testsuite: Correct vec-rlmi-rlnm.c testsuite expected result
[official-gcc.git] / gcc / config / mips / mips.h
blob3ce0c19a29a0139f7e491cafd2976a2a42e33a83
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 #include "config/vxworks-dummy.h"
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30 extern int target_flags_explicit;
31 #endif
33 /* MIPS external variables defined in mips.c. */
35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
37 to work on a 64-bit machine. */
39 #define ABI_32 0
40 #define ABI_N32 1
41 #define ABI_64 2
42 #define ABI_EABI 3
43 #define ABI_O64 4
45 /* Masks that affect tuning.
47 PTF_AVOID_BRANCHLIKELY_SPEED
48 Set if it is usually not profitable to use branch-likely instructions
49 for this target when optimizing code for speed, typically because
50 the branches are always predicted taken and so incur a large overhead
51 when not taken.
53 PTF_AVOID_BRANCHLIKELY_SIZE
54 As above but when optimizing for size.
56 PTF_AVOID_BRANCHLIKELY_ALWAYS
57 As above but regardless of whether we optimize for speed or size.
59 PTF_AVOID_IMADD
60 Set if it is usually not profitable to use the integer MADD or MSUB
61 instructions because of the overhead of getting the result out of
62 the HI/LO registers. */
64 #define PTF_AVOID_BRANCHLIKELY_SPEED 0x1
65 #define PTF_AVOID_BRANCHLIKELY_SIZE 0x2
66 #define PTF_AVOID_BRANCHLIKELY_ALWAYS (PTF_AVOID_BRANCHLIKELY_SPEED | \
67 PTF_AVOID_BRANCHLIKELY_SIZE)
68 #define PTF_AVOID_IMADD 0x4
70 /* Information about one recognized processor. Defined here for the
71 benefit of TARGET_CPU_CPP_BUILTINS. */
72 struct mips_cpu_info {
73 /* The 'canonical' name of the processor as far as GCC is concerned.
74 It's typically a manufacturer's prefix followed by a numerical
75 designation. It should be lowercase. */
76 const char *name;
78 /* The internal processor number that most closely matches this
79 entry. Several processors can have the same value, if there's no
80 difference between them from GCC's point of view. */
81 enum processor cpu;
83 /* The ISA level that the processor implements. */
84 int isa;
86 /* A mask of PTF_* values. */
87 unsigned int tune_flags;
90 #include "config/mips/mips-opts.h"
92 /* Macros to silence warnings about numbers being signed in traditional
93 C and unsigned in ISO C when compiled on 32-bit hosts. */
95 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
96 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
97 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
100 /* Run-time compilation parameters selecting different hardware subsets. */
102 /* True if we are generating position-independent VxWorks RTP code. */
103 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
105 /* Compact branches must not be used if the user either selects the
106 'never' policy or the 'optimal' policy on a core that lacks
107 compact branch instructions. */
108 #define TARGET_CB_NEVER (mips_cb == MIPS_CB_NEVER \
109 || (mips_cb == MIPS_CB_OPTIMAL \
110 && !ISA_HAS_COMPACT_BRANCHES))
112 /* Compact branches may be used if the user either selects the
113 'always' policy or the 'optimal' policy on a core that supports
114 compact branch instructions. */
115 #define TARGET_CB_MAYBE (TARGET_CB_ALWAYS \
116 || (mips_cb == MIPS_CB_OPTIMAL \
117 && ISA_HAS_COMPACT_BRANCHES))
119 /* Compact branches must always be generated if the user selects
120 the 'always' policy or the 'optimal' policy om a core that
121 lacks delay slot branch instructions. */
122 #define TARGET_CB_ALWAYS (mips_cb == MIPS_CB_ALWAYS \
123 || (mips_cb == MIPS_CB_OPTIMAL \
124 && !ISA_HAS_DELAY_SLOTS))
126 /* Special handling for JRC that exists in microMIPSR3 as well as R6
127 ISAs with full compact branch support. */
128 #define ISA_HAS_JRC ((ISA_HAS_COMPACT_BRANCHES \
129 || TARGET_MICROMIPS) \
130 && mips_cb != MIPS_CB_NEVER)
132 /* True if the output file is marked as ".abicalls; .option pic0"
133 (-call_nonpic). */
134 #define TARGET_ABICALLS_PIC0 \
135 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
137 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
138 #define TARGET_ABICALLS_PIC2 \
139 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
141 /* True if the call patterns should be split into a jalr followed by
142 an instruction to restore $gp. It is only safe to split the load
143 from the call when every use of $gp is explicit.
145 See mips_must_initialize_gp_p for details about how we manage the
146 global pointer. */
148 #define TARGET_SPLIT_CALLS \
149 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
151 /* True if we're generating a form of -mabicalls in which we can use
152 operators like %hi and %lo to refer to locally-binding symbols.
153 We can only do this for -mno-shared, and only then if we can use
154 relocation operations instead of assembly macros. It isn't really
155 worth using absolute sequences for 64-bit symbols because GOT
156 accesses are so much shorter. */
158 #define TARGET_ABSOLUTE_ABICALLS \
159 (TARGET_ABICALLS \
160 && !TARGET_SHARED \
161 && TARGET_EXPLICIT_RELOCS \
162 && !ABI_HAS_64BIT_SYMBOLS)
164 /* True if we can optimize sibling calls. For simplicity, we only
165 handle cases in which call_insn_operand will reject invalid
166 sibcall addresses. There are two cases in which this isn't true:
168 - TARGET_MIPS16. call_insn_operand accepts constant addresses
169 but there is no direct jump instruction. It isn't worth
170 using sibling calls in this case anyway; they would usually
171 be longer than normal calls.
173 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
174 accepts global constants, but all sibcalls must be indirect. */
175 #define TARGET_SIBCALLS \
176 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
178 /* True if we need to use a global offset table to access some symbols. */
179 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
181 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
182 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
184 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
185 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
187 /* True if we should use .cprestore to store to the cprestore slot.
189 We continue to use .cprestore for explicit-reloc code so that JALs
190 inside inline asms will work correctly. */
191 #define TARGET_CPRESTORE_DIRECTIVE \
192 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
194 /* True if we can use the J and JAL instructions. */
195 #define TARGET_ABSOLUTE_JUMPS \
196 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
198 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
199 This is true for both the PIC and non-PIC VxWorks RTP modes. */
200 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
202 /* True if .gpword or .gpdword should be used for switch tables. */
203 #define TARGET_GPWORD \
204 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
206 /* True if the output must have a writable .eh_frame.
207 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
208 #ifdef HAVE_LD_PERSONALITY_RELAXATION
209 #define TARGET_WRITABLE_EH_FRAME 0
210 #else
211 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
212 #endif
214 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
215 #ifdef HAVE_AS_DSPR1_MULT
216 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
217 #else
218 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
219 #endif
221 /* ISA has LSA available. */
222 #define ISA_HAS_LSA (mips_isa_rev >= 6 || ISA_HAS_MSA)
224 /* ISA has DLSA available. */
225 #define ISA_HAS_DLSA (TARGET_64BIT \
226 && (mips_isa_rev >= 6 \
227 || ISA_HAS_MSA))
229 /* The ISA compression flags that are currently in effect. */
230 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
232 /* Generate mips16 code */
233 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
234 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
235 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
236 /* Generate mips16e register save/restore sequences. */
237 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
239 /* True if we're generating a form of MIPS16 code in which general
240 text loads are allowed. */
241 #define TARGET_MIPS16_TEXT_LOADS \
242 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
244 /* True if we're generating a form of MIPS16 code in which PC-relative
245 loads are allowed. */
246 #define TARGET_MIPS16_PCREL_LOADS \
247 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
249 /* Generic ISA defines. */
250 #define ISA_MIPS1 (mips_isa == 1)
251 #define ISA_MIPS2 (mips_isa == 2)
252 #define ISA_MIPS3 (mips_isa == 3)
253 #define ISA_MIPS4 (mips_isa == 4)
254 #define ISA_MIPS32 (mips_isa == 32)
255 #define ISA_MIPS32R2 (mips_isa == 33)
256 #define ISA_MIPS32R3 (mips_isa == 34)
257 #define ISA_MIPS32R5 (mips_isa == 36)
258 #define ISA_MIPS32R6 (mips_isa == 37)
259 #define ISA_MIPS64 (mips_isa == 64)
260 #define ISA_MIPS64R2 (mips_isa == 65)
261 #define ISA_MIPS64R3 (mips_isa == 66)
262 #define ISA_MIPS64R5 (mips_isa == 68)
263 #define ISA_MIPS64R6 (mips_isa == 69)
265 /* Architecture target defines. */
266 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
267 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
268 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
269 #define TARGET_GS464 (mips_arch == PROCESSOR_GS464)
270 #define TARGET_GS464E (mips_arch == PROCESSOR_GS464E)
271 #define TARGET_GS264E (mips_arch == PROCESSOR_GS264E)
272 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
273 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
274 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
275 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
276 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
277 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
278 #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
279 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
280 #define TARGET_MIPS8000 (mips_arch == PROCESSOR_R8000)
281 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
282 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
283 || mips_arch == PROCESSOR_OCTEON2 \
284 || mips_arch == PROCESSOR_OCTEON3)
285 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2 \
286 || mips_arch == PROCESSOR_OCTEON3)
287 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
288 || mips_arch == PROCESSOR_SB1A)
289 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
290 #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
292 /* Scheduling target defines. */
293 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
294 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
295 || mips_tune == PROCESSOR_24KF2_1 \
296 || mips_tune == PROCESSOR_24KF1_1)
297 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
298 || mips_tune == PROCESSOR_74KF2_1 \
299 || mips_tune == PROCESSOR_74KF1_1 \
300 || mips_tune == PROCESSOR_74KF3_2)
301 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
302 || mips_tune == PROCESSOR_LOONGSON_2F)
303 #define TUNE_GS464 (mips_tune == PROCESSOR_GS464)
304 #define TUNE_GS464E (mips_tune == PROCESSOR_GS464E)
305 #define TUNE_GS264E (mips_tune == PROCESSOR_GS264E)
306 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
307 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
308 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
309 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
310 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
311 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
312 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
313 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
314 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
315 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
316 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
317 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
318 || mips_tune == PROCESSOR_OCTEON2 \
319 || mips_tune == PROCESSOR_OCTEON3)
320 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
321 || mips_tune == PROCESSOR_SB1A)
322 #define TUNE_P5600 (mips_tune == PROCESSOR_P5600)
323 #define TUNE_I6400 (mips_tune == PROCESSOR_I6400)
324 #define TUNE_P6600 (mips_tune == PROCESSOR_P6600)
326 /* True if the pre-reload scheduler should try to create chains of
327 multiply-add or multiply-subtract instructions. For example,
328 suppose we have:
330 t1 = a * b
331 t2 = t1 + c * d
332 t3 = e * f
333 t4 = t3 - g * h
335 t1 will have a higher priority than t2 and t3 will have a higher
336 priority than t4. However, before reload, there is no dependence
337 between t1 and t3, and they can often have similar priorities.
338 The scheduler will then tend to prefer:
340 t1 = a * b
341 t3 = e * f
342 t2 = t1 + c * d
343 t4 = t3 - g * h
345 which stops us from making full use of macc/madd-style instructions.
346 This sort of situation occurs frequently in Fourier transforms and
347 in unrolled loops.
349 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
350 queue so that chained multiply-add and multiply-subtract instructions
351 appear ahead of any other instruction that is likely to clobber lo.
352 In the example above, if t2 and t3 become ready at the same time,
353 the code ensures that t2 is scheduled first.
355 Multiply-accumulate instructions are a bigger win for some targets
356 than others, so this macro is defined on an opt-in basis. */
357 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
358 || TUNE_MIPS4120 \
359 || TUNE_MIPS4130 \
360 || TUNE_24K \
361 || TUNE_P5600)
363 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
364 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
366 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
367 directly accessible, while the command-line options select
368 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
369 in use. */
370 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
371 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
373 /* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents
374 -mfpxx, derive TARGET_FLOAT32 to represent -mfp32. */
375 #define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX)
377 /* TARGET_O32_FP64A_ABI represents all the conditions that form the
378 o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg). */
379 #define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \
380 && !TARGET_ODD_SPREG)
382 /* False if SC acts as a memory barrier with respect to itself,
383 otherwise a SYNC will be emitted after SC for atomic operations
384 that require ordering between the SC and following loads and
385 stores. It does not tell anything about ordering of loads and
386 stores prior to and following the SC, only about the SC itself and
387 those loads and stores follow it. */
388 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
390 /* Define preprocessor macros for the -march and -mtune options.
391 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
392 processor. If INFO's canonical name is "foo", define PREFIX to
393 be "foo", and define an additional macro PREFIX_FOO. */
394 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
395 do \
397 char *macro, *p; \
399 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
400 for (p = macro; *p != 0; p++) \
401 if (*p == '+') \
402 *p = 'P'; \
403 else \
404 *p = TOUPPER (*p); \
406 builtin_define (macro); \
407 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
408 free (macro); \
410 while (0)
412 /* Target CPU builtins. */
413 #define TARGET_CPU_CPP_BUILTINS() \
414 do \
416 builtin_assert ("machine=mips"); \
417 builtin_assert ("cpu=mips"); \
418 builtin_define ("__mips__"); \
419 builtin_define ("_mips"); \
421 /* We do this here because __mips is defined below and so we \
422 can't use builtin_define_std. We don't ever want to define \
423 "mips" for VxWorks because some of the VxWorks headers \
424 construct include filenames from a root directory macro, \
425 an architecture macro and a filename, where the architecture \
426 macro expands to 'mips'. If we define 'mips' to 1, the \
427 architecture macro expands to 1 as well. */ \
428 if (!flag_iso && !TARGET_VXWORKS) \
429 builtin_define ("mips"); \
431 if (TARGET_64BIT) \
432 builtin_define ("__mips64"); \
434 /* Treat _R3000 and _R4000 like register-size \
435 defines, which is how they've historically \
436 been used. */ \
437 if (TARGET_64BIT) \
439 builtin_define_std ("R4000"); \
440 builtin_define ("_R4000"); \
442 else \
444 builtin_define_std ("R3000"); \
445 builtin_define ("_R3000"); \
448 if (TARGET_FLOAT64) \
449 builtin_define ("__mips_fpr=64"); \
450 else if (TARGET_FLOATXX) \
451 builtin_define ("__mips_fpr=0"); \
452 else \
453 builtin_define ("__mips_fpr=32"); \
455 if (mips_base_compression_flags & MASK_MIPS16) \
456 builtin_define ("__mips16"); \
458 if (TARGET_MIPS3D) \
459 builtin_define ("__mips3d"); \
461 if (TARGET_SMARTMIPS) \
462 builtin_define ("__mips_smartmips"); \
464 if (mips_base_compression_flags & MASK_MICROMIPS) \
465 builtin_define ("__mips_micromips"); \
467 if (TARGET_MCU) \
468 builtin_define ("__mips_mcu"); \
470 if (TARGET_EVA) \
471 builtin_define ("__mips_eva"); \
473 if (TARGET_DSP) \
475 builtin_define ("__mips_dsp"); \
476 if (TARGET_DSPR2) \
478 builtin_define ("__mips_dspr2"); \
479 builtin_define ("__mips_dsp_rev=2"); \
481 else \
482 builtin_define ("__mips_dsp_rev=1"); \
485 if (ISA_HAS_MSA) \
487 builtin_define ("__mips_msa"); \
488 builtin_define ("__mips_msa_width=128"); \
491 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
492 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
494 if (ISA_MIPS1) \
496 builtin_define ("__mips=1"); \
497 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
499 else if (ISA_MIPS2) \
501 builtin_define ("__mips=2"); \
502 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
504 else if (ISA_MIPS3) \
506 builtin_define ("__mips=3"); \
507 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
509 else if (ISA_MIPS4) \
511 builtin_define ("__mips=4"); \
512 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
514 else if (mips_isa >= 32 && mips_isa < 64) \
516 builtin_define ("__mips=32"); \
517 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
519 else if (mips_isa >= 64) \
521 builtin_define ("__mips=64"); \
522 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
524 if (mips_isa_rev > 0) \
525 builtin_define_with_int_value ("__mips_isa_rev", \
526 mips_isa_rev); \
528 switch (mips_abi) \
530 case ABI_32: \
531 builtin_define ("_ABIO32=1"); \
532 builtin_define ("_MIPS_SIM=_ABIO32"); \
533 break; \
535 case ABI_N32: \
536 builtin_define ("_ABIN32=2"); \
537 builtin_define ("_MIPS_SIM=_ABIN32"); \
538 break; \
540 case ABI_64: \
541 builtin_define ("_ABI64=3"); \
542 builtin_define ("_MIPS_SIM=_ABI64"); \
543 break; \
545 case ABI_O64: \
546 builtin_define ("_ABIO64=4"); \
547 builtin_define ("_MIPS_SIM=_ABIO64"); \
548 break; \
551 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
552 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
553 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
554 builtin_define_with_int_value ("_MIPS_FPSET", \
555 32 / MAX_FPRS_PER_FMT); \
556 builtin_define_with_int_value ("_MIPS_SPFPSET", \
557 TARGET_ODD_SPREG ? 32 : 16); \
559 /* These defines reflect the ABI in use, not whether the \
560 FPU is directly accessible. */ \
561 if (TARGET_NO_FLOAT) \
562 builtin_define ("__mips_no_float"); \
563 else if (TARGET_HARD_FLOAT_ABI) \
564 builtin_define ("__mips_hard_float"); \
565 else \
566 builtin_define ("__mips_soft_float"); \
568 if (TARGET_SINGLE_FLOAT) \
569 builtin_define ("__mips_single_float"); \
571 if (TARGET_PAIRED_SINGLE_FLOAT) \
572 builtin_define ("__mips_paired_single_float"); \
574 if (mips_abs == MIPS_IEEE_754_2008) \
575 builtin_define ("__mips_abs2008"); \
577 if (mips_nan == MIPS_IEEE_754_2008) \
578 builtin_define ("__mips_nan2008"); \
580 if (TARGET_BIG_ENDIAN) \
582 builtin_define_std ("MIPSEB"); \
583 builtin_define ("_MIPSEB"); \
585 else \
587 builtin_define_std ("MIPSEL"); \
588 builtin_define ("_MIPSEL"); \
591 /* Whether calls should go through $25. The separate __PIC__ \
592 macro indicates whether abicalls code might use a GOT. */ \
593 if (TARGET_ABICALLS) \
594 builtin_define ("__mips_abicalls"); \
596 /* Whether Loongson vector modes are enabled. */ \
597 if (TARGET_LOONGSON_MMI) \
599 builtin_define ("__mips_loongson_vector_rev"); \
600 builtin_define ("__mips_loongson_mmi"); \
603 /* Whether Loongson EXT modes are enabled. */ \
604 if (TARGET_LOONGSON_EXT) \
606 builtin_define ("__mips_loongson_ext"); \
607 if (TARGET_LOONGSON_EXT2) \
609 builtin_define ("__mips_loongson_ext2"); \
610 builtin_define ("__mips_loongson_ext_rev=2"); \
612 else \
613 builtin_define ("__mips_loongson_ext_rev=1"); \
616 /* Historical Octeon macro. */ \
617 if (TARGET_OCTEON) \
618 builtin_define ("__OCTEON__"); \
620 if (TARGET_SYNCI) \
621 builtin_define ("__mips_synci"); \
623 /* Macros dependent on the C dialect. */ \
624 if (preprocessing_asm_p ()) \
626 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
627 builtin_define ("_LANGUAGE_ASSEMBLY"); \
629 else if (c_dialect_cxx ()) \
631 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
632 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
633 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
635 else \
637 builtin_define_std ("LANGUAGE_C"); \
638 builtin_define ("_LANGUAGE_C"); \
640 if (c_dialect_objc ()) \
642 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
643 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
644 /* Bizarre, but retained for backwards compatibility. */ \
645 builtin_define_std ("LANGUAGE_C"); \
646 builtin_define ("_LANGUAGE_C"); \
649 if (mips_abi == ABI_EABI) \
650 builtin_define ("__mips_eabi"); \
652 if (TARGET_CACHE_BUILTIN) \
653 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
654 if (!ISA_HAS_LXC1_SXC1) \
655 builtin_define ("__mips_no_lxc1_sxc1"); \
656 if (!ISA_HAS_UNFUSED_MADD4 && !ISA_HAS_FUSED_MADD4) \
657 builtin_define ("__mips_no_madd4"); \
659 while (0)
661 /* Target CPU versions for D. */
662 #define TARGET_D_CPU_VERSIONS mips_d_target_versions
664 /* Default target_flags if no switches are specified */
666 #ifndef TARGET_DEFAULT
667 #define TARGET_DEFAULT 0
668 #endif
670 #ifndef TARGET_CPU_DEFAULT
671 #define TARGET_CPU_DEFAULT 0
672 #endif
674 #ifndef TARGET_ENDIAN_DEFAULT
675 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
676 #endif
678 #ifdef IN_LIBGCC2
679 #undef TARGET_64BIT
680 /* Make this compile time constant for libgcc2 */
681 #ifdef __mips64
682 #define TARGET_64BIT 1
683 #else
684 #define TARGET_64BIT 0
685 #endif
686 #endif /* IN_LIBGCC2 */
688 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
689 when compiled with hardware floating point. This is because MIPS16
690 code cannot save and restore the floating-point registers, which is
691 important if in a mixed MIPS16/non-MIPS16 environment. */
693 #ifdef IN_LIBGCC2
694 #if __mips_hard_float
695 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
696 #endif
697 #endif /* IN_LIBGCC2 */
699 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
701 #ifndef MULTILIB_ENDIAN_DEFAULT
702 #if TARGET_ENDIAN_DEFAULT == 0
703 #define MULTILIB_ENDIAN_DEFAULT "EL"
704 #else
705 #define MULTILIB_ENDIAN_DEFAULT "EB"
706 #endif
707 #endif
709 #ifndef MULTILIB_ISA_DEFAULT
710 #if MIPS_ISA_DEFAULT == 1
711 #define MULTILIB_ISA_DEFAULT "mips1"
712 #elif MIPS_ISA_DEFAULT == 2
713 #define MULTILIB_ISA_DEFAULT "mips2"
714 #elif MIPS_ISA_DEFAULT == 3
715 #define MULTILIB_ISA_DEFAULT "mips3"
716 #elif MIPS_ISA_DEFAULT == 4
717 #define MULTILIB_ISA_DEFAULT "mips4"
718 #elif MIPS_ISA_DEFAULT == 32
719 #define MULTILIB_ISA_DEFAULT "mips32"
720 #elif MIPS_ISA_DEFAULT == 33
721 #define MULTILIB_ISA_DEFAULT "mips32r2"
722 #elif MIPS_ISA_DEFAULT == 37
723 #define MULTILIB_ISA_DEFAULT "mips32r6"
724 #elif MIPS_ISA_DEFAULT == 64
725 #define MULTILIB_ISA_DEFAULT "mips64"
726 #elif MIPS_ISA_DEFAULT == 65
727 #define MULTILIB_ISA_DEFAULT "mips64r2"
728 #elif MIPS_ISA_DEFAULT == 69
729 #define MULTILIB_ISA_DEFAULT "mips64r6"
730 #else
731 #define MULTILIB_ISA_DEFAULT "mips1"
732 #endif
733 #endif
735 #ifndef MIPS_ABI_DEFAULT
736 #define MIPS_ABI_DEFAULT ABI_32
737 #endif
739 /* Use the most portable ABI flag for the ASM specs. */
741 #if MIPS_ABI_DEFAULT == ABI_32
742 #define MULTILIB_ABI_DEFAULT "mabi=32"
743 #elif MIPS_ABI_DEFAULT == ABI_O64
744 #define MULTILIB_ABI_DEFAULT "mabi=o64"
745 #elif MIPS_ABI_DEFAULT == ABI_N32
746 #define MULTILIB_ABI_DEFAULT "mabi=n32"
747 #elif MIPS_ABI_DEFAULT == ABI_64
748 #define MULTILIB_ABI_DEFAULT "mabi=64"
749 #elif MIPS_ABI_DEFAULT == ABI_EABI
750 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
751 #endif
753 #ifndef MULTILIB_DEFAULTS
754 #define MULTILIB_DEFAULTS \
755 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
756 #endif
758 /* We must pass -EL to the linker by default for little endian embedded
759 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
760 linker will default to using big-endian output files. The OUTPUT_FORMAT
761 line must be in the linker script, otherwise -EB/-EL will not work. */
763 #ifndef ENDIAN_SPEC
764 #if TARGET_ENDIAN_DEFAULT == 0
765 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
766 #else
767 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
768 #endif
769 #endif
771 /* A spec condition that matches all non-mips16 -mips arguments. */
773 #define MIPS_ISA_LEVEL_OPTION_SPEC \
774 "mips1|mips2|mips3|mips4|mips32*|mips64*"
776 /* A spec condition that matches all non-mips16 architecture arguments. */
778 #define MIPS_ARCH_OPTION_SPEC \
779 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
781 /* A spec that infers a -mips argument from an -march argument. */
783 #define MIPS_ISA_LEVEL_SPEC \
784 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
785 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
786 %{march=mips2|march=r6000:-mips2} \
787 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
788 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
789 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
790 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
791 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
792 |march=34k*|march=74k*|march=m14k*|march=1004k* \
793 |march=interaptiv: -mips32r2} \
794 %{march=mips32r3: -mips32r3} \
795 %{march=mips32r5|march=p5600|march=m5100|march=m5101: -mips32r5} \
796 %{march=mips32r6: -mips32r6} \
797 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
798 |march=xlr: -mips64} \
799 %{march=mips64r2|march=loongson3a|march=gs464|march=gs464e|march=gs264e \
800 |march=octeon|march=xlp: -mips64r2} \
801 %{march=mips64r3: -mips64r3} \
802 %{march=mips64r5: -mips64r5} \
803 %{march=mips64r6|march=i6400|march=i6500|march=p6600: -mips64r6}}"
805 /* A spec that injects the default multilib ISA if no architecture is
806 specified. */
808 #define MIPS_DEFAULT_ISA_LEVEL_SPEC \
809 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
810 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
812 /* A spec that infers a -mhard-float or -msoft-float setting from an
813 -march argument. Note that soft-float and hard-float code are not
814 link-compatible. */
816 #define MIPS_ARCH_FLOAT_SPEC \
817 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
818 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
819 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
820 |march=m14k*|march=m5101|march=octeon|march=xlr: -msoft-float; \
821 march=*: -mhard-float}"
823 /* A spec condition that matches 32-bit options. It only works if
824 MIPS_ISA_LEVEL_SPEC has been applied. */
826 #define MIPS_32BIT_OPTION_SPEC \
827 "mips1|mips2|mips32*|mgp32"
829 /* A spec condition that matches architectures should be targeted with
830 o32 FPXX for compatibility reasons. */
831 #define MIPS_FPXX_OPTION_SPEC \
832 "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \
833 mips64|mips64r2|mips64r3|mips64r5"
835 /* Infer a -msynci setting from a -mips argument, on the assumption that
836 -msynci is desired where possible. */
837 #define MIPS_ISA_SYNCI_SPEC \
838 "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \
839 |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}"
841 /* Infer a -mnan=2008 setting from a -mips argument. */
842 #define MIPS_ISA_NAN2008_SPEC \
843 "%{mnan*:;mips32r6|mips64r6:-mnan=2008;march=m51*: \
844 %{!msoft-float:-mnan=2008}}"
846 #if (MIPS_ABI_DEFAULT == ABI_O64 \
847 || MIPS_ABI_DEFAULT == ABI_N32 \
848 || MIPS_ABI_DEFAULT == ABI_64)
849 #define OPT_ARCH64 "mabi=32|mgp32:;"
850 #define OPT_ARCH32 "mabi=32|mgp32"
851 #else
852 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
853 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
854 #endif
856 /* Support for a compile-time default CPU, et cetera. The rules are:
857 --with-arch is ignored if -march is specified or a -mips is specified
858 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
859 --with-tune is ignored if -mtune is specified; likewise
860 --with-tune-32 and --with-tune-64.
861 --with-abi is ignored if -mabi is specified.
862 --with-float is ignored if -mhard-float or -msoft-float are
863 specified.
864 --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are
865 specified.
866 --with-nan is ignored if -mnan is specified.
867 --with-fp-32 is ignored if -msoft-float, -msingle-float, -mmsa or -mfp are
868 specified.
869 --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg
870 or -mno-odd-spreg are specified.
871 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
872 specified. */
873 #define OPTION_DEFAULT_SPECS \
874 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
875 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
876 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
877 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
878 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
879 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
880 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
881 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
882 {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \
883 {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
884 {"fp_32", "%{" OPT_ARCH32 \
885 ":%{!msoft-float:%{!msingle-float:%{!mfp*:%{!mmsa:-mfp%(VALUE)}}}}}" }, \
886 {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \
887 "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \
888 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
889 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
890 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
891 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }, \
892 {"lxc1-sxc1", "%{!mlxc1-sxc1:%{!mno-lxc1-sxc1:-m%(VALUE)}}" }, \
893 {"madd4", "%{!mmadd4:%{!mno-madd4:-m%(VALUE)}}" } \
895 /* A spec that infers the:
896 -mnan=2008 setting from a -mips argument,
897 -mdsp setting from a -march argument.
898 -mloongson-mmi setting from a -march argument. */
899 #define BASE_DRIVER_SELF_SPECS \
900 MIPS_ISA_NAN2008_SPEC, \
901 MIPS_ASE_DSP_SPEC, \
902 MIPS_ASE_LOONGSON_MMI_SPEC, \
903 MIPS_ASE_LOONGSON_EXT_SPEC, \
904 MIPS_ASE_MSA_SPEC
907 #define MIPS_ASE_DSP_SPEC \
908 "%{!mno-dsp: \
909 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k* \
910 |march=interaptiv: -mdsp} \
911 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
913 #define MIPS_ASE_LOONGSON_MMI_SPEC \
914 "%{!mno-loongson-mmi: \
915 %{march=loongson2e|march=loongson2f|march=loongson3a: -mloongson-mmi}}"
917 #define MIPS_ASE_LOONGSON_EXT_SPEC \
918 "%{!mno-loongson-ext: \
919 %{march=loongson3a|march=gs464: -mloongson-ext} \
920 %{march=gs464e|march=gs264e: %{!mno-loongson-ext2: \
921 -mloongson-ext2 -mloongson-ext}}}"
923 #define MIPS_ASE_MSA_SPEC \
924 "%{!mno-msa: \
925 %{march=gs264e: -mmsa}}"
927 #define DRIVER_SELF_SPECS \
928 MIPS_ISA_LEVEL_SPEC, \
929 BASE_DRIVER_SELF_SPECS
931 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
932 && ISA_HAS_COND_TRAP)
934 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
936 /* True if the ABI can only work with 64-bit integer registers. We
937 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
938 otherwise floating-point registers must also be 64-bit. */
939 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
941 /* Likewise for 32-bit regs. */
942 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
944 /* True if the file format uses 64-bit symbols. At present, this is
945 only true for n64, which uses 64-bit ELF. */
946 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
948 /* True if symbols are 64 bits wide. This is usually determined by
949 the ABI's file format, but it can be overridden by -msym32. Note that
950 overriding the size with -msym32 changes the ABI of relocatable objects,
951 although it doesn't change the ABI of a fully-linked object. */
952 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
953 && Pmode == DImode \
954 && !TARGET_SYM32)
956 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
957 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
958 || ISA_MIPS4 \
959 || ISA_MIPS64 \
960 || ISA_MIPS64R2 \
961 || ISA_MIPS64R3 \
962 || ISA_MIPS64R5 \
963 || ISA_MIPS64R6)
965 #define ISA_HAS_JR (mips_isa_rev <= 5)
967 #define ISA_HAS_DELAY_SLOTS 1
969 #define ISA_HAS_COMPACT_BRANCHES (mips_isa_rev >= 6)
971 /* ISA has branch likely instructions (e.g. mips2). */
972 /* Disable branchlikely for tx39 until compare rewrite. They haven't
973 been generated up to this point. */
974 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1 && mips_isa_rev <= 5)
976 /* ISA has 32 single-precision registers. */
977 #define ISA_HAS_ODD_SPREG ((mips_isa_rev >= 1 \
978 && !TARGET_GS464) \
979 || TARGET_FLOAT64 \
980 || TARGET_MIPS5900)
982 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
983 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
984 || TARGET_MIPS5400 \
985 || TARGET_MIPS5500 \
986 || TARGET_MIPS5900 \
987 || TARGET_MIPS7000 \
988 || TARGET_MIPS9000 \
989 || TARGET_MAD \
990 || (mips_isa_rev >= 1 \
991 && mips_isa_rev <= 5)) \
992 && !TARGET_MIPS16)
994 /* ISA has a three-operand multiplication instruction. */
995 #define ISA_HAS_DMUL3 (TARGET_64BIT \
996 && TARGET_OCTEON \
997 && !TARGET_MIPS16)
999 /* ISA has HI and LO registers. */
1000 #define ISA_HAS_HILO (mips_isa_rev <= 5)
1002 /* ISA supports instructions DMULT and DMULTU. */
1003 #define ISA_HAS_DMULT (TARGET_64BIT \
1004 && !TARGET_MIPS5900 \
1005 && mips_isa_rev <= 5)
1007 /* ISA supports instructions MULT and MULTU. */
1008 #define ISA_HAS_MULT (mips_isa_rev <= 5)
1010 /* ISA supports instructions MUL, MULU, MUH, MUHU. */
1011 #define ISA_HAS_R6MUL (mips_isa_rev >= 6)
1013 /* ISA supports instructions DMUL, DMULU, DMUH, DMUHU. */
1014 #define ISA_HAS_R6DMUL (TARGET_64BIT && mips_isa_rev >= 6)
1016 /* For Loongson, it is preferable to use the Loongson-specific division and
1017 modulo instructions instead of the regular (D)DIV(U) instruction,
1018 because the former are faster and can also have the effect of reducing
1019 code size. */
1020 #define ISA_AVOID_DIV_HILO ((TARGET_LOONGSON_2EF \
1021 || TARGET_GS464) \
1022 && !TARGET_MIPS16)
1024 /* ISA supports instructions DDIV and DDIVU. */
1025 #define ISA_HAS_DDIV (TARGET_64BIT \
1026 && !TARGET_MIPS5900 \
1027 && !ISA_AVOID_DIV_HILO \
1028 && mips_isa_rev <= 5)
1030 /* ISA supports instructions DIV and DIVU.
1031 This is always true, but the macro is needed for ISA_HAS_<D>DIV
1032 in mips.md. */
1033 #define ISA_HAS_DIV (!ISA_AVOID_DIV_HILO \
1034 && mips_isa_rev <= 5)
1036 /* ISA supports instructions DIV, DIVU, MOD and MODU. */
1037 #define ISA_HAS_R6DIV (mips_isa_rev >= 6)
1039 /* ISA supports instructions DDIV, DDIVU, DMOD and DMODU. */
1040 #define ISA_HAS_R6DDIV (TARGET_64BIT && mips_isa_rev >= 6)
1042 /* ISA has the floating-point conditional move instructions introduced
1043 in mips4. */
1044 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
1045 || (mips_isa_rev >= 1 \
1046 && mips_isa_rev <= 5)) \
1047 && !TARGET_MIPS5500 \
1048 && !TARGET_MIPS16)
1050 /* ISA has the integer conditional move instructions introduced in mips4 and
1051 ST Loongson 2E/2F. */
1052 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
1053 || TARGET_MIPS5900 \
1054 || TARGET_LOONGSON_2EF)
1056 /* ISA has LDC1 and SDC1. */
1057 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
1058 && !TARGET_MIPS5900 \
1059 && !TARGET_MIPS16)
1061 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
1062 branch on CC, and move (both FP and non-FP) on CC. */
1063 #define ISA_HAS_8CC (ISA_MIPS4 \
1064 || (mips_isa_rev >= 1 \
1065 && mips_isa_rev <= 5))
1067 /* ISA has the FP condition code instructions that store the flag in an
1068 FP register. */
1069 #define ISA_HAS_CCF (mips_isa_rev >= 6)
1071 #define ISA_HAS_SEL (mips_isa_rev >= 6)
1073 /* This is a catch all for other mips4 instructions: indexed load, the
1074 FP madd and msub instructions, and the FP recip and recip sqrt
1075 instructions. Note that this macro should only be used by other
1076 ISA_HAS_* macros. */
1077 #define ISA_HAS_FP4 ((ISA_MIPS4 \
1078 || ISA_MIPS64 \
1079 || (mips_isa_rev >= 2 \
1080 && mips_isa_rev <= 5)) \
1081 && !TARGET_MIPS16)
1083 /* ISA has floating-point indexed load and store instructions
1084 (LWXC1, LDXC1, SWXC1 and SDXC1). */
1085 #define ISA_HAS_LXC1_SXC1 (ISA_HAS_FP4 \
1086 && mips_lxc1_sxc1)
1088 /* ISA has paired-single instructions. */
1089 #define ISA_HAS_PAIRED_SINGLE ((ISA_MIPS64 \
1090 || (mips_isa_rev >= 2 \
1091 && mips_isa_rev <= 5)) \
1092 && !TARGET_OCTEON)
1094 /* ISA has conditional trap instructions. */
1095 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
1096 && !TARGET_MIPS16)
1098 /* ISA has conditional trap with immediate instructions. */
1099 #define ISA_HAS_COND_TRAPI (!ISA_MIPS1 \
1100 && mips_isa_rev <= 5 \
1101 && !TARGET_MIPS16)
1103 /* ISA has integer multiply-accumulate instructions, madd and msub. */
1104 #define ISA_HAS_MADD_MSUB (mips_isa_rev >= 1 \
1105 && mips_isa_rev <= 5)
1107 /* Integer multiply-accumulate instructions should be generated. */
1108 #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
1110 /* ISA has 4 operand fused madd instructions of the form
1111 'd = [+-] (a * b [+-] c)'. */
1112 #define ISA_HAS_FUSED_MADD4 (mips_madd4 \
1113 && (TARGET_MIPS8000 \
1114 || TARGET_GS464 \
1115 || TARGET_GS464E \
1116 || TARGET_GS264E))
1118 /* ISA has 4 operand unfused madd instructions of the form
1119 'd = [+-] (a * b [+-] c)'. */
1120 #define ISA_HAS_UNFUSED_MADD4 (mips_madd4 \
1121 && ISA_HAS_FP4 \
1122 && !TARGET_MIPS8000 \
1123 && !TARGET_GS464 \
1124 && !TARGET_GS464E \
1125 && !TARGET_GS264E)
1127 /* ISA has 3 operand r6 fused madd instructions of the form
1128 'c = c [+-] (a * b)'. */
1129 #define ISA_HAS_FUSED_MADDF (mips_isa_rev >= 6)
1131 /* ISA has 3 operand loongson fused madd instructions of the form
1132 'c = [+-] (a * b [+-] c)'. */
1133 #define ISA_HAS_FUSED_MADD3 TARGET_LOONGSON_2EF
1135 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
1136 MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
1137 doubles are stored in pairs of FPRs, so for safety's sake, we apply
1138 this restriction to the MIPS IV ISA too. */
1139 #define ISA_HAS_FP_RECIP_RSQRT(MODE) \
1140 (((ISA_HAS_FP4 \
1141 && ((MODE) == SFmode \
1142 || ((TARGET_FLOAT64 \
1143 || mips_isa_rev >= 2) \
1144 && (MODE) == DFmode))) \
1145 || (((MODE) == SFmode \
1146 || (MODE) == DFmode) \
1147 && (mips_isa_rev >= 6)) \
1148 || (TARGET_SB1 \
1149 && (MODE) == V2SFmode)) \
1150 && !TARGET_MIPS16)
1152 #define ISA_HAS_LWL_LWR (mips_isa_rev <= 5 && !TARGET_MIPS16)
1154 #define ISA_HAS_IEEE_754_LEGACY (mips_isa_rev <= 5)
1156 #define ISA_HAS_IEEE_754_2008 (mips_isa_rev >= 2)
1158 /* ISA has count leading zeroes/ones instruction (not implemented). */
1159 #define ISA_HAS_CLZ_CLO (mips_isa_rev >= 1 && !TARGET_MIPS16)
1161 /* ISA has count trailing zeroes/ones instruction. */
1162 #define ISA_HAS_CTZ_CTO (TARGET_LOONGSON_EXT2)
1164 /* ISA has three operand multiply instructions that put
1165 the high part in an accumulator: mulhi or mulhiu. */
1166 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
1167 || TARGET_MIPS5500 \
1168 || TARGET_SR71K) \
1169 && !TARGET_MIPS16)
1171 /* ISA has three operand multiply instructions that negate the
1172 result and put the result in an accumulator. */
1173 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
1174 || TARGET_MIPS5500 \
1175 || TARGET_SR71K) \
1176 && !TARGET_MIPS16)
1178 /* ISA has three operand multiply instructions that subtract the
1179 result from a 4th operand and put the result in an accumulator. */
1180 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
1181 || TARGET_MIPS5500 \
1182 || TARGET_SR71K) \
1183 && !TARGET_MIPS16)
1185 /* ISA has three operand multiply instructions that add the result
1186 to a 4th operand and put the result in an accumulator. */
1187 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
1188 || TARGET_MIPS4130 \
1189 || TARGET_MIPS5400 \
1190 || TARGET_MIPS5500 \
1191 || TARGET_SR71K) \
1192 && !TARGET_MIPS16)
1194 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
1195 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
1196 || TARGET_MIPS4130) \
1197 && !TARGET_MIPS16)
1199 /* ISA has the "ror" (rotate right) instructions. */
1200 #define ISA_HAS_ROR ((mips_isa_rev >= 2 \
1201 || TARGET_MIPS5400 \
1202 || TARGET_MIPS5500 \
1203 || TARGET_SR71K \
1204 || TARGET_SMARTMIPS) \
1205 && !TARGET_MIPS16)
1207 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
1208 64-bit targets also provide DSBH and DSHD. */
1209 #define ISA_HAS_WSBH (mips_isa_rev >= 2 && !TARGET_MIPS16)
1211 /* ISA has data prefetch instructions. This controls use of 'pref'. */
1212 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
1213 || TARGET_LOONGSON_2EF \
1214 || TARGET_MIPS5900 \
1215 || mips_isa_rev >= 1) \
1216 && !TARGET_MIPS16)
1218 /* ISA has data prefetch, LL and SC with limited 9-bit displacement. */
1219 #define ISA_HAS_9BIT_DISPLACEMENT (mips_isa_rev >= 6)
1221 /* ISA has data indexed prefetch instructions. This controls use of
1222 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1223 (prefx is a cop1x instruction, so can only be used if FP is
1224 enabled.) */
1225 #define ISA_HAS_PREFETCHX (ISA_HAS_FP4 \
1226 || TARGET_LOONGSON_EXT \
1227 || TARGET_LOONGSON_EXT2)
1229 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1230 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
1231 also requires TARGET_DOUBLE_FLOAT. */
1232 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
1234 /* ISA includes the MIPS32r2 seb and seh instructions. */
1235 #define ISA_HAS_SEB_SEH (mips_isa_rev >= 2 && !TARGET_MIPS16)
1237 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
1238 #define ISA_HAS_EXT_INS (mips_isa_rev >= 2 && !TARGET_MIPS16)
1240 /* ISA has instructions for accessing top part of 64-bit fp regs. */
1241 #define ISA_HAS_MXHC1 (!TARGET_FLOAT32 \
1242 && mips_isa_rev >= 2)
1244 /* ISA has lwxs instruction (load w/scaled index address. */
1245 #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1246 && !TARGET_MIPS16)
1248 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1249 #define ISA_HAS_LBX (TARGET_OCTEON2)
1250 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1251 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1252 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1253 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1254 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1255 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1256 && TARGET_64BIT)
1258 /* The DSP ASE is available. */
1259 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1261 /* Revision 2 of the DSP ASE is available. */
1262 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1264 /* The MSA ASE is available. */
1265 #define ISA_HAS_MSA (TARGET_MSA && !TARGET_MIPS16)
1267 /* True if the result of a load is not available to the next instruction.
1268 A nop will then be needed between instructions like "lw $4,..."
1269 and "addiu $4,$4,1". */
1270 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1271 && !TARGET_MIPS3900 \
1272 && !TARGET_MIPS5900 \
1273 && !TARGET_MIPS16 \
1274 && !TARGET_MICROMIPS)
1276 /* Likewise mtc1 and mfc1. */
1277 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1278 && !TARGET_MIPS5900 \
1279 && !TARGET_LOONGSON_2EF)
1281 /* Likewise floating-point comparisons. */
1282 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1283 && !TARGET_MIPS5900 \
1284 && !TARGET_LOONGSON_2EF)
1286 /* True if mflo and mfhi can be immediately followed by instructions
1287 which write to the HI and LO registers.
1289 According to MIPS specifications, MIPS ISAs I, II, and III need
1290 (at least) two instructions between the reads of HI/LO and
1291 instructions which write them, and later ISAs do not. Contradicting
1292 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1293 the UM for the NEC Vr5000) document needing the instructions between
1294 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1295 MIPS64 and later ISAs to have the interlocks, plus any specific
1296 earlier-ISA CPUs for which CPU documentation declares that the
1297 instructions are really interlocked. */
1298 #define ISA_HAS_HILO_INTERLOCKS (mips_isa_rev >= 1 \
1299 || TARGET_MIPS5500 \
1300 || TARGET_MIPS5900 \
1301 || TARGET_LOONGSON_2EF)
1303 /* ISA includes synci, jr.hb and jalr.hb. */
1304 #define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
1306 /* ISA includes sync. */
1307 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1308 #define GENERATE_SYNC \
1309 (target_flags_explicit & MASK_LLSC \
1310 ? TARGET_LLSC && !TARGET_MIPS16 \
1311 : ISA_HAS_SYNC)
1313 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1314 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1315 instructions. */
1316 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1317 #define GENERATE_LL_SC \
1318 (target_flags_explicit & MASK_LLSC \
1319 ? TARGET_LLSC && !TARGET_MIPS16 \
1320 : ISA_HAS_LL_SC)
1322 #define ISA_HAS_SWAP (TARGET_XLP)
1323 #define ISA_HAS_LDADD (TARGET_XLP)
1325 /* ISA includes the baddu instruction. */
1326 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1328 /* ISA includes the bbit* instructions. */
1329 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1331 /* ISA includes the cins instruction. */
1332 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1334 /* ISA includes the exts instruction. */
1335 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1337 /* ISA includes the seq and sne instructions. */
1338 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1340 /* ISA includes the pop instruction. */
1341 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1343 /* The CACHE instruction is available in non-MIPS16 code. */
1344 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1346 /* The CACHE instruction is available. */
1347 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1349 /* Tell collect what flags to pass to nm. */
1350 #ifndef NM_FLAGS
1351 #define NM_FLAGS "-Bn"
1352 #endif
1355 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1356 the assembler. It may be overridden by subtargets.
1358 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1359 COFF debugging info. */
1361 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1362 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1363 %{g} %{g0} %{g1} %{g2} %{g3} \
1364 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1365 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1366 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3}"
1367 #endif
1369 /* FP_ASM_SPEC represents the floating-point options that must be passed
1370 to the assembler when FPXX support exists. Prior to that point the
1371 assembler could accept the options but were not required for
1372 correctness. We only add the options when absolutely necessary
1373 because passing -msoft-float to the assembler will cause it to reject
1374 all hard-float instructions which may require some user code to be
1375 updated. */
1377 #ifdef HAVE_AS_DOT_MODULE
1378 #define FP_ASM_SPEC "\
1379 %{mhard-float} %{msoft-float} \
1380 %{msingle-float} %{mdouble-float}"
1381 #else
1382 #define FP_ASM_SPEC
1383 #endif
1385 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1386 overridden by subtargets. */
1388 #ifndef SUBTARGET_ASM_SPEC
1389 #define SUBTARGET_ASM_SPEC ""
1390 #endif
1392 #undef ASM_SPEC
1393 #define ASM_SPEC "\
1394 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1395 %{mips32*} %{mips64*} \
1396 %{mips16} %{mno-mips16:-no-mips16} \
1397 %{mmicromips} %{mno-micromips} \
1398 %{mips3d} %{mno-mips3d:-no-mips3d} \
1399 %{mdmx} %{mno-mdmx:-no-mdmx} \
1400 %{mdsp} %{mno-dsp} \
1401 %{mdspr2} %{mno-dspr2} \
1402 %{mmcu} %{mno-mcu} \
1403 %{meva} %{mno-eva} \
1404 %{mvirt} %{mno-virt} \
1405 %{mxpa} %{mno-xpa} \
1406 %{mcrc} %{mno-crc} \
1407 %{mginv} %{mno-ginv} \
1408 %{mmsa} %{mno-msa} \
1409 %{mloongson-mmi} %{mno-loongson-mmi} \
1410 %{mloongson-ext} %{mno-loongson-ext} \
1411 %{mloongson-ext2} %{mno-loongson-ext2} \
1412 %{msmartmips} %{mno-smartmips} \
1413 %{mmt} %{mno-mt} \
1414 %{mfix-r5900} %{mno-fix-r5900} \
1415 %{mfix-rm7000} %{mno-fix-rm7000} \
1416 %{mfix-vr4120} %{mfix-vr4130} \
1417 %{mfix-24k} \
1418 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1419 %(subtarget_asm_debugging_spec) \
1420 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1421 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1422 %{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \
1423 %{modd-spreg} %{mno-odd-spreg} \
1424 %{mshared} %{mno-shared} \
1425 %{msym32} %{mno-sym32} \
1426 %{mtune=*}" \
1427 FP_ASM_SPEC "\
1428 %(subtarget_asm_spec)"
1430 /* Extra switches sometimes passed to the linker. */
1432 #ifndef LINK_SPEC
1433 #define LINK_SPEC "\
1434 %(endian_spec) \
1435 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1436 %{shared}"
1437 #endif /* LINK_SPEC defined */
1440 /* Specs for the compiler proper */
1442 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1443 overridden by subtargets. */
1444 #ifndef SUBTARGET_CC1_SPEC
1445 #define SUBTARGET_CC1_SPEC ""
1446 #endif
1448 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1450 #undef CC1_SPEC
1451 #define CC1_SPEC "\
1452 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1453 %(subtarget_cc1_spec)"
1455 /* Preprocessor specs. */
1457 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1458 overridden by subtargets. */
1459 #ifndef SUBTARGET_CPP_SPEC
1460 #define SUBTARGET_CPP_SPEC ""
1461 #endif
1463 #define CPP_SPEC "%(subtarget_cpp_spec)"
1465 /* This macro defines names of additional specifications to put in the specs
1466 that can be used in various specifications like CC1_SPEC. Its definition
1467 is an initializer with a subgrouping for each command option.
1469 Each subgrouping contains a string constant, that defines the
1470 specification name, and a string constant that used by the GCC driver
1471 program.
1473 Do not define this macro if it does not need to do anything. */
1475 #define EXTRA_SPECS \
1476 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1477 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1478 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1479 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1480 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1481 { "endian_spec", ENDIAN_SPEC }, \
1482 SUBTARGET_EXTRA_SPECS
1484 #ifndef SUBTARGET_EXTRA_SPECS
1485 #define SUBTARGET_EXTRA_SPECS
1486 #endif
1488 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1489 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1491 #ifndef PREFERRED_DEBUGGING_TYPE
1492 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1493 #endif
1495 /* The size of DWARF addresses should be the same as the size of symbols
1496 in the target file format. They shouldn't depend on things like -msym32,
1497 because many DWARF consumers do not allow the mixture of address sizes
1498 that one would then get from linking -msym32 code with -msym64 code.
1500 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1501 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1502 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1504 /* By default, turn on GDB extensions. */
1505 #define DEFAULT_GDB_EXTENSIONS 1
1507 /* Registers may have a prefix which can be ignored when matching
1508 user asm and register definitions. */
1509 #ifndef REGISTER_PREFIX
1510 #define REGISTER_PREFIX "$"
1511 #endif
1513 /* Local compiler-generated symbols must have a prefix that the assembler
1514 understands. By default, this is $, although some targets (e.g.,
1515 NetBSD-ELF) need to override this. */
1517 #ifndef LOCAL_LABEL_PREFIX
1518 #define LOCAL_LABEL_PREFIX "$"
1519 #endif
1521 /* By default on the mips, external symbols do not have an underscore
1522 prepended, but some targets (e.g., NetBSD) require this. */
1524 #ifndef USER_LABEL_PREFIX
1525 #define USER_LABEL_PREFIX ""
1526 #endif
1528 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1529 since the length can run past this up to a continuation point. */
1530 #undef DBX_CONTIN_LENGTH
1531 #define DBX_CONTIN_LENGTH 1500
1533 /* How to renumber registers for dbx and gdb. */
1534 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1536 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1537 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1539 /* The DWARF 2 CFA column which tracks the return address. */
1540 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1542 /* Before the prologue, RA lives in r31. */
1543 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)
1545 /* Describe how we implement __builtin_eh_return. */
1546 #define EH_RETURN_DATA_REGNO(N) \
1547 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1549 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1551 #define EH_USES(N) mips_eh_uses (N)
1553 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1554 The default for this in 64-bit mode is 8, which causes problems with
1555 SFmode register saves. */
1556 #define DWARF_CIE_DATA_ALIGNMENT -4
1558 /* Correct the offset of automatic variables and arguments. Note that
1559 the MIPS debug format wants all automatic variables and arguments
1560 to be in terms of the virtual frame pointer (stack pointer before
1561 any adjustment in the function), while the MIPS 3.0 linker wants
1562 the frame pointer to be the stack pointer after the initial
1563 adjustment. */
1565 #define DEBUGGER_AUTO_OFFSET(X) \
1566 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1567 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1568 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1570 /* Target machine storage layout */
1572 #define BITS_BIG_ENDIAN 0
1573 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1574 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1576 #define MAX_BITS_PER_WORD 64
1578 /* Width of a word, in units (bytes). */
1579 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1580 #ifndef IN_LIBGCC2
1581 #define MIN_UNITS_PER_WORD 4
1582 #endif
1584 /* Width of a MSA vector register in bytes. */
1585 #define UNITS_PER_MSA_REG 16
1586 /* Width of a MSA vector register in bits. */
1587 #define BITS_PER_MSA_REG (UNITS_PER_MSA_REG * BITS_PER_UNIT)
1589 /* For MIPS, width of a floating point register. */
1590 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1592 /* The number of consecutive floating-point registers needed to store the
1593 largest format supported by the FPU. */
1594 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1596 /* The number of consecutive floating-point registers needed to store the
1597 smallest format supported by the FPU. */
1598 #define MIN_FPRS_PER_FMT \
1599 (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT)
1601 /* The largest size of value that can be held in floating-point
1602 registers and moved with a single instruction. */
1603 #define UNITS_PER_HWFPVALUE \
1604 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1606 /* The largest size of value that can be held in floating-point
1607 registers. */
1608 #define UNITS_PER_FPVALUE \
1609 (TARGET_SOFT_FLOAT_ABI ? 0 \
1610 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1611 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1613 /* The number of bytes in a double. */
1614 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1616 /* Set the sizes of the core types. */
1617 #define SHORT_TYPE_SIZE 16
1618 #define INT_TYPE_SIZE 32
1619 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1620 #define LONG_LONG_TYPE_SIZE 64
1622 #define FLOAT_TYPE_SIZE 32
1623 #define DOUBLE_TYPE_SIZE 64
1624 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1626 /* Define the sizes of fixed-point types. */
1627 #define SHORT_FRACT_TYPE_SIZE 8
1628 #define FRACT_TYPE_SIZE 16
1629 #define LONG_FRACT_TYPE_SIZE 32
1630 #define LONG_LONG_FRACT_TYPE_SIZE 64
1632 #define SHORT_ACCUM_TYPE_SIZE 16
1633 #define ACCUM_TYPE_SIZE 32
1634 #define LONG_ACCUM_TYPE_SIZE 64
1635 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1636 doesn't support 128-bit integers for MIPS32 currently. */
1637 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1639 /* long double is not a fixed mode, but the idea is that, if we
1640 support long double, we also want a 128-bit integer type. */
1641 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1643 /* Width in bits of a pointer. */
1644 #ifndef POINTER_SIZE
1645 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1646 #endif
1648 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1649 #define PARM_BOUNDARY BITS_PER_WORD
1651 /* Allocation boundary (in *bits*) for the code of a function. */
1652 #define FUNCTION_BOUNDARY 32
1654 /* Alignment of field after `int : 0' in a structure. */
1655 #define EMPTY_FIELD_BOUNDARY 32
1657 /* Every structure's size must be a multiple of this. */
1658 /* 8 is observed right on a DECstation and on riscos 4.02. */
1659 #define STRUCTURE_SIZE_BOUNDARY 8
1661 /* There is no point aligning anything to a rounder boundary than
1662 LONG_DOUBLE_TYPE_SIZE, unless under MSA the bigggest alignment is
1663 BITS_PER_MSA_REG. */
1664 #define BIGGEST_ALIGNMENT \
1665 (ISA_HAS_MSA ? BITS_PER_MSA_REG : LONG_DOUBLE_TYPE_SIZE)
1667 /* All accesses must be aligned. */
1668 #define STRICT_ALIGNMENT 1
1670 /* Define this if you wish to imitate the way many other C compilers
1671 handle alignment of bitfields and the structures that contain
1672 them.
1674 The behavior is that the type written for a bit-field (`int',
1675 `short', or other integer type) imposes an alignment for the
1676 entire structure, as if the structure really did contain an
1677 ordinary field of that type. In addition, the bit-field is placed
1678 within the structure so that it would fit within such a field,
1679 not crossing a boundary for it.
1681 Thus, on most machines, a bit-field whose type is written as `int'
1682 would not cross a four-byte boundary, and would force four-byte
1683 alignment for the whole structure. (The alignment used may not
1684 be four bytes; it is controlled by the other alignment
1685 parameters.)
1687 If the macro is defined, its definition should be a C expression;
1688 a nonzero value for the expression enables this behavior. */
1690 #define PCC_BITFIELD_TYPE_MATTERS 1
1692 /* If defined, a C expression to compute the alignment for a static
1693 variable. TYPE is the data type, and ALIGN is the alignment that
1694 the object would ordinarily have. The value of this macro is used
1695 instead of that alignment to align the object.
1697 If this macro is not defined, then ALIGN is used.
1699 One use of this macro is to increase alignment of medium-size
1700 data to make it all fit in fewer cache lines. Another is to
1701 cause character arrays to be word-aligned so that `strcpy' calls
1702 that copy constants to character arrays can be done inline. */
1704 #undef DATA_ALIGNMENT
1705 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1706 ((((ALIGN) < BITS_PER_WORD) \
1707 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1708 || TREE_CODE (TYPE) == UNION_TYPE \
1709 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1711 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1712 character arrays to be word-aligned so that `strcpy' calls that copy
1713 constants to character arrays can be done inline, and 'strcmp' can be
1714 optimised to use word loads. */
1715 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1716 DATA_ALIGNMENT (TYPE, ALIGN)
1718 #define PAD_VARARGS_DOWN \
1719 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1721 /* Define if operations between registers always perform the operation
1722 on the full register even if a narrower mode is specified. */
1723 #define WORD_REGISTER_OPERATIONS 1
1725 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1726 moves. All other references are zero extended. */
1727 #define LOAD_EXTEND_OP(MODE) \
1728 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1729 ? SIGN_EXTEND : ZERO_EXTEND)
1731 /* Define this macro if it is advisable to hold scalars in registers
1732 in a wider mode than that declared by the program. In such cases,
1733 the value is constrained to be within the bounds of the declared
1734 type, but kept valid in the wider mode. The signedness of the
1735 extension may differ from that of the type. */
1737 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1738 if (GET_MODE_CLASS (MODE) == MODE_INT \
1739 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1741 if ((MODE) == SImode) \
1742 (UNSIGNEDP) = 0; \
1743 (MODE) = Pmode; \
1746 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1747 Extensions of pointers to word_mode must be signed. */
1748 #define POINTERS_EXTEND_UNSIGNED false
1750 /* Define if loading short immediate values into registers sign extends. */
1751 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1753 /* The [d]clz instructions have the natural values at 0. */
1755 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1756 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1758 /* Standard register usage. */
1760 /* Number of hardware registers. We have:
1762 - 32 integer registers
1763 - 32 floating point registers
1764 - 8 condition code registers
1765 - 2 accumulator registers (hi and lo)
1766 - 32 registers each for coprocessors 0, 2 and 3
1767 - 4 fake registers:
1768 - ARG_POINTER_REGNUM
1769 - FRAME_POINTER_REGNUM
1770 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1771 - CPRESTORE_SLOT_REGNUM
1772 - 2 dummy entries that were used at various times in the past.
1773 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1774 - 6 DSP control registers */
1776 #define FIRST_PSEUDO_REGISTER 188
1778 /* By default, fix the kernel registers ($26 and $27), the global
1779 pointer ($28) and the stack pointer ($29). This can change
1780 depending on the command-line options.
1782 Regarding coprocessor registers: without evidence to the contrary,
1783 it's best to assume that each coprocessor register has a unique
1784 use. This can be overridden, in, e.g., mips_option_override or
1785 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1786 inappropriate for a particular target. */
1788 #define FIXED_REGISTERS \
1790 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1791 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1792 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1793 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1794 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1795 /* COP0 registers */ \
1796 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1797 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1798 /* COP2 registers */ \
1799 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1800 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1801 /* COP3 registers */ \
1802 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1803 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1804 /* 6 DSP accumulator registers & 6 control registers */ \
1805 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1809 /* Set up this array for o32 by default.
1811 Note that we don't mark $31 as a call-clobbered register. The idea is
1812 that it's really the call instructions themselves which clobber $31.
1813 We don't care what the called function does with it afterwards.
1815 This approach makes it easier to implement sibcalls. Unlike normal
1816 calls, sibcalls don't clobber $31, so the register reaches the
1817 called function in tact. EPILOGUE_USES says that $31 is useful
1818 to the called function. */
1820 #define CALL_REALLY_USED_REGISTERS \
1821 { /* General registers. */ \
1822 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1823 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1824 /* Floating-point registers. */ \
1825 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1826 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1827 /* Others. */ \
1828 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1829 /* COP0 registers */ \
1830 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1831 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1832 /* COP2 registers */ \
1833 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1834 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1835 /* COP3 registers */ \
1836 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1837 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1838 /* 6 DSP accumulator registers & 6 control registers */ \
1839 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1842 /* Internal macros to classify a register number as to whether it's a
1843 general purpose register, a floating point register, a
1844 multiply/divide register, or a status register. */
1846 #define GP_REG_FIRST 0
1847 #define GP_REG_LAST 31
1848 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1849 #define GP_DBX_FIRST 0
1850 #define K0_REG_NUM (GP_REG_FIRST + 26)
1851 #define K1_REG_NUM (GP_REG_FIRST + 27)
1852 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1854 #define FP_REG_FIRST 32
1855 #define FP_REG_LAST 63
1856 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1857 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1859 #define MD_REG_FIRST 64
1860 #define MD_REG_LAST 65
1861 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1862 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1864 #define MSA_REG_FIRST FP_REG_FIRST
1865 #define MSA_REG_LAST FP_REG_LAST
1866 #define MSA_REG_NUM FP_REG_NUM
1868 /* The DWARF 2 CFA column which tracks the return address from a
1869 signal handler context. This means that to maintain backwards
1870 compatibility, no hard register can be assigned this column if it
1871 would need to be handled by the DWARF unwinder. */
1872 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1874 #define ST_REG_FIRST 67
1875 #define ST_REG_LAST 74
1876 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1879 /* FIXME: renumber. */
1880 #define COP0_REG_FIRST 80
1881 #define COP0_REG_LAST 111
1882 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1884 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1885 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1886 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1888 #define COP2_REG_FIRST 112
1889 #define COP2_REG_LAST 143
1890 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1892 #define COP3_REG_FIRST 144
1893 #define COP3_REG_LAST 175
1894 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1896 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1897 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1898 #define ALL_COP_REG_LAST COP3_REG_LAST
1899 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1901 #define DSP_ACC_REG_FIRST 176
1902 #define DSP_ACC_REG_LAST 181
1903 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1905 #define AT_REGNUM (GP_REG_FIRST + 1)
1906 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1907 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1909 /* A few bitfield locations for the coprocessor registers. */
1910 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1911 the cause register for the EIC interrupt mode. */
1912 #define CAUSE_IPL 10
1913 /* COP1 Enable is at bit 29 of the status register. */
1914 #define SR_COP1 29
1915 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1916 #define SR_IPL 10
1917 /* Interrupt masks start with IM0 at bit 8 to IM7 at bit 15 of the status
1918 register. */
1919 #define SR_IM0 8
1920 /* Exception Level is at bit 1 of the status register. */
1921 #define SR_EXL 1
1922 /* Interrupt Enable is at bit 0 of the status register. */
1923 #define SR_IE 0
1925 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1926 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1927 should be used instead. */
1928 #define FPSW_REGNUM ST_REG_FIRST
1930 #define GP_REG_P(REGNO) \
1931 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1932 #define M16_REG_P(REGNO) \
1933 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1934 #define M16STORE_REG_P(REGNO) \
1935 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1936 #define FP_REG_P(REGNO) \
1937 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1938 #define MD_REG_P(REGNO) \
1939 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1940 #define ST_REG_P(REGNO) \
1941 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1942 #define COP0_REG_P(REGNO) \
1943 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1944 #define COP2_REG_P(REGNO) \
1945 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1946 #define COP3_REG_P(REGNO) \
1947 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1948 #define ALL_COP_REG_P(REGNO) \
1949 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1950 /* Test if REGNO is one of the 6 new DSP accumulators. */
1951 #define DSP_ACC_REG_P(REGNO) \
1952 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1953 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1954 #define ACC_REG_P(REGNO) \
1955 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1956 #define MSA_REG_P(REGNO) \
1957 ((unsigned int) ((int) (REGNO) - MSA_REG_FIRST) < MSA_REG_NUM)
1959 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1960 #define MSA_REG_RTX_P(X) (REG_P (X) && MSA_REG_P (REGNO (X)))
1962 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1963 to initialize the mips16 gp pseudo register. */
1964 #define CONST_GP_P(X) \
1965 (GET_CODE (X) == CONST \
1966 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1967 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1969 /* Return coprocessor number from register number. */
1971 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1972 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1973 : COP3_REG_P (REGNO) ? '3' : '?')
1976 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
1977 mips_hard_regno_rename_ok (OLD_REG, NEW_REG)
1979 /* Select a register mode required for caller save of hard regno REGNO. */
1980 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1981 mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
1983 /* Register to use for pushing function arguments. */
1984 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1986 /* These two registers don't really exist: they get eliminated to either
1987 the stack or hard frame pointer. */
1988 #define ARG_POINTER_REGNUM 77
1989 #define FRAME_POINTER_REGNUM 78
1991 /* $30 is not available on the mips16, so we use $17 as the frame
1992 pointer. */
1993 #define HARD_FRAME_POINTER_REGNUM \
1994 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1996 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1997 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1999 /* Register in which static-chain is passed to a function. */
2000 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
2002 /* Registers used as temporaries in prologue/epilogue code:
2004 - If a MIPS16 PIC function needs access to _gp, it first loads
2005 the value into MIPS16_PIC_TEMP and then copies it to $gp.
2007 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
2008 register. The register must not conflict with MIPS16_PIC_TEMP.
2010 - If we aren't generating MIPS16 code, the prologue can also use
2011 MIPS_PROLOGUE_TEMP2 as a general temporary register.
2013 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
2014 register.
2016 If we're generating MIPS16 code, these registers must come from the
2017 core set of 8. The prologue registers mustn't conflict with any
2018 incoming arguments, the static chain pointer, or the frame pointer.
2019 The epilogue temporary mustn't conflict with the return registers,
2020 the PIC call register ($25), the frame pointer, the EH stack adjustment,
2021 or the EH data registers.
2023 If we're generating interrupt handlers, we use K0 as a temporary register
2024 in prologue/epilogue code. */
2026 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
2027 #define MIPS_PROLOGUE_TEMP_REGNUM \
2028 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
2029 #define MIPS_PROLOGUE_TEMP2_REGNUM \
2030 (TARGET_MIPS16 \
2031 ? (gcc_unreachable (), INVALID_REGNUM) \
2032 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
2033 #define MIPS_EPILOGUE_TEMP_REGNUM \
2034 (cfun->machine->interrupt_handler_p \
2035 ? K0_REG_NUM \
2036 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
2038 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
2039 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
2040 #define MIPS_PROLOGUE_TEMP2(MODE) \
2041 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
2042 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
2044 /* Define this macro if it is as good or better to call a constant
2045 function address than to call an address kept in a register. */
2046 #define NO_FUNCTION_CSE 1
2048 /* The ABI-defined global pointer. Sometimes we use a different
2049 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
2050 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
2052 /* We normally use $28 as the global pointer. However, when generating
2053 n32/64 PIC, it is better for leaf functions to use a call-clobbered
2054 register instead. They can then avoid saving and restoring $28
2055 and perhaps avoid using a frame at all.
2057 When a leaf function uses something other than $28, mips_expand_prologue
2058 will modify pic_offset_table_rtx in place. Take the register number
2059 from there after reload. */
2060 #define PIC_OFFSET_TABLE_REGNUM \
2061 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
2063 /* Define the classes of registers for register constraints in the
2064 machine description. Also define ranges of constants.
2066 One of the classes must always be named ALL_REGS and include all hard regs.
2067 If there is more than one class, another class must be named NO_REGS
2068 and contain no registers.
2070 The name GENERAL_REGS must be the name of a class (or an alias for
2071 another name such as ALL_REGS). This is the class of registers
2072 that is allowed by "g" or "r" in a register constraint.
2073 Also, registers outside this class are allocated only when
2074 instructions express preferences for them.
2076 The classes must be numbered in nondecreasing order; that is,
2077 a larger-numbered class must never be contained completely
2078 in a smaller-numbered class.
2080 For any two classes, it is very desirable that there be another
2081 class that represents their union. */
2083 enum reg_class
2085 NO_REGS, /* no registers in set */
2086 M16_STORE_REGS, /* microMIPS store registers */
2087 M16_REGS, /* mips16 directly accessible registers */
2088 M16_SP_REGS, /* mips16 + $sp */
2089 T_REG, /* mips16 T register ($24) */
2090 M16_T_REGS, /* mips16 registers plus T register */
2091 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
2092 V1_REG, /* Register $v1 ($3) used for TLS access. */
2093 SPILL_REGS, /* All but $sp and call preserved regs are in here */
2094 LEA_REGS, /* Every GPR except $25 */
2095 GR_REGS, /* integer registers */
2096 FP_REGS, /* floating point registers */
2097 MD0_REG, /* first multiply/divide register */
2098 MD1_REG, /* second multiply/divide register */
2099 MD_REGS, /* multiply/divide registers (hi/lo) */
2100 COP0_REGS, /* generic coprocessor classes */
2101 COP2_REGS,
2102 COP3_REGS,
2103 ST_REGS, /* status registers (fp status) */
2104 DSP_ACC_REGS, /* DSP accumulator registers */
2105 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
2106 FRAME_REGS, /* $arg and $frame */
2107 GR_AND_MD0_REGS, /* union classes */
2108 GR_AND_MD1_REGS,
2109 GR_AND_MD_REGS,
2110 GR_AND_ACC_REGS,
2111 ALL_REGS, /* all registers */
2112 LIM_REG_CLASSES /* max value + 1 */
2115 #define N_REG_CLASSES (int) LIM_REG_CLASSES
2117 #define GENERAL_REGS GR_REGS
2119 /* An initializer containing the names of the register classes as C
2120 string constants. These names are used in writing some of the
2121 debugging dumps. */
2123 #define REG_CLASS_NAMES \
2125 "NO_REGS", \
2126 "M16_STORE_REGS", \
2127 "M16_REGS", \
2128 "M16_SP_REGS", \
2129 "T_REG", \
2130 "M16_T_REGS", \
2131 "PIC_FN_ADDR_REG", \
2132 "V1_REG", \
2133 "SPILL_REGS", \
2134 "LEA_REGS", \
2135 "GR_REGS", \
2136 "FP_REGS", \
2137 "MD0_REG", \
2138 "MD1_REG", \
2139 "MD_REGS", \
2140 /* coprocessor registers */ \
2141 "COP0_REGS", \
2142 "COP2_REGS", \
2143 "COP3_REGS", \
2144 "ST_REGS", \
2145 "DSP_ACC_REGS", \
2146 "ACC_REGS", \
2147 "FRAME_REGS", \
2148 "GR_AND_MD0_REGS", \
2149 "GR_AND_MD1_REGS", \
2150 "GR_AND_MD_REGS", \
2151 "GR_AND_ACC_REGS", \
2152 "ALL_REGS" \
2155 /* An initializer containing the contents of the register classes,
2156 as integers which are bit masks. The Nth integer specifies the
2157 contents of class N. The way the integer MASK is interpreted is
2158 that register R is in the class if `MASK & (1 << R)' is 1.
2160 When the machine has more than 32 registers, an integer does not
2161 suffice. Then the integers are replaced by sub-initializers,
2162 braced groupings containing several integers. Each
2163 sub-initializer must be suitable as an initializer for the type
2164 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
2166 #define REG_CLASS_CONTENTS \
2168 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
2169 { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_STORE_REGS */ \
2170 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
2171 { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_SP_REGS */ \
2172 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
2173 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
2174 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
2175 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
2176 { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SPILL_REGS */ \
2177 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
2178 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
2179 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
2180 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
2181 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
2182 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
2183 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
2184 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
2185 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
2186 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
2187 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
2188 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
2189 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
2190 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
2191 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
2192 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
2193 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
2194 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
2198 /* A C expression whose value is a register class containing hard
2199 register REGNO. In general there is more that one such class;
2200 choose a class which is "minimal", meaning that no smaller class
2201 also contains the register. */
2203 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2205 /* A macro whose definition is the name of the class to which a
2206 valid base register must belong. A base register is one used in
2207 an address which is the register value plus a displacement. */
2209 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
2211 /* A macro whose definition is the name of the class to which a
2212 valid index register must belong. An index register is one used
2213 in an address where its value is either multiplied by a scale
2214 factor or added to another register (as well as added to a
2215 displacement). */
2217 #define INDEX_REG_CLASS NO_REGS
2219 /* We generally want to put call-clobbered registers ahead of
2220 call-saved ones. (IRA expects this.) */
2222 #define REG_ALLOC_ORDER \
2223 { /* Accumulator registers. When GPRs and accumulators have equal \
2224 cost, we generally prefer to use accumulators. For example, \
2225 a division of multiplication result is better allocated to LO, \
2226 so that we put the MFLO at the point of use instead of at the \
2227 point of definition. It's also needed if we're to take advantage \
2228 of the extra accumulators available with -mdspr2. In some cases, \
2229 it can also help to reduce register pressure. */ \
2230 64, 65,176,177,178,179,180,181, \
2231 /* Call-clobbered GPRs. */ \
2232 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2233 24, 25, 31, \
2234 /* The global pointer. This is call-clobbered for o32 and o64 \
2235 abicalls, call-saved for n32 and n64 abicalls, and a program \
2236 invariant otherwise. Putting it between the call-clobbered \
2237 and call-saved registers should cope with all eventualities. */ \
2238 28, \
2239 /* Call-saved GPRs. */ \
2240 16, 17, 18, 19, 20, 21, 22, 23, 30, \
2241 /* GPRs that can never be exposed to the register allocator. */ \
2242 0, 26, 27, 29, \
2243 /* Call-clobbered FPRs. */ \
2244 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2245 48, 49, 50, 51, \
2246 /* FPRs that are usually call-saved. The odd ones are actually \
2247 call-clobbered for n32, but listing them ahead of the even \
2248 registers might encourage the register allocator to fragment \
2249 the available FPR pairs. We need paired FPRs to store long \
2250 doubles, so it isn't clear that using a different order \
2251 for n32 would be a win. */ \
2252 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2253 /* None of the remaining classes have defined call-saved \
2254 registers. */ \
2255 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2256 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2257 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2258 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2259 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2260 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2261 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2262 182,183,184,185,186,187 \
2265 /* True if VALUE is an unsigned 6-bit number. */
2267 #define UIMM6_OPERAND(VALUE) \
2268 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2270 /* True if VALUE is a signed 10-bit number. */
2272 #define IMM10_OPERAND(VALUE) \
2273 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2275 /* True if VALUE is a signed 16-bit number. */
2277 #define SMALL_OPERAND(VALUE) \
2278 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2280 /* True if VALUE is an unsigned 16-bit number. */
2282 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2283 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2285 /* True if VALUE can be loaded into a register using LUI. */
2287 #define LUI_OPERAND(VALUE) \
2288 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2289 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2291 /* Return a value X with the low 16 bits clear, and such that
2292 VALUE - X is a signed 16-bit value. */
2294 #define CONST_HIGH_PART(VALUE) \
2295 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2297 #define CONST_LOW_PART(VALUE) \
2298 ((VALUE) - CONST_HIGH_PART (VALUE))
2300 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2301 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2302 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2303 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2304 #define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
2306 /* The HI and LO registers can only be reloaded via the general
2307 registers. Condition code registers can only be loaded to the
2308 general registers, and from the floating point registers. */
2310 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2311 mips_secondary_reload_class (CLASS, MODE, X, true)
2312 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2313 mips_secondary_reload_class (CLASS, MODE, X, false)
2315 /* Return the maximum number of consecutive registers
2316 needed to represent mode MODE in a register of class CLASS. */
2318 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2320 /* Stack layout; function entry, exit and calling. */
2322 #define STACK_GROWS_DOWNWARD 1
2324 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
2325 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
2327 /* Size of the area allocated in the frame to save the GP. */
2329 #define MIPS_GP_SAVE_AREA_SIZE \
2330 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2332 #define RETURN_ADDR_RTX mips_return_addr
2334 /* Mask off the MIPS16 ISA bit in unwind addresses.
2336 The reason for this is a little subtle. When unwinding a call,
2337 we are given the call's return address, which on most targets
2338 is the address of the following instruction. However, what we
2339 actually want to find is the EH region for the call itself.
2340 The target-independent unwind code therefore searches for "RA - 1".
2342 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2343 RA - 1 is therefore the real (even-valued) start of the return
2344 instruction. EH region labels are usually odd-valued MIPS16 symbols
2345 too, so a search for an even address within a MIPS16 region would
2346 usually work.
2348 However, there is an exception. If the end of an EH region is also
2349 the end of a function, the end label is allowed to be even. This is
2350 necessary because a following non-MIPS16 function may also need EH
2351 information for its first instruction.
2353 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2354 non-ISA-encoded address. This probably isn't ideal, but it is
2355 the traditional (legacy) behavior. It is therefore only safe
2356 to search MIPS EH regions for an _odd-valued_ address.
2358 Masking off the ISA bit means that the target-independent code
2359 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2360 #define MASK_RETURN_ADDR GEN_INT (-2)
2363 /* Similarly, don't use the least-significant bit to tell pointers to
2364 code from vtable index. */
2366 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2368 /* The eliminations to $17 are only used for mips16 code. See the
2369 definition of HARD_FRAME_POINTER_REGNUM. */
2371 #define ELIMINABLE_REGS \
2372 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2373 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2374 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2375 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2376 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2377 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2379 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2380 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2382 /* Allocate stack space for arguments at the beginning of each function. */
2383 #define ACCUMULATE_OUTGOING_ARGS 1
2385 /* The argument pointer always points to the first argument. */
2386 #define FIRST_PARM_OFFSET(FNDECL) 0
2388 /* o32 and o64 reserve stack space for all argument registers. */
2389 #define REG_PARM_STACK_SPACE(FNDECL) \
2390 (TARGET_OLDABI \
2391 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2392 : 0)
2394 /* Define this if it is the responsibility of the caller to
2395 allocate the area reserved for arguments passed in registers.
2396 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2397 of this macro is to determine whether the space is included in
2398 `crtl->outgoing_args_size'. */
2399 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2401 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2403 /* Symbolic macros for the registers used to return integer and floating
2404 point values. */
2406 #define GP_RETURN (GP_REG_FIRST + 2)
2407 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2409 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2411 /* Symbolic macros for the first/last argument registers. */
2413 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2414 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2415 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2416 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2418 /* True if MODE is vector and supported in a MSA vector register. */
2419 #define MSA_SUPPORTED_MODE_P(MODE) \
2420 (ISA_HAS_MSA \
2421 && GET_MODE_SIZE (MODE) == UNITS_PER_MSA_REG \
2422 && (GET_MODE_CLASS (MODE) == MODE_VECTOR_INT \
2423 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT))
2425 /* Temporary register that is used when restoring $gp after a call. $4 and $5
2426 are used for returning complex double values in soft-float code, so $6 is the
2427 first suitable candidate for TARGET_MIPS16. For !TARGET_MIPS16 we can use
2428 $gp itself as the temporary. */
2429 #define POST_CALL_TMP_REG \
2430 (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
2432 /* 1 if N is a possible register number for function argument passing.
2433 We have no FP argument registers when soft-float. Special handling
2434 is required for O32 where only even numbered registers are used for
2435 O32-FPXX and O32-FP64. */
2437 #define FUNCTION_ARG_REGNO_P(N) \
2438 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2439 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) \
2440 && (mips_abi != ABI_32 \
2441 || TARGET_FLOAT32 \
2442 || ((N) % 2 == 0)))) \
2443 && !fixed_regs[N])
2445 /* This structure has to cope with two different argument allocation
2446 schemes. Most MIPS ABIs view the arguments as a structure, of which
2447 the first N words go in registers and the rest go on the stack. If I
2448 < N, the Ith word might go in Ith integer argument register or in a
2449 floating-point register. For these ABIs, we only need to remember
2450 the offset of the current argument into the structure.
2452 The EABI instead allocates the integer and floating-point arguments
2453 separately. The first N words of FP arguments go in FP registers,
2454 the rest go on the stack. Likewise, the first N words of the other
2455 arguments go in integer registers, and the rest go on the stack. We
2456 need to maintain three counts: the number of integer registers used,
2457 the number of floating-point registers used, and the number of words
2458 passed on the stack.
2460 We could keep separate information for the two ABIs (a word count for
2461 the standard ABIs, and three separate counts for the EABI). But it
2462 seems simpler to view the standard ABIs as forms of EABI that do not
2463 allocate floating-point registers.
2465 So for the standard ABIs, the first N words are allocated to integer
2466 registers, and mips_function_arg decides on an argument-by-argument
2467 basis whether that argument should really go in an integer register,
2468 or in a floating-point one. */
2470 typedef struct mips_args {
2471 /* Always true for varargs functions. Otherwise true if at least
2472 one argument has been passed in an integer register. */
2473 int gp_reg_found;
2475 /* The number of arguments seen so far. */
2476 unsigned int arg_number;
2478 /* The number of integer registers used so far. For all ABIs except
2479 EABI, this is the number of words that have been added to the
2480 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2481 unsigned int num_gprs;
2483 /* For EABI, the number of floating-point registers used so far. */
2484 unsigned int num_fprs;
2486 /* The number of words passed on the stack. */
2487 unsigned int stack_words;
2489 /* On the mips16, we need to keep track of which floating point
2490 arguments were passed in general registers, but would have been
2491 passed in the FP regs if this were a 32-bit function, so that we
2492 can move them to the FP regs if we wind up calling a 32-bit
2493 function. We record this information in fp_code, encoded in base
2494 four. A zero digit means no floating point argument, a one digit
2495 means an SFmode argument, and a two digit means a DFmode argument,
2496 and a three digit is not used. The low order digit is the first
2497 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2498 an SFmode argument. ??? A more sophisticated approach will be
2499 needed if MIPS_ABI != ABI_32. */
2500 int fp_code;
2502 /* True if the function has a prototype. */
2503 int prototype;
2504 } CUMULATIVE_ARGS;
2506 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2507 for a call to a function whose data type is FNTYPE.
2508 For a library call, FNTYPE is 0. */
2510 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2511 mips_init_cumulative_args (&CUM, FNTYPE)
2513 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2514 (mips_pad_reg_upward (MODE, TYPE) ? PAD_UPWARD : PAD_DOWNWARD)
2516 /* True if using EABI and varargs can be passed in floating-point
2517 registers. Under these conditions, we need a more complex form
2518 of va_list, which tracks GPR, FPR and stack arguments separately. */
2519 #define EABI_FLOAT_VARARGS_P \
2520 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2523 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2525 /* Treat LOC as a byte offset from the stack pointer and round it up
2526 to the next fully-aligned offset. */
2527 #define MIPS_STACK_ALIGN(LOC) \
2528 (TARGET_NEWABI ? ROUND_UP ((LOC), 16) : ROUND_UP ((LOC), 8))
2531 /* Output assembler code to FILE to increment profiler label # LABELNO
2532 for profiling a function entry. */
2534 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2536 /* The profiler preserves all interesting registers, including $31. */
2537 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2539 /* No mips port has ever used the profiler counter word, so don't emit it
2540 or the label for it. */
2542 #define NO_PROFILE_COUNTERS 1
2544 /* Define this macro if the code for function profiling should come
2545 before the function prologue. Normally, the profiling code comes
2546 after. */
2548 /* #define PROFILE_BEFORE_PROLOGUE */
2550 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2551 the stack pointer does not matter. The value is tested only in
2552 functions that have frame pointers.
2553 No definition is equivalent to always zero. */
2555 #define EXIT_IGNORE_STACK 1
2558 /* Trampolines are a block of code followed by two pointers. */
2560 #define TRAMPOLINE_SIZE \
2561 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2563 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2564 pointers from a single LUI base. */
2566 #define TRAMPOLINE_ALIGNMENT 64
2568 /* mips_trampoline_init calls this library function to flush
2569 program and data caches. */
2571 #ifndef CACHE_FLUSH_FUNC
2572 #define CACHE_FLUSH_FUNC "_flush_cache"
2573 #endif
2575 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2576 /* Flush both caches. We need to flush the data cache in case \
2577 the system has a write-back cache. */ \
2578 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2579 LCT_NORMAL, VOIDmode, ADDR, Pmode, SIZE, Pmode, \
2580 GEN_INT (3), TYPE_MODE (integer_type_node))
2583 /* Addressing modes, and classification of registers for them. */
2585 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2586 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2587 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2589 /* Maximum number of registers that can appear in a valid memory address. */
2591 #define MAX_REGS_PER_ADDRESS 1
2593 /* Check for constness inline but use mips_legitimate_address_p
2594 to check whether a constant really is an address. */
2596 #define CONSTANT_ADDRESS_P(X) \
2597 (CONSTANT_P (X) && memory_address_p (SImode, X))
2599 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2600 'the start of the function that this code is output in'. */
2602 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2603 do { \
2604 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2605 asm_fprintf ((FILE), "%U%s", \
2606 XSTR (XEXP (DECL_RTL (current_function_decl), \
2607 0), 0)); \
2608 else \
2609 asm_fprintf ((FILE), "%U%s", (NAME)); \
2610 } while (0)
2612 /* Flag to mark a function decl symbol that requires a long call. */
2613 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2614 #define SYMBOL_REF_LONG_CALL_P(X) \
2615 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2617 /* This flag marks functions that cannot be lazily bound. */
2618 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2619 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2620 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2622 /* True if we're generating a form of MIPS16 code in which jump tables
2623 are stored in the text section and encoded as 16-bit PC-relative
2624 offsets. This is only possible when general text loads are allowed,
2625 since the table access itself will be an "lh" instruction. If the
2626 PC-relative offsets grow too large, 32-bit offsets are used instead. */
2627 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2629 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2631 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2633 /* Only use short offsets if their range will not overflow. */
2634 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2635 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2636 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2637 : SImode)
2639 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2641 /* Define this as 1 if `char' should by default be signed; else as 0. */
2642 #ifndef DEFAULT_SIGNED_CHAR
2643 #define DEFAULT_SIGNED_CHAR 1
2644 #endif
2646 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2647 we generally don't want to use them for copying arbitrary data.
2648 A single N-word move is usually the same cost as N single-word moves. */
2649 #define MOVE_MAX UNITS_PER_WORD
2650 /* We don't modify it for MSA as it is only used by the classic reload. */
2651 #define MAX_MOVE_MAX 8
2653 /* Define this macro as a C expression which is nonzero if
2654 accessing less than a word of memory (i.e. a `char' or a
2655 `short') is no faster than accessing a word of memory, i.e., if
2656 such access require more than one instruction or if there is no
2657 difference in cost between byte and (aligned) word loads.
2659 On RISC machines, it tends to generate better code to define
2660 this as 1, since it avoids making a QI or HI mode register.
2662 But, generating word accesses for -mips16 is generally bad as shifts
2663 (often extended) would be needed for byte accesses. */
2664 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2666 /* Standard MIPS integer shifts truncate the shift amount to the
2667 width of the shifted operand. However, Loongson MMI shifts
2668 do not truncate the shift amount at all. */
2669 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_MMI)
2672 /* Specify the machine mode that pointers have.
2673 After generation of rtl, the compiler makes no further distinction
2674 between pointers and any other objects of this machine mode. */
2676 #ifndef Pmode
2677 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2678 #endif
2680 /* Give call MEMs SImode since it is the "most permissive" mode
2681 for both 32-bit and 64-bit targets. */
2683 #define FUNCTION_MODE SImode
2686 /* We allocate $fcc registers by hand and can't cope with moves of
2687 CCmode registers to and from pseudos (or memory). */
2688 #define AVOID_CCMODE_COPIES
2690 /* A C expression for the cost of a branch instruction. A value of
2691 1 is the default; other values are interpreted relative to that. */
2693 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2694 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2696 /* The MIPS port has several functions that return an instruction count.
2697 Multiplying the count by this value gives the number of bytes that
2698 the instructions occupy. */
2699 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2701 /* The length of a NOP in bytes. */
2702 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2704 /* If defined, modifies the length assigned to instruction INSN as a
2705 function of the context in which it is used. LENGTH is an lvalue
2706 that contains the initially computed length of the insn and should
2707 be updated with the correct length of the insn. */
2708 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2709 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2711 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2712 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2713 its operands. */
2714 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2715 "%*" OPCODE "%?\t" OPERANDS "%/"
2717 #define MIPS_BRANCH_C(OPCODE, OPERANDS) \
2718 "%*" OPCODE "%:\t" OPERANDS
2720 /* Return an asm string that forces INSN to be treated as an absolute
2721 J or JAL instruction instead of an assembler macro. */
2722 #define MIPS_ABSOLUTE_JUMP(INSN) \
2723 (TARGET_ABICALLS_PIC2 \
2724 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2725 : INSN)
2728 /* Control the assembler format that we output. */
2730 /* Output to assembler file text saying following lines
2731 may contain character constants, extra white space, comments, etc. */
2733 #ifndef ASM_APP_ON
2734 #define ASM_APP_ON " #APP\n"
2735 #endif
2737 /* Output to assembler file text saying following lines
2738 no longer contain unusual constructs. */
2740 #ifndef ASM_APP_OFF
2741 #define ASM_APP_OFF " #NO_APP\n"
2742 #endif
2744 #define REGISTER_NAMES \
2745 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2746 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2747 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2748 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2749 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2750 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2751 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2752 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2753 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2754 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2755 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2756 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2757 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2758 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2759 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2760 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2761 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2762 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2763 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2764 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2765 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2766 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2767 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2768 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2770 /* List the "software" names for each register. Also list the numerical
2771 names for $fp and $sp. */
2773 #define ADDITIONAL_REGISTER_NAMES \
2775 { "$29", 29 + GP_REG_FIRST }, \
2776 { "$30", 30 + GP_REG_FIRST }, \
2777 { "at", 1 + GP_REG_FIRST }, \
2778 { "v0", 2 + GP_REG_FIRST }, \
2779 { "v1", 3 + GP_REG_FIRST }, \
2780 { "a0", 4 + GP_REG_FIRST }, \
2781 { "a1", 5 + GP_REG_FIRST }, \
2782 { "a2", 6 + GP_REG_FIRST }, \
2783 { "a3", 7 + GP_REG_FIRST }, \
2784 { "t0", 8 + GP_REG_FIRST }, \
2785 { "t1", 9 + GP_REG_FIRST }, \
2786 { "t2", 10 + GP_REG_FIRST }, \
2787 { "t3", 11 + GP_REG_FIRST }, \
2788 { "t4", 12 + GP_REG_FIRST }, \
2789 { "t5", 13 + GP_REG_FIRST }, \
2790 { "t6", 14 + GP_REG_FIRST }, \
2791 { "t7", 15 + GP_REG_FIRST }, \
2792 { "s0", 16 + GP_REG_FIRST }, \
2793 { "s1", 17 + GP_REG_FIRST }, \
2794 { "s2", 18 + GP_REG_FIRST }, \
2795 { "s3", 19 + GP_REG_FIRST }, \
2796 { "s4", 20 + GP_REG_FIRST }, \
2797 { "s5", 21 + GP_REG_FIRST }, \
2798 { "s6", 22 + GP_REG_FIRST }, \
2799 { "s7", 23 + GP_REG_FIRST }, \
2800 { "t8", 24 + GP_REG_FIRST }, \
2801 { "t9", 25 + GP_REG_FIRST }, \
2802 { "k0", 26 + GP_REG_FIRST }, \
2803 { "k1", 27 + GP_REG_FIRST }, \
2804 { "gp", 28 + GP_REG_FIRST }, \
2805 { "sp", 29 + GP_REG_FIRST }, \
2806 { "fp", 30 + GP_REG_FIRST }, \
2807 { "ra", 31 + GP_REG_FIRST }, \
2808 { "$w0", 0 + FP_REG_FIRST }, \
2809 { "$w1", 1 + FP_REG_FIRST }, \
2810 { "$w2", 2 + FP_REG_FIRST }, \
2811 { "$w3", 3 + FP_REG_FIRST }, \
2812 { "$w4", 4 + FP_REG_FIRST }, \
2813 { "$w5", 5 + FP_REG_FIRST }, \
2814 { "$w6", 6 + FP_REG_FIRST }, \
2815 { "$w7", 7 + FP_REG_FIRST }, \
2816 { "$w8", 8 + FP_REG_FIRST }, \
2817 { "$w9", 9 + FP_REG_FIRST }, \
2818 { "$w10", 10 + FP_REG_FIRST }, \
2819 { "$w11", 11 + FP_REG_FIRST }, \
2820 { "$w12", 12 + FP_REG_FIRST }, \
2821 { "$w13", 13 + FP_REG_FIRST }, \
2822 { "$w14", 14 + FP_REG_FIRST }, \
2823 { "$w15", 15 + FP_REG_FIRST }, \
2824 { "$w16", 16 + FP_REG_FIRST }, \
2825 { "$w17", 17 + FP_REG_FIRST }, \
2826 { "$w18", 18 + FP_REG_FIRST }, \
2827 { "$w19", 19 + FP_REG_FIRST }, \
2828 { "$w20", 20 + FP_REG_FIRST }, \
2829 { "$w21", 21 + FP_REG_FIRST }, \
2830 { "$w22", 22 + FP_REG_FIRST }, \
2831 { "$w23", 23 + FP_REG_FIRST }, \
2832 { "$w24", 24 + FP_REG_FIRST }, \
2833 { "$w25", 25 + FP_REG_FIRST }, \
2834 { "$w26", 26 + FP_REG_FIRST }, \
2835 { "$w27", 27 + FP_REG_FIRST }, \
2836 { "$w28", 28 + FP_REG_FIRST }, \
2837 { "$w29", 29 + FP_REG_FIRST }, \
2838 { "$w30", 30 + FP_REG_FIRST }, \
2839 { "$w31", 31 + FP_REG_FIRST } \
2842 #define DBR_OUTPUT_SEQEND(STREAM) \
2843 do \
2845 /* Undo the effect of '%*'. */ \
2846 mips_pop_asm_switch (&mips_nomacro); \
2847 mips_pop_asm_switch (&mips_noreorder); \
2848 /* Emit a blank line after the delay slot for emphasis. */ \
2849 fputs ("\n", STREAM); \
2851 while (0)
2853 /* The MIPS implementation uses some labels for its own purpose. The
2854 following lists what labels are created, and are all formed by the
2855 pattern $L[a-z].*. The machine independent portion of GCC creates
2856 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2858 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2859 $Lb[0-9]+ Begin blocks for MIPS debug support
2860 $Lc[0-9]+ Label for use in s<xx> operation.
2861 $Le[0-9]+ End blocks for MIPS debug support */
2863 #undef ASM_DECLARE_OBJECT_NAME
2864 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2865 mips_declare_object (STREAM, NAME, "", ":\n")
2867 /* Globalizing directive for a label. */
2868 #define GLOBAL_ASM_OP "\t.globl\t"
2870 /* This says how to define a global common symbol. */
2872 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2874 /* This says how to define a local common symbol (i.e., not visible to
2875 linker). */
2877 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2878 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2879 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2880 #endif
2882 /* This says how to output an external. It would be possible not to
2883 output anything and let undefined symbol become external. However
2884 the assembler uses length information on externals to allocate in
2885 data/sdata bss/sbss, thereby saving exec time. */
2887 #undef ASM_OUTPUT_EXTERNAL
2888 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2889 mips_output_external(STREAM,DECL,NAME)
2891 /* This is how to declare a function name. The actual work of
2892 emitting the label is moved to function_prologue, so that we can
2893 get the line number correctly emitted before the .ent directive,
2894 and after any .file directives. Define as empty so that the function
2895 is not declared before the .ent directive elsewhere. */
2897 #undef ASM_DECLARE_FUNCTION_NAME
2898 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2900 /* This is how to store into the string LABEL
2901 the symbol_ref name of an internal numbered label where
2902 PREFIX is the class of label and NUM is the number within the class.
2903 This is suitable for output with `assemble_name'. */
2905 #undef ASM_GENERATE_INTERNAL_LABEL
2906 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2907 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2909 /* Print debug labels as "foo = ." rather than "foo:" because they should
2910 represent a byte pointer rather than an ISA-encoded address. This is
2911 particularly important for code like:
2913 $LFBxxx = .
2914 .cfi_startproc
2916 .section .gcc_except_table,...
2918 .uleb128 foo-$LFBxxx
2920 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2921 likewise a byte pointer rather than an ISA-encoded address.
2923 At the time of writing, this hook is not used for the function end
2924 label:
2926 $LFExxx:
2927 .end foo
2929 But this doesn't matter, because GAS doesn't treat a pre-.end label
2930 as a MIPS16 one anyway. */
2932 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2933 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2935 /* This is how to output an element of a case-vector that is absolute. */
2937 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2938 fprintf (STREAM, "\t%s\t%sL%d\n", \
2939 ptr_mode == DImode ? ".dword" : ".word", \
2940 LOCAL_LABEL_PREFIX, \
2941 VALUE)
2943 /* This is how to output an element of a case-vector. We can make the
2944 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2945 is supported. */
2947 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2948 do { \
2949 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2951 if (GET_MODE (BODY) == HImode) \
2952 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2953 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2954 else \
2955 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2956 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2958 else if (TARGET_GPWORD) \
2959 fprintf (STREAM, "\t%s\t%sL%d\n", \
2960 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2961 LOCAL_LABEL_PREFIX, VALUE); \
2962 else if (TARGET_RTP_PIC) \
2964 /* Make the entry relative to the start of the function. */ \
2965 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2966 fprintf (STREAM, "\t%s\t%sL%d-", \
2967 Pmode == DImode ? ".dword" : ".word", \
2968 LOCAL_LABEL_PREFIX, VALUE); \
2969 assemble_name (STREAM, XSTR (fnsym, 0)); \
2970 fprintf (STREAM, "\n"); \
2972 else \
2973 fprintf (STREAM, "\t%s\t%sL%d\n", \
2974 ptr_mode == DImode ? ".dword" : ".word", \
2975 LOCAL_LABEL_PREFIX, VALUE); \
2976 } while (0)
2978 /* Mark inline jump tables as data for the purpose of disassembly. For
2979 simplicity embed the jump table's label number in the local symbol
2980 produced so that multiple jump tables within a single function end
2981 up marked with unique symbols. Retain the alignment setting from
2982 `elfos.h' as we are replacing the definition from there. */
2984 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2985 #define ASM_OUTPUT_BEFORE_CASE_LABEL(STREAM, PREFIX, NUM, TABLE) \
2986 do \
2988 ASM_OUTPUT_ALIGN ((STREAM), 2); \
2989 if (JUMP_TABLES_IN_TEXT_SECTION) \
2990 mips_set_text_contents_type (STREAM, "__jump_", NUM, FALSE); \
2992 while (0)
2994 /* Reset text marking to code after an inline jump table. Like with
2995 the beginning of a jump table use the label number to keep symbols
2996 unique. */
2998 #define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) \
2999 do \
3000 if (JUMP_TABLES_IN_TEXT_SECTION) \
3001 mips_set_text_contents_type (STREAM, "__jend_", NUM, TRUE); \
3002 while (0)
3004 /* This is how to output an assembler line
3005 that says to advance the location counter
3006 to a multiple of 2**LOG bytes. */
3008 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
3009 fprintf (STREAM, "\t.align\t%d\n", (LOG))
3011 /* This is how to output an assembler line to advance the location
3012 counter by SIZE bytes. */
3014 #undef ASM_OUTPUT_SKIP
3015 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
3016 fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
3018 /* This is how to output a string. */
3019 #undef ASM_OUTPUT_ASCII
3020 #define ASM_OUTPUT_ASCII mips_output_ascii
3023 /* Default to -G 8 */
3024 #ifndef MIPS_DEFAULT_GVALUE
3025 #define MIPS_DEFAULT_GVALUE 8
3026 #endif
3028 /* Define the strings to put out for each section in the object file. */
3029 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
3030 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
3032 #undef READONLY_DATA_SECTION_ASM_OP
3033 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
3035 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
3036 do \
3038 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
3039 TARGET_64BIT ? "daddiu" : "addiu", \
3040 reg_names[STACK_POINTER_REGNUM], \
3041 reg_names[STACK_POINTER_REGNUM], \
3042 TARGET_64BIT ? "sd" : "sw", \
3043 reg_names[REGNO], \
3044 reg_names[STACK_POINTER_REGNUM]); \
3046 while (0)
3048 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
3049 do \
3051 mips_push_asm_switch (&mips_noreorder); \
3052 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
3053 TARGET_64BIT ? "ld" : "lw", \
3054 reg_names[REGNO], \
3055 reg_names[STACK_POINTER_REGNUM], \
3056 TARGET_64BIT ? "daddu" : "addu", \
3057 reg_names[STACK_POINTER_REGNUM], \
3058 reg_names[STACK_POINTER_REGNUM]); \
3059 mips_pop_asm_switch (&mips_noreorder); \
3061 while (0)
3063 /* How to start an assembler comment.
3064 The leading space is important (the mips native assembler requires it). */
3065 #ifndef ASM_COMMENT_START
3066 #define ASM_COMMENT_START " #"
3067 #endif
3069 #undef SIZE_TYPE
3070 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
3072 #undef PTRDIFF_TYPE
3073 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
3075 /* The minimum alignment of any expanded block move. */
3076 #define MIPS_MIN_MOVE_MEM_ALIGN 16
3078 /* The maximum number of bytes that can be copied by one iteration of
3079 a cpymemsi loop; see mips_block_move_loop. */
3080 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
3081 (UNITS_PER_WORD * 4)
3083 /* The maximum number of bytes that can be copied by a straight-line
3084 implementation of cpymemsi; see mips_block_move_straight. We want
3085 to make sure that any loop-based implementation will iterate at
3086 least twice. */
3087 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
3088 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
3090 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
3091 values were determined experimentally by benchmarking with CSiBE.
3092 In theory, the call overhead is higher for TARGET_ABICALLS (especially
3093 for o32 where we have to restore $gp afterwards as well as make an
3094 indirect call), but in practice, bumping this up higher for
3095 TARGET_ABICALLS doesn't make much difference to code size. */
3097 #define MIPS_CALL_RATIO 8
3099 /* Any loop-based implementation of cpymemsi will have at least
3100 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
3101 moves, so allow individual copies of fewer elements.
3103 When cpymemsi is not available, use a value approximating
3104 the length of a memcpy call sequence, so that move_by_pieces
3105 will generate inline code if it is shorter than a function call.
3106 Since move_by_pieces_ninsns counts memory-to-memory moves, but
3107 we'll have to generate a load/store pair for each, halve the
3108 value of MIPS_CALL_RATIO to take that into account. */
3110 #define MOVE_RATIO(speed) \
3111 (HAVE_cpymemsi \
3112 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
3113 : MIPS_CALL_RATIO / 2)
3115 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
3116 of the length of a memset call, but use the default otherwise. */
3118 #define CLEAR_RATIO(speed)\
3119 ((speed) ? 15 : MIPS_CALL_RATIO)
3121 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
3122 optimizing for size adjust the ratio to account for the overhead of
3123 loading the constant and replicating it across the word. */
3125 #define SET_RATIO(speed) \
3126 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
3128 /* Since the bits of the _init and _fini function is spread across
3129 many object files, each potentially with its own GP, we must assume
3130 we need to load our GP. We don't preserve $gp or $ra, since each
3131 init/fini chunk is supposed to initialize $gp, and crti/crtn
3132 already take care of preserving $ra and, when appropriate, $gp. */
3133 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
3134 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3135 asm (SECTION_OP "\n\
3136 .set push\n\
3137 .set nomips16\n\
3138 .set noreorder\n\
3139 bal 1f\n\
3140 nop\n\
3141 1: .cpload $31\n\
3142 .set reorder\n\
3143 la $25, " USER_LABEL_PREFIX #FUNC "\n\
3144 jalr $25\n\
3145 .set pop\n\
3146 " TEXT_SECTION_ASM_OP);
3147 #elif (defined _ABIN32 && _MIPS_SIM == _ABIN32)
3148 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3149 asm (SECTION_OP "\n\
3150 .set push\n\
3151 .set nomips16\n\
3152 .set noreorder\n\
3153 bal 1f\n\
3154 nop\n\
3155 1: .set reorder\n\
3156 .cpsetup $31, $2, 1b\n\
3157 la $25, " USER_LABEL_PREFIX #FUNC "\n\
3158 jalr $25\n\
3159 .set pop\n\
3160 " TEXT_SECTION_ASM_OP);
3161 #elif (defined _ABI64 && _MIPS_SIM == _ABI64)
3162 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3163 asm (SECTION_OP "\n\
3164 .set push\n\
3165 .set nomips16\n\
3166 .set noreorder\n\
3167 bal 1f\n\
3168 nop\n\
3169 1: .set reorder\n\
3170 .cpsetup $31, $2, 1b\n\
3171 dla $25, " USER_LABEL_PREFIX #FUNC "\n\
3172 jalr $25\n\
3173 .set pop\n\
3174 " TEXT_SECTION_ASM_OP);
3175 #endif
3177 #ifndef HAVE_AS_TLS
3178 #define HAVE_AS_TLS 0
3179 #endif
3181 #ifndef HAVE_AS_NAN
3182 #define HAVE_AS_NAN 0
3183 #endif
3185 #ifndef USED_FOR_TARGET
3186 /* Information about ".set noFOO; ...; .set FOO" blocks. */
3187 struct mips_asm_switch {
3188 /* The FOO in the description above. */
3189 const char *name;
3191 /* The current block nesting level, or 0 if we aren't in a block. */
3192 int nesting_level;
3195 extern const enum reg_class mips_regno_to_class[];
3196 extern const char *current_function_file; /* filename current function is in */
3197 extern int num_source_filenames; /* current .file # */
3198 extern struct mips_asm_switch mips_noreorder;
3199 extern struct mips_asm_switch mips_nomacro;
3200 extern struct mips_asm_switch mips_noat;
3201 extern int mips_dbx_regno[];
3202 extern int mips_dwarf_regno[];
3203 extern bool mips_split_p[];
3204 extern bool mips_split_hi_p[];
3205 extern bool mips_use_pcrel_pool_p[];
3206 extern const char *mips_lo_relocs[];
3207 extern const char *mips_hi_relocs[];
3208 extern enum processor mips_arch; /* which cpu to codegen for */
3209 extern enum processor mips_tune; /* which cpu to schedule for */
3210 extern int mips_isa; /* architectural level */
3211 extern int mips_isa_rev;
3212 extern const struct mips_cpu_info *mips_arch_info;
3213 extern const struct mips_cpu_info *mips_tune_info;
3214 extern unsigned int mips_base_compression_flags;
3215 extern GTY(()) struct target_globals *mips16_globals;
3216 extern GTY(()) struct target_globals *micromips_globals;
3218 /* Information about a function's frame layout. */
3219 struct GTY(()) mips_frame_info {
3220 /* The size of the frame in bytes. */
3221 HOST_WIDE_INT total_size;
3223 /* The number of bytes allocated to variables. */
3224 HOST_WIDE_INT var_size;
3226 /* The number of bytes allocated to outgoing function arguments. */
3227 HOST_WIDE_INT args_size;
3229 /* The number of bytes allocated to the .cprestore slot, or 0 if there
3230 is no such slot. */
3231 HOST_WIDE_INT cprestore_size;
3233 /* Bit X is set if the function saves or restores GPR X. */
3234 unsigned int mask;
3236 /* Likewise FPR X. */
3237 unsigned int fmask;
3239 /* Likewise doubleword accumulator X ($acX). */
3240 unsigned int acc_mask;
3242 /* The number of GPRs, FPRs, doubleword accumulators and COP0
3243 registers saved. */
3244 unsigned int num_gp;
3245 unsigned int num_fp;
3246 unsigned int num_acc;
3247 unsigned int num_cop0_regs;
3249 /* The offset of the topmost GPR, FPR, accumulator and COP0-register
3250 save slots from the top of the frame, or zero if no such slots are
3251 needed. */
3252 HOST_WIDE_INT gp_save_offset;
3253 HOST_WIDE_INT fp_save_offset;
3254 HOST_WIDE_INT acc_save_offset;
3255 HOST_WIDE_INT cop0_save_offset;
3257 /* Likewise, but giving offsets from the bottom of the frame. */
3258 HOST_WIDE_INT gp_sp_offset;
3259 HOST_WIDE_INT fp_sp_offset;
3260 HOST_WIDE_INT acc_sp_offset;
3261 HOST_WIDE_INT cop0_sp_offset;
3263 /* Similar, but the value passed to _mcount. */
3264 HOST_WIDE_INT ra_fp_offset;
3266 /* The offset of arg_pointer_rtx from the bottom of the frame. */
3267 HOST_WIDE_INT arg_pointer_offset;
3269 /* The offset of hard_frame_pointer_rtx from the bottom of the frame. */
3270 HOST_WIDE_INT hard_frame_pointer_offset;
3273 /* Enumeration for masked vectored (VI) and non-masked (EIC) interrupts. */
3274 enum mips_int_mask
3276 INT_MASK_EIC = -1,
3277 INT_MASK_SW0 = 0,
3278 INT_MASK_SW1 = 1,
3279 INT_MASK_HW0 = 2,
3280 INT_MASK_HW1 = 3,
3281 INT_MASK_HW2 = 4,
3282 INT_MASK_HW3 = 5,
3283 INT_MASK_HW4 = 6,
3284 INT_MASK_HW5 = 7
3287 /* Enumeration to mark the existence of the shadow register set.
3288 SHADOW_SET_INTSTACK indicates a shadow register set with a valid stack
3289 pointer. */
3290 enum mips_shadow_set
3292 SHADOW_SET_NO,
3293 SHADOW_SET_YES,
3294 SHADOW_SET_INTSTACK
3297 struct GTY(()) machine_function {
3298 /* The next floating-point condition-code register to allocate
3299 for ISA_HAS_8CC targets, relative to ST_REG_FIRST. */
3300 unsigned int next_fcc;
3302 /* The register returned by mips16_gp_pseudo_reg; see there for details. */
3303 rtx mips16_gp_pseudo_rtx;
3305 /* The number of extra stack bytes taken up by register varargs.
3306 This area is allocated by the callee at the very top of the frame. */
3307 int varargs_size;
3309 /* The current frame information, calculated by mips_compute_frame_info. */
3310 struct mips_frame_info frame;
3312 /* The register to use as the function's global pointer, or INVALID_REGNUM
3313 if the function doesn't need one. */
3314 unsigned int global_pointer;
3316 /* How many instructions it takes to load a label into $AT, or 0 if
3317 this property hasn't yet been calculated. */
3318 unsigned int load_label_num_insns;
3320 /* True if mips_adjust_insn_length should ignore an instruction's
3321 hazard attribute. */
3322 bool ignore_hazard_length_p;
3324 /* True if the whole function is suitable for .set noreorder and
3325 .set nomacro. */
3326 bool all_noreorder_p;
3328 /* True if the function has "inflexible" and "flexible" references
3329 to the global pointer. See mips_cfun_has_inflexible_gp_ref_p
3330 and mips_cfun_has_flexible_gp_ref_p for details. */
3331 bool has_inflexible_gp_insn_p;
3332 bool has_flexible_gp_insn_p;
3334 /* True if the function's prologue must load the global pointer
3335 value into pic_offset_table_rtx and store the same value in
3336 the function's cprestore slot (if any). Even if this value
3337 is currently false, we may decide to set it to true later;
3338 see mips_must_initialize_gp_p () for details. */
3339 bool must_initialize_gp_p;
3341 /* True if the current function must restore $gp after any potential
3342 clobber. This value is only meaningful during the first post-epilogue
3343 split_insns pass; see mips_must_initialize_gp_p () for details. */
3344 bool must_restore_gp_when_clobbered_p;
3346 /* True if this is an interrupt handler. */
3347 bool interrupt_handler_p;
3349 /* Records the way in which interrupts should be masked. Only used if
3350 interrupts are not kept masked. */
3351 enum mips_int_mask int_mask;
3353 /* Records if this is an interrupt handler that uses shadow registers. */
3354 enum mips_shadow_set use_shadow_register_set;
3356 /* True if this is an interrupt handler that should keep interrupts
3357 masked. */
3358 bool keep_interrupts_masked_p;
3360 /* True if this is an interrupt handler that should use DERET
3361 instead of ERET. */
3362 bool use_debug_exception_return_p;
3364 /* True if at least one of the formal parameters to a function must be
3365 written to the frame header (probably so its address can be taken). */
3366 bool does_not_use_frame_header;
3368 /* True if none of the functions that are called by this function need
3369 stack space allocated for their arguments. */
3370 bool optimize_call_stack;
3372 /* True if one of the functions calling this function may not allocate
3373 a frame header. */
3374 bool callers_may_not_allocate_frame;
3376 /* True if GCC stored callee saved registers in the frame header. */
3377 bool use_frame_header_for_callee_saved_regs;
3379 #endif
3381 /* Enable querying of DFA units. */
3382 #define CPU_UNITS_QUERY 1
3384 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3385 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
3387 /* As on most targets, we want the .eh_frame section to be read-only where
3388 possible. And as on most targets, this means two things:
3390 (a) Non-locally-binding pointers must have an indirect encoding,
3391 so that the addresses in the .eh_frame section itself become
3392 locally-binding.
3394 (b) A shared library's .eh_frame section must encode locally-binding
3395 pointers in a relative (relocation-free) form.
3397 However, MIPS has traditionally not allowed directives like:
3399 .long x-.
3401 in cases where "x" is in a different section, or is not defined in the
3402 same assembly file. We are therefore unable to emit the PC-relative
3403 form required by (b) at assembly time.
3405 Fortunately, the linker is able to convert absolute addresses into
3406 PC-relative addresses on our behalf. Unfortunately, only certain
3407 versions of the linker know how to do this for indirect pointers,
3408 and for personality data. We must fall back on using writable
3409 .eh_frame sections for shared libraries if the linker does not
3410 support this feature. */
3411 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
3412 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
3414 /* For switching between MIPS16 and non-MIPS16 modes. */
3415 #define SWITCHABLE_TARGET 1
3417 /* Several named MIPS patterns depend on Pmode. These patterns have the
3418 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3419 Add the appropriate suffix to generator function NAME and invoke it
3420 with arguments ARGS. */
3421 #define PMODE_INSN(NAME, ARGS) \
3422 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
3424 /* If we are *not* using multilibs and the default ABI is not ABI_32 we
3425 need to change these from /lib and /usr/lib. */
3426 #if MIPS_ABI_DEFAULT == ABI_N32
3427 #define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
3428 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
3429 #elif MIPS_ABI_DEFAULT == ABI_64
3430 #define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
3431 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
3432 #endif
3434 /* Load store bonding is not supported by micromips and fix_24k. The
3435 performance can be degraded for those targets. Hence, do not bond for
3436 micromips or fix_24k. */
3437 #define ENABLE_LD_ST_PAIRS \
3438 (TARGET_LOAD_STORE_PAIRS \
3439 && (TUNE_P5600 || TUNE_I6400 || TUNE_P6600) \
3440 && !TARGET_MICROMIPS && !TARGET_FIX_24K)
3442 #define NEED_INDICATE_EXEC_STACK 0