bitint: Fix up lowering of COMPLEX_EXPR [PR115544]
[official-gcc.git] / gcc / ada / par_sco.adb
blob0b750a6f8de31a9bc884daac66227ccde88a8a4d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- P A R _ S C O --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2009-2024, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Errout; use Errout;
30 with Lib; use Lib;
31 with Lib.Util; use Lib.Util;
32 with Namet; use Namet;
33 with Nlists; use Nlists;
34 with Opt; use Opt;
35 with Output; use Output;
36 with Put_SCOs;
37 with SCOs; use SCOs;
38 with Sem; use Sem;
39 with Sem_Util; use Sem_Util;
40 with Sinfo; use Sinfo;
41 with Sinfo.Nodes; use Sinfo.Nodes;
42 with Sinfo.Utils; use Sinfo.Utils;
43 with Sinput; use Sinput;
44 with Snames; use Snames;
45 with Table;
47 with GNAT.HTable; use GNAT.HTable;
48 with GNAT.Heap_Sort_G;
50 package body Par_SCO is
52 --------------------------
53 -- First-pass SCO table --
54 --------------------------
56 -- The Short_Circuit_And_Or pragma enables one to use AND and OR operators
57 -- in source code while the ones used with booleans will be interpreted as
58 -- their short circuit alternatives (AND THEN and OR ELSE). Thus, the true
59 -- meaning of these operators is known only after the semantic analysis.
61 -- However, decision SCOs include short circuit operators only. The SCO
62 -- information generation pass must be done before expansion, hence before
63 -- the semantic analysis. Because of this, the SCO information generation
64 -- is done in two passes.
66 -- The first one (SCO_Record_Raw, before semantic analysis) completes the
67 -- SCO_Raw_Table assuming all AND/OR operators are short circuit ones.
68 -- Then, the semantic analysis determines which operators are promoted to
69 -- short circuit ones. Finally, the second pass (SCO_Record_Filtered)
70 -- translates the SCO_Raw_Table to SCO_Table, taking care of removing the
71 -- remaining AND/OR operators and of adjusting decisions accordingly
72 -- (splitting decisions, removing empty ones, etc.).
74 type SCO_Generation_State_Type is (None, Raw, Filtered);
75 SCO_Generation_State : SCO_Generation_State_Type := None;
76 -- Keep track of the SCO generation state: this will prevent us from
77 -- running some steps multiple times (the second pass has to be started
78 -- from multiple places).
80 package SCO_Raw_Table is new Table.Table
81 (Table_Component_Type => SCO_Table_Entry,
82 Table_Index_Type => Nat,
83 Table_Low_Bound => 1,
84 Table_Initial => 500,
85 Table_Increment => 300,
86 Table_Name => "Raw_Table");
88 -----------------------
89 -- Unit Number Table --
90 -----------------------
92 -- This table parallels the SCO_Unit_Table, keeping track of the unit
93 -- numbers corresponding to the entries made in this table, so that before
94 -- writing out the SCO information to the ALI file, we can fill in the
95 -- proper dependency numbers and file names.
97 -- Note that the zeroth entry is here for convenience in sorting the table;
98 -- the real lower bound is 1.
100 package SCO_Unit_Number_Table is new Table.Table
101 (Table_Component_Type => Unit_Number_Type,
102 Table_Index_Type => SCO_Unit_Index,
103 Table_Low_Bound => 0, -- see note above on sort
104 Table_Initial => 20,
105 Table_Increment => 200,
106 Table_Name => "SCO_Unit_Number_Entry");
108 ------------------------------------------
109 -- Condition/Operator/Pragma Hash Table --
110 ------------------------------------------
112 -- We need to be able to get to conditions quickly for handling the calls
113 -- to Set_SCO_Condition efficiently, and similarly to get to pragmas to
114 -- handle calls to Set_SCO_Pragma_Enabled (the same holds for operators and
115 -- Set_SCO_Logical_Operator). For this purpose we identify the conditions,
116 -- operators and pragmas in the table by their starting sloc, and use this
117 -- hash table to map from these sloc values to SCO_Table indexes.
119 type Header_Num is new Integer range 0 .. 996;
120 -- Type for hash table headers
122 function Hash (F : Source_Ptr) return Header_Num;
123 -- Function to Hash source pointer value
125 function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean;
126 -- Function to test two keys for equality
128 function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean;
129 -- Function to test for source locations order
131 package SCO_Raw_Hash_Table is new Simple_HTable
132 (Header_Num, Int, 0, Source_Ptr, Hash, Equal);
133 -- The actual hash table
135 --------------------------
136 -- Internal Subprograms --
137 --------------------------
139 function Has_Decision (N : Node_Id) return Boolean;
140 -- N is the node for a subexpression. Returns True if the subexpression
141 -- contains a nested decision (i.e. either is a logical operator, or
142 -- contains a logical operator in its subtree).
144 -- This must be used in the first pass (SCO_Record_Raw) only: here AND/OR
145 -- operators are considered as short circuit, just in case the
146 -- Short_Circuit_And_Or pragma is used: only real short circuit operations
147 -- will be kept in the secord pass.
149 type Tristate is (False, True, Unknown);
151 function Is_Logical_Operator (N : Node_Id) return Tristate;
152 -- N is the node for a subexpression. This procedure determines whether N
153 -- is a logical operator: True for short circuit conditions, Unknown for OR
154 -- and AND (the Short_Circuit_And_Or pragma may be used) and False
155 -- otherwise. Note that in cases where True is returned, callers assume
156 -- Nkind (N) in N_Op.
158 function To_Source_Location (S : Source_Ptr) return Source_Location;
159 -- Converts Source_Ptr value to Source_Location (line/col) format
161 procedure Process_Decisions
162 (N : Node_Id;
163 T : Character;
164 Pragma_Sloc : Source_Ptr);
165 -- If N is Empty, has no effect. Otherwise scans the tree for the node N,
166 -- to output any decisions it contains. T is one of IEGPWX (for context of
167 -- expression: if/exit when/entry guard/pragma/while/expression). If T is
168 -- other than X, the node N is the if expression involved, and a decision
169 -- is always present (at the very least a simple decision is present at the
170 -- top level).
172 procedure Process_Decisions
173 (L : List_Id;
174 T : Character;
175 Pragma_Sloc : Source_Ptr);
176 -- Calls above procedure for each element of the list L
178 procedure Set_Raw_Table_Entry
179 (C1 : Character;
180 C2 : Character;
181 From : Source_Ptr;
182 To : Source_Ptr;
183 Last : Boolean;
184 Pragma_Sloc : Source_Ptr := No_Location;
185 Pragma_Aspect_Name : Name_Id := No_Name);
186 -- Append an entry to SCO_Raw_Table with fields set as per arguments
188 type Dominant_Info is record
189 K : Character;
190 -- F/T/S/E for a valid dominance marker, or ' ' for no dominant
192 N : Node_Id;
193 -- Node providing the Sloc(s) for the dominance marker
194 end record;
195 No_Dominant : constant Dominant_Info := (' ', Empty);
197 procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr);
198 -- Add one entry from the instance table to the corresponding SCO table
200 procedure Traverse_Declarations_Or_Statements
201 (L : List_Id;
202 D : Dominant_Info := No_Dominant;
203 P : Node_Id := Empty);
204 -- Process L, a list of statements or declarations dominated by D. If P is
205 -- present, it is processed as though it had been prepended to L.
207 function Traverse_Declarations_Or_Statements
208 (L : List_Id;
209 D : Dominant_Info := No_Dominant;
210 P : Node_Id := Empty) return Dominant_Info;
211 -- Same as above, and returns dominant information corresponding to the
212 -- last node with SCO in L.
214 -- The following Traverse_* routines perform appropriate calls to
215 -- Traverse_Declarations_Or_Statements to traverse specific node kinds.
216 -- Parameter D, when present, indicates the dominant of the first
217 -- declaration or statement within N.
219 procedure Traverse_Generic_Package_Declaration (N : Node_Id);
221 procedure Traverse_Handled_Statement_Sequence
222 (N : Node_Id;
223 D : Dominant_Info := No_Dominant);
225 procedure Traverse_Package_Body (N : Node_Id);
227 procedure Traverse_Package_Declaration
228 (N : Node_Id;
229 D : Dominant_Info := No_Dominant);
231 procedure Traverse_Subprogram_Or_Task_Body
232 (N : Node_Id;
233 D : Dominant_Info := No_Dominant);
235 procedure Traverse_Protected_Or_Task_Definition (N : Node_Id);
237 -- Note regarding traversals: In a few cases where an Alternatives list is
238 -- involved, pragmas such as "pragma Page" may show up before the first
239 -- alternative. We skip them because we're out of statement or declaration
240 -- context, so these can't be pragmas of interest for SCO purposes, and
241 -- the regular alternative processing typically involves attribute queries
242 -- which aren't valid for a pragma.
244 procedure Write_SCOs_To_ALI_File is new Put_SCOs;
245 -- Write SCO information to the ALI file using routines in Lib.Util
247 ----------
248 -- dsco --
249 ----------
251 procedure dsco is
252 procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry);
253 -- Dump a SCO table entry
255 ----------------
256 -- Dump_Entry --
257 ----------------
259 procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry) is
260 begin
261 Write_Str (" ");
262 Write_Int (Index);
263 Write_Char ('.');
265 if T.C1 /= ' ' then
266 Write_Str (" C1 = '");
267 Write_Char (T.C1);
268 Write_Char (''');
269 end if;
271 if T.C2 /= ' ' then
272 Write_Str (" C2 = '");
273 Write_Char (T.C2);
274 Write_Char (''');
275 end if;
277 if T.From /= No_Source_Location then
278 Write_Str (" From = ");
279 Write_Int (Int (T.From.Line));
280 Write_Char (':');
281 Write_Int (Int (T.From.Col));
282 end if;
284 if T.To /= No_Source_Location then
285 Write_Str (" To = ");
286 Write_Int (Int (T.To.Line));
287 Write_Char (':');
288 Write_Int (Int (T.To.Col));
289 end if;
291 if T.Last then
292 Write_Str (" True");
293 else
294 Write_Str (" False");
295 end if;
297 Write_Eol;
298 end Dump_Entry;
300 -- Start of processing for dsco
302 begin
303 -- Dump SCO unit table
305 Write_Line ("SCO Unit Table");
306 Write_Line ("--------------");
308 for Index in 1 .. SCO_Unit_Table.Last loop
309 declare
310 UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Index);
312 begin
313 Write_Str (" ");
314 Write_Int (Int (Index));
315 Write_Str (" Dep_Num = ");
316 Write_Int (Int (UTE.Dep_Num));
317 Write_Str (" From = ");
318 Write_Int (Int (UTE.From));
319 Write_Str (" To = ");
320 Write_Int (Int (UTE.To));
322 Write_Str (" File_Name = """);
324 if UTE.File_Name /= null then
325 Write_Str (UTE.File_Name.all);
326 end if;
328 Write_Char ('"');
329 Write_Eol;
330 end;
331 end loop;
333 -- Dump SCO Unit number table if it contains any entries
335 if SCO_Unit_Number_Table.Last >= 1 then
336 Write_Eol;
337 Write_Line ("SCO Unit Number Table");
338 Write_Line ("---------------------");
340 for Index in 1 .. SCO_Unit_Number_Table.Last loop
341 Write_Str (" ");
342 Write_Int (Int (Index));
343 Write_Str (". Unit_Number = ");
344 Write_Int (Int (SCO_Unit_Number_Table.Table (Index)));
345 Write_Eol;
346 end loop;
347 end if;
349 -- Dump SCO raw-table
351 Write_Eol;
352 Write_Line ("SCO Raw Table");
353 Write_Line ("---------");
355 if SCO_Generation_State = Filtered then
356 Write_Line ("Empty (free'd after second pass)");
357 else
358 for Index in 1 .. SCO_Raw_Table.Last loop
359 Dump_Entry (Index, SCO_Raw_Table.Table (Index));
360 end loop;
361 end if;
363 -- Dump SCO table itself
365 Write_Eol;
366 Write_Line ("SCO Filtered Table");
367 Write_Line ("---------");
369 for Index in 1 .. SCO_Table.Last loop
370 Dump_Entry (Index, SCO_Table.Table (Index));
371 end loop;
372 end dsco;
374 -----------
375 -- Equal --
376 -----------
378 function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean is
379 begin
380 return F1 = F2;
381 end Equal;
383 -------
384 -- < --
385 -------
387 function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean is
388 begin
389 return S1.Line < S2.Line
390 or else (S1.Line = S2.Line and then S1.Col < S2.Col);
391 end "<";
393 ------------------
394 -- Has_Decision --
395 ------------------
397 function Has_Decision (N : Node_Id) return Boolean is
398 function Check_Node (N : Node_Id) return Traverse_Result;
399 -- Determine if Nkind (N) indicates the presence of a decision (i.e. N
400 -- is a logical operator, which is a decision in itself, or an
401 -- IF-expression whose Condition attribute is a decision, or a
402 -- quantified expression, whose predicate is a decision).
404 ----------------
405 -- Check_Node --
406 ----------------
408 function Check_Node (N : Node_Id) return Traverse_Result is
409 begin
410 -- If we are not sure this is a logical operator (AND and OR may be
411 -- turned into logical operators with the Short_Circuit_And_Or
412 -- pragma), assume it is. Putative decisions will be discarded if
413 -- needed in the second pass.
415 if Is_Logical_Operator (N) /= False
416 or else Nkind (N) = N_If_Expression
417 or else Nkind (N) = N_Quantified_Expression
418 then
419 return Abandon;
420 else
421 return OK;
422 end if;
423 end Check_Node;
425 function Traverse is new Traverse_Func (Check_Node);
427 -- Start of processing for Has_Decision
429 begin
430 return Traverse (N) = Abandon;
431 end Has_Decision;
433 ----------
434 -- Hash --
435 ----------
437 function Hash (F : Source_Ptr) return Header_Num is
438 begin
439 return Header_Num (Nat (F) mod 997);
440 end Hash;
442 ----------------
443 -- Initialize --
444 ----------------
446 procedure Initialize is
447 begin
448 SCO_Unit_Number_Table.Init;
450 -- The SCO_Unit_Number_Table entry with index 0 is intentionally set
451 -- aside to be used as temporary for sorting.
453 SCO_Unit_Number_Table.Increment_Last;
454 end Initialize;
456 -------------------------
457 -- Is_Logical_Operator --
458 -------------------------
460 function Is_Logical_Operator (N : Node_Id) return Tristate is
461 begin
462 if Nkind (N) in N_And_Then | N_Op_Not | N_Or_Else then
463 return True;
464 elsif Nkind (N) in N_Op_And | N_Op_Or then
465 return Unknown;
466 else
467 return False;
468 end if;
469 end Is_Logical_Operator;
471 -----------------------
472 -- Process_Decisions --
473 -----------------------
475 -- Version taking a list
477 procedure Process_Decisions
478 (L : List_Id;
479 T : Character;
480 Pragma_Sloc : Source_Ptr)
482 N : Node_Id;
484 begin
485 N := First (L);
486 while Present (N) loop
487 Process_Decisions (N, T, Pragma_Sloc);
488 Next (N);
489 end loop;
490 end Process_Decisions;
492 -- Version taking a node
494 Current_Pragma_Sloc : Source_Ptr := No_Location;
495 -- While processing a pragma, this is set to the sloc of the N_Pragma node
497 procedure Process_Decisions
498 (N : Node_Id;
499 T : Character;
500 Pragma_Sloc : Source_Ptr)
502 Mark : Nat;
503 -- This is used to mark the location of a decision sequence in the SCO
504 -- table. We use it for backing out a simple decision in an expression
505 -- context that contains only NOT operators.
507 Mark_Hash : Nat;
508 -- Likewise for the putative SCO_Raw_Hash_Table entries: see below
510 type Hash_Entry is record
511 Sloc : Source_Ptr;
512 SCO_Index : Nat;
513 end record;
514 -- We must register all conditions/pragmas in SCO_Raw_Hash_Table.
515 -- However we cannot register them in the same time we are adding the
516 -- corresponding SCO entries to the raw table since we may discard them
517 -- later on. So instead we put all putative conditions into Hash_Entries
518 -- (see below) and register them once we are sure we keep them.
520 -- This data structure holds the conditions/pragmas to register in
521 -- SCO_Raw_Hash_Table.
523 package Hash_Entries is new Table.Table
524 (Table_Component_Type => Hash_Entry,
525 Table_Index_Type => Nat,
526 Table_Low_Bound => 1,
527 Table_Initial => 10,
528 Table_Increment => 10,
529 Table_Name => "Hash_Entries");
530 -- Hold temporarily (i.e. free'd before returning) the Hash_Entry before
531 -- they are registered in SCO_Raw_Hash_Table.
533 X_Not_Decision : Boolean;
534 -- This flag keeps track of whether a decision sequence in the SCO table
535 -- contains only NOT operators, and is for an expression context (T=X).
536 -- The flag will be set False if T is other than X, or if an operator
537 -- other than NOT is in the sequence.
539 procedure Output_Decision_Operand (N : Node_Id);
540 -- The node N is the top level logical operator of a decision, or it is
541 -- one of the operands of a logical operator belonging to a single
542 -- complex decision. This routine outputs the sequence of table entries
543 -- corresponding to the node. Note that we do not process the sub-
544 -- operands to look for further decisions, that processing is done in
545 -- Process_Decision_Operand, because we can't get decisions mixed up in
546 -- the global table. Call has no effect if N is Empty.
548 procedure Output_Element (N : Node_Id);
549 -- Node N is an operand of a logical operator that is not itself a
550 -- logical operator, or it is a simple decision. This routine outputs
551 -- the table entry for the element, with C1 set to ' '. Last is set
552 -- False, and an entry is made in the condition hash table.
554 procedure Output_Header (T : Character);
555 -- Outputs a decision header node. T is I/W/E/P for IF/WHILE/EXIT WHEN/
556 -- PRAGMA, and 'X' for the expression case.
558 procedure Process_Decision_Operand (N : Node_Id);
559 -- This is called on node N, the top level node of a decision, or on one
560 -- of its operands or suboperands after generating the full output for
561 -- the complex decision. It process the suboperands of the decision
562 -- looking for nested decisions.
564 function Process_Node (N : Node_Id) return Traverse_Result;
565 -- Processes one node in the traversal, looking for logical operators,
566 -- and if one is found, outputs the appropriate table entries.
568 -----------------------------
569 -- Output_Decision_Operand --
570 -----------------------------
572 procedure Output_Decision_Operand (N : Node_Id) is
573 C1 : Character;
574 C2 : Character;
575 -- C1 holds a character that identifies the operation while C2
576 -- indicates whether we are sure (' ') or not ('?') this operation
577 -- belongs to the decision. '?' entries will be filtered out in the
578 -- second (SCO_Record_Filtered) pass.
580 L : Node_Id;
581 T : Tristate;
583 begin
584 if No (N) then
585 return;
586 end if;
588 T := Is_Logical_Operator (N);
590 -- Logical operator
592 if T /= False then
593 if Nkind (N) = N_Op_Not then
594 C1 := '!';
595 L := Empty;
597 else
598 L := Left_Opnd (N);
600 if Nkind (N) in N_Op_Or | N_Or_Else then
601 C1 := '|';
602 else pragma Assert (Nkind (N) in N_Op_And | N_And_Then);
603 C1 := '&';
604 end if;
605 end if;
607 if T = True then
608 C2 := ' ';
609 else
610 C2 := '?';
611 end if;
613 Set_Raw_Table_Entry
614 (C1 => C1,
615 C2 => C2,
616 From => Sloc (N),
617 To => No_Location,
618 Last => False);
620 Hash_Entries.Append ((Sloc (N), SCO_Raw_Table.Last));
622 Output_Decision_Operand (L);
623 Output_Decision_Operand (Right_Opnd (N));
625 -- Not a logical operator
627 else
628 Output_Element (N);
629 end if;
630 end Output_Decision_Operand;
632 --------------------
633 -- Output_Element --
634 --------------------
636 procedure Output_Element (N : Node_Id) is
637 FSloc : Source_Ptr;
638 LSloc : Source_Ptr;
639 begin
640 Sloc_Range (N, FSloc, LSloc);
641 Set_Raw_Table_Entry
642 (C1 => ' ',
643 C2 => 'c',
644 From => FSloc,
645 To => LSloc,
646 Last => False);
647 Hash_Entries.Append ((FSloc, SCO_Raw_Table.Last));
648 end Output_Element;
650 -------------------
651 -- Output_Header --
652 -------------------
654 procedure Output_Header (T : Character) is
655 Loc : Source_Ptr := No_Location;
656 -- Node whose Sloc is used for the decision
658 Nam : Name_Id := No_Name;
659 -- For the case of an aspect, aspect name
661 begin
662 case T is
663 when 'I' | 'E' | 'W' | 'a' | 'A' =>
665 -- For IF, EXIT, WHILE, or aspects, the token SLOC is that of
666 -- the parent of the expression.
668 Loc := Sloc (Parent (N));
670 if T = 'a' or else T = 'A' then
671 Nam := Chars (Identifier (Parent (N)));
672 end if;
674 when 'G' | 'P' =>
676 -- For entry guard, the token sloc is from the N_Entry_Body.
677 -- For PRAGMA, we must get the location from the pragma node.
678 -- Argument N is the pragma argument, and we have to go up
679 -- two levels (through the pragma argument association) to
680 -- get to the pragma node itself. For the guard on a select
681 -- alternative, we do not have access to the token location for
682 -- the WHEN, so we use the first sloc of the condition itself.
683 -- First_Sloc gives the most sensible result, but we have to
684 -- beware of also using it when computing the dominance marker
685 -- sloc (in the Set_Statement_Entry procedure), as this is not
686 -- fully equivalent to the "To" sloc computed by
687 -- Sloc_Range (Guard, To, From).
689 if Nkind (Parent (N)) in N_Accept_Alternative
690 | N_Delay_Alternative
691 | N_Terminate_Alternative
692 then
693 Loc := First_Sloc (N);
694 else
695 Loc := Sloc (Parent (Parent (N)));
696 end if;
698 when 'X' =>
700 -- For an expression, no Sloc
702 null;
704 -- No other possibilities
706 when others =>
707 raise Program_Error;
708 end case;
710 Set_Raw_Table_Entry
711 (C1 => T,
712 C2 => ' ',
713 From => Loc,
714 To => No_Location,
715 Last => False,
716 Pragma_Sloc => Pragma_Sloc,
717 Pragma_Aspect_Name => Nam);
719 -- For an aspect specification, which will be rewritten into a
720 -- pragma, enter a hash table entry now.
722 if T = 'a' then
723 Hash_Entries.Append ((Loc, SCO_Raw_Table.Last));
724 end if;
725 end Output_Header;
727 ------------------------------
728 -- Process_Decision_Operand --
729 ------------------------------
731 procedure Process_Decision_Operand (N : Node_Id) is
732 begin
733 if Is_Logical_Operator (N) /= False then
734 if Nkind (N) /= N_Op_Not then
735 Process_Decision_Operand (Left_Opnd (N));
736 X_Not_Decision := False;
737 end if;
739 Process_Decision_Operand (Right_Opnd (N));
741 else
742 Process_Decisions (N, 'X', Pragma_Sloc);
743 end if;
744 end Process_Decision_Operand;
746 ------------------
747 -- Process_Node --
748 ------------------
750 function Process_Node (N : Node_Id) return Traverse_Result is
751 begin
752 case Nkind (N) is
754 -- Aspect specifications have dedicated processings (see
755 -- Traverse_Aspects) so ignore them here, so that they are
756 -- processed only once.
758 when N_Aspect_Specification =>
759 return Skip;
761 -- Logical operators, output table entries and then process
762 -- operands recursively to deal with nested conditions.
764 when N_And_Then
765 | N_Op_And
766 | N_Op_Not
767 | N_Op_Or
768 | N_Or_Else
770 declare
771 T : Character;
773 begin
774 -- If outer level, then type comes from call, otherwise it
775 -- is more deeply nested and counts as X for expression.
777 if N = Process_Decisions.N then
778 T := Process_Decisions.T;
779 else
780 T := 'X';
781 end if;
783 -- Output header for sequence
785 X_Not_Decision := T = 'X' and then Nkind (N) = N_Op_Not;
786 Mark := SCO_Raw_Table.Last;
787 Mark_Hash := Hash_Entries.Last;
788 Output_Header (T);
790 -- Output the decision
792 Output_Decision_Operand (N);
794 -- If the decision was in an expression context (T = 'X')
795 -- and contained only NOT operators, then we don't output
796 -- it, so delete it.
798 if X_Not_Decision then
799 SCO_Raw_Table.Set_Last (Mark);
800 Hash_Entries.Set_Last (Mark_Hash);
802 -- Otherwise, set Last in last table entry to mark end
804 else
805 SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
806 end if;
808 -- Process any embedded decisions
810 Process_Decision_Operand (N);
811 return Skip;
812 end;
814 -- Case expression
816 -- Really hard to believe this is correct given the special
817 -- handling for if expressions below ???
819 when N_Case_Expression =>
820 return OK; -- ???
822 -- If expression, processed like an if statement
824 when N_If_Expression =>
825 declare
826 Cond : constant Node_Id := First (Expressions (N));
827 Thnx : constant Node_Id := Next (Cond);
828 Elsx : constant Node_Id := Next (Thnx);
830 begin
831 Process_Decisions (Cond, 'I', Pragma_Sloc);
832 Process_Decisions (Thnx, 'X', Pragma_Sloc);
833 Process_Decisions (Elsx, 'X', Pragma_Sloc);
834 return Skip;
835 end;
837 when N_Quantified_Expression =>
838 declare
839 Cond : constant Node_Id := Condition (N);
840 I_Spec : Node_Id := Empty;
841 begin
842 if Present (Iterator_Specification (N)) then
843 I_Spec := Iterator_Specification (N);
844 else
845 I_Spec := Loop_Parameter_Specification (N);
846 end if;
847 Process_Decisions (I_Spec, 'X', Pragma_Sloc);
848 Process_Decisions (Cond, 'W', Pragma_Sloc);
849 return Skip;
850 end;
852 -- All other cases, continue scan
854 when others =>
855 return OK;
856 end case;
857 end Process_Node;
859 procedure Traverse is new Traverse_Proc (Process_Node);
861 -- Start of processing for Process_Decisions
863 begin
864 if No (N) then
865 return;
866 end if;
868 Hash_Entries.Init;
870 -- See if we have simple decision at outer level and if so then
871 -- generate the decision entry for this simple decision. A simple
872 -- decision is a boolean expression (which is not a logical operator
873 -- or short circuit form) appearing as the operand of an IF, WHILE,
874 -- EXIT WHEN, or special PRAGMA construct.
876 if T /= 'X' and then Is_Logical_Operator (N) = False then
877 Output_Header (T);
878 Output_Element (N);
880 -- Change Last in last table entry to True to mark end of
881 -- sequence, which is this case is only one element long.
883 SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
884 end if;
886 Traverse (N);
888 -- Now we have the definitive set of SCO entries, register them in the
889 -- corresponding hash table.
891 for J in 1 .. Hash_Entries.Last loop
892 SCO_Raw_Hash_Table.Set
893 (Hash_Entries.Table (J).Sloc,
894 Hash_Entries.Table (J).SCO_Index);
895 end loop;
897 Hash_Entries.Free;
898 end Process_Decisions;
900 -----------
901 -- pscos --
902 -----------
904 procedure pscos is
905 procedure Write_Info_Char (C : Character) renames Write_Char;
906 -- Write one character;
908 procedure Write_Info_Initiate (Key : Character) renames Write_Char;
909 -- Start new one and write one character;
911 procedure Write_Info_Nat (N : Nat);
912 -- Write value of N
914 procedure Write_Info_Terminate renames Write_Eol;
915 -- Terminate current line
917 --------------------
918 -- Write_Info_Nat --
919 --------------------
921 procedure Write_Info_Nat (N : Nat) is
922 begin
923 Write_Int (N);
924 end Write_Info_Nat;
926 procedure Debug_Put_SCOs is new Put_SCOs;
928 -- Start of processing for pscos
930 begin
931 Debug_Put_SCOs;
932 end pscos;
934 ---------------------
935 -- Record_Instance --
936 ---------------------
938 procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr) is
939 Inst_Src : constant Source_File_Index :=
940 Get_Source_File_Index (Inst_Sloc);
941 begin
942 SCO_Instance_Table.Append
943 ((Inst_Dep_Num => Dependency_Num (Unit (Inst_Src)),
944 Inst_Loc => To_Source_Location (Inst_Sloc),
945 Enclosing_Instance => SCO_Instance_Index (Instance (Inst_Src))));
947 pragma Assert
948 (SCO_Instance_Table.Last = SCO_Instance_Index (Id));
949 end Record_Instance;
951 ----------------
952 -- SCO_Output --
953 ----------------
955 procedure SCO_Output is
956 procedure Populate_SCO_Instance_Table is
957 new Sinput.Iterate_On_Instances (Record_Instance);
959 begin
960 pragma Assert (SCO_Generation_State = Filtered);
962 if Debug_Flag_Dot_OO then
963 dsco;
964 end if;
966 Populate_SCO_Instance_Table;
968 -- Sort the unit tables based on dependency numbers
970 Unit_Table_Sort : declare
971 function Lt (Op1 : Natural; Op2 : Natural) return Boolean;
972 -- Comparison routine for sort call
974 procedure Move (From : Natural; To : Natural);
975 -- Move routine for sort call
977 --------
978 -- Lt --
979 --------
981 function Lt (Op1 : Natural; Op2 : Natural) return Boolean is
982 begin
983 return
984 Dependency_Num
985 (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op1)))
987 Dependency_Num
988 (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op2)));
989 end Lt;
991 ----------
992 -- Move --
993 ----------
995 procedure Move (From : Natural; To : Natural) is
996 begin
997 SCO_Unit_Table.Table (SCO_Unit_Index (To)) :=
998 SCO_Unit_Table.Table (SCO_Unit_Index (From));
999 SCO_Unit_Number_Table.Table (SCO_Unit_Index (To)) :=
1000 SCO_Unit_Number_Table.Table (SCO_Unit_Index (From));
1001 end Move;
1003 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
1005 -- Start of processing for Unit_Table_Sort
1007 begin
1008 Sorting.Sort (Integer (SCO_Unit_Table.Last));
1009 end Unit_Table_Sort;
1011 -- Loop through entries in the unit table to set file name and
1012 -- dependency number entries.
1014 for J in 1 .. SCO_Unit_Table.Last loop
1015 declare
1016 U : constant Unit_Number_Type := SCO_Unit_Number_Table.Table (J);
1017 UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (J);
1019 begin
1020 Get_Name_String (Reference_Name (Source_Index (U)));
1021 UTE.File_Name := new String'(Name_Buffer (1 .. Name_Len));
1022 UTE.Dep_Num := Dependency_Num (U);
1023 end;
1024 end loop;
1026 -- Now the tables are all setup for output to the ALI file
1028 Write_SCOs_To_ALI_File;
1029 end SCO_Output;
1031 -------------------------
1032 -- SCO_Pragma_Disabled --
1033 -------------------------
1035 function SCO_Pragma_Disabled (Loc : Source_Ptr) return Boolean is
1036 Index : Nat;
1038 begin
1039 if Loc = No_Location then
1040 return False;
1041 end if;
1043 Index := SCO_Raw_Hash_Table.Get (Loc);
1045 -- The test here for zero is to deal with possible previous errors, and
1046 -- for the case of pragma statement SCOs, for which we always set the
1047 -- Pragma_Sloc even if the particular pragma cannot be specifically
1048 -- disabled.
1050 if Index /= 0 then
1051 declare
1052 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
1054 begin
1055 case T.C1 is
1056 when 'S' =>
1057 -- Pragma statement
1059 return T.C2 = 'p';
1061 when 'A' =>
1062 -- Aspect decision (enabled)
1064 return False;
1066 when 'a' =>
1067 -- Aspect decision (not enabled)
1069 return True;
1071 when ASCII.NUL =>
1072 -- Nullified disabled SCO
1074 return True;
1076 when others =>
1077 raise Program_Error;
1078 end case;
1079 end;
1081 else
1082 return False;
1083 end if;
1084 end SCO_Pragma_Disabled;
1086 --------------------
1087 -- SCO_Record_Raw --
1088 --------------------
1090 procedure SCO_Record_Raw (U : Unit_Number_Type) is
1091 procedure Traverse_Aux_Decls (N : Node_Id);
1092 -- Traverse the Aux_Decls_Node of compilation unit N
1094 ------------------------
1095 -- Traverse_Aux_Decls --
1096 ------------------------
1098 procedure Traverse_Aux_Decls (N : Node_Id) is
1099 ADN : constant Node_Id := Aux_Decls_Node (N);
1101 begin
1102 Traverse_Declarations_Or_Statements (Config_Pragmas (ADN));
1103 Traverse_Declarations_Or_Statements (Pragmas_After (ADN));
1105 -- Declarations and Actions do not correspond to source constructs,
1106 -- they contain only nodes from expansion, so at this point they
1107 -- should still be empty:
1109 pragma Assert (No (Declarations (ADN)));
1110 pragma Assert (No (Actions (ADN)));
1111 end Traverse_Aux_Decls;
1113 -- Local variables
1115 From : Nat;
1116 Lu : Node_Id;
1118 -- Start of processing for SCO_Record_Raw
1120 begin
1121 -- It is legitimate to run this pass multiple times (once per unit) so
1122 -- run it even if it was already run before.
1124 pragma Assert (SCO_Generation_State in None .. Raw);
1125 SCO_Generation_State := Raw;
1127 -- Ignore call if not generating code and generating SCO's
1129 if not (Generate_SCO and then Operating_Mode = Generate_Code) then
1130 return;
1131 end if;
1133 -- Ignore call if this unit already recorded
1135 for J in 1 .. SCO_Unit_Number_Table.Last loop
1136 if U = SCO_Unit_Number_Table.Table (J) then
1137 return;
1138 end if;
1139 end loop;
1141 -- Otherwise record starting entry
1143 From := SCO_Raw_Table.Last + 1;
1145 -- Get Unit (checking case of subunit)
1147 Lu := Unit (Cunit (U));
1149 if Nkind (Lu) = N_Subunit then
1150 Lu := Proper_Body (Lu);
1151 end if;
1153 -- Traverse the unit
1155 Traverse_Aux_Decls (Cunit (U));
1157 case Nkind (Lu) is
1158 when N_Generic_Instantiation
1159 | N_Generic_Package_Declaration
1160 | N_Package_Body
1161 | N_Package_Declaration
1162 | N_Protected_Body
1163 | N_Subprogram_Body
1164 | N_Subprogram_Declaration
1165 | N_Task_Body
1167 Traverse_Declarations_Or_Statements (L => No_List, P => Lu);
1169 -- All other cases of compilation units (e.g. renamings), generate no
1170 -- SCO information.
1172 when others =>
1173 null;
1174 end case;
1176 -- Make entry for new unit in unit tables, we will fill in the file
1177 -- name and dependency numbers later.
1179 SCO_Unit_Table.Append (
1180 (Dep_Num => 0,
1181 File_Name => null,
1182 File_Index => Get_Source_File_Index (Sloc (Lu)),
1183 From => From,
1184 To => SCO_Raw_Table.Last));
1186 SCO_Unit_Number_Table.Append (U);
1187 end SCO_Record_Raw;
1189 -----------------------
1190 -- Set_SCO_Condition --
1191 -----------------------
1193 procedure Set_SCO_Condition (Cond : Node_Id; Val : Boolean) is
1195 -- SCO annotations are not processed after the filtering pass
1197 pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1199 Constant_Condition_Code : constant array (Boolean) of Character :=
1200 (False => 'f', True => 't');
1202 Orig : constant Node_Id := Original_Node (Cond);
1203 Dummy : Source_Ptr;
1204 Index : Nat;
1205 Start : Source_Ptr;
1207 begin
1208 Sloc_Range (Orig, Start, Dummy);
1209 Index := SCO_Raw_Hash_Table.Get (Start);
1211 -- Index can be zero for boolean expressions that do not have SCOs
1212 -- (simple decisions outside of a control flow structure), or in case
1213 -- of a previous error.
1215 if Index = 0 then
1216 return;
1218 else
1219 pragma Assert (SCO_Raw_Table.Table (Index).C1 = ' ');
1220 SCO_Raw_Table.Table (Index).C2 := Constant_Condition_Code (Val);
1221 end if;
1222 end Set_SCO_Condition;
1224 ------------------------------
1225 -- Set_SCO_Logical_Operator --
1226 ------------------------------
1228 procedure Set_SCO_Logical_Operator (Op : Node_Id) is
1230 -- SCO annotations are not processed after the filtering pass
1232 pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1234 Orig : constant Node_Id := Original_Node (Op);
1235 Orig_Sloc : constant Source_Ptr := Sloc (Orig);
1236 Index : constant Nat := SCO_Raw_Hash_Table.Get (Orig_Sloc);
1238 begin
1239 -- All (putative) logical operators are supposed to have their own entry
1240 -- in the SCOs table. However, the semantic analysis may invoke this
1241 -- subprogram with nodes that are out of the SCO generation scope.
1243 if Index /= 0 then
1244 SCO_Raw_Table.Table (Index).C2 := ' ';
1245 end if;
1246 end Set_SCO_Logical_Operator;
1248 ----------------------------
1249 -- Set_SCO_Pragma_Enabled --
1250 ----------------------------
1252 procedure Set_SCO_Pragma_Enabled (Loc : Source_Ptr) is
1254 -- SCO annotations are not processed after the filtering pass
1256 pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1258 Index : Nat;
1260 begin
1261 -- Nothing to do if not generating SCO, or if we're not processing the
1262 -- original source occurrence of the pragma.
1264 if not (Generate_SCO
1265 and then In_Extended_Main_Source_Unit (Loc)
1266 and then not (In_Instance or In_Inlined_Body))
1267 then
1268 return;
1269 end if;
1271 -- Note: the reason we use the Sloc value as the key is that in the
1272 -- generic case, the call to this procedure is made on a copy of the
1273 -- original node, so we can't use the Node_Id value.
1275 Index := SCO_Raw_Hash_Table.Get (Loc);
1277 -- A zero index here indicates that semantic analysis found an
1278 -- activated pragma at Loc which does not have a corresponding pragma
1279 -- or aspect at the syntax level. This may occur in legitimate cases
1280 -- because of expanded code (such are Pre/Post conditions generated for
1281 -- formal parameter validity checks), or as a consequence of a previous
1282 -- error.
1284 if Index = 0 then
1285 return;
1287 else
1288 declare
1289 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
1291 begin
1292 -- Note: may be called multiple times for the same sloc, so
1293 -- account for the fact that the entry may already have been
1294 -- marked enabled.
1296 case T.C1 is
1297 -- Aspect (decision SCO)
1299 when 'a' =>
1300 T.C1 := 'A';
1302 when 'A' =>
1303 null;
1305 -- Pragma (statement SCO)
1307 when 'S' =>
1308 pragma Assert (T.C2 = 'p' or else T.C2 = 'P');
1309 T.C2 := 'P';
1311 when others =>
1312 raise Program_Error;
1313 end case;
1314 end;
1315 end if;
1316 end Set_SCO_Pragma_Enabled;
1318 -------------------------
1319 -- Set_Raw_Table_Entry --
1320 -------------------------
1322 procedure Set_Raw_Table_Entry
1323 (C1 : Character;
1324 C2 : Character;
1325 From : Source_Ptr;
1326 To : Source_Ptr;
1327 Last : Boolean;
1328 Pragma_Sloc : Source_Ptr := No_Location;
1329 Pragma_Aspect_Name : Name_Id := No_Name)
1331 pragma Assert (SCO_Generation_State = Raw);
1332 begin
1333 SCO_Raw_Table.Append
1334 ((C1 => C1,
1335 C2 => C2,
1336 From => To_Source_Location (From),
1337 To => To_Source_Location (To),
1338 Last => Last,
1339 Pragma_Sloc => Pragma_Sloc,
1340 Pragma_Aspect_Name => Pragma_Aspect_Name));
1341 end Set_Raw_Table_Entry;
1343 ------------------------
1344 -- To_Source_Location --
1345 ------------------------
1347 function To_Source_Location (S : Source_Ptr) return Source_Location is
1348 begin
1349 if S = No_Location then
1350 return No_Source_Location;
1351 else
1352 return
1353 (Line => Get_Logical_Line_Number (S),
1354 Col => Get_Column_Number (S));
1355 end if;
1356 end To_Source_Location;
1358 -----------------------------------------
1359 -- Traverse_Declarations_Or_Statements --
1360 -----------------------------------------
1362 -- Tables used by Traverse_Declarations_Or_Statements for temporarily
1363 -- holding statement and decision entries. These are declared globally
1364 -- since they are shared by recursive calls to this procedure.
1366 type SC_Entry is record
1367 N : Node_Id;
1368 From : Source_Ptr;
1369 To : Source_Ptr;
1370 Typ : Character;
1371 end record;
1372 -- Used to store a single entry in the following table, From:To represents
1373 -- the range of entries in the CS line entry, and typ is the type, with
1374 -- space meaning that no type letter will accompany the entry.
1376 package SC is new Table.Table
1377 (Table_Component_Type => SC_Entry,
1378 Table_Index_Type => Nat,
1379 Table_Low_Bound => 1,
1380 Table_Initial => 1000,
1381 Table_Increment => 200,
1382 Table_Name => "SCO_SC");
1383 -- Used to store statement components for a CS entry to be output as a
1384 -- result of the call to this procedure. SC.Last is the last entry stored,
1385 -- so the current statement sequence is represented by SC_Array (SC_First
1386 -- .. SC.Last), where SC_First is saved on entry to each recursive call to
1387 -- the routine.
1389 -- Extend_Statement_Sequence adds an entry to this array, and then
1390 -- Set_Statement_Entry clears the entries starting with SC_First, copying
1391 -- these entries to the main SCO output table. The reason that we do the
1392 -- temporary caching of results in this array is that we want the SCO table
1393 -- entries for a given CS line to be contiguous, and the processing may
1394 -- output intermediate entries such as decision entries.
1396 type SD_Entry is record
1397 Nod : Node_Id;
1398 Lst : List_Id;
1399 Typ : Character;
1400 Plo : Source_Ptr;
1401 end record;
1402 -- Used to store a single entry in the following table. Nod is the node to
1403 -- be searched for decisions for the case of Process_Decisions_Defer with a
1404 -- node argument (with Lst set to No_List. Lst is the list to be searched
1405 -- for decisions for the case of Process_Decisions_Defer with a List
1406 -- argument (in which case Nod is set to Empty). Plo is the sloc of the
1407 -- enclosing pragma, if any.
1409 package SD is new Table.Table
1410 (Table_Component_Type => SD_Entry,
1411 Table_Index_Type => Nat,
1412 Table_Low_Bound => 1,
1413 Table_Initial => 1000,
1414 Table_Increment => 200,
1415 Table_Name => "SCO_SD");
1416 -- Used to store possible decision information. Instead of calling the
1417 -- Process_Decisions procedures directly, we call Process_Decisions_Defer,
1418 -- which simply stores the arguments in this table. Then when we clear
1419 -- out a statement sequence using Set_Statement_Entry, after generating
1420 -- the CS lines for the statements, the entries in this table result in
1421 -- calls to Process_Decision. The reason for doing things this way is to
1422 -- ensure that decisions are output after the CS line for the statements
1423 -- in which the decisions occur.
1425 procedure Traverse_Declarations_Or_Statements
1426 (L : List_Id;
1427 D : Dominant_Info := No_Dominant;
1428 P : Node_Id := Empty)
1430 Discard_Dom : Dominant_Info;
1431 pragma Warnings (Off, Discard_Dom);
1432 begin
1433 Discard_Dom := Traverse_Declarations_Or_Statements (L, D, P);
1434 end Traverse_Declarations_Or_Statements;
1436 function Traverse_Declarations_Or_Statements
1437 (L : List_Id;
1438 D : Dominant_Info := No_Dominant;
1439 P : Node_Id := Empty) return Dominant_Info
1441 Current_Dominant : Dominant_Info := D;
1442 -- Dominance information for the current basic block
1444 Current_Test : Node_Id;
1445 -- Conditional node (N_If_Statement or N_Elsif being processed)
1447 N : Node_Id;
1449 SC_First : constant Nat := SC.Last + 1;
1450 SD_First : constant Nat := SD.Last + 1;
1451 -- Record first entries used in SC/SD at this recursive level
1453 procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character);
1454 -- Extend the current statement sequence to encompass the node N. Typ is
1455 -- the letter that identifies the type of statement/declaration that is
1456 -- being added to the sequence.
1458 procedure Process_Decisions_Defer (N : Node_Id; T : Character);
1459 pragma Inline (Process_Decisions_Defer);
1460 -- This routine is logically the same as Process_Decisions, except that
1461 -- the arguments are saved in the SD table for later processing when
1462 -- Set_Statement_Entry is called, which goes through the saved entries
1463 -- making the corresponding calls to Process_Decision. Note: the
1464 -- enclosing statement must have already been added to the current
1465 -- statement sequence, so that nested decisions are properly
1466 -- identified as such.
1468 procedure Process_Decisions_Defer (L : List_Id; T : Character);
1469 pragma Inline (Process_Decisions_Defer);
1470 -- Same case for list arguments, deferred call to Process_Decisions
1472 procedure Set_Statement_Entry;
1473 -- Output CS entries for all statements saved in table SC, and end the
1474 -- current CS sequence. Then output entries for all decisions nested in
1475 -- these statements, which have been deferred so far.
1477 procedure Traverse_One (N : Node_Id);
1478 -- Traverse one declaration or statement
1480 procedure Traverse_Aspects (N : Node_Id);
1481 -- Helper for Traverse_One: traverse N's aspect specifications
1483 procedure Traverse_Degenerate_Subprogram (N : Node_Id);
1484 -- Common code to handle null procedures and expression functions. Emit
1485 -- a SCO of the given Kind and N outside of the dominance flow.
1487 -------------------------------
1488 -- Extend_Statement_Sequence --
1489 -------------------------------
1491 procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character) is
1492 Dummy : Source_Ptr;
1493 F : Source_Ptr;
1494 T : Source_Ptr;
1495 To_Node : Node_Id := Empty;
1497 begin
1498 Sloc_Range (N, F, T);
1500 case Nkind (N) is
1501 when N_Accept_Statement =>
1502 if Present (Parameter_Specifications (N)) then
1503 To_Node := Last (Parameter_Specifications (N));
1504 elsif Present (Entry_Index (N)) then
1505 To_Node := Entry_Index (N);
1506 else
1507 To_Node := Entry_Direct_Name (N);
1508 end if;
1510 when N_Case_Statement =>
1511 To_Node := Expression (N);
1513 when N_Elsif_Part
1514 | N_If_Statement
1516 To_Node := Condition (N);
1518 when N_Extended_Return_Statement =>
1519 To_Node := Last (Return_Object_Declarations (N));
1521 when N_Loop_Statement =>
1522 To_Node := Iteration_Scheme (N);
1524 when N_Asynchronous_Select
1525 | N_Conditional_Entry_Call
1526 | N_Selective_Accept
1527 | N_Single_Protected_Declaration
1528 | N_Single_Task_Declaration
1529 | N_Timed_Entry_Call
1531 T := F;
1533 when N_Protected_Type_Declaration
1534 | N_Task_Type_Declaration
1536 if Has_Aspects (N) then
1537 To_Node := Last (Aspect_Specifications (N));
1539 elsif Present (Discriminant_Specifications (N)) then
1540 To_Node := Last (Discriminant_Specifications (N));
1542 else
1543 To_Node := Defining_Identifier (N);
1544 end if;
1546 when N_Subexpr =>
1547 To_Node := N;
1549 when others =>
1550 null;
1551 end case;
1553 if Present (To_Node) then
1554 Sloc_Range (To_Node, Dummy, T);
1555 end if;
1557 SC.Append ((N, F, T, Typ));
1558 end Extend_Statement_Sequence;
1560 -----------------------------
1561 -- Process_Decisions_Defer --
1562 -----------------------------
1564 procedure Process_Decisions_Defer (N : Node_Id; T : Character) is
1565 begin
1566 SD.Append ((N, No_List, T, Current_Pragma_Sloc));
1567 end Process_Decisions_Defer;
1569 procedure Process_Decisions_Defer (L : List_Id; T : Character) is
1570 begin
1571 SD.Append ((Empty, L, T, Current_Pragma_Sloc));
1572 end Process_Decisions_Defer;
1574 -------------------------
1575 -- Set_Statement_Entry --
1576 -------------------------
1578 procedure Set_Statement_Entry is
1579 SC_Last : constant Int := SC.Last;
1580 SD_Last : constant Int := SD.Last;
1582 begin
1583 -- Output statement entries from saved entries in SC table
1585 for J in SC_First .. SC_Last loop
1586 if J = SC_First then
1588 if Current_Dominant /= No_Dominant then
1589 declare
1590 From : Source_Ptr;
1591 To : Source_Ptr;
1593 begin
1594 Sloc_Range (Current_Dominant.N, From, To);
1596 if Current_Dominant.K /= 'E' then
1597 To := No_Location;
1598 end if;
1600 -- Be consistent with the location determined in
1601 -- Output_Header.
1603 if Current_Dominant.K = 'T'
1604 and then Nkind (Parent (Current_Dominant.N))
1605 in N_Accept_Alternative
1606 | N_Delay_Alternative
1607 | N_Terminate_Alternative
1608 then
1609 From := First_Sloc (Current_Dominant.N);
1610 end if;
1612 Set_Raw_Table_Entry
1613 (C1 => '>',
1614 C2 => Current_Dominant.K,
1615 From => From,
1616 To => To,
1617 Last => False,
1618 Pragma_Sloc => No_Location,
1619 Pragma_Aspect_Name => No_Name);
1620 end;
1621 end if;
1622 end if;
1624 declare
1625 SCE : SC_Entry renames SC.Table (J);
1626 Pragma_Sloc : Source_Ptr := No_Location;
1627 Pragma_Aspect_Name : Name_Id := No_Name;
1629 begin
1630 -- For the case of a statement SCO for a pragma controlled by
1631 -- Set_SCO_Pragma_Enabled, set Pragma_Sloc so that the SCO (and
1632 -- those of any nested decision) is emitted only if the pragma
1633 -- is enabled.
1635 if SCE.Typ = 'p' then
1636 Pragma_Sloc := SCE.From;
1637 SCO_Raw_Hash_Table.Set
1638 (Pragma_Sloc, SCO_Raw_Table.Last + 1);
1639 Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
1640 pragma Assert (Pragma_Aspect_Name /= No_Name);
1642 elsif SCE.Typ = 'P' then
1643 Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
1644 pragma Assert (Pragma_Aspect_Name /= No_Name);
1645 end if;
1647 Set_Raw_Table_Entry
1648 (C1 => 'S',
1649 C2 => SCE.Typ,
1650 From => SCE.From,
1651 To => SCE.To,
1652 Last => (J = SC_Last),
1653 Pragma_Sloc => Pragma_Sloc,
1654 Pragma_Aspect_Name => Pragma_Aspect_Name);
1655 end;
1656 end loop;
1658 -- Last statement of basic block, if present, becomes new current
1659 -- dominant.
1661 if SC_Last >= SC_First then
1662 Current_Dominant := ('S', SC.Table (SC_Last).N);
1663 end if;
1665 -- Clear out used section of SC table
1667 SC.Set_Last (SC_First - 1);
1669 -- Output any embedded decisions
1671 for J in SD_First .. SD_Last loop
1672 declare
1673 SDE : SD_Entry renames SD.Table (J);
1675 begin
1676 if Present (SDE.Nod) then
1677 Process_Decisions (SDE.Nod, SDE.Typ, SDE.Plo);
1678 else
1679 Process_Decisions (SDE.Lst, SDE.Typ, SDE.Plo);
1680 end if;
1681 end;
1682 end loop;
1684 -- Clear out used section of SD table
1686 SD.Set_Last (SD_First - 1);
1687 end Set_Statement_Entry;
1689 ----------------------
1690 -- Traverse_Aspects --
1691 ----------------------
1693 procedure Traverse_Aspects (N : Node_Id) is
1694 AE : Node_Id;
1695 AN : Node_Id;
1696 C1 : Character;
1698 begin
1699 AN := First (Aspect_Specifications (N));
1700 while Present (AN) loop
1701 AE := Expression (AN);
1703 C1 := ASCII.NUL;
1705 case Get_Aspect_Id (AN) is
1707 -- Aspects rewritten into pragmas controlled by a Check_Policy:
1708 -- Current_Pragma_Sloc must be set to the sloc of the aspect
1709 -- specification. The corresponding pragma will have the same
1710 -- sloc. Note that Invariant, Pre, and Post will be enabled if
1711 -- the policy is Check; on the other hand, predicate aspects
1712 -- will be enabled for Check and Ignore (when Add_Predicate
1713 -- is called) because the actual checks occur in client units.
1714 -- When the assertion policy for Predicate is Disable, the
1715 -- SCO remains disabled, because Add_Predicate is never called.
1717 -- Pre/post can have checks in client units too because of
1718 -- inheritance, so should they receive the same treatment???
1720 when Aspect_Dynamic_Predicate
1721 | Aspect_Invariant
1722 | Aspect_Post
1723 | Aspect_Postcondition
1724 | Aspect_Pre
1725 | Aspect_Precondition
1726 | Aspect_Predicate
1727 | Aspect_Static_Predicate
1728 | Aspect_Type_Invariant
1730 C1 := 'a';
1732 -- Other aspects: just process any decision nested in the
1733 -- aspect expression.
1735 when others =>
1736 if Has_Decision (AE) then
1737 C1 := 'X';
1738 end if;
1739 end case;
1741 if C1 /= ASCII.NUL then
1742 pragma Assert (Current_Pragma_Sloc = No_Location);
1744 if C1 = 'a' or else C1 = 'A' then
1745 Current_Pragma_Sloc := Sloc (AN);
1746 end if;
1748 Process_Decisions_Defer (AE, C1);
1750 Current_Pragma_Sloc := No_Location;
1751 end if;
1753 Next (AN);
1754 end loop;
1755 end Traverse_Aspects;
1757 ------------------------------------
1758 -- Traverse_Degenerate_Subprogram --
1759 ------------------------------------
1761 procedure Traverse_Degenerate_Subprogram (N : Node_Id) is
1762 begin
1763 -- Complete current sequence of statements
1765 Set_Statement_Entry;
1767 declare
1768 Saved_Dominant : constant Dominant_Info := Current_Dominant;
1769 -- Save last statement in current sequence as dominant
1771 begin
1772 -- Output statement SCO for degenerate subprogram body (null
1773 -- statement or freestanding expression) outside of the dominance
1774 -- chain.
1776 Current_Dominant := No_Dominant;
1777 Extend_Statement_Sequence (N, Typ => 'X');
1779 -- For the case of an expression-function, collect decisions
1780 -- embedded in the expression now.
1782 if Nkind (N) in N_Subexpr then
1783 Process_Decisions_Defer (N, 'X');
1784 end if;
1786 Set_Statement_Entry;
1788 -- Restore current dominant information designating last statement
1789 -- in previous sequence (i.e. make the dominance chain skip over
1790 -- the degenerate body).
1792 Current_Dominant := Saved_Dominant;
1793 end;
1794 end Traverse_Degenerate_Subprogram;
1796 ------------------
1797 -- Traverse_One --
1798 ------------------
1800 procedure Traverse_One (N : Node_Id) is
1801 begin
1802 -- Initialize or extend current statement sequence. Note that for
1803 -- special cases such as IF and Case statements we will modify
1804 -- the range to exclude internal statements that should not be
1805 -- counted as part of the current statement sequence.
1807 case Nkind (N) is
1809 -- Package declaration
1811 when N_Package_Declaration =>
1812 Set_Statement_Entry;
1813 Traverse_Package_Declaration (N, Current_Dominant);
1815 -- Generic package declaration
1817 when N_Generic_Package_Declaration =>
1818 Set_Statement_Entry;
1819 Traverse_Generic_Package_Declaration (N);
1821 -- Package body
1823 when N_Package_Body =>
1824 Set_Statement_Entry;
1825 Traverse_Package_Body (N);
1827 -- Subprogram declaration or subprogram body stub
1829 when N_Expression_Function
1830 | N_Subprogram_Body_Stub
1831 | N_Subprogram_Declaration
1833 declare
1834 Spec : constant Node_Id := Specification (N);
1835 begin
1836 Process_Decisions_Defer
1837 (Parameter_Specifications (Spec), 'X');
1839 -- Case of a null procedure: generate SCO for fictitious
1840 -- NULL statement located at the NULL keyword in the
1841 -- procedure specification.
1843 if Nkind (N) = N_Subprogram_Declaration
1844 and then Nkind (Spec) = N_Procedure_Specification
1845 and then Null_Present (Spec)
1846 then
1847 Traverse_Degenerate_Subprogram (Null_Statement (Spec));
1849 -- Case of an expression function: generate a statement SCO
1850 -- for the expression (and then decision SCOs for any nested
1851 -- decisions).
1853 elsif Nkind (N) = N_Expression_Function then
1854 Traverse_Degenerate_Subprogram (Expression (N));
1855 end if;
1856 end;
1858 -- Entry declaration
1860 when N_Entry_Declaration =>
1861 Process_Decisions_Defer (Parameter_Specifications (N), 'X');
1863 -- Generic subprogram declaration
1865 when N_Generic_Subprogram_Declaration =>
1866 Process_Decisions_Defer
1867 (Generic_Formal_Declarations (N), 'X');
1868 Process_Decisions_Defer
1869 (Parameter_Specifications (Specification (N)), 'X');
1871 -- Task or subprogram body
1873 when N_Subprogram_Body
1874 | N_Task_Body
1876 Set_Statement_Entry;
1877 Traverse_Subprogram_Or_Task_Body (N);
1879 -- Entry body
1881 when N_Entry_Body =>
1882 declare
1883 Cond : constant Node_Id :=
1884 Condition (Entry_Body_Formal_Part (N));
1886 Inner_Dominant : Dominant_Info := No_Dominant;
1888 begin
1889 Set_Statement_Entry;
1891 if Present (Cond) then
1892 Process_Decisions_Defer (Cond, 'G');
1894 -- For an entry body with a barrier, the entry body
1895 -- is dominated by a True evaluation of the barrier.
1897 Inner_Dominant := ('T', N);
1898 end if;
1900 Traverse_Subprogram_Or_Task_Body (N, Inner_Dominant);
1901 end;
1903 -- Protected body
1905 when N_Protected_Body =>
1906 Set_Statement_Entry;
1907 Traverse_Declarations_Or_Statements (Declarations (N));
1909 -- Exit statement, which is an exit statement in the SCO sense,
1910 -- so it is included in the current statement sequence, but
1911 -- then it terminates this sequence. We also have to process
1912 -- any decisions in the exit statement expression.
1914 when N_Exit_Statement =>
1915 Extend_Statement_Sequence (N, 'E');
1916 Process_Decisions_Defer (Condition (N), 'E');
1917 Set_Statement_Entry;
1919 -- If condition is present, then following statement is
1920 -- only executed if the condition evaluates to False.
1922 if Present (Condition (N)) then
1923 Current_Dominant := ('F', N);
1924 else
1925 Current_Dominant := No_Dominant;
1926 end if;
1928 -- Label, which breaks the current statement sequence, but the
1929 -- label itself is not included in the next statement sequence,
1930 -- since it generates no code.
1932 when N_Label =>
1933 Set_Statement_Entry;
1934 Current_Dominant := No_Dominant;
1936 -- Block statement, which breaks the current statement sequence
1938 when N_Block_Statement =>
1939 Set_Statement_Entry;
1941 -- The first statement in the handled sequence of statements
1942 -- is dominated by the elaboration of the last declaration.
1944 Current_Dominant := Traverse_Declarations_Or_Statements
1945 (L => Declarations (N),
1946 D => Current_Dominant);
1948 Traverse_Handled_Statement_Sequence
1949 (N => Handled_Statement_Sequence (N),
1950 D => Current_Dominant);
1952 -- If statement, which breaks the current statement sequence,
1953 -- but we include the condition in the current sequence.
1955 when N_If_Statement =>
1956 Current_Test := N;
1957 Extend_Statement_Sequence (N, 'I');
1958 Process_Decisions_Defer (Condition (N), 'I');
1959 Set_Statement_Entry;
1961 -- Now we traverse the statements in the THEN part
1963 Traverse_Declarations_Or_Statements
1964 (L => Then_Statements (N),
1965 D => ('T', N));
1967 -- Loop through ELSIF parts if present
1969 if Present (Elsif_Parts (N)) then
1970 declare
1971 Saved_Dominant : constant Dominant_Info :=
1972 Current_Dominant;
1974 Elif : Node_Id := First (Elsif_Parts (N));
1976 begin
1977 while Present (Elif) loop
1979 -- An Elsif is executed only if the previous test
1980 -- got a FALSE outcome.
1982 Current_Dominant := ('F', Current_Test);
1984 -- Now update current test information
1986 Current_Test := Elif;
1988 -- We generate a statement sequence for the
1989 -- construct "ELSIF condition", so that we have
1990 -- a statement for the resulting decisions.
1992 Extend_Statement_Sequence (Elif, 'I');
1993 Process_Decisions_Defer (Condition (Elif), 'I');
1994 Set_Statement_Entry;
1996 -- An ELSIF part is never guaranteed to have
1997 -- been executed, following statements are only
1998 -- dominated by the initial IF statement.
2000 Current_Dominant := Saved_Dominant;
2002 -- Traverse the statements in the ELSIF
2004 Traverse_Declarations_Or_Statements
2005 (L => Then_Statements (Elif),
2006 D => ('T', Elif));
2007 Next (Elif);
2008 end loop;
2009 end;
2010 end if;
2012 -- Finally traverse the ELSE statements if present
2014 Traverse_Declarations_Or_Statements
2015 (L => Else_Statements (N),
2016 D => ('F', Current_Test));
2018 -- CASE statement, which breaks the current statement sequence,
2019 -- but we include the expression in the current sequence.
2021 when N_Case_Statement =>
2022 Extend_Statement_Sequence (N, 'C');
2023 Process_Decisions_Defer (Expression (N), 'X');
2024 Set_Statement_Entry;
2026 -- Process case branches, all of which are dominated by the
2027 -- CASE statement.
2029 declare
2030 Alt : Node_Id;
2031 begin
2032 Alt := First_Non_Pragma (Alternatives (N));
2033 while Present (Alt) loop
2034 Traverse_Declarations_Or_Statements
2035 (L => Statements (Alt),
2036 D => Current_Dominant);
2037 Next (Alt);
2038 end loop;
2039 end;
2041 -- ACCEPT statement
2043 when N_Accept_Statement =>
2044 Extend_Statement_Sequence (N, 'A');
2045 Set_Statement_Entry;
2047 -- Process sequence of statements, dominant is the ACCEPT
2048 -- statement.
2050 Traverse_Handled_Statement_Sequence
2051 (N => Handled_Statement_Sequence (N),
2052 D => Current_Dominant);
2054 -- SELECT
2056 when N_Selective_Accept =>
2057 Extend_Statement_Sequence (N, 'S');
2058 Set_Statement_Entry;
2060 -- Process alternatives
2062 declare
2063 Alt : Node_Id;
2064 Guard : Node_Id;
2065 S_Dom : Dominant_Info;
2067 begin
2068 Alt := First (Select_Alternatives (N));
2069 while Present (Alt) loop
2070 S_Dom := Current_Dominant;
2071 Guard := Condition (Alt);
2073 if Present (Guard) then
2074 Process_Decisions
2075 (Guard,
2076 'G',
2077 Pragma_Sloc => No_Location);
2078 Current_Dominant := ('T', Guard);
2079 end if;
2081 Traverse_One (Alt);
2083 Current_Dominant := S_Dom;
2084 Next (Alt);
2085 end loop;
2086 end;
2088 Traverse_Declarations_Or_Statements
2089 (L => Else_Statements (N),
2090 D => Current_Dominant);
2092 when N_Conditional_Entry_Call
2093 | N_Timed_Entry_Call
2095 Extend_Statement_Sequence (N, 'S');
2096 Set_Statement_Entry;
2098 -- Process alternatives
2100 Traverse_One (Entry_Call_Alternative (N));
2102 if Nkind (N) = N_Timed_Entry_Call then
2103 Traverse_One (Delay_Alternative (N));
2104 else
2105 Traverse_Declarations_Or_Statements
2106 (L => Else_Statements (N),
2107 D => Current_Dominant);
2108 end if;
2110 when N_Asynchronous_Select =>
2111 Extend_Statement_Sequence (N, 'S');
2112 Set_Statement_Entry;
2114 Traverse_One (Triggering_Alternative (N));
2115 Traverse_Declarations_Or_Statements
2116 (L => Statements (Abortable_Part (N)),
2117 D => Current_Dominant);
2119 when N_Accept_Alternative =>
2120 Traverse_Declarations_Or_Statements
2121 (L => Statements (N),
2122 D => Current_Dominant,
2123 P => Accept_Statement (N));
2125 when N_Entry_Call_Alternative =>
2126 Traverse_Declarations_Or_Statements
2127 (L => Statements (N),
2128 D => Current_Dominant,
2129 P => Entry_Call_Statement (N));
2131 when N_Delay_Alternative =>
2132 Traverse_Declarations_Or_Statements
2133 (L => Statements (N),
2134 D => Current_Dominant,
2135 P => Delay_Statement (N));
2137 when N_Triggering_Alternative =>
2138 Traverse_Declarations_Or_Statements
2139 (L => Statements (N),
2140 D => Current_Dominant,
2141 P => Triggering_Statement (N));
2143 when N_Terminate_Alternative =>
2145 -- It is dubious to emit a statement SCO for a TERMINATE
2146 -- alternative, since no code is actually executed if the
2147 -- alternative is selected -- the tasking runtime call just
2148 -- never returns???
2150 Extend_Statement_Sequence (N, ' ');
2151 Set_Statement_Entry;
2153 -- Unconditional exit points, which are included in the current
2154 -- statement sequence, but then terminate it
2156 when N_Goto_Statement
2157 | N_Raise_Statement
2158 | N_Requeue_Statement
2160 Extend_Statement_Sequence (N, ' ');
2161 Set_Statement_Entry;
2162 Current_Dominant := No_Dominant;
2164 -- Simple return statement. which is an exit point, but we
2165 -- have to process the return expression for decisions.
2167 when N_Simple_Return_Statement =>
2168 Extend_Statement_Sequence (N, ' ');
2169 Process_Decisions_Defer (Expression (N), 'X');
2170 Set_Statement_Entry;
2171 Current_Dominant := No_Dominant;
2173 -- Extended return statement
2175 when N_Extended_Return_Statement =>
2176 Extend_Statement_Sequence (N, 'R');
2177 Process_Decisions_Defer (Return_Object_Declarations (N), 'X');
2178 Set_Statement_Entry;
2180 Traverse_Handled_Statement_Sequence
2181 (N => Handled_Statement_Sequence (N),
2182 D => Current_Dominant);
2184 Current_Dominant := No_Dominant;
2186 -- Loop ends the current statement sequence, but we include
2187 -- the iteration scheme if present in the current sequence.
2188 -- But the body of the loop starts a new sequence, since it
2189 -- may not be executed as part of the current sequence.
2191 when N_Loop_Statement =>
2192 declare
2193 ISC : constant Node_Id := Iteration_Scheme (N);
2194 Inner_Dominant : Dominant_Info := No_Dominant;
2196 begin
2197 if Present (ISC) then
2199 -- If iteration scheme present, extend the current
2200 -- statement sequence to include the iteration scheme
2201 -- and process any decisions it contains.
2203 -- While loop
2205 if Present (Condition (ISC)) then
2206 Extend_Statement_Sequence (N, 'W');
2207 Process_Decisions_Defer (Condition (ISC), 'W');
2209 -- Set more specific dominant for inner statements
2210 -- (the control sloc for the decision is that of
2211 -- the WHILE token).
2213 Inner_Dominant := ('T', ISC);
2215 -- For loop
2217 else
2218 Extend_Statement_Sequence (N, 'F');
2219 Process_Decisions_Defer
2220 (Loop_Parameter_Specification (ISC), 'X');
2221 end if;
2222 end if;
2224 Set_Statement_Entry;
2226 if Inner_Dominant = No_Dominant then
2227 Inner_Dominant := Current_Dominant;
2228 end if;
2230 Traverse_Declarations_Or_Statements
2231 (L => Statements (N),
2232 D => Inner_Dominant);
2233 end;
2235 -- Pragma
2237 when N_Pragma =>
2239 -- Record sloc of pragma (pragmas don't nest)
2241 pragma Assert (Current_Pragma_Sloc = No_Location);
2242 Current_Pragma_Sloc := Sloc (N);
2244 -- Processing depends on the kind of pragma
2246 declare
2247 Nam : constant Name_Id := Pragma_Name_Unmapped (N);
2248 Arg : Node_Id :=
2249 First (Pragma_Argument_Associations (N));
2250 Typ : Character;
2252 begin
2253 case Nam is
2254 when Name_Assert
2255 | Name_Assert_And_Cut
2256 | Name_Assume
2257 | Name_Check
2258 | Name_Loop_Invariant
2259 | Name_Postcondition
2260 | Name_Precondition
2261 | Name_Type_Invariant
2262 | Name_Invariant
2264 -- For Assert/Check/Precondition/Postcondition, we
2265 -- must generate a P entry for the decision. Note
2266 -- that this is done unconditionally at this stage.
2267 -- Output for disabled pragmas is suppressed later
2268 -- on when we output the decision line in Put_SCOs,
2269 -- depending on setting by Set_SCO_Pragma_Enabled.
2271 if Nam = Name_Check
2272 or else Nam = Name_Type_Invariant
2273 or else Nam = Name_Invariant
2274 then
2275 Next (Arg);
2276 end if;
2278 Process_Decisions_Defer (Expression (Arg), 'P');
2279 Typ := 'p';
2281 -- Pre/postconditions can be inherited so SCO should
2282 -- never be deactivated???
2284 when Name_Debug =>
2285 if Present (Arg) and then Present (Next (Arg)) then
2287 -- Case of a dyadic pragma Debug: first argument
2288 -- is a P decision, any nested decision in the
2289 -- second argument is an X decision.
2291 Process_Decisions_Defer (Expression (Arg), 'P');
2292 Next (Arg);
2293 end if;
2295 Process_Decisions_Defer (Expression (Arg), 'X');
2296 Typ := 'p';
2298 -- For all other pragmas, we generate decision entries
2299 -- for any embedded expressions, and the pragma is
2300 -- never disabled.
2302 -- Should generate P decisions (not X) for assertion
2303 -- related pragmas: [{Static,Dynamic}_]Predicate???
2305 when others =>
2306 Process_Decisions_Defer (N, 'X');
2307 Typ := 'P';
2308 end case;
2310 -- Add statement SCO
2312 Extend_Statement_Sequence (N, Typ);
2314 Current_Pragma_Sloc := No_Location;
2315 end;
2317 -- Object declaration. Ignored if Prev_Ids is set, since the
2318 -- parser generates multiple instances of the whole declaration
2319 -- if there is more than one identifier declared, and we only
2320 -- want one entry in the SCOs, so we take the first, for which
2321 -- Prev_Ids is False.
2323 when N_Number_Declaration
2324 | N_Object_Declaration
2326 if not Prev_Ids (N) then
2327 Extend_Statement_Sequence (N, 'o');
2329 if Has_Decision (N) then
2330 Process_Decisions_Defer (N, 'X');
2331 end if;
2332 end if;
2334 -- All other cases, which extend the current statement sequence
2335 -- but do not terminate it, even if they have nested decisions.
2337 when N_Protected_Type_Declaration
2338 | N_Task_Type_Declaration
2340 Extend_Statement_Sequence (N, 't');
2341 Process_Decisions_Defer (Discriminant_Specifications (N), 'X');
2342 Set_Statement_Entry;
2344 Traverse_Protected_Or_Task_Definition (N);
2346 when N_Single_Protected_Declaration
2347 | N_Single_Task_Declaration
2349 Extend_Statement_Sequence (N, 'o');
2350 Set_Statement_Entry;
2352 Traverse_Protected_Or_Task_Definition (N);
2354 when others =>
2356 -- Determine required type character code, or ASCII.NUL if
2357 -- no SCO should be generated for this node.
2359 declare
2360 NK : constant Node_Kind := Nkind (N);
2361 Typ : Character;
2363 begin
2364 case NK is
2365 when N_Full_Type_Declaration
2366 | N_Incomplete_Type_Declaration
2367 | N_Private_Extension_Declaration
2368 | N_Private_Type_Declaration
2370 Typ := 't';
2372 when N_Subtype_Declaration =>
2373 Typ := 's';
2375 when N_Renaming_Declaration =>
2376 Typ := 'r';
2378 when N_Generic_Instantiation =>
2379 Typ := 'i';
2381 when N_Package_Body_Stub
2382 | N_Protected_Body_Stub
2383 | N_Representation_Clause
2384 | N_Task_Body_Stub
2385 | N_Use_Package_Clause
2386 | N_Use_Type_Clause
2388 Typ := ASCII.NUL;
2390 when N_Procedure_Call_Statement =>
2391 Typ := ' ';
2393 when others =>
2394 if NK in N_Statement_Other_Than_Procedure_Call then
2395 Typ := ' ';
2396 else
2397 Typ := 'd';
2398 end if;
2399 end case;
2401 if Typ /= ASCII.NUL then
2402 Extend_Statement_Sequence (N, Typ);
2403 end if;
2404 end;
2406 -- Process any embedded decisions
2408 if Has_Decision (N) then
2409 Process_Decisions_Defer (N, 'X');
2410 end if;
2411 end case;
2413 if Permits_Aspect_Specifications (N) then
2414 Traverse_Aspects (N);
2415 end if;
2416 end Traverse_One;
2418 -- Start of processing for Traverse_Declarations_Or_Statements
2420 begin
2421 -- Process single prefixed node
2423 if Present (P) then
2424 Traverse_One (P);
2425 end if;
2427 -- Loop through statements or declarations
2429 N := First (L);
2430 while Present (N) loop
2432 -- Note: For separate bodies, we see the tree after Par.Labl has
2433 -- introduced implicit labels, so we need to ignore those nodes.
2435 if Nkind (N) /= N_Implicit_Label_Declaration then
2436 Traverse_One (N);
2437 end if;
2439 Next (N);
2440 end loop;
2442 -- End sequence of statements and flush deferred decisions
2444 if Present (P) or else Is_Non_Empty_List (L) then
2445 Set_Statement_Entry;
2446 end if;
2448 return Current_Dominant;
2449 end Traverse_Declarations_Or_Statements;
2451 ------------------------------------------
2452 -- Traverse_Generic_Package_Declaration --
2453 ------------------------------------------
2455 procedure Traverse_Generic_Package_Declaration (N : Node_Id) is
2456 begin
2457 Process_Decisions (Generic_Formal_Declarations (N), 'X', No_Location);
2458 Traverse_Package_Declaration (N);
2459 end Traverse_Generic_Package_Declaration;
2461 -----------------------------------------
2462 -- Traverse_Handled_Statement_Sequence --
2463 -----------------------------------------
2465 procedure Traverse_Handled_Statement_Sequence
2466 (N : Node_Id;
2467 D : Dominant_Info := No_Dominant)
2469 Handler : Node_Id;
2471 begin
2472 -- For package bodies without a statement part, the parser adds an empty
2473 -- one, to normalize the representation. The null statement therein,
2474 -- which does not come from source, does not get a SCO.
2476 if Present (N) and then Comes_From_Source (N) then
2477 Traverse_Declarations_Or_Statements (Statements (N), D);
2479 if Present (Exception_Handlers (N)) then
2480 Handler := First_Non_Pragma (Exception_Handlers (N));
2481 while Present (Handler) loop
2482 Traverse_Declarations_Or_Statements
2483 (L => Statements (Handler),
2484 D => ('E', Handler));
2485 Next (Handler);
2486 end loop;
2487 end if;
2488 end if;
2489 end Traverse_Handled_Statement_Sequence;
2491 ---------------------------
2492 -- Traverse_Package_Body --
2493 ---------------------------
2495 procedure Traverse_Package_Body (N : Node_Id) is
2496 Dom : Dominant_Info;
2497 begin
2498 -- The first statement in the handled sequence of statements is
2499 -- dominated by the elaboration of the last declaration.
2501 Dom := Traverse_Declarations_Or_Statements (Declarations (N));
2503 Traverse_Handled_Statement_Sequence
2504 (Handled_Statement_Sequence (N), Dom);
2505 end Traverse_Package_Body;
2507 ----------------------------------
2508 -- Traverse_Package_Declaration --
2509 ----------------------------------
2511 procedure Traverse_Package_Declaration
2512 (N : Node_Id;
2513 D : Dominant_Info := No_Dominant)
2515 Spec : constant Node_Id := Specification (N);
2516 Dom : Dominant_Info;
2518 begin
2519 Dom :=
2520 Traverse_Declarations_Or_Statements (Visible_Declarations (Spec), D);
2522 -- First private declaration is dominated by last visible declaration
2524 Traverse_Declarations_Or_Statements (Private_Declarations (Spec), Dom);
2525 end Traverse_Package_Declaration;
2527 -------------------------------------------
2528 -- Traverse_Protected_Or_Task_Definition --
2529 -------------------------------------------
2531 procedure Traverse_Protected_Or_Task_Definition (N : Node_Id) is
2532 Dom_Info : Dominant_Info := ('S', N);
2533 -- The first declaration is dominated by the protected or task [type]
2534 -- declaration.
2536 Sync_Def : Node_Id;
2537 -- N's protected or task definition
2539 Priv_Decl : List_Id;
2540 Vis_Decl : List_Id;
2541 -- Sync_Def's Visible_Declarations and Private_Declarations
2543 begin
2544 case Nkind (N) is
2545 when N_Protected_Type_Declaration
2546 | N_Single_Protected_Declaration
2548 Sync_Def := Protected_Definition (N);
2550 when N_Single_Task_Declaration
2551 | N_Task_Type_Declaration
2553 Sync_Def := Task_Definition (N);
2555 when others =>
2556 raise Program_Error;
2557 end case;
2559 -- Sync_Def may be Empty at least for empty Task_Type_Declarations.
2560 -- Querying Visible or Private_Declarations is invalid in this case.
2562 if Present (Sync_Def) then
2563 Vis_Decl := Visible_Declarations (Sync_Def);
2564 Priv_Decl := Private_Declarations (Sync_Def);
2565 else
2566 Vis_Decl := No_List;
2567 Priv_Decl := No_List;
2568 end if;
2570 Dom_Info := Traverse_Declarations_Or_Statements
2571 (L => Vis_Decl,
2572 D => Dom_Info);
2574 -- If visible declarations are present, the first private declaration
2575 -- is dominated by the last visible declaration.
2577 Traverse_Declarations_Or_Statements
2578 (L => Priv_Decl,
2579 D => Dom_Info);
2580 end Traverse_Protected_Or_Task_Definition;
2582 --------------------------------------
2583 -- Traverse_Subprogram_Or_Task_Body --
2584 --------------------------------------
2586 procedure Traverse_Subprogram_Or_Task_Body
2587 (N : Node_Id;
2588 D : Dominant_Info := No_Dominant)
2590 Decls : constant List_Id := Declarations (N);
2591 Dom_Info : Dominant_Info := D;
2593 begin
2594 -- If declarations are present, the first statement is dominated by the
2595 -- last declaration.
2597 Dom_Info := Traverse_Declarations_Or_Statements
2598 (L => Decls, D => Dom_Info);
2600 Traverse_Handled_Statement_Sequence
2601 (N => Handled_Statement_Sequence (N),
2602 D => Dom_Info);
2603 end Traverse_Subprogram_Or_Task_Body;
2605 -------------------------
2606 -- SCO_Record_Filtered --
2607 -------------------------
2609 procedure SCO_Record_Filtered is
2610 type Decision is record
2611 Kind : Character;
2612 -- Type of the SCO decision (see comments for SCO_Table_Entry.C1)
2614 Sloc : Source_Location;
2616 Top : Nat;
2617 -- Index in the SCO_Raw_Table for the root operator/condition for the
2618 -- expression that controls the decision.
2619 end record;
2620 -- Decision descriptor: used to gather information about a candidate
2621 -- SCO decision.
2623 package Pending_Decisions is new Table.Table
2624 (Table_Component_Type => Decision,
2625 Table_Index_Type => Nat,
2626 Table_Low_Bound => 1,
2627 Table_Initial => 1000,
2628 Table_Increment => 200,
2629 Table_Name => "Filter_Pending_Decisions");
2630 -- Table used to hold decisions to process during the collection pass
2632 procedure Add_Expression_Tree (Idx : in out Nat);
2633 -- Add SCO raw table entries for the decision controlling expression
2634 -- tree starting at Idx to the filtered SCO table.
2636 procedure Collect_Decisions
2637 (D : Decision;
2638 Next : out Nat);
2639 -- Collect decisions to add to the filtered SCO table starting at the
2640 -- D decision (including it and its nested operators/conditions). Set
2641 -- Next to the first node index passed the whole decision.
2643 procedure Compute_Range
2644 (Idx : in out Nat;
2645 From : out Source_Location;
2646 To : out Source_Location);
2647 -- Compute the source location range for the expression tree starting at
2648 -- Idx in the SCO raw table. Store its bounds in From and To.
2650 function Is_Decision (Idx : Nat) return Boolean;
2651 -- Return if the expression tree starting at Idx has adjacent nested
2652 -- nodes that make a decision.
2654 procedure Process_Pending_Decisions
2655 (Original_Decision : SCO_Table_Entry);
2656 -- Complete the filtered SCO table using collected decisions. Output
2657 -- decisions inherit the pragma information from the original decision.
2659 procedure Search_Nested_Decisions (Idx : in out Nat);
2660 -- Collect decisions to add to the filtered SCO table starting at the
2661 -- node at Idx in the SCO raw table. This node must not be part of an
2662 -- already-processed decision. Set Idx to the first node index passed
2663 -- the whole expression tree.
2665 procedure Skip_Decision
2666 (Idx : in out Nat;
2667 Process_Nested_Decisions : Boolean);
2668 -- Skip all the nodes that belong to the decision starting at Idx. If
2669 -- Process_Nested_Decision, call Search_Nested_Decisions on the first
2670 -- nested nodes that do not belong to the decision. Set Idx to the first
2671 -- node index passed the whole expression tree.
2673 -------------------------
2674 -- Add_Expression_Tree --
2675 -------------------------
2677 procedure Add_Expression_Tree (Idx : in out Nat) is
2678 Node_Idx : constant Nat := Idx;
2679 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Node_Idx);
2680 From : Source_Location;
2681 To : Source_Location;
2683 begin
2684 case T.C1 is
2685 when ' ' =>
2687 -- This is a single condition. Add an entry for it and move on
2689 SCO_Table.Append (T);
2690 Idx := Idx + 1;
2692 when '!' =>
2694 -- This is a NOT operator: add an entry for it and browse its
2695 -- only child.
2697 SCO_Table.Append (T);
2698 Idx := Idx + 1;
2699 Add_Expression_Tree (Idx);
2701 when others =>
2703 -- This must be an AND/OR/AND THEN/OR ELSE operator
2705 if T.C2 = '?' then
2707 -- This is not a short circuit operator: consider this one
2708 -- and all its children as a single condition.
2710 Compute_Range (Idx, From, To);
2711 SCO_Table.Append
2712 ((From => From,
2713 To => To,
2714 C1 => ' ',
2715 C2 => 'c',
2716 Last => False,
2717 Pragma_Sloc => No_Location,
2718 Pragma_Aspect_Name => No_Name));
2720 else
2721 -- This is a real short circuit operator: add an entry for
2722 -- it and browse its children.
2724 SCO_Table.Append (T);
2725 Idx := Idx + 1;
2726 Add_Expression_Tree (Idx);
2727 Add_Expression_Tree (Idx);
2728 end if;
2729 end case;
2730 end Add_Expression_Tree;
2732 -----------------------
2733 -- Collect_Decisions --
2734 -----------------------
2736 procedure Collect_Decisions
2737 (D : Decision;
2738 Next : out Nat)
2740 Idx : Nat := D.Top;
2742 begin
2743 if D.Kind /= 'X' or else Is_Decision (D.Top) then
2744 Pending_Decisions.Append (D);
2745 end if;
2747 Skip_Decision (Idx, True);
2748 Next := Idx;
2749 end Collect_Decisions;
2751 -------------------
2752 -- Compute_Range --
2753 -------------------
2755 procedure Compute_Range
2756 (Idx : in out Nat;
2757 From : out Source_Location;
2758 To : out Source_Location)
2760 Sloc_F : Source_Location := No_Source_Location;
2761 Sloc_T : Source_Location := No_Source_Location;
2763 procedure Process_One;
2764 -- Process one node of the tree, and recurse over children. Update
2765 -- Idx during the traversal.
2767 -----------------
2768 -- Process_One --
2769 -----------------
2771 procedure Process_One is
2772 begin
2773 if Sloc_F = No_Source_Location
2774 or else
2775 SCO_Raw_Table.Table (Idx).From < Sloc_F
2776 then
2777 Sloc_F := SCO_Raw_Table.Table (Idx).From;
2778 end if;
2780 if Sloc_T = No_Source_Location
2781 or else
2782 Sloc_T < SCO_Raw_Table.Table (Idx).To
2783 then
2784 Sloc_T := SCO_Raw_Table.Table (Idx).To;
2785 end if;
2787 if SCO_Raw_Table.Table (Idx).C1 = ' ' then
2789 -- This is a condition: nothing special to do
2791 Idx := Idx + 1;
2793 elsif SCO_Raw_Table.Table (Idx).C1 = '!' then
2795 -- The "not" operator has only one operand
2797 Idx := Idx + 1;
2798 Process_One;
2800 else
2801 -- This is an AND THEN or OR ELSE logical operator: follow the
2802 -- left, then the right operands.
2804 Idx := Idx + 1;
2806 Process_One;
2807 Process_One;
2808 end if;
2809 end Process_One;
2811 -- Start of processing for Compute_Range
2813 begin
2814 Process_One;
2815 From := Sloc_F;
2816 To := Sloc_T;
2817 end Compute_Range;
2819 -----------------
2820 -- Is_Decision --
2821 -----------------
2823 function Is_Decision (Idx : Nat) return Boolean is
2824 Index : Nat := Idx;
2826 begin
2827 loop
2828 declare
2829 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
2831 begin
2832 case T.C1 is
2833 when ' ' =>
2834 return False;
2836 when '!' =>
2838 -- This is a decision iff the only operand of the NOT
2839 -- operator could be a standalone decision.
2841 Index := Idx + 1;
2843 when others =>
2845 -- This node is a logical operator (and thus could be a
2846 -- standalone decision) iff it is a short circuit
2847 -- operator.
2849 return T.C2 /= '?';
2850 end case;
2851 end;
2852 end loop;
2853 end Is_Decision;
2855 -------------------------------
2856 -- Process_Pending_Decisions --
2857 -------------------------------
2859 procedure Process_Pending_Decisions
2860 (Original_Decision : SCO_Table_Entry)
2862 begin
2863 for Index in 1 .. Pending_Decisions.Last loop
2864 declare
2865 D : Decision renames Pending_Decisions.Table (Index);
2866 Idx : Nat := D.Top;
2868 begin
2869 -- Add a SCO table entry for the decision itself
2871 pragma Assert (D.Kind /= ' ');
2873 SCO_Table.Append
2874 ((To => No_Source_Location,
2875 From => D.Sloc,
2876 C1 => D.Kind,
2877 C2 => ' ',
2878 Last => False,
2879 Pragma_Sloc => Original_Decision.Pragma_Sloc,
2880 Pragma_Aspect_Name =>
2881 Original_Decision.Pragma_Aspect_Name));
2883 -- Then add ones for its nested operators/operands. Do not
2884 -- forget to tag its *last* entry as such.
2886 Add_Expression_Tree (Idx);
2887 SCO_Table.Table (SCO_Table.Last).Last := True;
2888 end;
2889 end loop;
2891 -- Clear the pending decisions list
2892 Pending_Decisions.Set_Last (0);
2893 end Process_Pending_Decisions;
2895 -----------------------------
2896 -- Search_Nested_Decisions --
2897 -----------------------------
2899 procedure Search_Nested_Decisions (Idx : in out Nat) is
2900 begin
2901 loop
2902 declare
2903 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
2905 begin
2906 case T.C1 is
2907 when ' ' =>
2908 Idx := Idx + 1;
2909 exit;
2911 when '!' =>
2912 Collect_Decisions
2913 ((Kind => 'X',
2914 Sloc => T.From,
2915 Top => Idx),
2916 Idx);
2917 exit;
2919 when others =>
2920 if T.C2 = '?' then
2922 -- This is not a logical operator: start looking for
2923 -- nested decisions from here. Recurse over the left
2924 -- child and let the loop take care of the right one.
2926 Idx := Idx + 1;
2927 Search_Nested_Decisions (Idx);
2929 else
2930 -- We found a nested decision
2932 Collect_Decisions
2933 ((Kind => 'X',
2934 Sloc => T.From,
2935 Top => Idx),
2936 Idx);
2937 exit;
2938 end if;
2939 end case;
2940 end;
2941 end loop;
2942 end Search_Nested_Decisions;
2944 -------------------
2945 -- Skip_Decision --
2946 -------------------
2948 procedure Skip_Decision
2949 (Idx : in out Nat;
2950 Process_Nested_Decisions : Boolean)
2952 begin
2953 loop
2954 declare
2955 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
2957 begin
2958 Idx := Idx + 1;
2960 case T.C1 is
2961 when ' ' =>
2962 exit;
2964 when '!' =>
2966 -- This NOT operator belongs to the outside decision:
2967 -- just skip it.
2969 null;
2971 when others =>
2972 if T.C2 = '?' and then Process_Nested_Decisions then
2974 -- This is not a logical operator: start looking for
2975 -- nested decisions from here. Recurse over the left
2976 -- child and let the loop take care of the right one.
2978 Search_Nested_Decisions (Idx);
2980 else
2981 -- This is a logical operator, so it belongs to the
2982 -- outside decision: skip its left child, then let the
2983 -- loop take care of the right one.
2985 Skip_Decision (Idx, Process_Nested_Decisions);
2986 end if;
2987 end case;
2988 end;
2989 end loop;
2990 end Skip_Decision;
2992 -- Start of processing for SCO_Record_Filtered
2994 begin
2995 -- Filtering must happen only once: do nothing if it this pass was
2996 -- already run.
2998 if SCO_Generation_State = Filtered then
2999 return;
3000 else
3001 pragma Assert (SCO_Generation_State = Raw);
3002 SCO_Generation_State := Filtered;
3003 end if;
3005 -- Loop through all SCO entries under SCO units
3007 for Unit_Idx in 1 .. SCO_Unit_Table.Last loop
3008 declare
3009 Unit : SCO_Unit_Table_Entry
3010 renames SCO_Unit_Table.Table (Unit_Idx);
3012 Idx : Nat := Unit.From;
3013 -- Index of the current SCO raw table entry
3015 New_From : constant Nat := SCO_Table.Last + 1;
3016 -- After copying SCO enties of interest to the final table, we
3017 -- will have to change the From/To indexes this unit targets.
3018 -- This constant keeps track of the new From index.
3020 begin
3021 while Idx <= Unit.To loop
3022 declare
3023 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
3025 begin
3026 case T.C1 is
3028 -- Decision (of any kind, including pragmas and aspects)
3030 when 'E' | 'G' | 'I' | 'W' | 'X' | 'P' | 'a' | 'A' =>
3031 if SCO_Pragma_Disabled (T.Pragma_Sloc) then
3033 -- Skip SCO entries for decisions in disabled
3034 -- constructs (pragmas or aspects).
3036 Idx := Idx + 1;
3037 Skip_Decision (Idx, False);
3039 else
3040 Collect_Decisions
3041 ((Kind => T.C1,
3042 Sloc => T.From,
3043 Top => Idx + 1),
3044 Idx);
3045 Process_Pending_Decisions (T);
3046 end if;
3048 -- There is no translation/filtering to do for other kind
3049 -- of SCO items (statements, dominance markers, etc.).
3051 when '|' | '&' | '!' | ' ' =>
3053 -- SCO logical operators and conditions cannot exist
3054 -- on their own: they must be inside a decision (such
3055 -- entries must have been skipped by
3056 -- Collect_Decisions).
3058 raise Program_Error;
3060 when others =>
3061 SCO_Table.Append (T);
3062 Idx := Idx + 1;
3063 end case;
3064 end;
3065 end loop;
3067 -- Now, update the SCO entry indexes in the unit entry
3069 Unit.From := New_From;
3070 Unit.To := SCO_Table.Last;
3071 end;
3072 end loop;
3074 -- Then clear the raw table to free bytes
3076 SCO_Raw_Table.Free;
3077 end SCO_Record_Filtered;
3079 end Par_SCO;