Daily bump.
[official-gcc.git] / gcc / ada / par_sco.adb
blob09e4d500249bdb7d4aed0a8fb65d8ac157f5d106
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- P A R _ S C O --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2009-2021, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Errout; use Errout;
30 with Lib; use Lib;
31 with Lib.Util; use Lib.Util;
32 with Namet; use Namet;
33 with Nlists; use Nlists;
34 with Opt; use Opt;
35 with Output; use Output;
36 with Put_SCOs;
37 with SCOs; use SCOs;
38 with Sem; use Sem;
39 with Sem_Util; use Sem_Util;
40 with Sinfo; use Sinfo;
41 with Sinfo.Nodes; use Sinfo.Nodes;
42 with Sinfo.Utils; use Sinfo.Utils;
43 with Sinput; use Sinput;
44 with Snames; use Snames;
45 with Table;
47 with GNAT.HTable; use GNAT.HTable;
48 with GNAT.Heap_Sort_G;
50 package body Par_SCO is
52 --------------------------
53 -- First-pass SCO table --
54 --------------------------
56 -- The Short_Circuit_And_Or pragma enables one to use AND and OR operators
57 -- in source code while the ones used with booleans will be interpreted as
58 -- their short circuit alternatives (AND THEN and OR ELSE). Thus, the true
59 -- meaning of these operators is known only after the semantic analysis.
61 -- However, decision SCOs include short circuit operators only. The SCO
62 -- information generation pass must be done before expansion, hence before
63 -- the semantic analysis. Because of this, the SCO information generation
64 -- is done in two passes.
66 -- The first one (SCO_Record_Raw, before semantic analysis) completes the
67 -- SCO_Raw_Table assuming all AND/OR operators are short circuit ones.
68 -- Then, the semantic analysis determines which operators are promoted to
69 -- short circuit ones. Finally, the second pass (SCO_Record_Filtered)
70 -- translates the SCO_Raw_Table to SCO_Table, taking care of removing the
71 -- remaining AND/OR operators and of adjusting decisions accordingly
72 -- (splitting decisions, removing empty ones, etc.).
74 type SCO_Generation_State_Type is (None, Raw, Filtered);
75 SCO_Generation_State : SCO_Generation_State_Type := None;
76 -- Keep track of the SCO generation state: this will prevent us from
77 -- running some steps multiple times (the second pass has to be started
78 -- from multiple places).
80 package SCO_Raw_Table is new Table.Table
81 (Table_Component_Type => SCO_Table_Entry,
82 Table_Index_Type => Nat,
83 Table_Low_Bound => 1,
84 Table_Initial => 500,
85 Table_Increment => 300,
86 Table_Name => "Raw_Table");
88 -----------------------
89 -- Unit Number Table --
90 -----------------------
92 -- This table parallels the SCO_Unit_Table, keeping track of the unit
93 -- numbers corresponding to the entries made in this table, so that before
94 -- writing out the SCO information to the ALI file, we can fill in the
95 -- proper dependency numbers and file names.
97 -- Note that the zeroth entry is here for convenience in sorting the table;
98 -- the real lower bound is 1.
100 package SCO_Unit_Number_Table is new Table.Table
101 (Table_Component_Type => Unit_Number_Type,
102 Table_Index_Type => SCO_Unit_Index,
103 Table_Low_Bound => 0, -- see note above on sort
104 Table_Initial => 20,
105 Table_Increment => 200,
106 Table_Name => "SCO_Unit_Number_Entry");
108 ------------------------------------------
109 -- Condition/Operator/Pragma Hash Table --
110 ------------------------------------------
112 -- We need to be able to get to conditions quickly for handling the calls
113 -- to Set_SCO_Condition efficiently, and similarly to get to pragmas to
114 -- handle calls to Set_SCO_Pragma_Enabled (the same holds for operators and
115 -- Set_SCO_Logical_Operator). For this purpose we identify the conditions,
116 -- operators and pragmas in the table by their starting sloc, and use this
117 -- hash table to map from these sloc values to SCO_Table indexes.
119 type Header_Num is new Integer range 0 .. 996;
120 -- Type for hash table headers
122 function Hash (F : Source_Ptr) return Header_Num;
123 -- Function to Hash source pointer value
125 function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean;
126 -- Function to test two keys for equality
128 function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean;
129 -- Function to test for source locations order
131 package SCO_Raw_Hash_Table is new Simple_HTable
132 (Header_Num, Int, 0, Source_Ptr, Hash, Equal);
133 -- The actual hash table
135 --------------------------
136 -- Internal Subprograms --
137 --------------------------
139 function Has_Decision (N : Node_Id) return Boolean;
140 -- N is the node for a subexpression. Returns True if the subexpression
141 -- contains a nested decision (i.e. either is a logical operator, or
142 -- contains a logical operator in its subtree).
144 -- This must be used in the first pass (SCO_Record_Raw) only: here AND/OR
145 -- operators are considered as short circuit, just in case the
146 -- Short_Circuit_And_Or pragma is used: only real short circuit operations
147 -- will be kept in the secord pass.
149 type Tristate is (False, True, Unknown);
151 function Is_Logical_Operator (N : Node_Id) return Tristate;
152 -- N is the node for a subexpression. This procedure determines whether N
153 -- is a logical operator: True for short circuit conditions, Unknown for OR
154 -- and AND (the Short_Circuit_And_Or pragma may be used) and False
155 -- otherwise. Note that in cases where True is returned, callers assume
156 -- Nkind (N) in N_Op.
158 function To_Source_Location (S : Source_Ptr) return Source_Location;
159 -- Converts Source_Ptr value to Source_Location (line/col) format
161 procedure Process_Decisions
162 (N : Node_Id;
163 T : Character;
164 Pragma_Sloc : Source_Ptr);
165 -- If N is Empty, has no effect. Otherwise scans the tree for the node N,
166 -- to output any decisions it contains. T is one of IEGPWX (for context of
167 -- expression: if/exit when/entry guard/pragma/while/expression). If T is
168 -- other than X, the node N is the if expression involved, and a decision
169 -- is always present (at the very least a simple decision is present at the
170 -- top level).
172 procedure Process_Decisions
173 (L : List_Id;
174 T : Character;
175 Pragma_Sloc : Source_Ptr);
176 -- Calls above procedure for each element of the list L
178 procedure Set_Raw_Table_Entry
179 (C1 : Character;
180 C2 : Character;
181 From : Source_Ptr;
182 To : Source_Ptr;
183 Last : Boolean;
184 Pragma_Sloc : Source_Ptr := No_Location;
185 Pragma_Aspect_Name : Name_Id := No_Name);
186 -- Append an entry to SCO_Raw_Table with fields set as per arguments
188 type Dominant_Info is record
189 K : Character;
190 -- F/T/S/E for a valid dominance marker, or ' ' for no dominant
192 N : Node_Id;
193 -- Node providing the Sloc(s) for the dominance marker
194 end record;
195 No_Dominant : constant Dominant_Info := (' ', Empty);
197 procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr);
198 -- Add one entry from the instance table to the corresponding SCO table
200 procedure Traverse_Declarations_Or_Statements
201 (L : List_Id;
202 D : Dominant_Info := No_Dominant;
203 P : Node_Id := Empty);
204 -- Process L, a list of statements or declarations dominated by D. If P is
205 -- present, it is processed as though it had been prepended to L.
207 function Traverse_Declarations_Or_Statements
208 (L : List_Id;
209 D : Dominant_Info := No_Dominant;
210 P : Node_Id := Empty) return Dominant_Info;
211 -- Same as above, and returns dominant information corresponding to the
212 -- last node with SCO in L.
214 -- The following Traverse_* routines perform appropriate calls to
215 -- Traverse_Declarations_Or_Statements to traverse specific node kinds.
216 -- Parameter D, when present, indicates the dominant of the first
217 -- declaration or statement within N.
219 procedure Traverse_Generic_Package_Declaration (N : Node_Id);
221 procedure Traverse_Handled_Statement_Sequence
222 (N : Node_Id;
223 D : Dominant_Info := No_Dominant);
225 procedure Traverse_Package_Body (N : Node_Id);
227 procedure Traverse_Package_Declaration
228 (N : Node_Id;
229 D : Dominant_Info := No_Dominant);
231 procedure Traverse_Subprogram_Or_Task_Body
232 (N : Node_Id;
233 D : Dominant_Info := No_Dominant);
235 procedure Traverse_Protected_Or_Task_Definition (N : Node_Id);
237 -- Note regarding traversals: In a few cases where an Alternatives list is
238 -- involved, pragmas such as "pragma Page" may show up before the first
239 -- alternative. We skip them because we're out of statement or declaration
240 -- context, so these can't be pragmas of interest for SCO purposes, and
241 -- the regular alternative processing typically involves attribute queries
242 -- which aren't valid for a pragma.
244 procedure Write_SCOs_To_ALI_File is new Put_SCOs;
245 -- Write SCO information to the ALI file using routines in Lib.Util
247 ----------
248 -- dsco --
249 ----------
251 procedure dsco is
252 procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry);
253 -- Dump a SCO table entry
255 ----------------
256 -- Dump_Entry --
257 ----------------
259 procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry) is
260 begin
261 Write_Str (" ");
262 Write_Int (Index);
263 Write_Char ('.');
265 if T.C1 /= ' ' then
266 Write_Str (" C1 = '");
267 Write_Char (T.C1);
268 Write_Char (''');
269 end if;
271 if T.C2 /= ' ' then
272 Write_Str (" C2 = '");
273 Write_Char (T.C2);
274 Write_Char (''');
275 end if;
277 if T.From /= No_Source_Location then
278 Write_Str (" From = ");
279 Write_Int (Int (T.From.Line));
280 Write_Char (':');
281 Write_Int (Int (T.From.Col));
282 end if;
284 if T.To /= No_Source_Location then
285 Write_Str (" To = ");
286 Write_Int (Int (T.To.Line));
287 Write_Char (':');
288 Write_Int (Int (T.To.Col));
289 end if;
291 if T.Last then
292 Write_Str (" True");
293 else
294 Write_Str (" False");
295 end if;
297 Write_Eol;
298 end Dump_Entry;
300 -- Start of processing for dsco
302 begin
303 -- Dump SCO unit table
305 Write_Line ("SCO Unit Table");
306 Write_Line ("--------------");
308 for Index in 1 .. SCO_Unit_Table.Last loop
309 declare
310 UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Index);
312 begin
313 Write_Str (" ");
314 Write_Int (Int (Index));
315 Write_Str (" Dep_Num = ");
316 Write_Int (Int (UTE.Dep_Num));
317 Write_Str (" From = ");
318 Write_Int (Int (UTE.From));
319 Write_Str (" To = ");
320 Write_Int (Int (UTE.To));
322 Write_Str (" File_Name = """);
324 if UTE.File_Name /= null then
325 Write_Str (UTE.File_Name.all);
326 end if;
328 Write_Char ('"');
329 Write_Eol;
330 end;
331 end loop;
333 -- Dump SCO Unit number table if it contains any entries
335 if SCO_Unit_Number_Table.Last >= 1 then
336 Write_Eol;
337 Write_Line ("SCO Unit Number Table");
338 Write_Line ("---------------------");
340 for Index in 1 .. SCO_Unit_Number_Table.Last loop
341 Write_Str (" ");
342 Write_Int (Int (Index));
343 Write_Str (". Unit_Number = ");
344 Write_Int (Int (SCO_Unit_Number_Table.Table (Index)));
345 Write_Eol;
346 end loop;
347 end if;
349 -- Dump SCO raw-table
351 Write_Eol;
352 Write_Line ("SCO Raw Table");
353 Write_Line ("---------");
355 if SCO_Generation_State = Filtered then
356 Write_Line ("Empty (free'd after second pass)");
357 else
358 for Index in 1 .. SCO_Raw_Table.Last loop
359 Dump_Entry (Index, SCO_Raw_Table.Table (Index));
360 end loop;
361 end if;
363 -- Dump SCO table itself
365 Write_Eol;
366 Write_Line ("SCO Filtered Table");
367 Write_Line ("---------");
369 for Index in 1 .. SCO_Table.Last loop
370 Dump_Entry (Index, SCO_Table.Table (Index));
371 end loop;
372 end dsco;
374 -----------
375 -- Equal --
376 -----------
378 function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean is
379 begin
380 return F1 = F2;
381 end Equal;
383 -------
384 -- < --
385 -------
387 function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean is
388 begin
389 return S1.Line < S2.Line
390 or else (S1.Line = S2.Line and then S1.Col < S2.Col);
391 end "<";
393 ------------------
394 -- Has_Decision --
395 ------------------
397 function Has_Decision (N : Node_Id) return Boolean is
398 function Check_Node (N : Node_Id) return Traverse_Result;
399 -- Determine if Nkind (N) indicates the presence of a decision (i.e. N
400 -- is a logical operator, which is a decision in itself, or an
401 -- IF-expression whose Condition attribute is a decision).
403 ----------------
404 -- Check_Node --
405 ----------------
407 function Check_Node (N : Node_Id) return Traverse_Result is
408 begin
409 -- If we are not sure this is a logical operator (AND and OR may be
410 -- turned into logical operators with the Short_Circuit_And_Or
411 -- pragma), assume it is. Putative decisions will be discarded if
412 -- needed in the secord pass.
414 if Is_Logical_Operator (N) /= False
415 or else Nkind (N) = N_If_Expression
416 then
417 return Abandon;
418 else
419 return OK;
420 end if;
421 end Check_Node;
423 function Traverse is new Traverse_Func (Check_Node);
425 -- Start of processing for Has_Decision
427 begin
428 return Traverse (N) = Abandon;
429 end Has_Decision;
431 ----------
432 -- Hash --
433 ----------
435 function Hash (F : Source_Ptr) return Header_Num is
436 begin
437 return Header_Num (Nat (F) mod 997);
438 end Hash;
440 ----------------
441 -- Initialize --
442 ----------------
444 procedure Initialize is
445 begin
446 SCO_Unit_Number_Table.Init;
448 -- The SCO_Unit_Number_Table entry with index 0 is intentionally set
449 -- aside to be used as temporary for sorting.
451 SCO_Unit_Number_Table.Increment_Last;
452 end Initialize;
454 -------------------------
455 -- Is_Logical_Operator --
456 -------------------------
458 function Is_Logical_Operator (N : Node_Id) return Tristate is
459 begin
460 if Nkind (N) in N_And_Then | N_Op_Not | N_Or_Else then
461 return True;
462 elsif Nkind (N) in N_Op_And | N_Op_Or then
463 return Unknown;
464 else
465 return False;
466 end if;
467 end Is_Logical_Operator;
469 -----------------------
470 -- Process_Decisions --
471 -----------------------
473 -- Version taking a list
475 procedure Process_Decisions
476 (L : List_Id;
477 T : Character;
478 Pragma_Sloc : Source_Ptr)
480 N : Node_Id;
482 begin
483 if L /= No_List then
484 N := First (L);
485 while Present (N) loop
486 Process_Decisions (N, T, Pragma_Sloc);
487 Next (N);
488 end loop;
489 end if;
490 end Process_Decisions;
492 -- Version taking a node
494 Current_Pragma_Sloc : Source_Ptr := No_Location;
495 -- While processing a pragma, this is set to the sloc of the N_Pragma node
497 procedure Process_Decisions
498 (N : Node_Id;
499 T : Character;
500 Pragma_Sloc : Source_Ptr)
502 Mark : Nat;
503 -- This is used to mark the location of a decision sequence in the SCO
504 -- table. We use it for backing out a simple decision in an expression
505 -- context that contains only NOT operators.
507 Mark_Hash : Nat;
508 -- Likewise for the putative SCO_Raw_Hash_Table entries: see below
510 type Hash_Entry is record
511 Sloc : Source_Ptr;
512 SCO_Index : Nat;
513 end record;
514 -- We must register all conditions/pragmas in SCO_Raw_Hash_Table.
515 -- However we cannot register them in the same time we are adding the
516 -- corresponding SCO entries to the raw table since we may discard them
517 -- later on. So instead we put all putative conditions into Hash_Entries
518 -- (see below) and register them once we are sure we keep them.
520 -- This data structure holds the conditions/pragmas to register in
521 -- SCO_Raw_Hash_Table.
523 package Hash_Entries is new Table.Table
524 (Table_Component_Type => Hash_Entry,
525 Table_Index_Type => Nat,
526 Table_Low_Bound => 1,
527 Table_Initial => 10,
528 Table_Increment => 10,
529 Table_Name => "Hash_Entries");
530 -- Hold temporarily (i.e. free'd before returning) the Hash_Entry before
531 -- they are registered in SCO_Raw_Hash_Table.
533 X_Not_Decision : Boolean;
534 -- This flag keeps track of whether a decision sequence in the SCO table
535 -- contains only NOT operators, and is for an expression context (T=X).
536 -- The flag will be set False if T is other than X, or if an operator
537 -- other than NOT is in the sequence.
539 procedure Output_Decision_Operand (N : Node_Id);
540 -- The node N is the top level logical operator of a decision, or it is
541 -- one of the operands of a logical operator belonging to a single
542 -- complex decision. This routine outputs the sequence of table entries
543 -- corresponding to the node. Note that we do not process the sub-
544 -- operands to look for further decisions, that processing is done in
545 -- Process_Decision_Operand, because we can't get decisions mixed up in
546 -- the global table. Call has no effect if N is Empty.
548 procedure Output_Element (N : Node_Id);
549 -- Node N is an operand of a logical operator that is not itself a
550 -- logical operator, or it is a simple decision. This routine outputs
551 -- the table entry for the element, with C1 set to ' '. Last is set
552 -- False, and an entry is made in the condition hash table.
554 procedure Output_Header (T : Character);
555 -- Outputs a decision header node. T is I/W/E/P for IF/WHILE/EXIT WHEN/
556 -- PRAGMA, and 'X' for the expression case.
558 procedure Process_Decision_Operand (N : Node_Id);
559 -- This is called on node N, the top level node of a decision, or on one
560 -- of its operands or suboperands after generating the full output for
561 -- the complex decision. It process the suboperands of the decision
562 -- looking for nested decisions.
564 function Process_Node (N : Node_Id) return Traverse_Result;
565 -- Processes one node in the traversal, looking for logical operators,
566 -- and if one is found, outputs the appropriate table entries.
568 -----------------------------
569 -- Output_Decision_Operand --
570 -----------------------------
572 procedure Output_Decision_Operand (N : Node_Id) is
573 C1 : Character;
574 C2 : Character;
575 -- C1 holds a character that identifies the operation while C2
576 -- indicates whether we are sure (' ') or not ('?') this operation
577 -- belongs to the decision. '?' entries will be filtered out in the
578 -- second (SCO_Record_Filtered) pass.
580 L : Node_Id;
581 T : Tristate;
583 begin
584 if No (N) then
585 return;
586 end if;
588 T := Is_Logical_Operator (N);
590 -- Logical operator
592 if T /= False then
593 if Nkind (N) = N_Op_Not then
594 C1 := '!';
595 L := Empty;
597 else
598 L := Left_Opnd (N);
600 if Nkind (N) in N_Op_Or | N_Or_Else then
601 C1 := '|';
602 else pragma Assert (Nkind (N) in N_Op_And | N_And_Then);
603 C1 := '&';
604 end if;
605 end if;
607 if T = True then
608 C2 := ' ';
609 else
610 C2 := '?';
611 end if;
613 Set_Raw_Table_Entry
614 (C1 => C1,
615 C2 => C2,
616 From => Sloc (N),
617 To => No_Location,
618 Last => False);
620 Hash_Entries.Append ((Sloc (N), SCO_Raw_Table.Last));
622 Output_Decision_Operand (L);
623 Output_Decision_Operand (Right_Opnd (N));
625 -- Not a logical operator
627 else
628 Output_Element (N);
629 end if;
630 end Output_Decision_Operand;
632 --------------------
633 -- Output_Element --
634 --------------------
636 procedure Output_Element (N : Node_Id) is
637 FSloc : Source_Ptr;
638 LSloc : Source_Ptr;
639 begin
640 Sloc_Range (N, FSloc, LSloc);
641 Set_Raw_Table_Entry
642 (C1 => ' ',
643 C2 => 'c',
644 From => FSloc,
645 To => LSloc,
646 Last => False);
647 Hash_Entries.Append ((FSloc, SCO_Raw_Table.Last));
648 end Output_Element;
650 -------------------
651 -- Output_Header --
652 -------------------
654 procedure Output_Header (T : Character) is
655 Loc : Source_Ptr := No_Location;
656 -- Node whose Sloc is used for the decision
658 Nam : Name_Id := No_Name;
659 -- For the case of an aspect, aspect name
661 begin
662 case T is
663 when 'I' | 'E' | 'W' | 'a' | 'A' =>
665 -- For IF, EXIT, WHILE, or aspects, the token SLOC is that of
666 -- the parent of the expression.
668 Loc := Sloc (Parent (N));
670 if T = 'a' or else T = 'A' then
671 Nam := Chars (Identifier (Parent (N)));
672 end if;
674 when 'G' | 'P' =>
676 -- For entry guard, the token sloc is from the N_Entry_Body.
677 -- For PRAGMA, we must get the location from the pragma node.
678 -- Argument N is the pragma argument, and we have to go up
679 -- two levels (through the pragma argument association) to
680 -- get to the pragma node itself. For the guard on a select
681 -- alternative, we do not have access to the token location for
682 -- the WHEN, so we use the first sloc of the condition itself.
683 -- First_Sloc gives the most sensible result, but we have to
684 -- beware of also using it when computing the dominance marker
685 -- sloc (in the Set_Statement_Entry procedure), as this is not
686 -- fully equivalent to the "To" sloc computed by
687 -- Sloc_Range (Guard, To, From).
689 if Nkind (Parent (N)) in N_Accept_Alternative
690 | N_Delay_Alternative
691 | N_Terminate_Alternative
692 then
693 Loc := First_Sloc (N);
694 else
695 Loc := Sloc (Parent (Parent (N)));
696 end if;
698 when 'X' =>
700 -- For an expression, no Sloc
702 null;
704 -- No other possibilities
706 when others =>
707 raise Program_Error;
708 end case;
710 Set_Raw_Table_Entry
711 (C1 => T,
712 C2 => ' ',
713 From => Loc,
714 To => No_Location,
715 Last => False,
716 Pragma_Sloc => Pragma_Sloc,
717 Pragma_Aspect_Name => Nam);
719 -- For an aspect specification, which will be rewritten into a
720 -- pragma, enter a hash table entry now.
722 if T = 'a' then
723 Hash_Entries.Append ((Loc, SCO_Raw_Table.Last));
724 end if;
725 end Output_Header;
727 ------------------------------
728 -- Process_Decision_Operand --
729 ------------------------------
731 procedure Process_Decision_Operand (N : Node_Id) is
732 begin
733 if Is_Logical_Operator (N) /= False then
734 if Nkind (N) /= N_Op_Not then
735 Process_Decision_Operand (Left_Opnd (N));
736 X_Not_Decision := False;
737 end if;
739 Process_Decision_Operand (Right_Opnd (N));
741 else
742 Process_Decisions (N, 'X', Pragma_Sloc);
743 end if;
744 end Process_Decision_Operand;
746 ------------------
747 -- Process_Node --
748 ------------------
750 function Process_Node (N : Node_Id) return Traverse_Result is
751 begin
752 case Nkind (N) is
754 -- Logical operators, output table entries and then process
755 -- operands recursively to deal with nested conditions.
757 when N_And_Then
758 | N_Op_And
759 | N_Op_Not
760 | N_Op_Or
761 | N_Or_Else
763 declare
764 T : Character;
766 begin
767 -- If outer level, then type comes from call, otherwise it
768 -- is more deeply nested and counts as X for expression.
770 if N = Process_Decisions.N then
771 T := Process_Decisions.T;
772 else
773 T := 'X';
774 end if;
776 -- Output header for sequence
778 X_Not_Decision := T = 'X' and then Nkind (N) = N_Op_Not;
779 Mark := SCO_Raw_Table.Last;
780 Mark_Hash := Hash_Entries.Last;
781 Output_Header (T);
783 -- Output the decision
785 Output_Decision_Operand (N);
787 -- If the decision was in an expression context (T = 'X')
788 -- and contained only NOT operators, then we don't output
789 -- it, so delete it.
791 if X_Not_Decision then
792 SCO_Raw_Table.Set_Last (Mark);
793 Hash_Entries.Set_Last (Mark_Hash);
795 -- Otherwise, set Last in last table entry to mark end
797 else
798 SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
799 end if;
801 -- Process any embedded decisions
803 Process_Decision_Operand (N);
804 return Skip;
805 end;
807 -- Case expression
809 -- Really hard to believe this is correct given the special
810 -- handling for if expressions below ???
812 when N_Case_Expression =>
813 return OK; -- ???
815 -- If expression, processed like an if statement
817 when N_If_Expression =>
818 declare
819 Cond : constant Node_Id := First (Expressions (N));
820 Thnx : constant Node_Id := Next (Cond);
821 Elsx : constant Node_Id := Next (Thnx);
823 begin
824 Process_Decisions (Cond, 'I', Pragma_Sloc);
825 Process_Decisions (Thnx, 'X', Pragma_Sloc);
826 Process_Decisions (Elsx, 'X', Pragma_Sloc);
827 return Skip;
828 end;
830 when N_Quantified_Expression =>
831 declare
832 Cond : constant Node_Id := Condition (N);
833 begin
834 Process_Decisions (Cond, 'W', Pragma_Sloc);
835 return Skip;
836 end;
838 -- All other cases, continue scan
840 when others =>
841 return OK;
842 end case;
843 end Process_Node;
845 procedure Traverse is new Traverse_Proc (Process_Node);
847 -- Start of processing for Process_Decisions
849 begin
850 if No (N) then
851 return;
852 end if;
854 Hash_Entries.Init;
856 -- See if we have simple decision at outer level and if so then
857 -- generate the decision entry for this simple decision. A simple
858 -- decision is a boolean expression (which is not a logical operator
859 -- or short circuit form) appearing as the operand of an IF, WHILE,
860 -- EXIT WHEN, or special PRAGMA construct.
862 if T /= 'X' and then Is_Logical_Operator (N) = False then
863 Output_Header (T);
864 Output_Element (N);
866 -- Change Last in last table entry to True to mark end of
867 -- sequence, which is this case is only one element long.
869 SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
870 end if;
872 Traverse (N);
874 -- Now we have the definitive set of SCO entries, register them in the
875 -- corresponding hash table.
877 for J in 1 .. Hash_Entries.Last loop
878 SCO_Raw_Hash_Table.Set
879 (Hash_Entries.Table (J).Sloc,
880 Hash_Entries.Table (J).SCO_Index);
881 end loop;
883 Hash_Entries.Free;
884 end Process_Decisions;
886 -----------
887 -- pscos --
888 -----------
890 procedure pscos is
891 procedure Write_Info_Char (C : Character) renames Write_Char;
892 -- Write one character;
894 procedure Write_Info_Initiate (Key : Character) renames Write_Char;
895 -- Start new one and write one character;
897 procedure Write_Info_Nat (N : Nat);
898 -- Write value of N
900 procedure Write_Info_Terminate renames Write_Eol;
901 -- Terminate current line
903 --------------------
904 -- Write_Info_Nat --
905 --------------------
907 procedure Write_Info_Nat (N : Nat) is
908 begin
909 Write_Int (N);
910 end Write_Info_Nat;
912 procedure Debug_Put_SCOs is new Put_SCOs;
914 -- Start of processing for pscos
916 begin
917 Debug_Put_SCOs;
918 end pscos;
920 ---------------------
921 -- Record_Instance --
922 ---------------------
924 procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr) is
925 Inst_Src : constant Source_File_Index :=
926 Get_Source_File_Index (Inst_Sloc);
927 begin
928 SCO_Instance_Table.Append
929 ((Inst_Dep_Num => Dependency_Num (Unit (Inst_Src)),
930 Inst_Loc => To_Source_Location (Inst_Sloc),
931 Enclosing_Instance => SCO_Instance_Index (Instance (Inst_Src))));
933 pragma Assert
934 (SCO_Instance_Table.Last = SCO_Instance_Index (Id));
935 end Record_Instance;
937 ----------------
938 -- SCO_Output --
939 ----------------
941 procedure SCO_Output is
942 procedure Populate_SCO_Instance_Table is
943 new Sinput.Iterate_On_Instances (Record_Instance);
945 begin
946 pragma Assert (SCO_Generation_State = Filtered);
948 if Debug_Flag_Dot_OO then
949 dsco;
950 end if;
952 Populate_SCO_Instance_Table;
954 -- Sort the unit tables based on dependency numbers
956 Unit_Table_Sort : declare
957 function Lt (Op1 : Natural; Op2 : Natural) return Boolean;
958 -- Comparison routine for sort call
960 procedure Move (From : Natural; To : Natural);
961 -- Move routine for sort call
963 --------
964 -- Lt --
965 --------
967 function Lt (Op1 : Natural; Op2 : Natural) return Boolean is
968 begin
969 return
970 Dependency_Num
971 (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op1)))
973 Dependency_Num
974 (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op2)));
975 end Lt;
977 ----------
978 -- Move --
979 ----------
981 procedure Move (From : Natural; To : Natural) is
982 begin
983 SCO_Unit_Table.Table (SCO_Unit_Index (To)) :=
984 SCO_Unit_Table.Table (SCO_Unit_Index (From));
985 SCO_Unit_Number_Table.Table (SCO_Unit_Index (To)) :=
986 SCO_Unit_Number_Table.Table (SCO_Unit_Index (From));
987 end Move;
989 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
991 -- Start of processing for Unit_Table_Sort
993 begin
994 Sorting.Sort (Integer (SCO_Unit_Table.Last));
995 end Unit_Table_Sort;
997 -- Loop through entries in the unit table to set file name and
998 -- dependency number entries.
1000 for J in 1 .. SCO_Unit_Table.Last loop
1001 declare
1002 U : constant Unit_Number_Type := SCO_Unit_Number_Table.Table (J);
1003 UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (J);
1005 begin
1006 Get_Name_String (Reference_Name (Source_Index (U)));
1007 UTE.File_Name := new String'(Name_Buffer (1 .. Name_Len));
1008 UTE.Dep_Num := Dependency_Num (U);
1009 end;
1010 end loop;
1012 -- Now the tables are all setup for output to the ALI file
1014 Write_SCOs_To_ALI_File;
1015 end SCO_Output;
1017 -------------------------
1018 -- SCO_Pragma_Disabled --
1019 -------------------------
1021 function SCO_Pragma_Disabled (Loc : Source_Ptr) return Boolean is
1022 Index : Nat;
1024 begin
1025 if Loc = No_Location then
1026 return False;
1027 end if;
1029 Index := SCO_Raw_Hash_Table.Get (Loc);
1031 -- The test here for zero is to deal with possible previous errors, and
1032 -- for the case of pragma statement SCOs, for which we always set the
1033 -- Pragma_Sloc even if the particular pragma cannot be specifically
1034 -- disabled.
1036 if Index /= 0 then
1037 declare
1038 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
1040 begin
1041 case T.C1 is
1042 when 'S' =>
1043 -- Pragma statement
1045 return T.C2 = 'p';
1047 when 'A' =>
1048 -- Aspect decision (enabled)
1050 return False;
1052 when 'a' =>
1053 -- Aspect decision (not enabled)
1055 return True;
1057 when ASCII.NUL =>
1058 -- Nullified disabled SCO
1060 return True;
1062 when others =>
1063 raise Program_Error;
1064 end case;
1065 end;
1067 else
1068 return False;
1069 end if;
1070 end SCO_Pragma_Disabled;
1072 --------------------
1073 -- SCO_Record_Raw --
1074 --------------------
1076 procedure SCO_Record_Raw (U : Unit_Number_Type) is
1077 procedure Traverse_Aux_Decls (N : Node_Id);
1078 -- Traverse the Aux_Decls_Node of compilation unit N
1080 ------------------------
1081 -- Traverse_Aux_Decls --
1082 ------------------------
1084 procedure Traverse_Aux_Decls (N : Node_Id) is
1085 ADN : constant Node_Id := Aux_Decls_Node (N);
1087 begin
1088 Traverse_Declarations_Or_Statements (Config_Pragmas (ADN));
1089 Traverse_Declarations_Or_Statements (Pragmas_After (ADN));
1091 -- Declarations and Actions do not correspond to source constructs,
1092 -- they contain only nodes from expansion, so at this point they
1093 -- should still be empty:
1095 pragma Assert (No (Declarations (ADN)));
1096 pragma Assert (No (Actions (ADN)));
1097 end Traverse_Aux_Decls;
1099 -- Local variables
1101 From : Nat;
1102 Lu : Node_Id;
1104 -- Start of processing for SCO_Record_Raw
1106 begin
1107 -- It is legitimate to run this pass multiple times (once per unit) so
1108 -- run it even if it was already run before.
1110 pragma Assert (SCO_Generation_State in None .. Raw);
1111 SCO_Generation_State := Raw;
1113 -- Ignore call if not generating code and generating SCO's
1115 if not (Generate_SCO and then Operating_Mode = Generate_Code) then
1116 return;
1117 end if;
1119 -- Ignore call if this unit already recorded
1121 for J in 1 .. SCO_Unit_Number_Table.Last loop
1122 if U = SCO_Unit_Number_Table.Table (J) then
1123 return;
1124 end if;
1125 end loop;
1127 -- Otherwise record starting entry
1129 From := SCO_Raw_Table.Last + 1;
1131 -- Get Unit (checking case of subunit)
1133 Lu := Unit (Cunit (U));
1135 if Nkind (Lu) = N_Subunit then
1136 Lu := Proper_Body (Lu);
1137 end if;
1139 -- Traverse the unit
1141 Traverse_Aux_Decls (Cunit (U));
1143 case Nkind (Lu) is
1144 when N_Generic_Instantiation
1145 | N_Generic_Package_Declaration
1146 | N_Package_Body
1147 | N_Package_Declaration
1148 | N_Protected_Body
1149 | N_Subprogram_Body
1150 | N_Subprogram_Declaration
1151 | N_Task_Body
1153 Traverse_Declarations_Or_Statements (L => No_List, P => Lu);
1155 -- All other cases of compilation units (e.g. renamings), generate no
1156 -- SCO information.
1158 when others =>
1159 null;
1160 end case;
1162 -- Make entry for new unit in unit tables, we will fill in the file
1163 -- name and dependency numbers later.
1165 SCO_Unit_Table.Append (
1166 (Dep_Num => 0,
1167 File_Name => null,
1168 File_Index => Get_Source_File_Index (Sloc (Lu)),
1169 From => From,
1170 To => SCO_Raw_Table.Last));
1172 SCO_Unit_Number_Table.Append (U);
1173 end SCO_Record_Raw;
1175 -----------------------
1176 -- Set_SCO_Condition --
1177 -----------------------
1179 procedure Set_SCO_Condition (Cond : Node_Id; Val : Boolean) is
1181 -- SCO annotations are not processed after the filtering pass
1183 pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1185 Constant_Condition_Code : constant array (Boolean) of Character :=
1186 (False => 'f', True => 't');
1188 Orig : constant Node_Id := Original_Node (Cond);
1189 Dummy : Source_Ptr;
1190 Index : Nat;
1191 Start : Source_Ptr;
1193 begin
1194 Sloc_Range (Orig, Start, Dummy);
1195 Index := SCO_Raw_Hash_Table.Get (Start);
1197 -- Index can be zero for boolean expressions that do not have SCOs
1198 -- (simple decisions outside of a control flow structure), or in case
1199 -- of a previous error.
1201 if Index = 0 then
1202 return;
1204 else
1205 pragma Assert (SCO_Raw_Table.Table (Index).C1 = ' ');
1206 SCO_Raw_Table.Table (Index).C2 := Constant_Condition_Code (Val);
1207 end if;
1208 end Set_SCO_Condition;
1210 ------------------------------
1211 -- Set_SCO_Logical_Operator --
1212 ------------------------------
1214 procedure Set_SCO_Logical_Operator (Op : Node_Id) is
1216 -- SCO annotations are not processed after the filtering pass
1218 pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1220 Orig : constant Node_Id := Original_Node (Op);
1221 Orig_Sloc : constant Source_Ptr := Sloc (Orig);
1222 Index : constant Nat := SCO_Raw_Hash_Table.Get (Orig_Sloc);
1224 begin
1225 -- All (putative) logical operators are supposed to have their own entry
1226 -- in the SCOs table. However, the semantic analysis may invoke this
1227 -- subprogram with nodes that are out of the SCO generation scope.
1229 if Index /= 0 then
1230 SCO_Raw_Table.Table (Index).C2 := ' ';
1231 end if;
1232 end Set_SCO_Logical_Operator;
1234 ----------------------------
1235 -- Set_SCO_Pragma_Enabled --
1236 ----------------------------
1238 procedure Set_SCO_Pragma_Enabled (Loc : Source_Ptr) is
1240 -- SCO annotations are not processed after the filtering pass
1242 pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1244 Index : Nat;
1246 begin
1247 -- Nothing to do if not generating SCO, or if we're not processing the
1248 -- original source occurrence of the pragma.
1250 if not (Generate_SCO
1251 and then In_Extended_Main_Source_Unit (Loc)
1252 and then not (In_Instance or In_Inlined_Body))
1253 then
1254 return;
1255 end if;
1257 -- Note: the reason we use the Sloc value as the key is that in the
1258 -- generic case, the call to this procedure is made on a copy of the
1259 -- original node, so we can't use the Node_Id value.
1261 Index := SCO_Raw_Hash_Table.Get (Loc);
1263 -- A zero index here indicates that semantic analysis found an
1264 -- activated pragma at Loc which does not have a corresponding pragma
1265 -- or aspect at the syntax level. This may occur in legitimate cases
1266 -- because of expanded code (such are Pre/Post conditions generated for
1267 -- formal parameter validity checks), or as a consequence of a previous
1268 -- error.
1270 if Index = 0 then
1271 return;
1273 else
1274 declare
1275 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
1277 begin
1278 -- Note: may be called multiple times for the same sloc, so
1279 -- account for the fact that the entry may already have been
1280 -- marked enabled.
1282 case T.C1 is
1283 -- Aspect (decision SCO)
1285 when 'a' =>
1286 T.C1 := 'A';
1288 when 'A' =>
1289 null;
1291 -- Pragma (statement SCO)
1293 when 'S' =>
1294 pragma Assert (T.C2 = 'p' or else T.C2 = 'P');
1295 T.C2 := 'P';
1297 when others =>
1298 raise Program_Error;
1299 end case;
1300 end;
1301 end if;
1302 end Set_SCO_Pragma_Enabled;
1304 -------------------------
1305 -- Set_Raw_Table_Entry --
1306 -------------------------
1308 procedure Set_Raw_Table_Entry
1309 (C1 : Character;
1310 C2 : Character;
1311 From : Source_Ptr;
1312 To : Source_Ptr;
1313 Last : Boolean;
1314 Pragma_Sloc : Source_Ptr := No_Location;
1315 Pragma_Aspect_Name : Name_Id := No_Name)
1317 pragma Assert (SCO_Generation_State = Raw);
1318 begin
1319 SCO_Raw_Table.Append
1320 ((C1 => C1,
1321 C2 => C2,
1322 From => To_Source_Location (From),
1323 To => To_Source_Location (To),
1324 Last => Last,
1325 Pragma_Sloc => Pragma_Sloc,
1326 Pragma_Aspect_Name => Pragma_Aspect_Name));
1327 end Set_Raw_Table_Entry;
1329 ------------------------
1330 -- To_Source_Location --
1331 ------------------------
1333 function To_Source_Location (S : Source_Ptr) return Source_Location is
1334 begin
1335 if S = No_Location then
1336 return No_Source_Location;
1337 else
1338 return
1339 (Line => Get_Logical_Line_Number (S),
1340 Col => Get_Column_Number (S));
1341 end if;
1342 end To_Source_Location;
1344 -----------------------------------------
1345 -- Traverse_Declarations_Or_Statements --
1346 -----------------------------------------
1348 -- Tables used by Traverse_Declarations_Or_Statements for temporarily
1349 -- holding statement and decision entries. These are declared globally
1350 -- since they are shared by recursive calls to this procedure.
1352 type SC_Entry is record
1353 N : Node_Id;
1354 From : Source_Ptr;
1355 To : Source_Ptr;
1356 Typ : Character;
1357 end record;
1358 -- Used to store a single entry in the following table, From:To represents
1359 -- the range of entries in the CS line entry, and typ is the type, with
1360 -- space meaning that no type letter will accompany the entry.
1362 package SC is new Table.Table
1363 (Table_Component_Type => SC_Entry,
1364 Table_Index_Type => Nat,
1365 Table_Low_Bound => 1,
1366 Table_Initial => 1000,
1367 Table_Increment => 200,
1368 Table_Name => "SCO_SC");
1369 -- Used to store statement components for a CS entry to be output as a
1370 -- result of the call to this procedure. SC.Last is the last entry stored,
1371 -- so the current statement sequence is represented by SC_Array (SC_First
1372 -- .. SC.Last), where SC_First is saved on entry to each recursive call to
1373 -- the routine.
1375 -- Extend_Statement_Sequence adds an entry to this array, and then
1376 -- Set_Statement_Entry clears the entries starting with SC_First, copying
1377 -- these entries to the main SCO output table. The reason that we do the
1378 -- temporary caching of results in this array is that we want the SCO table
1379 -- entries for a given CS line to be contiguous, and the processing may
1380 -- output intermediate entries such as decision entries.
1382 type SD_Entry is record
1383 Nod : Node_Id;
1384 Lst : List_Id;
1385 Typ : Character;
1386 Plo : Source_Ptr;
1387 end record;
1388 -- Used to store a single entry in the following table. Nod is the node to
1389 -- be searched for decisions for the case of Process_Decisions_Defer with a
1390 -- node argument (with Lst set to No_List. Lst is the list to be searched
1391 -- for decisions for the case of Process_Decisions_Defer with a List
1392 -- argument (in which case Nod is set to Empty). Plo is the sloc of the
1393 -- enclosing pragma, if any.
1395 package SD is new Table.Table
1396 (Table_Component_Type => SD_Entry,
1397 Table_Index_Type => Nat,
1398 Table_Low_Bound => 1,
1399 Table_Initial => 1000,
1400 Table_Increment => 200,
1401 Table_Name => "SCO_SD");
1402 -- Used to store possible decision information. Instead of calling the
1403 -- Process_Decisions procedures directly, we call Process_Decisions_Defer,
1404 -- which simply stores the arguments in this table. Then when we clear
1405 -- out a statement sequence using Set_Statement_Entry, after generating
1406 -- the CS lines for the statements, the entries in this table result in
1407 -- calls to Process_Decision. The reason for doing things this way is to
1408 -- ensure that decisions are output after the CS line for the statements
1409 -- in which the decisions occur.
1411 procedure Traverse_Declarations_Or_Statements
1412 (L : List_Id;
1413 D : Dominant_Info := No_Dominant;
1414 P : Node_Id := Empty)
1416 Discard_Dom : Dominant_Info;
1417 pragma Warnings (Off, Discard_Dom);
1418 begin
1419 Discard_Dom := Traverse_Declarations_Or_Statements (L, D, P);
1420 end Traverse_Declarations_Or_Statements;
1422 function Traverse_Declarations_Or_Statements
1423 (L : List_Id;
1424 D : Dominant_Info := No_Dominant;
1425 P : Node_Id := Empty) return Dominant_Info
1427 Current_Dominant : Dominant_Info := D;
1428 -- Dominance information for the current basic block
1430 Current_Test : Node_Id;
1431 -- Conditional node (N_If_Statement or N_Elsif being processed)
1433 N : Node_Id;
1435 SC_First : constant Nat := SC.Last + 1;
1436 SD_First : constant Nat := SD.Last + 1;
1437 -- Record first entries used in SC/SD at this recursive level
1439 procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character);
1440 -- Extend the current statement sequence to encompass the node N. Typ is
1441 -- the letter that identifies the type of statement/declaration that is
1442 -- being added to the sequence.
1444 procedure Process_Decisions_Defer (N : Node_Id; T : Character);
1445 pragma Inline (Process_Decisions_Defer);
1446 -- This routine is logically the same as Process_Decisions, except that
1447 -- the arguments are saved in the SD table for later processing when
1448 -- Set_Statement_Entry is called, which goes through the saved entries
1449 -- making the corresponding calls to Process_Decision. Note: the
1450 -- enclosing statement must have already been added to the current
1451 -- statement sequence, so that nested decisions are properly
1452 -- identified as such.
1454 procedure Process_Decisions_Defer (L : List_Id; T : Character);
1455 pragma Inline (Process_Decisions_Defer);
1456 -- Same case for list arguments, deferred call to Process_Decisions
1458 procedure Set_Statement_Entry;
1459 -- Output CS entries for all statements saved in table SC, and end the
1460 -- current CS sequence. Then output entries for all decisions nested in
1461 -- these statements, which have been deferred so far.
1463 procedure Traverse_One (N : Node_Id);
1464 -- Traverse one declaration or statement
1466 procedure Traverse_Aspects (N : Node_Id);
1467 -- Helper for Traverse_One: traverse N's aspect specifications
1469 procedure Traverse_Degenerate_Subprogram (N : Node_Id);
1470 -- Common code to handle null procedures and expression functions. Emit
1471 -- a SCO of the given Kind and N outside of the dominance flow.
1473 -------------------------------
1474 -- Extend_Statement_Sequence --
1475 -------------------------------
1477 procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character) is
1478 Dummy : Source_Ptr;
1479 F : Source_Ptr;
1480 T : Source_Ptr;
1481 To_Node : Node_Id := Empty;
1483 begin
1484 Sloc_Range (N, F, T);
1486 case Nkind (N) is
1487 when N_Accept_Statement =>
1488 if Present (Parameter_Specifications (N)) then
1489 To_Node := Last (Parameter_Specifications (N));
1490 elsif Present (Entry_Index (N)) then
1491 To_Node := Entry_Index (N);
1492 else
1493 To_Node := Entry_Direct_Name (N);
1494 end if;
1496 when N_Case_Statement =>
1497 To_Node := Expression (N);
1499 when N_Elsif_Part
1500 | N_If_Statement
1502 To_Node := Condition (N);
1504 when N_Extended_Return_Statement =>
1505 To_Node := Last (Return_Object_Declarations (N));
1507 when N_Loop_Statement =>
1508 To_Node := Iteration_Scheme (N);
1510 when N_Asynchronous_Select
1511 | N_Conditional_Entry_Call
1512 | N_Selective_Accept
1513 | N_Single_Protected_Declaration
1514 | N_Single_Task_Declaration
1515 | N_Timed_Entry_Call
1517 T := F;
1519 when N_Protected_Type_Declaration
1520 | N_Task_Type_Declaration
1522 if Has_Aspects (N) then
1523 To_Node := Last (Aspect_Specifications (N));
1525 elsif Present (Discriminant_Specifications (N)) then
1526 To_Node := Last (Discriminant_Specifications (N));
1528 else
1529 To_Node := Defining_Identifier (N);
1530 end if;
1532 when N_Subexpr =>
1533 To_Node := N;
1535 when others =>
1536 null;
1537 end case;
1539 if Present (To_Node) then
1540 Sloc_Range (To_Node, Dummy, T);
1541 end if;
1543 SC.Append ((N, F, T, Typ));
1544 end Extend_Statement_Sequence;
1546 -----------------------------
1547 -- Process_Decisions_Defer --
1548 -----------------------------
1550 procedure Process_Decisions_Defer (N : Node_Id; T : Character) is
1551 begin
1552 SD.Append ((N, No_List, T, Current_Pragma_Sloc));
1553 end Process_Decisions_Defer;
1555 procedure Process_Decisions_Defer (L : List_Id; T : Character) is
1556 begin
1557 SD.Append ((Empty, L, T, Current_Pragma_Sloc));
1558 end Process_Decisions_Defer;
1560 -------------------------
1561 -- Set_Statement_Entry --
1562 -------------------------
1564 procedure Set_Statement_Entry is
1565 SC_Last : constant Int := SC.Last;
1566 SD_Last : constant Int := SD.Last;
1568 begin
1569 -- Output statement entries from saved entries in SC table
1571 for J in SC_First .. SC_Last loop
1572 if J = SC_First then
1574 if Current_Dominant /= No_Dominant then
1575 declare
1576 From : Source_Ptr;
1577 To : Source_Ptr;
1579 begin
1580 Sloc_Range (Current_Dominant.N, From, To);
1582 if Current_Dominant.K /= 'E' then
1583 To := No_Location;
1584 end if;
1586 -- Be consistent with the location determined in
1587 -- Output_Header.
1589 if Current_Dominant.K = 'T'
1590 and then Nkind (Parent (Current_Dominant.N))
1591 in N_Accept_Alternative
1592 | N_Delay_Alternative
1593 | N_Terminate_Alternative
1594 then
1595 From := First_Sloc (Current_Dominant.N);
1596 end if;
1598 Set_Raw_Table_Entry
1599 (C1 => '>',
1600 C2 => Current_Dominant.K,
1601 From => From,
1602 To => To,
1603 Last => False,
1604 Pragma_Sloc => No_Location,
1605 Pragma_Aspect_Name => No_Name);
1606 end;
1607 end if;
1608 end if;
1610 declare
1611 SCE : SC_Entry renames SC.Table (J);
1612 Pragma_Sloc : Source_Ptr := No_Location;
1613 Pragma_Aspect_Name : Name_Id := No_Name;
1615 begin
1616 -- For the case of a statement SCO for a pragma controlled by
1617 -- Set_SCO_Pragma_Enabled, set Pragma_Sloc so that the SCO (and
1618 -- those of any nested decision) is emitted only if the pragma
1619 -- is enabled.
1621 if SCE.Typ = 'p' then
1622 Pragma_Sloc := SCE.From;
1623 SCO_Raw_Hash_Table.Set
1624 (Pragma_Sloc, SCO_Raw_Table.Last + 1);
1625 Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
1626 pragma Assert (Pragma_Aspect_Name /= No_Name);
1628 elsif SCE.Typ = 'P' then
1629 Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
1630 pragma Assert (Pragma_Aspect_Name /= No_Name);
1631 end if;
1633 Set_Raw_Table_Entry
1634 (C1 => 'S',
1635 C2 => SCE.Typ,
1636 From => SCE.From,
1637 To => SCE.To,
1638 Last => (J = SC_Last),
1639 Pragma_Sloc => Pragma_Sloc,
1640 Pragma_Aspect_Name => Pragma_Aspect_Name);
1641 end;
1642 end loop;
1644 -- Last statement of basic block, if present, becomes new current
1645 -- dominant.
1647 if SC_Last >= SC_First then
1648 Current_Dominant := ('S', SC.Table (SC_Last).N);
1649 end if;
1651 -- Clear out used section of SC table
1653 SC.Set_Last (SC_First - 1);
1655 -- Output any embedded decisions
1657 for J in SD_First .. SD_Last loop
1658 declare
1659 SDE : SD_Entry renames SD.Table (J);
1661 begin
1662 if Present (SDE.Nod) then
1663 Process_Decisions (SDE.Nod, SDE.Typ, SDE.Plo);
1664 else
1665 Process_Decisions (SDE.Lst, SDE.Typ, SDE.Plo);
1666 end if;
1667 end;
1668 end loop;
1670 -- Clear out used section of SD table
1672 SD.Set_Last (SD_First - 1);
1673 end Set_Statement_Entry;
1675 ----------------------
1676 -- Traverse_Aspects --
1677 ----------------------
1679 procedure Traverse_Aspects (N : Node_Id) is
1680 AE : Node_Id;
1681 AN : Node_Id;
1682 C1 : Character;
1684 begin
1685 AN := First (Aspect_Specifications (N));
1686 while Present (AN) loop
1687 AE := Expression (AN);
1689 -- SCOs are generated before semantic analysis/expansion:
1690 -- PPCs are not split yet.
1692 pragma Assert (not Split_PPC (AN));
1694 C1 := ASCII.NUL;
1696 case Get_Aspect_Id (AN) is
1698 -- Aspects rewritten into pragmas controlled by a Check_Policy:
1699 -- Current_Pragma_Sloc must be set to the sloc of the aspect
1700 -- specification. The corresponding pragma will have the same
1701 -- sloc. Note that Invariant, Pre, and Post will be enabled if
1702 -- the policy is Check; on the other hand, predicate aspects
1703 -- will be enabled for Check and Ignore (when Add_Predicate
1704 -- is called) because the actual checks occur in client units.
1705 -- When the assertion policy for Predicate is Disable, the
1706 -- SCO remains disabled, because Add_Predicate is never called.
1708 -- Pre/post can have checks in client units too because of
1709 -- inheritance, so should they receive the same treatment???
1711 when Aspect_Dynamic_Predicate
1712 | Aspect_Invariant
1713 | Aspect_Post
1714 | Aspect_Postcondition
1715 | Aspect_Pre
1716 | Aspect_Precondition
1717 | Aspect_Predicate
1718 | Aspect_Static_Predicate
1719 | Aspect_Type_Invariant
1721 C1 := 'a';
1723 -- Other aspects: just process any decision nested in the
1724 -- aspect expression.
1726 when others =>
1727 if Has_Decision (AE) then
1728 C1 := 'X';
1729 end if;
1730 end case;
1732 if C1 /= ASCII.NUL then
1733 pragma Assert (Current_Pragma_Sloc = No_Location);
1735 if C1 = 'a' or else C1 = 'A' then
1736 Current_Pragma_Sloc := Sloc (AN);
1737 end if;
1739 Process_Decisions_Defer (AE, C1);
1741 Current_Pragma_Sloc := No_Location;
1742 end if;
1744 Next (AN);
1745 end loop;
1746 end Traverse_Aspects;
1748 ------------------------------------
1749 -- Traverse_Degenerate_Subprogram --
1750 ------------------------------------
1752 procedure Traverse_Degenerate_Subprogram (N : Node_Id) is
1753 begin
1754 -- Complete current sequence of statements
1756 Set_Statement_Entry;
1758 declare
1759 Saved_Dominant : constant Dominant_Info := Current_Dominant;
1760 -- Save last statement in current sequence as dominant
1762 begin
1763 -- Output statement SCO for degenerate subprogram body (null
1764 -- statement or freestanding expression) outside of the dominance
1765 -- chain.
1767 Current_Dominant := No_Dominant;
1768 Extend_Statement_Sequence (N, Typ => 'X');
1770 -- For the case of an expression-function, collect decisions
1771 -- embedded in the expression now.
1773 if Nkind (N) in N_Subexpr then
1774 Process_Decisions_Defer (N, 'X');
1775 end if;
1777 Set_Statement_Entry;
1779 -- Restore current dominant information designating last statement
1780 -- in previous sequence (i.e. make the dominance chain skip over
1781 -- the degenerate body).
1783 Current_Dominant := Saved_Dominant;
1784 end;
1785 end Traverse_Degenerate_Subprogram;
1787 ------------------
1788 -- Traverse_One --
1789 ------------------
1791 procedure Traverse_One (N : Node_Id) is
1792 begin
1793 -- Initialize or extend current statement sequence. Note that for
1794 -- special cases such as IF and Case statements we will modify
1795 -- the range to exclude internal statements that should not be
1796 -- counted as part of the current statement sequence.
1798 case Nkind (N) is
1800 -- Package declaration
1802 when N_Package_Declaration =>
1803 Set_Statement_Entry;
1804 Traverse_Package_Declaration (N, Current_Dominant);
1806 -- Generic package declaration
1808 when N_Generic_Package_Declaration =>
1809 Set_Statement_Entry;
1810 Traverse_Generic_Package_Declaration (N);
1812 -- Package body
1814 when N_Package_Body =>
1815 Set_Statement_Entry;
1816 Traverse_Package_Body (N);
1818 -- Subprogram declaration or subprogram body stub
1820 when N_Expression_Function
1821 | N_Subprogram_Body_Stub
1822 | N_Subprogram_Declaration
1824 declare
1825 Spec : constant Node_Id := Specification (N);
1826 begin
1827 Process_Decisions_Defer
1828 (Parameter_Specifications (Spec), 'X');
1830 -- Case of a null procedure: generate SCO for fictitious
1831 -- NULL statement located at the NULL keyword in the
1832 -- procedure specification.
1834 if Nkind (N) = N_Subprogram_Declaration
1835 and then Nkind (Spec) = N_Procedure_Specification
1836 and then Null_Present (Spec)
1837 then
1838 Traverse_Degenerate_Subprogram (Null_Statement (Spec));
1840 -- Case of an expression function: generate a statement SCO
1841 -- for the expression (and then decision SCOs for any nested
1842 -- decisions).
1844 elsif Nkind (N) = N_Expression_Function then
1845 Traverse_Degenerate_Subprogram (Expression (N));
1846 end if;
1847 end;
1849 -- Entry declaration
1851 when N_Entry_Declaration =>
1852 Process_Decisions_Defer (Parameter_Specifications (N), 'X');
1854 -- Generic subprogram declaration
1856 when N_Generic_Subprogram_Declaration =>
1857 Process_Decisions_Defer
1858 (Generic_Formal_Declarations (N), 'X');
1859 Process_Decisions_Defer
1860 (Parameter_Specifications (Specification (N)), 'X');
1862 -- Task or subprogram body
1864 when N_Subprogram_Body
1865 | N_Task_Body
1867 Set_Statement_Entry;
1868 Traverse_Subprogram_Or_Task_Body (N);
1870 -- Entry body
1872 when N_Entry_Body =>
1873 declare
1874 Cond : constant Node_Id :=
1875 Condition (Entry_Body_Formal_Part (N));
1877 Inner_Dominant : Dominant_Info := No_Dominant;
1879 begin
1880 Set_Statement_Entry;
1882 if Present (Cond) then
1883 Process_Decisions_Defer (Cond, 'G');
1885 -- For an entry body with a barrier, the entry body
1886 -- is dominated by a True evaluation of the barrier.
1888 Inner_Dominant := ('T', N);
1889 end if;
1891 Traverse_Subprogram_Or_Task_Body (N, Inner_Dominant);
1892 end;
1894 -- Protected body
1896 when N_Protected_Body =>
1897 Set_Statement_Entry;
1898 Traverse_Declarations_Or_Statements (Declarations (N));
1900 -- Exit statement, which is an exit statement in the SCO sense,
1901 -- so it is included in the current statement sequence, but
1902 -- then it terminates this sequence. We also have to process
1903 -- any decisions in the exit statement expression.
1905 when N_Exit_Statement =>
1906 Extend_Statement_Sequence (N, 'E');
1907 Process_Decisions_Defer (Condition (N), 'E');
1908 Set_Statement_Entry;
1910 -- If condition is present, then following statement is
1911 -- only executed if the condition evaluates to False.
1913 if Present (Condition (N)) then
1914 Current_Dominant := ('F', N);
1915 else
1916 Current_Dominant := No_Dominant;
1917 end if;
1919 -- Label, which breaks the current statement sequence, but the
1920 -- label itself is not included in the next statement sequence,
1921 -- since it generates no code.
1923 when N_Label =>
1924 Set_Statement_Entry;
1925 Current_Dominant := No_Dominant;
1927 -- Block statement, which breaks the current statement sequence
1929 when N_Block_Statement =>
1930 Set_Statement_Entry;
1932 -- The first statement in the handled sequence of statements
1933 -- is dominated by the elaboration of the last declaration.
1935 Current_Dominant := Traverse_Declarations_Or_Statements
1936 (L => Declarations (N),
1937 D => Current_Dominant);
1939 Traverse_Handled_Statement_Sequence
1940 (N => Handled_Statement_Sequence (N),
1941 D => Current_Dominant);
1943 -- If statement, which breaks the current statement sequence,
1944 -- but we include the condition in the current sequence.
1946 when N_If_Statement =>
1947 Current_Test := N;
1948 Extend_Statement_Sequence (N, 'I');
1949 Process_Decisions_Defer (Condition (N), 'I');
1950 Set_Statement_Entry;
1952 -- Now we traverse the statements in the THEN part
1954 Traverse_Declarations_Or_Statements
1955 (L => Then_Statements (N),
1956 D => ('T', N));
1958 -- Loop through ELSIF parts if present
1960 if Present (Elsif_Parts (N)) then
1961 declare
1962 Saved_Dominant : constant Dominant_Info :=
1963 Current_Dominant;
1965 Elif : Node_Id := First (Elsif_Parts (N));
1967 begin
1968 while Present (Elif) loop
1970 -- An Elsif is executed only if the previous test
1971 -- got a FALSE outcome.
1973 Current_Dominant := ('F', Current_Test);
1975 -- Now update current test information
1977 Current_Test := Elif;
1979 -- We generate a statement sequence for the
1980 -- construct "ELSIF condition", so that we have
1981 -- a statement for the resulting decisions.
1983 Extend_Statement_Sequence (Elif, 'I');
1984 Process_Decisions_Defer (Condition (Elif), 'I');
1985 Set_Statement_Entry;
1987 -- An ELSIF part is never guaranteed to have
1988 -- been executed, following statements are only
1989 -- dominated by the initial IF statement.
1991 Current_Dominant := Saved_Dominant;
1993 -- Traverse the statements in the ELSIF
1995 Traverse_Declarations_Or_Statements
1996 (L => Then_Statements (Elif),
1997 D => ('T', Elif));
1998 Next (Elif);
1999 end loop;
2000 end;
2001 end if;
2003 -- Finally traverse the ELSE statements if present
2005 Traverse_Declarations_Or_Statements
2006 (L => Else_Statements (N),
2007 D => ('F', Current_Test));
2009 -- CASE statement, which breaks the current statement sequence,
2010 -- but we include the expression in the current sequence.
2012 when N_Case_Statement =>
2013 Extend_Statement_Sequence (N, 'C');
2014 Process_Decisions_Defer (Expression (N), 'X');
2015 Set_Statement_Entry;
2017 -- Process case branches, all of which are dominated by the
2018 -- CASE statement.
2020 declare
2021 Alt : Node_Id;
2022 begin
2023 Alt := First_Non_Pragma (Alternatives (N));
2024 while Present (Alt) loop
2025 Traverse_Declarations_Or_Statements
2026 (L => Statements (Alt),
2027 D => Current_Dominant);
2028 Next (Alt);
2029 end loop;
2030 end;
2032 -- ACCEPT statement
2034 when N_Accept_Statement =>
2035 Extend_Statement_Sequence (N, 'A');
2036 Set_Statement_Entry;
2038 -- Process sequence of statements, dominant is the ACCEPT
2039 -- statement.
2041 Traverse_Handled_Statement_Sequence
2042 (N => Handled_Statement_Sequence (N),
2043 D => Current_Dominant);
2045 -- SELECT
2047 when N_Selective_Accept =>
2048 Extend_Statement_Sequence (N, 'S');
2049 Set_Statement_Entry;
2051 -- Process alternatives
2053 declare
2054 Alt : Node_Id;
2055 Guard : Node_Id;
2056 S_Dom : Dominant_Info;
2058 begin
2059 Alt := First (Select_Alternatives (N));
2060 while Present (Alt) loop
2061 S_Dom := Current_Dominant;
2062 Guard := Condition (Alt);
2064 if Present (Guard) then
2065 Process_Decisions
2066 (Guard,
2067 'G',
2068 Pragma_Sloc => No_Location);
2069 Current_Dominant := ('T', Guard);
2070 end if;
2072 Traverse_One (Alt);
2074 Current_Dominant := S_Dom;
2075 Next (Alt);
2076 end loop;
2077 end;
2079 Traverse_Declarations_Or_Statements
2080 (L => Else_Statements (N),
2081 D => Current_Dominant);
2083 when N_Conditional_Entry_Call
2084 | N_Timed_Entry_Call
2086 Extend_Statement_Sequence (N, 'S');
2087 Set_Statement_Entry;
2089 -- Process alternatives
2091 Traverse_One (Entry_Call_Alternative (N));
2093 if Nkind (N) = N_Timed_Entry_Call then
2094 Traverse_One (Delay_Alternative (N));
2095 else
2096 Traverse_Declarations_Or_Statements
2097 (L => Else_Statements (N),
2098 D => Current_Dominant);
2099 end if;
2101 when N_Asynchronous_Select =>
2102 Extend_Statement_Sequence (N, 'S');
2103 Set_Statement_Entry;
2105 Traverse_One (Triggering_Alternative (N));
2106 Traverse_Declarations_Or_Statements
2107 (L => Statements (Abortable_Part (N)),
2108 D => Current_Dominant);
2110 when N_Accept_Alternative =>
2111 Traverse_Declarations_Or_Statements
2112 (L => Statements (N),
2113 D => Current_Dominant,
2114 P => Accept_Statement (N));
2116 when N_Entry_Call_Alternative =>
2117 Traverse_Declarations_Or_Statements
2118 (L => Statements (N),
2119 D => Current_Dominant,
2120 P => Entry_Call_Statement (N));
2122 when N_Delay_Alternative =>
2123 Traverse_Declarations_Or_Statements
2124 (L => Statements (N),
2125 D => Current_Dominant,
2126 P => Delay_Statement (N));
2128 when N_Triggering_Alternative =>
2129 Traverse_Declarations_Or_Statements
2130 (L => Statements (N),
2131 D => Current_Dominant,
2132 P => Triggering_Statement (N));
2134 when N_Terminate_Alternative =>
2136 -- It is dubious to emit a statement SCO for a TERMINATE
2137 -- alternative, since no code is actually executed if the
2138 -- alternative is selected -- the tasking runtime call just
2139 -- never returns???
2141 Extend_Statement_Sequence (N, ' ');
2142 Set_Statement_Entry;
2144 -- Unconditional exit points, which are included in the current
2145 -- statement sequence, but then terminate it
2147 when N_Goto_Statement
2148 | N_Raise_Statement
2149 | N_Requeue_Statement
2151 Extend_Statement_Sequence (N, ' ');
2152 Set_Statement_Entry;
2153 Current_Dominant := No_Dominant;
2155 -- Simple return statement. which is an exit point, but we
2156 -- have to process the return expression for decisions.
2158 when N_Simple_Return_Statement =>
2159 Extend_Statement_Sequence (N, ' ');
2160 Process_Decisions_Defer (Expression (N), 'X');
2161 Set_Statement_Entry;
2162 Current_Dominant := No_Dominant;
2164 -- Extended return statement
2166 when N_Extended_Return_Statement =>
2167 Extend_Statement_Sequence (N, 'R');
2168 Process_Decisions_Defer (Return_Object_Declarations (N), 'X');
2169 Set_Statement_Entry;
2171 Traverse_Handled_Statement_Sequence
2172 (N => Handled_Statement_Sequence (N),
2173 D => Current_Dominant);
2175 Current_Dominant := No_Dominant;
2177 -- Loop ends the current statement sequence, but we include
2178 -- the iteration scheme if present in the current sequence.
2179 -- But the body of the loop starts a new sequence, since it
2180 -- may not be executed as part of the current sequence.
2182 when N_Loop_Statement =>
2183 declare
2184 ISC : constant Node_Id := Iteration_Scheme (N);
2185 Inner_Dominant : Dominant_Info := No_Dominant;
2187 begin
2188 if Present (ISC) then
2190 -- If iteration scheme present, extend the current
2191 -- statement sequence to include the iteration scheme
2192 -- and process any decisions it contains.
2194 -- While loop
2196 if Present (Condition (ISC)) then
2197 Extend_Statement_Sequence (N, 'W');
2198 Process_Decisions_Defer (Condition (ISC), 'W');
2200 -- Set more specific dominant for inner statements
2201 -- (the control sloc for the decision is that of
2202 -- the WHILE token).
2204 Inner_Dominant := ('T', ISC);
2206 -- For loop
2208 else
2209 Extend_Statement_Sequence (N, 'F');
2210 Process_Decisions_Defer
2211 (Loop_Parameter_Specification (ISC), 'X');
2212 end if;
2213 end if;
2215 Set_Statement_Entry;
2217 if Inner_Dominant = No_Dominant then
2218 Inner_Dominant := Current_Dominant;
2219 end if;
2221 Traverse_Declarations_Or_Statements
2222 (L => Statements (N),
2223 D => Inner_Dominant);
2224 end;
2226 -- Pragma
2228 when N_Pragma =>
2230 -- Record sloc of pragma (pragmas don't nest)
2232 pragma Assert (Current_Pragma_Sloc = No_Location);
2233 Current_Pragma_Sloc := Sloc (N);
2235 -- Processing depends on the kind of pragma
2237 declare
2238 Nam : constant Name_Id := Pragma_Name_Unmapped (N);
2239 Arg : Node_Id :=
2240 First (Pragma_Argument_Associations (N));
2241 Typ : Character;
2243 begin
2244 case Nam is
2245 when Name_Assert
2246 | Name_Assert_And_Cut
2247 | Name_Assume
2248 | Name_Check
2249 | Name_Loop_Invariant
2250 | Name_Postcondition
2251 | Name_Precondition
2252 | Name_Type_Invariant
2253 | Name_Invariant
2255 -- For Assert/Check/Precondition/Postcondition, we
2256 -- must generate a P entry for the decision. Note
2257 -- that this is done unconditionally at this stage.
2258 -- Output for disabled pragmas is suppressed later
2259 -- on when we output the decision line in Put_SCOs,
2260 -- depending on setting by Set_SCO_Pragma_Enabled.
2262 if Nam = Name_Check
2263 or else Nam = Name_Type_Invariant
2264 or else Nam = Name_Invariant
2265 then
2266 Next (Arg);
2267 end if;
2269 Process_Decisions_Defer (Expression (Arg), 'P');
2270 Typ := 'p';
2272 -- Pre/postconditions can be inherited so SCO should
2273 -- never be deactivated???
2275 when Name_Debug =>
2276 if Present (Arg) and then Present (Next (Arg)) then
2278 -- Case of a dyadic pragma Debug: first argument
2279 -- is a P decision, any nested decision in the
2280 -- second argument is an X decision.
2282 Process_Decisions_Defer (Expression (Arg), 'P');
2283 Next (Arg);
2284 end if;
2286 Process_Decisions_Defer (Expression (Arg), 'X');
2287 Typ := 'p';
2289 -- For all other pragmas, we generate decision entries
2290 -- for any embedded expressions, and the pragma is
2291 -- never disabled.
2293 -- Should generate P decisions (not X) for assertion
2294 -- related pragmas: [{Static,Dynamic}_]Predicate???
2296 when others =>
2297 Process_Decisions_Defer (N, 'X');
2298 Typ := 'P';
2299 end case;
2301 -- Add statement SCO
2303 Extend_Statement_Sequence (N, Typ);
2305 Current_Pragma_Sloc := No_Location;
2306 end;
2308 -- Object declaration. Ignored if Prev_Ids is set, since the
2309 -- parser generates multiple instances of the whole declaration
2310 -- if there is more than one identifier declared, and we only
2311 -- want one entry in the SCOs, so we take the first, for which
2312 -- Prev_Ids is False.
2314 when N_Number_Declaration
2315 | N_Object_Declaration
2317 if not Prev_Ids (N) then
2318 Extend_Statement_Sequence (N, 'o');
2320 if Has_Decision (N) then
2321 Process_Decisions_Defer (N, 'X');
2322 end if;
2323 end if;
2325 -- All other cases, which extend the current statement sequence
2326 -- but do not terminate it, even if they have nested decisions.
2328 when N_Protected_Type_Declaration
2329 | N_Task_Type_Declaration
2331 Extend_Statement_Sequence (N, 't');
2332 Process_Decisions_Defer (Discriminant_Specifications (N), 'X');
2333 Set_Statement_Entry;
2335 Traverse_Protected_Or_Task_Definition (N);
2337 when N_Single_Protected_Declaration
2338 | N_Single_Task_Declaration
2340 Extend_Statement_Sequence (N, 'o');
2341 Set_Statement_Entry;
2343 Traverse_Protected_Or_Task_Definition (N);
2345 when others =>
2347 -- Determine required type character code, or ASCII.NUL if
2348 -- no SCO should be generated for this node.
2350 declare
2351 NK : constant Node_Kind := Nkind (N);
2352 Typ : Character;
2354 begin
2355 case NK is
2356 when N_Full_Type_Declaration
2357 | N_Incomplete_Type_Declaration
2358 | N_Private_Extension_Declaration
2359 | N_Private_Type_Declaration
2361 Typ := 't';
2363 when N_Subtype_Declaration =>
2364 Typ := 's';
2366 when N_Renaming_Declaration =>
2367 Typ := 'r';
2369 when N_Generic_Instantiation =>
2370 Typ := 'i';
2372 when N_Package_Body_Stub
2373 | N_Protected_Body_Stub
2374 | N_Representation_Clause
2375 | N_Task_Body_Stub
2376 | N_Use_Package_Clause
2377 | N_Use_Type_Clause
2379 Typ := ASCII.NUL;
2381 when N_Procedure_Call_Statement =>
2382 Typ := ' ';
2384 when others =>
2385 if NK in N_Statement_Other_Than_Procedure_Call then
2386 Typ := ' ';
2387 else
2388 Typ := 'd';
2389 end if;
2390 end case;
2392 if Typ /= ASCII.NUL then
2393 Extend_Statement_Sequence (N, Typ);
2394 end if;
2395 end;
2397 -- Process any embedded decisions
2399 if Has_Decision (N) then
2400 Process_Decisions_Defer (N, 'X');
2401 end if;
2402 end case;
2404 -- Process aspects if present
2406 Traverse_Aspects (N);
2407 end Traverse_One;
2409 -- Start of processing for Traverse_Declarations_Or_Statements
2411 begin
2412 -- Process single prefixed node
2414 if Present (P) then
2415 Traverse_One (P);
2416 end if;
2418 -- Loop through statements or declarations
2420 if Is_Non_Empty_List (L) then
2421 N := First (L);
2422 while Present (N) loop
2424 -- Note: For separate bodies, we see the tree after Par.Labl has
2425 -- introduced implicit labels, so we need to ignore those nodes.
2427 if Nkind (N) /= N_Implicit_Label_Declaration then
2428 Traverse_One (N);
2429 end if;
2431 Next (N);
2432 end loop;
2434 end if;
2436 -- End sequence of statements and flush deferred decisions
2438 if Present (P) or else Is_Non_Empty_List (L) then
2439 Set_Statement_Entry;
2440 end if;
2442 return Current_Dominant;
2443 end Traverse_Declarations_Or_Statements;
2445 ------------------------------------------
2446 -- Traverse_Generic_Package_Declaration --
2447 ------------------------------------------
2449 procedure Traverse_Generic_Package_Declaration (N : Node_Id) is
2450 begin
2451 Process_Decisions (Generic_Formal_Declarations (N), 'X', No_Location);
2452 Traverse_Package_Declaration (N);
2453 end Traverse_Generic_Package_Declaration;
2455 -----------------------------------------
2456 -- Traverse_Handled_Statement_Sequence --
2457 -----------------------------------------
2459 procedure Traverse_Handled_Statement_Sequence
2460 (N : Node_Id;
2461 D : Dominant_Info := No_Dominant)
2463 Handler : Node_Id;
2465 begin
2466 -- For package bodies without a statement part, the parser adds an empty
2467 -- one, to normalize the representation. The null statement therein,
2468 -- which does not come from source, does not get a SCO.
2470 if Present (N) and then Comes_From_Source (N) then
2471 Traverse_Declarations_Or_Statements (Statements (N), D);
2473 if Present (Exception_Handlers (N)) then
2474 Handler := First_Non_Pragma (Exception_Handlers (N));
2475 while Present (Handler) loop
2476 Traverse_Declarations_Or_Statements
2477 (L => Statements (Handler),
2478 D => ('E', Handler));
2479 Next (Handler);
2480 end loop;
2481 end if;
2482 end if;
2483 end Traverse_Handled_Statement_Sequence;
2485 ---------------------------
2486 -- Traverse_Package_Body --
2487 ---------------------------
2489 procedure Traverse_Package_Body (N : Node_Id) is
2490 Dom : Dominant_Info;
2491 begin
2492 -- The first statement in the handled sequence of statements is
2493 -- dominated by the elaboration of the last declaration.
2495 Dom := Traverse_Declarations_Or_Statements (Declarations (N));
2497 Traverse_Handled_Statement_Sequence
2498 (Handled_Statement_Sequence (N), Dom);
2499 end Traverse_Package_Body;
2501 ----------------------------------
2502 -- Traverse_Package_Declaration --
2503 ----------------------------------
2505 procedure Traverse_Package_Declaration
2506 (N : Node_Id;
2507 D : Dominant_Info := No_Dominant)
2509 Spec : constant Node_Id := Specification (N);
2510 Dom : Dominant_Info;
2512 begin
2513 Dom :=
2514 Traverse_Declarations_Or_Statements (Visible_Declarations (Spec), D);
2516 -- First private declaration is dominated by last visible declaration
2518 Traverse_Declarations_Or_Statements (Private_Declarations (Spec), Dom);
2519 end Traverse_Package_Declaration;
2521 -------------------------------------------
2522 -- Traverse_Protected_Or_Task_Definition --
2523 -------------------------------------------
2525 procedure Traverse_Protected_Or_Task_Definition (N : Node_Id) is
2526 Dom_Info : Dominant_Info := ('S', N);
2527 -- The first declaration is dominated by the protected or task [type]
2528 -- declaration.
2530 Sync_Def : Node_Id;
2531 -- N's protected or task definition
2533 Priv_Decl : List_Id;
2534 Vis_Decl : List_Id;
2535 -- Sync_Def's Visible_Declarations and Private_Declarations
2537 begin
2538 case Nkind (N) is
2539 when N_Protected_Type_Declaration
2540 | N_Single_Protected_Declaration
2542 Sync_Def := Protected_Definition (N);
2544 when N_Single_Task_Declaration
2545 | N_Task_Type_Declaration
2547 Sync_Def := Task_Definition (N);
2549 when others =>
2550 raise Program_Error;
2551 end case;
2553 -- Sync_Def may be Empty at least for empty Task_Type_Declarations.
2554 -- Querying Visible or Private_Declarations is invalid in this case.
2556 if Present (Sync_Def) then
2557 Vis_Decl := Visible_Declarations (Sync_Def);
2558 Priv_Decl := Private_Declarations (Sync_Def);
2559 else
2560 Vis_Decl := No_List;
2561 Priv_Decl := No_List;
2562 end if;
2564 Dom_Info := Traverse_Declarations_Or_Statements
2565 (L => Vis_Decl,
2566 D => Dom_Info);
2568 -- If visible declarations are present, the first private declaration
2569 -- is dominated by the last visible declaration.
2571 Traverse_Declarations_Or_Statements
2572 (L => Priv_Decl,
2573 D => Dom_Info);
2574 end Traverse_Protected_Or_Task_Definition;
2576 --------------------------------------
2577 -- Traverse_Subprogram_Or_Task_Body --
2578 --------------------------------------
2580 procedure Traverse_Subprogram_Or_Task_Body
2581 (N : Node_Id;
2582 D : Dominant_Info := No_Dominant)
2584 Decls : constant List_Id := Declarations (N);
2585 Dom_Info : Dominant_Info := D;
2587 begin
2588 -- If declarations are present, the first statement is dominated by the
2589 -- last declaration.
2591 Dom_Info := Traverse_Declarations_Or_Statements
2592 (L => Decls, D => Dom_Info);
2594 Traverse_Handled_Statement_Sequence
2595 (N => Handled_Statement_Sequence (N),
2596 D => Dom_Info);
2597 end Traverse_Subprogram_Or_Task_Body;
2599 -------------------------
2600 -- SCO_Record_Filtered --
2601 -------------------------
2603 procedure SCO_Record_Filtered is
2604 type Decision is record
2605 Kind : Character;
2606 -- Type of the SCO decision (see comments for SCO_Table_Entry.C1)
2608 Sloc : Source_Location;
2610 Top : Nat;
2611 -- Index in the SCO_Raw_Table for the root operator/condition for the
2612 -- expression that controls the decision.
2613 end record;
2614 -- Decision descriptor: used to gather information about a candidate
2615 -- SCO decision.
2617 package Pending_Decisions is new Table.Table
2618 (Table_Component_Type => Decision,
2619 Table_Index_Type => Nat,
2620 Table_Low_Bound => 1,
2621 Table_Initial => 1000,
2622 Table_Increment => 200,
2623 Table_Name => "Filter_Pending_Decisions");
2624 -- Table used to hold decisions to process during the collection pass
2626 procedure Add_Expression_Tree (Idx : in out Nat);
2627 -- Add SCO raw table entries for the decision controlling expression
2628 -- tree starting at Idx to the filtered SCO table.
2630 procedure Collect_Decisions
2631 (D : Decision;
2632 Next : out Nat);
2633 -- Collect decisions to add to the filtered SCO table starting at the
2634 -- D decision (including it and its nested operators/conditions). Set
2635 -- Next to the first node index passed the whole decision.
2637 procedure Compute_Range
2638 (Idx : in out Nat;
2639 From : out Source_Location;
2640 To : out Source_Location);
2641 -- Compute the source location range for the expression tree starting at
2642 -- Idx in the SCO raw table. Store its bounds in From and To.
2644 function Is_Decision (Idx : Nat) return Boolean;
2645 -- Return if the expression tree starting at Idx has adjacent nested
2646 -- nodes that make a decision.
2648 procedure Process_Pending_Decisions
2649 (Original_Decision : SCO_Table_Entry);
2650 -- Complete the filtered SCO table using collected decisions. Output
2651 -- decisions inherit the pragma information from the original decision.
2653 procedure Search_Nested_Decisions (Idx : in out Nat);
2654 -- Collect decisions to add to the filtered SCO table starting at the
2655 -- node at Idx in the SCO raw table. This node must not be part of an
2656 -- already-processed decision. Set Idx to the first node index passed
2657 -- the whole expression tree.
2659 procedure Skip_Decision
2660 (Idx : in out Nat;
2661 Process_Nested_Decisions : Boolean);
2662 -- Skip all the nodes that belong to the decision starting at Idx. If
2663 -- Process_Nested_Decision, call Search_Nested_Decisions on the first
2664 -- nested nodes that do not belong to the decision. Set Idx to the first
2665 -- node index passed the whole expression tree.
2667 -------------------------
2668 -- Add_Expression_Tree --
2669 -------------------------
2671 procedure Add_Expression_Tree (Idx : in out Nat) is
2672 Node_Idx : constant Nat := Idx;
2673 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Node_Idx);
2674 From : Source_Location;
2675 To : Source_Location;
2677 begin
2678 case T.C1 is
2679 when ' ' =>
2681 -- This is a single condition. Add an entry for it and move on
2683 SCO_Table.Append (T);
2684 Idx := Idx + 1;
2686 when '!' =>
2688 -- This is a NOT operator: add an entry for it and browse its
2689 -- only child.
2691 SCO_Table.Append (T);
2692 Idx := Idx + 1;
2693 Add_Expression_Tree (Idx);
2695 when others =>
2697 -- This must be an AND/OR/AND THEN/OR ELSE operator
2699 if T.C2 = '?' then
2701 -- This is not a short circuit operator: consider this one
2702 -- and all its children as a single condition.
2704 Compute_Range (Idx, From, To);
2705 SCO_Table.Append
2706 ((From => From,
2707 To => To,
2708 C1 => ' ',
2709 C2 => 'c',
2710 Last => False,
2711 Pragma_Sloc => No_Location,
2712 Pragma_Aspect_Name => No_Name));
2714 else
2715 -- This is a real short circuit operator: add an entry for
2716 -- it and browse its children.
2718 SCO_Table.Append (T);
2719 Idx := Idx + 1;
2720 Add_Expression_Tree (Idx);
2721 Add_Expression_Tree (Idx);
2722 end if;
2723 end case;
2724 end Add_Expression_Tree;
2726 -----------------------
2727 -- Collect_Decisions --
2728 -----------------------
2730 procedure Collect_Decisions
2731 (D : Decision;
2732 Next : out Nat)
2734 Idx : Nat := D.Top;
2736 begin
2737 if D.Kind /= 'X' or else Is_Decision (D.Top) then
2738 Pending_Decisions.Append (D);
2739 end if;
2741 Skip_Decision (Idx, True);
2742 Next := Idx;
2743 end Collect_Decisions;
2745 -------------------
2746 -- Compute_Range --
2747 -------------------
2749 procedure Compute_Range
2750 (Idx : in out Nat;
2751 From : out Source_Location;
2752 To : out Source_Location)
2754 Sloc_F : Source_Location := No_Source_Location;
2755 Sloc_T : Source_Location := No_Source_Location;
2757 procedure Process_One;
2758 -- Process one node of the tree, and recurse over children. Update
2759 -- Idx during the traversal.
2761 -----------------
2762 -- Process_One --
2763 -----------------
2765 procedure Process_One is
2766 begin
2767 if Sloc_F = No_Source_Location
2768 or else
2769 SCO_Raw_Table.Table (Idx).From < Sloc_F
2770 then
2771 Sloc_F := SCO_Raw_Table.Table (Idx).From;
2772 end if;
2774 if Sloc_T = No_Source_Location
2775 or else
2776 Sloc_T < SCO_Raw_Table.Table (Idx).To
2777 then
2778 Sloc_T := SCO_Raw_Table.Table (Idx).To;
2779 end if;
2781 if SCO_Raw_Table.Table (Idx).C1 = ' ' then
2783 -- This is a condition: nothing special to do
2785 Idx := Idx + 1;
2787 elsif SCO_Raw_Table.Table (Idx).C1 = '!' then
2789 -- The "not" operator has only one operand
2791 Idx := Idx + 1;
2792 Process_One;
2794 else
2795 -- This is an AND THEN or OR ELSE logical operator: follow the
2796 -- left, then the right operands.
2798 Idx := Idx + 1;
2800 Process_One;
2801 Process_One;
2802 end if;
2803 end Process_One;
2805 -- Start of processing for Compute_Range
2807 begin
2808 Process_One;
2809 From := Sloc_F;
2810 To := Sloc_T;
2811 end Compute_Range;
2813 -----------------
2814 -- Is_Decision --
2815 -----------------
2817 function Is_Decision (Idx : Nat) return Boolean is
2818 Index : Nat := Idx;
2820 begin
2821 loop
2822 declare
2823 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
2825 begin
2826 case T.C1 is
2827 when ' ' =>
2828 return False;
2830 when '!' =>
2832 -- This is a decision iff the only operand of the NOT
2833 -- operator could be a standalone decision.
2835 Index := Idx + 1;
2837 when others =>
2839 -- This node is a logical operator (and thus could be a
2840 -- standalone decision) iff it is a short circuit
2841 -- operator.
2843 return T.C2 /= '?';
2844 end case;
2845 end;
2846 end loop;
2847 end Is_Decision;
2849 -------------------------------
2850 -- Process_Pending_Decisions --
2851 -------------------------------
2853 procedure Process_Pending_Decisions
2854 (Original_Decision : SCO_Table_Entry)
2856 begin
2857 for Index in 1 .. Pending_Decisions.Last loop
2858 declare
2859 D : Decision renames Pending_Decisions.Table (Index);
2860 Idx : Nat := D.Top;
2862 begin
2863 -- Add a SCO table entry for the decision itself
2865 pragma Assert (D.Kind /= ' ');
2867 SCO_Table.Append
2868 ((To => No_Source_Location,
2869 From => D.Sloc,
2870 C1 => D.Kind,
2871 C2 => ' ',
2872 Last => False,
2873 Pragma_Sloc => Original_Decision.Pragma_Sloc,
2874 Pragma_Aspect_Name =>
2875 Original_Decision.Pragma_Aspect_Name));
2877 -- Then add ones for its nested operators/operands. Do not
2878 -- forget to tag its *last* entry as such.
2880 Add_Expression_Tree (Idx);
2881 SCO_Table.Table (SCO_Table.Last).Last := True;
2882 end;
2883 end loop;
2885 -- Clear the pending decisions list
2886 Pending_Decisions.Set_Last (0);
2887 end Process_Pending_Decisions;
2889 -----------------------------
2890 -- Search_Nested_Decisions --
2891 -----------------------------
2893 procedure Search_Nested_Decisions (Idx : in out Nat) is
2894 begin
2895 loop
2896 declare
2897 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
2899 begin
2900 case T.C1 is
2901 when ' ' =>
2902 Idx := Idx + 1;
2903 exit;
2905 when '!' =>
2906 Collect_Decisions
2907 ((Kind => 'X',
2908 Sloc => T.From,
2909 Top => Idx),
2910 Idx);
2911 exit;
2913 when others =>
2914 if T.C2 = '?' then
2916 -- This is not a logical operator: start looking for
2917 -- nested decisions from here. Recurse over the left
2918 -- child and let the loop take care of the right one.
2920 Idx := Idx + 1;
2921 Search_Nested_Decisions (Idx);
2923 else
2924 -- We found a nested decision
2926 Collect_Decisions
2927 ((Kind => 'X',
2928 Sloc => T.From,
2929 Top => Idx),
2930 Idx);
2931 exit;
2932 end if;
2933 end case;
2934 end;
2935 end loop;
2936 end Search_Nested_Decisions;
2938 -------------------
2939 -- Skip_Decision --
2940 -------------------
2942 procedure Skip_Decision
2943 (Idx : in out Nat;
2944 Process_Nested_Decisions : Boolean)
2946 begin
2947 loop
2948 declare
2949 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
2951 begin
2952 Idx := Idx + 1;
2954 case T.C1 is
2955 when ' ' =>
2956 exit;
2958 when '!' =>
2960 -- This NOT operator belongs to the outside decision:
2961 -- just skip it.
2963 null;
2965 when others =>
2966 if T.C2 = '?' and then Process_Nested_Decisions then
2968 -- This is not a logical operator: start looking for
2969 -- nested decisions from here. Recurse over the left
2970 -- child and let the loop take care of the right one.
2972 Search_Nested_Decisions (Idx);
2974 else
2975 -- This is a logical operator, so it belongs to the
2976 -- outside decision: skip its left child, then let the
2977 -- loop take care of the right one.
2979 Skip_Decision (Idx, Process_Nested_Decisions);
2980 end if;
2981 end case;
2982 end;
2983 end loop;
2984 end Skip_Decision;
2986 -- Start of processing for SCO_Record_Filtered
2988 begin
2989 -- Filtering must happen only once: do nothing if it this pass was
2990 -- already run.
2992 if SCO_Generation_State = Filtered then
2993 return;
2994 else
2995 pragma Assert (SCO_Generation_State = Raw);
2996 SCO_Generation_State := Filtered;
2997 end if;
2999 -- Loop through all SCO entries under SCO units
3001 for Unit_Idx in 1 .. SCO_Unit_Table.Last loop
3002 declare
3003 Unit : SCO_Unit_Table_Entry
3004 renames SCO_Unit_Table.Table (Unit_Idx);
3006 Idx : Nat := Unit.From;
3007 -- Index of the current SCO raw table entry
3009 New_From : constant Nat := SCO_Table.Last + 1;
3010 -- After copying SCO enties of interest to the final table, we
3011 -- will have to change the From/To indexes this unit targets.
3012 -- This constant keeps track of the new From index.
3014 begin
3015 while Idx <= Unit.To loop
3016 declare
3017 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
3019 begin
3020 case T.C1 is
3022 -- Decision (of any kind, including pragmas and aspects)
3024 when 'E' | 'G' | 'I' | 'W' | 'X' | 'P' | 'a' | 'A' =>
3025 if SCO_Pragma_Disabled (T.Pragma_Sloc) then
3027 -- Skip SCO entries for decisions in disabled
3028 -- constructs (pragmas or aspects).
3030 Idx := Idx + 1;
3031 Skip_Decision (Idx, False);
3033 else
3034 Collect_Decisions
3035 ((Kind => T.C1,
3036 Sloc => T.From,
3037 Top => Idx + 1),
3038 Idx);
3039 Process_Pending_Decisions (T);
3040 end if;
3042 -- There is no translation/filtering to do for other kind
3043 -- of SCO items (statements, dominance markers, etc.).
3045 when '|' | '&' | '!' | ' ' =>
3047 -- SCO logical operators and conditions cannot exist
3048 -- on their own: they must be inside a decision (such
3049 -- entries must have been skipped by
3050 -- Collect_Decisions).
3052 raise Program_Error;
3054 when others =>
3055 SCO_Table.Append (T);
3056 Idx := Idx + 1;
3057 end case;
3058 end;
3059 end loop;
3061 -- Now, update the SCO entry indexes in the unit entry
3063 Unit.From := New_From;
3064 Unit.To := SCO_Table.Last;
3065 end;
3066 end loop;
3068 -- Then clear the raw table to free bytes
3070 SCO_Raw_Table.Free;
3071 end SCO_Record_Filtered;
3073 end Par_SCO;