Turn FUNCTION_ARG_PADDING into a target hook
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob9bf32dbe9b980d82f3d2b7b70e7dfdcd598efb1b
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
33 /* Definitions for the object file format. These are set at
34 compile-time. */
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
54 /* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56 #define DOT_SYMBOLS 1
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #else
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
78 #endif
80 #ifdef HAVE_AS_DFP
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82 #else
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84 #endif
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
88 #else
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90 #endif
92 #ifdef HAVE_AS_POWER8
93 #define ASM_CPU_POWER8_SPEC "-mpower8"
94 #else
95 #define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
96 #endif
98 #ifdef HAVE_AS_POWER9
99 #define ASM_CPU_POWER9_SPEC "-mpower9"
100 #else
101 #define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
102 #endif
104 #ifdef HAVE_AS_DCI
105 #define ASM_CPU_476_SPEC "-m476"
106 #else
107 #define ASM_CPU_476_SPEC "-mpower4"
108 #endif
110 /* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
114 #define ASM_CPU_SPEC \
115 "%{!mcpu*: \
116 %{mpowerpc64*: -mppc64} \
117 %{!mpowerpc64*: %(asm_default)}} \
118 %{mcpu=native: %(asm_cpu_native)} \
119 %{mcpu=cell: -mcell} \
120 %{mcpu=power3: -mppc64} \
121 %{mcpu=power4: -mpower4} \
122 %{mcpu=power5: %(asm_cpu_power5)} \
123 %{mcpu=power5+: %(asm_cpu_power5)} \
124 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
126 %{mcpu=power7: %(asm_cpu_power7)} \
127 %{mcpu=power8: %(asm_cpu_power8)} \
128 %{mcpu=power9: %(asm_cpu_power9)} \
129 %{mcpu=a2: -ma2} \
130 %{mcpu=powerpc: -mppc} \
131 %{mcpu=powerpc64le: %(asm_cpu_power8)} \
132 %{mcpu=rs64a: -mppc64} \
133 %{mcpu=401: -mppc} \
134 %{mcpu=403: -m403} \
135 %{mcpu=405: -m405} \
136 %{mcpu=405fp: -m405} \
137 %{mcpu=440: -m440} \
138 %{mcpu=440fp: -m440} \
139 %{mcpu=464: -m440} \
140 %{mcpu=464fp: -m440} \
141 %{mcpu=476: %(asm_cpu_476)} \
142 %{mcpu=476fp: %(asm_cpu_476)} \
143 %{mcpu=505: -mppc} \
144 %{mcpu=601: -m601} \
145 %{mcpu=602: -mppc} \
146 %{mcpu=603: -mppc} \
147 %{mcpu=603e: -mppc} \
148 %{mcpu=ec603e: -mppc} \
149 %{mcpu=604: -mppc} \
150 %{mcpu=604e: -mppc} \
151 %{mcpu=620: -mppc64} \
152 %{mcpu=630: -mppc64} \
153 %{mcpu=740: -mppc} \
154 %{mcpu=750: -mppc} \
155 %{mcpu=G3: -mppc} \
156 %{mcpu=7400: -mppc -maltivec} \
157 %{mcpu=7450: -mppc -maltivec} \
158 %{mcpu=G4: -mppc -maltivec} \
159 %{mcpu=801: -mppc} \
160 %{mcpu=821: -mppc} \
161 %{mcpu=823: -mppc} \
162 %{mcpu=860: -mppc} \
163 %{mcpu=970: -mpower4 -maltivec} \
164 %{mcpu=G5: -mpower4 -maltivec} \
165 %{mcpu=8540: -me500} \
166 %{mcpu=8548: -me500} \
167 %{mcpu=e300c2: -me300} \
168 %{mcpu=e300c3: -me300} \
169 %{mcpu=e500mc: -me500mc} \
170 %{mcpu=e500mc64: -me500mc64} \
171 %{mcpu=e5500: -me5500} \
172 %{mcpu=e6500: -me6500} \
173 %{maltivec: -maltivec} \
174 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
175 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
176 -many"
178 #define CPP_DEFAULT_SPEC ""
180 #define ASM_DEFAULT_SPEC ""
182 /* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
186 Each subgrouping contains a string constant, that defines the
187 specification name, and a string constant that used by the GCC driver
188 program.
190 Do not define this macro if it does not need to do anything. */
192 #define SUBTARGET_EXTRA_SPECS
194 #define EXTRA_SPECS \
195 { "cpp_default", CPP_DEFAULT_SPEC }, \
196 { "asm_cpu", ASM_CPU_SPEC }, \
197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
198 { "asm_default", ASM_DEFAULT_SPEC }, \
199 { "cc1_cpu", CC1_CPU_SPEC }, \
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
206 SUBTARGET_EXTRA_SPECS
208 /* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-rs6000.c. */
211 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212 /* In driver-rs6000.c. */
213 extern const char *host_detect_local_cpu (int argc, const char **argv);
214 #define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216 #define HAVE_LOCAL_CPU_DETECT
217 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
219 #else
220 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
221 #endif
223 #ifndef CC1_CPU_SPEC
224 #ifdef HAVE_LOCAL_CPU_DETECT
225 #define CC1_CPU_SPEC \
226 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
228 #else
229 #define CC1_CPU_SPEC ""
230 #endif
231 #endif
233 /* Architecture type. */
235 /* Define TARGET_MFCRF if the target assembler does not support the
236 optional field operand for mfcr. */
238 #ifndef HAVE_AS_MFCRF
239 #undef TARGET_MFCRF
240 #define TARGET_MFCRF 0
241 #endif
243 /* Define TARGET_POPCNTB if the target assembler does not support the
244 popcount byte instruction. */
246 #ifndef HAVE_AS_POPCNTB
247 #undef TARGET_POPCNTB
248 #define TARGET_POPCNTB 0
249 #endif
251 /* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
254 #ifndef HAVE_AS_FPRND
255 #undef TARGET_FPRND
256 #define TARGET_FPRND 0
257 #endif
259 /* Define TARGET_CMPB if the target assembler does not support the
260 cmpb instruction. */
262 #ifndef HAVE_AS_CMPB
263 #undef TARGET_CMPB
264 #define TARGET_CMPB 0
265 #endif
267 /* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
270 #ifndef HAVE_AS_MFPGPR
271 #undef TARGET_MFPGPR
272 #define TARGET_MFPGPR 0
273 #endif
275 /* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
277 #ifndef HAVE_AS_DFP
278 #undef TARGET_DFP
279 #define TARGET_DFP 0
280 #endif
282 /* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
285 #ifndef HAVE_AS_POPCNTD
286 #undef TARGET_POPCNTD
287 #define TARGET_POPCNTD 0
288 #endif
290 /* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
292 instructions. */
294 #ifndef HAVE_AS_POWER8
295 #undef TARGET_DIRECT_MOVE
296 #undef TARGET_CRYPTO
297 #undef TARGET_HTM
298 #undef TARGET_P8_VECTOR
299 #define TARGET_DIRECT_MOVE 0
300 #define TARGET_CRYPTO 0
301 #define TARGET_HTM 0
302 #define TARGET_P8_VECTOR 0
303 #endif
305 /* Define the ISA 3.0 flags as 0 if the target assembler does not support
306 Power9 instructions. Allow -mpower9-fusion, since it does not add new
307 instructions. Allow -misel, since it predates ISA 3.0 and does
308 not require any Power9 features. */
310 #ifndef HAVE_AS_POWER9
311 #undef TARGET_FLOAT128_HW
312 #undef TARGET_MODULO
313 #undef TARGET_P9_VECTOR
314 #undef TARGET_P9_MINMAX
315 #undef TARGET_P9_MISC
316 #define TARGET_FLOAT128_HW 0
317 #define TARGET_MODULO 0
318 #define TARGET_P9_VECTOR 0
319 #define TARGET_P9_MINMAX 0
320 #define TARGET_P9_MISC 0
321 #endif
323 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
324 not, generate the lwsync code as an integer constant. */
325 #ifdef HAVE_AS_LWSYNC
326 #define TARGET_LWSYNC_INSTRUCTION 1
327 #else
328 #define TARGET_LWSYNC_INSTRUCTION 0
329 #endif
331 /* Define TARGET_TLS_MARKERS if the target assembler does not support
332 arg markers for __tls_get_addr calls. */
333 #ifndef HAVE_AS_TLS_MARKERS
334 #undef TARGET_TLS_MARKERS
335 #define TARGET_TLS_MARKERS 0
336 #else
337 #define TARGET_TLS_MARKERS tls_markers
338 #endif
340 #ifndef TARGET_SECURE_PLT
341 #define TARGET_SECURE_PLT 0
342 #endif
344 #ifndef TARGET_CMODEL
345 #define TARGET_CMODEL CMODEL_SMALL
346 #endif
348 #define TARGET_32BIT (! TARGET_64BIT)
350 #ifndef HAVE_AS_TLS
351 #define HAVE_AS_TLS 0
352 #endif
354 #ifndef TARGET_LINK_STACK
355 #define TARGET_LINK_STACK 0
356 #endif
358 #ifndef SET_TARGET_LINK_STACK
359 #define SET_TARGET_LINK_STACK(X) do { } while (0)
360 #endif
362 #ifndef TARGET_FLOAT128_ENABLE_TYPE
363 #define TARGET_FLOAT128_ENABLE_TYPE 0
364 #endif
366 /* Return 1 for a symbol ref for a thread-local storage symbol. */
367 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
368 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
370 #ifdef IN_LIBGCC2
371 /* For libgcc2 we make sure this is a compile time constant */
372 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
373 #undef TARGET_POWERPC64
374 #define TARGET_POWERPC64 1
375 #else
376 #undef TARGET_POWERPC64
377 #define TARGET_POWERPC64 0
378 #endif
379 #else
380 /* The option machinery will define this. */
381 #endif
383 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
385 /* FPU operations supported.
386 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
387 also test TARGET_HARD_FLOAT. */
388 #define TARGET_SINGLE_FLOAT 1
389 #define TARGET_DOUBLE_FLOAT 1
390 #define TARGET_SINGLE_FPU 0
391 #define TARGET_SIMPLE_FPU 0
392 #define TARGET_XILINX_FPU 0
394 /* Recast the processor type to the cpu attribute. */
395 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
397 /* Define generic processor types based upon current deployment. */
398 #define PROCESSOR_COMMON PROCESSOR_PPC601
399 #define PROCESSOR_POWERPC PROCESSOR_PPC604
400 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
402 /* Define the default processor. This is overridden by other tm.h files. */
403 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
404 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
406 /* Specify the dialect of assembler to use. Only new mnemonics are supported
407 starting with GCC 4.8, i.e. just one dialect, but for backwards
408 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
409 defined. */
410 #define ASSEMBLER_DIALECT 1
412 /* Debug support */
413 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
414 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
415 #define MASK_DEBUG_REG 0x04 /* debug register handling */
416 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
417 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
418 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
419 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
420 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
421 | MASK_DEBUG_ARG \
422 | MASK_DEBUG_REG \
423 | MASK_DEBUG_ADDR \
424 | MASK_DEBUG_COST \
425 | MASK_DEBUG_TARGET \
426 | MASK_DEBUG_BUILTIN)
428 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
429 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
430 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
431 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
432 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
433 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
434 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
436 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
437 long double format that uses a pair of doubles, or IEEE 128-bit floating
438 point. KFmode was added as a way to represent IEEE 128-bit floating point,
439 even if the default for long double is the IBM long double format.
440 Similarly IFmode is the IBM long double format even if the default is IEEE
441 128-bit. Don't allow IFmode if -msoft-float. */
442 #define FLOAT128_IEEE_P(MODE) \
443 ((TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
444 || ((MODE) == KFmode) || ((MODE) == KCmode))
446 #define FLOAT128_IBM_P(MODE) \
447 ((!TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
448 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
450 /* Helper macros to say whether a 128-bit floating point type can go in a
451 single vector register, or whether it needs paired scalar values. */
452 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
454 #define FLOAT128_2REG_P(MODE) \
455 (FLOAT128_IBM_P (MODE) \
456 || ((MODE) == TDmode) \
457 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
459 /* Return true for floating point that does not use a vector register. */
460 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
461 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
463 /* Describe the vector unit used for arithmetic operations. */
464 extern enum rs6000_vector rs6000_vector_unit[];
466 #define VECTOR_UNIT_NONE_P(MODE) \
467 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
469 #define VECTOR_UNIT_VSX_P(MODE) \
470 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
472 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
473 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
475 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
476 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
478 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
479 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
480 (int)VECTOR_VSX, \
481 (int)VECTOR_P8_VECTOR))
483 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
484 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
485 compatible, so allow it as well, rather than changing all of the uses of the
486 macro. */
487 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
488 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
489 (int)VECTOR_ALTIVEC, \
490 (int)VECTOR_P8_VECTOR))
492 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
493 same unit as the vector unit we are using, but we may want to migrate to
494 using VSX style loads even for types handled by altivec. */
495 extern enum rs6000_vector rs6000_vector_mem[];
497 #define VECTOR_MEM_NONE_P(MODE) \
498 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
500 #define VECTOR_MEM_VSX_P(MODE) \
501 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
503 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
504 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
506 #define VECTOR_MEM_ALTIVEC_P(MODE) \
507 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
509 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
510 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
511 (int)VECTOR_VSX, \
512 (int)VECTOR_P8_VECTOR))
514 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
515 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
516 (int)VECTOR_ALTIVEC, \
517 (int)VECTOR_P8_VECTOR))
519 /* Return the alignment of a given vector type, which is set based on the
520 vector unit use. VSX for instance can load 32 or 64 bit aligned words
521 without problems, while Altivec requires 128-bit aligned vectors. */
522 extern int rs6000_vector_align[];
524 #define VECTOR_ALIGN(MODE) \
525 ((rs6000_vector_align[(MODE)] != 0) \
526 ? rs6000_vector_align[(MODE)] \
527 : (int)GET_MODE_BITSIZE ((MODE)))
529 /* Determine the element order to use for vector instructions. By
530 default we use big-endian element order when targeting big-endian,
531 and little-endian element order when targeting little-endian. For
532 programs being ported from BE Power to LE Power, it can sometimes
533 be useful to use big-endian element order when targeting little-endian.
534 This is set via -maltivec=be, for example. */
535 #define VECTOR_ELT_ORDER_BIG \
536 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
538 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
539 with scalar instructions. */
540 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
542 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
543 with the ISA 3.0 MFVSRLD instructions. */
544 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
546 /* Alignment options for fields in structures for sub-targets following
547 AIX-like ABI.
548 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
549 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
551 Override the macro definitions when compiling libobjc to avoid undefined
552 reference to rs6000_alignment_flags due to library's use of GCC alignment
553 macros which use the macros below. */
555 #ifndef IN_TARGET_LIBS
556 #define MASK_ALIGN_POWER 0x00000000
557 #define MASK_ALIGN_NATURAL 0x00000001
558 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
559 #else
560 #define TARGET_ALIGN_NATURAL 0
561 #endif
563 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
564 #define TARGET_IEEEQUAD rs6000_ieeequad
565 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
566 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
568 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
570 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
571 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
572 XILINX. */
573 #define TARGET_FCFID (TARGET_POWERPC64 \
574 || TARGET_PPC_GPOPT /* 970/power4 */ \
575 || TARGET_POPCNTB /* ISA 2.02 */ \
576 || TARGET_CMPB /* ISA 2.05 */ \
577 || TARGET_POPCNTD /* ISA 2.06 */ \
578 || TARGET_XILINX_FPU)
580 #define TARGET_FCTIDZ TARGET_FCFID
581 #define TARGET_STFIWX TARGET_PPC_GFXOPT
582 #define TARGET_LFIWAX TARGET_CMPB
583 #define TARGET_LFIWZX TARGET_POPCNTD
584 #define TARGET_FCFIDS TARGET_POPCNTD
585 #define TARGET_FCFIDU TARGET_POPCNTD
586 #define TARGET_FCFIDUS TARGET_POPCNTD
587 #define TARGET_FCTIDUZ TARGET_POPCNTD
588 #define TARGET_FCTIWUZ TARGET_POPCNTD
589 #define TARGET_CTZ TARGET_MODULO
590 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
591 #define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
593 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
594 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
595 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
596 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
597 && TARGET_POWERPC64)
598 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
599 && TARGET_POWERPC64)
601 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
602 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
603 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
605 /* This wants to be set for p8 and newer. On p7, overlapping unaligned
606 loads are slow. */
607 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
609 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
610 in power7, so conditionalize them on p8 features. TImode syncs need quad
611 memory support. */
612 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
613 || TARGET_QUAD_MEMORY_ATOMIC \
614 || TARGET_DIRECT_MOVE)
616 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
618 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
619 to allocate the SDmode stack slot to get the value into the proper location
620 in the register. */
621 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
623 /* ISA 3.0 has new min/max functions that don't need fast math that are being
624 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
625 answers if the arguments are not in the normal range. */
626 #define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
627 && (TARGET_P9_MINMAX || !flag_trapping_math))
629 #define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
630 && (TARGET_P9_MINMAX || !flag_trapping_math))
632 /* In switching from using target_flags to using rs6000_isa_flags, the options
633 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
634 OPTION_MASK_<xxx> back into MASK_<xxx>. */
635 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
636 #define MASK_CMPB OPTION_MASK_CMPB
637 #define MASK_CRYPTO OPTION_MASK_CRYPTO
638 #define MASK_DFP OPTION_MASK_DFP
639 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
640 #define MASK_DLMZB OPTION_MASK_DLMZB
641 #define MASK_EABI OPTION_MASK_EABI
642 #define MASK_FLOAT128_TYPE OPTION_MASK_FLOAT128_TYPE
643 #define MASK_FPRND OPTION_MASK_FPRND
644 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
645 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
646 #define MASK_HTM OPTION_MASK_HTM
647 #define MASK_ISEL OPTION_MASK_ISEL
648 #define MASK_MFCRF OPTION_MASK_MFCRF
649 #define MASK_MFPGPR OPTION_MASK_MFPGPR
650 #define MASK_MULHW OPTION_MASK_MULHW
651 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
652 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
653 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
654 #define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
655 #define MASK_P9_MISC OPTION_MASK_P9_MISC
656 #define MASK_POPCNTB OPTION_MASK_POPCNTB
657 #define MASK_POPCNTD OPTION_MASK_POPCNTD
658 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
659 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
660 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
661 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
662 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
663 #define MASK_STRING OPTION_MASK_STRING
664 #define MASK_UPDATE OPTION_MASK_UPDATE
665 #define MASK_VSX OPTION_MASK_VSX
667 #ifndef IN_LIBGCC2
668 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
669 #endif
671 #ifdef TARGET_64BIT
672 #define MASK_64BIT OPTION_MASK_64BIT
673 #endif
675 #ifdef TARGET_LITTLE_ENDIAN
676 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
677 #endif
679 #ifdef TARGET_REGNAMES
680 #define MASK_REGNAMES OPTION_MASK_REGNAMES
681 #endif
683 #ifdef TARGET_PROTOTYPE
684 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
685 #endif
687 #ifdef TARGET_MODULO
688 #define RS6000_BTM_MODULO OPTION_MASK_MODULO
689 #endif
692 /* For power systems, we want to enable Altivec and VSX builtins even if the
693 user did not use -maltivec or -mvsx to allow the builtins to be used inside
694 of #pragma GCC target or the target attribute to change the code level for a
695 given system. The Paired builtins are only enabled if you configure the
696 compiler for those builtins, and those machines don't support altivec or
697 VSX. */
699 #define TARGET_EXTRA_BUILTINS (!TARGET_PAIRED_FLOAT \
700 && ((TARGET_POWERPC64 \
701 || TARGET_PPC_GPOPT /* 970/power4 */ \
702 || TARGET_POPCNTB /* ISA 2.02 */ \
703 || TARGET_CMPB /* ISA 2.05 */ \
704 || TARGET_POPCNTD /* ISA 2.06 */ \
705 || TARGET_ALTIVEC \
706 || TARGET_VSX \
707 || TARGET_HARD_FLOAT)))
709 /* E500 cores only support plain "sync", not lwsync. */
710 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
711 || rs6000_cpu == PROCESSOR_PPC8548)
714 /* Whether SF/DF operations are supported by the normal floating point unit
715 (or the vector/scalar unit). */
716 #define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT)
717 #define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
719 /* Whether SF/DF operations are supported by any hardware. */
720 #define TARGET_SF_INSN TARGET_SF_FPR
721 #define TARGET_DF_INSN TARGET_DF_FPR
723 /* Which machine supports the various reciprocal estimate instructions. */
724 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
725 && TARGET_SINGLE_FLOAT)
727 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
728 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
730 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
731 && TARGET_PPC_GFXOPT && TARGET_SINGLE_FLOAT)
733 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
734 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
736 /* Conditions to allow TOC fusion for loading/storing integers. */
737 #define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
738 && TARGET_TOC_FUSION \
739 && (TARGET_CMODEL != CMODEL_SMALL) \
740 && TARGET_POWERPC64)
742 /* Conditions to allow TOC fusion for loading/storing floating point. */
743 #define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
744 && TARGET_TOC_FUSION \
745 && (TARGET_CMODEL != CMODEL_SMALL) \
746 && TARGET_POWERPC64 \
747 && TARGET_HARD_FLOAT \
748 && TARGET_SINGLE_FLOAT \
749 && TARGET_DOUBLE_FLOAT)
751 /* Macro to say whether we can do optimizations where we need to do parts of
752 the calculation in 64-bit GPRs and then is transfered to the vector
753 registers. Do not allow -maltivec=be for these optimizations, because it
754 adds to the complexity of the code. */
755 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
756 && TARGET_P8_VECTOR \
757 && TARGET_POWERPC64 \
758 && (rs6000_altivec_element_order != 2))
760 /* Whether the various reciprocal divide/square root estimate instructions
761 exist, and whether we should automatically generate code for the instruction
762 by default. */
763 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
764 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
765 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
766 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
768 extern unsigned char rs6000_recip_bits[];
770 #define RS6000_RECIP_HAVE_RE_P(MODE) \
771 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
773 #define RS6000_RECIP_AUTO_RE_P(MODE) \
774 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
776 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
777 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
779 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
780 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
782 /* The default CPU for TARGET_OPTION_OVERRIDE. */
783 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
785 /* Target pragma. */
786 #define REGISTER_TARGET_PRAGMAS() do { \
787 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
788 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
789 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
790 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
791 } while (0)
793 /* Target #defines. */
794 #define TARGET_CPU_CPP_BUILTINS() \
795 rs6000_cpu_cpp_builtins (pfile)
797 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
798 we're compiling for. Some configurations may need to override it. */
799 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
800 do \
802 if (BYTES_BIG_ENDIAN) \
804 builtin_define ("__BIG_ENDIAN__"); \
805 builtin_define ("_BIG_ENDIAN"); \
806 builtin_assert ("machine=bigendian"); \
808 else \
810 builtin_define ("__LITTLE_ENDIAN__"); \
811 builtin_define ("_LITTLE_ENDIAN"); \
812 builtin_assert ("machine=littleendian"); \
815 while (0)
817 /* Target machine storage layout. */
819 /* Define this macro if it is advisable to hold scalars in registers
820 in a wider mode than that declared by the program. In such cases,
821 the value is constrained to be within the bounds of the declared
822 type, but kept valid in the wider mode. The signedness of the
823 extension may differ from that of the type. */
825 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
826 if (GET_MODE_CLASS (MODE) == MODE_INT \
827 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
828 (MODE) = TARGET_32BIT ? SImode : DImode;
830 /* Define this if most significant bit is lowest numbered
831 in instructions that operate on numbered bit-fields. */
832 /* That is true on RS/6000. */
833 #define BITS_BIG_ENDIAN 1
835 /* Define this if most significant byte of a word is the lowest numbered. */
836 /* That is true on RS/6000. */
837 #define BYTES_BIG_ENDIAN 1
839 /* Define this if most significant word of a multiword number is lowest
840 numbered.
842 For RS/6000 we can decide arbitrarily since there are no machine
843 instructions for them. Might as well be consistent with bits and bytes. */
844 #define WORDS_BIG_ENDIAN 1
846 /* This says that for the IBM long double the larger magnitude double
847 comes first. It's really a two element double array, and arrays
848 don't index differently between little- and big-endian. */
849 #define LONG_DOUBLE_LARGE_FIRST 1
851 #define MAX_BITS_PER_WORD 64
853 /* Width of a word, in units (bytes). */
854 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
855 #ifdef IN_LIBGCC2
856 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
857 #else
858 #define MIN_UNITS_PER_WORD 4
859 #endif
860 #define UNITS_PER_FP_WORD 8
861 #define UNITS_PER_ALTIVEC_WORD 16
862 #define UNITS_PER_VSX_WORD 16
863 #define UNITS_PER_PAIRED_WORD 8
865 /* Type used for ptrdiff_t, as a string used in a declaration. */
866 #define PTRDIFF_TYPE "int"
868 /* Type used for size_t, as a string used in a declaration. */
869 #define SIZE_TYPE "long unsigned int"
871 /* Type used for wchar_t, as a string used in a declaration. */
872 #define WCHAR_TYPE "short unsigned int"
874 /* Width of wchar_t in bits. */
875 #define WCHAR_TYPE_SIZE 16
877 /* A C expression for the size in bits of the type `short' on the
878 target machine. If you don't define this, the default is half a
879 word. (If this would be less than one storage unit, it is
880 rounded up to one unit.) */
881 #define SHORT_TYPE_SIZE 16
883 /* A C expression for the size in bits of the type `int' on the
884 target machine. If you don't define this, the default is one
885 word. */
886 #define INT_TYPE_SIZE 32
888 /* A C expression for the size in bits of the type `long' on the
889 target machine. If you don't define this, the default is one
890 word. */
891 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
893 /* A C expression for the size in bits of the type `long long' on the
894 target machine. If you don't define this, the default is two
895 words. */
896 #define LONG_LONG_TYPE_SIZE 64
898 /* A C expression for the size in bits of the type `float' on the
899 target machine. If you don't define this, the default is one
900 word. */
901 #define FLOAT_TYPE_SIZE 32
903 /* A C expression for the size in bits of the type `double' on the
904 target machine. If you don't define this, the default is two
905 words. */
906 #define DOUBLE_TYPE_SIZE 64
908 /* A C expression for the size in bits of the type `long double' on
909 the target machine. If you don't define this, the default is two
910 words. */
911 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
913 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
914 #define WIDEST_HARDWARE_FP_SIZE 64
916 /* Width in bits of a pointer.
917 See also the macro `Pmode' defined below. */
918 extern unsigned rs6000_pointer_size;
919 #define POINTER_SIZE rs6000_pointer_size
921 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
922 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
924 /* Boundary (in *bits*) on which stack pointer should be aligned. */
925 #define STACK_BOUNDARY \
926 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
927 ? 64 : 128)
929 /* Allocation boundary (in *bits*) for the code of a function. */
930 #define FUNCTION_BOUNDARY 32
932 /* No data type wants to be aligned rounder than this. */
933 #define BIGGEST_ALIGNMENT 128
935 /* Alignment of field after `int : 0' in a structure. */
936 #define EMPTY_FIELD_BOUNDARY 32
938 /* Every structure's size must be a multiple of this. */
939 #define STRUCTURE_SIZE_BOUNDARY 8
941 /* A bit-field declared as `int' forces `int' alignment for the struct. */
942 #define PCC_BITFIELD_TYPE_MATTERS 1
944 enum data_align { align_abi, align_opt, align_both };
946 /* A C expression to compute the alignment for a variables in the
947 local store. TYPE is the data type, and ALIGN is the alignment
948 that the object would ordinarily have. */
949 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
950 rs6000_data_alignment (TYPE, ALIGN, align_both)
952 /* Make strings word-aligned so strcpy from constants will be faster. */
953 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
954 (TREE_CODE (EXP) == STRING_CST \
955 && (STRICT_ALIGNMENT || !optimize_size) \
956 && (ALIGN) < BITS_PER_WORD \
957 ? BITS_PER_WORD \
958 : (ALIGN))
960 /* Make arrays of chars word-aligned for the same reasons. */
961 #define DATA_ALIGNMENT(TYPE, ALIGN) \
962 rs6000_data_alignment (TYPE, ALIGN, align_opt)
964 /* Align vectors to 128 bits. */
965 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
966 rs6000_data_alignment (TYPE, ALIGN, align_abi)
968 /* Nonzero if move instructions will actually fail to work
969 when given unaligned data. */
970 #define STRICT_ALIGNMENT 0
972 /* Define this macro to be the value 1 if unaligned accesses have a cost
973 many times greater than aligned accesses, for example if they are
974 emulated in a trap handler. */
975 /* Altivec vector memory instructions simply ignore the low bits; VSX memory
976 instructions are aligned to 4 or 8 bytes. */
977 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
978 (STRICT_ALIGNMENT \
979 || (!TARGET_EFFICIENT_UNALIGNED_VSX \
980 && ((SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) && (ALIGN) < 32) \
981 || ((VECTOR_MODE_P (MODE) || FLOAT128_VECTOR_P (MODE)) \
982 && (int) (ALIGN) < VECTOR_ALIGN (MODE)))))
985 /* Standard register usage. */
987 /* Number of actual hardware registers.
988 The hardware registers are assigned numbers for the compiler
989 from 0 to just below FIRST_PSEUDO_REGISTER.
990 All registers that the compiler knows about must be given numbers,
991 even those that are not normally considered general registers.
993 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
994 a count register, a link register, and 8 condition register fields,
995 which we view here as separate registers. AltiVec adds 32 vector
996 registers and a VRsave register.
998 In addition, the difference between the frame and argument pointers is
999 a function of the number of registers saved, so we need to have a
1000 register for AP that will later be eliminated in favor of SP or FP.
1001 This is a normal register, but it is fixed.
1003 We also create a pseudo register for float/int conversions, that will
1004 really represent the memory location used. It is represented here as
1005 a register, in order to work around problems in allocating stack storage
1006 in inline functions.
1008 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
1009 pointer, which is eventually eliminated in favor of SP or FP.
1011 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
1013 #define FIRST_PSEUDO_REGISTER 115
1015 /* This must be included for pre gcc 3.0 glibc compatibility. */
1016 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
1018 /* The sfp register and 3 HTM registers
1019 aren't included in DWARF_FRAME_REGISTERS. */
1020 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
1022 /* Use standard DWARF numbering for DWARF debugging information. */
1023 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
1025 /* Use gcc hard register numbering for eh_frame. */
1026 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
1028 /* Map register numbers held in the call frame info that gcc has
1029 collected using DWARF_FRAME_REGNUM to those that should be output in
1030 .debug_frame and .eh_frame. */
1031 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1032 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
1034 /* 1 for registers that have pervasive standard uses
1035 and are not available for the register allocator.
1037 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1038 as a local register; for all other OS's r2 is the TOC pointer.
1040 On System V implementations, r13 is fixed and not available for use. */
1042 #define FIXED_REGISTERS \
1043 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
1044 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1045 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1046 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1047 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
1048 /* AltiVec registers. */ \
1049 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1050 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1051 1, 1 \
1052 , 1, 1, 1, 1 \
1055 /* 1 for registers not available across function calls.
1056 These must include the FIXED_REGISTERS and also any
1057 registers that can be used without being saved.
1058 The latter must include the registers where values are returned
1059 and the register where structure-value addresses are passed.
1060 Aside from that, you can include as many other registers as you like. */
1062 #define CALL_USED_REGISTERS \
1063 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1064 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1065 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1066 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1067 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1068 /* AltiVec registers. */ \
1069 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1070 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1071 1, 1 \
1072 , 1, 1, 1, 1 \
1075 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1076 the entire set of `FIXED_REGISTERS' be included.
1077 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1078 This macro is optional. If not specified, it defaults to the value
1079 of `CALL_USED_REGISTERS'. */
1081 #define CALL_REALLY_USED_REGISTERS \
1082 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1083 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1084 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1085 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1086 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1087 /* AltiVec registers. */ \
1088 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1089 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1090 0, 0 \
1091 , 0, 0, 0, 0 \
1094 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1096 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1097 #define FIRST_SAVED_FP_REGNO (14+32)
1098 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
1100 /* List the order in which to allocate registers. Each register must be
1101 listed once, even those in FIXED_REGISTERS.
1103 We allocate in the following order:
1104 fp0 (not saved or used for anything)
1105 fp13 - fp2 (not saved; incoming fp arg registers)
1106 fp1 (not saved; return value)
1107 fp31 - fp14 (saved; order given to save least number)
1108 cr7, cr5 (not saved or special)
1109 cr6 (not saved, but used for vector operations)
1110 cr1 (not saved, but used for FP operations)
1111 cr0 (not saved, but used for arithmetic operations)
1112 cr4, cr3, cr2 (saved)
1113 r9 (not saved; best for TImode)
1114 r10, r8-r4 (not saved; highest first for less conflict with params)
1115 r3 (not saved; return value register)
1116 r11 (not saved; later alloc to help shrink-wrap)
1117 r0 (not saved; cannot be base reg)
1118 r31 - r13 (saved; order given to save least number)
1119 r12 (not saved; if used for DImode or DFmode would use r13)
1120 ctr (not saved; when we have the choice ctr is better)
1121 lr (saved)
1122 r1, r2, ap, ca (fixed)
1123 v0 - v1 (not saved or used for anything)
1124 v13 - v3 (not saved; incoming vector arg registers)
1125 v2 (not saved; incoming vector arg reg; return value)
1126 v19 - v14 (not saved or used for anything)
1127 v31 - v20 (saved; order given to save least number)
1128 vrsave, vscr (fixed)
1129 sfp (fixed)
1130 tfhar (fixed)
1131 tfiar (fixed)
1132 texasr (fixed)
1135 #if FIXED_R2 == 1
1136 #define MAYBE_R2_AVAILABLE
1137 #define MAYBE_R2_FIXED 2,
1138 #else
1139 #define MAYBE_R2_AVAILABLE 2,
1140 #define MAYBE_R2_FIXED
1141 #endif
1143 #if FIXED_R13 == 1
1144 #define EARLY_R12 12,
1145 #define LATE_R12
1146 #else
1147 #define EARLY_R12
1148 #define LATE_R12 12,
1149 #endif
1151 #define REG_ALLOC_ORDER \
1152 {32, \
1153 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1154 /* not use fr14 which is a saved register. */ \
1155 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
1156 33, \
1157 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1158 50, 49, 48, 47, 46, \
1159 75, 73, 74, 69, 68, 72, 71, 70, \
1160 MAYBE_R2_AVAILABLE \
1161 9, 10, 8, 7, 6, 5, 4, \
1162 3, EARLY_R12 11, 0, \
1163 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
1164 18, 17, 16, 15, 14, 13, LATE_R12 \
1165 66, 65, \
1166 1, MAYBE_R2_FIXED 67, 76, \
1167 /* AltiVec registers. */ \
1168 77, 78, \
1169 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1170 79, \
1171 96, 95, 94, 93, 92, 91, \
1172 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1173 109, 110, \
1174 111, 112, 113, 114 \
1177 /* True if register is floating-point. */
1178 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1180 /* True if register is a condition register. */
1181 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1183 /* True if register is a condition register, but not cr0. */
1184 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1186 /* True if register is an integer register. */
1187 #define INT_REGNO_P(N) \
1188 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1190 /* PAIRED SIMD registers are just the FPRs. */
1191 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1193 /* True if register is the CA register. */
1194 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1196 /* True if register is an AltiVec register. */
1197 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1199 /* True if register is a VSX register. */
1200 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1202 /* Alternate name for any vector register supporting floating point, no matter
1203 which instruction set(s) are available. */
1204 #define VFLOAT_REGNO_P(N) \
1205 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1207 /* Alternate name for any vector register supporting integer, no matter which
1208 instruction set(s) are available. */
1209 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1211 /* Alternate name for any vector register supporting logical operations, no
1212 matter which instruction set(s) are available. Allow GPRs as well as the
1213 vector registers. */
1214 #define VLOGICAL_REGNO_P(N) \
1215 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1216 || (TARGET_VSX && FP_REGNO_P (N))) \
1218 /* Return number of consecutive hard regs needed starting at reg REGNO
1219 to hold something of mode MODE. */
1221 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1223 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1224 enough space to account for vectors in FP regs. However, TFmode/TDmode
1225 should not use VSX instructions to do a caller save. */
1226 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1227 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1228 ? (MODE) \
1229 : TARGET_VSX \
1230 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1231 && FP_REGNO_P (REGNO) \
1232 ? V2DFmode \
1233 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
1234 ? DFmode \
1235 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
1236 ? DImode \
1237 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1239 #define VSX_VECTOR_MODE(MODE) \
1240 ((MODE) == V4SFmode \
1241 || (MODE) == V2DFmode) \
1243 /* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1244 really a vector, but we want to treat it as a vector for moves, and
1245 such. */
1247 #define ALTIVEC_VECTOR_MODE(MODE) \
1248 ((MODE) == V16QImode \
1249 || (MODE) == V8HImode \
1250 || (MODE) == V4SFmode \
1251 || (MODE) == V4SImode \
1252 || FLOAT128_VECTOR_P (MODE))
1254 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1255 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1256 || (MODE) == V2DImode || (MODE) == V1TImode)
1258 #define PAIRED_VECTOR_MODE(MODE) \
1259 ((MODE) == V2SFmode)
1261 /* Post-reload, we can't use any new AltiVec registers, as we already
1262 emitted the vrsave mask. */
1264 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1265 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1267 /* Specify the cost of a branch insn; roughly the number of extra insns that
1268 should be added to avoid a branch.
1270 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1271 unscheduled conditional branch. */
1273 #define BRANCH_COST(speed_p, predictable_p) 3
1275 /* Override BRANCH_COST heuristic which empirically produces worse
1276 performance for removing short circuiting from the logical ops. */
1278 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1280 /* Specify the registers used for certain standard purposes.
1281 The values of these macros are register numbers. */
1283 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1284 /* #define PC_REGNUM */
1286 /* Register to use for pushing function arguments. */
1287 #define STACK_POINTER_REGNUM 1
1289 /* Base register for access to local variables of the function. */
1290 #define HARD_FRAME_POINTER_REGNUM 31
1292 /* Base register for access to local variables of the function. */
1293 #define FRAME_POINTER_REGNUM 111
1295 /* Base register for access to arguments of the function. */
1296 #define ARG_POINTER_REGNUM 67
1298 /* Place to put static chain when calling a function that requires it. */
1299 #define STATIC_CHAIN_REGNUM 11
1301 /* Base register for access to thread local storage variables. */
1302 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1305 /* Define the classes of registers for register constraints in the
1306 machine description. Also define ranges of constants.
1308 One of the classes must always be named ALL_REGS and include all hard regs.
1309 If there is more than one class, another class must be named NO_REGS
1310 and contain no registers.
1312 The name GENERAL_REGS must be the name of a class (or an alias for
1313 another name such as ALL_REGS). This is the class of registers
1314 that is allowed by "g" or "r" in a register constraint.
1315 Also, registers outside this class are allocated only when
1316 instructions express preferences for them.
1318 The classes must be numbered in nondecreasing order; that is,
1319 a larger-numbered class must never be contained completely
1320 in a smaller-numbered class.
1322 For any two classes, it is very desirable that there be another
1323 class that represents their union. */
1325 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1326 condition registers, plus three special registers, CTR, and the link
1327 register. AltiVec adds a vector register class. VSX registers overlap the
1328 FPR registers and the Altivec registers.
1330 However, r0 is special in that it cannot be used as a base register.
1331 So make a class for registers valid as base registers.
1333 Also, cr0 is the only condition code register that can be used in
1334 arithmetic insns, so make a separate class for it. */
1336 enum reg_class
1338 NO_REGS,
1339 BASE_REGS,
1340 GENERAL_REGS,
1341 FLOAT_REGS,
1342 ALTIVEC_REGS,
1343 VSX_REGS,
1344 VRSAVE_REGS,
1345 VSCR_REGS,
1346 SPR_REGS,
1347 NON_SPECIAL_REGS,
1348 LINK_REGS,
1349 CTR_REGS,
1350 LINK_OR_CTR_REGS,
1351 SPECIAL_REGS,
1352 SPEC_OR_GEN_REGS,
1353 CR0_REGS,
1354 CR_REGS,
1355 NON_FLOAT_REGS,
1356 CA_REGS,
1357 ALL_REGS,
1358 LIM_REG_CLASSES
1361 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1363 /* Give names of register classes as strings for dump file. */
1365 #define REG_CLASS_NAMES \
1367 "NO_REGS", \
1368 "BASE_REGS", \
1369 "GENERAL_REGS", \
1370 "FLOAT_REGS", \
1371 "ALTIVEC_REGS", \
1372 "VSX_REGS", \
1373 "VRSAVE_REGS", \
1374 "VSCR_REGS", \
1375 "SPR_REGS", \
1376 "NON_SPECIAL_REGS", \
1377 "LINK_REGS", \
1378 "CTR_REGS", \
1379 "LINK_OR_CTR_REGS", \
1380 "SPECIAL_REGS", \
1381 "SPEC_OR_GEN_REGS", \
1382 "CR0_REGS", \
1383 "CR_REGS", \
1384 "NON_FLOAT_REGS", \
1385 "CA_REGS", \
1386 "ALL_REGS" \
1389 /* Define which registers fit in which classes.
1390 This is an initializer for a vector of HARD_REG_SET
1391 of length N_REG_CLASSES. */
1393 #define REG_CLASS_CONTENTS \
1395 /* NO_REGS. */ \
1396 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1397 /* BASE_REGS. */ \
1398 { 0xfffffffe, 0x00000000, 0x00000008, 0x00008000 }, \
1399 /* GENERAL_REGS. */ \
1400 { 0xffffffff, 0x00000000, 0x00000008, 0x00008000 }, \
1401 /* FLOAT_REGS. */ \
1402 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
1403 /* ALTIVEC_REGS. */ \
1404 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, \
1405 /* VSX_REGS. */ \
1406 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, \
1407 /* VRSAVE_REGS. */ \
1408 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
1409 /* VSCR_REGS. */ \
1410 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, \
1411 /* SPR_REGS. */ \
1412 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, \
1413 /* NON_SPECIAL_REGS. */ \
1414 { 0xffffffff, 0xffffffff, 0x00000008, 0x00008000 }, \
1415 /* LINK_REGS. */ \
1416 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, \
1417 /* CTR_REGS. */ \
1418 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, \
1419 /* LINK_OR_CTR_REGS. */ \
1420 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, \
1421 /* SPECIAL_REGS. */ \
1422 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, \
1423 /* SPEC_OR_GEN_REGS. */ \
1424 { 0xffffffff, 0x00000000, 0x0000000e, 0x0000a000 }, \
1425 /* CR0_REGS. */ \
1426 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, \
1427 /* CR_REGS. */ \
1428 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, \
1429 /* NON_FLOAT_REGS. */ \
1430 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00008000 }, \
1431 /* CA_REGS. */ \
1432 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, \
1433 /* ALL_REGS. */ \
1434 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0001ffff } \
1437 /* The same information, inverted:
1438 Return the class number of the smallest class containing
1439 reg number REGNO. This could be a conditional expression
1440 or could index an array. */
1442 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1444 #define REGNO_REG_CLASS(REGNO) \
1445 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1446 rs6000_regno_regclass[(REGNO)])
1448 /* Register classes for various constraints that are based on the target
1449 switches. */
1450 enum r6000_reg_class_enum {
1451 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1452 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1453 RS6000_CONSTRAINT_v, /* Altivec registers */
1454 RS6000_CONSTRAINT_wa, /* Any VSX register */
1455 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
1456 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1457 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1458 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1459 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
1460 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1461 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1462 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1463 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
1464 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
1465 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
1466 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
1467 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1468 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
1469 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1470 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1471 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
1472 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1473 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1474 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
1475 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1476 RS6000_CONSTRAINT_wy, /* VSX register for SF */
1477 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
1478 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
1479 RS6000_CONSTRAINT_wH, /* Altivec register for 32-bit integers. */
1480 RS6000_CONSTRAINT_wI, /* VSX register for 32-bit integers. */
1481 RS6000_CONSTRAINT_wJ, /* VSX register for 8/16-bit integers. */
1482 RS6000_CONSTRAINT_wK, /* Altivec register for 16/32-bit integers. */
1483 RS6000_CONSTRAINT_MAX
1486 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1488 /* The class value for index registers, and the one for base regs. */
1489 #define INDEX_REG_CLASS GENERAL_REGS
1490 #define BASE_REG_CLASS BASE_REGS
1492 /* Return whether a given register class can hold VSX objects. */
1493 #define VSX_REG_CLASS_P(CLASS) \
1494 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1496 /* Return whether a given register class targets general purpose registers. */
1497 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1499 /* Given an rtx X being reloaded into a reg required to be
1500 in class CLASS, return the class of reg to actually use.
1501 In general this is just CLASS; but on some machines
1502 in some cases it is preferable to use a more restrictive class.
1504 On the RS/6000, we have to return NO_REGS when we want to reload a
1505 floating-point CONST_DOUBLE to force it to be copied to memory.
1507 We also don't want to reload integer values into floating-point
1508 registers if we can at all help it. In fact, this can
1509 cause reload to die, if it tries to generate a reload of CTR
1510 into a FP register and discovers it doesn't have the memory location
1511 required.
1513 ??? Would it be a good idea to have reload do the converse, that is
1514 try to reload floating modes into FP registers if possible?
1517 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1518 rs6000_preferred_reload_class_ptr (X, CLASS)
1520 /* Return the register class of a scratch register needed to copy IN into
1521 or out of a register in CLASS in MODE. If it can be done directly,
1522 NO_REGS is returned. */
1524 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1525 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1527 /* If we are copying between FP or AltiVec registers and anything
1528 else, we need a memory location. The exception is when we are
1529 targeting ppc64 and the move to/from fpr to gpr instructions
1530 are available.*/
1532 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1533 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1535 /* Specify the mode to be used for memory when a secondary memory
1536 location is needed. For cpus that cannot load/store SDmode values
1537 from the 64-bit FP registers without using a full 64-bit
1538 load/store, we need a wider mode. */
1539 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1540 rs6000_secondary_memory_needed_mode (MODE)
1542 /* Return the maximum number of consecutive registers
1543 needed to represent mode MODE in a register of class CLASS.
1545 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1546 a single reg is enough for two words, unless we have VSX, where the FP
1547 registers can hold 128 bits. */
1548 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1550 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1552 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1553 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1555 /* Stack layout; function entry, exit and calling. */
1557 /* Define this if pushing a word on the stack
1558 makes the stack pointer a smaller address. */
1559 #define STACK_GROWS_DOWNWARD 1
1561 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1562 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1564 /* Define this to nonzero if the nominal address of the stack frame
1565 is at the high-address end of the local variables;
1566 that is, each additional local variable allocated
1567 goes at a more negative offset in the frame.
1569 On the RS/6000, we grow upwards, from the area after the outgoing
1570 arguments. */
1571 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1572 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1574 /* Size of the fixed area on the stack */
1575 #define RS6000_SAVE_AREA \
1576 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1577 << (TARGET_64BIT ? 1 : 0))
1579 /* Stack offset for toc save slot. */
1580 #define RS6000_TOC_SAVE_SLOT \
1581 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1583 /* Align an address */
1584 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1586 /* Offset within stack frame to start allocating local variables at.
1587 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1588 first local allocated. Otherwise, it is the offset to the BEGINNING
1589 of the first local allocated.
1591 On the RS/6000, the frame pointer is the same as the stack pointer,
1592 except for dynamic allocations. So we start after the fixed area and
1593 outgoing parameter area.
1595 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1596 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1597 sizes of the fixed area and the parameter area must be a multiple of
1598 STACK_BOUNDARY. */
1600 #define STARTING_FRAME_OFFSET \
1601 (FRAME_GROWS_DOWNWARD \
1602 ? 0 \
1603 : (cfun->calls_alloca \
1604 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1605 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1606 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1607 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1608 + RS6000_SAVE_AREA)))
1610 /* Offset from the stack pointer register to an item dynamically
1611 allocated on the stack, e.g., by `alloca'.
1613 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1614 length of the outgoing arguments. The default is correct for most
1615 machines. See `function.c' for details.
1617 This value must be a multiple of STACK_BOUNDARY (hard coded in
1618 `emit-rtl.c'). */
1619 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1620 RS6000_ALIGN (crtl->outgoing_args_size + STACK_POINTER_OFFSET, \
1621 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1623 /* If we generate an insn to push BYTES bytes,
1624 this says how many the stack pointer really advances by.
1625 On RS/6000, don't define this because there are no push insns. */
1626 /* #define PUSH_ROUNDING(BYTES) */
1628 /* Offset of first parameter from the argument pointer register value.
1629 On the RS/6000, we define the argument pointer to the start of the fixed
1630 area. */
1631 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1633 /* Offset from the argument pointer register value to the top of
1634 stack. This is different from FIRST_PARM_OFFSET because of the
1635 register save area. */
1636 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1638 /* Define this if stack space is still allocated for a parameter passed
1639 in a register. The value is the number of bytes allocated to this
1640 area. */
1641 #define REG_PARM_STACK_SPACE(FNDECL) \
1642 rs6000_reg_parm_stack_space ((FNDECL), false)
1644 /* Define this macro if space guaranteed when compiling a function body
1645 is different to space required when making a call, a situation that
1646 can arise with K&R style function definitions. */
1647 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1648 rs6000_reg_parm_stack_space ((FNDECL), true)
1650 /* Define this if the above stack space is to be considered part of the
1651 space allocated by the caller. */
1652 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1654 /* This is the difference between the logical top of stack and the actual sp.
1656 For the RS/6000, sp points past the fixed area. */
1657 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1659 /* Define this if the maximum size of all the outgoing args is to be
1660 accumulated and pushed during the prologue. The amount can be
1661 found in the variable crtl->outgoing_args_size. */
1662 #define ACCUMULATE_OUTGOING_ARGS 1
1664 /* Define how to find the value returned by a library function
1665 assuming the value has mode MODE. */
1667 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1669 /* DRAFT_V4_STRUCT_RET defaults off. */
1670 #define DRAFT_V4_STRUCT_RET 0
1672 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1673 #define DEFAULT_PCC_STRUCT_RETURN 0
1675 /* Mode of stack savearea.
1676 FUNCTION is VOIDmode because calling convention maintains SP.
1677 BLOCK needs Pmode for SP.
1678 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1679 #define STACK_SAVEAREA_MODE(LEVEL) \
1680 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1681 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1683 /* Minimum and maximum general purpose registers used to hold arguments. */
1684 #define GP_ARG_MIN_REG 3
1685 #define GP_ARG_MAX_REG 10
1686 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1688 /* Minimum and maximum floating point registers used to hold arguments. */
1689 #define FP_ARG_MIN_REG 33
1690 #define FP_ARG_AIX_MAX_REG 45
1691 #define FP_ARG_V4_MAX_REG 40
1692 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1693 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1694 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1696 /* Minimum and maximum AltiVec registers used to hold arguments. */
1697 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1698 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1699 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1701 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1702 #define AGGR_ARG_NUM_REG 8
1704 /* Return registers */
1705 #define GP_ARG_RETURN GP_ARG_MIN_REG
1706 #define FP_ARG_RETURN FP_ARG_MIN_REG
1707 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1708 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1709 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1710 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1711 ? (ALTIVEC_ARG_RETURN \
1712 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1713 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1715 /* Flags for the call/call_value rtl operations set up by function_arg */
1716 #define CALL_NORMAL 0x00000000 /* no special processing */
1717 /* Bits in 0x00000001 are unused. */
1718 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1719 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1720 #define CALL_LONG 0x00000008 /* always call indirect */
1721 #define CALL_LIBCALL 0x00000010 /* libcall */
1723 /* We don't have prologue and epilogue functions to save/restore
1724 everything for most ABIs. */
1725 #define WORLD_SAVE_P(INFO) 0
1727 /* 1 if N is a possible register number for a function value
1728 as seen by the caller.
1730 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1731 #define FUNCTION_VALUE_REGNO_P(N) \
1732 ((N) == GP_ARG_RETURN \
1733 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1734 && TARGET_HARD_FLOAT) \
1735 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1736 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1738 /* 1 if N is a possible register number for function argument passing.
1739 On RS/6000, these are r3-r10 and fp1-fp13.
1740 On AltiVec, v2 - v13 are used for passing vectors. */
1741 #define FUNCTION_ARG_REGNO_P(N) \
1742 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1743 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1744 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1745 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1746 && TARGET_HARD_FLOAT))
1748 /* Define a data type for recording info about an argument list
1749 during the scan of that argument list. This data type should
1750 hold all necessary information about the function itself
1751 and about the args processed so far, enough to enable macros
1752 such as FUNCTION_ARG to determine where the next arg should go.
1754 On the RS/6000, this is a structure. The first element is the number of
1755 total argument words, the second is used to store the next
1756 floating-point register number, and the third says how many more args we
1757 have prototype types for.
1759 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1760 the next available GP register, `fregno' is the next available FP
1761 register, and `words' is the number of words used on the stack.
1763 The varargs/stdarg support requires that this structure's size
1764 be a multiple of sizeof(int). */
1766 typedef struct rs6000_args
1768 int words; /* # words used for passing GP registers */
1769 int fregno; /* next available FP register */
1770 int vregno; /* next available AltiVec register */
1771 int nargs_prototype; /* # args left in the current prototype */
1772 int prototype; /* Whether a prototype was defined */
1773 int stdarg; /* Whether function is a stdarg function. */
1774 int call_cookie; /* Do special things for this call */
1775 int sysv_gregno; /* next available GP register */
1776 int intoffset; /* running offset in struct (darwin64) */
1777 int use_stack; /* any part of struct on stack (darwin64) */
1778 int floats_in_gpr; /* count of SFmode floats taking up
1779 GPR space (darwin64) */
1780 int named; /* false for varargs params */
1781 int escapes; /* if function visible outside tu */
1782 int libcall; /* If this is a compiler generated call. */
1783 } CUMULATIVE_ARGS;
1785 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1786 for a call to a function whose data type is FNTYPE.
1787 For a library call, FNTYPE is 0. */
1789 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1790 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1791 N_NAMED_ARGS, FNDECL, VOIDmode)
1793 /* Similar, but when scanning the definition of a procedure. We always
1794 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1796 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1797 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1798 1000, current_function_decl, VOIDmode)
1800 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1802 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1803 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1804 0, NULL_TREE, MODE)
1806 #define PAD_VARARGS_DOWN \
1807 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1809 /* Output assembler code to FILE to increment profiler label # LABELNO
1810 for profiling a function entry. */
1812 #define FUNCTION_PROFILER(FILE, LABELNO) \
1813 output_function_profiler ((FILE), (LABELNO));
1815 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1816 the stack pointer does not matter. No definition is equivalent to
1817 always zero.
1819 On the RS/6000, this is nonzero because we can restore the stack from
1820 its backpointer, which we maintain. */
1821 #define EXIT_IGNORE_STACK 1
1823 /* Define this macro as a C expression that is nonzero for registers
1824 that are used by the epilogue or the return' pattern. The stack
1825 and frame pointer registers are already be assumed to be used as
1826 needed. */
1828 #define EPILOGUE_USES(REGNO) \
1829 ((reload_completed && (REGNO) == LR_REGNO) \
1830 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1831 || (crtl->calls_eh_return \
1832 && TARGET_AIX \
1833 && (REGNO) == 2))
1836 /* Length in units of the trampoline for entering a nested function. */
1838 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1840 /* Definitions for __builtin_return_address and __builtin_frame_address.
1841 __builtin_return_address (0) should give link register (LR_REGNO), enable
1842 this. */
1843 /* This should be uncommented, so that the link register is used, but
1844 currently this would result in unmatched insns and spilling fixed
1845 registers so we'll leave it for another day. When these problems are
1846 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1847 (mrs) */
1848 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1850 /* Number of bytes into the frame return addresses can be found. See
1851 rs6000_stack_info in rs6000.c for more information on how the different
1852 abi's store the return address. */
1853 #define RETURN_ADDRESS_OFFSET \
1854 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1856 /* The current return address is in link register (65). The return address
1857 of anything farther back is accessed normally at an offset of 8 from the
1858 frame pointer. */
1859 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1860 (rs6000_return_addr (COUNT, FRAME))
1863 /* Definitions for register eliminations.
1865 We have two registers that can be eliminated on the RS/6000. First, the
1866 frame pointer register can often be eliminated in favor of the stack
1867 pointer register. Secondly, the argument pointer register can always be
1868 eliminated; it is replaced with either the stack or frame pointer.
1870 In addition, we use the elimination mechanism to see if r30 is needed
1871 Initially we assume that it isn't. If it is, we spill it. This is done
1872 by making it an eliminable register. We replace it with itself so that
1873 if it isn't needed, then existing uses won't be modified. */
1875 /* This is an array of structures. Each structure initializes one pair
1876 of eliminable registers. The "from" register number is given first,
1877 followed by "to". Eliminations of the same "from" register are listed
1878 in order of preference. */
1879 #define ELIMINABLE_REGS \
1880 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1881 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1882 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1883 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1884 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1885 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1887 /* Define the offset between two registers, one to be eliminated, and the other
1888 its replacement, at the start of a routine. */
1889 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1890 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1892 /* Addressing modes, and classification of registers for them. */
1894 #define HAVE_PRE_DECREMENT 1
1895 #define HAVE_PRE_INCREMENT 1
1896 #define HAVE_PRE_MODIFY_DISP 1
1897 #define HAVE_PRE_MODIFY_REG 1
1899 /* Macros to check register numbers against specific register classes. */
1901 /* These assume that REGNO is a hard or pseudo reg number.
1902 They give nonzero only if REGNO is a hard reg of the suitable class
1903 or a pseudo reg currently allocated to a suitable hard reg.
1904 Since they use reg_renumber, they are safe only once reg_renumber
1905 has been allocated, which happens in reginfo.c during register
1906 allocation. */
1908 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1909 ((REGNO) < FIRST_PSEUDO_REGISTER \
1910 ? (REGNO) <= 31 || (REGNO) == 67 \
1911 || (REGNO) == FRAME_POINTER_REGNUM \
1912 : (reg_renumber[REGNO] >= 0 \
1913 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1914 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1916 #define REGNO_OK_FOR_BASE_P(REGNO) \
1917 ((REGNO) < FIRST_PSEUDO_REGISTER \
1918 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1919 || (REGNO) == FRAME_POINTER_REGNUM \
1920 : (reg_renumber[REGNO] > 0 \
1921 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1922 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1924 /* Nonzero if X is a hard reg that can be used as an index
1925 or if it is a pseudo reg in the non-strict case. */
1926 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1927 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1928 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1930 /* Nonzero if X is a hard reg that can be used as a base reg
1931 or if it is a pseudo reg in the non-strict case. */
1932 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1933 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1934 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1937 /* Maximum number of registers that can appear in a valid memory address. */
1939 #define MAX_REGS_PER_ADDRESS 2
1941 /* Recognize any constant value that is a valid address. */
1943 #define CONSTANT_ADDRESS_P(X) \
1944 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1945 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1946 || GET_CODE (X) == HIGH)
1948 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1949 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1950 && EASY_VECTOR_15((n) >> 1) \
1951 && ((n) & 1) == 0)
1953 #define EASY_VECTOR_MSB(n,mode) \
1954 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
1955 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1958 /* Try a machine-dependent way of reloading an illegitimate address
1959 operand. If we find one, push the reload and jump to WIN. This
1960 macro is used in only one place: `find_reloads_address' in reload.c.
1962 Implemented on rs6000 by rs6000_legitimize_reload_address.
1963 Note that (X) is evaluated twice; this is safe in current usage. */
1965 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1966 do { \
1967 int win; \
1968 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
1969 (int)(TYPE), (IND_LEVELS), &win); \
1970 if ( win ) \
1971 goto WIN; \
1972 } while (0)
1974 #define FIND_BASE_TERM rs6000_find_base_term
1976 /* The register number of the register used to address a table of
1977 static data addresses in memory. In some cases this register is
1978 defined by a processor's "application binary interface" (ABI).
1979 When this macro is defined, RTL is generated for this register
1980 once, as with the stack pointer and frame pointer registers. If
1981 this macro is not defined, it is up to the machine-dependent files
1982 to allocate such a register (if necessary). */
1984 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1985 #define PIC_OFFSET_TABLE_REGNUM \
1986 (TARGET_TOC ? TOC_REGISTER \
1987 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1988 : INVALID_REGNUM)
1990 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1992 /* Define this macro if the register defined by
1993 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1994 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1996 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1998 /* A C expression that is nonzero if X is a legitimate immediate
1999 operand on the target machine when generating position independent
2000 code. You can assume that X satisfies `CONSTANT_P', so you need
2001 not check this. You can also assume FLAG_PIC is true, so you need
2002 not check it either. You need not define this macro if all
2003 constants (including `SYMBOL_REF') can be immediate operands when
2004 generating position independent code. */
2006 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2008 /* Specify the machine mode that this machine uses
2009 for the index in the tablejump instruction. */
2010 #define CASE_VECTOR_MODE SImode
2012 /* Define as C expression which evaluates to nonzero if the tablejump
2013 instruction expects the table to contain offsets from the address of the
2014 table.
2015 Do not define this if the table should contain absolute addresses. */
2016 #define CASE_VECTOR_PC_RELATIVE 1
2018 /* Define this as 1 if `char' should by default be signed; else as 0. */
2019 #define DEFAULT_SIGNED_CHAR 0
2021 /* An integer expression for the size in bits of the largest integer machine
2022 mode that should actually be used. */
2024 /* Allow pairs of registers to be used, which is the intent of the default. */
2025 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2027 /* Max number of bytes we can move from memory to memory
2028 in one reasonably fast instruction. */
2029 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2030 #define MAX_MOVE_MAX 8
2032 /* Nonzero if access to memory by bytes is no faster than for words.
2033 Also nonzero if doing byte operations (specifically shifts) in registers
2034 is undesirable. */
2035 #define SLOW_BYTE_ACCESS 1
2037 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2038 will either zero-extend or sign-extend. The value of this macro should
2039 be the code that says which one of the two operations is implicitly
2040 done, UNKNOWN if none. */
2041 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2043 /* Define if loading short immediate values into registers sign extends. */
2044 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
2046 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2047 is done just by pretending it is already truncated. */
2048 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2050 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2051 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2052 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
2054 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
2055 zero. The hardware instructions added in Power9 and the sequences using
2056 popcount return 32 or 64. */
2057 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2058 (TARGET_CTZ || TARGET_POPCNTD \
2059 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
2060 : ((VALUE) = -1, 2))
2062 /* Specify the machine mode that pointers have.
2063 After generation of rtl, the compiler makes no further distinction
2064 between pointers and any other objects of this machine mode. */
2065 extern scalar_int_mode rs6000_pmode;
2066 #define Pmode rs6000_pmode
2068 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
2069 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2071 /* Mode of a function address in a call instruction (for indexing purposes).
2072 Doesn't matter on RS/6000. */
2073 #define FUNCTION_MODE SImode
2075 /* Define this if addresses of constant functions
2076 shouldn't be put through pseudo regs where they can be cse'd.
2077 Desirable on machines where ordinary constants are expensive
2078 but a CALL with constant address is cheap. */
2079 #define NO_FUNCTION_CSE 1
2081 /* Define this to be nonzero if shift instructions ignore all but the low-order
2082 few bits.
2084 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2085 have been dropped from the PowerPC architecture. */
2086 #define SHIFT_COUNT_TRUNCATED 0
2088 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2089 should be adjusted to reflect any required changes. This macro is used when
2090 there is some systematic length adjustment required that would be difficult
2091 to express in the length attribute. */
2093 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2095 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2096 COMPARE, return the mode to be used for the comparison. For
2097 floating-point, CCFPmode should be used. CCUNSmode should be used
2098 for unsigned comparisons. CCEQmode should be used when we are
2099 doing an inequality comparison on the result of a
2100 comparison. CCmode should be used in all other cases. */
2102 #define SELECT_CC_MODE(OP,X,Y) \
2103 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2104 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2105 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2106 ? CCEQmode : CCmode))
2108 /* Can the condition code MODE be safely reversed? This is safe in
2109 all cases on this port, because at present it doesn't use the
2110 trapping FP comparisons (fcmpo). */
2111 #define REVERSIBLE_CC_MODE(MODE) 1
2113 /* Given a condition code and a mode, return the inverse condition. */
2114 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2117 /* Control the assembler format that we output. */
2119 /* A C string constant describing how to begin a comment in the target
2120 assembler language. The compiler assumes that the comment will end at
2121 the end of the line. */
2122 #define ASM_COMMENT_START " #"
2124 /* Flag to say the TOC is initialized */
2125 extern int toc_initialized;
2127 /* Macro to output a special constant pool entry. Go to WIN if we output
2128 it. Otherwise, it is written the usual way.
2130 On the RS/6000, toc entries are handled this way. */
2132 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2133 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2135 output_toc (FILE, X, LABELNO, MODE); \
2136 goto WIN; \
2140 #ifdef HAVE_GAS_WEAK
2141 #define RS6000_WEAK 1
2142 #else
2143 #define RS6000_WEAK 0
2144 #endif
2146 #if RS6000_WEAK
2147 /* Used in lieu of ASM_WEAKEN_LABEL. */
2148 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2149 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
2150 #endif
2152 #if HAVE_GAS_WEAKREF
2153 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2154 do \
2156 fputs ("\t.weakref\t", (FILE)); \
2157 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2158 fputs (", ", (FILE)); \
2159 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2160 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2161 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2163 fputs ("\n\t.weakref\t.", (FILE)); \
2164 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2165 fputs (", .", (FILE)); \
2166 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2168 fputc ('\n', (FILE)); \
2169 } while (0)
2170 #endif
2172 /* This implements the `alias' attribute. */
2173 #undef ASM_OUTPUT_DEF_FROM_DECLS
2174 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2175 do \
2177 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2178 const char *name = IDENTIFIER_POINTER (TARGET); \
2179 if (TREE_CODE (DECL) == FUNCTION_DECL \
2180 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2182 if (TREE_PUBLIC (DECL)) \
2184 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2186 fputs ("\t.globl\t.", FILE); \
2187 RS6000_OUTPUT_BASENAME (FILE, alias); \
2188 putc ('\n', FILE); \
2191 else if (TARGET_XCOFF) \
2193 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2195 fputs ("\t.lglobl\t.", FILE); \
2196 RS6000_OUTPUT_BASENAME (FILE, alias); \
2197 putc ('\n', FILE); \
2198 fputs ("\t.lglobl\t", FILE); \
2199 RS6000_OUTPUT_BASENAME (FILE, alias); \
2200 putc ('\n', FILE); \
2203 fputs ("\t.set\t.", FILE); \
2204 RS6000_OUTPUT_BASENAME (FILE, alias); \
2205 fputs (",.", FILE); \
2206 RS6000_OUTPUT_BASENAME (FILE, name); \
2207 fputc ('\n', FILE); \
2209 ASM_OUTPUT_DEF (FILE, alias, name); \
2211 while (0)
2213 #define TARGET_ASM_FILE_START rs6000_file_start
2215 /* Output to assembler file text saying following lines
2216 may contain character constants, extra white space, comments, etc. */
2218 #define ASM_APP_ON ""
2220 /* Output to assembler file text saying following lines
2221 no longer contain unusual constructs. */
2223 #define ASM_APP_OFF ""
2225 /* How to refer to registers in assembler output.
2226 This sequence is indexed by compiler's hard-register-number (see above). */
2228 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2230 #define REGISTER_NAMES \
2232 &rs6000_reg_names[ 0][0], /* r0 */ \
2233 &rs6000_reg_names[ 1][0], /* r1 */ \
2234 &rs6000_reg_names[ 2][0], /* r2 */ \
2235 &rs6000_reg_names[ 3][0], /* r3 */ \
2236 &rs6000_reg_names[ 4][0], /* r4 */ \
2237 &rs6000_reg_names[ 5][0], /* r5 */ \
2238 &rs6000_reg_names[ 6][0], /* r6 */ \
2239 &rs6000_reg_names[ 7][0], /* r7 */ \
2240 &rs6000_reg_names[ 8][0], /* r8 */ \
2241 &rs6000_reg_names[ 9][0], /* r9 */ \
2242 &rs6000_reg_names[10][0], /* r10 */ \
2243 &rs6000_reg_names[11][0], /* r11 */ \
2244 &rs6000_reg_names[12][0], /* r12 */ \
2245 &rs6000_reg_names[13][0], /* r13 */ \
2246 &rs6000_reg_names[14][0], /* r14 */ \
2247 &rs6000_reg_names[15][0], /* r15 */ \
2248 &rs6000_reg_names[16][0], /* r16 */ \
2249 &rs6000_reg_names[17][0], /* r17 */ \
2250 &rs6000_reg_names[18][0], /* r18 */ \
2251 &rs6000_reg_names[19][0], /* r19 */ \
2252 &rs6000_reg_names[20][0], /* r20 */ \
2253 &rs6000_reg_names[21][0], /* r21 */ \
2254 &rs6000_reg_names[22][0], /* r22 */ \
2255 &rs6000_reg_names[23][0], /* r23 */ \
2256 &rs6000_reg_names[24][0], /* r24 */ \
2257 &rs6000_reg_names[25][0], /* r25 */ \
2258 &rs6000_reg_names[26][0], /* r26 */ \
2259 &rs6000_reg_names[27][0], /* r27 */ \
2260 &rs6000_reg_names[28][0], /* r28 */ \
2261 &rs6000_reg_names[29][0], /* r29 */ \
2262 &rs6000_reg_names[30][0], /* r30 */ \
2263 &rs6000_reg_names[31][0], /* r31 */ \
2265 &rs6000_reg_names[32][0], /* fr0 */ \
2266 &rs6000_reg_names[33][0], /* fr1 */ \
2267 &rs6000_reg_names[34][0], /* fr2 */ \
2268 &rs6000_reg_names[35][0], /* fr3 */ \
2269 &rs6000_reg_names[36][0], /* fr4 */ \
2270 &rs6000_reg_names[37][0], /* fr5 */ \
2271 &rs6000_reg_names[38][0], /* fr6 */ \
2272 &rs6000_reg_names[39][0], /* fr7 */ \
2273 &rs6000_reg_names[40][0], /* fr8 */ \
2274 &rs6000_reg_names[41][0], /* fr9 */ \
2275 &rs6000_reg_names[42][0], /* fr10 */ \
2276 &rs6000_reg_names[43][0], /* fr11 */ \
2277 &rs6000_reg_names[44][0], /* fr12 */ \
2278 &rs6000_reg_names[45][0], /* fr13 */ \
2279 &rs6000_reg_names[46][0], /* fr14 */ \
2280 &rs6000_reg_names[47][0], /* fr15 */ \
2281 &rs6000_reg_names[48][0], /* fr16 */ \
2282 &rs6000_reg_names[49][0], /* fr17 */ \
2283 &rs6000_reg_names[50][0], /* fr18 */ \
2284 &rs6000_reg_names[51][0], /* fr19 */ \
2285 &rs6000_reg_names[52][0], /* fr20 */ \
2286 &rs6000_reg_names[53][0], /* fr21 */ \
2287 &rs6000_reg_names[54][0], /* fr22 */ \
2288 &rs6000_reg_names[55][0], /* fr23 */ \
2289 &rs6000_reg_names[56][0], /* fr24 */ \
2290 &rs6000_reg_names[57][0], /* fr25 */ \
2291 &rs6000_reg_names[58][0], /* fr26 */ \
2292 &rs6000_reg_names[59][0], /* fr27 */ \
2293 &rs6000_reg_names[60][0], /* fr28 */ \
2294 &rs6000_reg_names[61][0], /* fr29 */ \
2295 &rs6000_reg_names[62][0], /* fr30 */ \
2296 &rs6000_reg_names[63][0], /* fr31 */ \
2298 &rs6000_reg_names[64][0], /* was mq */ \
2299 &rs6000_reg_names[65][0], /* lr */ \
2300 &rs6000_reg_names[66][0], /* ctr */ \
2301 &rs6000_reg_names[67][0], /* ap */ \
2303 &rs6000_reg_names[68][0], /* cr0 */ \
2304 &rs6000_reg_names[69][0], /* cr1 */ \
2305 &rs6000_reg_names[70][0], /* cr2 */ \
2306 &rs6000_reg_names[71][0], /* cr3 */ \
2307 &rs6000_reg_names[72][0], /* cr4 */ \
2308 &rs6000_reg_names[73][0], /* cr5 */ \
2309 &rs6000_reg_names[74][0], /* cr6 */ \
2310 &rs6000_reg_names[75][0], /* cr7 */ \
2312 &rs6000_reg_names[76][0], /* ca */ \
2314 &rs6000_reg_names[77][0], /* v0 */ \
2315 &rs6000_reg_names[78][0], /* v1 */ \
2316 &rs6000_reg_names[79][0], /* v2 */ \
2317 &rs6000_reg_names[80][0], /* v3 */ \
2318 &rs6000_reg_names[81][0], /* v4 */ \
2319 &rs6000_reg_names[82][0], /* v5 */ \
2320 &rs6000_reg_names[83][0], /* v6 */ \
2321 &rs6000_reg_names[84][0], /* v7 */ \
2322 &rs6000_reg_names[85][0], /* v8 */ \
2323 &rs6000_reg_names[86][0], /* v9 */ \
2324 &rs6000_reg_names[87][0], /* v10 */ \
2325 &rs6000_reg_names[88][0], /* v11 */ \
2326 &rs6000_reg_names[89][0], /* v12 */ \
2327 &rs6000_reg_names[90][0], /* v13 */ \
2328 &rs6000_reg_names[91][0], /* v14 */ \
2329 &rs6000_reg_names[92][0], /* v15 */ \
2330 &rs6000_reg_names[93][0], /* v16 */ \
2331 &rs6000_reg_names[94][0], /* v17 */ \
2332 &rs6000_reg_names[95][0], /* v18 */ \
2333 &rs6000_reg_names[96][0], /* v19 */ \
2334 &rs6000_reg_names[97][0], /* v20 */ \
2335 &rs6000_reg_names[98][0], /* v21 */ \
2336 &rs6000_reg_names[99][0], /* v22 */ \
2337 &rs6000_reg_names[100][0], /* v23 */ \
2338 &rs6000_reg_names[101][0], /* v24 */ \
2339 &rs6000_reg_names[102][0], /* v25 */ \
2340 &rs6000_reg_names[103][0], /* v26 */ \
2341 &rs6000_reg_names[104][0], /* v27 */ \
2342 &rs6000_reg_names[105][0], /* v28 */ \
2343 &rs6000_reg_names[106][0], /* v29 */ \
2344 &rs6000_reg_names[107][0], /* v30 */ \
2345 &rs6000_reg_names[108][0], /* v31 */ \
2346 &rs6000_reg_names[109][0], /* vrsave */ \
2347 &rs6000_reg_names[110][0], /* vscr */ \
2348 &rs6000_reg_names[111][0], /* sfp */ \
2349 &rs6000_reg_names[112][0], /* tfhar */ \
2350 &rs6000_reg_names[113][0], /* tfiar */ \
2351 &rs6000_reg_names[114][0], /* texasr */ \
2354 /* Table of additional register names to use in user input. */
2356 #define ADDITIONAL_REGISTER_NAMES \
2357 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2358 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2359 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2360 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2361 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2362 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2363 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2364 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2365 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2366 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2367 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2368 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2369 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2370 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2371 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2372 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2373 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2374 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2375 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2376 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2377 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2378 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2379 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2380 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2381 {"vrsave", 109}, {"vscr", 110}, \
2382 /* no additional names for: lr, ctr, ap */ \
2383 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2384 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2385 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2386 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2387 {"xer", 76}, \
2388 /* VSX registers overlaid on top of FR, Altivec registers */ \
2389 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2390 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2391 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2392 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2393 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2394 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2395 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2396 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2397 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2398 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2399 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2400 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2401 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2402 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2403 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2404 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2405 /* Transactional Memory Facility (HTM) Registers. */ \
2406 {"tfhar", 112}, {"tfiar", 113}, {"texasr", 114}, \
2409 /* This is how to output an element of a case-vector that is relative. */
2411 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2412 do { char buf[100]; \
2413 fputs ("\t.long ", FILE); \
2414 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2415 assemble_name (FILE, buf); \
2416 putc ('-', FILE); \
2417 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2418 assemble_name (FILE, buf); \
2419 putc ('\n', FILE); \
2420 } while (0)
2422 /* This is how to output an assembler line
2423 that says to advance the location counter
2424 to a multiple of 2**LOG bytes. */
2426 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2427 if ((LOG) != 0) \
2428 fprintf (FILE, "\t.align %d\n", (LOG))
2430 /* How to align the given loop. */
2431 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2433 /* Alignment guaranteed by __builtin_malloc. */
2434 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2435 However, specifying the stronger guarantee currently leads to
2436 a regression in SPEC CPU2006 437.leslie3d. The stronger
2437 guarantee should be implemented here once that's fixed. */
2438 #define MALLOC_ABI_ALIGNMENT (64)
2440 /* Pick up the return address upon entry to a procedure. Used for
2441 dwarf2 unwind information. This also enables the table driven
2442 mechanism. */
2444 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2445 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2447 /* Describe how we implement __builtin_eh_return. */
2448 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2449 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2451 /* Print operand X (an rtx) in assembler syntax to file FILE.
2452 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2453 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2455 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2457 /* Define which CODE values are valid. */
2459 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2461 /* Print a memory address as an operand to reference that memory location. */
2463 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2465 /* For switching between functions with different target attributes. */
2466 #define SWITCHABLE_TARGET 1
2468 /* uncomment for disabling the corresponding default options */
2469 /* #define MACHINE_no_sched_interblock */
2470 /* #define MACHINE_no_sched_speculative */
2471 /* #define MACHINE_no_sched_speculative_load */
2473 /* General flags. */
2474 extern int frame_pointer_needed;
2476 /* Classification of the builtin functions as to which switches enable the
2477 builtin, and what attributes it should have. We used to use the target
2478 flags macros, but we've run out of bits, so we now map the options into new
2479 settings used here. */
2481 /* Builtin attributes. */
2482 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2483 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2484 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2485 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2486 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2487 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2488 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2489 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2491 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2492 #define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2493 modifies global state. */
2494 #define RS6000_BTC_PURE 0x00000200 /* reads global
2495 state/mem and does
2496 not modify global state. */
2497 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2498 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2500 /* Miscellaneous information. */
2501 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2502 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2503 #define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2504 #define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
2505 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2507 /* Convenience macros to document the instruction type. */
2508 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2509 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2511 /* Builtin targets. For now, we reuse the masks for those options that are in
2512 target flags, and pick two random bits for paired and ldbl128, which
2513 aren't in target_flags. */
2514 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2515 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2516 #define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
2517 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2518 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2519 #define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
2520 #define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
2521 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2522 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2523 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2524 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2525 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2526 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2527 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2528 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2529 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2530 #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
2531 #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
2532 #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
2533 #define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
2534 #define RS6000_BTM_FLOAT128 MASK_FLOAT128_TYPE /* IEEE 128-bit float. */
2536 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2537 | RS6000_BTM_VSX \
2538 | RS6000_BTM_P8_VECTOR \
2539 | RS6000_BTM_P9_VECTOR \
2540 | RS6000_BTM_P9_MISC \
2541 | RS6000_BTM_MODULO \
2542 | RS6000_BTM_CRYPTO \
2543 | RS6000_BTM_FRE \
2544 | RS6000_BTM_FRES \
2545 | RS6000_BTM_FRSQRTE \
2546 | RS6000_BTM_FRSQRTES \
2547 | RS6000_BTM_HTM \
2548 | RS6000_BTM_POPCNTD \
2549 | RS6000_BTM_CELL \
2550 | RS6000_BTM_DFP \
2551 | RS6000_BTM_HARD_FLOAT \
2552 | RS6000_BTM_LDBL128 \
2553 | RS6000_BTM_FLOAT128)
2555 /* Define builtin enum index. */
2557 #undef RS6000_BUILTIN_0
2558 #undef RS6000_BUILTIN_1
2559 #undef RS6000_BUILTIN_2
2560 #undef RS6000_BUILTIN_3
2561 #undef RS6000_BUILTIN_A
2562 #undef RS6000_BUILTIN_D
2563 #undef RS6000_BUILTIN_H
2564 #undef RS6000_BUILTIN_P
2565 #undef RS6000_BUILTIN_Q
2566 #undef RS6000_BUILTIN_X
2568 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2569 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2570 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2571 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2572 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2573 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2574 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2575 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2576 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2577 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2579 enum rs6000_builtins
2581 #include "rs6000-builtin.def"
2583 RS6000_BUILTIN_COUNT
2586 #undef RS6000_BUILTIN_0
2587 #undef RS6000_BUILTIN_1
2588 #undef RS6000_BUILTIN_2
2589 #undef RS6000_BUILTIN_3
2590 #undef RS6000_BUILTIN_A
2591 #undef RS6000_BUILTIN_D
2592 #undef RS6000_BUILTIN_H
2593 #undef RS6000_BUILTIN_P
2594 #undef RS6000_BUILTIN_Q
2595 #undef RS6000_BUILTIN_X
2597 enum rs6000_builtin_type_index
2599 RS6000_BTI_NOT_OPAQUE,
2600 RS6000_BTI_opaque_V2SI,
2601 RS6000_BTI_opaque_V2SF,
2602 RS6000_BTI_opaque_p_V2SI,
2603 RS6000_BTI_opaque_V4SI,
2604 RS6000_BTI_V16QI,
2605 RS6000_BTI_V1TI,
2606 RS6000_BTI_V2SI,
2607 RS6000_BTI_V2SF,
2608 RS6000_BTI_V2DI,
2609 RS6000_BTI_V2DF,
2610 RS6000_BTI_V4HI,
2611 RS6000_BTI_V4SI,
2612 RS6000_BTI_V4SF,
2613 RS6000_BTI_V8HI,
2614 RS6000_BTI_unsigned_V16QI,
2615 RS6000_BTI_unsigned_V1TI,
2616 RS6000_BTI_unsigned_V8HI,
2617 RS6000_BTI_unsigned_V4SI,
2618 RS6000_BTI_unsigned_V2DI,
2619 RS6000_BTI_bool_char, /* __bool char */
2620 RS6000_BTI_bool_short, /* __bool short */
2621 RS6000_BTI_bool_int, /* __bool int */
2622 RS6000_BTI_bool_long, /* __bool long */
2623 RS6000_BTI_pixel, /* __pixel */
2624 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2625 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2626 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2627 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2628 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2629 RS6000_BTI_long, /* long_integer_type_node */
2630 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2631 RS6000_BTI_long_long, /* long_long_integer_type_node */
2632 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2633 RS6000_BTI_INTQI, /* intQI_type_node */
2634 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2635 RS6000_BTI_INTHI, /* intHI_type_node */
2636 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2637 RS6000_BTI_INTSI, /* intSI_type_node */
2638 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2639 RS6000_BTI_INTDI, /* intDI_type_node */
2640 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2641 RS6000_BTI_INTTI, /* intTI_type_node */
2642 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2643 RS6000_BTI_float, /* float_type_node */
2644 RS6000_BTI_double, /* double_type_node */
2645 RS6000_BTI_long_double, /* long_double_type_node */
2646 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2647 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2648 RS6000_BTI_void, /* void_type_node */
2649 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2650 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2651 RS6000_BTI_const_str, /* pointer to const char * */
2652 RS6000_BTI_MAX
2656 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2657 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2658 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2659 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2660 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2661 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2662 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2663 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2664 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2665 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2666 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2667 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2668 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2669 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2670 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2671 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2672 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2673 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2674 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2675 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2676 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2677 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2678 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2679 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2680 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2681 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2682 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2683 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2684 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2686 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2687 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2688 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2689 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2690 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2691 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2692 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2693 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2694 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2695 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2696 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2697 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2698 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2699 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2700 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2701 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2702 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2703 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2704 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2705 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2706 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2707 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2708 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2710 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2711 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2713 #define TARGET_SUPPORTS_WIDE_INT 1
2715 #if (GCC_VERSION >= 3000)
2716 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2717 #endif