id
; Orig_Subp
: Entity_Id
) is
2105 Spec
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
2107 procedure Do_Backend_Inline
;
2108 -- Check that the call can be safely passed to the backend. If true
2109 -- then register the enclosing unit of Subp to Inlined_Bodies so that
2110 -- the body of Subp can be retrieved and analyzed by the backend.
2112 -----------------------
2113 -- Do_Backend_Inline --
2114 -----------------------
2116 procedure Do_Backend_Inline
is
2118 -- No extra test needed for init subprograms since we know they
2119 -- are available to the backend.
2121 if Is_Init_Proc
(Subp
) then
2122 Add_Inlined_Body
(Subp
);
2123 Register_Backend_Call
(Call_Node
);
2125 -- Verify that if the body to inline is located in the current
2126 -- unit the inlining does not occur earlier. This avoids
2127 -- order-of-elaboration problems in the back end.
2129 elsif In_Same_Extended_Unit
(Call_Node
, Subp
)
2130 and then Nkind
(Spec
) = N_Subprogram_Declaration
2131 and then Earlier_In_Extended_Unit
2132 (Loc
, Sloc
(Body_To_Inline
(Spec
)))
2135 ("cannot inline& (body not seen yet)??", Call_Node
, Subp
);
2139 Backend_Inline
: Boolean := True;
2142 -- If we are compiling a package body that is not the
2143 -- main unit, it must be for inlining/instantiation
2144 -- purposes, in which case we inline the call to insure
2145 -- that the same temporaries are generated when compiling
2146 -- the body by itself. Otherwise link errors can occur.
2148 -- If the function being called is itself in the main
2149 -- unit, we cannot inline, because there is a risk of
2150 -- double elaboration and/or circularity: the inlining
2151 -- can make visible a private entity in the body of the
2152 -- main unit, that gigi will see before its sees its
2153 -- proper definition.
2155 if not (In_Extended_Main_Code_Unit
(Call_Node
))
2156 and then In_Package_Body
2159 not In_Extended_Main_Source_Unit
(Subp
);
2162 if Backend_Inline
then
2163 Add_Inlined_Body
(Subp
);
2164 Register_Backend_Call
(Call_Node
);
2168 end Do_Backend_Inline
;
2170 -- Start of processing for Do_Inline
2173 -- Verify that the body to inline has already been seen
2176 or else Nkind
(Spec
) /= N_Subprogram_Declaration
2177 or else No
(Body_To_Inline
(Spec
))
2179 if Comes_From_Source
(Subp
)
2180 and then Must_Inline
(Subp
)
2183 ("cannot inline& (body not seen yet)?", Call_Node
, Subp
);
2185 -- Let the back end handle it
2192 -- If this an inherited function that returns a private type, do not
2193 -- inline if the full view is an unconstrained array, because such
2194 -- calls cannot be inlined.
2196 elsif Present
(Orig_Subp
)
2197 and then Is_Array_Type
(Etype
(Orig_Subp
))
2198 and then not Is_Constrained
(Etype
(Orig_Subp
))
2201 ("cannot inline& (unconstrained array)?", Call_Node
, Subp
);
2204 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
2208 ----------------------
2209 -- Do_Inline_Always --
2210 ----------------------
2212 procedure Do_Inline_Always
(Subp
: Entity_Id
; Orig_Subp
: Entity_Id
) is
2213 Spec
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
2214 Body_Id
: Entity_Id
;
2218 or else Nkind
(Spec
) /= N_Subprogram_Declaration
2219 or else No
(Body_To_Inline
(Spec
))
2220 or else Serious_Errors_Detected
/= 0
2225 Body_Id
:= Corresponding_Body
(Spec
);
2227 -- Verify that the body to inline has already been seen
2230 or else not Analyzed
(Body_Id
)
2232 Set_Is_Inlined
(Subp
, False);
2234 if Comes_From_Source
(Subp
) then
2236 -- Report a warning only if the call is located in the unit of
2237 -- the called subprogram; otherwise it is an error.
2239 if not In_Same_Extended_Unit
(Call_Node
, Subp
) then
2241 ("cannot inline& (body not seen yet)?", Call_Node
, Subp
,
2242 Is_Serious
=> True);
2244 elsif In_Open_Scopes
(Subp
) then
2246 -- For backward compatibility we generate the same error
2247 -- or warning of the previous implementation. This will
2248 -- be changed when we definitely incorporate the new
2251 if Front_End_Inlining
2252 and then Optimization_Level
= 0
2255 ("call to recursive subprogram cannot be inlined?p?",
2258 -- Do not emit error compiling runtime packages
2260 elsif Is_Predefined_File_Name
2261 (Unit_File_Name
(Get_Source_Unit
(Subp
)))
2264 ("call to recursive subprogram cannot be inlined??",
2269 ("call to recursive subprogram cannot be inlined",
2275 ("cannot inline& (body not seen yet)?", Call_Node
, Subp
);
2281 -- If this an inherited function that returns a private type, do not
2282 -- inline if the full view is an unconstrained array, because such
2283 -- calls cannot be inlined.
2285 elsif Present
(Orig_Subp
)
2286 and then Is_Array_Type
(Etype
(Orig_Subp
))
2287 and then not Is_Constrained
(Etype
(Orig_Subp
))
2290 ("cannot inline& (unconstrained array)?", Call_Node
, Subp
);
2292 -- If the called subprogram comes from an instance in the same
2293 -- unit, and the instance is not yet frozen, inlining might
2294 -- trigger order-of-elaboration problems.
2296 elsif In_Unfrozen_Instance
(Scope
(Subp
)) then
2298 ("cannot inline& (unfrozen instance)?", Call_Node
, Subp
);
2301 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
2303 end Do_Inline_Always
;
2305 ---------------------------
2306 -- Inherited_From_Formal --
2307 ---------------------------
2309 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
is
2311 Gen_Par
: Entity_Id
;
2312 Gen_Prim
: Elist_Id
;
2317 -- If the operation is inherited, it is attached to the corresponding
2318 -- type derivation. If the parent in the derivation is a generic
2319 -- actual, it is a subtype of the actual, and we have to recover the
2320 -- original derived type declaration to find the proper parent.
2322 if Nkind
(Parent
(S
)) /= N_Full_Type_Declaration
2323 or else not Is_Derived_Type
(Defining_Identifier
(Parent
(S
)))
2324 or else Nkind
(Type_Definition
(Original_Node
(Parent
(S
)))) /=
2325 N_Derived_Type_Definition
2326 or else not In_Instance
2333 (Type_Definition
(Original_Node
(Parent
(S
))));
2335 if Nkind
(Indic
) = N_Subtype_Indication
then
2336 Par
:= Entity
(Subtype_Mark
(Indic
));
2338 Par
:= Entity
(Indic
);
2342 if not Is_Generic_Actual_Type
(Par
)
2343 or else Is_Tagged_Type
(Par
)
2344 or else Nkind
(Parent
(Par
)) /= N_Subtype_Declaration
2345 or else not In_Open_Scopes
(Scope
(Par
))
2349 Gen_Par
:= Generic_Parent_Type
(Parent
(Par
));
2352 -- If the actual has no generic parent type, the formal is not
2353 -- a formal derived type, so nothing to inherit.
2355 if No
(Gen_Par
) then
2359 -- If the generic parent type is still the generic type, this is a
2360 -- private formal, not a derived formal, and there are no operations
2361 -- inherited from the formal.
2363 if Nkind
(Parent
(Gen_Par
)) = N_Formal_Type_Declaration
then
2367 Gen_Prim
:= Collect_Primitive_Operations
(Gen_Par
);
2369 Elmt
:= First_Elmt
(Gen_Prim
);
2370 while Present
(Elmt
) loop
2371 if Chars
(Node
(Elmt
)) = Chars
(S
) then
2377 F1
:= First_Formal
(S
);
2378 F2
:= First_Formal
(Node
(Elmt
));
2380 and then Present
(F2
)
2382 if Etype
(F1
) = Etype
(F2
)
2383 or else Etype
(F2
) = Gen_Par
2389 exit; -- not the right subprogram
2401 raise Program_Error
;
2402 end Inherited_From_Formal
;
2404 --------------------------
2405 -- In_Unfrozen_Instance --
2406 --------------------------
2408 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean is
2413 while Present
(S
) and then S
/= Standard_Standard
loop
2414 if Is_Generic_Instance
(S
)
2415 and then Present
(Freeze_Node
(S
))
2416 and then not Analyzed
(Freeze_Node
(S
))
2425 end In_Unfrozen_Instance
;
2427 -------------------------
2428 -- Is_Direct_Deep_Call --
2429 -------------------------
2431 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean is
2433 if Is_TSS
(Subp
, TSS_Deep_Adjust
)
2434 or else Is_TSS
(Subp
, TSS_Deep_Finalize
)
2435 or else Is_TSS
(Subp
, TSS_Deep_Initialize
)
2442 Actual
:= First
(Parameter_Associations
(N
));
2443 Formal
:= First_Formal
(Subp
);
2444 while Present
(Actual
)
2445 and then Present
(Formal
)
2447 if Nkind
(Actual
) = N_Identifier
2448 and then Is_Controlling_Actual
(Actual
)
2449 and then Etype
(Actual
) = Etype
(Formal
)
2455 Next_Formal
(Formal
);
2461 end Is_Direct_Deep_Call
;
2467 function New_Value
(From
: Node_Id
) return Node_Id
is
2468 Res
: constant Node_Id
:= Duplicate_Subexpr
(From
);
2470 if Is_Access_Type
(Etype
(From
)) then
2471 return Make_Explicit_Dereference
(Sloc
(From
), Prefix
=> Res
);
2479 Curr_S
: constant Entity_Id
:= Current_Scope
;
2480 Remote
: constant Boolean := Is_Remote_Call
(Call_Node
);
2483 Orig_Subp
: Entity_Id
:= Empty
;
2484 Param_Count
: Natural := 0;
2485 Parent_Formal
: Entity_Id
;
2486 Parent_Subp
: Entity_Id
;
2490 Prev_Orig
: Node_Id
;
2491 -- Original node for an actual, which may have been rewritten. If the
2492 -- actual is a function call that has been transformed from a selected
2493 -- component, the original node is unanalyzed. Otherwise, it carries
2494 -- semantic information used to generate additional actuals.
2496 CW_Interface_Formals_Present
: Boolean := False;
2498 -- Start of processing for Expand_Call
2501 -- Expand the procedure call if the first actual has a dimension and if
2502 -- the procedure is Put (Ada 2012).
2504 if Ada_Version
>= Ada_2012
2505 and then Nkind
(Call_Node
) = N_Procedure_Call_Statement
2506 and then Present
(Parameter_Associations
(Call_Node
))
2508 Expand_Put_Call_With_Symbol
(Call_Node
);
2511 -- Ignore if previous error
2513 if Nkind
(Call_Node
) in N_Has_Etype
2514 and then Etype
(Call_Node
) = Any_Type
2519 -- Call using access to subprogram with explicit dereference
2521 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
2522 Subp
:= Etype
(Name
(Call_Node
));
2523 Parent_Subp
:= Empty
;
2525 -- Case of call to simple entry, where the Name is a selected component
2526 -- whose prefix is the task, and whose selector name is the entry name
2528 elsif Nkind
(Name
(Call_Node
)) = N_Selected_Component
then
2529 Subp
:= Entity
(Selector_Name
(Name
(Call_Node
)));
2530 Parent_Subp
:= Empty
;
2532 -- Case of call to member of entry family, where Name is an indexed
2533 -- component, with the prefix being a selected component giving the
2534 -- task and entry family name, and the index being the entry index.
2536 elsif Nkind
(Name
(Call_Node
)) = N_Indexed_Component
then
2537 Subp
:= Entity
(Selector_Name
(Prefix
(Name
(Call_Node
))));
2538 Parent_Subp
:= Empty
;
2543 Subp
:= Entity
(Name
(Call_Node
));
2544 Parent_Subp
:= Alias
(Subp
);
2546 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2547 -- if we can tell that the first parameter cannot possibly be null.
2548 -- This improves efficiency by avoiding a run-time test.
2550 -- We do not do this if Raise_Exception_Always does not exist, which
2551 -- can happen in configurable run time profiles which provide only a
2554 if Is_RTE
(Subp
, RE_Raise_Exception
)
2555 and then RTE_Available
(RE_Raise_Exception_Always
)
2558 FA
: constant Node_Id
:=
2559 Original_Node
(First_Actual
(Call_Node
));
2562 -- The case we catch is where the first argument is obtained
2563 -- using the Identity attribute (which must always be
2566 if Nkind
(FA
) = N_Attribute_Reference
2567 and then Attribute_Name
(FA
) = Name_Identity
2569 Subp
:= RTE
(RE_Raise_Exception_Always
);
2570 Set_Name
(Call_Node
, New_Occurrence_Of
(Subp
, Loc
));
2575 if Ekind
(Subp
) = E_Entry
then
2576 Parent_Subp
:= Empty
;
2580 -- Detect the following code in System.Finalization_Masters only on
2581 -- .NET/JVM targets:
2583 -- procedure Finalize (Master : in out Finalization_Master) is
2587 -- Finalize (Curr_Ptr.all);
2589 -- Since .NET/JVM compilers lack address arithmetic and Deep_Finalize
2590 -- cannot be named in library or user code, the compiler has to deal
2591 -- with this by transforming the call to Finalize into Deep_Finalize.
2593 if VM_Target
/= No_VM
2594 and then Chars
(Subp
) = Name_Finalize
2595 and then Ekind
(Curr_S
) = E_Block
2596 and then Ekind
(Scope
(Curr_S
)) = E_Procedure
2597 and then Chars
(Scope
(Curr_S
)) = Name_Finalize
2598 and then Etype
(First_Formal
(Scope
(Curr_S
))) =
2599 RTE
(RE_Finalization_Master
)
2602 Deep_Fin
: constant Entity_Id
:=
2603 Find_Prim_Op
(RTE
(RE_Root_Controlled
),
2606 -- Since Root_Controlled is a tagged type, the compiler should
2607 -- always generate Deep_Finalize for it.
2609 pragma Assert
(Present
(Deep_Fin
));
2612 -- Deep_Finalize (Curr_Ptr.all);
2615 Make_Procedure_Call_Statement
(Loc
,
2617 New_Occurrence_Of
(Deep_Fin
, Loc
),
2618 Parameter_Associations
=>
2619 New_Copy_List_Tree
(Parameter_Associations
(N
))));
2626 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2627 -- alternative in an asynchronous select or as an entry call in
2628 -- a conditional or timed select. Check whether the procedure call
2629 -- is a renaming of an entry and rewrite it as an entry call.
2631 if Ada_Version
>= Ada_2005
2632 and then Nkind
(Call_Node
) = N_Procedure_Call_Statement
2634 ((Nkind
(Parent
(Call_Node
)) = N_Triggering_Alternative
2635 and then Triggering_Statement
(Parent
(Call_Node
)) = Call_Node
)
2637 (Nkind
(Parent
(Call_Node
)) = N_Entry_Call_Alternative
2638 and then Entry_Call_Statement
(Parent
(Call_Node
)) = Call_Node
))
2642 Ren_Root
: Entity_Id
:= Subp
;
2645 -- This may be a chain of renamings, find the root
2647 if Present
(Alias
(Ren_Root
)) then
2648 Ren_Root
:= Alias
(Ren_Root
);
2651 if Present
(Original_Node
(Parent
(Parent
(Ren_Root
)))) then
2652 Ren_Decl
:= Original_Node
(Parent
(Parent
(Ren_Root
)));
2654 if Nkind
(Ren_Decl
) = N_Subprogram_Renaming_Declaration
then
2656 Make_Entry_Call_Statement
(Loc
,
2658 New_Copy_Tree
(Name
(Ren_Decl
)),
2659 Parameter_Associations
=>
2661 (Parameter_Associations
(Call_Node
))));
2669 -- First step, compute extra actuals, corresponding to any Extra_Formals
2670 -- present. Note that we do not access Extra_Formals directly, instead
2671 -- we simply note the presence of the extra formals as we process the
2672 -- regular formals collecting corresponding actuals in Extra_Actuals.
2674 -- We also generate any required range checks for actuals for in formals
2675 -- as we go through the loop, since this is a convenient place to do it.
2676 -- (Though it seems that this would be better done in Expand_Actuals???)
2678 -- Special case: Thunks must not compute the extra actuals; they must
2679 -- just propagate to the target primitive their extra actuals.
2681 if Is_Thunk
(Current_Scope
)
2682 and then Thunk_Entity
(Current_Scope
) = Subp
2683 and then Present
(Extra_Formals
(Subp
))
2685 pragma Assert
(Present
(Extra_Formals
(Current_Scope
)));
2688 Target_Formal
: Entity_Id
;
2689 Thunk_Formal
: Entity_Id
;
2692 Target_Formal
:= Extra_Formals
(Subp
);
2693 Thunk_Formal
:= Extra_Formals
(Current_Scope
);
2694 while Present
(Target_Formal
) loop
2696 (New_Occurrence_Of
(Thunk_Formal
, Loc
), Thunk_Formal
);
2698 Target_Formal
:= Extra_Formal
(Target_Formal
);
2699 Thunk_Formal
:= Extra_Formal
(Thunk_Formal
);
2702 while Is_Non_Empty_List
(Extra_Actuals
) loop
2703 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
2706 Expand_Actuals
(Call_Node
, Subp
);
2711 Formal
:= First_Formal
(Subp
);
2712 Actual
:= First_Actual
(Call_Node
);
2714 while Present
(Formal
) loop
2716 -- Generate range check if required
2718 if Do_Range_Check
(Actual
)
2719 and then Ekind
(Formal
) = E_In_Parameter
2721 Generate_Range_Check
2722 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
2725 -- Prepare to examine current entry
2728 Prev_Orig
:= Original_Node
(Prev
);
2730 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2731 -- to expand it in a further round.
2733 CW_Interface_Formals_Present
:=
2734 CW_Interface_Formals_Present
2736 (Ekind
(Etype
(Formal
)) = E_Class_Wide_Type
2737 and then Is_Interface
(Etype
(Etype
(Formal
))))
2739 (Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
2740 and then Is_Interface
(Directly_Designated_Type
2741 (Etype
(Etype
(Formal
)))));
2743 -- Create possible extra actual for constrained case. Usually, the
2744 -- extra actual is of the form actual'constrained, but since this
2745 -- attribute is only available for unconstrained records, TRUE is
2746 -- expanded if the type of the formal happens to be constrained (for
2747 -- instance when this procedure is inherited from an unconstrained
2748 -- record to a constrained one) or if the actual has no discriminant
2749 -- (its type is constrained). An exception to this is the case of a
2750 -- private type without discriminants. In this case we pass FALSE
2751 -- because the object has underlying discriminants with defaults.
2753 if Present
(Extra_Constrained
(Formal
)) then
2754 if Ekind
(Etype
(Prev
)) in Private_Kind
2755 and then not Has_Discriminants
(Base_Type
(Etype
(Prev
)))
2758 (New_Occurrence_Of
(Standard_False
, Loc
),
2759 Extra_Constrained
(Formal
));
2761 elsif Is_Constrained
(Etype
(Formal
))
2762 or else not Has_Discriminants
(Etype
(Prev
))
2765 (New_Occurrence_Of
(Standard_True
, Loc
),
2766 Extra_Constrained
(Formal
));
2768 -- Do not produce extra actuals for Unchecked_Union parameters.
2769 -- Jump directly to the end of the loop.
2771 elsif Is_Unchecked_Union
(Base_Type
(Etype
(Actual
))) then
2772 goto Skip_Extra_Actual_Generation
;
2775 -- If the actual is a type conversion, then the constrained
2776 -- test applies to the actual, not the target type.
2782 -- Test for unchecked conversions as well, which can occur
2783 -- as out parameter actuals on calls to stream procedures.
2786 while Nkind_In
(Act_Prev
, N_Type_Conversion
,
2787 N_Unchecked_Type_Conversion
)
2789 Act_Prev
:= Expression
(Act_Prev
);
2792 -- If the expression is a conversion of a dereference, this
2793 -- is internally generated code that manipulates addresses,
2794 -- e.g. when building interface tables. No check should
2795 -- occur in this case, and the discriminated object is not
2798 if not Comes_From_Source
(Actual
)
2799 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2800 and then Nkind
(Act_Prev
) = N_Explicit_Dereference
2803 (New_Occurrence_Of
(Standard_False
, Loc
),
2804 Extra_Constrained
(Formal
));
2808 (Make_Attribute_Reference
(Sloc
(Prev
),
2810 Duplicate_Subexpr_No_Checks
2811 (Act_Prev
, Name_Req
=> True),
2812 Attribute_Name
=> Name_Constrained
),
2813 Extra_Constrained
(Formal
));
2819 -- Create possible extra actual for accessibility level
2821 if Present
(Extra_Accessibility
(Formal
)) then
2823 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2824 -- attribute, then the original actual may be an aliased object
2825 -- occurring as the prefix in a call using "Object.Operation"
2826 -- notation. In that case we must pass the level of the object,
2827 -- so Prev_Orig is reset to Prev and the attribute will be
2828 -- processed by the code for Access attributes further below.
2830 if Prev_Orig
/= Prev
2831 and then Nkind
(Prev
) = N_Attribute_Reference
2833 Get_Attribute_Id
(Attribute_Name
(Prev
)) = Attribute_Access
2834 and then Is_Aliased_View
(Prev_Orig
)
2839 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2840 -- accessibility levels.
2842 if Is_Thunk
(Current_Scope
) then
2844 Parm_Ent
: Entity_Id
;
2847 if Is_Controlling_Actual
(Actual
) then
2849 -- Find the corresponding actual of the thunk
2851 Parm_Ent
:= First_Entity
(Current_Scope
);
2852 for J
in 2 .. Param_Count
loop
2853 Next_Entity
(Parm_Ent
);
2856 -- Handle unchecked conversion of access types generated
2857 -- in thunks (cf. Expand_Interface_Thunk).
2859 elsif Is_Access_Type
(Etype
(Actual
))
2860 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2862 Parm_Ent
:= Entity
(Expression
(Actual
));
2864 else pragma Assert
(Is_Entity_Name
(Actual
));
2865 Parm_Ent
:= Entity
(Actual
);
2869 (New_Occurrence_Of
(Extra_Accessibility
(Parm_Ent
), Loc
),
2870 Extra_Accessibility
(Formal
));
2873 elsif Is_Entity_Name
(Prev_Orig
) then
2875 -- When passing an access parameter, or a renaming of an access
2876 -- parameter, as the actual to another access parameter we need
2877 -- to pass along the actual's own access level parameter. This
2878 -- is done if we are within the scope of the formal access
2879 -- parameter (if this is an inlined body the extra formal is
2882 if (Is_Formal
(Entity
(Prev_Orig
))
2884 (Present
(Renamed_Object
(Entity
(Prev_Orig
)))
2886 Is_Entity_Name
(Renamed_Object
(Entity
(Prev_Orig
)))
2889 (Entity
(Renamed_Object
(Entity
(Prev_Orig
))))))
2890 and then Ekind
(Etype
(Prev_Orig
)) = E_Anonymous_Access_Type
2891 and then In_Open_Scopes
(Scope
(Entity
(Prev_Orig
)))
2894 Parm_Ent
: constant Entity_Id
:= Param_Entity
(Prev_Orig
);
2897 pragma Assert
(Present
(Parm_Ent
));
2899 if Present
(Extra_Accessibility
(Parm_Ent
)) then
2902 (Extra_Accessibility
(Parm_Ent
), Loc
),
2903 Extra_Accessibility
(Formal
));
2905 -- If the actual access parameter does not have an
2906 -- associated extra formal providing its scope level,
2907 -- then treat the actual as having library-level
2912 (Make_Integer_Literal
(Loc
,
2913 Intval
=> Scope_Depth
(Standard_Standard
)),
2914 Extra_Accessibility
(Formal
));
2918 -- The actual is a normal access value, so just pass the level
2919 -- of the actual's access type.
2923 (Dynamic_Accessibility_Level
(Prev_Orig
),
2924 Extra_Accessibility
(Formal
));
2927 -- If the actual is an access discriminant, then pass the level
2928 -- of the enclosing object (RM05-3.10.2(12.4/2)).
2930 elsif Nkind
(Prev_Orig
) = N_Selected_Component
2931 and then Ekind
(Entity
(Selector_Name
(Prev_Orig
))) =
2933 and then Ekind
(Etype
(Entity
(Selector_Name
(Prev_Orig
)))) =
2934 E_Anonymous_Access_Type
2937 (Make_Integer_Literal
(Loc
,
2938 Intval
=> Object_Access_Level
(Prefix
(Prev_Orig
))),
2939 Extra_Accessibility
(Formal
));
2944 case Nkind
(Prev_Orig
) is
2946 when N_Attribute_Reference
=>
2947 case Get_Attribute_Id
(Attribute_Name
(Prev_Orig
)) is
2949 -- For X'Access, pass on the level of the prefix X
2951 when Attribute_Access
=>
2953 -- If this is an Access attribute applied to the
2954 -- the current instance object passed to a type
2955 -- initialization procedure, then use the level
2956 -- of the type itself. This is not really correct,
2957 -- as there should be an extra level parameter
2958 -- passed in with _init formals (only in the case
2959 -- where the type is immutably limited), but we
2960 -- don't have an easy way currently to create such
2961 -- an extra formal (init procs aren't ever frozen).
2962 -- For now we just use the level of the type,
2963 -- which may be too shallow, but that works better
2964 -- than passing Object_Access_Level of the type,
2965 -- which can be one level too deep in some cases.
2968 if Is_Entity_Name
(Prefix
(Prev_Orig
))
2969 and then Is_Type
(Entity
(Prefix
(Prev_Orig
)))
2972 (Make_Integer_Literal
(Loc
,
2975 (Entity
(Prefix
(Prev_Orig
)))),
2976 Extra_Accessibility
(Formal
));
2980 (Make_Integer_Literal
(Loc
,
2983 (Prefix
(Prev_Orig
))),
2984 Extra_Accessibility
(Formal
));
2987 -- Treat the unchecked attributes as library-level
2989 when Attribute_Unchecked_Access |
2990 Attribute_Unrestricted_Access
=>
2992 (Make_Integer_Literal
(Loc
,
2993 Intval
=> Scope_Depth
(Standard_Standard
)),
2994 Extra_Accessibility
(Formal
));
2996 -- No other cases of attributes returning access
2997 -- values that can be passed to access parameters.
3000 raise Program_Error
;
3004 -- For allocators we pass the level of the execution of the
3005 -- called subprogram, which is one greater than the current
3010 (Make_Integer_Literal
(Loc
,
3011 Intval
=> Scope_Depth
(Current_Scope
) + 1),
3012 Extra_Accessibility
(Formal
));
3014 -- For most other cases we simply pass the level of the
3015 -- actual's access type. The type is retrieved from
3016 -- Prev rather than Prev_Orig, because in some cases
3017 -- Prev_Orig denotes an original expression that has
3018 -- not been analyzed.
3022 (Dynamic_Accessibility_Level
(Prev
),
3023 Extra_Accessibility
(Formal
));
3028 -- Perform the check of 4.6(49) that prevents a null value from being
3029 -- passed as an actual to an access parameter. Note that the check
3030 -- is elided in the common cases of passing an access attribute or
3031 -- access parameter as an actual. Also, we currently don't enforce
3032 -- this check for expander-generated actuals and when -gnatdj is set.
3034 if Ada_Version
>= Ada_2005
then
3036 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3037 -- the intent of 6.4.1(13) is that null-exclusion checks should
3038 -- not be done for 'out' parameters, even though it refers only
3039 -- to constraint checks, and a null_exclusion is not a constraint.
3040 -- Note that AI05-0196-1 corrects this mistake in the RM.
3042 if Is_Access_Type
(Etype
(Formal
))
3043 and then Can_Never_Be_Null
(Etype
(Formal
))
3044 and then Ekind
(Formal
) /= E_Out_Parameter
3045 and then Nkind
(Prev
) /= N_Raise_Constraint_Error
3046 and then (Known_Null
(Prev
)
3047 or else not Can_Never_Be_Null
(Etype
(Prev
)))
3049 Install_Null_Excluding_Check
(Prev
);
3052 -- Ada_Version < Ada_2005
3055 if Ekind
(Etype
(Formal
)) /= E_Anonymous_Access_Type
3056 or else Access_Checks_Suppressed
(Subp
)
3060 elsif Debug_Flag_J
then
3063 elsif not Comes_From_Source
(Prev
) then
3066 elsif Is_Entity_Name
(Prev
)
3067 and then Ekind
(Etype
(Prev
)) = E_Anonymous_Access_Type
3071 elsif Nkind_In
(Prev
, N_Allocator
, N_Attribute_Reference
) then
3074 -- Suppress null checks when passing to access parameters of Java
3075 -- and CIL subprograms. (Should this be done for other foreign
3076 -- conventions as well ???)
3078 elsif Convention
(Subp
) = Convention_Java
3079 or else Convention
(Subp
) = Convention_CIL
3084 Install_Null_Excluding_Check
(Prev
);
3088 -- Perform appropriate validity checks on parameters that
3091 if Validity_Checks_On
then
3092 if (Ekind
(Formal
) = E_In_Parameter
3093 and then Validity_Check_In_Params
)
3095 (Ekind
(Formal
) = E_In_Out_Parameter
3096 and then Validity_Check_In_Out_Params
)
3098 -- If the actual is an indexed component of a packed type (or
3099 -- is an indexed or selected component whose prefix recursively
3100 -- meets this condition), it has not been expanded yet. It will
3101 -- be copied in the validity code that follows, and has to be
3102 -- expanded appropriately, so reanalyze it.
3104 -- What we do is just to unset analyzed bits on prefixes till
3105 -- we reach something that does not have a prefix.
3112 while Nkind_In
(Nod
, N_Indexed_Component
,
3113 N_Selected_Component
)
3115 Set_Analyzed
(Nod
, False);
3116 Nod
:= Prefix
(Nod
);
3120 Ensure_Valid
(Actual
);
3124 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3125 -- since this is a left side reference. We only do this for calls
3126 -- from the source program since we assume that compiler generated
3127 -- calls explicitly generate any required checks. We also need it
3128 -- only if we are doing standard validity checks, since clearly it is
3129 -- not needed if validity checks are off, and in subscript validity
3130 -- checking mode, all indexed components are checked with a call
3131 -- directly from Expand_N_Indexed_Component.
3133 if Comes_From_Source
(Call_Node
)
3134 and then Ekind
(Formal
) /= E_In_Parameter
3135 and then Validity_Checks_On
3136 and then Validity_Check_Default
3137 and then not Validity_Check_Subscripts
3139 Check_Valid_Lvalue_Subscripts
(Actual
);
3142 -- Mark any scalar OUT parameter that is a simple variable as no
3143 -- longer known to be valid (unless the type is always valid). This
3144 -- reflects the fact that if an OUT parameter is never set in a
3145 -- procedure, then it can become invalid on the procedure return.
3147 if Ekind
(Formal
) = E_Out_Parameter
3148 and then Is_Entity_Name
(Actual
)
3149 and then Ekind
(Entity
(Actual
)) = E_Variable
3150 and then not Is_Known_Valid
(Etype
(Actual
))
3152 Set_Is_Known_Valid
(Entity
(Actual
), False);
3155 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3156 -- clear current values, since they can be clobbered. We are probably
3157 -- doing this in more places than we need to, but better safe than
3158 -- sorry when it comes to retaining bad current values.
3160 if Ekind
(Formal
) /= E_In_Parameter
3161 and then Is_Entity_Name
(Actual
)
3162 and then Present
(Entity
(Actual
))
3165 Ent
: constant Entity_Id
:= Entity
(Actual
);
3169 -- For an OUT or IN OUT parameter that is an assignable entity,
3170 -- we do not want to clobber the Last_Assignment field, since
3171 -- if it is set, it was precisely because it is indeed an OUT
3172 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3173 -- since the subprogram could have returned in invalid value.
3175 if Ekind_In
(Formal
, E_Out_Parameter
, E_In_Out_Parameter
)
3176 and then Is_Assignable
(Ent
)
3178 Sav
:= Last_Assignment
(Ent
);
3179 Kill_Current_Values
(Ent
);
3180 Set_Last_Assignment
(Ent
, Sav
);
3181 Set_Is_Known_Valid
(Ent
, False);
3183 -- For all other cases, just kill the current values
3186 Kill_Current_Values
(Ent
);
3191 -- If the formal is class wide and the actual is an aggregate, force
3192 -- evaluation so that the back end who does not know about class-wide
3193 -- type, does not generate a temporary of the wrong size.
3195 if not Is_Class_Wide_Type
(Etype
(Formal
)) then
3198 elsif Nkind
(Actual
) = N_Aggregate
3199 or else (Nkind
(Actual
) = N_Qualified_Expression
3200 and then Nkind
(Expression
(Actual
)) = N_Aggregate
)
3202 Force_Evaluation
(Actual
);
3205 -- In a remote call, if the formal is of a class-wide type, check
3206 -- that the actual meets the requirements described in E.4(18).
3208 if Remote
and then Is_Class_Wide_Type
(Etype
(Formal
)) then
3209 Insert_Action
(Actual
,
3210 Make_Transportable_Check
(Loc
,
3211 Duplicate_Subexpr_Move_Checks
(Actual
)));
3214 -- This label is required when skipping extra actual generation for
3215 -- Unchecked_Union parameters.
3217 <<Skip_Extra_Actual_Generation
>>
3219 Param_Count
:= Param_Count
+ 1;
3220 Next_Actual
(Actual
);
3221 Next_Formal
(Formal
);
3224 -- If we are calling an Ada 2012 function which needs to have the
3225 -- "accessibility level determined by the point of call" (AI05-0234)
3226 -- passed in to it, then pass it in.
3228 if Ekind_In
(Subp
, E_Function
, E_Operator
, E_Subprogram_Type
)
3230 Present
(Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)))
3233 Ancestor
: Node_Id
:= Parent
(Call_Node
);
3234 Level
: Node_Id
:= Empty
;
3235 Defer
: Boolean := False;
3238 -- Unimplemented: if Subp returns an anonymous access type, then
3240 -- a) if the call is the operand of an explict conversion, then
3241 -- the target type of the conversion (a named access type)
3242 -- determines the accessibility level pass in;
3244 -- b) if the call defines an access discriminant of an object
3245 -- (e.g., the discriminant of an object being created by an
3246 -- allocator, or the discriminant of a function result),
3247 -- then the accessibility level to pass in is that of the
3248 -- discriminated object being initialized).
3252 while Nkind
(Ancestor
) = N_Qualified_Expression
3254 Ancestor
:= Parent
(Ancestor
);
3257 case Nkind
(Ancestor
) is
3260 -- At this point, we'd like to assign
3262 -- Level := Dynamic_Accessibility_Level (Ancestor);
3264 -- but Etype of Ancestor may not have been set yet,
3265 -- so that doesn't work.
3267 -- Handle this later in Expand_Allocator_Expression.
3271 when N_Object_Declaration | N_Object_Renaming_Declaration
=>
3273 Def_Id
: constant Entity_Id
:=
3274 Defining_Identifier
(Ancestor
);
3277 if Is_Return_Object
(Def_Id
) then
3278 if Present
(Extra_Accessibility_Of_Result
3279 (Return_Applies_To
(Scope
(Def_Id
))))
3281 -- Pass along value that was passed in if the
3282 -- routine we are returning from also has an
3283 -- Accessibility_Of_Result formal.
3287 (Extra_Accessibility_Of_Result
3288 (Return_Applies_To
(Scope
(Def_Id
))), Loc
);
3292 Make_Integer_Literal
(Loc
,
3293 Intval
=> Object_Access_Level
(Def_Id
));
3297 when N_Simple_Return_Statement
=>
3298 if Present
(Extra_Accessibility_Of_Result
3300 (Return_Statement_Entity
(Ancestor
))))
3302 -- Pass along value that was passed in if the returned
3303 -- routine also has an Accessibility_Of_Result formal.
3307 (Extra_Accessibility_Of_Result
3309 (Return_Statement_Entity
(Ancestor
))), Loc
);
3317 if not Present
(Level
) then
3319 -- The "innermost master that evaluates the function call".
3321 -- ??? - Should we use Integer'Last here instead in order
3322 -- to deal with (some of) the problems associated with
3323 -- calls to subps whose enclosing scope is unknown (e.g.,
3324 -- Anon_Access_To_Subp_Param.all)?
3326 Level
:= Make_Integer_Literal
(Loc
,
3327 Scope_Depth
(Current_Scope
) + 1);
3332 Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)));
3337 -- If we are expanding the RHS of an assignment we need to check if tag
3338 -- propagation is needed. You might expect this processing to be in
3339 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3340 -- assignment might be transformed to a declaration for an unconstrained
3341 -- value if the expression is classwide.
3343 if Nkind
(Call_Node
) = N_Function_Call
3344 and then Is_Tag_Indeterminate
(Call_Node
)
3345 and then Is_Entity_Name
(Name
(Call_Node
))
3348 Ass
: Node_Id
:= Empty
;
3351 if Nkind
(Parent
(Call_Node
)) = N_Assignment_Statement
then
3352 Ass
:= Parent
(Call_Node
);
3354 elsif Nkind
(Parent
(Call_Node
)) = N_Qualified_Expression
3355 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3356 N_Assignment_Statement
3358 Ass
:= Parent
(Parent
(Call_Node
));
3360 elsif Nkind
(Parent
(Call_Node
)) = N_Explicit_Dereference
3361 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3362 N_Assignment_Statement
3364 Ass
:= Parent
(Parent
(Call_Node
));
3368 and then Is_Class_Wide_Type
(Etype
(Name
(Ass
)))
3370 if Is_Access_Type
(Etype
(Call_Node
)) then
3371 if Designated_Type
(Etype
(Call_Node
)) /=
3372 Root_Type
(Etype
(Name
(Ass
)))
3375 ("tag-indeterminate expression "
3376 & " must have designated type& (RM 5.2 (6))",
3377 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3379 Propagate_Tag
(Name
(Ass
), Call_Node
);
3382 elsif Etype
(Call_Node
) /= Root_Type
(Etype
(Name
(Ass
))) then
3384 ("tag-indeterminate expression must have type&"
3386 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3389 Propagate_Tag
(Name
(Ass
), Call_Node
);
3392 -- The call will be rewritten as a dispatching call, and
3393 -- expanded as such.
3400 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3401 -- it to point to the correct secondary virtual table
3403 if Nkind
(Call_Node
) in N_Subprogram_Call
3404 and then CW_Interface_Formals_Present
3406 Expand_Interface_Actuals
(Call_Node
);
3409 -- Deals with Dispatch_Call if we still have a call, before expanding
3410 -- extra actuals since this will be done on the re-analysis of the
3411 -- dispatching call. Note that we do not try to shorten the actual list
3412 -- for a dispatching call, it would not make sense to do so. Expansion
3413 -- of dispatching calls is suppressed when VM_Target, because the VM
3414 -- back-ends directly handle the generation of dispatching calls and
3415 -- would have to undo any expansion to an indirect call.
3417 if Nkind
(Call_Node
) in N_Subprogram_Call
3418 and then Present
(Controlling_Argument
(Call_Node
))
3421 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
3422 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
3423 Eq_Prim_Op
: Entity_Id
:= Empty
;
3426 Prev_Call
: Node_Id
;
3429 if not Is_Limited_Type
(Typ
) then
3430 Eq_Prim_Op
:= Find_Prim_Op
(Typ
, Name_Op_Eq
);
3433 if Tagged_Type_Expansion
then
3434 Expand_Dispatching_Call
(Call_Node
);
3436 -- The following return is worrisome. Is it really OK to skip
3437 -- all remaining processing in this procedure ???
3444 Apply_Tag_Checks
(Call_Node
);
3446 -- If this is a dispatching "=", we must first compare the
3447 -- tags so we generate: x.tag = y.tag and then x = y
3449 if Subp
= Eq_Prim_Op
then
3451 -- Mark the node as analyzed to avoid reanalizing this
3452 -- dispatching call (which would cause a never-ending loop)
3454 Prev_Call
:= Relocate_Node
(Call_Node
);
3455 Set_Analyzed
(Prev_Call
);
3457 Param
:= First_Actual
(Call_Node
);
3463 Make_Selected_Component
(Loc
,
3464 Prefix
=> New_Value
(Param
),
3467 (First_Tag_Component
(Typ
), Loc
)),
3470 Make_Selected_Component
(Loc
,
3472 Unchecked_Convert_To
(Typ
,
3473 New_Value
(Next_Actual
(Param
))),
3476 (First_Tag_Component
(Typ
), Loc
))),
3477 Right_Opnd
=> Prev_Call
);
3479 Rewrite
(Call_Node
, New_Call
);
3482 (Call_Node
, Call_Typ
, Suppress
=> All_Checks
);
3485 -- Expansion of a dispatching call results in an indirect call,
3486 -- which in turn causes current values to be killed (see
3487 -- Resolve_Call), so on VM targets we do the call here to
3488 -- ensure consistent warnings between VM and non-VM targets.
3490 Kill_Current_Values
;
3493 -- If this is a dispatching "=" then we must update the reference
3494 -- to the call node because we generated:
3495 -- x.tag = y.tag and then x = y
3497 if Subp
= Eq_Prim_Op
then
3498 Call_Node
:= Right_Opnd
(Call_Node
);
3503 -- Similarly, expand calls to RCI subprograms on which pragma
3504 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3505 -- later. Do this only when the call comes from source since we
3506 -- do not want such a rewriting to occur in expanded code.
3508 if Is_All_Remote_Call
(Call_Node
) then
3509 Expand_All_Calls_Remote_Subprogram_Call
(Call_Node
);
3511 -- Similarly, do not add extra actuals for an entry call whose entity
3512 -- is a protected procedure, or for an internal protected subprogram
3513 -- call, because it will be rewritten as a protected subprogram call
3514 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3516 elsif Is_Protected_Type
(Scope
(Subp
))
3517 and then (Ekind
(Subp
) = E_Procedure
3518 or else Ekind
(Subp
) = E_Function
)
3522 -- During that loop we gathered the extra actuals (the ones that
3523 -- correspond to Extra_Formals), so now they can be appended.
3526 while Is_Non_Empty_List
(Extra_Actuals
) loop
3527 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
3531 -- At this point we have all the actuals, so this is the point at which
3532 -- the various expansion activities for actuals is carried out.
3534 Expand_Actuals
(Call_Node
, Subp
);
3536 -- Verify that the actuals do not share storage. This check must be done
3537 -- on the caller side rather that inside the subprogram to avoid issues
3538 -- of parameter passing.
3540 if Check_Aliasing_Of_Parameters
then
3541 Apply_Parameter_Aliasing_Checks
(Call_Node
, Subp
);
3544 -- If the subprogram is a renaming, or if it is inherited, replace it in
3545 -- the call with the name of the actual subprogram being called. If this
3546 -- is a dispatching call, the run-time decides what to call. The Alias
3547 -- attribute does not apply to entries.
3549 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
3550 and then No
(Controlling_Argument
(Call_Node
))
3551 and then Present
(Parent_Subp
)
3552 and then not Is_Direct_Deep_Call
(Subp
)
3554 if Present
(Inherited_From_Formal
(Subp
)) then
3555 Parent_Subp
:= Inherited_From_Formal
(Subp
);
3557 Parent_Subp
:= Ultimate_Alias
(Parent_Subp
);
3560 -- The below setting of Entity is suspect, see F109-018 discussion???
3562 Set_Entity
(Name
(Call_Node
), Parent_Subp
);
3564 if Is_Abstract_Subprogram
(Parent_Subp
)
3565 and then not In_Instance
3568 ("cannot call abstract subprogram &!",
3569 Name
(Call_Node
), Parent_Subp
);
3572 -- Inspect all formals of derived subprogram Subp. Compare parameter
3573 -- types with the parent subprogram and check whether an actual may
3574 -- need a type conversion to the corresponding formal of the parent
3577 -- Not clear whether intrinsic subprograms need such conversions. ???
3579 if not Is_Intrinsic_Subprogram
(Parent_Subp
)
3580 or else Is_Generic_Instance
(Parent_Subp
)
3583 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
);
3584 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3585 -- and resolve the newly generated construct.
3591 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
) is
3593 Rewrite
(Act
, OK_Convert_To
(Typ
, Relocate_Node
(Act
)));
3600 Actual_Typ
: Entity_Id
;
3601 Formal_Typ
: Entity_Id
;
3602 Parent_Typ
: Entity_Id
;
3605 Actual
:= First_Actual
(Call_Node
);
3606 Formal
:= First_Formal
(Subp
);
3607 Parent_Formal
:= First_Formal
(Parent_Subp
);
3608 while Present
(Formal
) loop
3609 Actual_Typ
:= Etype
(Actual
);
3610 Formal_Typ
:= Etype
(Formal
);
3611 Parent_Typ
:= Etype
(Parent_Formal
);
3613 -- For an IN parameter of a scalar type, the parent formal
3614 -- type and derived formal type differ or the parent formal
3615 -- type and actual type do not match statically.
3617 if Is_Scalar_Type
(Formal_Typ
)
3618 and then Ekind
(Formal
) = E_In_Parameter
3619 and then Formal_Typ
/= Parent_Typ
3621 not Subtypes_Statically_Match
(Parent_Typ
, Actual_Typ
)
3622 and then not Raises_Constraint_Error
(Actual
)
3624 Convert
(Actual
, Parent_Typ
);
3625 Enable_Range_Check
(Actual
);
3627 -- If the actual has been marked as requiring a range
3628 -- check, then generate it here.
3630 if Do_Range_Check
(Actual
) then
3631 Generate_Range_Check
3632 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
3635 -- For access types, the parent formal type and actual type
3638 elsif Is_Access_Type
(Formal_Typ
)
3639 and then Base_Type
(Parent_Typ
) /= Base_Type
(Actual_Typ
)
3641 if Ekind
(Formal
) /= E_In_Parameter
then
3642 Convert
(Actual
, Parent_Typ
);
3644 elsif Ekind
(Parent_Typ
) = E_Anonymous_Access_Type
3645 and then Designated_Type
(Parent_Typ
) /=
3646 Designated_Type
(Actual_Typ
)
3647 and then not Is_Controlling_Formal
(Formal
)
3649 -- This unchecked conversion is not necessary unless
3650 -- inlining is enabled, because in that case the type
3651 -- mismatch may become visible in the body about to be
3655 Unchecked_Convert_To
(Parent_Typ
,
3656 Relocate_Node
(Actual
)));
3658 Resolve
(Actual
, Parent_Typ
);
3661 -- If there is a change of representation, then generate a
3662 -- warning, and do the change of representation.
3664 elsif not Same_Representation
(Formal_Typ
, Parent_Typ
) then
3666 ("??change of representation required", Actual
);
3667 Convert
(Actual
, Parent_Typ
);
3669 -- For array and record types, the parent formal type and
3670 -- derived formal type have different sizes or pragma Pack
3673 elsif ((Is_Array_Type
(Formal_Typ
)
3674 and then Is_Array_Type
(Parent_Typ
))
3676 (Is_Record_Type
(Formal_Typ
)
3677 and then Is_Record_Type
(Parent_Typ
)))
3679 (Esize
(Formal_Typ
) /= Esize
(Parent_Typ
)
3680 or else Has_Pragma_Pack
(Formal_Typ
) /=
3681 Has_Pragma_Pack
(Parent_Typ
))
3683 Convert
(Actual
, Parent_Typ
);
3686 Next_Actual
(Actual
);
3687 Next_Formal
(Formal
);
3688 Next_Formal
(Parent_Formal
);
3694 Subp
:= Parent_Subp
;
3697 -- Deal with case where call is an explicit dereference
3699 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
3701 -- Handle case of access to protected subprogram type
3703 if Is_Access_Protected_Subprogram_Type
3704 (Base_Type
(Etype
(Prefix
(Name
(Call_Node
)))))
3706 -- If this is a call through an access to protected operation, the
3707 -- prefix has the form (object'address, operation'access). Rewrite
3708 -- as a for other protected calls: the object is the 1st parameter
3709 -- of the list of actuals.
3716 Ptr
: constant Node_Id
:= Prefix
(Name
(Call_Node
));
3718 T
: constant Entity_Id
:=
3719 Equivalent_Type
(Base_Type
(Etype
(Ptr
)));
3721 D_T
: constant Entity_Id
:=
3722 Designated_Type
(Base_Type
(Etype
(Ptr
)));
3726 Make_Selected_Component
(Loc
,
3727 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
3729 New_Occurrence_Of
(First_Entity
(T
), Loc
));
3732 Make_Selected_Component
(Loc
,
3733 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
3735 New_Occurrence_Of
(Next_Entity
(First_Entity
(T
)), Loc
));
3738 Make_Explicit_Dereference
(Loc
,
3741 if Present
(Parameter_Associations
(Call_Node
)) then
3742 Parm
:= Parameter_Associations
(Call_Node
);
3747 Prepend
(Obj
, Parm
);
3749 if Etype
(D_T
) = Standard_Void_Type
then
3751 Make_Procedure_Call_Statement
(Loc
,
3753 Parameter_Associations
=> Parm
);
3756 Make_Function_Call
(Loc
,
3758 Parameter_Associations
=> Parm
);
3761 Set_First_Named_Actual
(Call
, First_Named_Actual
(Call_Node
));
3762 Set_Etype
(Call
, Etype
(D_T
));
3764 -- We do not re-analyze the call to avoid infinite recursion.
3765 -- We analyze separately the prefix and the object, and set
3766 -- the checks on the prefix that would otherwise be emitted
3767 -- when resolving a call.
3769 Rewrite
(Call_Node
, Call
);
3771 Apply_Access_Check
(Nam
);
3778 -- If this is a call to an intrinsic subprogram, then perform the
3779 -- appropriate expansion to the corresponding tree node and we
3780 -- are all done (since after that the call is gone).
3782 -- In the case where the intrinsic is to be processed by the back end,
3783 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
3784 -- since the idea in this case is to pass the call unchanged. If the
3785 -- intrinsic is an inherited unchecked conversion, and the derived type
3786 -- is the target type of the conversion, we must retain it as the return
3787 -- type of the expression. Otherwise the expansion below, which uses the
3788 -- parent operation, will yield the wrong type.
3790 if Is_Intrinsic_Subprogram
(Subp
) then
3791 Expand_Intrinsic_Call
(Call_Node
, Subp
);
3793 if Nkind
(Call_Node
) = N_Unchecked_Type_Conversion
3794 and then Parent_Subp
/= Orig_Subp
3795 and then Etype
(Parent_Subp
) /= Etype
(Orig_Subp
)
3797 Set_Etype
(Call_Node
, Etype
(Orig_Subp
));
3803 if Ekind_In
(Subp
, E_Function
, E_Procedure
) then
3805 -- We perform two simple optimization on calls:
3807 -- a) replace calls to null procedures unconditionally;
3809 -- b) for To_Address, just do an unchecked conversion. Not only is
3810 -- this efficient, but it also avoids order of elaboration problems
3811 -- when address clauses are inlined (address expression elaborated
3812 -- at the wrong point).
3814 -- We perform these optimization regardless of whether we are in the
3815 -- main unit or in a unit in the context of the main unit, to ensure
3816 -- that tree generated is the same in both cases, for CodePeer use.
3818 if Is_RTE
(Subp
, RE_To_Address
) then
3820 Unchecked_Convert_To
3821 (RTE
(RE_Address
), Relocate_Node
(First_Actual
(Call_Node
))));
3824 elsif Is_Null_Procedure
(Subp
) then
3825 Rewrite
(Call_Node
, Make_Null_Statement
(Loc
));
3829 -- Handle inlining. No action needed if the subprogram is not inlined
3831 if not Is_Inlined
(Subp
) then
3834 -- Handle frontend inlining
3836 elsif not Back_End_Inlining
then
3837 Inlined_Subprogram
: declare
3839 Must_Inline
: Boolean := False;
3840 Spec
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
3843 -- Verify that the body to inline has already been seen, and
3844 -- that if the body is in the current unit the inlining does
3845 -- not occur earlier. This avoids order-of-elaboration problems
3848 -- This should be documented in sinfo/einfo ???
3851 or else Nkind
(Spec
) /= N_Subprogram_Declaration
3852 or else No
(Body_To_Inline
(Spec
))
3854 Must_Inline
:= False;
3856 -- If this an inherited function that returns a private type,
3857 -- do not inline if the full view is an unconstrained array,
3858 -- because such calls cannot be inlined.
3860 elsif Present
(Orig_Subp
)
3861 and then Is_Array_Type
(Etype
(Orig_Subp
))
3862 and then not Is_Constrained
(Etype
(Orig_Subp
))
3864 Must_Inline
:= False;
3866 elsif In_Unfrozen_Instance
(Scope
(Subp
)) then
3867 Must_Inline
:= False;
3870 Bod
:= Body_To_Inline
(Spec
);
3872 if (In_Extended_Main_Code_Unit
(Call_Node
)
3873 or else In_Extended_Main_Code_Unit
(Parent
(Call_Node
))
3874 or else Has_Pragma_Inline_Always
(Subp
))
3875 and then (not In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
3877 Earlier_In_Extended_Unit
(Sloc
(Bod
), Loc
))
3879 Must_Inline
:= True;
3881 -- If we are compiling a package body that is not the main
3882 -- unit, it must be for inlining/instantiation purposes,
3883 -- in which case we inline the call to insure that the same
3884 -- temporaries are generated when compiling the body by
3885 -- itself. Otherwise link errors can occur.
3887 -- If the function being called is itself in the main unit,
3888 -- we cannot inline, because there is a risk of double
3889 -- elaboration and/or circularity: the inlining can make
3890 -- visible a private entity in the body of the main unit,
3891 -- that gigi will see before its sees its proper definition.
3893 elsif not (In_Extended_Main_Code_Unit
(Call_Node
))
3894 and then In_Package_Body
3896 Must_Inline
:= not In_Extended_Main_Source_Unit
(Subp
);
3901 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
3904 -- Let the back end handle it
3906 Add_Inlined_Body
(Subp
);
3908 if Front_End_Inlining
3909 and then Nkind
(Spec
) = N_Subprogram_Declaration
3910 and then (In_Extended_Main_Code_Unit
(Call_Node
))
3911 and then No
(Body_To_Inline
(Spec
))
3912 and then not Has_Completion
(Subp
)
3913 and then In_Same_Extended_Unit
(Sloc
(Spec
), Loc
)
3916 ("cannot inline& (body not seen yet)?",
3920 end Inlined_Subprogram
;
3922 -- Back end inlining: let the back end handle it
3924 elsif No
(Unit_Declaration_Node
(Subp
))
3925 or else Nkind
(Unit_Declaration_Node
(Subp
)) /=
3926 N_Subprogram_Declaration
3927 or else No
(Body_To_Inline
(Unit_Declaration_Node
(Subp
)))
3929 Add_Inlined_Body
(Subp
);
3930 Register_Backend_Call
(Call_Node
);
3932 -- Frontend expansion of supported functions returning unconstrained
3933 -- types and simple renamings inlined by the frontend (see Freeze.
3934 -- Build_Renamed_Entity).
3938 Spec
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
3941 if Must_Inline
(Subp
) then
3942 if In_Extended_Main_Code_Unit
(Call_Node
)
3943 and then In_Same_Extended_Unit
(Sloc
(Spec
), Loc
)
3944 and then not Has_Completion
(Subp
)
3947 ("cannot inline& (body not seen yet)?",
3951 Do_Inline_Always
(Subp
, Orig_Subp
);
3954 elsif Optimization_Level
> 0 then
3955 Do_Inline
(Subp
, Orig_Subp
);
3958 -- The call may have been inlined or may have been passed to
3959 -- the backend. No further action needed if it was inlined.
3961 if Nkind
(N
) /= N_Function_Call
then
3968 -- Check for protected subprogram. This is either an intra-object call,
3969 -- or a protected function call. Protected procedure calls are rewritten
3970 -- as entry calls and handled accordingly.
3972 -- In Ada 2005, this may be an indirect call to an access parameter that
3973 -- is an access_to_subprogram. In that case the anonymous type has a
3974 -- scope that is a protected operation, but the call is a regular one.
3975 -- In either case do not expand call if subprogram is eliminated.
3977 Scop
:= Scope
(Subp
);
3979 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
3980 and then Is_Protected_Type
(Scop
)
3981 and then Ekind
(Subp
) /= E_Subprogram_Type
3982 and then not Is_Eliminated
(Subp
)
3984 -- If the call is an internal one, it is rewritten as a call to the
3985 -- corresponding unprotected subprogram.
3987 Expand_Protected_Subprogram_Call
(Call_Node
, Subp
, Scop
);
3990 -- Functions returning controlled objects need special attention. If
3991 -- the return type is limited, then the context is initialization and
3992 -- different processing applies. If the call is to a protected function,
3993 -- the expansion above will call Expand_Call recursively. Otherwise the
3994 -- function call is transformed into a temporary which obtains the
3995 -- result from the secondary stack.
3997 if Needs_Finalization
(Etype
(Subp
)) then
3998 if not Is_Limited_View
(Etype
(Subp
))
4000 (No
(First_Formal
(Subp
))
4002 not Is_Concurrent_Record_Type
(Etype
(First_Formal
(Subp
))))
4004 Expand_Ctrl_Function_Call
(Call_Node
);
4006 -- Build-in-place function calls which appear in anonymous contexts
4007 -- need a transient scope to ensure the proper finalization of the
4008 -- intermediate result after its use.
4010 elsif Is_Build_In_Place_Function_Call
(Call_Node
)
4012 Nkind_In
(Parent
(Call_Node
), N_Attribute_Reference
,
4014 N_Indexed_Component
,
4015 N_Object_Renaming_Declaration
,
4016 N_Procedure_Call_Statement
,
4017 N_Selected_Component
,
4020 Establish_Transient_Scope
(Call_Node
, Sec_Stack
=> True);
4025 -------------------------------
4026 -- Expand_Ctrl_Function_Call --
4027 -------------------------------
4029 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
) is
4030 function Is_Element_Reference
(N
: Node_Id
) return Boolean;
4031 -- Determine whether node N denotes a reference to an Ada 2012 container
4034 --------------------------
4035 -- Is_Element_Reference --
4036 --------------------------
4038 function Is_Element_Reference
(N
: Node_Id
) return Boolean is
4039 Ref
: constant Node_Id
:= Original_Node
(N
);
4042 -- Analysis marks an element reference by setting the generalized
4043 -- indexing attribute of an indexed component before the component
4044 -- is rewritten into a function call.
4047 Nkind
(Ref
) = N_Indexed_Component
4048 and then Present
(Generalized_Indexing
(Ref
));
4049 end Is_Element_Reference
;
4053 Is_Elem_Ref
: constant Boolean := Is_Element_Reference
(N
);
4055 -- Start of processing for Expand_Ctrl_Function_Call
4058 -- Optimization, if the returned value (which is on the sec-stack) is
4059 -- returned again, no need to copy/readjust/finalize, we can just pass
4060 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4061 -- attachment is needed
4063 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
4067 -- Resolution is now finished, make sure we don't start analysis again
4068 -- because of the duplication.
4072 -- A function which returns a controlled object uses the secondary
4073 -- stack. Rewrite the call into a temporary which obtains the result of
4074 -- the function using 'reference.
4076 Remove_Side_Effects
(N
);
4078 -- When the temporary function result appears inside a case expression
4079 -- or an if expression, its lifetime must be extended to match that of
4080 -- the context. If not, the function result will be finalized too early
4081 -- and the evaluation of the expression could yield incorrect result. An
4082 -- exception to this rule are references to Ada 2012 container elements.
4083 -- Such references must be finalized at the end of each iteration of the
4084 -- related quantified expression, otherwise the container will remain
4088 and then Within_Case_Or_If_Expression
(N
)
4089 and then Nkind
(N
) = N_Explicit_Dereference
4091 Set_Is_Processed_Transient
(Entity
(Prefix
(N
)));
4093 end Expand_Ctrl_Function_Call
;
4095 ----------------------------------------
4096 -- Expand_N_Extended_Return_Statement --
4097 ----------------------------------------
4099 -- If there is a Handled_Statement_Sequence, we rewrite this:
4101 -- return Result : T := <expression> do
4102 -- <handled_seq_of_stms>
4108 -- Result : T := <expression>;
4110 -- <handled_seq_of_stms>
4114 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4116 -- return Result : T := <expression>;
4120 -- return <expression>;
4122 -- unless it's build-in-place or there's no <expression>, in which case
4126 -- Result : T := <expression>;
4131 -- Note that this case could have been written by the user as an extended
4132 -- return statement, or could have been transformed to this from a simple
4133 -- return statement.
4135 -- That is, we need to have a reified return object if there are statements
4136 -- (which might refer to it) or if we're doing build-in-place (so we can
4137 -- set its address to the final resting place or if there is no expression
4138 -- (in which case default initial values might need to be set).
4140 procedure Expand_N_Extended_Return_Statement
(N
: Node_Id
) is
4141 Loc
: constant Source_Ptr
:= Sloc
(N
);
4143 Par_Func
: constant Entity_Id
:=
4144 Return_Applies_To
(Return_Statement_Entity
(N
));
4145 Result_Subt
: constant Entity_Id
:= Etype
(Par_Func
);
4146 Ret_Obj_Id
: constant Entity_Id
:=
4147 First_Entity
(Return_Statement_Entity
(N
));
4148 Ret_Obj_Decl
: constant Node_Id
:= Parent
(Ret_Obj_Id
);
4150 Is_Build_In_Place
: constant Boolean :=
4151 Is_Build_In_Place_Function
(Par_Func
);
4156 Return_Stmt
: Node_Id
;
4159 function Build_Heap_Allocator
4160 (Temp_Id
: Entity_Id
;
4161 Temp_Typ
: Entity_Id
;
4162 Func_Id
: Entity_Id
;
4163 Ret_Typ
: Entity_Id
;
4164 Alloc_Expr
: Node_Id
) return Node_Id
;
4165 -- Create the statements necessary to allocate a return object on the
4166 -- caller's master. The master is available through implicit parameter
4167 -- BIPfinalizationmaster.
4169 -- if BIPfinalizationmaster /= null then
4171 -- type Ptr_Typ is access Ret_Typ;
4172 -- for Ptr_Typ'Storage_Pool use
4173 -- Base_Pool (BIPfinalizationmaster.all).all;
4177 -- procedure Allocate (...) is
4179 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4182 -- Local := <Alloc_Expr>;
4183 -- Temp_Id := Temp_Typ (Local);
4187 -- Temp_Id is the temporary which is used to reference the internally
4188 -- created object in all allocation forms. Temp_Typ is the type of the
4189 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4190 -- type of Func_Id. Alloc_Expr is the actual allocator.
4192 function Move_Activation_Chain
return Node_Id
;
4193 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4195 -- From current activation chain
4196 -- To activation chain passed in by the caller
4197 -- New_Master master passed in by the caller
4199 --------------------------
4200 -- Build_Heap_Allocator --
4201 --------------------------
4203 function Build_Heap_Allocator
4204 (Temp_Id
: Entity_Id
;
4205 Temp_Typ
: Entity_Id
;
4206 Func_Id
: Entity_Id
;
4207 Ret_Typ
: Entity_Id
;
4208 Alloc_Expr
: Node_Id
) return Node_Id
4211 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
4213 -- Processing for build-in-place object allocation. This is disabled
4214 -- on .NET/JVM because the targets do not support pools.
4216 if VM_Target
= No_VM
4217 and then Needs_Finalization
(Ret_Typ
)
4220 Decls
: constant List_Id
:= New_List
;
4221 Fin_Mas_Id
: constant Entity_Id
:=
4222 Build_In_Place_Formal
4223 (Func_Id
, BIP_Finalization_Master
);
4224 Stmts
: constant List_Id
:= New_List
;
4225 Desig_Typ
: Entity_Id
;
4226 Local_Id
: Entity_Id
;
4227 Pool_Id
: Entity_Id
;
4228 Ptr_Typ
: Entity_Id
;
4232 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4234 Pool_Id
:= Make_Temporary
(Loc
, 'P');
4237 Make_Object_Renaming_Declaration
(Loc
,
4238 Defining_Identifier
=> Pool_Id
,
4240 New_Occurrence_Of
(RTE
(RE_Root_Storage_Pool
), Loc
),
4242 Make_Explicit_Dereference
(Loc
,
4244 Make_Function_Call
(Loc
,
4246 New_Occurrence_Of
(RTE
(RE_Base_Pool
), Loc
),
4247 Parameter_Associations
=> New_List
(
4248 Make_Explicit_Dereference
(Loc
,
4250 New_Occurrence_Of
(Fin_Mas_Id
, Loc
)))))));
4252 -- Create an access type which uses the storage pool of the
4253 -- caller's master. This additional type is necessary because
4254 -- the finalization master cannot be associated with the type
4255 -- of the temporary. Otherwise the secondary stack allocation
4258 Desig_Typ
:= Ret_Typ
;
4260 -- Ensure that the build-in-place machinery uses a fat pointer
4261 -- when allocating an unconstrained array on the heap. In this
4262 -- case the result object type is a constrained array type even
4263 -- though the function type is unconstrained.
4265 if Ekind
(Desig_Typ
) = E_Array_Subtype
then
4266 Desig_Typ
:= Base_Type
(Desig_Typ
);
4270 -- type Ptr_Typ is access Desig_Typ;
4272 Ptr_Typ
:= Make_Temporary
(Loc
, 'P');
4275 Make_Full_Type_Declaration
(Loc
,
4276 Defining_Identifier
=> Ptr_Typ
,
4278 Make_Access_To_Object_Definition
(Loc
,
4279 Subtype_Indication
=>
4280 New_Occurrence_Of
(Desig_Typ
, Loc
))));
4282 -- Perform minor decoration in order to set the master and the
4283 -- storage pool attributes.
4285 Set_Ekind
(Ptr_Typ
, E_Access_Type
);
4286 Set_Finalization_Master
(Ptr_Typ
, Fin_Mas_Id
);
4287 Set_Associated_Storage_Pool
(Ptr_Typ
, Pool_Id
);
4289 -- Create the temporary, generate:
4290 -- Local_Id : Ptr_Typ;
4292 Local_Id
:= Make_Temporary
(Loc
, 'T');
4295 Make_Object_Declaration
(Loc
,
4296 Defining_Identifier
=> Local_Id
,
4297 Object_Definition
=>
4298 New_Occurrence_Of
(Ptr_Typ
, Loc
)));
4300 -- Allocate the object, generate:
4301 -- Local_Id := <Alloc_Expr>;
4304 Make_Assignment_Statement
(Loc
,
4305 Name
=> New_Occurrence_Of
(Local_Id
, Loc
),
4306 Expression
=> Alloc_Expr
));
4309 -- Temp_Id := Temp_Typ (Local_Id);
4312 Make_Assignment_Statement
(Loc
,
4313 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4315 Unchecked_Convert_To
(Temp_Typ
,
4316 New_Occurrence_Of
(Local_Id
, Loc
))));
4318 -- Wrap the allocation in a block. This is further conditioned
4319 -- by checking the caller finalization master at runtime. A
4320 -- null value indicates a non-existent master, most likely due
4321 -- to a Finalize_Storage_Only allocation.
4324 -- if BIPfinalizationmaster /= null then
4333 Make_If_Statement
(Loc
,
4336 Left_Opnd
=> New_Occurrence_Of
(Fin_Mas_Id
, Loc
),
4337 Right_Opnd
=> Make_Null
(Loc
)),
4339 Then_Statements
=> New_List
(
4340 Make_Block_Statement
(Loc
,
4341 Declarations
=> Decls
,
4342 Handled_Statement_Sequence
=>
4343 Make_Handled_Sequence_Of_Statements
(Loc
,
4344 Statements
=> Stmts
))));
4347 -- For all other cases, generate:
4348 -- Temp_Id := <Alloc_Expr>;
4352 Make_Assignment_Statement
(Loc
,
4353 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4354 Expression
=> Alloc_Expr
);
4356 end Build_Heap_Allocator
;
4358 ---------------------------
4359 -- Move_Activation_Chain --
4360 ---------------------------
4362 function Move_Activation_Chain
return Node_Id
is
4365 Make_Procedure_Call_Statement
(Loc
,
4367 New_Occurrence_Of
(RTE
(RE_Move_Activation_Chain
), Loc
),
4369 Parameter_Associations
=> New_List
(
4373 Make_Attribute_Reference
(Loc
,
4374 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
4375 Attribute_Name
=> Name_Unrestricted_Access
),
4377 -- Destination chain
4380 (Build_In_Place_Formal
(Par_Func
, BIP_Activation_Chain
), Loc
),
4385 (Build_In_Place_Formal
(Par_Func
, BIP_Task_Master
), Loc
)));
4386 end Move_Activation_Chain
;
4388 -- Start of processing for Expand_N_Extended_Return_Statement
4391 -- Given that functionality of interface thunks is simple (just displace
4392 -- the pointer to the object) they are always handled by means of
4393 -- simple return statements.
4395 pragma Assert
(not Is_Thunk
(Current_Scope
));
4397 if Nkind
(Ret_Obj_Decl
) = N_Object_Declaration
then
4398 Exp
:= Expression
(Ret_Obj_Decl
);
4403 HSS
:= Handled_Statement_Sequence
(N
);
4405 -- If the returned object needs finalization actions, the function must
4406 -- perform the appropriate cleanup should it fail to return. The state
4407 -- of the function itself is tracked through a flag which is coupled
4408 -- with the scope finalizer. There is one flag per each return object
4409 -- in case of multiple returns.
4411 if Is_Build_In_Place
4412 and then Needs_Finalization
(Etype
(Ret_Obj_Id
))
4415 Flag_Decl
: Node_Id
;
4416 Flag_Id
: Entity_Id
;
4420 -- Recover the function body
4422 Func_Bod
:= Unit_Declaration_Node
(Par_Func
);
4424 if Nkind
(Func_Bod
) = N_Subprogram_Declaration
then
4425 Func_Bod
:= Parent
(Parent
(Corresponding_Body
(Func_Bod
)));
4428 -- Create a flag to track the function state
4430 Flag_Id
:= Make_Temporary
(Loc
, 'F');
4431 Set_Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
, Flag_Id
);
4433 -- Insert the flag at the beginning of the function declarations,
4435 -- Fnn : Boolean := False;
4438 Make_Object_Declaration
(Loc
,
4439 Defining_Identifier
=> Flag_Id
,
4440 Object_Definition
=>
4441 New_Occurrence_Of
(Standard_Boolean
, Loc
),
4443 New_Occurrence_Of
(Standard_False
, Loc
));
4445 Prepend_To
(Declarations
(Func_Bod
), Flag_Decl
);
4446 Analyze
(Flag_Decl
);
4450 -- Build a simple_return_statement that returns the return object when
4451 -- there is a statement sequence, or no expression, or the result will
4452 -- be built in place. Note however that we currently do this for all
4453 -- composite cases, even though nonlimited composite results are not yet
4454 -- built in place (though we plan to do so eventually).
4457 or else Is_Composite_Type
(Result_Subt
)
4463 -- If the extended return has a handled statement sequence, then wrap
4464 -- it in a block and use the block as the first statement.
4468 Make_Block_Statement
(Loc
,
4469 Declarations
=> New_List
,
4470 Handled_Statement_Sequence
=> HSS
));
4473 -- If the result type contains tasks, we call Move_Activation_Chain.
4474 -- Later, the cleanup code will call Complete_Master, which will
4475 -- terminate any unactivated tasks belonging to the return statement
4476 -- master. But Move_Activation_Chain updates their master to be that
4477 -- of the caller, so they will not be terminated unless the return
4478 -- statement completes unsuccessfully due to exception, abort, goto,
4479 -- or exit. As a formality, we test whether the function requires the
4480 -- result to be built in place, though that's necessarily true for
4481 -- the case of result types with task parts.
4483 if Is_Build_In_Place
4484 and then Has_Task
(Result_Subt
)
4486 -- The return expression is an aggregate for a complex type which
4487 -- contains tasks. This particular case is left unexpanded since
4488 -- the regular expansion would insert all temporaries and
4489 -- initialization code in the wrong block.
4491 if Nkind
(Exp
) = N_Aggregate
then
4492 Expand_N_Aggregate
(Exp
);
4495 -- Do not move the activation chain if the return object does not
4498 if Has_Task
(Etype
(Ret_Obj_Id
)) then
4499 Append_To
(Stmts
, Move_Activation_Chain
);
4503 -- Update the state of the function right before the object is
4506 if Is_Build_In_Place
4507 and then Needs_Finalization
(Etype
(Ret_Obj_Id
))
4510 Flag_Id
: constant Entity_Id
:=
4511 Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
);
4518 Make_Assignment_Statement
(Loc
,
4519 Name
=> New_Occurrence_Of
(Flag_Id
, Loc
),
4520 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4524 -- Build a simple_return_statement that returns the return object
4527 Make_Simple_Return_Statement
(Loc
,
4528 Expression
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
));
4529 Append_To
(Stmts
, Return_Stmt
);
4531 HSS
:= Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
);
4534 -- Case where we build a return statement block
4536 if Present
(HSS
) then
4538 Make_Block_Statement
(Loc
,
4539 Declarations
=> Return_Object_Declarations
(N
),
4540 Handled_Statement_Sequence
=> HSS
);
4542 -- We set the entity of the new block statement to be that of the
4543 -- return statement. This is necessary so that various fields, such
4544 -- as Finalization_Chain_Entity carry over from the return statement
4545 -- to the block. Note that this block is unusual, in that its entity
4546 -- is an E_Return_Statement rather than an E_Block.
4549 (Result
, New_Occurrence_Of
(Return_Statement_Entity
(N
), Loc
));
4551 -- If the object decl was already rewritten as a renaming, then we
4552 -- don't want to do the object allocation and transformation of of
4553 -- the return object declaration to a renaming. This case occurs
4554 -- when the return object is initialized by a call to another
4555 -- build-in-place function, and that function is responsible for
4556 -- the allocation of the return object.
4558 if Is_Build_In_Place
4559 and then Nkind
(Ret_Obj_Decl
) = N_Object_Renaming_Declaration
4562 (Nkind
(Original_Node
(Ret_Obj_Decl
)) = N_Object_Declaration
4563 and then Is_Build_In_Place_Function_Call
4564 (Expression
(Original_Node
(Ret_Obj_Decl
))));
4566 -- Return the build-in-place result by reference
4568 Set_By_Ref
(Return_Stmt
);
4570 elsif Is_Build_In_Place
then
4572 -- Locate the implicit access parameter associated with the
4573 -- caller-supplied return object and convert the return
4574 -- statement's return object declaration to a renaming of a
4575 -- dereference of the access parameter. If the return object's
4576 -- declaration includes an expression that has not already been
4577 -- expanded as separate assignments, then add an assignment
4578 -- statement to ensure the return object gets initialized.
4581 -- Result : T [:= <expression>];
4588 -- Result : T renames FuncRA.all;
4589 -- [Result := <expression;]
4594 Return_Obj_Id
: constant Entity_Id
:=
4595 Defining_Identifier
(Ret_Obj_Decl
);
4596 Return_Obj_Typ
: constant Entity_Id
:= Etype
(Return_Obj_Id
);
4597 Return_Obj_Expr
: constant Node_Id
:=
4598 Expression
(Ret_Obj_Decl
);
4599 Constr_Result
: constant Boolean :=
4600 Is_Constrained
(Result_Subt
);
4601 Obj_Alloc_Formal
: Entity_Id
;
4602 Object_Access
: Entity_Id
;
4603 Obj_Acc_Deref
: Node_Id
;
4604 Init_Assignment
: Node_Id
:= Empty
;
4607 -- Build-in-place results must be returned by reference
4609 Set_By_Ref
(Return_Stmt
);
4611 -- Retrieve the implicit access parameter passed by the caller
4614 Build_In_Place_Formal
(Par_Func
, BIP_Object_Access
);
4616 -- If the return object's declaration includes an expression
4617 -- and the declaration isn't marked as No_Initialization, then
4618 -- we need to generate an assignment to the object and insert
4619 -- it after the declaration before rewriting it as a renaming
4620 -- (otherwise we'll lose the initialization). The case where
4621 -- the result type is an interface (or class-wide interface)
4622 -- is also excluded because the context of the function call
4623 -- must be unconstrained, so the initialization will always
4624 -- be done as part of an allocator evaluation (storage pool
4625 -- or secondary stack), never to a constrained target object
4626 -- passed in by the caller. Besides the assignment being
4627 -- unneeded in this case, it avoids problems with trying to
4628 -- generate a dispatching assignment when the return expression
4629 -- is a nonlimited descendant of a limited interface (the
4630 -- interface has no assignment operation).
4632 if Present
(Return_Obj_Expr
)
4633 and then not No_Initialization
(Ret_Obj_Decl
)
4634 and then not Is_Interface
(Return_Obj_Typ
)
4637 Make_Assignment_Statement
(Loc
,
4638 Name
=> New_Occurrence_Of
(Return_Obj_Id
, Loc
),
4639 Expression
=> Relocate_Node
(Return_Obj_Expr
));
4641 Set_Etype
(Name
(Init_Assignment
), Etype
(Return_Obj_Id
));
4642 Set_Assignment_OK
(Name
(Init_Assignment
));
4643 Set_No_Ctrl_Actions
(Init_Assignment
);
4645 Set_Parent
(Name
(Init_Assignment
), Init_Assignment
);
4646 Set_Parent
(Expression
(Init_Assignment
), Init_Assignment
);
4648 Set_Expression
(Ret_Obj_Decl
, Empty
);
4650 if Is_Class_Wide_Type
(Etype
(Return_Obj_Id
))
4651 and then not Is_Class_Wide_Type
4652 (Etype
(Expression
(Init_Assignment
)))
4654 Rewrite
(Expression
(Init_Assignment
),
4655 Make_Type_Conversion
(Loc
,
4657 New_Occurrence_Of
(Etype
(Return_Obj_Id
), Loc
),
4659 Relocate_Node
(Expression
(Init_Assignment
))));
4662 -- In the case of functions where the calling context can
4663 -- determine the form of allocation needed, initialization
4664 -- is done with each part of the if statement that handles
4665 -- the different forms of allocation (this is true for
4666 -- unconstrained and tagged result subtypes).
4669 and then not Is_Tagged_Type
(Underlying_Type
(Result_Subt
))
4671 Insert_After
(Ret_Obj_Decl
, Init_Assignment
);
4675 -- When the function's subtype is unconstrained, a run-time
4676 -- test is needed to determine the form of allocation to use
4677 -- for the return object. The function has an implicit formal
4678 -- parameter indicating this. If the BIP_Alloc_Form formal has
4679 -- the value one, then the caller has passed access to an
4680 -- existing object for use as the return object. If the value
4681 -- is two, then the return object must be allocated on the
4682 -- secondary stack. Otherwise, the object must be allocated in
4683 -- a storage pool (currently only supported for the global
4684 -- heap, user-defined storage pools TBD ???). We generate an
4685 -- if statement to test the implicit allocation formal and
4686 -- initialize a local access value appropriately, creating
4687 -- allocators in the secondary stack and global heap cases.
4688 -- The special formal also exists and must be tested when the
4689 -- function has a tagged result, even when the result subtype
4690 -- is constrained, because in general such functions can be
4691 -- called in dispatching contexts and must be handled similarly
4692 -- to functions with a class-wide result.
4694 if not Constr_Result
4695 or else Is_Tagged_Type
(Underlying_Type
(Result_Subt
))
4698 Build_In_Place_Formal
(Par_Func
, BIP_Alloc_Form
);
4701 Pool_Id
: constant Entity_Id
:=
4702 Make_Temporary
(Loc
, 'P');
4703 Alloc_Obj_Id
: Entity_Id
;
4704 Alloc_Obj_Decl
: Node_Id
;
4705 Alloc_If_Stmt
: Node_Id
;
4706 Heap_Allocator
: Node_Id
;
4707 Pool_Decl
: Node_Id
;
4708 Pool_Allocator
: Node_Id
;
4709 Ptr_Type_Decl
: Node_Id
;
4710 Ref_Type
: Entity_Id
;
4711 SS_Allocator
: Node_Id
;
4714 -- Reuse the itype created for the function's implicit
4715 -- access formal. This avoids the need to create a new
4716 -- access type here, plus it allows assigning the access
4717 -- formal directly without applying a conversion.
4719 -- Ref_Type := Etype (Object_Access);
4721 -- Create an access type designating the function's
4724 Ref_Type
:= Make_Temporary
(Loc
, 'A');
4727 Make_Full_Type_Declaration
(Loc
,
4728 Defining_Identifier
=> Ref_Type
,
4730 Make_Access_To_Object_Definition
(Loc
,
4731 All_Present
=> True,
4732 Subtype_Indication
=>
4733 New_Occurrence_Of
(Return_Obj_Typ
, Loc
)));
4735 Insert_Before
(Ret_Obj_Decl
, Ptr_Type_Decl
);
4737 -- Create an access object that will be initialized to an
4738 -- access value denoting the return object, either coming
4739 -- from an implicit access value passed in by the caller
4740 -- or from the result of an allocator.
4742 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
4743 Set_Etype
(Alloc_Obj_Id
, Ref_Type
);
4746 Make_Object_Declaration
(Loc
,
4747 Defining_Identifier
=> Alloc_Obj_Id
,
4748 Object_Definition
=>
4749 New_Occurrence_Of
(Ref_Type
, Loc
));
4751 Insert_Before
(Ret_Obj_Decl
, Alloc_Obj_Decl
);
4753 -- Create allocators for both the secondary stack and
4754 -- global heap. If there's an initialization expression,
4755 -- then create these as initialized allocators.
4757 if Present
(Return_Obj_Expr
)
4758 and then not No_Initialization
(Ret_Obj_Decl
)
4760 -- Always use the type of the expression for the
4761 -- qualified expression, rather than the result type.
4762 -- In general we cannot always use the result type
4763 -- for the allocator, because the expression might be
4764 -- of a specific type, such as in the case of an
4765 -- aggregate or even a nonlimited object when the
4766 -- result type is a limited class-wide interface type.
4769 Make_Allocator
(Loc
,
4771 Make_Qualified_Expression
(Loc
,
4774 (Etype
(Return_Obj_Expr
), Loc
),
4776 New_Copy_Tree
(Return_Obj_Expr
)));
4779 -- If the function returns a class-wide type we cannot
4780 -- use the return type for the allocator. Instead we
4781 -- use the type of the expression, which must be an
4782 -- aggregate of a definite type.
4784 if Is_Class_Wide_Type
(Return_Obj_Typ
) then
4786 Make_Allocator
(Loc
,
4789 (Etype
(Return_Obj_Expr
), Loc
));
4792 Make_Allocator
(Loc
,
4794 New_Occurrence_Of
(Return_Obj_Typ
, Loc
));
4797 -- If the object requires default initialization then
4798 -- that will happen later following the elaboration of
4799 -- the object renaming. If we don't turn it off here
4800 -- then the object will be default initialized twice.
4802 Set_No_Initialization
(Heap_Allocator
);
4805 -- The Pool_Allocator is just like the Heap_Allocator,
4806 -- except we set Storage_Pool and Procedure_To_Call so
4807 -- it will use the user-defined storage pool.
4809 Pool_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
4811 -- Do not generate the renaming of the build-in-place
4812 -- pool parameter on .NET/JVM/ZFP because the parameter
4813 -- is not created in the first place.
4815 if VM_Target
= No_VM
4816 and then RTE_Available
(RE_Root_Storage_Pool_Ptr
)
4819 Make_Object_Renaming_Declaration
(Loc
,
4820 Defining_Identifier
=> Pool_Id
,
4823 (RTE
(RE_Root_Storage_Pool
), Loc
),
4825 Make_Explicit_Dereference
(Loc
,
4827 (Build_In_Place_Formal
4828 (Par_Func
, BIP_Storage_Pool
), Loc
)));
4829 Set_Storage_Pool
(Pool_Allocator
, Pool_Id
);
4830 Set_Procedure_To_Call
4831 (Pool_Allocator
, RTE
(RE_Allocate_Any
));
4833 Pool_Decl
:= Make_Null_Statement
(Loc
);
4836 -- If the No_Allocators restriction is active, then only
4837 -- an allocator for secondary stack allocation is needed.
4838 -- It's OK for such allocators to have Comes_From_Source
4839 -- set to False, because gigi knows not to flag them as
4840 -- being a violation of No_Implicit_Heap_Allocations.
4842 if Restriction_Active
(No_Allocators
) then
4843 SS_Allocator
:= Heap_Allocator
;
4844 Heap_Allocator
:= Make_Null
(Loc
);
4845 Pool_Allocator
:= Make_Null
(Loc
);
4847 -- Otherwise the heap and pool allocators may be needed,
4848 -- so we make another allocator for secondary stack
4852 SS_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
4854 -- The heap and pool allocators are marked as
4855 -- Comes_From_Source since they correspond to an
4856 -- explicit user-written allocator (that is, it will
4857 -- only be executed on behalf of callers that call the
4858 -- function as initialization for such an allocator).
4859 -- Prevents errors when No_Implicit_Heap_Allocations
4862 Set_Comes_From_Source
(Heap_Allocator
, True);
4863 Set_Comes_From_Source
(Pool_Allocator
, True);
4866 -- The allocator is returned on the secondary stack. We
4867 -- don't do this on VM targets, since the SS is not used.
4869 if VM_Target
= No_VM
then
4870 Set_Storage_Pool
(SS_Allocator
, RTE
(RE_SS_Pool
));
4871 Set_Procedure_To_Call
4872 (SS_Allocator
, RTE
(RE_SS_Allocate
));
4874 -- The allocator is returned on the secondary stack,
4875 -- so indicate that the function return, as well as
4876 -- the block that encloses the allocator, must not
4877 -- release it. The flags must be set now because
4878 -- the decision to use the secondary stack is done
4879 -- very late in the course of expanding the return
4880 -- statement, past the point where these flags are
4883 Set_Sec_Stack_Needed_For_Return
(Par_Func
);
4884 Set_Sec_Stack_Needed_For_Return
4885 (Return_Statement_Entity
(N
));
4886 Set_Uses_Sec_Stack
(Par_Func
);
4887 Set_Uses_Sec_Stack
(Return_Statement_Entity
(N
));
4890 -- Create an if statement to test the BIP_Alloc_Form
4891 -- formal and initialize the access object to either the
4892 -- BIP_Object_Access formal (BIP_Alloc_Form =
4893 -- Caller_Allocation), the result of allocating the
4894 -- object in the secondary stack (BIP_Alloc_Form =
4895 -- Secondary_Stack), or else an allocator to create the
4896 -- return object in the heap or user-defined pool
4897 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
4899 -- ??? An unchecked type conversion must be made in the
4900 -- case of assigning the access object formal to the
4901 -- local access object, because a normal conversion would
4902 -- be illegal in some cases (such as converting access-
4903 -- to-unconstrained to access-to-constrained), but the
4904 -- the unchecked conversion will presumably fail to work
4905 -- right in just such cases. It's not clear at all how to
4909 Make_If_Statement
(Loc
,
4913 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
4915 Make_Integer_Literal
(Loc
,
4916 UI_From_Int
(BIP_Allocation_Form
'Pos
4917 (Caller_Allocation
)))),
4919 Then_Statements
=> New_List
(
4920 Make_Assignment_Statement
(Loc
,
4922 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
4924 Make_Unchecked_Type_Conversion
(Loc
,
4926 New_Occurrence_Of
(Ref_Type
, Loc
),
4928 New_Occurrence_Of
(Object_Access
, Loc
)))),
4930 Elsif_Parts
=> New_List
(
4931 Make_Elsif_Part
(Loc
,
4935 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
4937 Make_Integer_Literal
(Loc
,
4938 UI_From_Int
(BIP_Allocation_Form
'Pos
4939 (Secondary_Stack
)))),
4941 Then_Statements
=> New_List
(
4942 Make_Assignment_Statement
(Loc
,
4944 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
4945 Expression
=> SS_Allocator
))),
4947 Make_Elsif_Part
(Loc
,
4951 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
4953 Make_Integer_Literal
(Loc
,
4954 UI_From_Int
(BIP_Allocation_Form
'Pos
4957 Then_Statements
=> New_List
(
4958 Build_Heap_Allocator
4959 (Temp_Id
=> Alloc_Obj_Id
,
4960 Temp_Typ
=> Ref_Type
,
4961 Func_Id
=> Par_Func
,
4962 Ret_Typ
=> Return_Obj_Typ
,
4963 Alloc_Expr
=> Heap_Allocator
)))),
4965 Else_Statements
=> New_List
(
4967 Build_Heap_Allocator
4968 (Temp_Id
=> Alloc_Obj_Id
,
4969 Temp_Typ
=> Ref_Type
,
4970 Func_Id
=> Par_Func
,
4971 Ret_Typ
=> Return_Obj_Typ
,
4972 Alloc_Expr
=> Pool_Allocator
)));
4974 -- If a separate initialization assignment was created
4975 -- earlier, append that following the assignment of the
4976 -- implicit access formal to the access object, to ensure
4977 -- that the return object is initialized in that case. In
4978 -- this situation, the target of the assignment must be
4979 -- rewritten to denote a dereference of the access to the
4980 -- return object passed in by the caller.
4982 if Present
(Init_Assignment
) then
4983 Rewrite
(Name
(Init_Assignment
),
4984 Make_Explicit_Dereference
(Loc
,
4985 Prefix
=> New_Occurrence_Of
(Alloc_Obj_Id
, Loc
)));
4988 (Name
(Init_Assignment
), Etype
(Return_Obj_Id
));
4991 (Then_Statements
(Alloc_If_Stmt
), Init_Assignment
);
4994 Insert_Before
(Ret_Obj_Decl
, Alloc_If_Stmt
);
4996 -- Remember the local access object for use in the
4997 -- dereference of the renaming created below.
4999 Object_Access
:= Alloc_Obj_Id
;
5003 -- Replace the return object declaration with a renaming of a
5004 -- dereference of the access value designating the return
5008 Make_Explicit_Dereference
(Loc
,
5009 Prefix
=> New_Occurrence_Of
(Object_Access
, Loc
));
5011 Rewrite
(Ret_Obj_Decl
,
5012 Make_Object_Renaming_Declaration
(Loc
,
5013 Defining_Identifier
=> Return_Obj_Id
,
5014 Access_Definition
=> Empty
,
5016 New_Occurrence_Of
(Return_Obj_Typ
, Loc
),
5017 Name
=> Obj_Acc_Deref
));
5019 Set_Renamed_Object
(Return_Obj_Id
, Obj_Acc_Deref
);
5023 -- Case where we do not build a block
5026 -- We're about to drop Return_Object_Declarations on the floor, so
5027 -- we need to insert it, in case it got expanded into useful code.
5028 -- Remove side effects from expression, which may be duplicated in
5029 -- subsequent checks (see Expand_Simple_Function_Return).
5031 Insert_List_Before
(N
, Return_Object_Declarations
(N
));
5032 Remove_Side_Effects
(Exp
);
5034 -- Build simple_return_statement that returns the expression directly
5036 Return_Stmt
:= Make_Simple_Return_Statement
(Loc
, Expression
=> Exp
);
5037 Result
:= Return_Stmt
;
5040 -- Set the flag to prevent infinite recursion
5042 Set_Comes_From_Extended_Return_Statement
(Return_Stmt
);
5044 Rewrite
(N
, Result
);
5046 end Expand_N_Extended_Return_Statement
;
5048 ----------------------------
5049 -- Expand_N_Function_Call --
5050 ----------------------------
5052 procedure Expand_N_Function_Call
(N
: Node_Id
) is
5055 end Expand_N_Function_Call
;
5057 ---------------------------------------
5058 -- Expand_N_Procedure_Call_Statement --
5059 ---------------------------------------
5061 procedure Expand_N_Procedure_Call_Statement
(N
: Node_Id
) is
5064 end Expand_N_Procedure_Call_Statement
;
5066 --------------------------------------
5067 -- Expand_N_Simple_Return_Statement --
5068 --------------------------------------
5070 procedure Expand_N_Simple_Return_Statement
(N
: Node_Id
) is
5072 -- Defend against previous errors (i.e. the return statement calls a
5073 -- function that is not available in configurable runtime).
5075 if Present
(Expression
(N
))
5076 and then Nkind
(Expression
(N
)) = N_Empty
5078 Check_Error_Detected
;
5082 -- Distinguish the function and non-function cases:
5084 case Ekind
(Return_Applies_To
(Return_Statement_Entity
(N
))) is
5087 E_Generic_Function
=>
5088 Expand_Simple_Function_Return
(N
);
5091 E_Generic_Procedure |
5094 E_Return_Statement
=>
5095 Expand_Non_Function_Return
(N
);
5098 raise Program_Error
;
5102 when RE_Not_Available
=>
5104 end Expand_N_Simple_Return_Statement
;
5106 ------------------------------
5107 -- Expand_N_Subprogram_Body --
5108 ------------------------------
5110 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5113 -- Add dummy push/pop label nodes at start and end to clear any local
5114 -- exception indications if local-exception-to-goto optimization is active.
5116 -- Add return statement if last statement in body is not a return statement
5117 -- (this makes things easier on Gigi which does not want to have to handle
5118 -- a missing return).
5120 -- Add call to Activate_Tasks if body is a task activator
5122 -- Deal with possible detection of infinite recursion
5124 -- Eliminate body completely if convention stubbed
5126 -- Encode entity names within body, since we will not need to reference
5127 -- these entities any longer in the front end.
5129 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5131 -- Reset Pure indication if any parameter has root type System.Address
5132 -- or has any parameters of limited types, where limited means that the
5133 -- run-time view is limited (i.e. the full type is limited).
5137 procedure Expand_N_Subprogram_Body
(N
: Node_Id
) is
5138 Loc
: constant Source_Ptr
:= Sloc
(N
);
5139 H
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
5140 Body_Id
: Entity_Id
;
5143 Spec_Id
: Entity_Id
;
5145 procedure Add_Return
(S
: List_Id
);
5146 -- Append a return statement to the statement sequence S if the last
5147 -- statement is not already a return or a goto statement. Note that
5148 -- the latter test is not critical, it does not matter if we add a few
5149 -- extra returns, since they get eliminated anyway later on.
5155 procedure Add_Return
(S
: List_Id
) is
5160 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5161 -- not relevant in this context since they are not executable.
5163 Last_Stm
:= Last
(S
);
5164 while Nkind
(Last_Stm
) in N_Pop_xxx_Label
loop
5168 -- Now insert return unless last statement is a transfer
5170 if not Is_Transfer
(Last_Stm
) then
5172 -- The source location for the return is the end label of the
5173 -- procedure if present. Otherwise use the sloc of the last
5174 -- statement in the list. If the list comes from a generated
5175 -- exception handler and we are not debugging generated code,
5176 -- all the statements within the handler are made invisible
5179 if Nkind
(Parent
(S
)) = N_Exception_Handler
5180 and then not Comes_From_Source
(Parent
(S
))
5182 Loc
:= Sloc
(Last_Stm
);
5183 elsif Present
(End_Label
(H
)) then
5184 Loc
:= Sloc
(End_Label
(H
));
5186 Loc
:= Sloc
(Last_Stm
);
5190 Rtn
: constant Node_Id
:= Make_Simple_Return_Statement
(Loc
);
5193 -- Append return statement, and set analyzed manually. We can't
5194 -- call Analyze on this return since the scope is wrong.
5196 -- Note: it almost works to push the scope and then do the
5197 -- Analyze call, but something goes wrong in some weird cases
5198 -- and it is not worth worrying about ???
5203 -- Call _Postconditions procedure if appropriate. We need to
5204 -- do this explicitly because we did not analyze the generated
5205 -- return statement above, so the call did not get inserted.
5207 if Ekind
(Spec_Id
) = E_Procedure
5208 and then Has_Postconditions
(Spec_Id
)
5210 pragma Assert
(Present
(Postcondition_Proc
(Spec_Id
)));
5212 Make_Procedure_Call_Statement
(Loc
,
5215 (Postcondition_Proc
(Spec_Id
), Loc
)));
5221 -- Start of processing for Expand_N_Subprogram_Body
5224 -- Set L to either the list of declarations if present, or to the list
5225 -- of statements if no declarations are present. This is used to insert
5226 -- new stuff at the start.
5228 if Is_Non_Empty_List
(Declarations
(N
)) then
5229 L
:= Declarations
(N
);
5231 L
:= Statements
(H
);
5234 -- If local-exception-to-goto optimization active, insert dummy push
5235 -- statements at start, and dummy pop statements at end, but inhibit
5236 -- this if we have No_Exception_Handlers, since they are useless and
5237 -- intefere with analysis, e.g. by codepeer.
5239 if (Debug_Flag_Dot_G
5240 or else Restriction_Active
(No_Exception_Propagation
))
5241 and then not Restriction_Active
(No_Exception_Handlers
)
5242 and then not CodePeer_Mode
5243 and then Is_Non_Empty_List
(L
)
5246 FS
: constant Node_Id
:= First
(L
);
5247 FL
: constant Source_Ptr
:= Sloc
(FS
);
5252 -- LS points to either last statement, if statements are present
5253 -- or to the last declaration if there are no statements present.
5254 -- It is the node after which the pop's are generated.
5256 if Is_Non_Empty_List
(Statements
(H
)) then
5257 LS
:= Last
(Statements
(H
));
5264 Insert_List_Before_And_Analyze
(FS
, New_List
(
5265 Make_Push_Constraint_Error_Label
(FL
),
5266 Make_Push_Program_Error_Label
(FL
),
5267 Make_Push_Storage_Error_Label
(FL
)));
5269 Insert_List_After_And_Analyze
(LS
, New_List
(
5270 Make_Pop_Constraint_Error_Label
(LL
),
5271 Make_Pop_Program_Error_Label
(LL
),
5272 Make_Pop_Storage_Error_Label
(LL
)));
5276 -- Find entity for subprogram
5278 Body_Id
:= Defining_Entity
(N
);
5280 if Present
(Corresponding_Spec
(N
)) then
5281 Spec_Id
:= Corresponding_Spec
(N
);
5286 -- Need poll on entry to subprogram if polling enabled. We only do this
5287 -- for non-empty subprograms, since it does not seem necessary to poll
5288 -- for a dummy null subprogram.
5290 if Is_Non_Empty_List
(L
) then
5292 -- Do not add a polling call if the subprogram is to be inlined by
5293 -- the back-end, to avoid repeated calls with multiple inlinings.
5295 if Is_Inlined
(Spec_Id
)
5296 and then Front_End_Inlining
5297 and then Optimization_Level
> 1
5301 Generate_Poll_Call
(First
(L
));
5305 -- If this is a Pure function which has any parameters whose root type
5306 -- is System.Address, reset the Pure indication, since it will likely
5307 -- cause incorrect code to be generated as the parameter is probably
5308 -- a pointer, and the fact that the same pointer is passed does not mean
5309 -- that the same value is being referenced.
5311 -- Note that if the programmer gave an explicit Pure_Function pragma,
5312 -- then we believe the programmer, and leave the subprogram Pure.
5314 -- This code should probably be at the freeze point, so that it happens
5315 -- even on a -gnatc (or more importantly -gnatt) compile, so that the
5316 -- semantic tree has Is_Pure set properly ???
5318 if Is_Pure
(Spec_Id
)
5319 and then Is_Subprogram
(Spec_Id
)
5320 and then not Has_Pragma_Pure_Function
(Spec_Id
)
5326 F
:= First_Formal
(Spec_Id
);
5327 while Present
(F
) loop
5328 if Is_Descendent_Of_Address
(Etype
(F
))
5330 -- Note that this test is being made in the body of the
5331 -- subprogram, not the spec, so we are testing the full
5332 -- type for being limited here, as required.
5334 or else Is_Limited_Type
(Etype
(F
))
5336 Set_Is_Pure
(Spec_Id
, False);
5338 if Spec_Id
/= Body_Id
then
5339 Set_Is_Pure
(Body_Id
, False);
5350 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5352 if Init_Or_Norm_Scalars
and then Is_Subprogram
(Spec_Id
) then
5358 -- Loop through formals
5360 F
:= First_Formal
(Spec_Id
);
5361 while Present
(F
) loop
5362 if Is_Scalar_Type
(Etype
(F
))
5363 and then Ekind
(F
) = E_Out_Parameter
5365 Check_Restriction
(No_Default_Initialization
, F
);
5367 -- Insert the initialization. We turn off validity checks
5368 -- for this assignment, since we do not want any check on
5369 -- the initial value itself (which may well be invalid).
5370 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5372 A
:= Make_Assignment_Statement
(Loc
,
5373 Name
=> New_Occurrence_Of
(F
, Loc
),
5374 Expression
=> Get_Simple_Init_Val
(Etype
(F
), N
));
5375 Set_Suppress_Assignment_Checks
(A
);
5377 Insert_Before_And_Analyze
(First
(L
),
5378 A
, Suppress
=> Validity_Check
);
5386 -- Clear out statement list for stubbed procedure
5388 if Present
(Corresponding_Spec
(N
)) then
5389 Set_Elaboration_Flag
(N
, Spec_Id
);
5391 if Convention
(Spec_Id
) = Convention_Stubbed
5392 or else Is_Eliminated
(Spec_Id
)
5394 Set_Declarations
(N
, Empty_List
);
5395 Set_Handled_Statement_Sequence
(N
,
5396 Make_Handled_Sequence_Of_Statements
(Loc
,
5397 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
5402 -- Create a set of discriminals for the next protected subprogram body
5404 if Is_List_Member
(N
)
5405 and then Present
(Parent
(List_Containing
(N
)))
5406 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5407 and then Present
(Next_Protected_Operation
(N
))
5409 Set_Discriminals
(Parent
(Base_Type
(Scope
(Spec_Id
))));
5412 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5413 -- subprograms with no specs are not frozen.
5416 Typ
: constant Entity_Id
:= Etype
(Spec_Id
);
5417 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5420 if not Acts_As_Spec
(N
)
5421 and then Nkind
(Parent
(Parent
(Spec_Id
))) /=
5422 N_Subprogram_Body_Stub
5426 elsif Is_Limited_View
(Typ
) then
5427 Set_Returns_By_Ref
(Spec_Id
);
5429 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5430 Set_Returns_By_Ref
(Spec_Id
);
5434 -- For a procedure, we add a return for all possible syntactic ends of
5437 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
) then
5438 Add_Return
(Statements
(H
));
5440 if Present
(Exception_Handlers
(H
)) then
5441 Except_H
:= First_Non_Pragma
(Exception_Handlers
(H
));
5442 while Present
(Except_H
) loop
5443 Add_Return
(Statements
(Except_H
));
5444 Next_Non_Pragma
(Except_H
);
5448 -- For a function, we must deal with the case where there is at least
5449 -- one missing return. What we do is to wrap the entire body of the
5450 -- function in a block:
5463 -- raise Program_Error;
5466 -- This approach is necessary because the raise must be signalled to the
5467 -- caller, not handled by any local handler (RM 6.4(11)).
5469 -- Note: we do not need to analyze the constructed sequence here, since
5470 -- it has no handler, and an attempt to analyze the handled statement
5471 -- sequence twice is risky in various ways (e.g. the issue of expanding
5472 -- cleanup actions twice).
5474 elsif Has_Missing_Return
(Spec_Id
) then
5476 Hloc
: constant Source_Ptr
:= Sloc
(H
);
5477 Blok
: constant Node_Id
:=
5478 Make_Block_Statement
(Hloc
,
5479 Handled_Statement_Sequence
=> H
);
5480 Rais
: constant Node_Id
:=
5481 Make_Raise_Program_Error
(Hloc
,
5482 Reason
=> PE_Missing_Return
);
5485 Set_Handled_Statement_Sequence
(N
,
5486 Make_Handled_Sequence_Of_Statements
(Hloc
,
5487 Statements
=> New_List
(Blok
, Rais
)));
5489 Push_Scope
(Spec_Id
);
5496 -- If subprogram contains a parameterless recursive call, then we may
5497 -- have an infinite recursion, so see if we can generate code to check
5498 -- for this possibility if storage checks are not suppressed.
5500 if Ekind
(Spec_Id
) = E_Procedure
5501 and then Has_Recursive_Call
(Spec_Id
)
5502 and then not Storage_Checks_Suppressed
(Spec_Id
)
5504 Detect_Infinite_Recursion
(N
, Spec_Id
);
5507 -- Set to encode entity names in package body before gigi is called
5509 Qualify_Entity_Names
(N
);
5510 end Expand_N_Subprogram_Body
;
5512 -----------------------------------
5513 -- Expand_N_Subprogram_Body_Stub --
5514 -----------------------------------
5516 procedure Expand_N_Subprogram_Body_Stub
(N
: Node_Id
) is
5518 if Present
(Corresponding_Body
(N
)) then
5519 Expand_N_Subprogram_Body
(
5520 Unit_Declaration_Node
(Corresponding_Body
(N
)));
5522 end Expand_N_Subprogram_Body_Stub
;
5524 -------------------------------------
5525 -- Expand_N_Subprogram_Declaration --
5526 -------------------------------------
5528 -- If the declaration appears within a protected body, it is a private
5529 -- operation of the protected type. We must create the corresponding
5530 -- protected subprogram an associated formals. For a normal protected
5531 -- operation, this is done when expanding the protected type declaration.
5533 -- If the declaration is for a null procedure, emit null body
5535 procedure Expand_N_Subprogram_Declaration
(N
: Node_Id
) is
5536 Loc
: constant Source_Ptr
:= Sloc
(N
);
5537 Subp
: constant Entity_Id
:= Defining_Entity
(N
);
5538 Scop
: constant Entity_Id
:= Scope
(Subp
);
5539 Prot_Decl
: Node_Id
;
5541 Prot_Id
: Entity_Id
;
5544 -- In SPARK, subprogram declarations are only allowed in package
5547 if Nkind
(Parent
(N
)) /= N_Package_Specification
then
5548 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5549 Check_SPARK_Restriction
5550 ("subprogram declaration is not a library item", N
);
5552 elsif Present
(Next
(N
))
5553 and then Nkind
(Next
(N
)) = N_Pragma
5554 and then Get_Pragma_Id
(Pragma_Name
(Next
(N
))) = Pragma_Import
5556 -- In SPARK, subprogram declarations are also permitted in
5557 -- declarative parts when immediately followed by a corresponding
5558 -- pragma Import. We only check here that there is some pragma
5563 Check_SPARK_Restriction
5564 ("subprogram declaration is not allowed here", N
);
5568 -- Deal with case of protected subprogram. Do not generate protected
5569 -- operation if operation is flagged as eliminated.
5571 if Is_List_Member
(N
)
5572 and then Present
(Parent
(List_Containing
(N
)))
5573 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5574 and then Is_Protected_Type
(Scop
)
5576 if No
(Protected_Body_Subprogram
(Subp
))
5577 and then not Is_Eliminated
(Subp
)
5580 Make_Subprogram_Declaration
(Loc
,
5582 Build_Protected_Sub_Specification
5583 (N
, Scop
, Unprotected_Mode
));
5585 -- The protected subprogram is declared outside of the protected
5586 -- body. Given that the body has frozen all entities so far, we
5587 -- analyze the subprogram and perform freezing actions explicitly.
5588 -- including the generation of an explicit freeze node, to ensure
5589 -- that gigi has the proper order of elaboration.
5590 -- If the body is a subunit, the insertion point is before the
5591 -- stub in the parent.
5593 Prot_Bod
:= Parent
(List_Containing
(N
));
5595 if Nkind
(Parent
(Prot_Bod
)) = N_Subunit
then
5596 Prot_Bod
:= Corresponding_Stub
(Parent
(Prot_Bod
));
5599 Insert_Before
(Prot_Bod
, Prot_Decl
);
5600 Prot_Id
:= Defining_Unit_Name
(Specification
(Prot_Decl
));
5601 Set_Has_Delayed_Freeze
(Prot_Id
);
5603 Push_Scope
(Scope
(Scop
));
5604 Analyze
(Prot_Decl
);
5605 Freeze_Before
(N
, Prot_Id
);
5606 Set_Protected_Body_Subprogram
(Subp
, Prot_Id
);
5608 -- Create protected operation as well. Even though the operation
5609 -- is only accessible within the body, it is possible to make it
5610 -- available outside of the protected object by using 'Access to
5611 -- provide a callback, so build protected version in all cases.
5614 Make_Subprogram_Declaration
(Loc
,
5616 Build_Protected_Sub_Specification
(N
, Scop
, Protected_Mode
));
5617 Insert_Before
(Prot_Bod
, Prot_Decl
);
5618 Analyze
(Prot_Decl
);
5623 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5624 -- cases this is superfluous because calls to it will be automatically
5625 -- inlined, but we definitely need the body if preconditions for the
5626 -- procedure are present.
5628 elsif Nkind
(Specification
(N
)) = N_Procedure_Specification
5629 and then Null_Present
(Specification
(N
))
5632 Bod
: constant Node_Id
:= Body_To_Inline
(N
);
5635 Set_Has_Completion
(Subp
, False);
5636 Append_Freeze_Action
(Subp
, Bod
);
5638 -- The body now contains raise statements, so calls to it will
5641 Set_Is_Inlined
(Subp
, False);
5644 end Expand_N_Subprogram_Declaration
;
5646 --------------------------------
5647 -- Expand_Non_Function_Return --
5648 --------------------------------
5650 procedure Expand_Non_Function_Return
(N
: Node_Id
) is
5651 pragma Assert
(No
(Expression
(N
)));
5653 Loc
: constant Source_Ptr
:= Sloc
(N
);
5654 Scope_Id
: Entity_Id
:=
5655 Return_Applies_To
(Return_Statement_Entity
(N
));
5656 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
5659 Goto_Stat
: Node_Id
;
5663 -- Call _Postconditions procedure if procedure with active
5664 -- postconditions. Here, we use the Postcondition_Proc attribute,
5665 -- which is needed for implicitly-generated returns. Functions
5666 -- never have implicitly-generated returns, and there's no
5667 -- room for Postcondition_Proc in E_Function, so we look up the
5668 -- identifier Name_uPostconditions for function returns (see
5669 -- Expand_Simple_Function_Return).
5671 if Ekind
(Scope_Id
) = E_Procedure
5672 and then Has_Postconditions
(Scope_Id
)
5674 pragma Assert
(Present
(Postcondition_Proc
(Scope_Id
)));
5676 Make_Procedure_Call_Statement
(Loc
,
5677 Name
=> New_Occurrence_Of
(Postcondition_Proc
(Scope_Id
), Loc
)));
5680 -- If it is a return from a procedure do no extra steps
5682 if Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
5685 -- If it is a nested return within an extended one, replace it with a
5686 -- return of the previously declared return object.
5688 elsif Kind
= E_Return_Statement
then
5690 Make_Simple_Return_Statement
(Loc
,
5692 New_Occurrence_Of
(First_Entity
(Scope_Id
), Loc
)));
5693 Set_Comes_From_Extended_Return_Statement
(N
);
5694 Set_Return_Statement_Entity
(N
, Scope_Id
);
5695 Expand_Simple_Function_Return
(N
);
5699 pragma Assert
(Is_Entry
(Scope_Id
));
5701 -- Look at the enclosing block to see whether the return is from an
5702 -- accept statement or an entry body.
5704 for J
in reverse 0 .. Scope_Stack
.Last
loop
5705 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
5706 exit when Is_Concurrent_Type
(Scope_Id
);
5709 -- If it is a return from accept statement it is expanded as call to
5710 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
5712 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5713 -- Expand_N_Accept_Alternative in exp_ch9.adb)
5715 if Is_Task_Type
(Scope_Id
) then
5718 Make_Procedure_Call_Statement
(Loc
,
5719 Name
=> New_Occurrence_Of
(RTE
(RE_Complete_Rendezvous
), Loc
));
5720 Insert_Before
(N
, Call
);
5721 -- why not insert actions here???
5724 Acc_Stat
:= Parent
(N
);
5725 while Nkind
(Acc_Stat
) /= N_Accept_Statement
loop
5726 Acc_Stat
:= Parent
(Acc_Stat
);
5729 Lab_Node
:= Last
(Statements
5730 (Handled_Statement_Sequence
(Acc_Stat
)));
5732 Goto_Stat
:= Make_Goto_Statement
(Loc
,
5733 Name
=> New_Occurrence_Of
5734 (Entity
(Identifier
(Lab_Node
)), Loc
));
5736 Set_Analyzed
(Goto_Stat
);
5738 Rewrite
(N
, Goto_Stat
);
5741 -- If it is a return from an entry body, put a Complete_Entry_Body call
5742 -- in front of the return.
5744 elsif Is_Protected_Type
(Scope_Id
) then
5746 Make_Procedure_Call_Statement
(Loc
,
5748 New_Occurrence_Of
(RTE
(RE_Complete_Entry_Body
), Loc
),
5749 Parameter_Associations
=> New_List
(
5750 Make_Attribute_Reference
(Loc
,
5753 (Find_Protection_Object
(Current_Scope
), Loc
),
5754 Attribute_Name
=> Name_Unchecked_Access
)));
5756 Insert_Before
(N
, Call
);
5759 end Expand_Non_Function_Return
;
5761 ---------------------------------------
5762 -- Expand_Protected_Object_Reference --
5763 ---------------------------------------
5765 function Expand_Protected_Object_Reference
5767 Scop
: Entity_Id
) return Node_Id
5769 Loc
: constant Source_Ptr
:= Sloc
(N
);
5776 Rec
:= Make_Identifier
(Loc
, Name_uObject
);
5777 Set_Etype
(Rec
, Corresponding_Record_Type
(Scop
));
5779 -- Find enclosing protected operation, and retrieve its first parameter,
5780 -- which denotes the enclosing protected object. If the enclosing
5781 -- operation is an entry, we are immediately within the protected body,
5782 -- and we can retrieve the object from the service entries procedure. A
5783 -- barrier function has the same signature as an entry. A barrier
5784 -- function is compiled within the protected object, but unlike
5785 -- protected operations its never needs locks, so that its protected
5786 -- body subprogram points to itself.
5788 Proc
:= Current_Scope
;
5789 while Present
(Proc
)
5790 and then Scope
(Proc
) /= Scop
5792 Proc
:= Scope
(Proc
);
5795 Corr
:= Protected_Body_Subprogram
(Proc
);
5799 -- Previous error left expansion incomplete.
5800 -- Nothing to do on this call.
5807 (First
(Parameter_Specifications
(Parent
(Corr
))));
5809 if Is_Subprogram
(Proc
)
5810 and then Proc
/= Corr
5812 -- Protected function or procedure
5814 Set_Entity
(Rec
, Param
);
5816 -- Rec is a reference to an entity which will not be in scope when
5817 -- the call is reanalyzed, and needs no further analysis.
5822 -- Entry or barrier function for entry body. The first parameter of
5823 -- the entry body procedure is pointer to the object. We create a
5824 -- local variable of the proper type, duplicating what is done to
5825 -- define _object later on.
5829 Obj_Ptr
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
5833 Make_Full_Type_Declaration
(Loc
,
5834 Defining_Identifier
=> Obj_Ptr
,
5836 Make_Access_To_Object_Definition
(Loc
,
5837 Subtype_Indication
=>
5839 (Corresponding_Record_Type
(Scop
), Loc
))));
5841 Insert_Actions
(N
, Decls
);
5842 Freeze_Before
(N
, Obj_Ptr
);
5845 Make_Explicit_Dereference
(Loc
,
5847 Unchecked_Convert_To
(Obj_Ptr
,
5848 New_Occurrence_Of
(Param
, Loc
)));
5850 -- Analyze new actual. Other actuals in calls are already analyzed
5851 -- and the list of actuals is not reanalyzed after rewriting.
5853 Set_Parent
(Rec
, N
);
5859 end Expand_Protected_Object_Reference
;
5861 --------------------------------------
5862 -- Expand_Protected_Subprogram_Call --
5863 --------------------------------------
5865 procedure Expand_Protected_Subprogram_Call
5872 procedure Freeze_Called_Function
;
5873 -- If it is a function call it can appear in elaboration code and
5874 -- the called entity must be frozen before the call. This must be
5875 -- done before the call is expanded, as the expansion may rewrite it
5876 -- to something other than a call (e.g. a temporary initialized in a
5877 -- transient block).
5879 ----------------------------
5880 -- Freeze_Called_Function --
5881 ----------------------------
5883 procedure Freeze_Called_Function
is
5885 if Ekind
(Subp
) = E_Function
then
5886 Freeze_Expression
(Name
(N
));
5888 end Freeze_Called_Function
;
5890 -- Start of processing for Expand_Protected_Subprogram_Call
5893 -- If the protected object is not an enclosing scope, this is an inter-
5894 -- object function call. Inter-object procedure calls are expanded by
5895 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
5896 -- subprogram being called is in the protected body being compiled, and
5897 -- if the protected object in the call is statically the enclosing type.
5898 -- The object may be an component of some other data structure, in which
5899 -- case this must be handled as an inter-object call.
5901 if not In_Open_Scopes
(Scop
)
5902 or else not Is_Entity_Name
(Name
(N
))
5904 if Nkind
(Name
(N
)) = N_Selected_Component
then
5905 Rec
:= Prefix
(Name
(N
));
5908 pragma Assert
(Nkind
(Name
(N
)) = N_Indexed_Component
);
5909 Rec
:= Prefix
(Prefix
(Name
(N
)));
5912 Freeze_Called_Function
;
5913 Build_Protected_Subprogram_Call
(N
,
5914 Name
=> New_Occurrence_Of
(Subp
, Sloc
(N
)),
5915 Rec
=> Convert_Concurrent
(Rec
, Etype
(Rec
)),
5919 Rec
:= Expand_Protected_Object_Reference
(N
, Scop
);
5925 Freeze_Called_Function
;
5926 Build_Protected_Subprogram_Call
(N
,
5933 -- Analyze and resolve the new call. The actuals have already been
5934 -- resolved, but expansion of a function call will add extra actuals
5935 -- if needed. Analysis of a procedure call already includes resolution.
5939 if Ekind
(Subp
) = E_Function
then
5940 Resolve
(N
, Etype
(Subp
));
5942 end Expand_Protected_Subprogram_Call
;
5944 --------------------------------------------
5945 -- Has_Unconstrained_Access_Discriminants --
5946 --------------------------------------------
5948 function Has_Unconstrained_Access_Discriminants
5949 (Subtyp
: Entity_Id
) return Boolean
5954 if Has_Discriminants
(Subtyp
)
5955 and then not Is_Constrained
(Subtyp
)
5957 Discr
:= First_Discriminant
(Subtyp
);
5958 while Present
(Discr
) loop
5959 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
then
5963 Next_Discriminant
(Discr
);
5968 end Has_Unconstrained_Access_Discriminants
;
5970 -----------------------------------
5971 -- Expand_Simple_Function_Return --
5972 -----------------------------------
5974 -- The "simple" comes from the syntax rule simple_return_statement. The
5975 -- semantics are not at all simple.
5977 procedure Expand_Simple_Function_Return
(N
: Node_Id
) is
5978 Loc
: constant Source_Ptr
:= Sloc
(N
);
5980 Scope_Id
: constant Entity_Id
:=
5981 Return_Applies_To
(Return_Statement_Entity
(N
));
5982 -- The function we are returning from
5984 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
5985 -- The result type of the function
5987 Utyp
: constant Entity_Id
:= Underlying_Type
(R_Type
);
5989 Exp
: constant Node_Id
:= Expression
(N
);
5990 pragma Assert
(Present
(Exp
));
5992 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
5993 -- The type of the expression (not necessarily the same as R_Type)
5995 Subtype_Ind
: Node_Id
;
5996 -- If the result type of the function is class-wide and the expression
5997 -- has a specific type, then we use the expression's type as the type of
5998 -- the return object. In cases where the expression is an aggregate that
5999 -- is built in place, this avoids the need for an expensive conversion
6000 -- of the return object to the specific type on assignments to the
6001 -- individual components.
6004 if Is_Class_Wide_Type
(R_Type
)
6005 and then not Is_Class_Wide_Type
(Etype
(Exp
))
6007 Subtype_Ind
:= New_Occurrence_Of
(Etype
(Exp
), Loc
);
6009 Subtype_Ind
:= New_Occurrence_Of
(R_Type
, Loc
);
6012 -- For the case of a simple return that does not come from an extended
6013 -- return, in the case of Ada 2005 where we are returning a limited
6014 -- type, we rewrite "return <expression>;" to be:
6016 -- return _anon_ : <return_subtype> := <expression>
6018 -- The expansion produced by Expand_N_Extended_Return_Statement will
6019 -- contain simple return statements (for example, a block containing
6020 -- simple return of the return object), which brings us back here with
6021 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6022 -- checking for a simple return that does not come from an extended
6023 -- return is to avoid this infinite recursion.
6025 -- The reason for this design is that for Ada 2005 limited returns, we
6026 -- need to reify the return object, so we can build it "in place", and
6027 -- we need a block statement to hang finalization and tasking stuff.
6029 -- ??? In order to avoid disruption, we avoid translating to extended
6030 -- return except in the cases where we really need to (Ada 2005 for
6031 -- inherently limited). We might prefer to do this translation in all
6032 -- cases (except perhaps for the case of Ada 95 inherently limited),
6033 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6034 -- code. This would also allow us to do the build-in-place optimization
6035 -- for efficiency even in cases where it is semantically not required.
6037 -- As before, we check the type of the return expression rather than the
6038 -- return type of the function, because the latter may be a limited
6039 -- class-wide interface type, which is not a limited type, even though
6040 -- the type of the expression may be.
6042 if not Comes_From_Extended_Return_Statement
(N
)
6043 and then Is_Limited_View
(Etype
(Expression
(N
)))
6044 and then Ada_Version
>= Ada_2005
6045 and then not Debug_Flag_Dot_L
6047 -- The functionality of interface thunks is simple and it is always
6048 -- handled by means of simple return statements. This leaves their
6049 -- expansion simple and clean.
6051 and then not Is_Thunk
(Current_Scope
)
6054 Return_Object_Entity
: constant Entity_Id
:=
6055 Make_Temporary
(Loc
, 'R', Exp
);
6057 Obj_Decl
: constant Node_Id
:=
6058 Make_Object_Declaration
(Loc
,
6059 Defining_Identifier
=> Return_Object_Entity
,
6060 Object_Definition
=> Subtype_Ind
,
6063 Ext
: constant Node_Id
:=
6064 Make_Extended_Return_Statement
(Loc
,
6065 Return_Object_Declarations
=> New_List
(Obj_Decl
));
6066 -- Do not perform this high-level optimization if the result type
6067 -- is an interface because the "this" pointer must be displaced.
6076 -- Here we have a simple return statement that is part of the expansion
6077 -- of an extended return statement (either written by the user, or
6078 -- generated by the above code).
6080 -- Always normalize C/Fortran boolean result. This is not always needed,
6081 -- but it seems a good idea to minimize the passing around of non-
6082 -- normalized values, and in any case this handles the processing of
6083 -- barrier functions for protected types, which turn the condition into
6084 -- a return statement.
6086 if Is_Boolean_Type
(Exptyp
)
6087 and then Nonzero_Is_True
(Exptyp
)
6089 Adjust_Condition
(Exp
);
6090 Adjust_Result_Type
(Exp
, Exptyp
);
6093 -- Do validity check if enabled for returns
6095 if Validity_Checks_On
6096 and then Validity_Check_Returns
6101 -- Check the result expression of a scalar function against the subtype
6102 -- of the function by inserting a conversion. This conversion must
6103 -- eventually be performed for other classes of types, but for now it's
6104 -- only done for scalars.
6107 if Is_Scalar_Type
(Exptyp
) then
6108 Rewrite
(Exp
, Convert_To
(R_Type
, Exp
));
6110 -- The expression is resolved to ensure that the conversion gets
6111 -- expanded to generate a possible constraint check.
6113 Analyze_And_Resolve
(Exp
, R_Type
);
6116 -- Deal with returning variable length objects and controlled types
6118 -- Nothing to do if we are returning by reference, or this is not a
6119 -- type that requires special processing (indicated by the fact that
6120 -- it requires a cleanup scope for the secondary stack case).
6122 if Is_Limited_View
(Exptyp
)
6123 or else Is_Limited_Interface
(Exptyp
)
6127 -- No copy needed for thunks returning interface type objects since
6128 -- the object is returned by reference and the maximum functionality
6129 -- required is just to displace the pointer.
6131 elsif Is_Thunk
(Current_Scope
) and then Is_Interface
(Exptyp
) then
6134 elsif not Requires_Transient_Scope
(R_Type
) then
6136 -- Mutable records with no variable length components are not
6137 -- returned on the sec-stack, so we need to make sure that the
6138 -- backend will only copy back the size of the actual value, and not
6139 -- the maximum size. We create an actual subtype for this purpose.
6142 Ubt
: constant Entity_Id
:= Underlying_Type
(Base_Type
(Exptyp
));
6146 if Has_Discriminants
(Ubt
)
6147 and then not Is_Constrained
(Ubt
)
6148 and then not Has_Unchecked_Union
(Ubt
)
6150 Decl
:= Build_Actual_Subtype
(Ubt
, Exp
);
6151 Ent
:= Defining_Identifier
(Decl
);
6152 Insert_Action
(Exp
, Decl
);
6153 Rewrite
(Exp
, Unchecked_Convert_To
(Ent
, Exp
));
6154 Analyze_And_Resolve
(Exp
);
6158 -- Here if secondary stack is used
6161 -- Prevent the reclamation of the secondary stack by all enclosing
6162 -- blocks and loops as well as the related function, otherwise the
6163 -- result will be reclaimed too early or even clobbered. Due to a
6164 -- possible mix of internally generated blocks, source blocks and
6165 -- loops, the scope stack may not be contiguous as all labels are
6166 -- inserted at the top level within the related function. Instead,
6167 -- perform a parent-based traversal and mark all appropriate
6175 while Present
(P
) loop
6177 -- Mark the label of a source or internally generated block or
6180 if Nkind_In
(P
, N_Block_Statement
, N_Loop_Statement
) then
6181 Set_Sec_Stack_Needed_For_Return
(Entity
(Identifier
(P
)));
6183 -- Mark the enclosing function
6185 elsif Nkind
(P
) = N_Subprogram_Body
then
6186 if Present
(Corresponding_Spec
(P
)) then
6187 Set_Sec_Stack_Needed_For_Return
(Corresponding_Spec
(P
));
6189 Set_Sec_Stack_Needed_For_Return
(Defining_Entity
(P
));
6192 -- Do not go beyond the enclosing function
6201 -- Optimize the case where the result is a function call. In this
6202 -- case either the result is already on the secondary stack, or is
6203 -- already being returned with the stack pointer depressed and no
6204 -- further processing is required except to set the By_Ref flag
6205 -- to ensure that gigi does not attempt an extra unnecessary copy.
6206 -- (actually not just unnecessary but harmfully wrong in the case
6207 -- of a controlled type, where gigi does not know how to do a copy).
6208 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6209 -- for array types if the constrained status of the target type is
6210 -- different from that of the expression.
6212 if Requires_Transient_Scope
(Exptyp
)
6214 (not Is_Array_Type
(Exptyp
)
6215 or else Is_Constrained
(Exptyp
) = Is_Constrained
(R_Type
)
6216 or else CW_Or_Has_Controlled_Part
(Utyp
))
6217 and then Nkind
(Exp
) = N_Function_Call
6221 -- Remove side effects from the expression now so that other parts
6222 -- of the expander do not have to reanalyze this node without this
6225 Rewrite
(Exp
, Duplicate_Subexpr_No_Checks
(Exp
));
6227 -- For controlled types, do the allocation on the secondary stack
6228 -- manually in order to call adjust at the right time:
6230 -- type Anon1 is access R_Type;
6231 -- for Anon1'Storage_pool use ss_pool;
6232 -- Anon2 : anon1 := new R_Type'(expr);
6233 -- return Anon2.all;
6235 -- We do the same for classwide types that are not potentially
6236 -- controlled (by the virtue of restriction No_Finalization) because
6237 -- gigi is not able to properly allocate class-wide types.
6239 elsif CW_Or_Has_Controlled_Part
(Utyp
) then
6241 Loc
: constant Source_Ptr
:= Sloc
(N
);
6242 Acc_Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
6243 Alloc_Node
: Node_Id
;
6247 Set_Ekind
(Acc_Typ
, E_Access_Type
);
6249 Set_Associated_Storage_Pool
(Acc_Typ
, RTE
(RE_SS_Pool
));
6251 -- This is an allocator for the secondary stack, and it's fine
6252 -- to have Comes_From_Source set False on it, as gigi knows not
6253 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6256 Make_Allocator
(Loc
,
6258 Make_Qualified_Expression
(Loc
,
6259 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Exp
), Loc
),
6260 Expression
=> Relocate_Node
(Exp
)));
6262 -- We do not want discriminant checks on the declaration,
6263 -- given that it gets its value from the allocator.
6265 Set_No_Initialization
(Alloc_Node
);
6267 Temp
:= Make_Temporary
(Loc
, 'R', Alloc_Node
);
6269 Insert_List_Before_And_Analyze
(N
, New_List
(
6270 Make_Full_Type_Declaration
(Loc
,
6271 Defining_Identifier
=> Acc_Typ
,
6273 Make_Access_To_Object_Definition
(Loc
,
6274 Subtype_Indication
=> Subtype_Ind
)),
6276 Make_Object_Declaration
(Loc
,
6277 Defining_Identifier
=> Temp
,
6278 Object_Definition
=> New_Occurrence_Of
(Acc_Typ
, Loc
),
6279 Expression
=> Alloc_Node
)));
6282 Make_Explicit_Dereference
(Loc
,
6283 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
6285 -- Ada 2005 (AI-251): If the type of the returned object is
6286 -- an interface then add an implicit type conversion to force
6287 -- displacement of the "this" pointer.
6289 if Is_Interface
(R_Type
) then
6290 Rewrite
(Exp
, Convert_To
(R_Type
, Relocate_Node
(Exp
)));
6293 Analyze_And_Resolve
(Exp
, R_Type
);
6296 -- Otherwise use the gigi mechanism to allocate result on the
6300 Check_Restriction
(No_Secondary_Stack
, N
);
6301 Set_Storage_Pool
(N
, RTE
(RE_SS_Pool
));
6303 -- If we are generating code for the VM do not use
6304 -- SS_Allocate since everything is heap-allocated anyway.
6306 if VM_Target
= No_VM
then
6307 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
6312 -- Implement the rules of 6.5(8-10), which require a tag check in
6313 -- the case of a limited tagged return type, and tag reassignment for
6314 -- nonlimited tagged results. These actions are needed when the return
6315 -- type is a specific tagged type and the result expression is a
6316 -- conversion or a formal parameter, because in that case the tag of
6317 -- the expression might differ from the tag of the specific result type.
6319 if Is_Tagged_Type
(Utyp
)
6320 and then not Is_Class_Wide_Type
(Utyp
)
6321 and then (Nkind_In
(Exp
, N_Type_Conversion
,
6322 N_Unchecked_Type_Conversion
)
6323 or else (Is_Entity_Name
(Exp
)
6324 and then Ekind
(Entity
(Exp
)) in Formal_Kind
))
6326 -- When the return type is limited, perform a check that the tag of
6327 -- the result is the same as the tag of the return type.
6329 if Is_Limited_Type
(R_Type
) then
6331 Make_Raise_Constraint_Error
(Loc
,
6335 Make_Selected_Component
(Loc
,
6336 Prefix
=> Duplicate_Subexpr
(Exp
),
6337 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6339 Make_Attribute_Reference
(Loc
,
6341 New_Occurrence_Of
(Base_Type
(Utyp
), Loc
),
6342 Attribute_Name
=> Name_Tag
)),
6343 Reason
=> CE_Tag_Check_Failed
));
6345 -- If the result type is a specific nonlimited tagged type, then we
6346 -- have to ensure that the tag of the result is that of the result
6347 -- type. This is handled by making a copy of the expression in
6348 -- the case where it might have a different tag, namely when the
6349 -- expression is a conversion or a formal parameter. We create a new
6350 -- object of the result type and initialize it from the expression,
6351 -- which will implicitly force the tag to be set appropriately.
6355 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6356 Result_Id
: constant Entity_Id
:=
6357 Make_Temporary
(Loc
, 'R', ExpR
);
6358 Result_Exp
: constant Node_Id
:=
6359 New_Occurrence_Of
(Result_Id
, Loc
);
6360 Result_Obj
: constant Node_Id
:=
6361 Make_Object_Declaration
(Loc
,
6362 Defining_Identifier
=> Result_Id
,
6363 Object_Definition
=>
6364 New_Occurrence_Of
(R_Type
, Loc
),
6365 Constant_Present
=> True,
6366 Expression
=> ExpR
);
6369 Set_Assignment_OK
(Result_Obj
);
6370 Insert_Action
(Exp
, Result_Obj
);
6372 Rewrite
(Exp
, Result_Exp
);
6373 Analyze_And_Resolve
(Exp
, R_Type
);
6377 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6378 -- a check that the level of the return expression's underlying type
6379 -- is not deeper than the level of the master enclosing the function.
6380 -- Always generate the check when the type of the return expression
6381 -- is class-wide, when it's a type conversion, or when it's a formal
6382 -- parameter. Otherwise, suppress the check in the case where the
6383 -- return expression has a specific type whose level is known not to
6384 -- be statically deeper than the function's result type.
6386 -- No runtime check needed in interface thunks since it is performed
6387 -- by the target primitive associated with the thunk.
6389 -- Note: accessibility check is skipped in the VM case, since there
6390 -- does not seem to be any practical way to implement this check.
6392 elsif Ada_Version
>= Ada_2005
6393 and then Tagged_Type_Expansion
6394 and then Is_Class_Wide_Type
(R_Type
)
6395 and then not Is_Thunk
(Current_Scope
)
6396 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
6398 (Is_Class_Wide_Type
(Etype
(Exp
))
6399 or else Nkind_In
(Exp
, N_Type_Conversion
,
6400 N_Unchecked_Type_Conversion
)
6401 or else (Is_Entity_Name
(Exp
)
6402 and then Ekind
(Entity
(Exp
)) in Formal_Kind
)
6403 or else Scope_Depth
(Enclosing_Dynamic_Scope
(Etype
(Exp
))) >
6404 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))
6410 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6411 -- "this" to reference the base of the object. This is required to
6412 -- get access to the TSD of the object.
6414 if Is_Class_Wide_Type
(Etype
(Exp
))
6415 and then Is_Interface
(Etype
(Exp
))
6416 and then Nkind
(Exp
) = N_Explicit_Dereference
6419 Make_Explicit_Dereference
(Loc
,
6421 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6422 Make_Function_Call
(Loc
,
6424 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6425 Parameter_Associations
=> New_List
(
6426 Unchecked_Convert_To
(RTE
(RE_Address
),
6427 Duplicate_Subexpr
(Prefix
(Exp
)))))));
6430 Make_Attribute_Reference
(Loc
,
6431 Prefix
=> Duplicate_Subexpr
(Exp
),
6432 Attribute_Name
=> Name_Tag
);
6436 Make_Raise_Program_Error
(Loc
,
6439 Left_Opnd
=> Build_Get_Access_Level
(Loc
, Tag_Node
),
6441 Make_Integer_Literal
(Loc
,
6442 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))),
6443 Reason
=> PE_Accessibility_Check_Failed
));
6446 -- AI05-0073: If function has a controlling access result, check that
6447 -- the tag of the return value, if it is not null, matches designated
6448 -- type of return type.
6450 -- The return expression is referenced twice in the code below, so it
6451 -- must be made free of side effects. Given that different compilers
6452 -- may evaluate these parameters in different order, both occurrences
6455 elsif Ekind
(R_Type
) = E_Anonymous_Access_Type
6456 and then Has_Controlling_Result
(Scope_Id
)
6459 Make_Raise_Constraint_Error
(Loc
,
6464 Left_Opnd
=> Duplicate_Subexpr
(Exp
),
6465 Right_Opnd
=> Make_Null
(Loc
)),
6467 Right_Opnd
=> Make_Op_Ne
(Loc
,
6469 Make_Selected_Component
(Loc
,
6470 Prefix
=> Duplicate_Subexpr
(Exp
),
6471 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6474 Make_Attribute_Reference
(Loc
,
6476 New_Occurrence_Of
(Designated_Type
(R_Type
), Loc
),
6477 Attribute_Name
=> Name_Tag
))),
6479 Reason
=> CE_Tag_Check_Failed
),
6480 Suppress
=> All_Checks
);
6483 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6484 -- ensure that the function result does not outlive an
6485 -- object designated by one of it discriminants.
6487 if Present
(Extra_Accessibility_Of_Result
(Scope_Id
))
6488 and then Has_Unconstrained_Access_Discriminants
(R_Type
)
6491 Discrim_Source
: Node_Id
;
6493 procedure Check_Against_Result_Level
(Level
: Node_Id
);
6494 -- Check the given accessibility level against the level
6495 -- determined by the point of call. (AI05-0234).
6497 --------------------------------
6498 -- Check_Against_Result_Level --
6499 --------------------------------
6501 procedure Check_Against_Result_Level
(Level
: Node_Id
) is
6504 Make_Raise_Program_Error
(Loc
,
6510 (Extra_Accessibility_Of_Result
(Scope_Id
), Loc
)),
6511 Reason
=> PE_Accessibility_Check_Failed
));
6512 end Check_Against_Result_Level
;
6515 Discrim_Source
:= Exp
;
6516 while Nkind
(Discrim_Source
) = N_Qualified_Expression
loop
6517 Discrim_Source
:= Expression
(Discrim_Source
);
6520 if Nkind
(Discrim_Source
) = N_Identifier
6521 and then Is_Return_Object
(Entity
(Discrim_Source
))
6523 Discrim_Source
:= Entity
(Discrim_Source
);
6525 if Is_Constrained
(Etype
(Discrim_Source
)) then
6526 Discrim_Source
:= Etype
(Discrim_Source
);
6528 Discrim_Source
:= Expression
(Parent
(Discrim_Source
));
6531 elsif Nkind
(Discrim_Source
) = N_Identifier
6532 and then Nkind_In
(Original_Node
(Discrim_Source
),
6533 N_Aggregate
, N_Extension_Aggregate
)
6535 Discrim_Source
:= Original_Node
(Discrim_Source
);
6537 elsif Nkind
(Discrim_Source
) = N_Explicit_Dereference
and then
6538 Nkind
(Original_Node
(Discrim_Source
)) = N_Function_Call
6540 Discrim_Source
:= Original_Node
(Discrim_Source
);
6543 while Nkind_In
(Discrim_Source
, N_Qualified_Expression
,
6545 N_Unchecked_Type_Conversion
)
6547 Discrim_Source
:= Expression
(Discrim_Source
);
6550 case Nkind
(Discrim_Source
) is
6551 when N_Defining_Identifier
=>
6553 pragma Assert
(Is_Composite_Type
(Discrim_Source
)
6554 and then Has_Discriminants
(Discrim_Source
)
6555 and then Is_Constrained
(Discrim_Source
));
6558 Discrim
: Entity_Id
:=
6559 First_Discriminant
(Base_Type
(R_Type
));
6560 Disc_Elmt
: Elmt_Id
:=
6561 First_Elmt
(Discriminant_Constraint
6565 if Ekind
(Etype
(Discrim
)) =
6566 E_Anonymous_Access_Type
6568 Check_Against_Result_Level
6569 (Dynamic_Accessibility_Level
(Node
(Disc_Elmt
)));
6572 Next_Elmt
(Disc_Elmt
);
6573 Next_Discriminant
(Discrim
);
6574 exit when not Present
(Discrim
);
6578 when N_Aggregate | N_Extension_Aggregate
=>
6580 -- Unimplemented: extension aggregate case where discrims
6581 -- come from ancestor part, not extension part.
6584 Discrim
: Entity_Id
:=
6585 First_Discriminant
(Base_Type
(R_Type
));
6587 Disc_Exp
: Node_Id
:= Empty
;
6589 Positionals_Exhausted
6590 : Boolean := not Present
(Expressions
6593 function Associated_Expr
6594 (Comp_Id
: Entity_Id
;
6595 Associations
: List_Id
) return Node_Id
;
6597 -- Given a component and a component associations list,
6598 -- locate the expression for that component; returns
6599 -- Empty if no such expression is found.
6601 ---------------------
6602 -- Associated_Expr --
6603 ---------------------
6605 function Associated_Expr
6606 (Comp_Id
: Entity_Id
;
6607 Associations
: List_Id
) return Node_Id
6613 -- Simple linear search seems ok here
6615 Assoc
:= First
(Associations
);
6616 while Present
(Assoc
) loop
6617 Choice
:= First
(Choices
(Assoc
));
6618 while Present
(Choice
) loop
6619 if (Nkind
(Choice
) = N_Identifier
6620 and then Chars
(Choice
) = Chars
(Comp_Id
))
6621 or else (Nkind
(Choice
) = N_Others_Choice
)
6623 return Expression
(Assoc
);
6633 end Associated_Expr
;
6635 -- Start of processing for Expand_Simple_Function_Return
6638 if not Positionals_Exhausted
then
6639 Disc_Exp
:= First
(Expressions
(Discrim_Source
));
6643 if Positionals_Exhausted
then
6647 Component_Associations
(Discrim_Source
));
6650 if Ekind
(Etype
(Discrim
)) =
6651 E_Anonymous_Access_Type
6653 Check_Against_Result_Level
6654 (Dynamic_Accessibility_Level
(Disc_Exp
));
6657 Next_Discriminant
(Discrim
);
6658 exit when not Present
(Discrim
);
6660 if not Positionals_Exhausted
then
6662 Positionals_Exhausted
:= not Present
(Disc_Exp
);
6667 when N_Function_Call
=>
6669 -- No check needed (check performed by callee)
6676 Level
: constant Node_Id
:=
6677 Make_Integer_Literal
(Loc
,
6678 Object_Access_Level
(Discrim_Source
));
6681 -- Unimplemented: check for name prefix that includes
6682 -- a dereference of an access value with a dynamic
6683 -- accessibility level (e.g., an access param or a
6684 -- saooaaat) and use dynamic level in that case. For
6686 -- return Access_Param.all(Some_Index).Some_Component;
6689 Set_Etype
(Level
, Standard_Natural
);
6690 Check_Against_Result_Level
(Level
);
6697 -- If we are returning an object that may not be bit-aligned, then copy
6698 -- the value into a temporary first. This copy may need to expand to a
6699 -- loop of component operations.
6701 if Is_Possibly_Unaligned_Slice
(Exp
)
6702 or else Is_Possibly_Unaligned_Object
(Exp
)
6705 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6706 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', ExpR
);
6709 Make_Object_Declaration
(Loc
,
6710 Defining_Identifier
=> Tnn
,
6711 Constant_Present
=> True,
6712 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
6713 Expression
=> ExpR
),
6714 Suppress
=> All_Checks
);
6715 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6719 -- Generate call to postcondition checks if they are present
6721 if Ekind
(Scope_Id
) = E_Function
6722 and then Has_Postconditions
(Scope_Id
)
6724 -- We are going to reference the returned value twice in this case,
6725 -- once in the call to _Postconditions, and once in the actual return
6726 -- statement, but we can't have side effects happening twice, and in
6727 -- any case for efficiency we don't want to do the computation twice.
6729 -- If the returned expression is an entity name, we don't need to
6730 -- worry since it is efficient and safe to reference it twice, that's
6731 -- also true for literals other than string literals, and for the
6732 -- case of X.all where X is an entity name.
6734 if Is_Entity_Name
(Exp
)
6735 or else Nkind_In
(Exp
, N_Character_Literal
,
6738 or else (Nkind
(Exp
) = N_Explicit_Dereference
6739 and then Is_Entity_Name
(Prefix
(Exp
)))
6743 -- Otherwise we are going to need a temporary to capture the value
6747 ExpR
: Node_Id
:= Relocate_Node
(Exp
);
6748 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', ExpR
);
6751 -- In the case of discriminated objects, we have created a
6752 -- constrained subtype above, and used the underlying type.
6753 -- This transformation is post-analysis and harmless, except
6754 -- that now the call to the post-condition will be analyzed and
6755 -- type kinds have to match.
6757 if Nkind
(ExpR
) = N_Unchecked_Type_Conversion
6759 Is_Private_Type
(R_Type
) /= Is_Private_Type
(Etype
(ExpR
))
6761 ExpR
:= Expression
(ExpR
);
6764 -- For a complex expression of an elementary type, capture
6765 -- value in the temporary and use it as the reference.
6767 if Is_Elementary_Type
(R_Type
) then
6769 Make_Object_Declaration
(Loc
,
6770 Defining_Identifier
=> Tnn
,
6771 Constant_Present
=> True,
6772 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
6773 Expression
=> ExpR
),
6774 Suppress
=> All_Checks
);
6776 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6778 -- If we have something we can rename, generate a renaming of
6779 -- the object and replace the expression with a reference
6781 elsif Is_Object_Reference
(Exp
) then
6783 Make_Object_Renaming_Declaration
(Loc
,
6784 Defining_Identifier
=> Tnn
,
6785 Subtype_Mark
=> New_Occurrence_Of
(R_Type
, Loc
),
6787 Suppress
=> All_Checks
);
6789 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6791 -- Otherwise we have something like a string literal or an
6792 -- aggregate. We could copy the value, but that would be
6793 -- inefficient. Instead we make a reference to the value and
6794 -- capture this reference with a renaming, the expression is
6795 -- then replaced by a dereference of this renaming.
6798 -- For now, copy the value, since the code below does not
6799 -- seem to work correctly ???
6802 Make_Object_Declaration
(Loc
,
6803 Defining_Identifier
=> Tnn
,
6804 Constant_Present
=> True,
6805 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
6806 Expression
=> Relocate_Node
(Exp
)),
6807 Suppress
=> All_Checks
);
6809 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6811 -- Insert_Action (Exp,
6812 -- Make_Object_Renaming_Declaration (Loc,
6813 -- Defining_Identifier => Tnn,
6814 -- Access_Definition =>
6815 -- Make_Access_Definition (Loc,
6816 -- All_Present => True,
6817 -- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
6819 -- Make_Reference (Loc,
6820 -- Prefix => Relocate_Node (Exp))),
6821 -- Suppress => All_Checks);
6824 -- Make_Explicit_Dereference (Loc,
6825 -- Prefix => New_Occurrence_Of (Tnn, Loc)));
6830 -- Generate call to _postconditions
6833 Make_Procedure_Call_Statement
(Loc
,
6834 Name
=> Make_Identifier
(Loc
, Name_uPostconditions
),
6835 Parameter_Associations
=> New_List
(Duplicate_Subexpr
(Exp
))));
6838 -- Ada 2005 (AI-251): If this return statement corresponds with an
6839 -- simple return statement associated with an extended return statement
6840 -- and the type of the returned object is an interface then generate an
6841 -- implicit conversion to force displacement of the "this" pointer.
6843 if Ada_Version
>= Ada_2005
6844 and then Comes_From_Extended_Return_Statement
(N
)
6845 and then Nkind
(Expression
(N
)) = N_Identifier
6846 and then Is_Interface
(Utyp
)
6847 and then Utyp
/= Underlying_Type
(Exptyp
)
6849 Rewrite
(Exp
, Convert_To
(Utyp
, Relocate_Node
(Exp
)));
6850 Analyze_And_Resolve
(Exp
);
6852 end Expand_Simple_Function_Return
;
6854 --------------------------------
6855 -- Expand_Subprogram_Contract --
6856 --------------------------------
6858 procedure Expand_Subprogram_Contract
6860 Spec_Id
: Entity_Id
;
6861 Body_Id
: Entity_Id
)
6863 procedure Add_Invariant_And_Predicate_Checks
6864 (Subp_Id
: Entity_Id
;
6865 Stmts
: in out List_Id
;
6866 Result
: out Node_Id
);
6867 -- Process the result of function Subp_Id (if applicable) and all its
6868 -- formals. Add invariant and predicate checks where applicable. The
6869 -- routine appends all the checks to list Stmts. If Subp_Id denotes a
6870 -- function, Result contains the entity of parameter _Result, to be
6871 -- used in the creation of procedure _Postconditions.
6873 procedure Append_Enabled_Item
(Item
: Node_Id
; List
: in out List_Id
);
6874 -- Append a node to a list. If there is no list, create a new one. When
6875 -- the item denotes a pragma, it is added to the list only when it is
6878 procedure Build_Postconditions_Procedure
6879 (Subp_Id
: Entity_Id
;
6881 Result
: Entity_Id
);
6882 -- Create the body of procedure _Postconditions which handles various
6883 -- assertion actions on exit from subprogram Subp_Id. Stmts is the list
6884 -- of statements to be checked on exit. Parameter Result is the entity
6885 -- of parameter _Result when Subp_Id denotes a function.
6887 function Build_Pragma_Check_Equivalent
6889 Subp_Id
: Entity_Id
:= Empty
;
6890 Inher_Id
: Entity_Id
:= Empty
) return Node_Id
;
6891 -- Transform a [refined] pre- or postcondition denoted by Prag into an
6892 -- equivalent pragma Check. When the pre- or postcondition is inherited,
6893 -- the routine corrects the references of all formals of Inher_Id to
6894 -- point to the formals of Subp_Id.
6896 procedure Collect_Body_Postconditions
(Stmts
: in out List_Id
);
6897 -- Process all postconditions found in the declarations of the body. The
6898 -- routine appends the pragma Check equivalents to list Stmts.
6900 procedure Collect_Spec_Postconditions
6901 (Subp_Id
: Entity_Id
;
6902 Stmts
: in out List_Id
);
6903 -- Process all [inherited] postconditions of subprogram spec Subp_Id.
6904 -- The routine appends the pragma Check equivalents to list Stmts.
6906 procedure Collect_Spec_Preconditions
(Subp_Id
: Entity_Id
);
6907 -- Process all [inherited] preconditions of subprogram spec Subp_Id. The
6908 -- routine prepends the pragma Check equivalents to the declarations of
6911 procedure Prepend_To_Declarations
(Item
: Node_Id
);
6912 -- Prepend a single item to the declarations of the subprogram body
6914 procedure Process_Contract_Cases
6915 (Subp_Id
: Entity_Id
;
6916 Stmts
: in out List_Id
);
6917 -- Process pragma Contract_Cases of subprogram spec Subp_Id. The routine
6918 -- appends the expanded code to list Stmts.
6920 ----------------------------------------
6921 -- Add_Invariant_And_Predicate_Checks --
6922 ----------------------------------------
6924 procedure Add_Invariant_And_Predicate_Checks
6925 (Subp_Id
: Entity_Id
;
6926 Stmts
: in out List_Id
;
6927 Result
: out Node_Id
)
6929 procedure Add_Invariant_Access_Checks
(Id
: Entity_Id
);
6930 -- Id denotes the return value of a function or a formal parameter.
6931 -- Add an invariant check if the type of Id is access to a type with
6932 -- invariants. The routine appends the generated code to Stmts.
6934 function Invariant_Checks_OK
(Typ
: Entity_Id
) return Boolean;
6935 -- Determine whether type Typ can benefit from invariant checks. To
6936 -- qualify, the type must have a non-null invariant procedure and
6937 -- subprogram Subp_Id must appear visible from the point of view of
6940 ---------------------------------
6941 -- Add_Invariant_Access_Checks --
6942 ---------------------------------
6944 procedure Add_Invariant_Access_Checks
(Id
: Entity_Id
) is
6945 Loc
: constant Source_Ptr
:= Sloc
(N
);
6952 if Is_Access_Type
(Typ
) and then not Is_Access_Constant
(Typ
) then
6953 Typ
:= Designated_Type
(Typ
);
6955 if Invariant_Checks_OK
(Typ
) then
6957 Make_Explicit_Dereference
(Loc
,
6958 Prefix
=> New_Occurrence_Of
(Id
, Loc
));
6959 Set_Etype
(Ref
, Typ
);
6962 -- if <Id> /= null then
6963 -- <invariant_call (<Ref>)>
6968 Make_If_Statement
(Loc
,
6971 Left_Opnd
=> New_Occurrence_Of
(Id
, Loc
),
6972 Right_Opnd
=> Make_Null
(Loc
)),
6973 Then_Statements
=> New_List
(
6974 Make_Invariant_Call
(Ref
))),
6978 end Add_Invariant_Access_Checks
;
6980 -------------------------
6981 -- Invariant_Checks_OK --
6982 -------------------------
6984 function Invariant_Checks_OK
(Typ
: Entity_Id
) return Boolean is
6985 function Has_Null_Body
(Proc_Id
: Entity_Id
) return Boolean;
6986 -- Determine whether the body of procedure Proc_Id contains a sole
6987 -- null statement, possibly followed by an optional return.
6989 function Has_Public_Visibility_Of_Subprogram
return Boolean;
6990 -- Determine whether type Typ has public visibility of subprogram
6997 function Has_Null_Body
(Proc_Id
: Entity_Id
) return Boolean is
6998 Body_Id
: Entity_Id
;
7005 Spec
:= Parent
(Proc_Id
);
7006 Decl
:= Parent
(Spec
);
7008 -- Retrieve the entity of the invariant procedure body
7010 if Nkind
(Spec
) = N_Procedure_Specification
7011 and then Nkind
(Decl
) = N_Subprogram_Declaration
7013 Body_Id
:= Corresponding_Body
(Decl
);
7015 -- The body acts as a spec
7021 -- The body will be generated later
7023 if No
(Body_Id
) then
7027 Spec
:= Parent
(Body_Id
);
7028 Decl
:= Parent
(Spec
);
7031 (Nkind
(Spec
) = N_Procedure_Specification
7032 and then Nkind
(Decl
) = N_Subprogram_Body
);
7034 Stmt1
:= First
(Statements
(Handled_Statement_Sequence
(Decl
)));
7036 -- Look for a null statement followed by an optional return
7039 if Nkind
(Stmt1
) = N_Null_Statement
then
7040 Stmt2
:= Next
(Stmt1
);
7042 if Present
(Stmt2
) then
7043 return Nkind
(Stmt2
) = N_Simple_Return_Statement
;
7052 -----------------------------------------
7053 -- Has_Public_Visibility_Of_Subprogram --
7054 -----------------------------------------
7056 function Has_Public_Visibility_Of_Subprogram
return Boolean is
7057 Subp_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp_Id
);
7060 -- An Initialization procedure must be considered visible even
7061 -- though it is internally generated.
7063 if Is_Init_Proc
(Defining_Entity
(Subp_Decl
)) then
7066 elsif Ekind
(Scope
(Typ
)) /= E_Package
then
7069 -- Internally generated code is never publicly visible except
7070 -- for a subprogram that is the implementation of an expression
7071 -- function. In that case the visibility is determined by the
7074 elsif not Comes_From_Source
(Subp_Decl
)
7076 (Nkind
(Original_Node
(Subp_Decl
)) /= N_Expression_Function
7078 Comes_From_Source
(Defining_Entity
(Subp_Decl
)))
7082 -- Determine whether the subprogram is declared in the visible
7083 -- declarations of the package containing the type.
7086 return List_Containing
(Subp_Decl
) =
7087 Visible_Declarations
7088 (Specification
(Unit_Declaration_Node
(Scope
(Typ
))));
7090 end Has_Public_Visibility_Of_Subprogram
;
7092 -- Start of processing for Invariant_Checks_OK
7096 Has_Invariants
(Typ
)
7097 and then Present
(Invariant_Procedure
(Typ
))
7098 and then not Has_Null_Body
(Invariant_Procedure
(Typ
))
7099 and then Has_Public_Visibility_Of_Subprogram
;
7100 end Invariant_Checks_OK
;
7104 Loc
: constant Source_Ptr
:= Sloc
(N
);
7105 -- Source location of subprogram contract
7110 -- Start of processing for Add_Invariant_And_Predicate_Checks
7115 -- Do not generate any checks if no code is being generated
7117 if not Expander_Active
then
7121 -- Process the result of a function
7123 if Ekind_In
(Subp_Id
, E_Function
, E_Generic_Function
) then
7124 Typ
:= Etype
(Subp_Id
);
7126 -- Generate _Result which is used in procedure _Postconditions to
7127 -- verify the return value.
7129 Result
:= Make_Defining_Identifier
(Loc
, Name_uResult
);
7130 Set_Etype
(Result
, Typ
);
7132 -- Add an invariant check when the return type has invariants and
7133 -- the related function is visible to the outside.
7135 if Invariant_Checks_OK
(Typ
) then
7138 Make_Invariant_Call
(New_Occurrence_Of
(Result
, Loc
)),
7142 -- Add an invariant check when the return type is an access to a
7143 -- type with invariants.
7145 Add_Invariant_Access_Checks
(Result
);
7148 -- Add invariant and predicates for all formals that qualify
7150 Formal
:= First_Formal
(Subp_Id
);
7151 while Present
(Formal
) loop
7152 Typ
:= Etype
(Formal
);
7154 if Ekind
(Formal
) /= E_In_Parameter
7155 or else Is_Access_Type
(Typ
)
7157 if Invariant_Checks_OK
(Typ
) then
7160 Make_Invariant_Call
(New_Occurrence_Of
(Formal
, Loc
)),
7164 Add_Invariant_Access_Checks
(Formal
);
7166 -- Note: we used to add predicate checks for OUT and IN OUT
7167 -- formals here, but that was misguided, since such checks are
7168 -- performed on the caller side, based on the predicate of the
7169 -- actual, rather than the predicate of the formal.
7173 Next_Formal
(Formal
);
7175 end Add_Invariant_And_Predicate_Checks
;
7177 -------------------------
7178 -- Append_Enabled_Item --
7179 -------------------------
7181 procedure Append_Enabled_Item
(Item
: Node_Id
; List
: in out List_Id
) is
7183 -- Do not chain ignored or disabled pragmas
7185 if Nkind
(Item
) = N_Pragma
7186 and then (Is_Ignored
(Item
) or else Is_Disabled
(Item
))
7190 -- Otherwise, add the item
7197 -- If the pragma is a conjunct in a composite postcondition, it
7198 -- has been processed in reverse order. In the postcondition body
7199 -- if must appear before the others.
7201 if Nkind
(Item
) = N_Pragma
7202 and then From_Aspect_Specification
(Item
)
7203 and then Split_PPC
(Item
)
7205 Prepend
(Item
, List
);
7207 Append
(Item
, List
);
7210 end Append_Enabled_Item
;
7212 ------------------------------------
7213 -- Build_Postconditions_Procedure --
7214 ------------------------------------
7216 procedure Build_Postconditions_Procedure
7217 (Subp_Id
: Entity_Id
;
7221 procedure Insert_Before_First_Source_Declaration
(Stmt
: Node_Id
);
7222 -- Insert node Stmt before the first source declaration of the
7223 -- related subprogram's body. If no such declaration exists, Stmt
7224 -- becomes the last declaration.
7226 --------------------------------------------
7227 -- Insert_Before_First_Source_Declaration --
7228 --------------------------------------------
7230 procedure Insert_Before_First_Source_Declaration
(Stmt
: Node_Id
) is
7231 Decls
: constant List_Id
:= Declarations
(N
);
7235 -- Inspect the declarations of the related subprogram body looking
7236 -- for the first source declaration.
7238 if Present
(Decls
) then
7239 Decl
:= First
(Decls
);
7240 while Present
(Decl
) loop
7241 if Comes_From_Source
(Decl
) then
7242 Insert_Before
(Decl
, Stmt
);
7249 -- If we get there, then the subprogram body lacks any source
7250 -- declarations. The body of _Postconditions now acts as the
7251 -- last declaration.
7253 Append
(Stmt
, Decls
);
7255 -- Ensure that the body has a declaration list
7258 Set_Declarations
(N
, New_List
(Stmt
));
7260 end Insert_Before_First_Source_Declaration
;
7264 Loc
: constant Source_Ptr
:= Sloc
(N
);
7265 Params
: List_Id
:= No_List
;
7266 Proc_Id
: Entity_Id
;
7268 -- Start of processing for Build_Postconditions_Procedure
7271 -- Do not create the routine if no code is being generated
7273 if not Expander_Active
then
7276 -- Nothing to do if there are no actions to check on exit
7278 elsif No
(Stmts
) then
7282 Proc_Id
:= Make_Defining_Identifier
(Loc
, Name_uPostconditions
);
7284 -- The related subprogram is a function, create the specification of
7285 -- parameter _Result.
7287 if Present
(Result
) then
7288 Params
:= New_List
(
7289 Make_Parameter_Specification
(Loc
,
7290 Defining_Identifier
=> Result
,
7292 New_Occurrence_Of
(Etype
(Result
), Loc
)));
7295 -- Insert _Postconditions before the first source declaration of the
7296 -- body. This ensures that the body will not cause any premature
7297 -- freezing as it may mention types:
7299 -- procedure Proc (Obj : Array_Typ) is
7300 -- procedure _postconditions is
7303 -- end _postconditions;
7305 -- subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
7308 -- In the example above, Obj is of type T but the incorrect placement
7309 -- of _Postconditions will cause a crash in gigi due to an out of
7310 -- order reference. The body of _Postconditions must be placed after
7311 -- the declaration of Temp to preserve correct visibility.
7313 -- Note that we set an explicit End_Label in order to override the
7314 -- sloc of the implicit RETURN statement, and prevent it from
7315 -- inheriting the sloc of one of the postconditions: this would cause
7316 -- confusing debug info to be produced, interfering with coverage
7319 Insert_Before_First_Source_Declaration
(
7320 Make_Subprogram_Body
(Loc
,
7322 Make_Procedure_Specification
(Loc
,
7323 Defining_Unit_Name
=> Proc_Id
,
7324 Parameter_Specifications
=> Params
),
7326 Declarations
=> Empty_List
,
7327 Handled_Statement_Sequence
=>
7328 Make_Handled_Sequence_Of_Statements
(Loc
,
7329 Statements
=> Stmts
,
7330 End_Label
=> Make_Identifier
(Loc
, Chars
(Proc_Id
)))));
7332 -- Set the attributes of the related subprogram to capture the
7333 -- generated procedure.
7335 if Ekind_In
(Subp_Id
, E_Generic_Procedure
, E_Procedure
) then
7336 Set_Postcondition_Proc
(Subp_Id
, Proc_Id
);
7339 Set_Has_Postconditions
(Subp_Id
);
7340 end Build_Postconditions_Procedure
;
7342 -----------------------------------
7343 -- Build_Pragma_Check_Equivalent --
7344 -----------------------------------
7346 function Build_Pragma_Check_Equivalent
7348 Subp_Id
: Entity_Id
:= Empty
;
7349 Inher_Id
: Entity_Id
:= Empty
) return Node_Id
7351 Loc
: constant Source_Ptr
:= Sloc
(Prag
);
7352 Prag_Nam
: constant Name_Id
:= Pragma_Name
(Prag
);
7353 Check_Prag
: Node_Id
;
7354 Formals_Map
: Elist_Id
;
7355 Inher_Formal
: Entity_Id
;
7358 Subp_Formal
: Entity_Id
;
7361 Formals_Map
:= No_Elist
;
7363 -- When the pre- or postcondition is inherited, map the formals of
7364 -- the inherited subprogram to those of the current subprogram.
7366 if Present
(Inher_Id
) then
7367 pragma Assert
(Present
(Subp_Id
));
7369 Formals_Map
:= New_Elmt_List
;
7371 -- Create a relation <inherited formal> => <subprogram formal>
7373 Inher_Formal
:= First_Formal
(Inher_Id
);
7374 Subp_Formal
:= First_Formal
(Subp_Id
);
7375 while Present
(Inher_Formal
) and then Present
(Subp_Formal
) loop
7376 Append_Elmt
(Inher_Formal
, Formals_Map
);
7377 Append_Elmt
(Subp_Formal
, Formals_Map
);
7379 Next_Formal
(Inher_Formal
);
7380 Next_Formal
(Subp_Formal
);
7384 -- Copy the original pragma while performing substitutions (if
7391 New_Scope
=> Current_Scope
);
7393 -- Mark the pragma as being internally generated and reset the
7396 Set_Comes_From_Source
(Check_Prag
, False);
7397 Set_Analyzed
(Check_Prag
, False);
7399 -- For a postcondition pragma within a generic, preserve the pragma
7400 -- for later expansion. This is also used when an error was detected,
7401 -- thus setting Expander_Active to False.
7403 if Prag_Nam
= Name_Postcondition
and then not Expander_Active
then
7407 if Present
(Corresponding_Aspect
(Prag
)) then
7408 Nam
:= Chars
(Identifier
(Corresponding_Aspect
(Prag
)));
7413 -- Convert the copy into pragma Check by correcting the name and
7414 -- adding a check_kind argument.
7416 Set_Pragma_Identifier
7417 (Check_Prag
, Make_Identifier
(Loc
, Name_Check
));
7419 Prepend_To
(Pragma_Argument_Associations
(Check_Prag
),
7420 Make_Pragma_Argument_Association
(Loc
,
7421 Expression
=> Make_Identifier
(Loc
, Nam
)));
7423 -- Update the error message when the pragma is inherited
7425 if Present
(Inher_Id
) then
7426 Msg_Arg
:= Last
(Pragma_Argument_Associations
(Check_Prag
));
7428 if Chars
(Msg_Arg
) = Name_Message
then
7429 String_To_Name_Buffer
(Strval
(Expression
(Msg_Arg
)));
7431 -- Insert "inherited" to improve the error message
7433 if Name_Buffer
(1 .. 8) = "failed p" then
7434 Insert_Str_In_Name_Buffer
("inherited ", 8);
7435 Set_Strval
(Expression
(Msg_Arg
), String_From_Name_Buffer
);
7441 end Build_Pragma_Check_Equivalent
;
7443 ---------------------------------
7444 -- Collect_Body_Postconditions --
7445 ---------------------------------
7447 procedure Collect_Body_Postconditions
(Stmts
: in out List_Id
) is
7448 procedure Collect_Body_Postconditions_Of_Kind
(Post_Nam
: Name_Id
);
7449 -- Process all postconditions of the kind denoted by Post_Nam
7451 -----------------------------------------
7452 -- Collect_Body_Postconditions_Of_Kind --
7453 -----------------------------------------
7455 procedure Collect_Body_Postconditions_Of_Kind
(Post_Nam
: Name_Id
) is
7456 procedure Collect_Body_Postconditions_In_Decls
7457 (First_Decl
: Node_Id
);
7458 -- Process all postconditions found in a declarative list starting
7459 -- with declaration First_Decl.
7461 ------------------------------------------
7462 -- Collect_Body_Postconditions_In_Decls --
7463 ------------------------------------------
7465 procedure Collect_Body_Postconditions_In_Decls
7466 (First_Decl
: Node_Id
)
7468 Check_Prag
: Node_Id
;
7472 -- Inspect the declarative list looking for a pragma that
7473 -- matches the desired name.
7476 while Present
(Decl
) loop
7478 -- Note that non-matching pragmas are skipped
7480 if Nkind
(Decl
) = N_Pragma
then
7481 if Pragma_Name
(Decl
) = Post_Nam
then
7482 if not Analyzed
(Decl
) then
7486 Check_Prag
:= Build_Pragma_Check_Equivalent
(Decl
);
7488 if Expander_Active
then
7490 (Item
=> Check_Prag
,
7493 -- If analyzing a generic unit, save pragma for later
7496 Prepend_To_Declarations
(Check_Prag
);
7500 -- Skip internally generated code
7502 elsif not Comes_From_Source
(Decl
) then
7505 -- Postcondition pragmas are usually grouped together. There
7506 -- is no need to inspect the whole declarative list.
7514 end Collect_Body_Postconditions_In_Decls
;
7518 Unit_Decl
: constant Node_Id
:= Parent
(N
);
7520 -- Start of processing for Collect_Body_Postconditions_Of_Kind
7523 pragma Assert
(Nam_In
(Post_Nam
, Name_Postcondition
,
7524 Name_Refined_Post
));
7526 -- Inspect the declarations of the subprogram body looking for a
7527 -- pragma that matches the desired name.
7529 Collect_Body_Postconditions_In_Decls
7530 (First_Decl
=> First
(Declarations
(N
)));
7532 -- The subprogram body being processed is actually the proper body
7533 -- of a stub with a corresponding spec. The subprogram stub may
7534 -- carry a postcondition pragma in which case it must be taken
7535 -- into account. The pragma appears after the stub.
7537 if Present
(Spec_Id
) and then Nkind
(Unit_Decl
) = N_Subunit
then
7538 Collect_Body_Postconditions_In_Decls
7539 (First_Decl
=> Next
(Corresponding_Stub
(Unit_Decl
)));
7541 end Collect_Body_Postconditions_Of_Kind
;
7543 -- Start of processing for Collect_Body_Postconditions
7546 Collect_Body_Postconditions_Of_Kind
(Name_Refined_Post
);
7547 Collect_Body_Postconditions_Of_Kind
(Name_Postcondition
);
7548 end Collect_Body_Postconditions
;
7550 ---------------------------------
7551 -- Collect_Spec_Postconditions --
7552 ---------------------------------
7554 procedure Collect_Spec_Postconditions
7555 (Subp_Id
: Entity_Id
;
7556 Stmts
: in out List_Id
)
7558 Inher_Subps
: constant Subprogram_List
:=
7559 Inherited_Subprograms
(Subp_Id
);
7560 Check_Prag
: Node_Id
;
7562 Inher_Subp_Id
: Entity_Id
;
7565 -- Process the contract of the spec
7567 Prag
:= Pre_Post_Conditions
(Contract
(Subp_Id
));
7568 while Present
(Prag
) loop
7569 if Pragma_Name
(Prag
) = Name_Postcondition
then
7570 Check_Prag
:= Build_Pragma_Check_Equivalent
(Prag
);
7572 if Expander_Active
then
7574 (Item
=> Check_Prag
,
7577 -- When analyzing a generic unit, save the pragma for later
7580 Prepend_To_Declarations
(Check_Prag
);
7584 Prag
:= Next_Pragma
(Prag
);
7587 -- Process the contracts of all inherited subprograms, looking for
7588 -- class-wide postconditions.
7590 for Index
in Inher_Subps
'Range loop
7591 Inher_Subp_Id
:= Inher_Subps
(Index
);
7593 Prag
:= Pre_Post_Conditions
(Contract
(Inher_Subp_Id
));
7594 while Present
(Prag
) loop
7595 if Pragma_Name
(Prag
) = Name_Postcondition
7596 and then Class_Present
(Prag
)
7599 Build_Pragma_Check_Equivalent
7602 Inher_Id
=> Inher_Subp_Id
);
7604 if Expander_Active
then
7606 (Item
=> Check_Prag
,
7609 -- When analyzing a generic unit, save the pragma for later
7612 Prepend_To_Declarations
(Check_Prag
);
7616 Prag
:= Next_Pragma
(Prag
);
7619 end Collect_Spec_Postconditions
;
7621 --------------------------------
7622 -- Collect_Spec_Preconditions --
7623 --------------------------------
7625 procedure Collect_Spec_Preconditions
(Subp_Id
: Entity_Id
) is
7626 Class_Pre
: Node_Id
:= Empty
;
7627 -- The sole class-wide precondition pragma that applies to the
7630 procedure Add_Or_Save_Precondition
(Prag
: Node_Id
);
7631 -- Save a class-wide precondition or add a regulat precondition to
7632 -- the declarative list of the body.
7634 procedure Merge_Preconditions
(From
: Node_Id
; Into
: Node_Id
);
7635 -- Merge two class-wide preconditions by "or else"-ing them. The
7636 -- changes are accumulated in parameter Into. Update the error
7639 ------------------------------
7640 -- Add_Or_Save_Precondition --
7641 ------------------------------
7643 procedure Add_Or_Save_Precondition
(Prag
: Node_Id
) is
7644 Check_Prag
: Node_Id
;
7647 Check_Prag
:= Build_Pragma_Check_Equivalent
(Prag
);
7649 -- Save the sole class-wide precondition (if any) for the next
7650 -- step where it will be merged with inherited preconditions.
7652 if Class_Present
(Prag
) then
7653 pragma Assert
(No
(Class_Pre
));
7654 Class_Pre
:= Check_Prag
;
7656 -- Accumulate the corresponding Check pragmas to the top of the
7657 -- declarations. Prepending the items ensures that they will be
7658 -- evaluated in their original order.
7661 Prepend_To_Declarations
(Check_Prag
);
7663 end Add_Or_Save_Precondition
;
7665 -------------------------
7666 -- Merge_Preconditions --
7667 -------------------------
7669 procedure Merge_Preconditions
(From
: Node_Id
; Into
: Node_Id
) is
7670 function Expression_Arg
(Prag
: Node_Id
) return Node_Id
;
7671 -- Return the boolean expression argument of a precondition while
7672 -- updating its parenteses count for the subsequent merge.
7674 function Message_Arg
(Prag
: Node_Id
) return Node_Id
;
7675 -- Return the message argument of a precondition
7677 --------------------
7678 -- Expression_Arg --
7679 --------------------
7681 function Expression_Arg
(Prag
: Node_Id
) return Node_Id
is
7682 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
7683 Arg
: constant Node_Id
:= Get_Pragma_Arg
(Next
(First
(Args
)));
7686 if Paren_Count
(Arg
) = 0 then
7687 Set_Paren_Count
(Arg
, 1);
7697 function Message_Arg
(Prag
: Node_Id
) return Node_Id
is
7698 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
7700 return Get_Pragma_Arg
(Last
(Args
));
7705 From_Expr
: constant Node_Id
:= Expression_Arg
(From
);
7706 From_Msg
: constant Node_Id
:= Message_Arg
(From
);
7707 Into_Expr
: constant Node_Id
:= Expression_Arg
(Into
);
7708 Into_Msg
: constant Node_Id
:= Message_Arg
(Into
);
7709 Loc
: constant Source_Ptr
:= Sloc
(Into
);
7711 -- Start of processing for Merge_Preconditions
7714 -- Merge the two preconditions by "or else"-ing them
7718 Right_Opnd
=> Relocate_Node
(Into_Expr
),
7719 Left_Opnd
=> From_Expr
));
7721 -- Merge the two error messages to produce a single message of the
7724 -- failed precondition from ...
7725 -- also failed inherited precondition from ...
7727 if not Exception_Locations_Suppressed
then
7728 Start_String
(Strval
(Into_Msg
));
7729 Store_String_Char
(ASCII
.LF
);
7730 Store_String_Chars
(" also ");
7731 Store_String_Chars
(Strval
(From_Msg
));
7733 Set_Strval
(Into_Msg
, End_String
);
7735 end Merge_Preconditions
;
7739 Inher_Subps
: constant Subprogram_List
:=
7740 Inherited_Subprograms
(Subp_Id
);
7741 Subp_Decl
: constant Node_Id
:= Parent
(Parent
(Subp_Id
));
7742 Check_Prag
: Node_Id
;
7744 Inher_Subp_Id
: Entity_Id
;
7747 -- Start of processing for Collect_Spec_Preconditions
7750 -- Process the contract of the spec
7752 Prag
:= Pre_Post_Conditions
(Contract
(Subp_Id
));
7753 while Present
(Prag
) loop
7754 if Pragma_Name
(Prag
) = Name_Precondition
then
7755 Add_Or_Save_Precondition
(Prag
);
7758 Prag
:= Next_Pragma
(Prag
);
7761 -- The subprogram declaration being processed is actually a body
7762 -- stub. The stub may carry a precondition pragma in which case it
7763 -- must be taken into account. The pragma appears after the stub.
7765 if Nkind
(Subp_Decl
) = N_Subprogram_Body_Stub
then
7767 -- Inspect the declarations following the body stub
7769 Decl
:= Next
(Subp_Decl
);
7770 while Present
(Decl
) loop
7772 -- Note that non-matching pragmas are skipped
7774 if Nkind
(Decl
) = N_Pragma
then
7775 if Pragma_Name
(Decl
) = Name_Precondition
then
7776 if not Analyzed
(Decl
) then
7780 Add_Or_Save_Precondition
(Decl
);
7783 -- Skip internally generated code
7785 elsif not Comes_From_Source
(Decl
) then
7788 -- Preconditions are usually grouped together. There is no need
7789 -- to inspect the whole declarative list.
7799 -- Process the contracts of all inherited subprograms, looking for
7800 -- class-wide preconditions.
7802 for Index
in Inher_Subps
'Range loop
7803 Inher_Subp_Id
:= Inher_Subps
(Index
);
7805 Prag
:= Pre_Post_Conditions
(Contract
(Inher_Subp_Id
));
7806 while Present
(Prag
) loop
7807 if Pragma_Name
(Prag
) = Name_Precondition
7808 and then Class_Present
(Prag
)
7811 Build_Pragma_Check_Equivalent
7814 Inher_Id
=> Inher_Subp_Id
);
7816 -- The spec or an inherited subprogram already yielded a
7817 -- class-wide precondition. Merge the existing precondition
7818 -- with the current one using "or else".
7820 if Present
(Class_Pre
) then
7821 Merge_Preconditions
(Check_Prag
, Class_Pre
);
7823 Class_Pre
:= Check_Prag
;
7827 Prag
:= Next_Pragma
(Prag
);
7831 -- Add the merged class-wide preconditions (if any)
7833 if Present
(Class_Pre
) then
7834 Prepend_To_Declarations
(Class_Pre
);
7836 end Collect_Spec_Preconditions
;
7838 -----------------------------
7839 -- Prepend_To_Declarations --
7840 -----------------------------
7842 procedure Prepend_To_Declarations
(Item
: Node_Id
) is
7843 Decls
: List_Id
:= Declarations
(N
);
7846 -- Ensure that the body has a declarative list
7850 Set_Declarations
(N
, Decls
);
7853 Prepend_To
(Decls
, Item
);
7854 end Prepend_To_Declarations
;
7856 ----------------------------
7857 -- Process_Contract_Cases --
7858 ----------------------------
7860 procedure Process_Contract_Cases
7861 (Subp_Id
: Entity_Id
;
7862 Stmts
: in out List_Id
)
7867 -- Do not build the Contract_Cases circuitry if no code is being
7870 if not Expander_Active
then
7874 Prag
:= Contract_Test_Cases
(Contract
(Subp_Id
));
7875 while Present
(Prag
) loop
7876 if Pragma_Name
(Prag
) = Name_Contract_Cases
then
7877 Expand_Contract_Cases
7880 Decls
=> Declarations
(N
),
7884 Prag
:= Next_Pragma
(Prag
);
7886 end Process_Contract_Cases
;
7890 Post_Stmts
: List_Id
:= No_List
;
7892 Subp_Id
: Entity_Id
;
7894 -- Start of processing for Expand_Subprogram_Contract
7897 if Present
(Spec_Id
) then
7903 -- Do not process a predicate function as its body will end up with a
7904 -- recursive call to itself and blow up the stack.
7906 if Ekind
(Subp_Id
) = E_Function
7907 and then Is_Predicate_Function
(Subp_Id
)
7911 -- Do not process TSS subprograms
7913 elsif Get_TSS_Name
(Subp_Id
) /= TSS_Null
then
7917 -- The expansion of a subprogram contract involves the relocation of
7918 -- various contract assertions to the declarations of the body in a
7919 -- particular order. The order is as follows:
7921 -- function Example (...) return ... is
7922 -- procedure _Postconditions (...) is
7924 -- <refined postconditions from body>
7925 -- <postconditions from body>
7926 -- <postconditions from spec>
7927 -- <inherited postconditions>
7928 -- <contract case consequences>
7929 -- <invariant check of function result (if applicable)>
7930 -- <invariant and predicate checks of parameters>
7931 -- end _Postconditions;
7933 -- <inherited preconditions>
7934 -- <preconditions from spec>
7935 -- <preconditions from body>
7936 -- <refined preconditions from body>
7937 -- <contract case conditions>
7939 -- <source declarations>
7941 -- <source statements>
7943 -- _Preconditions (Result);
7947 -- Routine _Postconditions holds all contract assertions that must be
7948 -- verified on exit from the related routine.
7950 -- Collect all [inherited] preconditions from the spec, transform them
7951 -- into Check pragmas and add them to the declarations of the body in
7952 -- the order outlined above.
7954 if Present
(Spec_Id
) then
7955 Collect_Spec_Preconditions
(Spec_Id
);
7958 -- Transform all [refined] postconditions of the body into Check
7959 -- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
7961 Collect_Body_Postconditions
(Post_Stmts
);
7963 -- Transform all [inherited] postconditions from the spec into Check
7964 -- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
7966 if Present
(Spec_Id
) then
7967 Collect_Spec_Postconditions
(Spec_Id
, Post_Stmts
);
7969 -- Transform pragma Contract_Cases from the spec into its circuitry
7971 Process_Contract_Cases
(Spec_Id
, Post_Stmts
);
7974 -- Apply invariant and predicate checks on the result of a function (if
7975 -- applicable) and all formals. The resulting checks are accumulated in
7978 Add_Invariant_And_Predicate_Checks
(Subp_Id
, Post_Stmts
, Result
);
7980 -- Construct procedure _Postconditions
7982 Build_Postconditions_Procedure
(Subp_Id
, Post_Stmts
, Result
);
7983 end Expand_Subprogram_Contract
;
7985 --------------------------------
7986 -- Is_Build_In_Place_Function --
7987 --------------------------------
7989 function Is_Build_In_Place_Function
(E
: Entity_Id
) return Boolean is
7991 -- This function is called from Expand_Subtype_From_Expr during
7992 -- semantic analysis, even when expansion is off. In those cases
7993 -- the build_in_place expansion will not take place.
7995 if not Expander_Active
then
7999 -- For now we test whether E denotes a function or access-to-function
8000 -- type whose result subtype is inherently limited. Later this test
8001 -- may be revised to allow composite nonlimited types. Functions with
8002 -- a foreign convention or whose result type has a foreign convention
8005 if Ekind_In
(E
, E_Function
, E_Generic_Function
)
8006 or else (Ekind
(E
) = E_Subprogram_Type
8007 and then Etype
(E
) /= Standard_Void_Type
)
8009 -- Note: If the function has a foreign convention, it cannot build
8010 -- its result in place, so you're on your own. On the other hand,
8011 -- if only the return type has a foreign convention, its layout is
8012 -- intended to be compatible with the other language, but the build-
8013 -- in place machinery can ensure that the object is not copied.
8015 if Has_Foreign_Convention
(E
) then
8018 -- In Ada 2005 all functions with an inherently limited return type
8019 -- must be handled using a build-in-place profile, including the case
8020 -- of a function with a limited interface result, where the function
8021 -- may return objects of nonlimited descendants.
8024 return Is_Limited_View
(Etype
(E
))
8025 and then Ada_Version
>= Ada_2005
8026 and then not Debug_Flag_Dot_L
;
8032 end Is_Build_In_Place_Function
;
8034 -------------------------------------
8035 -- Is_Build_In_Place_Function_Call --
8036 -------------------------------------
8038 function Is_Build_In_Place_Function_Call
(N
: Node_Id
) return Boolean is
8039 Exp_Node
: Node_Id
:= N
;
8040 Function_Id
: Entity_Id
;
8043 -- Return False if the expander is currently inactive, since awareness
8044 -- of build-in-place treatment is only relevant during expansion. Note
8045 -- that Is_Build_In_Place_Function, which is called as part of this
8046 -- function, is also conditioned this way, but we need to check here as
8047 -- well to avoid blowing up on processing protected calls when expansion
8048 -- is disabled (such as with -gnatc) since those would trip over the
8049 -- raise of Program_Error below.
8051 -- In SPARK mode, build-in-place calls are not expanded, so that we
8052 -- may end up with a call that is neither resolved to an entity, nor
8053 -- an indirect call.
8055 if not Expander_Active
then
8059 -- Step past qualification or unchecked conversion (the latter can occur
8060 -- in cases of calls to 'Input).
8062 if Nkind_In
(Exp_Node
, N_Qualified_Expression
,
8063 N_Unchecked_Type_Conversion
)
8065 Exp_Node
:= Expression
(N
);
8068 if Nkind
(Exp_Node
) /= N_Function_Call
then
8072 if Is_Entity_Name
(Name
(Exp_Node
)) then
8073 Function_Id
:= Entity
(Name
(Exp_Node
));
8075 -- In the case of an explicitly dereferenced call, use the subprogram
8076 -- type generated for the dereference.
8078 elsif Nkind
(Name
(Exp_Node
)) = N_Explicit_Dereference
then
8079 Function_Id
:= Etype
(Name
(Exp_Node
));
8081 -- This may be a call to a protected function.
8083 elsif Nkind
(Name
(Exp_Node
)) = N_Selected_Component
then
8084 Function_Id
:= Etype
(Entity
(Selector_Name
(Name
(Exp_Node
))));
8087 raise Program_Error
;
8090 return Is_Build_In_Place_Function
(Function_Id
);
8092 end Is_Build_In_Place_Function_Call
;
8094 -----------------------
8095 -- Freeze_Subprogram --
8096 -----------------------
8098 procedure Freeze_Subprogram
(N
: Node_Id
) is
8099 Loc
: constant Source_Ptr
:= Sloc
(N
);
8101 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
);
8102 -- (Ada 2005): Register a predefined primitive in all the secondary
8103 -- dispatch tables of its primitive type.
8105 ----------------------------------
8106 -- Register_Predefined_DT_Entry --
8107 ----------------------------------
8109 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
) is
8110 Iface_DT_Ptr
: Elmt_Id
;
8111 Tagged_Typ
: Entity_Id
;
8112 Thunk_Id
: Entity_Id
;
8113 Thunk_Code
: Node_Id
;
8116 Tagged_Typ
:= Find_Dispatching_Type
(Prim
);
8118 if No
(Access_Disp_Table
(Tagged_Typ
))
8119 or else not Has_Interfaces
(Tagged_Typ
)
8120 or else not RTE_Available
(RE_Interface_Tag
)
8121 or else Restriction_Active
(No_Dispatching_Calls
)
8126 -- Skip the first two access-to-dispatch-table pointers since they
8127 -- leads to the primary dispatch table (predefined DT and user
8128 -- defined DT). We are only concerned with the secondary dispatch
8129 -- table pointers. Note that the access-to- dispatch-table pointer
8130 -- corresponds to the first implemented interface retrieved below.
8133 Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(Tagged_Typ
))));
8135 while Present
(Iface_DT_Ptr
)
8136 and then Ekind
(Node
(Iface_DT_Ptr
)) = E_Constant
8138 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
8139 Expand_Interface_Thunk
(Prim
, Thunk_Id
, Thunk_Code
);
8141 if Present
(Thunk_Code
) then
8142 Insert_Actions_After
(N
, New_List
(
8145 Build_Set_Predefined_Prim_Op_Address
(Loc
,
8147 New_Occurrence_Of
(Node
(Next_Elmt
(Iface_DT_Ptr
)), Loc
),
8148 Position
=> DT_Position
(Prim
),
8150 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
8151 Make_Attribute_Reference
(Loc
,
8152 Prefix
=> New_Occurrence_Of
(Thunk_Id
, Loc
),
8153 Attribute_Name
=> Name_Unrestricted_Access
))),
8155 Build_Set_Predefined_Prim_Op_Address
(Loc
,
8158 (Node
(Next_Elmt
(Next_Elmt
(Next_Elmt
(Iface_DT_Ptr
)))),
8160 Position
=> DT_Position
(Prim
),
8162 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
8163 Make_Attribute_Reference
(Loc
,
8164 Prefix
=> New_Occurrence_Of
(Prim
, Loc
),
8165 Attribute_Name
=> Name_Unrestricted_Access
)))));
8168 -- Skip the tag of the predefined primitives dispatch table
8170 Next_Elmt
(Iface_DT_Ptr
);
8171 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
8173 -- Skip tag of the no-thunks dispatch table
8175 Next_Elmt
(Iface_DT_Ptr
);
8176 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
8178 -- Skip tag of predefined primitives no-thunks dispatch table
8180 Next_Elmt
(Iface_DT_Ptr
);
8181 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
8183 Next_Elmt
(Iface_DT_Ptr
);
8185 end Register_Predefined_DT_Entry
;
8189 Subp
: constant Entity_Id
:= Entity
(N
);
8191 -- Start of processing for Freeze_Subprogram
8194 -- We suppress the initialization of the dispatch table entry when
8195 -- VM_Target because the dispatching mechanism is handled internally
8198 if Is_Dispatching_Operation
(Subp
)
8199 and then not Is_Abstract_Subprogram
(Subp
)
8200 and then Present
(DTC_Entity
(Subp
))
8201 and then Present
(Scope
(DTC_Entity
(Subp
)))
8202 and then Tagged_Type_Expansion
8203 and then not Restriction_Active
(No_Dispatching_Calls
)
8204 and then RTE_Available
(RE_Tag
)
8207 Typ
: constant Entity_Id
:= Scope
(DTC_Entity
(Subp
));
8210 -- Handle private overridden primitives
8212 if not Is_CPP_Class
(Typ
) then
8213 Check_Overriding_Operation
(Subp
);
8216 -- We assume that imported CPP primitives correspond with objects
8217 -- whose constructor is in the CPP side; therefore we don't need
8218 -- to generate code to register them in the dispatch table.
8220 if Is_CPP_Class
(Typ
) then
8223 -- Handle CPP primitives found in derivations of CPP_Class types.
8224 -- These primitives must have been inherited from some parent, and
8225 -- there is no need to register them in the dispatch table because
8226 -- Build_Inherit_Prims takes care of initializing these slots.
8228 elsif Is_Imported
(Subp
)
8229 and then (Convention
(Subp
) = Convention_CPP
8230 or else Convention
(Subp
) = Convention_C
)
8234 -- Generate code to register the primitive in non statically
8235 -- allocated dispatch tables
8237 elsif not Building_Static_DT
(Scope
(DTC_Entity
(Subp
))) then
8239 -- When a primitive is frozen, enter its name in its dispatch
8242 if not Is_Interface
(Typ
)
8243 or else Present
(Interface_Alias
(Subp
))
8245 if Is_Predefined_Dispatching_Operation
(Subp
) then
8246 Register_Predefined_DT_Entry
(Subp
);
8249 Insert_Actions_After
(N
,
8250 Register_Primitive
(Loc
, Prim
=> Subp
));
8256 -- Mark functions that return by reference. Note that it cannot be part
8257 -- of the normal semantic analysis of the spec since the underlying
8258 -- returned type may not be known yet (for private types).
8261 Typ
: constant Entity_Id
:= Etype
(Subp
);
8262 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
8264 if Is_Limited_View
(Typ
) then
8265 Set_Returns_By_Ref
(Subp
);
8266 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
8267 Set_Returns_By_Ref
(Subp
);
8271 -- Wnen freezing a null procedure, analyze its delayed aspects now
8272 -- because we may not have reached the end of the declarative list when
8273 -- delayed aspects are normally analyzed. This ensures that dispatching
8274 -- calls are properly rewritten when the generated _Postcondition
8275 -- procedure is analyzed in the null procedure body.
8277 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
8278 and then Null_Present
(Parent
(Subp
))
8280 Analyze_Subprogram_Contract
(Subp
);
8282 end Freeze_Subprogram
;
8284 -----------------------
8285 -- Is_Null_Procedure --
8286 -----------------------
8288 function Is_Null_Procedure
(Subp
: Entity_Id
) return Boolean is
8289 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
8292 if Ekind
(Subp
) /= E_Procedure
then
8295 -- Check if this is a declared null procedure
8297 elsif Nkind
(Decl
) = N_Subprogram_Declaration
then
8298 if not Null_Present
(Specification
(Decl
)) then
8301 elsif No
(Body_To_Inline
(Decl
)) then
8304 -- Check if the body contains only a null statement, followed by
8305 -- the return statement added during expansion.
8309 Orig_Bod
: constant Node_Id
:= Body_To_Inline
(Decl
);
8315 if Nkind
(Orig_Bod
) /= N_Subprogram_Body
then
8318 -- We must skip SCIL nodes because they are currently
8319 -- implemented as special N_Null_Statement nodes.
8323 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
8324 Stat2
:= Next_Non_SCIL_Node
(Stat
);
8327 Is_Empty_List
(Declarations
(Orig_Bod
))
8328 and then Nkind
(Stat
) = N_Null_Statement
8332 (Nkind
(Stat2
) = N_Simple_Return_Statement
8333 and then No
(Next
(Stat2
))));
8341 end Is_Null_Procedure
;
8343 -------------------------------------------
8344 -- Make_Build_In_Place_Call_In_Allocator --
8345 -------------------------------------------
8347 procedure Make_Build_In_Place_Call_In_Allocator
8348 (Allocator
: Node_Id
;
8349 Function_Call
: Node_Id
)
8351 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
8353 Func_Call
: Node_Id
:= Function_Call
;
8354 Ref_Func_Call
: Node_Id
;
8355 Function_Id
: Entity_Id
;
8356 Result_Subt
: Entity_Id
;
8357 New_Allocator
: Node_Id
;
8358 Return_Obj_Access
: Entity_Id
; -- temp for function result
8359 Temp_Init
: Node_Id
; -- initial value of Return_Obj_Access
8360 Alloc_Form
: BIP_Allocation_Form
;
8361 Pool
: Node_Id
; -- nonnull if Alloc_Form = User_Storage_Pool
8362 Return_Obj_Actual
: Node_Id
; -- the temp.all, in caller-allocates case
8363 Chain
: Entity_Id
; -- activation chain, in case of tasks
8366 -- Step past qualification or unchecked conversion (the latter can occur
8367 -- in cases of calls to 'Input).
8369 if Nkind_In
(Func_Call
,
8370 N_Qualified_Expression
,
8371 N_Unchecked_Type_Conversion
)
8373 Func_Call
:= Expression
(Func_Call
);
8376 -- If the call has already been processed to add build-in-place actuals
8377 -- then return. This should not normally occur in an allocator context,
8378 -- but we add the protection as a defensive measure.
8380 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8384 -- Mark the call as processed as a build-in-place call
8386 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8388 Loc
:= Sloc
(Function_Call
);
8390 if Is_Entity_Name
(Name
(Func_Call
)) then
8391 Function_Id
:= Entity
(Name
(Func_Call
));
8393 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8394 Function_Id
:= Etype
(Name
(Func_Call
));
8397 raise Program_Error
;
8400 Result_Subt
:= Available_View
(Etype
(Function_Id
));
8402 -- Create a temp for the function result. In the caller-allocates case,
8403 -- this will be initialized to the result of a new uninitialized
8404 -- allocator. Note: we do not use Allocator as the Related_Node of
8405 -- Return_Obj_Access in call to Make_Temporary below as this would
8406 -- create a sort of infinite "recursion".
8408 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
8409 Set_Etype
(Return_Obj_Access
, Acc_Type
);
8411 -- When the result subtype is constrained, the return object is
8412 -- allocated on the caller side, and access to it is passed to the
8415 -- Here and in related routines, we must examine the full view of the
8416 -- type, because the view at the point of call may differ from that
8417 -- that in the function body, and the expansion mechanism depends on
8418 -- the characteristics of the full view.
8420 if Is_Constrained
(Underlying_Type
(Result_Subt
)) then
8422 -- Replace the initialized allocator of form "new T'(Func (...))"
8423 -- with an uninitialized allocator of form "new T", where T is the
8424 -- result subtype of the called function. The call to the function
8425 -- is handled separately further below.
8428 Make_Allocator
(Loc
,
8429 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8430 Set_No_Initialization
(New_Allocator
);
8432 -- Copy attributes to new allocator. Note that the new allocator
8433 -- logically comes from source if the original one did, so copy the
8434 -- relevant flag. This ensures proper treatment of the restriction
8435 -- No_Implicit_Heap_Allocations in this case.
8437 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
8438 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
8439 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
8441 Rewrite
(Allocator
, New_Allocator
);
8443 -- Initial value of the temp is the result of the uninitialized
8446 Temp_Init
:= Relocate_Node
(Allocator
);
8448 -- Indicate that caller allocates, and pass in the return object
8450 Alloc_Form
:= Caller_Allocation
;
8451 Pool
:= Make_Null
(No_Location
);
8452 Return_Obj_Actual
:=
8453 Make_Unchecked_Type_Conversion
(Loc
,
8454 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8456 Make_Explicit_Dereference
(Loc
,
8457 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)));
8459 -- When the result subtype is unconstrained, the function itself must
8460 -- perform the allocation of the return object, so we pass parameters
8466 -- Case of a user-defined storage pool. Pass an allocation parameter
8467 -- indicating that the function should allocate its result in the
8468 -- pool, and pass the pool. Use 'Unrestricted_Access because the
8469 -- pool may not be aliased.
8471 if VM_Target
= No_VM
8472 and then Present
(Associated_Storage_Pool
(Acc_Type
))
8474 Alloc_Form
:= User_Storage_Pool
;
8476 Make_Attribute_Reference
(Loc
,
8479 (Associated_Storage_Pool
(Acc_Type
), Loc
),
8480 Attribute_Name
=> Name_Unrestricted_Access
);
8482 -- No user-defined pool; pass an allocation parameter indicating that
8483 -- the function should allocate its result on the heap.
8486 Alloc_Form
:= Global_Heap
;
8487 Pool
:= Make_Null
(No_Location
);
8490 -- The caller does not provide the return object in this case, so we
8491 -- have to pass null for the object access actual.
8493 Return_Obj_Actual
:= Empty
;
8496 -- Declare the temp object
8498 Insert_Action
(Allocator
,
8499 Make_Object_Declaration
(Loc
,
8500 Defining_Identifier
=> Return_Obj_Access
,
8501 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
8502 Expression
=> Temp_Init
));
8504 Ref_Func_Call
:= Make_Reference
(Loc
, Func_Call
);
8506 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8507 -- then generate an implicit conversion to force displacement of the
8510 if Is_Interface
(Designated_Type
(Acc_Type
)) then
8513 OK_Convert_To
(Acc_Type
, Ref_Func_Call
));
8517 Assign
: constant Node_Id
:=
8518 Make_Assignment_Statement
(Loc
,
8519 Name
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
),
8520 Expression
=> Ref_Func_Call
);
8521 -- Assign the result of the function call into the temp. In the
8522 -- caller-allocates case, this is overwriting the temp with its
8523 -- initial value, which has no effect. In the callee-allocates case,
8524 -- this is setting the temp to point to the object allocated by the
8528 -- Actions to be inserted. If there are no tasks, this is just the
8529 -- assignment statement. If the allocated object has tasks, we need
8530 -- to wrap the assignment in a block that activates them. The
8531 -- activation chain of that block must be passed to the function,
8532 -- rather than some outer chain.
8534 if Has_Task
(Result_Subt
) then
8535 Actions
:= New_List
;
8536 Build_Task_Allocate_Block_With_Init_Stmts
8537 (Actions
, Allocator
, Init_Stmts
=> New_List
(Assign
));
8538 Chain
:= Activation_Chain_Entity
(Last
(Actions
));
8540 Actions
:= New_List
(Assign
);
8544 Insert_Actions
(Allocator
, Actions
);
8547 -- When the function has a controlling result, an allocation-form
8548 -- parameter must be passed indicating that the caller is allocating
8549 -- the result object. This is needed because such a function can be
8550 -- called as a dispatching operation and must be treated similarly
8551 -- to functions with unconstrained result subtypes.
8553 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8554 (Func_Call
, Function_Id
, Alloc_Form
, Pool_Actual
=> Pool
);
8556 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8557 (Func_Call
, Function_Id
, Acc_Type
);
8559 Add_Task_Actuals_To_Build_In_Place_Call
8560 (Func_Call
, Function_Id
, Master_Actual
=> Master_Id
(Acc_Type
),
8563 -- Add an implicit actual to the function call that provides access
8564 -- to the allocated object. An unchecked conversion to the (specific)
8565 -- result subtype of the function is inserted to handle cases where
8566 -- the access type of the allocator has a class-wide designated type.
8568 Add_Access_Actual_To_Build_In_Place_Call
8569 (Func_Call
, Function_Id
, Return_Obj_Actual
);
8571 -- If the build-in-place function call returns a controlled object,
8572 -- the finalization master will require a reference to routine
8573 -- Finalize_Address of the designated type. Setting this attribute
8574 -- is done in the same manner to expansion of allocators.
8576 if Needs_Finalization
(Result_Subt
) then
8578 -- Controlled types with supressed finalization do not need to
8579 -- associate the address of their Finalize_Address primitives with
8580 -- a master since they do not need a master to begin with.
8582 if Is_Library_Level_Entity
(Acc_Type
)
8583 and then Finalize_Storage_Only
(Result_Subt
)
8587 -- Do not generate the call to Set_Finalize_Address in CodePeer mode
8588 -- because Finalize_Address is never built.
8590 elsif not CodePeer_Mode
then
8591 Insert_Action
(Allocator
,
8592 Make_Set_Finalize_Address_Call
(Loc
,
8593 Typ
=> Etype
(Function_Id
),
8594 Ptr_Typ
=> Acc_Type
));
8598 -- Finally, replace the allocator node with a reference to the temp
8600 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
8602 Analyze_And_Resolve
(Allocator
, Acc_Type
);
8603 end Make_Build_In_Place_Call_In_Allocator
;
8605 ---------------------------------------------------
8606 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8607 ---------------------------------------------------
8609 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8610 (Function_Call
: Node_Id
)
8613 Func_Call
: Node_Id
:= Function_Call
;
8614 Function_Id
: Entity_Id
;
8615 Result_Subt
: Entity_Id
;
8616 Return_Obj_Id
: Entity_Id
;
8617 Return_Obj_Decl
: Entity_Id
;
8620 -- Step past qualification or unchecked conversion (the latter can occur
8621 -- in cases of calls to 'Input).
8623 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
8624 N_Unchecked_Type_Conversion
)
8626 Func_Call
:= Expression
(Func_Call
);
8629 -- If the call has already been processed to add build-in-place actuals
8630 -- then return. One place this can occur is for calls to build-in-place
8631 -- functions that occur within a call to a protected operation, where
8632 -- due to rewriting and expansion of the protected call there can be
8633 -- more than one call to Expand_Actuals for the same set of actuals.
8635 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8639 -- Mark the call as processed as a build-in-place call
8641 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8643 Loc
:= Sloc
(Function_Call
);
8645 if Is_Entity_Name
(Name
(Func_Call
)) then
8646 Function_Id
:= Entity
(Name
(Func_Call
));
8648 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8649 Function_Id
:= Etype
(Name
(Func_Call
));
8652 raise Program_Error
;
8655 Result_Subt
:= Etype
(Function_Id
);
8657 -- If the build-in-place function returns a controlled object, then the
8658 -- object needs to be finalized immediately after the context. Since
8659 -- this case produces a transient scope, the servicing finalizer needs
8660 -- to name the returned object. Create a temporary which is initialized
8661 -- with the function call:
8663 -- Temp_Id : Func_Type := BIP_Func_Call;
8665 -- The initialization expression of the temporary will be rewritten by
8666 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8667 -- Call_In_Object_Declaration.
8669 if Needs_Finalization
(Result_Subt
) then
8671 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
8672 Temp_Decl
: Node_Id
;
8675 -- Reset the guard on the function call since the following does
8676 -- not perform actual call expansion.
8678 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
, False);
8681 Make_Object_Declaration
(Loc
,
8682 Defining_Identifier
=> Temp_Id
,
8683 Object_Definition
=>
8684 New_Occurrence_Of
(Result_Subt
, Loc
),
8686 New_Copy_Tree
(Function_Call
));
8688 Insert_Action
(Function_Call
, Temp_Decl
);
8690 Rewrite
(Function_Call
, New_Occurrence_Of
(Temp_Id
, Loc
));
8691 Analyze
(Function_Call
);
8694 -- When the result subtype is constrained, an object of the subtype is
8695 -- declared and an access value designating it is passed as an actual.
8697 elsif Is_Constrained
(Underlying_Type
(Result_Subt
)) then
8699 -- Create a temporary object to hold the function result
8701 Return_Obj_Id
:= Make_Temporary
(Loc
, 'R');
8702 Set_Etype
(Return_Obj_Id
, Result_Subt
);
8705 Make_Object_Declaration
(Loc
,
8706 Defining_Identifier
=> Return_Obj_Id
,
8707 Aliased_Present
=> True,
8708 Object_Definition
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8710 Set_No_Initialization
(Return_Obj_Decl
);
8712 Insert_Action
(Func_Call
, Return_Obj_Decl
);
8714 -- When the function has a controlling result, an allocation-form
8715 -- parameter must be passed indicating that the caller is allocating
8716 -- the result object. This is needed because such a function can be
8717 -- called as a dispatching operation and must be treated similarly
8718 -- to functions with unconstrained result subtypes.
8720 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8721 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8723 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8724 (Func_Call
, Function_Id
);
8726 Add_Task_Actuals_To_Build_In_Place_Call
8727 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8729 -- Add an implicit actual to the function call that provides access
8730 -- to the caller's return object.
8732 Add_Access_Actual_To_Build_In_Place_Call
8733 (Func_Call
, Function_Id
, New_Occurrence_Of
(Return_Obj_Id
, Loc
));
8735 -- When the result subtype is unconstrained, the function must allocate
8736 -- the return object in the secondary stack, so appropriate implicit
8737 -- parameters are added to the call to indicate that. A transient
8738 -- scope is established to ensure eventual cleanup of the result.
8741 -- Pass an allocation parameter indicating that the function should
8742 -- allocate its result on the secondary stack.
8744 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8745 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
8747 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8748 (Func_Call
, Function_Id
);
8750 Add_Task_Actuals_To_Build_In_Place_Call
8751 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8753 -- Pass a null value to the function since no return object is
8754 -- available on the caller side.
8756 Add_Access_Actual_To_Build_In_Place_Call
8757 (Func_Call
, Function_Id
, Empty
);
8759 end Make_Build_In_Place_Call_In_Anonymous_Context
;
8761 --------------------------------------------
8762 -- Make_Build_In_Place_Call_In_Assignment --
8763 --------------------------------------------
8765 procedure Make_Build_In_Place_Call_In_Assignment
8767 Function_Call
: Node_Id
)
8769 Lhs
: constant Node_Id
:= Name
(Assign
);
8770 Func_Call
: Node_Id
:= Function_Call
;
8771 Func_Id
: Entity_Id
;
8775 Ptr_Typ
: Entity_Id
;
8776 Ptr_Typ_Decl
: Node_Id
;
8778 Result_Subt
: Entity_Id
;
8782 -- Step past qualification or unchecked conversion (the latter can occur
8783 -- in cases of calls to 'Input).
8785 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
8786 N_Unchecked_Type_Conversion
)
8788 Func_Call
:= Expression
(Func_Call
);
8791 -- If the call has already been processed to add build-in-place actuals
8792 -- then return. This should not normally occur in an assignment context,
8793 -- but we add the protection as a defensive measure.
8795 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8799 -- Mark the call as processed as a build-in-place call
8801 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8803 Loc
:= Sloc
(Function_Call
);
8805 if Is_Entity_Name
(Name
(Func_Call
)) then
8806 Func_Id
:= Entity
(Name
(Func_Call
));
8808 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8809 Func_Id
:= Etype
(Name
(Func_Call
));
8812 raise Program_Error
;
8815 Result_Subt
:= Etype
(Func_Id
);
8817 -- When the result subtype is unconstrained, an additional actual must
8818 -- be passed to indicate that the caller is providing the return object.
8819 -- This parameter must also be passed when the called function has a
8820 -- controlling result, because dispatching calls to the function needs
8821 -- to be treated effectively the same as calls to class-wide functions.
8823 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8824 (Func_Call
, Func_Id
, Alloc_Form
=> Caller_Allocation
);
8826 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8827 (Func_Call
, Func_Id
);
8829 Add_Task_Actuals_To_Build_In_Place_Call
8830 (Func_Call
, Func_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8832 -- Add an implicit actual to the function call that provides access to
8833 -- the caller's return object.
8835 Add_Access_Actual_To_Build_In_Place_Call
8838 Make_Unchecked_Type_Conversion
(Loc
,
8839 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8840 Expression
=> Relocate_Node
(Lhs
)));
8842 -- Create an access type designating the function's result subtype
8844 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8847 Make_Full_Type_Declaration
(Loc
,
8848 Defining_Identifier
=> Ptr_Typ
,
8850 Make_Access_To_Object_Definition
(Loc
,
8851 All_Present
=> True,
8852 Subtype_Indication
=>
8853 New_Occurrence_Of
(Result_Subt
, Loc
)));
8854 Insert_After_And_Analyze
(Assign
, Ptr_Typ_Decl
);
8856 -- Finally, create an access object initialized to a reference to the
8857 -- function call. We know this access value is non-null, so mark the
8858 -- entity accordingly to suppress junk access checks.
8860 New_Expr
:= Make_Reference
(Loc
, Relocate_Node
(Func_Call
));
8862 Obj_Id
:= Make_Temporary
(Loc
, 'R', New_Expr
);
8863 Set_Etype
(Obj_Id
, Ptr_Typ
);
8864 Set_Is_Known_Non_Null
(Obj_Id
);
8867 Make_Object_Declaration
(Loc
,
8868 Defining_Identifier
=> Obj_Id
,
8869 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8870 Expression
=> New_Expr
);
8871 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Obj_Decl
);
8873 Rewrite
(Assign
, Make_Null_Statement
(Loc
));
8875 -- Retrieve the target of the assignment
8877 if Nkind
(Lhs
) = N_Selected_Component
then
8878 Target
:= Selector_Name
(Lhs
);
8879 elsif Nkind
(Lhs
) = N_Type_Conversion
then
8880 Target
:= Expression
(Lhs
);
8885 -- If we are assigning to a return object or this is an expression of
8886 -- an extension aggregate, the target should either be an identifier
8887 -- or a simple expression. All other cases imply a different scenario.
8889 if Nkind
(Target
) in N_Has_Entity
then
8890 Target
:= Entity
(Target
);
8894 end Make_Build_In_Place_Call_In_Assignment
;
8896 ----------------------------------------------------
8897 -- Make_Build_In_Place_Call_In_Object_Declaration --
8898 ----------------------------------------------------
8900 procedure Make_Build_In_Place_Call_In_Object_Declaration
8901 (Object_Decl
: Node_Id
;
8902 Function_Call
: Node_Id
)
8905 Obj_Def_Id
: constant Entity_Id
:=
8906 Defining_Identifier
(Object_Decl
);
8907 Enclosing_Func
: constant Entity_Id
:=
8908 Enclosing_Subprogram
(Obj_Def_Id
);
8909 Call_Deref
: Node_Id
;
8910 Caller_Object
: Node_Id
;
8912 Fmaster_Actual
: Node_Id
:= Empty
;
8913 Func_Call
: Node_Id
:= Function_Call
;
8914 Function_Id
: Entity_Id
;
8915 Pool_Actual
: Node_Id
;
8916 Ptr_Typ
: Entity_Id
;
8917 Ptr_Typ_Decl
: Node_Id
;
8918 Pass_Caller_Acc
: Boolean := False;
8920 Result_Subt
: Entity_Id
;
8923 -- Step past qualification or unchecked conversion (the latter can occur
8924 -- in cases of calls to 'Input).
8926 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
8927 N_Unchecked_Type_Conversion
)
8929 Func_Call
:= Expression
(Func_Call
);
8932 -- If the call has already been processed to add build-in-place actuals
8933 -- then return. This should not normally occur in an object declaration,
8934 -- but we add the protection as a defensive measure.
8936 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8940 -- Mark the call as processed as a build-in-place call
8942 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8944 Loc
:= Sloc
(Function_Call
);
8946 if Is_Entity_Name
(Name
(Func_Call
)) then
8947 Function_Id
:= Entity
(Name
(Func_Call
));
8949 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8950 Function_Id
:= Etype
(Name
(Func_Call
));
8953 raise Program_Error
;
8956 Result_Subt
:= Etype
(Function_Id
);
8958 -- Create an access type designating the function's result subtype. We
8959 -- use the type of the original call because it may be a call to an
8960 -- inherited operation, which the expansion has replaced with the parent
8961 -- operation that yields the parent type. Note that this access type
8962 -- must be declared before we establish a transient scope, so that it
8963 -- receives the proper accessibility level.
8965 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8967 Make_Full_Type_Declaration
(Loc
,
8968 Defining_Identifier
=> Ptr_Typ
,
8970 Make_Access_To_Object_Definition
(Loc
,
8971 All_Present
=> True,
8972 Subtype_Indication
=>
8973 New_Occurrence_Of
(Etype
(Function_Call
), Loc
)));
8975 -- The access type and its accompanying object must be inserted after
8976 -- the object declaration in the constrained case, so that the function
8977 -- call can be passed access to the object. In the unconstrained case,
8978 -- or if the object declaration is for a return object, the access type
8979 -- and object must be inserted before the object, since the object
8980 -- declaration is rewritten to be a renaming of a dereference of the
8981 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8982 -- the result object is in a different (transient) scope, so won't
8985 if Is_Constrained
(Underlying_Type
(Result_Subt
))
8986 and then not Is_Return_Object
(Defining_Identifier
(Object_Decl
))
8988 Insert_After_And_Analyze
(Object_Decl
, Ptr_Typ_Decl
);
8990 Insert_Action
(Object_Decl
, Ptr_Typ_Decl
);
8993 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8994 -- elaborated in an inner (transient) scope and thus won't cause
8995 -- freezing by itself.
8998 Ptr_Typ_Freeze_Ref
: constant Node_Id
:=
8999 New_Occurrence_Of
(Ptr_Typ
, Loc
);
9001 Set_Parent
(Ptr_Typ_Freeze_Ref
, Ptr_Typ_Decl
);
9002 Freeze_Expression
(Ptr_Typ_Freeze_Ref
);
9005 -- If the the object is a return object of an enclosing build-in-place
9006 -- function, then the implicit build-in-place parameters of the
9007 -- enclosing function are simply passed along to the called function.
9008 -- (Unfortunately, this won't cover the case of extension aggregates
9009 -- where the ancestor part is a build-in-place unconstrained function
9010 -- call that should be passed along the caller's parameters. Currently
9011 -- those get mishandled by reassigning the result of the call to the
9012 -- aggregate return object, when the call result should really be
9013 -- directly built in place in the aggregate and not in a temporary. ???)
9015 if Is_Return_Object
(Defining_Identifier
(Object_Decl
)) then
9016 Pass_Caller_Acc
:= True;
9018 -- When the enclosing function has a BIP_Alloc_Form formal then we
9019 -- pass it along to the callee (such as when the enclosing function
9020 -- has an unconstrained or tagged result type).
9022 if Needs_BIP_Alloc_Form
(Enclosing_Func
) then
9023 if VM_Target
= No_VM
and then
9024 RTE_Available
(RE_Root_Storage_Pool_Ptr
)
9027 New_Occurrence_Of
(Build_In_Place_Formal
9028 (Enclosing_Func
, BIP_Storage_Pool
), Loc
);
9030 -- The build-in-place pool formal is not built on .NET/JVM
9033 Pool_Actual
:= Empty
;
9036 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9041 (Build_In_Place_Formal
(Enclosing_Func
, BIP_Alloc_Form
),
9043 Pool_Actual
=> Pool_Actual
);
9045 -- Otherwise, if enclosing function has a constrained result subtype,
9046 -- then caller allocation will be used.
9049 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9050 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
9053 if Needs_BIP_Finalization_Master
(Enclosing_Func
) then
9056 (Build_In_Place_Formal
9057 (Enclosing_Func
, BIP_Finalization_Master
), Loc
);
9060 -- Retrieve the BIPacc formal from the enclosing function and convert
9061 -- it to the access type of the callee's BIP_Object_Access formal.
9064 Make_Unchecked_Type_Conversion
(Loc
,
9068 (Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
)),
9072 (Build_In_Place_Formal
(Enclosing_Func
, BIP_Object_Access
),
9075 -- In the constrained case, add an implicit actual to the function call
9076 -- that provides access to the declared object. An unchecked conversion
9077 -- to the (specific) result type of the function is inserted to handle
9078 -- the case where the object is declared with a class-wide type.
9080 elsif Is_Constrained
(Underlying_Type
(Result_Subt
)) then
9082 Make_Unchecked_Type_Conversion
(Loc
,
9083 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
9084 Expression
=> New_Occurrence_Of
(Obj_Def_Id
, Loc
));
9086 -- When the function has a controlling result, an allocation-form
9087 -- parameter must be passed indicating that the caller is allocating
9088 -- the result object. This is needed because such a function can be
9089 -- called as a dispatching operation and must be treated similarly
9090 -- to functions with unconstrained result subtypes.
9092 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9093 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
9095 -- In other unconstrained cases, pass an indication to do the allocation
9096 -- on the secondary stack and set Caller_Object to Empty so that a null
9097 -- value will be passed for the caller's object address. A transient
9098 -- scope is established to ensure eventual cleanup of the result.
9101 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9102 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
9103 Caller_Object
:= Empty
;
9105 Establish_Transient_Scope
(Object_Decl
, Sec_Stack
=> True);
9108 -- Pass along any finalization master actual, which is needed in the
9109 -- case where the called function initializes a return object of an
9110 -- enclosing build-in-place function.
9112 Add_Finalization_Master_Actual_To_Build_In_Place_Call
9113 (Func_Call
=> Func_Call
,
9114 Func_Id
=> Function_Id
,
9115 Master_Exp
=> Fmaster_Actual
);
9117 if Nkind
(Parent
(Object_Decl
)) = N_Extended_Return_Statement
9118 and then Has_Task
(Result_Subt
)
9120 -- Here we're passing along the master that was passed in to this
9123 Add_Task_Actuals_To_Build_In_Place_Call
9124 (Func_Call
, Function_Id
,
9126 New_Occurrence_Of
(Build_In_Place_Formal
9127 (Enclosing_Func
, BIP_Task_Master
), Loc
));
9130 Add_Task_Actuals_To_Build_In_Place_Call
9131 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
9134 Add_Access_Actual_To_Build_In_Place_Call
9135 (Func_Call
, Function_Id
, Caller_Object
, Is_Access
=> Pass_Caller_Acc
);
9137 -- Finally, create an access object initialized to a reference to the
9138 -- function call. We know this access value cannot be null, so mark the
9139 -- entity accordingly to suppress the access check.
9141 Def_Id
:= Make_Temporary
(Loc
, 'R', Func_Call
);
9142 Set_Etype
(Def_Id
, Ptr_Typ
);
9143 Set_Is_Known_Non_Null
(Def_Id
);
9146 Make_Object_Declaration
(Loc
,
9147 Defining_Identifier
=> Def_Id
,
9148 Constant_Present
=> True,
9149 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
9151 Make_Reference
(Loc
, Relocate_Node
(Func_Call
)));
9153 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Res_Decl
);
9155 -- If the result subtype of the called function is constrained and
9156 -- is not itself the return expression of an enclosing BIP function,
9157 -- then mark the object as having no initialization.
9159 if Is_Constrained
(Underlying_Type
(Result_Subt
))
9160 and then not Is_Return_Object
(Defining_Identifier
(Object_Decl
))
9162 -- The related object declaration is encased in a transient block
9163 -- because the build-in-place function call contains at least one
9164 -- nested function call that produces a controlled transient
9167 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
9169 -- Since the build-in-place expansion decouples the call from the
9170 -- object declaration, the finalization machinery lacks the context
9171 -- which prompted the generation of the transient block. To resolve
9172 -- this scenario, store the build-in-place call.
9174 if Scope_Is_Transient
9175 and then Node_To_Be_Wrapped
= Object_Decl
9177 Set_BIP_Initialization_Call
(Obj_Def_Id
, Res_Decl
);
9180 Set_Expression
(Object_Decl
, Empty
);
9181 Set_No_Initialization
(Object_Decl
);
9183 -- In case of an unconstrained result subtype, or if the call is the
9184 -- return expression of an enclosing BIP function, rewrite the object
9185 -- declaration as an object renaming where the renamed object is a
9186 -- dereference of <function_Call>'reference:
9188 -- Obj : Subt renames <function_call>'Ref.all;
9192 Make_Explicit_Dereference
(Loc
,
9193 Prefix
=> New_Occurrence_Of
(Def_Id
, Loc
));
9195 Loc
:= Sloc
(Object_Decl
);
9196 Rewrite
(Object_Decl
,
9197 Make_Object_Renaming_Declaration
(Loc
,
9198 Defining_Identifier
=> Make_Temporary
(Loc
, 'D'),
9199 Access_Definition
=> Empty
,
9200 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
9201 Name
=> Call_Deref
));
9203 Set_Renamed_Object
(Defining_Identifier
(Object_Decl
), Call_Deref
);
9205 Analyze
(Object_Decl
);
9207 -- Replace the internal identifier of the renaming declaration's
9208 -- entity with identifier of the original object entity. We also have
9209 -- to exchange the entities containing their defining identifiers to
9210 -- ensure the correct replacement of the object declaration by the
9211 -- object renaming declaration to avoid homograph conflicts (since
9212 -- the object declaration's defining identifier was already entered
9213 -- in current scope). The Next_Entity links of the two entities also
9214 -- have to be swapped since the entities are part of the return
9215 -- scope's entity list and the list structure would otherwise be
9216 -- corrupted. Finally, the homonym chain must be preserved as well.
9219 Renaming_Def_Id
: constant Entity_Id
:=
9220 Defining_Identifier
(Object_Decl
);
9221 Next_Entity_Temp
: constant Entity_Id
:=
9222 Next_Entity
(Renaming_Def_Id
);
9224 Set_Chars
(Renaming_Def_Id
, Chars
(Obj_Def_Id
));
9226 -- Swap next entity links in preparation for exchanging entities
9228 Set_Next_Entity
(Renaming_Def_Id
, Next_Entity
(Obj_Def_Id
));
9229 Set_Next_Entity
(Obj_Def_Id
, Next_Entity_Temp
);
9230 Set_Homonym
(Renaming_Def_Id
, Homonym
(Obj_Def_Id
));
9232 Exchange_Entities
(Renaming_Def_Id
, Obj_Def_Id
);
9234 -- Preserve source indication of original declaration, so that
9235 -- xref information is properly generated for the right entity.
9237 Preserve_Comes_From_Source
9238 (Object_Decl
, Original_Node
(Object_Decl
));
9240 Preserve_Comes_From_Source
9241 (Obj_Def_Id
, Original_Node
(Object_Decl
));
9243 Set_Comes_From_Source
(Renaming_Def_Id
, False);
9247 -- If the object entity has a class-wide Etype, then we need to change
9248 -- it to the result subtype of the function call, because otherwise the
9249 -- object will be class-wide without an explicit initialization and
9250 -- won't be allocated properly by the back end. It seems unclean to make
9251 -- such a revision to the type at this point, and we should try to
9252 -- improve this treatment when build-in-place functions with class-wide
9253 -- results are implemented. ???
9255 if Is_Class_Wide_Type
(Etype
(Defining_Identifier
(Object_Decl
))) then
9256 Set_Etype
(Defining_Identifier
(Object_Decl
), Result_Subt
);
9258 end Make_Build_In_Place_Call_In_Object_Declaration
;
9260 --------------------------------------------
9261 -- Make_CPP_Constructor_Call_In_Allocator --
9262 --------------------------------------------
9264 procedure Make_CPP_Constructor_Call_In_Allocator
9265 (Allocator
: Node_Id
;
9266 Function_Call
: Node_Id
)
9268 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
9269 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
9270 Function_Id
: constant Entity_Id
:= Entity
(Name
(Function_Call
));
9271 Result_Subt
: constant Entity_Id
:= Available_View
(Etype
(Function_Id
));
9273 New_Allocator
: Node_Id
;
9274 Return_Obj_Access
: Entity_Id
;
9278 pragma Assert
(Nkind
(Allocator
) = N_Allocator
9279 and then Nkind
(Function_Call
) = N_Function_Call
);
9280 pragma Assert
(Convention
(Function_Id
) = Convention_CPP
9281 and then Is_Constructor
(Function_Id
));
9282 pragma Assert
(Is_Constrained
(Underlying_Type
(Result_Subt
)));
9284 -- Replace the initialized allocator of form "new T'(Func (...))" with
9285 -- an uninitialized allocator of form "new T", where T is the result
9286 -- subtype of the called function. The call to the function is handled
9287 -- separately further below.
9290 Make_Allocator
(Loc
,
9291 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
9292 Set_No_Initialization
(New_Allocator
);
9294 -- Copy attributes to new allocator. Note that the new allocator
9295 -- logically comes from source if the original one did, so copy the
9296 -- relevant flag. This ensures proper treatment of the restriction
9297 -- No_Implicit_Heap_Allocations in this case.
9299 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
9300 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
9301 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
9303 Rewrite
(Allocator
, New_Allocator
);
9305 -- Create a new access object and initialize it to the result of the
9306 -- new uninitialized allocator. Note: we do not use Allocator as the
9307 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9308 -- as this would create a sort of infinite "recursion".
9310 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
9311 Set_Etype
(Return_Obj_Access
, Acc_Type
);
9314 -- Rnnn : constant ptr_T := new (T);
9315 -- Init (Rnn.all,...);
9318 Make_Object_Declaration
(Loc
,
9319 Defining_Identifier
=> Return_Obj_Access
,
9320 Constant_Present
=> True,
9321 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
9322 Expression
=> Relocate_Node
(Allocator
));
9323 Insert_Action
(Allocator
, Tmp_Obj
);
9325 Insert_List_After_And_Analyze
(Tmp_Obj
,
9326 Build_Initialization_Call
(Loc
,
9328 Make_Explicit_Dereference
(Loc
,
9329 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)),
9330 Typ
=> Etype
(Function_Id
),
9331 Constructor_Ref
=> Function_Call
));
9333 -- Finally, replace the allocator node with a reference to the result of
9334 -- the function call itself (which will effectively be an access to the
9335 -- object created by the allocator).
9337 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
9339 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9340 -- generate an implicit conversion to force displacement of the "this"
9343 if Is_Interface
(Designated_Type
(Acc_Type
)) then
9344 Rewrite
(Allocator
, Convert_To
(Acc_Type
, Relocate_Node
(Allocator
)));
9347 Analyze_And_Resolve
(Allocator
, Acc_Type
);
9348 end Make_CPP_Constructor_Call_In_Allocator
;
9350 -----------------------------------
9351 -- Needs_BIP_Finalization_Master --
9352 -----------------------------------
9354 function Needs_BIP_Finalization_Master
9355 (Func_Id
: Entity_Id
) return Boolean
9357 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
9358 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9361 not Restriction_Active
(No_Finalization
)
9362 and then Needs_Finalization
(Func_Typ
);
9363 end Needs_BIP_Finalization_Master
;
9365 --------------------------
9366 -- Needs_BIP_Alloc_Form --
9367 --------------------------
9369 function Needs_BIP_Alloc_Form
(Func_Id
: Entity_Id
) return Boolean is
9370 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
9371 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9373 return not Is_Constrained
(Func_Typ
) or else Is_Tagged_Type
(Func_Typ
);
9374 end Needs_BIP_Alloc_Form
;
9376 --------------------------------------
9377 -- Needs_Result_Accessibility_Level --
9378 --------------------------------------
9380 function Needs_Result_Accessibility_Level
9381 (Func_Id
: Entity_Id
) return Boolean
9383 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9385 function Has_Unconstrained_Access_Discriminant_Component
9386 (Comp_Typ
: Entity_Id
) return Boolean;
9387 -- Returns True if any component of the type has an unconstrained access
9390 -----------------------------------------------------
9391 -- Has_Unconstrained_Access_Discriminant_Component --
9392 -----------------------------------------------------
9394 function Has_Unconstrained_Access_Discriminant_Component
9395 (Comp_Typ
: Entity_Id
) return Boolean
9398 if not Is_Limited_Type
(Comp_Typ
) then
9401 -- Only limited types can have access discriminants with
9404 elsif Has_Unconstrained_Access_Discriminants
(Comp_Typ
) then
9407 elsif Is_Array_Type
(Comp_Typ
) then
9408 return Has_Unconstrained_Access_Discriminant_Component
9409 (Underlying_Type
(Component_Type
(Comp_Typ
)));
9411 elsif Is_Record_Type
(Comp_Typ
) then
9416 Comp
:= First_Component
(Comp_Typ
);
9417 while Present
(Comp
) loop
9418 if Has_Unconstrained_Access_Discriminant_Component
9419 (Underlying_Type
(Etype
(Comp
)))
9424 Next_Component
(Comp
);
9430 end Has_Unconstrained_Access_Discriminant_Component
;
9432 Feature_Disabled
: constant Boolean := True;
9435 -- Start of processing for Needs_Result_Accessibility_Level
9438 -- False if completion unavailable (how does this happen???)
9440 if not Present
(Func_Typ
) then
9443 elsif Feature_Disabled
then
9446 -- False if not a function, also handle enum-lit renames case
9448 elsif Func_Typ
= Standard_Void_Type
9449 or else Is_Scalar_Type
(Func_Typ
)
9453 -- Handle a corner case, a cross-dialect subp renaming. For example,
9454 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9455 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9457 elsif Present
(Alias
(Func_Id
)) then
9459 -- Unimplemented: a cross-dialect subp renaming which does not set
9460 -- the Alias attribute (e.g., a rename of a dereference of an access
9461 -- to subprogram value). ???
9463 return Present
(Extra_Accessibility_Of_Result
(Alias
(Func_Id
)));
9465 -- Remaining cases require Ada 2012 mode
9467 elsif Ada_Version
< Ada_2012
then
9470 elsif Ekind
(Func_Typ
) = E_Anonymous_Access_Type
9471 or else Is_Tagged_Type
(Func_Typ
)
9473 -- In the case of, say, a null tagged record result type, the need
9474 -- for this extra parameter might not be obvious. This function
9475 -- returns True for all tagged types for compatibility reasons.
9476 -- A function with, say, a tagged null controlling result type might
9477 -- be overridden by a primitive of an extension having an access
9478 -- discriminant and the overrider and overridden must have compatible
9479 -- calling conventions (including implicitly declared parameters).
9480 -- Similarly, values of one access-to-subprogram type might designate
9481 -- both a primitive subprogram of a given type and a function
9482 -- which is, for example, not a primitive subprogram of any type.
9483 -- Again, this requires calling convention compatibility.
9484 -- It might be possible to solve these issues by introducing
9485 -- wrappers, but that is not the approach that was chosen.
9489 elsif Has_Unconstrained_Access_Discriminants
(Func_Typ
) then
9492 elsif Has_Unconstrained_Access_Discriminant_Component
(Func_Typ
) then
9495 -- False for all other cases
9500 end Needs_Result_Accessibility_Level
;