1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Einfo
; use Einfo
;
29 with Errout
; use Errout
;
30 with Exp_Ch2
; use Exp_Ch2
;
31 with Exp_Ch4
; use Exp_Ch4
;
32 with Exp_Ch11
; use Exp_Ch11
;
33 with Exp_Pakd
; use Exp_Pakd
;
34 with Exp_Tss
; use Exp_Tss
;
35 with Exp_Util
; use Exp_Util
;
36 with Elists
; use Elists
;
37 with Eval_Fat
; use Eval_Fat
;
38 with Freeze
; use Freeze
;
40 with Nlists
; use Nlists
;
41 with Nmake
; use Nmake
;
43 with Output
; use Output
;
44 with Restrict
; use Restrict
;
45 with Rident
; use Rident
;
46 with Rtsfind
; use Rtsfind
;
48 with Sem_Aux
; use Sem_Aux
;
49 with Sem_Eval
; use Sem_Eval
;
50 with Sem_Ch3
; use Sem_Ch3
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Res
; use Sem_Res
;
53 with Sem_Util
; use Sem_Util
;
54 with Sem_Warn
; use Sem_Warn
;
55 with Sinfo
; use Sinfo
;
56 with Sinput
; use Sinput
;
57 with Snames
; use Snames
;
58 with Sprint
; use Sprint
;
59 with Stand
; use Stand
;
60 with Targparm
; use Targparm
;
61 with Tbuild
; use Tbuild
;
62 with Ttypes
; use Ttypes
;
63 with Urealp
; use Urealp
;
64 with Validsw
; use Validsw
;
66 package body Checks
is
68 -- General note: many of these routines are concerned with generating
69 -- checking code to make sure that constraint error is raised at runtime.
70 -- Clearly this code is only needed if the expander is active, since
71 -- otherwise we will not be generating code or going into the runtime
74 -- We therefore disconnect most of these checks if the expander is
75 -- inactive. This has the additional benefit that we do not need to
76 -- worry about the tree being messed up by previous errors (since errors
77 -- turn off expansion anyway).
79 -- There are a few exceptions to the above rule. For instance routines
80 -- such as Apply_Scalar_Range_Check that do not insert any code can be
81 -- safely called even when the Expander is inactive (but Errors_Detected
82 -- is 0). The benefit of executing this code when expansion is off, is
83 -- the ability to emit constraint error warning for static expressions
84 -- even when we are not generating code.
86 -------------------------------------
87 -- Suppression of Redundant Checks --
88 -------------------------------------
90 -- This unit implements a limited circuit for removal of redundant
91 -- checks. The processing is based on a tracing of simple sequential
92 -- flow. For any sequence of statements, we save expressions that are
93 -- marked to be checked, and then if the same expression appears later
94 -- with the same check, then under certain circumstances, the second
95 -- check can be suppressed.
97 -- Basically, we can suppress the check if we know for certain that
98 -- the previous expression has been elaborated (together with its
99 -- check), and we know that the exception frame is the same, and that
100 -- nothing has happened to change the result of the exception.
102 -- Let us examine each of these three conditions in turn to describe
103 -- how we ensure that this condition is met.
105 -- First, we need to know for certain that the previous expression has
106 -- been executed. This is done principally by the mechanism of calling
107 -- Conditional_Statements_Begin at the start of any statement sequence
108 -- and Conditional_Statements_End at the end. The End call causes all
109 -- checks remembered since the Begin call to be discarded. This does
110 -- miss a few cases, notably the case of a nested BEGIN-END block with
111 -- no exception handlers. But the important thing is to be conservative.
112 -- The other protection is that all checks are discarded if a label
113 -- is encountered, since then the assumption of sequential execution
114 -- is violated, and we don't know enough about the flow.
116 -- Second, we need to know that the exception frame is the same. We
117 -- do this by killing all remembered checks when we enter a new frame.
118 -- Again, that's over-conservative, but generally the cases we can help
119 -- with are pretty local anyway (like the body of a loop for example).
121 -- Third, we must be sure to forget any checks which are no longer valid.
122 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
123 -- used to note any changes to local variables. We only attempt to deal
124 -- with checks involving local variables, so we do not need to worry
125 -- about global variables. Second, a call to any non-global procedure
126 -- causes us to abandon all stored checks, since such a all may affect
127 -- the values of any local variables.
129 -- The following define the data structures used to deal with remembering
130 -- checks so that redundant checks can be eliminated as described above.
132 -- Right now, the only expressions that we deal with are of the form of
133 -- simple local objects (either declared locally, or IN parameters) or
134 -- such objects plus/minus a compile time known constant. We can do
135 -- more later on if it seems worthwhile, but this catches many simple
136 -- cases in practice.
138 -- The following record type reflects a single saved check. An entry
139 -- is made in the stack of saved checks if and only if the expression
140 -- has been elaborated with the indicated checks.
142 type Saved_Check
is record
144 -- Set True if entry is killed by Kill_Checks
147 -- The entity involved in the expression that is checked
150 -- A compile time value indicating the result of adding or
151 -- subtracting a compile time value. This value is to be
152 -- added to the value of the Entity. A value of zero is
153 -- used for the case of a simple entity reference.
155 Check_Type
: Character;
156 -- This is set to 'R' for a range check (in which case Target_Type
157 -- is set to the target type for the range check) or to 'O' for an
158 -- overflow check (in which case Target_Type is set to Empty).
160 Target_Type
: Entity_Id
;
161 -- Used only if Do_Range_Check is set. Records the target type for
162 -- the check. We need this, because a check is a duplicate only if
163 -- it has the same target type (or more accurately one with a
164 -- range that is smaller or equal to the stored target type of a
168 -- The following table keeps track of saved checks. Rather than use an
169 -- extensible table. We just use a table of fixed size, and we discard
170 -- any saved checks that do not fit. That's very unlikely to happen and
171 -- this is only an optimization in any case.
173 Saved_Checks
: array (Int
range 1 .. 200) of Saved_Check
;
174 -- Array of saved checks
176 Num_Saved_Checks
: Nat
:= 0;
177 -- Number of saved checks
179 -- The following stack keeps track of statement ranges. It is treated
180 -- as a stack. When Conditional_Statements_Begin is called, an entry
181 -- is pushed onto this stack containing the value of Num_Saved_Checks
182 -- at the time of the call. Then when Conditional_Statements_End is
183 -- called, this value is popped off and used to reset Num_Saved_Checks.
185 -- Note: again, this is a fixed length stack with a size that should
186 -- always be fine. If the value of the stack pointer goes above the
187 -- limit, then we just forget all saved checks.
189 Saved_Checks_Stack
: array (Int
range 1 .. 100) of Nat
;
190 Saved_Checks_TOS
: Nat
:= 0;
192 -----------------------
193 -- Local Subprograms --
194 -----------------------
196 procedure Apply_Float_Conversion_Check
198 Target_Typ
: Entity_Id
);
199 -- The checks on a conversion from a floating-point type to an integer
200 -- type are delicate. They have to be performed before conversion, they
201 -- have to raise an exception when the operand is a NaN, and rounding must
202 -- be taken into account to determine the safe bounds of the operand.
204 procedure Apply_Selected_Length_Checks
206 Target_Typ
: Entity_Id
;
207 Source_Typ
: Entity_Id
;
208 Do_Static
: Boolean);
209 -- This is the subprogram that does all the work for Apply_Length_Check
210 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
211 -- described for the above routines. The Do_Static flag indicates that
212 -- only a static check is to be done.
214 procedure Apply_Selected_Range_Checks
216 Target_Typ
: Entity_Id
;
217 Source_Typ
: Entity_Id
;
218 Do_Static
: Boolean);
219 -- This is the subprogram that does all the work for Apply_Range_Check.
220 -- Expr, Target_Typ and Source_Typ are as described for the above
221 -- routine. The Do_Static flag indicates that only a static check is
224 type Check_Type
is new Check_Id
range Access_Check
.. Division_Check
;
225 function Check_Needed
(Nod
: Node_Id
; Check
: Check_Type
) return Boolean;
226 -- This function is used to see if an access or division by zero check is
227 -- needed. The check is to be applied to a single variable appearing in the
228 -- source, and N is the node for the reference. If N is not of this form,
229 -- True is returned with no further processing. If N is of the right form,
230 -- then further processing determines if the given Check is needed.
232 -- The particular circuit is to see if we have the case of a check that is
233 -- not needed because it appears in the right operand of a short circuited
234 -- conditional where the left operand guards the check. For example:
236 -- if Var = 0 or else Q / Var > 12 then
240 -- In this example, the division check is not required. At the same time
241 -- we can issue warnings for suspicious use of non-short-circuited forms,
244 -- if Var = 0 or Q / Var > 12 then
250 Check_Type
: Character;
251 Target_Type
: Entity_Id
;
252 Entry_OK
: out Boolean;
256 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
257 -- to see if a check is of the form for optimization, and if so, to see
258 -- if it has already been performed. Expr is the expression to check,
259 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
260 -- Target_Type is the target type for a range check, and Empty for an
261 -- overflow check. If the entry is not of the form for optimization,
262 -- then Entry_OK is set to False, and the remaining out parameters
263 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
264 -- entity and offset from the expression. Check_Num is the number of
265 -- a matching saved entry in Saved_Checks, or zero if no such entry
268 function Get_Discriminal
(E
: Entity_Id
; Bound
: Node_Id
) return Node_Id
;
269 -- If a discriminal is used in constraining a prival, Return reference
270 -- to the discriminal of the protected body (which renames the parameter
271 -- of the enclosing protected operation). This clumsy transformation is
272 -- needed because privals are created too late and their actual subtypes
273 -- are not available when analysing the bodies of the protected operations.
274 -- This function is called whenever the bound is an entity and the scope
275 -- indicates a protected operation. If the bound is an in-parameter of
276 -- a protected operation that is not a prival, the function returns the
278 -- To be cleaned up???
280 function Guard_Access
283 Ck_Node
: Node_Id
) return Node_Id
;
284 -- In the access type case, guard the test with a test to ensure
285 -- that the access value is non-null, since the checks do not
286 -- not apply to null access values.
288 procedure Install_Static_Check
(R_Cno
: Node_Id
; Loc
: Source_Ptr
);
289 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
290 -- Constraint_Error node.
292 function Range_Or_Validity_Checks_Suppressed
293 (Expr
: Node_Id
) return Boolean;
294 -- Returns True if either range or validity checks or both are suppressed
295 -- for the type of the given expression, or, if the expression is the name
296 -- of an entity, if these checks are suppressed for the entity.
298 function Selected_Length_Checks
300 Target_Typ
: Entity_Id
;
301 Source_Typ
: Entity_Id
;
302 Warn_Node
: Node_Id
) return Check_Result
;
303 -- Like Apply_Selected_Length_Checks, except it doesn't modify
304 -- anything, just returns a list of nodes as described in the spec of
305 -- this package for the Range_Check function.
307 function Selected_Range_Checks
309 Target_Typ
: Entity_Id
;
310 Source_Typ
: Entity_Id
;
311 Warn_Node
: Node_Id
) return Check_Result
;
312 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
313 -- just returns a list of nodes as described in the spec of this package
314 -- for the Range_Check function.
316 ------------------------------
317 -- Access_Checks_Suppressed --
318 ------------------------------
320 function Access_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
322 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
323 return Is_Check_Suppressed
(E
, Access_Check
);
325 return Scope_Suppress
(Access_Check
);
327 end Access_Checks_Suppressed
;
329 -------------------------------------
330 -- Accessibility_Checks_Suppressed --
331 -------------------------------------
333 function Accessibility_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
335 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
336 return Is_Check_Suppressed
(E
, Accessibility_Check
);
338 return Scope_Suppress
(Accessibility_Check
);
340 end Accessibility_Checks_Suppressed
;
342 -----------------------------
343 -- Activate_Division_Check --
344 -----------------------------
346 procedure Activate_Division_Check
(N
: Node_Id
) is
348 Set_Do_Division_Check
(N
, True);
349 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
350 end Activate_Division_Check
;
352 -----------------------------
353 -- Activate_Overflow_Check --
354 -----------------------------
356 procedure Activate_Overflow_Check
(N
: Node_Id
) is
358 Set_Do_Overflow_Check
(N
, True);
359 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
360 end Activate_Overflow_Check
;
362 --------------------------
363 -- Activate_Range_Check --
364 --------------------------
366 procedure Activate_Range_Check
(N
: Node_Id
) is
368 Set_Do_Range_Check
(N
, True);
369 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
370 end Activate_Range_Check
;
372 ---------------------------------
373 -- Alignment_Checks_Suppressed --
374 ---------------------------------
376 function Alignment_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
378 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
379 return Is_Check_Suppressed
(E
, Alignment_Check
);
381 return Scope_Suppress
(Alignment_Check
);
383 end Alignment_Checks_Suppressed
;
385 -------------------------
386 -- Append_Range_Checks --
387 -------------------------
389 procedure Append_Range_Checks
390 (Checks
: Check_Result
;
392 Suppress_Typ
: Entity_Id
;
393 Static_Sloc
: Source_Ptr
;
396 Internal_Flag_Node
: constant Node_Id
:= Flag_Node
;
397 Internal_Static_Sloc
: constant Source_Ptr
:= Static_Sloc
;
399 Checks_On
: constant Boolean :=
400 (not Index_Checks_Suppressed
(Suppress_Typ
))
402 (not Range_Checks_Suppressed
(Suppress_Typ
));
405 -- For now we just return if Checks_On is false, however this should
406 -- be enhanced to check for an always True value in the condition
407 -- and to generate a compilation warning???
409 if not Checks_On
then
414 exit when No
(Checks
(J
));
416 if Nkind
(Checks
(J
)) = N_Raise_Constraint_Error
417 and then Present
(Condition
(Checks
(J
)))
419 if not Has_Dynamic_Range_Check
(Internal_Flag_Node
) then
420 Append_To
(Stmts
, Checks
(J
));
421 Set_Has_Dynamic_Range_Check
(Internal_Flag_Node
);
427 Make_Raise_Constraint_Error
(Internal_Static_Sloc
,
428 Reason
=> CE_Range_Check_Failed
));
431 end Append_Range_Checks
;
433 ------------------------
434 -- Apply_Access_Check --
435 ------------------------
437 procedure Apply_Access_Check
(N
: Node_Id
) is
438 P
: constant Node_Id
:= Prefix
(N
);
441 -- We do not need checks if we are not generating code (i.e. the
442 -- expander is not active). This is not just an optimization, there
443 -- are cases (e.g. with pragma Debug) where generating the checks
444 -- can cause real trouble).
446 if not Full_Expander_Active
then
450 -- No check if short circuiting makes check unnecessary
452 if not Check_Needed
(P
, Access_Check
) then
456 -- No check if accessing the Offset_To_Top component of a dispatch
457 -- table. They are safe by construction.
459 if Tagged_Type_Expansion
460 and then Present
(Etype
(P
))
461 and then RTU_Loaded
(Ada_Tags
)
462 and then RTE_Available
(RE_Offset_To_Top_Ptr
)
463 and then Etype
(P
) = RTE
(RE_Offset_To_Top_Ptr
)
468 -- Otherwise go ahead and install the check
470 Install_Null_Excluding_Check
(P
);
471 end Apply_Access_Check
;
473 -------------------------------
474 -- Apply_Accessibility_Check --
475 -------------------------------
477 procedure Apply_Accessibility_Check
480 Insert_Node
: Node_Id
)
482 Loc
: constant Source_Ptr
:= Sloc
(N
);
483 Param_Ent
: Entity_Id
:= Param_Entity
(N
);
484 Param_Level
: Node_Id
;
485 Type_Level
: Node_Id
;
488 if Ada_Version
>= Ada_2012
489 and then not Present
(Param_Ent
)
490 and then Is_Entity_Name
(N
)
491 and then Ekind_In
(Entity
(N
), E_Constant
, E_Variable
)
492 and then Present
(Effective_Extra_Accessibility
(Entity
(N
)))
494 Param_Ent
:= Entity
(N
);
495 while Present
(Renamed_Object
(Param_Ent
)) loop
497 -- Renamed_Object must return an Entity_Name here
498 -- because of preceding "Present (E_E_A (...))" test.
500 Param_Ent
:= Entity
(Renamed_Object
(Param_Ent
));
504 if Inside_A_Generic
then
507 -- Only apply the run-time check if the access parameter has an
508 -- associated extra access level parameter and when the level of the
509 -- type is less deep than the level of the access parameter, and
510 -- accessibility checks are not suppressed.
512 elsif Present
(Param_Ent
)
513 and then Present
(Extra_Accessibility
(Param_Ent
))
514 and then UI_Gt
(Object_Access_Level
(N
),
515 Deepest_Type_Access_Level
(Typ
))
516 and then not Accessibility_Checks_Suppressed
(Param_Ent
)
517 and then not Accessibility_Checks_Suppressed
(Typ
)
520 New_Occurrence_Of
(Extra_Accessibility
(Param_Ent
), Loc
);
523 Make_Integer_Literal
(Loc
, Deepest_Type_Access_Level
(Typ
));
525 -- Raise Program_Error if the accessibility level of the access
526 -- parameter is deeper than the level of the target access type.
528 Insert_Action
(Insert_Node
,
529 Make_Raise_Program_Error
(Loc
,
532 Left_Opnd
=> Param_Level
,
533 Right_Opnd
=> Type_Level
),
534 Reason
=> PE_Accessibility_Check_Failed
));
536 Analyze_And_Resolve
(N
);
538 end Apply_Accessibility_Check
;
540 --------------------------------
541 -- Apply_Address_Clause_Check --
542 --------------------------------
544 procedure Apply_Address_Clause_Check
(E
: Entity_Id
; N
: Node_Id
) is
545 AC
: constant Node_Id
:= Address_Clause
(E
);
546 Loc
: constant Source_Ptr
:= Sloc
(AC
);
547 Typ
: constant Entity_Id
:= Etype
(E
);
548 Aexp
: constant Node_Id
:= Expression
(AC
);
551 -- Address expression (not necessarily the same as Aexp, for example
552 -- when Aexp is a reference to a constant, in which case Expr gets
553 -- reset to reference the value expression of the constant.
555 procedure Compile_Time_Bad_Alignment
;
556 -- Post error warnings when alignment is known to be incompatible. Note
557 -- that we do not go as far as inserting a raise of Program_Error since
558 -- this is an erroneous case, and it may happen that we are lucky and an
559 -- underaligned address turns out to be OK after all.
561 --------------------------------
562 -- Compile_Time_Bad_Alignment --
563 --------------------------------
565 procedure Compile_Time_Bad_Alignment
is
567 if Address_Clause_Overlay_Warnings
then
569 ("?specified address for& may be inconsistent with alignment ",
572 ("\?program execution may be erroneous (RM 13.3(27))",
574 Set_Address_Warning_Posted
(AC
);
576 end Compile_Time_Bad_Alignment
;
578 -- Start of processing for Apply_Address_Clause_Check
581 -- See if alignment check needed. Note that we never need a check if the
582 -- maximum alignment is one, since the check will always succeed.
584 -- Note: we do not check for checks suppressed here, since that check
585 -- was done in Sem_Ch13 when the address clause was processed. We are
586 -- only called if checks were not suppressed. The reason for this is
587 -- that we have to delay the call to Apply_Alignment_Check till freeze
588 -- time (so that all types etc are elaborated), but we have to check
589 -- the status of check suppressing at the point of the address clause.
592 or else not Check_Address_Alignment
(AC
)
593 or else Maximum_Alignment
= 1
598 -- Obtain expression from address clause
600 Expr
:= Expression
(AC
);
602 -- The following loop digs for the real expression to use in the check
605 -- For constant, get constant expression
607 if Is_Entity_Name
(Expr
)
608 and then Ekind
(Entity
(Expr
)) = E_Constant
610 Expr
:= Constant_Value
(Entity
(Expr
));
612 -- For unchecked conversion, get result to convert
614 elsif Nkind
(Expr
) = N_Unchecked_Type_Conversion
then
615 Expr
:= Expression
(Expr
);
617 -- For (common case) of To_Address call, get argument
619 elsif Nkind
(Expr
) = N_Function_Call
620 and then Is_Entity_Name
(Name
(Expr
))
621 and then Is_RTE
(Entity
(Name
(Expr
)), RE_To_Address
)
623 Expr
:= First
(Parameter_Associations
(Expr
));
625 if Nkind
(Expr
) = N_Parameter_Association
then
626 Expr
:= Explicit_Actual_Parameter
(Expr
);
629 -- We finally have the real expression
636 -- See if we know that Expr has a bad alignment at compile time
638 if Compile_Time_Known_Value
(Expr
)
639 and then (Known_Alignment
(E
) or else Known_Alignment
(Typ
))
642 AL
: Uint
:= Alignment
(Typ
);
645 -- The object alignment might be more restrictive than the
648 if Known_Alignment
(E
) then
652 if Expr_Value
(Expr
) mod AL
/= 0 then
653 Compile_Time_Bad_Alignment
;
659 -- If the expression has the form X'Address, then we can find out if
660 -- the object X has an alignment that is compatible with the object E.
661 -- If it hasn't or we don't know, we defer issuing the warning until
662 -- the end of the compilation to take into account back end annotations.
664 elsif Nkind
(Expr
) = N_Attribute_Reference
665 and then Attribute_Name
(Expr
) = Name_Address
666 and then Has_Compatible_Alignment
(E
, Prefix
(Expr
)) = Known_Compatible
671 -- Here we do not know if the value is acceptable. Strictly we don't
672 -- have to do anything, since if the alignment is bad, we have an
673 -- erroneous program. However we are allowed to check for erroneous
674 -- conditions and we decide to do this by default if the check is not
677 -- However, don't do the check if elaboration code is unwanted
679 if Restriction_Active
(No_Elaboration_Code
) then
682 -- Generate a check to raise PE if alignment may be inappropriate
685 -- If the original expression is a non-static constant, use the
686 -- name of the constant itself rather than duplicating its
687 -- defining expression, which was extracted above.
689 -- Note: Expr is empty if the address-clause is applied to in-mode
690 -- actuals (allowed by 13.1(22)).
692 if not Present
(Expr
)
694 (Is_Entity_Name
(Expression
(AC
))
695 and then Ekind
(Entity
(Expression
(AC
))) = E_Constant
696 and then Nkind
(Parent
(Entity
(Expression
(AC
))))
697 = N_Object_Declaration
)
699 Expr
:= New_Copy_Tree
(Expression
(AC
));
701 Remove_Side_Effects
(Expr
);
704 Insert_After_And_Analyze
(N
,
705 Make_Raise_Program_Error
(Loc
,
712 (RTE
(RE_Integer_Address
), Expr
),
714 Make_Attribute_Reference
(Loc
,
715 Prefix
=> New_Occurrence_Of
(E
, Loc
),
716 Attribute_Name
=> Name_Alignment
)),
717 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
718 Reason
=> PE_Misaligned_Address_Value
),
719 Suppress
=> All_Checks
);
724 -- If we have some missing run time component in configurable run time
725 -- mode then just skip the check (it is not required in any case).
727 when RE_Not_Available
=>
729 end Apply_Address_Clause_Check
;
731 -------------------------------------
732 -- Apply_Arithmetic_Overflow_Check --
733 -------------------------------------
735 -- This routine is called only if the type is an integer type, and a
736 -- software arithmetic overflow check may be needed for op (add, subtract,
737 -- or multiply). This check is performed only if Software_Overflow_Checking
738 -- is enabled and Do_Overflow_Check is set. In this case we expand the
739 -- operation into a more complex sequence of tests that ensures that
740 -- overflow is properly caught.
742 procedure Apply_Arithmetic_Overflow_Check
(N
: Node_Id
) is
743 Loc
: constant Source_Ptr
:= Sloc
(N
);
744 Typ
: constant Entity_Id
:= Etype
(N
);
745 Rtyp
: constant Entity_Id
:= Root_Type
(Typ
);
748 -- An interesting special case. If the arithmetic operation appears as
749 -- the operand of a type conversion:
753 -- and all the following conditions apply:
755 -- arithmetic operation is for a signed integer type
756 -- target type type1 is a static integer subtype
757 -- range of x and y are both included in the range of type1
758 -- range of x op y is included in the range of type1
759 -- size of type1 is at least twice the result size of op
761 -- then we don't do an overflow check in any case, instead we transform
762 -- the operation so that we end up with:
764 -- type1 (type1 (x) op type1 (y))
766 -- This avoids intermediate overflow before the conversion. It is
767 -- explicitly permitted by RM 3.5.4(24):
769 -- For the execution of a predefined operation of a signed integer
770 -- type, the implementation need not raise Constraint_Error if the
771 -- result is outside the base range of the type, so long as the
772 -- correct result is produced.
774 -- It's hard to imagine that any programmer counts on the exception
775 -- being raised in this case, and in any case it's wrong coding to
776 -- have this expectation, given the RM permission. Furthermore, other
777 -- Ada compilers do allow such out of range results.
779 -- Note that we do this transformation even if overflow checking is
780 -- off, since this is precisely about giving the "right" result and
781 -- avoiding the need for an overflow check.
783 -- Note: this circuit is partially redundant with respect to the similar
784 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
785 -- with cases that do not come through here. We still need the following
786 -- processing even with the Exp_Ch4 code in place, since we want to be
787 -- sure not to generate the arithmetic overflow check in these cases
788 -- (Exp_Ch4 would have a hard time removing them once generated).
790 if Is_Signed_Integer_Type
(Typ
)
791 and then Nkind
(Parent
(N
)) = N_Type_Conversion
794 Target_Type
: constant Entity_Id
:=
795 Base_Type
(Entity
(Subtype_Mark
(Parent
(N
))));
809 if Is_Integer_Type
(Target_Type
)
810 and then RM_Size
(Root_Type
(Target_Type
)) >= 2 * RM_Size
(Rtyp
)
812 Tlo
:= Expr_Value
(Type_Low_Bound
(Target_Type
));
813 Thi
:= Expr_Value
(Type_High_Bound
(Target_Type
));
816 (Left_Opnd
(N
), LOK
, Llo
, Lhi
, Assume_Valid
=> True);
818 (Right_Opnd
(N
), ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
821 and then Tlo
<= Llo
and then Lhi
<= Thi
822 and then Tlo
<= Rlo
and then Rhi
<= Thi
824 Determine_Range
(N
, VOK
, Vlo
, Vhi
, Assume_Valid
=> True);
826 if VOK
and then Tlo
<= Vlo
and then Vhi
<= Thi
then
827 Rewrite
(Left_Opnd
(N
),
828 Make_Type_Conversion
(Loc
,
829 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
830 Expression
=> Relocate_Node
(Left_Opnd
(N
))));
832 Rewrite
(Right_Opnd
(N
),
833 Make_Type_Conversion
(Loc
,
834 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
835 Expression
=> Relocate_Node
(Right_Opnd
(N
))));
837 -- Rewrite the conversion operand so that the original
838 -- node is retained, in order to avoid the warning for
839 -- redundant conversions in Resolve_Type_Conversion.
841 Rewrite
(N
, Relocate_Node
(N
));
843 Set_Etype
(N
, Target_Type
);
845 Analyze_And_Resolve
(Left_Opnd
(N
), Target_Type
);
846 Analyze_And_Resolve
(Right_Opnd
(N
), Target_Type
);
848 -- Given that the target type is twice the size of the
849 -- source type, overflow is now impossible, so we can
850 -- safely kill the overflow check and return.
852 Set_Do_Overflow_Check
(N
, False);
860 -- Now see if an overflow check is required
863 Siz
: constant Int
:= UI_To_Int
(Esize
(Rtyp
));
864 Dsiz
: constant Int
:= Siz
* 2;
871 -- Skip check if back end does overflow checks, or the overflow flag
872 -- is not set anyway, or we are not doing code expansion, or the
873 -- parent node is a type conversion whose operand is an arithmetic
874 -- operation on signed integers on which the expander can promote
875 -- later the operands to type Integer (see Expand_N_Type_Conversion).
877 -- Special case CLI target, where arithmetic overflow checks can be
878 -- performed for integer and long_integer
880 if Backend_Overflow_Checks_On_Target
881 or else not Do_Overflow_Check
(N
)
882 or else not Full_Expander_Active
883 or else (Present
(Parent
(N
))
884 and then Nkind
(Parent
(N
)) = N_Type_Conversion
885 and then Integer_Promotion_Possible
(Parent
(N
)))
887 (VM_Target
= CLI_Target
and then Siz
>= Standard_Integer_Size
)
892 -- Otherwise, generate the full general code for front end overflow
893 -- detection, which works by doing arithmetic in a larger type:
899 -- Typ (Checktyp (x) op Checktyp (y));
901 -- where Typ is the type of the original expression, and Checktyp is
902 -- an integer type of sufficient length to hold the largest possible
905 -- If the size of check type exceeds the size of Long_Long_Integer,
906 -- we use a different approach, expanding to:
908 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
910 -- where xxx is Add, Multiply or Subtract as appropriate
912 -- Find check type if one exists
914 if Dsiz
<= Standard_Integer_Size
then
915 Ctyp
:= Standard_Integer
;
917 elsif Dsiz
<= Standard_Long_Long_Integer_Size
then
918 Ctyp
:= Standard_Long_Long_Integer
;
920 -- No check type exists, use runtime call
923 if Nkind
(N
) = N_Op_Add
then
924 Cent
:= RE_Add_With_Ovflo_Check
;
926 elsif Nkind
(N
) = N_Op_Multiply
then
927 Cent
:= RE_Multiply_With_Ovflo_Check
;
930 pragma Assert
(Nkind
(N
) = N_Op_Subtract
);
931 Cent
:= RE_Subtract_With_Ovflo_Check
;
936 Make_Function_Call
(Loc
,
937 Name
=> New_Reference_To
(RTE
(Cent
), Loc
),
938 Parameter_Associations
=> New_List
(
939 OK_Convert_To
(RTE
(RE_Integer_64
), Left_Opnd
(N
)),
940 OK_Convert_To
(RTE
(RE_Integer_64
), Right_Opnd
(N
))))));
942 Analyze_And_Resolve
(N
, Typ
);
946 -- If we fall through, we have the case where we do the arithmetic
947 -- in the next higher type and get the check by conversion. In these
948 -- cases Ctyp is set to the type to be used as the check type.
950 Opnod
:= Relocate_Node
(N
);
952 Opnd
:= OK_Convert_To
(Ctyp
, Left_Opnd
(Opnod
));
955 Set_Etype
(Opnd
, Ctyp
);
956 Set_Analyzed
(Opnd
, True);
957 Set_Left_Opnd
(Opnod
, Opnd
);
959 Opnd
:= OK_Convert_To
(Ctyp
, Right_Opnd
(Opnod
));
962 Set_Etype
(Opnd
, Ctyp
);
963 Set_Analyzed
(Opnd
, True);
964 Set_Right_Opnd
(Opnod
, Opnd
);
966 -- The type of the operation changes to the base type of the check
967 -- type, and we reset the overflow check indication, since clearly no
968 -- overflow is possible now that we are using a double length type.
969 -- We also set the Analyzed flag to avoid a recursive attempt to
972 Set_Etype
(Opnod
, Base_Type
(Ctyp
));
973 Set_Do_Overflow_Check
(Opnod
, False);
974 Set_Analyzed
(Opnod
, True);
976 -- Now build the outer conversion
978 Opnd
:= OK_Convert_To
(Typ
, Opnod
);
980 Set_Etype
(Opnd
, Typ
);
982 -- In the discrete type case, we directly generate the range check
983 -- for the outer operand. This range check will implement the
984 -- required overflow check.
986 if Is_Discrete_Type
(Typ
) then
989 (Expression
(N
), Typ
, CE_Overflow_Check_Failed
);
991 -- For other types, we enable overflow checking on the conversion,
992 -- after setting the node as analyzed to prevent recursive attempts
993 -- to expand the conversion node.
996 Set_Analyzed
(Opnd
, True);
997 Enable_Overflow_Check
(Opnd
);
1002 when RE_Not_Available
=>
1005 end Apply_Arithmetic_Overflow_Check
;
1007 ----------------------------
1008 -- Apply_Constraint_Check --
1009 ----------------------------
1011 procedure Apply_Constraint_Check
1014 No_Sliding
: Boolean := False)
1016 Desig_Typ
: Entity_Id
;
1019 -- No checks inside a generic (check the instantiations)
1021 if Inside_A_Generic
then
1025 -- Apply required constraint checks
1027 if Is_Scalar_Type
(Typ
) then
1028 Apply_Scalar_Range_Check
(N
, Typ
);
1030 elsif Is_Array_Type
(Typ
) then
1032 -- A useful optimization: an aggregate with only an others clause
1033 -- always has the right bounds.
1035 if Nkind
(N
) = N_Aggregate
1036 and then No
(Expressions
(N
))
1038 (First
(Choices
(First
(Component_Associations
(N
)))))
1044 if Is_Constrained
(Typ
) then
1045 Apply_Length_Check
(N
, Typ
);
1048 Apply_Range_Check
(N
, Typ
);
1051 Apply_Range_Check
(N
, Typ
);
1054 elsif (Is_Record_Type
(Typ
)
1055 or else Is_Private_Type
(Typ
))
1056 and then Has_Discriminants
(Base_Type
(Typ
))
1057 and then Is_Constrained
(Typ
)
1059 Apply_Discriminant_Check
(N
, Typ
);
1061 elsif Is_Access_Type
(Typ
) then
1063 Desig_Typ
:= Designated_Type
(Typ
);
1065 -- No checks necessary if expression statically null
1067 if Known_Null
(N
) then
1068 if Can_Never_Be_Null
(Typ
) then
1069 Install_Null_Excluding_Check
(N
);
1072 -- No sliding possible on access to arrays
1074 elsif Is_Array_Type
(Desig_Typ
) then
1075 if Is_Constrained
(Desig_Typ
) then
1076 Apply_Length_Check
(N
, Typ
);
1079 Apply_Range_Check
(N
, Typ
);
1081 elsif Has_Discriminants
(Base_Type
(Desig_Typ
))
1082 and then Is_Constrained
(Desig_Typ
)
1084 Apply_Discriminant_Check
(N
, Typ
);
1087 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1088 -- this check if the constraint node is illegal, as shown by having
1089 -- an error posted. This additional guard prevents cascaded errors
1090 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1092 if Can_Never_Be_Null
(Typ
)
1093 and then not Can_Never_Be_Null
(Etype
(N
))
1094 and then not Error_Posted
(N
)
1096 Install_Null_Excluding_Check
(N
);
1099 end Apply_Constraint_Check
;
1101 ------------------------------
1102 -- Apply_Discriminant_Check --
1103 ------------------------------
1105 procedure Apply_Discriminant_Check
1108 Lhs
: Node_Id
:= Empty
)
1110 Loc
: constant Source_Ptr
:= Sloc
(N
);
1111 Do_Access
: constant Boolean := Is_Access_Type
(Typ
);
1112 S_Typ
: Entity_Id
:= Etype
(N
);
1116 function Denotes_Explicit_Dereference
(Obj
: Node_Id
) return Boolean;
1117 -- A heap object with an indefinite subtype is constrained by its
1118 -- initial value, and assigning to it requires a constraint_check.
1119 -- The target may be an explicit dereference, or a renaming of one.
1121 function Is_Aliased_Unconstrained_Component
return Boolean;
1122 -- It is possible for an aliased component to have a nominal
1123 -- unconstrained subtype (through instantiation). If this is a
1124 -- discriminated component assigned in the expansion of an aggregate
1125 -- in an initialization, the check must be suppressed. This unusual
1126 -- situation requires a predicate of its own.
1128 ----------------------------------
1129 -- Denotes_Explicit_Dereference --
1130 ----------------------------------
1132 function Denotes_Explicit_Dereference
(Obj
: Node_Id
) return Boolean is
1135 Nkind
(Obj
) = N_Explicit_Dereference
1137 (Is_Entity_Name
(Obj
)
1138 and then Present
(Renamed_Object
(Entity
(Obj
)))
1139 and then Nkind
(Renamed_Object
(Entity
(Obj
))) =
1140 N_Explicit_Dereference
);
1141 end Denotes_Explicit_Dereference
;
1143 ----------------------------------------
1144 -- Is_Aliased_Unconstrained_Component --
1145 ----------------------------------------
1147 function Is_Aliased_Unconstrained_Component
return Boolean is
1152 if Nkind
(Lhs
) /= N_Selected_Component
then
1155 Comp
:= Entity
(Selector_Name
(Lhs
));
1156 Pref
:= Prefix
(Lhs
);
1159 if Ekind
(Comp
) /= E_Component
1160 or else not Is_Aliased
(Comp
)
1165 return not Comes_From_Source
(Pref
)
1166 and then In_Instance
1167 and then not Is_Constrained
(Etype
(Comp
));
1168 end Is_Aliased_Unconstrained_Component
;
1170 -- Start of processing for Apply_Discriminant_Check
1174 T_Typ
:= Designated_Type
(Typ
);
1179 -- Nothing to do if discriminant checks are suppressed or else no code
1180 -- is to be generated
1182 if not Full_Expander_Active
1183 or else Discriminant_Checks_Suppressed
(T_Typ
)
1188 -- No discriminant checks necessary for an access when expression is
1189 -- statically Null. This is not only an optimization, it is fundamental
1190 -- because otherwise discriminant checks may be generated in init procs
1191 -- for types containing an access to a not-yet-frozen record, causing a
1192 -- deadly forward reference.
1194 -- Also, if the expression is of an access type whose designated type is
1195 -- incomplete, then the access value must be null and we suppress the
1198 if Known_Null
(N
) then
1201 elsif Is_Access_Type
(S_Typ
) then
1202 S_Typ
:= Designated_Type
(S_Typ
);
1204 if Ekind
(S_Typ
) = E_Incomplete_Type
then
1209 -- If an assignment target is present, then we need to generate the
1210 -- actual subtype if the target is a parameter or aliased object with
1211 -- an unconstrained nominal subtype.
1213 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1214 -- subtype to the parameter and dereference cases, since other aliased
1215 -- objects are unconstrained (unless the nominal subtype is explicitly
1219 and then (Present
(Param_Entity
(Lhs
))
1220 or else (Ada_Version
< Ada_2005
1221 and then not Is_Constrained
(T_Typ
)
1222 and then Is_Aliased_View
(Lhs
)
1223 and then not Is_Aliased_Unconstrained_Component
)
1224 or else (Ada_Version
>= Ada_2005
1225 and then not Is_Constrained
(T_Typ
)
1226 and then Denotes_Explicit_Dereference
(Lhs
)
1227 and then Nkind
(Original_Node
(Lhs
)) /=
1230 T_Typ
:= Get_Actual_Subtype
(Lhs
);
1233 -- Nothing to do if the type is unconstrained (this is the case where
1234 -- the actual subtype in the RM sense of N is unconstrained and no check
1237 if not Is_Constrained
(T_Typ
) then
1240 -- Ada 2005: nothing to do if the type is one for which there is a
1241 -- partial view that is constrained.
1243 elsif Ada_Version
>= Ada_2005
1244 and then Effectively_Has_Constrained_Partial_View
1245 (Typ
=> Base_Type
(T_Typ
),
1246 Scop
=> Current_Scope
)
1251 -- Nothing to do if the type is an Unchecked_Union
1253 if Is_Unchecked_Union
(Base_Type
(T_Typ
)) then
1257 -- Suppress checks if the subtypes are the same. the check must be
1258 -- preserved in an assignment to a formal, because the constraint is
1259 -- given by the actual.
1261 if Nkind
(Original_Node
(N
)) /= N_Allocator
1263 or else not Is_Entity_Name
(Lhs
)
1264 or else No
(Param_Entity
(Lhs
)))
1267 or else (Do_Access
and then Designated_Type
(Typ
) = S_Typ
))
1268 and then not Is_Aliased_View
(Lhs
)
1273 -- We can also eliminate checks on allocators with a subtype mark that
1274 -- coincides with the context type. The context type may be a subtype
1275 -- without a constraint (common case, a generic actual).
1277 elsif Nkind
(Original_Node
(N
)) = N_Allocator
1278 and then Is_Entity_Name
(Expression
(Original_Node
(N
)))
1281 Alloc_Typ
: constant Entity_Id
:=
1282 Entity
(Expression
(Original_Node
(N
)));
1285 if Alloc_Typ
= T_Typ
1286 or else (Nkind
(Parent
(T_Typ
)) = N_Subtype_Declaration
1287 and then Is_Entity_Name
(
1288 Subtype_Indication
(Parent
(T_Typ
)))
1289 and then Alloc_Typ
= Base_Type
(T_Typ
))
1297 -- See if we have a case where the types are both constrained, and all
1298 -- the constraints are constants. In this case, we can do the check
1299 -- successfully at compile time.
1301 -- We skip this check for the case where the node is a rewritten`
1302 -- allocator, because it already carries the context subtype, and
1303 -- extracting the discriminants from the aggregate is messy.
1305 if Is_Constrained
(S_Typ
)
1306 and then Nkind
(Original_Node
(N
)) /= N_Allocator
1316 -- S_Typ may not have discriminants in the case where it is a
1317 -- private type completed by a default discriminated type. In that
1318 -- case, we need to get the constraints from the underlying_type.
1319 -- If the underlying type is unconstrained (i.e. has no default
1320 -- discriminants) no check is needed.
1322 if Has_Discriminants
(S_Typ
) then
1323 Discr
:= First_Discriminant
(S_Typ
);
1324 DconS
:= First_Elmt
(Discriminant_Constraint
(S_Typ
));
1327 Discr
:= First_Discriminant
(Underlying_Type
(S_Typ
));
1330 (Discriminant_Constraint
(Underlying_Type
(S_Typ
)));
1336 -- A further optimization: if T_Typ is derived from S_Typ
1337 -- without imposing a constraint, no check is needed.
1339 if Nkind
(Original_Node
(Parent
(T_Typ
))) =
1340 N_Full_Type_Declaration
1343 Type_Def
: constant Node_Id
:=
1345 (Original_Node
(Parent
(T_Typ
)));
1347 if Nkind
(Type_Def
) = N_Derived_Type_Definition
1348 and then Is_Entity_Name
(Subtype_Indication
(Type_Def
))
1349 and then Entity
(Subtype_Indication
(Type_Def
)) = S_Typ
1357 DconT
:= First_Elmt
(Discriminant_Constraint
(T_Typ
));
1359 while Present
(Discr
) loop
1360 ItemS
:= Node
(DconS
);
1361 ItemT
:= Node
(DconT
);
1363 -- For a discriminated component type constrained by the
1364 -- current instance of an enclosing type, there is no
1365 -- applicable discriminant check.
1367 if Nkind
(ItemT
) = N_Attribute_Reference
1368 and then Is_Access_Type
(Etype
(ItemT
))
1369 and then Is_Entity_Name
(Prefix
(ItemT
))
1370 and then Is_Type
(Entity
(Prefix
(ItemT
)))
1375 -- If the expressions for the discriminants are identical
1376 -- and it is side-effect free (for now just an entity),
1377 -- this may be a shared constraint, e.g. from a subtype
1378 -- without a constraint introduced as a generic actual.
1379 -- Examine other discriminants if any.
1382 and then Is_Entity_Name
(ItemS
)
1386 elsif not Is_OK_Static_Expression
(ItemS
)
1387 or else not Is_OK_Static_Expression
(ItemT
)
1391 elsif Expr_Value
(ItemS
) /= Expr_Value
(ItemT
) then
1392 if Do_Access
then -- needs run-time check.
1395 Apply_Compile_Time_Constraint_Error
1396 (N
, "incorrect value for discriminant&?",
1397 CE_Discriminant_Check_Failed
, Ent
=> Discr
);
1404 Next_Discriminant
(Discr
);
1413 -- Here we need a discriminant check. First build the expression
1414 -- for the comparisons of the discriminants:
1416 -- (n.disc1 /= typ.disc1) or else
1417 -- (n.disc2 /= typ.disc2) or else
1419 -- (n.discn /= typ.discn)
1421 Cond
:= Build_Discriminant_Checks
(N
, T_Typ
);
1423 -- If Lhs is set and is a parameter, then the condition is
1424 -- guarded by: lhs'constrained and then (condition built above)
1426 if Present
(Param_Entity
(Lhs
)) then
1430 Make_Attribute_Reference
(Loc
,
1431 Prefix
=> New_Occurrence_Of
(Param_Entity
(Lhs
), Loc
),
1432 Attribute_Name
=> Name_Constrained
),
1433 Right_Opnd
=> Cond
);
1437 Cond
:= Guard_Access
(Cond
, Loc
, N
);
1441 Make_Raise_Constraint_Error
(Loc
,
1443 Reason
=> CE_Discriminant_Check_Failed
));
1444 end Apply_Discriminant_Check
;
1446 ------------------------
1447 -- Apply_Divide_Check --
1448 ------------------------
1450 procedure Apply_Divide_Check
(N
: Node_Id
) is
1451 Loc
: constant Source_Ptr
:= Sloc
(N
);
1452 Typ
: constant Entity_Id
:= Etype
(N
);
1453 Left
: constant Node_Id
:= Left_Opnd
(N
);
1454 Right
: constant Node_Id
:= Right_Opnd
(N
);
1464 pragma Warnings
(Off
, Lhi
);
1465 -- Don't actually use this value
1468 if Full_Expander_Active
1469 and then not Backend_Divide_Checks_On_Target
1470 and then Check_Needed
(Right
, Division_Check
)
1472 Determine_Range
(Right
, ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
1474 -- See if division by zero possible, and if so generate test. This
1475 -- part of the test is not controlled by the -gnato switch.
1477 if Do_Division_Check
(N
) then
1478 if (not ROK
) or else (Rlo
<= 0 and then 0 <= Rhi
) then
1480 Make_Raise_Constraint_Error
(Loc
,
1483 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Right
),
1484 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
1485 Reason
=> CE_Divide_By_Zero
));
1489 -- Test for extremely annoying case of xxx'First divided by -1
1491 if Do_Overflow_Check
(N
) then
1492 if Nkind
(N
) = N_Op_Divide
1493 and then Is_Signed_Integer_Type
(Typ
)
1495 Determine_Range
(Left
, LOK
, Llo
, Lhi
, Assume_Valid
=> True);
1496 LLB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
1498 if ((not ROK
) or else (Rlo
<= (-1) and then (-1) <= Rhi
))
1500 ((not LOK
) or else (Llo
= LLB
))
1503 Make_Raise_Constraint_Error
(Loc
,
1509 Duplicate_Subexpr_Move_Checks
(Left
),
1510 Right_Opnd
=> Make_Integer_Literal
(Loc
, LLB
)),
1514 Duplicate_Subexpr
(Right
),
1516 Make_Integer_Literal
(Loc
, -1))),
1517 Reason
=> CE_Overflow_Check_Failed
));
1522 end Apply_Divide_Check
;
1524 ----------------------------------
1525 -- Apply_Float_Conversion_Check --
1526 ----------------------------------
1528 -- Let F and I be the source and target types of the conversion. The RM
1529 -- specifies that a floating-point value X is rounded to the nearest
1530 -- integer, with halfway cases being rounded away from zero. The rounded
1531 -- value of X is checked against I'Range.
1533 -- The catch in the above paragraph is that there is no good way to know
1534 -- whether the round-to-integer operation resulted in overflow. A remedy is
1535 -- to perform a range check in the floating-point domain instead, however:
1537 -- (1) The bounds may not be known at compile time
1538 -- (2) The check must take into account rounding or truncation.
1539 -- (3) The range of type I may not be exactly representable in F.
1540 -- (4) For the rounding case, The end-points I'First - 0.5 and
1541 -- I'Last + 0.5 may or may not be in range, depending on the
1542 -- sign of I'First and I'Last.
1543 -- (5) X may be a NaN, which will fail any comparison
1545 -- The following steps correctly convert X with rounding:
1547 -- (1) If either I'First or I'Last is not known at compile time, use
1548 -- I'Base instead of I in the next three steps and perform a
1549 -- regular range check against I'Range after conversion.
1550 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1551 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1552 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1553 -- In other words, take one of the closest floating-point numbers
1554 -- (which is an integer value) to I'First, and see if it is in
1556 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1557 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1558 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1559 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1560 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1562 -- For the truncating case, replace steps (2) and (3) as follows:
1563 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1564 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1566 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1567 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1570 procedure Apply_Float_Conversion_Check
1572 Target_Typ
: Entity_Id
)
1574 LB
: constant Node_Id
:= Type_Low_Bound
(Target_Typ
);
1575 HB
: constant Node_Id
:= Type_High_Bound
(Target_Typ
);
1576 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
1577 Expr_Type
: constant Entity_Id
:= Base_Type
(Etype
(Ck_Node
));
1578 Target_Base
: constant Entity_Id
:=
1579 Implementation_Base_Type
(Target_Typ
);
1581 Par
: constant Node_Id
:= Parent
(Ck_Node
);
1582 pragma Assert
(Nkind
(Par
) = N_Type_Conversion
);
1583 -- Parent of check node, must be a type conversion
1585 Truncate
: constant Boolean := Float_Truncate
(Par
);
1586 Max_Bound
: constant Uint
:=
1588 (Machine_Radix_Value
(Expr_Type
),
1589 Machine_Mantissa_Value
(Expr_Type
) - 1) - 1;
1591 -- Largest bound, so bound plus or minus half is a machine number of F
1593 Ifirst
, Ilast
: Uint
;
1594 -- Bounds of integer type
1597 -- Bounds to check in floating-point domain
1599 Lo_OK
, Hi_OK
: Boolean;
1600 -- True iff Lo resp. Hi belongs to I'Range
1602 Lo_Chk
, Hi_Chk
: Node_Id
;
1603 -- Expressions that are False iff check fails
1605 Reason
: RT_Exception_Code
;
1608 if not Compile_Time_Known_Value
(LB
)
1609 or not Compile_Time_Known_Value
(HB
)
1612 -- First check that the value falls in the range of the base type,
1613 -- to prevent overflow during conversion and then perform a
1614 -- regular range check against the (dynamic) bounds.
1616 pragma Assert
(Target_Base
/= Target_Typ
);
1618 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', Par
);
1621 Apply_Float_Conversion_Check
(Ck_Node
, Target_Base
);
1622 Set_Etype
(Temp
, Target_Base
);
1624 Insert_Action
(Parent
(Par
),
1625 Make_Object_Declaration
(Loc
,
1626 Defining_Identifier
=> Temp
,
1627 Object_Definition
=> New_Occurrence_Of
(Target_Typ
, Loc
),
1628 Expression
=> New_Copy_Tree
(Par
)),
1629 Suppress
=> All_Checks
);
1632 Make_Raise_Constraint_Error
(Loc
,
1635 Left_Opnd
=> New_Occurrence_Of
(Temp
, Loc
),
1636 Right_Opnd
=> New_Occurrence_Of
(Target_Typ
, Loc
)),
1637 Reason
=> CE_Range_Check_Failed
));
1638 Rewrite
(Par
, New_Occurrence_Of
(Temp
, Loc
));
1644 -- Get the (static) bounds of the target type
1646 Ifirst
:= Expr_Value
(LB
);
1647 Ilast
:= Expr_Value
(HB
);
1649 -- A simple optimization: if the expression is a universal literal,
1650 -- we can do the comparison with the bounds and the conversion to
1651 -- an integer type statically. The range checks are unchanged.
1653 if Nkind
(Ck_Node
) = N_Real_Literal
1654 and then Etype
(Ck_Node
) = Universal_Real
1655 and then Is_Integer_Type
(Target_Typ
)
1656 and then Nkind
(Parent
(Ck_Node
)) = N_Type_Conversion
1659 Int_Val
: constant Uint
:= UR_To_Uint
(Realval
(Ck_Node
));
1662 if Int_Val
<= Ilast
and then Int_Val
>= Ifirst
then
1664 -- Conversion is safe
1666 Rewrite
(Parent
(Ck_Node
),
1667 Make_Integer_Literal
(Loc
, UI_To_Int
(Int_Val
)));
1668 Analyze_And_Resolve
(Parent
(Ck_Node
), Target_Typ
);
1674 -- Check against lower bound
1676 if Truncate
and then Ifirst
> 0 then
1677 Lo
:= Pred
(Expr_Type
, UR_From_Uint
(Ifirst
));
1681 Lo
:= Succ
(Expr_Type
, UR_From_Uint
(Ifirst
- 1));
1684 elsif abs (Ifirst
) < Max_Bound
then
1685 Lo
:= UR_From_Uint
(Ifirst
) - Ureal_Half
;
1686 Lo_OK
:= (Ifirst
> 0);
1689 Lo
:= Machine
(Expr_Type
, UR_From_Uint
(Ifirst
), Round_Even
, Ck_Node
);
1690 Lo_OK
:= (Lo
>= UR_From_Uint
(Ifirst
));
1695 -- Lo_Chk := (X >= Lo)
1697 Lo_Chk
:= Make_Op_Ge
(Loc
,
1698 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
1699 Right_Opnd
=> Make_Real_Literal
(Loc
, Lo
));
1702 -- Lo_Chk := (X > Lo)
1704 Lo_Chk
:= Make_Op_Gt
(Loc
,
1705 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
1706 Right_Opnd
=> Make_Real_Literal
(Loc
, Lo
));
1709 -- Check against higher bound
1711 if Truncate
and then Ilast
< 0 then
1712 Hi
:= Succ
(Expr_Type
, UR_From_Uint
(Ilast
));
1716 Hi
:= Pred
(Expr_Type
, UR_From_Uint
(Ilast
+ 1));
1719 elsif abs (Ilast
) < Max_Bound
then
1720 Hi
:= UR_From_Uint
(Ilast
) + Ureal_Half
;
1721 Hi_OK
:= (Ilast
< 0);
1723 Hi
:= Machine
(Expr_Type
, UR_From_Uint
(Ilast
), Round_Even
, Ck_Node
);
1724 Hi_OK
:= (Hi
<= UR_From_Uint
(Ilast
));
1729 -- Hi_Chk := (X <= Hi)
1731 Hi_Chk
:= Make_Op_Le
(Loc
,
1732 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
1733 Right_Opnd
=> Make_Real_Literal
(Loc
, Hi
));
1736 -- Hi_Chk := (X < Hi)
1738 Hi_Chk
:= Make_Op_Lt
(Loc
,
1739 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
1740 Right_Opnd
=> Make_Real_Literal
(Loc
, Hi
));
1743 -- If the bounds of the target type are the same as those of the base
1744 -- type, the check is an overflow check as a range check is not
1745 -- performed in these cases.
1747 if Expr_Value
(Type_Low_Bound
(Target_Base
)) = Ifirst
1748 and then Expr_Value
(Type_High_Bound
(Target_Base
)) = Ilast
1750 Reason
:= CE_Overflow_Check_Failed
;
1752 Reason
:= CE_Range_Check_Failed
;
1755 -- Raise CE if either conditions does not hold
1757 Insert_Action
(Ck_Node
,
1758 Make_Raise_Constraint_Error
(Loc
,
1759 Condition
=> Make_Op_Not
(Loc
, Make_And_Then
(Loc
, Lo_Chk
, Hi_Chk
)),
1761 end Apply_Float_Conversion_Check
;
1763 ------------------------
1764 -- Apply_Length_Check --
1765 ------------------------
1767 procedure Apply_Length_Check
1769 Target_Typ
: Entity_Id
;
1770 Source_Typ
: Entity_Id
:= Empty
)
1773 Apply_Selected_Length_Checks
1774 (Ck_Node
, Target_Typ
, Source_Typ
, Do_Static
=> False);
1775 end Apply_Length_Check
;
1777 ---------------------------
1778 -- Apply_Predicate_Check --
1779 ---------------------------
1781 procedure Apply_Predicate_Check
(N
: Node_Id
; Typ
: Entity_Id
) is
1784 if Present
(Predicate_Function
(Typ
)) then
1786 -- A predicate check does not apply within internally generated
1787 -- subprograms, such as TSS functions.
1791 and then not Is_Subprogram
(S
)
1797 and then Get_TSS_Name
(S
) /= TSS_Null
1803 Make_Predicate_Check
(Typ
, Duplicate_Subexpr
(N
)));
1806 end Apply_Predicate_Check
;
1808 -----------------------
1809 -- Apply_Range_Check --
1810 -----------------------
1812 procedure Apply_Range_Check
1814 Target_Typ
: Entity_Id
;
1815 Source_Typ
: Entity_Id
:= Empty
)
1818 Apply_Selected_Range_Checks
1819 (Ck_Node
, Target_Typ
, Source_Typ
, Do_Static
=> False);
1820 end Apply_Range_Check
;
1822 ------------------------------
1823 -- Apply_Scalar_Range_Check --
1824 ------------------------------
1826 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
1827 -- off if it is already set on.
1829 procedure Apply_Scalar_Range_Check
1831 Target_Typ
: Entity_Id
;
1832 Source_Typ
: Entity_Id
:= Empty
;
1833 Fixed_Int
: Boolean := False)
1835 Parnt
: constant Node_Id
:= Parent
(Expr
);
1837 Arr
: Node_Id
:= Empty
; -- initialize to prevent warning
1838 Arr_Typ
: Entity_Id
:= Empty
; -- initialize to prevent warning
1841 Is_Subscr_Ref
: Boolean;
1842 -- Set true if Expr is a subscript
1844 Is_Unconstrained_Subscr_Ref
: Boolean;
1845 -- Set true if Expr is a subscript of an unconstrained array. In this
1846 -- case we do not attempt to do an analysis of the value against the
1847 -- range of the subscript, since we don't know the actual subtype.
1850 -- Set to True if Expr should be regarded as a real value even though
1851 -- the type of Expr might be discrete.
1853 procedure Bad_Value
;
1854 -- Procedure called if value is determined to be out of range
1860 procedure Bad_Value
is
1862 Apply_Compile_Time_Constraint_Error
1863 (Expr
, "value not in range of}?", CE_Range_Check_Failed
,
1868 -- Start of processing for Apply_Scalar_Range_Check
1871 -- Return if check obviously not needed
1874 -- Not needed inside generic
1878 -- Not needed if previous error
1880 or else Target_Typ
= Any_Type
1881 or else Nkind
(Expr
) = N_Error
1883 -- Not needed for non-scalar type
1885 or else not Is_Scalar_Type
(Target_Typ
)
1887 -- Not needed if we know node raises CE already
1889 or else Raises_Constraint_Error
(Expr
)
1894 -- Now, see if checks are suppressed
1897 Is_List_Member
(Expr
) and then Nkind
(Parnt
) = N_Indexed_Component
;
1899 if Is_Subscr_Ref
then
1900 Arr
:= Prefix
(Parnt
);
1901 Arr_Typ
:= Get_Actual_Subtype_If_Available
(Arr
);
1903 if Is_Access_Type
(Arr_Typ
) then
1904 Arr_Typ
:= Designated_Type
(Arr_Typ
);
1908 if not Do_Range_Check
(Expr
) then
1910 -- Subscript reference. Check for Index_Checks suppressed
1912 if Is_Subscr_Ref
then
1914 -- Check array type and its base type
1916 if Index_Checks_Suppressed
(Arr_Typ
)
1917 or else Index_Checks_Suppressed
(Base_Type
(Arr_Typ
))
1921 -- Check array itself if it is an entity name
1923 elsif Is_Entity_Name
(Arr
)
1924 and then Index_Checks_Suppressed
(Entity
(Arr
))
1928 -- Check expression itself if it is an entity name
1930 elsif Is_Entity_Name
(Expr
)
1931 and then Index_Checks_Suppressed
(Entity
(Expr
))
1936 -- All other cases, check for Range_Checks suppressed
1939 -- Check target type and its base type
1941 if Range_Checks_Suppressed
(Target_Typ
)
1942 or else Range_Checks_Suppressed
(Base_Type
(Target_Typ
))
1946 -- Check expression itself if it is an entity name
1948 elsif Is_Entity_Name
(Expr
)
1949 and then Range_Checks_Suppressed
(Entity
(Expr
))
1953 -- If Expr is part of an assignment statement, then check left
1954 -- side of assignment if it is an entity name.
1956 elsif Nkind
(Parnt
) = N_Assignment_Statement
1957 and then Is_Entity_Name
(Name
(Parnt
))
1958 and then Range_Checks_Suppressed
(Entity
(Name
(Parnt
)))
1965 -- Do not set range checks if they are killed
1967 if Nkind
(Expr
) = N_Unchecked_Type_Conversion
1968 and then Kill_Range_Check
(Expr
)
1973 -- Do not set range checks for any values from System.Scalar_Values
1974 -- since the whole idea of such values is to avoid checking them!
1976 if Is_Entity_Name
(Expr
)
1977 and then Is_RTU
(Scope
(Entity
(Expr
)), System_Scalar_Values
)
1982 -- Now see if we need a check
1984 if No
(Source_Typ
) then
1985 S_Typ
:= Etype
(Expr
);
1987 S_Typ
:= Source_Typ
;
1990 if not Is_Scalar_Type
(S_Typ
) or else S_Typ
= Any_Type
then
1994 Is_Unconstrained_Subscr_Ref
:=
1995 Is_Subscr_Ref
and then not Is_Constrained
(Arr_Typ
);
1997 -- Always do a range check if the source type includes infinities and
1998 -- the target type does not include infinities. We do not do this if
1999 -- range checks are killed.
2001 if Is_Floating_Point_Type
(S_Typ
)
2002 and then Has_Infinities
(S_Typ
)
2003 and then not Has_Infinities
(Target_Typ
)
2005 Enable_Range_Check
(Expr
);
2008 -- Return if we know expression is definitely in the range of the target
2009 -- type as determined by Determine_Range. Right now we only do this for
2010 -- discrete types, and not fixed-point or floating-point types.
2012 -- The additional less-precise tests below catch these cases
2014 -- Note: skip this if we are given a source_typ, since the point of
2015 -- supplying a Source_Typ is to stop us looking at the expression.
2016 -- We could sharpen this test to be out parameters only ???
2018 if Is_Discrete_Type
(Target_Typ
)
2019 and then Is_Discrete_Type
(Etype
(Expr
))
2020 and then not Is_Unconstrained_Subscr_Ref
2021 and then No
(Source_Typ
)
2024 Tlo
: constant Node_Id
:= Type_Low_Bound
(Target_Typ
);
2025 Thi
: constant Node_Id
:= Type_High_Bound
(Target_Typ
);
2030 if Compile_Time_Known_Value
(Tlo
)
2031 and then Compile_Time_Known_Value
(Thi
)
2034 Lov
: constant Uint
:= Expr_Value
(Tlo
);
2035 Hiv
: constant Uint
:= Expr_Value
(Thi
);
2038 -- If range is null, we for sure have a constraint error
2039 -- (we don't even need to look at the value involved,
2040 -- since all possible values will raise CE).
2047 -- Otherwise determine range of value
2049 Determine_Range
(Expr
, OK
, Lo
, Hi
, Assume_Valid
=> True);
2053 -- If definitely in range, all OK
2055 if Lo
>= Lov
and then Hi
<= Hiv
then
2058 -- If definitely not in range, warn
2060 elsif Lov
> Hi
or else Hiv
< Lo
then
2064 -- Otherwise we don't know
2076 Is_Floating_Point_Type
(S_Typ
)
2077 or else (Is_Fixed_Point_Type
(S_Typ
) and then not Fixed_Int
);
2079 -- Check if we can determine at compile time whether Expr is in the
2080 -- range of the target type. Note that if S_Typ is within the bounds
2081 -- of Target_Typ then this must be the case. This check is meaningful
2082 -- only if this is not a conversion between integer and real types.
2084 if not Is_Unconstrained_Subscr_Ref
2086 Is_Discrete_Type
(S_Typ
) = Is_Discrete_Type
(Target_Typ
)
2088 (In_Subrange_Of
(S_Typ
, Target_Typ
, Fixed_Int
)
2090 Is_In_Range
(Expr
, Target_Typ
,
2091 Assume_Valid
=> True,
2092 Fixed_Int
=> Fixed_Int
,
2093 Int_Real
=> Int_Real
))
2097 elsif Is_Out_Of_Range
(Expr
, Target_Typ
,
2098 Assume_Valid
=> True,
2099 Fixed_Int
=> Fixed_Int
,
2100 Int_Real
=> Int_Real
)
2105 -- In the floating-point case, we only do range checks if the type is
2106 -- constrained. We definitely do NOT want range checks for unconstrained
2107 -- types, since we want to have infinities
2109 elsif Is_Floating_Point_Type
(S_Typ
) then
2110 if Is_Constrained
(S_Typ
) then
2111 Enable_Range_Check
(Expr
);
2114 -- For all other cases we enable a range check unconditionally
2117 Enable_Range_Check
(Expr
);
2120 end Apply_Scalar_Range_Check
;
2122 ----------------------------------
2123 -- Apply_Selected_Length_Checks --
2124 ----------------------------------
2126 procedure Apply_Selected_Length_Checks
2128 Target_Typ
: Entity_Id
;
2129 Source_Typ
: Entity_Id
;
2130 Do_Static
: Boolean)
2133 R_Result
: Check_Result
;
2136 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
2137 Checks_On
: constant Boolean :=
2138 (not Index_Checks_Suppressed
(Target_Typ
))
2140 (not Length_Checks_Suppressed
(Target_Typ
));
2143 if not Full_Expander_Active
then
2148 Selected_Length_Checks
(Ck_Node
, Target_Typ
, Source_Typ
, Empty
);
2150 for J
in 1 .. 2 loop
2151 R_Cno
:= R_Result
(J
);
2152 exit when No
(R_Cno
);
2154 -- A length check may mention an Itype which is attached to a
2155 -- subsequent node. At the top level in a package this can cause
2156 -- an order-of-elaboration problem, so we make sure that the itype
2157 -- is referenced now.
2159 if Ekind
(Current_Scope
) = E_Package
2160 and then Is_Compilation_Unit
(Current_Scope
)
2162 Ensure_Defined
(Target_Typ
, Ck_Node
);
2164 if Present
(Source_Typ
) then
2165 Ensure_Defined
(Source_Typ
, Ck_Node
);
2167 elsif Is_Itype
(Etype
(Ck_Node
)) then
2168 Ensure_Defined
(Etype
(Ck_Node
), Ck_Node
);
2172 -- If the item is a conditional raise of constraint error, then have
2173 -- a look at what check is being performed and ???
2175 if Nkind
(R_Cno
) = N_Raise_Constraint_Error
2176 and then Present
(Condition
(R_Cno
))
2178 Cond
:= Condition
(R_Cno
);
2180 -- Case where node does not now have a dynamic check
2182 if not Has_Dynamic_Length_Check
(Ck_Node
) then
2184 -- If checks are on, just insert the check
2187 Insert_Action
(Ck_Node
, R_Cno
);
2189 if not Do_Static
then
2190 Set_Has_Dynamic_Length_Check
(Ck_Node
);
2193 -- If checks are off, then analyze the length check after
2194 -- temporarily attaching it to the tree in case the relevant
2195 -- condition can be evaluated at compile time. We still want a
2196 -- compile time warning in this case.
2199 Set_Parent
(R_Cno
, Ck_Node
);
2204 -- Output a warning if the condition is known to be True
2206 if Is_Entity_Name
(Cond
)
2207 and then Entity
(Cond
) = Standard_True
2209 Apply_Compile_Time_Constraint_Error
2210 (Ck_Node
, "wrong length for array of}?",
2211 CE_Length_Check_Failed
,
2215 -- If we were only doing a static check, or if checks are not
2216 -- on, then we want to delete the check, since it is not needed.
2217 -- We do this by replacing the if statement by a null statement
2219 elsif Do_Static
or else not Checks_On
then
2220 Remove_Warning_Messages
(R_Cno
);
2221 Rewrite
(R_Cno
, Make_Null_Statement
(Loc
));
2225 Install_Static_Check
(R_Cno
, Loc
);
2228 end Apply_Selected_Length_Checks
;
2230 ---------------------------------
2231 -- Apply_Selected_Range_Checks --
2232 ---------------------------------
2234 procedure Apply_Selected_Range_Checks
2236 Target_Typ
: Entity_Id
;
2237 Source_Typ
: Entity_Id
;
2238 Do_Static
: Boolean)
2241 R_Result
: Check_Result
;
2244 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
2245 Checks_On
: constant Boolean :=
2246 (not Index_Checks_Suppressed
(Target_Typ
))
2248 (not Range_Checks_Suppressed
(Target_Typ
));
2251 if not Full_Expander_Active
or else not Checks_On
then
2256 Selected_Range_Checks
(Ck_Node
, Target_Typ
, Source_Typ
, Empty
);
2258 for J
in 1 .. 2 loop
2260 R_Cno
:= R_Result
(J
);
2261 exit when No
(R_Cno
);
2263 -- If the item is a conditional raise of constraint error, then have
2264 -- a look at what check is being performed and ???
2266 if Nkind
(R_Cno
) = N_Raise_Constraint_Error
2267 and then Present
(Condition
(R_Cno
))
2269 Cond
:= Condition
(R_Cno
);
2271 if not Has_Dynamic_Range_Check
(Ck_Node
) then
2272 Insert_Action
(Ck_Node
, R_Cno
);
2274 if not Do_Static
then
2275 Set_Has_Dynamic_Range_Check
(Ck_Node
);
2279 -- Output a warning if the condition is known to be True
2281 if Is_Entity_Name
(Cond
)
2282 and then Entity
(Cond
) = Standard_True
2284 -- Since an N_Range is technically not an expression, we have
2285 -- to set one of the bounds to C_E and then just flag the
2286 -- N_Range. The warning message will point to the lower bound
2287 -- and complain about a range, which seems OK.
2289 if Nkind
(Ck_Node
) = N_Range
then
2290 Apply_Compile_Time_Constraint_Error
2291 (Low_Bound
(Ck_Node
), "static range out of bounds of}?",
2292 CE_Range_Check_Failed
,
2296 Set_Raises_Constraint_Error
(Ck_Node
);
2299 Apply_Compile_Time_Constraint_Error
2300 (Ck_Node
, "static value out of range of}?",
2301 CE_Range_Check_Failed
,
2306 -- If we were only doing a static check, or if checks are not
2307 -- on, then we want to delete the check, since it is not needed.
2308 -- We do this by replacing the if statement by a null statement
2310 elsif Do_Static
or else not Checks_On
then
2311 Remove_Warning_Messages
(R_Cno
);
2312 Rewrite
(R_Cno
, Make_Null_Statement
(Loc
));
2316 Install_Static_Check
(R_Cno
, Loc
);
2319 end Apply_Selected_Range_Checks
;
2321 -------------------------------
2322 -- Apply_Static_Length_Check --
2323 -------------------------------
2325 procedure Apply_Static_Length_Check
2327 Target_Typ
: Entity_Id
;
2328 Source_Typ
: Entity_Id
:= Empty
)
2331 Apply_Selected_Length_Checks
2332 (Expr
, Target_Typ
, Source_Typ
, Do_Static
=> True);
2333 end Apply_Static_Length_Check
;
2335 -------------------------------------
2336 -- Apply_Subscript_Validity_Checks --
2337 -------------------------------------
2339 procedure Apply_Subscript_Validity_Checks
(Expr
: Node_Id
) is
2343 pragma Assert
(Nkind
(Expr
) = N_Indexed_Component
);
2345 -- Loop through subscripts
2347 Sub
:= First
(Expressions
(Expr
));
2348 while Present
(Sub
) loop
2350 -- Check one subscript. Note that we do not worry about enumeration
2351 -- type with holes, since we will convert the value to a Pos value
2352 -- for the subscript, and that convert will do the necessary validity
2355 Ensure_Valid
(Sub
, Holes_OK
=> True);
2357 -- Move to next subscript
2361 end Apply_Subscript_Validity_Checks
;
2363 ----------------------------------
2364 -- Apply_Type_Conversion_Checks --
2365 ----------------------------------
2367 procedure Apply_Type_Conversion_Checks
(N
: Node_Id
) is
2368 Target_Type
: constant Entity_Id
:= Etype
(N
);
2369 Target_Base
: constant Entity_Id
:= Base_Type
(Target_Type
);
2370 Expr
: constant Node_Id
:= Expression
(N
);
2372 Expr_Type
: constant Entity_Id
:= Underlying_Type
(Etype
(Expr
));
2373 -- Note: if Etype (Expr) is a private type without discriminants, its
2374 -- full view might have discriminants with defaults, so we need the
2375 -- full view here to retrieve the constraints.
2378 if Inside_A_Generic
then
2381 -- Skip these checks if serious errors detected, there are some nasty
2382 -- situations of incomplete trees that blow things up.
2384 elsif Serious_Errors_Detected
> 0 then
2387 -- Scalar type conversions of the form Target_Type (Expr) require a
2388 -- range check if we cannot be sure that Expr is in the base type of
2389 -- Target_Typ and also that Expr is in the range of Target_Typ. These
2390 -- are not quite the same condition from an implementation point of
2391 -- view, but clearly the second includes the first.
2393 elsif Is_Scalar_Type
(Target_Type
) then
2395 Conv_OK
: constant Boolean := Conversion_OK
(N
);
2396 -- If the Conversion_OK flag on the type conversion is set and no
2397 -- floating point type is involved in the type conversion then
2398 -- fixed point values must be read as integral values.
2400 Float_To_Int
: constant Boolean :=
2401 Is_Floating_Point_Type
(Expr_Type
)
2402 and then Is_Integer_Type
(Target_Type
);
2405 if not Overflow_Checks_Suppressed
(Target_Base
)
2407 In_Subrange_Of
(Expr_Type
, Target_Base
, Fixed_Int
=> Conv_OK
)
2408 and then not Float_To_Int
2410 Activate_Overflow_Check
(N
);
2413 if not Range_Checks_Suppressed
(Target_Type
)
2414 and then not Range_Checks_Suppressed
(Expr_Type
)
2416 if Float_To_Int
then
2417 Apply_Float_Conversion_Check
(Expr
, Target_Type
);
2419 Apply_Scalar_Range_Check
2420 (Expr
, Target_Type
, Fixed_Int
=> Conv_OK
);
2422 -- If the target type has predicates, we need to indicate
2423 -- the need for a check, even if Determine_Range finds
2424 -- that the value is within bounds. This may be the case
2425 -- e.g for a division with a constant denominator.
2427 if Has_Predicates
(Target_Type
) then
2428 Enable_Range_Check
(Expr
);
2434 elsif Comes_From_Source
(N
)
2435 and then not Discriminant_Checks_Suppressed
(Target_Type
)
2436 and then Is_Record_Type
(Target_Type
)
2437 and then Is_Derived_Type
(Target_Type
)
2438 and then not Is_Tagged_Type
(Target_Type
)
2439 and then not Is_Constrained
(Target_Type
)
2440 and then Present
(Stored_Constraint
(Target_Type
))
2442 -- An unconstrained derived type may have inherited discriminant.
2443 -- Build an actual discriminant constraint list using the stored
2444 -- constraint, to verify that the expression of the parent type
2445 -- satisfies the constraints imposed by the (unconstrained!)
2446 -- derived type. This applies to value conversions, not to view
2447 -- conversions of tagged types.
2450 Loc
: constant Source_Ptr
:= Sloc
(N
);
2452 Constraint
: Elmt_Id
;
2453 Discr_Value
: Node_Id
;
2456 New_Constraints
: constant Elist_Id
:= New_Elmt_List
;
2457 Old_Constraints
: constant Elist_Id
:=
2458 Discriminant_Constraint
(Expr_Type
);
2461 Constraint
:= First_Elmt
(Stored_Constraint
(Target_Type
));
2462 while Present
(Constraint
) loop
2463 Discr_Value
:= Node
(Constraint
);
2465 if Is_Entity_Name
(Discr_Value
)
2466 and then Ekind
(Entity
(Discr_Value
)) = E_Discriminant
2468 Discr
:= Corresponding_Discriminant
(Entity
(Discr_Value
));
2471 and then Scope
(Discr
) = Base_Type
(Expr_Type
)
2473 -- Parent is constrained by new discriminant. Obtain
2474 -- Value of original discriminant in expression. If the
2475 -- new discriminant has been used to constrain more than
2476 -- one of the stored discriminants, this will provide the
2477 -- required consistency check.
2480 (Make_Selected_Component
(Loc
,
2482 Duplicate_Subexpr_No_Checks
2483 (Expr
, Name_Req
=> True),
2485 Make_Identifier
(Loc
, Chars
(Discr
))),
2489 -- Discriminant of more remote ancestor ???
2494 -- Derived type definition has an explicit value for this
2495 -- stored discriminant.
2499 (Duplicate_Subexpr_No_Checks
(Discr_Value
),
2503 Next_Elmt
(Constraint
);
2506 -- Use the unconstrained expression type to retrieve the
2507 -- discriminants of the parent, and apply momentarily the
2508 -- discriminant constraint synthesized above.
2510 Set_Discriminant_Constraint
(Expr_Type
, New_Constraints
);
2511 Cond
:= Build_Discriminant_Checks
(Expr
, Expr_Type
);
2512 Set_Discriminant_Constraint
(Expr_Type
, Old_Constraints
);
2515 Make_Raise_Constraint_Error
(Loc
,
2517 Reason
=> CE_Discriminant_Check_Failed
));
2520 -- For arrays, conversions are applied during expansion, to take into
2521 -- accounts changes of representation. The checks become range checks on
2522 -- the base type or length checks on the subtype, depending on whether
2523 -- the target type is unconstrained or constrained.
2528 end Apply_Type_Conversion_Checks
;
2530 ----------------------------------------------
2531 -- Apply_Universal_Integer_Attribute_Checks --
2532 ----------------------------------------------
2534 procedure Apply_Universal_Integer_Attribute_Checks
(N
: Node_Id
) is
2535 Loc
: constant Source_Ptr
:= Sloc
(N
);
2536 Typ
: constant Entity_Id
:= Etype
(N
);
2539 if Inside_A_Generic
then
2542 -- Nothing to do if checks are suppressed
2544 elsif Range_Checks_Suppressed
(Typ
)
2545 and then Overflow_Checks_Suppressed
(Typ
)
2549 -- Nothing to do if the attribute does not come from source. The
2550 -- internal attributes we generate of this type do not need checks,
2551 -- and furthermore the attempt to check them causes some circular
2552 -- elaboration orders when dealing with packed types.
2554 elsif not Comes_From_Source
(N
) then
2557 -- If the prefix is a selected component that depends on a discriminant
2558 -- the check may improperly expose a discriminant instead of using
2559 -- the bounds of the object itself. Set the type of the attribute to
2560 -- the base type of the context, so that a check will be imposed when
2561 -- needed (e.g. if the node appears as an index).
2563 elsif Nkind
(Prefix
(N
)) = N_Selected_Component
2564 and then Ekind
(Typ
) = E_Signed_Integer_Subtype
2565 and then Depends_On_Discriminant
(Scalar_Range
(Typ
))
2567 Set_Etype
(N
, Base_Type
(Typ
));
2569 -- Otherwise, replace the attribute node with a type conversion node
2570 -- whose expression is the attribute, retyped to universal integer, and
2571 -- whose subtype mark is the target type. The call to analyze this
2572 -- conversion will set range and overflow checks as required for proper
2573 -- detection of an out of range value.
2576 Set_Etype
(N
, Universal_Integer
);
2577 Set_Analyzed
(N
, True);
2580 Make_Type_Conversion
(Loc
,
2581 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
2582 Expression
=> Relocate_Node
(N
)));
2584 Analyze_And_Resolve
(N
, Typ
);
2587 end Apply_Universal_Integer_Attribute_Checks
;
2589 -------------------------------------
2590 -- Atomic_Synchronization_Disabled --
2591 -------------------------------------
2593 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
2594 -- using a bogus check called Atomic_Synchronization. This is to make it
2595 -- more convenient to get exactly the same semantics as [Un]Suppress.
2597 function Atomic_Synchronization_Disabled
(E
: Entity_Id
) return Boolean is
2599 -- If debug flag d.e is set, always return False, i.e. all atomic sync
2600 -- looks enabled, since it is never disabled.
2602 if Debug_Flag_Dot_E
then
2605 -- If debug flag d.d is set then always return True, i.e. all atomic
2606 -- sync looks disabled, since it always tests True.
2608 elsif Debug_Flag_Dot_D
then
2611 -- If entity present, then check result for that entity
2613 elsif Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
2614 return Is_Check_Suppressed
(E
, Atomic_Synchronization
);
2616 -- Otherwise result depends on current scope setting
2619 return Scope_Suppress
(Atomic_Synchronization
);
2621 end Atomic_Synchronization_Disabled
;
2623 -------------------------------
2624 -- Build_Discriminant_Checks --
2625 -------------------------------
2627 function Build_Discriminant_Checks
2629 T_Typ
: Entity_Id
) return Node_Id
2631 Loc
: constant Source_Ptr
:= Sloc
(N
);
2634 Disc_Ent
: Entity_Id
;
2638 function Aggregate_Discriminant_Val
(Disc
: Entity_Id
) return Node_Id
;
2640 ----------------------------------
2641 -- Aggregate_Discriminant_Value --
2642 ----------------------------------
2644 function Aggregate_Discriminant_Val
(Disc
: Entity_Id
) return Node_Id
is
2648 -- The aggregate has been normalized with named associations. We use
2649 -- the Chars field to locate the discriminant to take into account
2650 -- discriminants in derived types, which carry the same name as those
2653 Assoc
:= First
(Component_Associations
(N
));
2654 while Present
(Assoc
) loop
2655 if Chars
(First
(Choices
(Assoc
))) = Chars
(Disc
) then
2656 return Expression
(Assoc
);
2662 -- Discriminant must have been found in the loop above
2664 raise Program_Error
;
2665 end Aggregate_Discriminant_Val
;
2667 -- Start of processing for Build_Discriminant_Checks
2670 -- Loop through discriminants evolving the condition
2673 Disc
:= First_Elmt
(Discriminant_Constraint
(T_Typ
));
2675 -- For a fully private type, use the discriminants of the parent type
2677 if Is_Private_Type
(T_Typ
)
2678 and then No
(Full_View
(T_Typ
))
2680 Disc_Ent
:= First_Discriminant
(Etype
(Base_Type
(T_Typ
)));
2682 Disc_Ent
:= First_Discriminant
(T_Typ
);
2685 while Present
(Disc
) loop
2686 Dval
:= Node
(Disc
);
2688 if Nkind
(Dval
) = N_Identifier
2689 and then Ekind
(Entity
(Dval
)) = E_Discriminant
2691 Dval
:= New_Occurrence_Of
(Discriminal
(Entity
(Dval
)), Loc
);
2693 Dval
:= Duplicate_Subexpr_No_Checks
(Dval
);
2696 -- If we have an Unchecked_Union node, we can infer the discriminants
2699 if Is_Unchecked_Union
(Base_Type
(T_Typ
)) then
2701 Get_Discriminant_Value
(
2702 First_Discriminant
(T_Typ
),
2704 Stored_Constraint
(T_Typ
)));
2706 elsif Nkind
(N
) = N_Aggregate
then
2708 Duplicate_Subexpr_No_Checks
2709 (Aggregate_Discriminant_Val
(Disc_Ent
));
2713 Make_Selected_Component
(Loc
,
2715 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
2717 Make_Identifier
(Loc
, Chars
(Disc_Ent
)));
2719 Set_Is_In_Discriminant_Check
(Dref
);
2722 Evolve_Or_Else
(Cond
,
2725 Right_Opnd
=> Dval
));
2728 Next_Discriminant
(Disc_Ent
);
2732 end Build_Discriminant_Checks
;
2738 function Check_Needed
(Nod
: Node_Id
; Check
: Check_Type
) return Boolean is
2746 -- Always check if not simple entity
2748 if Nkind
(Nod
) not in N_Has_Entity
2749 or else not Comes_From_Source
(Nod
)
2754 -- Look up tree for short circuit
2761 -- Done if out of subexpression (note that we allow generated stuff
2762 -- such as itype declarations in this context, to keep the loop going
2763 -- since we may well have generated such stuff in complex situations.
2764 -- Also done if no parent (probably an error condition, but no point
2765 -- in behaving nasty if we find it!)
2768 or else (K
not in N_Subexpr
and then Comes_From_Source
(P
))
2772 -- Or/Or Else case, where test is part of the right operand, or is
2773 -- part of one of the actions associated with the right operand, and
2774 -- the left operand is an equality test.
2776 elsif K
= N_Op_Or
then
2777 exit when N
= Right_Opnd
(P
)
2778 and then Nkind
(Left_Opnd
(P
)) = N_Op_Eq
;
2780 elsif K
= N_Or_Else
then
2781 exit when (N
= Right_Opnd
(P
)
2784 and then List_Containing
(N
) = Actions
(P
)))
2785 and then Nkind
(Left_Opnd
(P
)) = N_Op_Eq
;
2787 -- Similar test for the And/And then case, where the left operand
2788 -- is an inequality test.
2790 elsif K
= N_Op_And
then
2791 exit when N
= Right_Opnd
(P
)
2792 and then Nkind
(Left_Opnd
(P
)) = N_Op_Ne
;
2794 elsif K
= N_And_Then
then
2795 exit when (N
= Right_Opnd
(P
)
2798 and then List_Containing
(N
) = Actions
(P
)))
2799 and then Nkind
(Left_Opnd
(P
)) = N_Op_Ne
;
2805 -- If we fall through the loop, then we have a conditional with an
2806 -- appropriate test as its left operand. So test further.
2809 R
:= Right_Opnd
(L
);
2812 -- Left operand of test must match original variable
2814 if Nkind
(L
) not in N_Has_Entity
2815 or else Entity
(L
) /= Entity
(Nod
)
2820 -- Right operand of test must be key value (zero or null)
2823 when Access_Check
=>
2824 if not Known_Null
(R
) then
2828 when Division_Check
=>
2829 if not Compile_Time_Known_Value
(R
)
2830 or else Expr_Value
(R
) /= Uint_0
2836 raise Program_Error
;
2839 -- Here we have the optimizable case, warn if not short-circuited
2841 if K
= N_Op_And
or else K
= N_Op_Or
then
2843 when Access_Check
=>
2845 ("Constraint_Error may be raised (access check)?",
2847 when Division_Check
=>
2849 ("Constraint_Error may be raised (zero divide)?",
2853 raise Program_Error
;
2856 if K
= N_Op_And
then
2857 Error_Msg_N
-- CODEFIX
2858 ("use `AND THEN` instead of AND?", P
);
2860 Error_Msg_N
-- CODEFIX
2861 ("use `OR ELSE` instead of OR?", P
);
2864 -- If not short-circuited, we need the check
2868 -- If short-circuited, we can omit the check
2875 -----------------------------------
2876 -- Check_Valid_Lvalue_Subscripts --
2877 -----------------------------------
2879 procedure Check_Valid_Lvalue_Subscripts
(Expr
: Node_Id
) is
2881 -- Skip this if range checks are suppressed
2883 if Range_Checks_Suppressed
(Etype
(Expr
)) then
2886 -- Only do this check for expressions that come from source. We assume
2887 -- that expander generated assignments explicitly include any necessary
2888 -- checks. Note that this is not just an optimization, it avoids
2889 -- infinite recursions!
2891 elsif not Comes_From_Source
(Expr
) then
2894 -- For a selected component, check the prefix
2896 elsif Nkind
(Expr
) = N_Selected_Component
then
2897 Check_Valid_Lvalue_Subscripts
(Prefix
(Expr
));
2900 -- Case of indexed component
2902 elsif Nkind
(Expr
) = N_Indexed_Component
then
2903 Apply_Subscript_Validity_Checks
(Expr
);
2905 -- Prefix may itself be or contain an indexed component, and these
2906 -- subscripts need checking as well.
2908 Check_Valid_Lvalue_Subscripts
(Prefix
(Expr
));
2910 end Check_Valid_Lvalue_Subscripts
;
2912 ----------------------------------
2913 -- Null_Exclusion_Static_Checks --
2914 ----------------------------------
2916 procedure Null_Exclusion_Static_Checks
(N
: Node_Id
) is
2917 Error_Node
: Node_Id
;
2919 Has_Null
: constant Boolean := Has_Null_Exclusion
(N
);
2920 K
: constant Node_Kind
:= Nkind
(N
);
2925 (K
= N_Component_Declaration
2926 or else K
= N_Discriminant_Specification
2927 or else K
= N_Function_Specification
2928 or else K
= N_Object_Declaration
2929 or else K
= N_Parameter_Specification
);
2931 if K
= N_Function_Specification
then
2932 Typ
:= Etype
(Defining_Entity
(N
));
2934 Typ
:= Etype
(Defining_Identifier
(N
));
2938 when N_Component_Declaration
=>
2939 if Present
(Access_Definition
(Component_Definition
(N
))) then
2940 Error_Node
:= Component_Definition
(N
);
2942 Error_Node
:= Subtype_Indication
(Component_Definition
(N
));
2945 when N_Discriminant_Specification
=>
2946 Error_Node
:= Discriminant_Type
(N
);
2948 when N_Function_Specification
=>
2949 Error_Node
:= Result_Definition
(N
);
2951 when N_Object_Declaration
=>
2952 Error_Node
:= Object_Definition
(N
);
2954 when N_Parameter_Specification
=>
2955 Error_Node
:= Parameter_Type
(N
);
2958 raise Program_Error
;
2963 -- Enforce legality rule 3.10 (13): A null exclusion can only be
2964 -- applied to an access [sub]type.
2966 if not Is_Access_Type
(Typ
) then
2968 ("`NOT NULL` allowed only for an access type", Error_Node
);
2970 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
2971 -- be applied to a [sub]type that does not exclude null already.
2973 elsif Can_Never_Be_Null
(Typ
)
2974 and then Comes_From_Source
(Typ
)
2977 ("`NOT NULL` not allowed (& already excludes null)",
2982 -- Check that null-excluding objects are always initialized, except for
2983 -- deferred constants, for which the expression will appear in the full
2986 if K
= N_Object_Declaration
2987 and then No
(Expression
(N
))
2988 and then not Constant_Present
(N
)
2989 and then not No_Initialization
(N
)
2991 -- Add an expression that assigns null. This node is needed by
2992 -- Apply_Compile_Time_Constraint_Error, which will replace this with
2993 -- a Constraint_Error node.
2995 Set_Expression
(N
, Make_Null
(Sloc
(N
)));
2996 Set_Etype
(Expression
(N
), Etype
(Defining_Identifier
(N
)));
2998 Apply_Compile_Time_Constraint_Error
2999 (N
=> Expression
(N
),
3000 Msg
=> "(Ada 2005) null-excluding objects must be initialized?",
3001 Reason
=> CE_Null_Not_Allowed
);
3004 -- Check that a null-excluding component, formal or object is not being
3005 -- assigned a null value. Otherwise generate a warning message and
3006 -- replace Expression (N) by an N_Constraint_Error node.
3008 if K
/= N_Function_Specification
then
3009 Expr
:= Expression
(N
);
3011 if Present
(Expr
) and then Known_Null
(Expr
) then
3013 when N_Component_Declaration |
3014 N_Discriminant_Specification
=>
3015 Apply_Compile_Time_Constraint_Error
3017 Msg
=> "(Ada 2005) null not allowed " &
3018 "in null-excluding components?",
3019 Reason
=> CE_Null_Not_Allowed
);
3021 when N_Object_Declaration
=>
3022 Apply_Compile_Time_Constraint_Error
3024 Msg
=> "(Ada 2005) null not allowed " &
3025 "in null-excluding objects?",
3026 Reason
=> CE_Null_Not_Allowed
);
3028 when N_Parameter_Specification
=>
3029 Apply_Compile_Time_Constraint_Error
3031 Msg
=> "(Ada 2005) null not allowed " &
3032 "in null-excluding formals?",
3033 Reason
=> CE_Null_Not_Allowed
);
3040 end Null_Exclusion_Static_Checks
;
3042 ----------------------------------
3043 -- Conditional_Statements_Begin --
3044 ----------------------------------
3046 procedure Conditional_Statements_Begin
is
3048 Saved_Checks_TOS
:= Saved_Checks_TOS
+ 1;
3050 -- If stack overflows, kill all checks, that way we know to simply reset
3051 -- the number of saved checks to zero on return. This should never occur
3054 if Saved_Checks_TOS
> Saved_Checks_Stack
'Last then
3057 -- In the normal case, we just make a new stack entry saving the current
3058 -- number of saved checks for a later restore.
3061 Saved_Checks_Stack
(Saved_Checks_TOS
) := Num_Saved_Checks
;
3063 if Debug_Flag_CC
then
3064 w
("Conditional_Statements_Begin: Num_Saved_Checks = ",
3068 end Conditional_Statements_Begin
;
3070 --------------------------------
3071 -- Conditional_Statements_End --
3072 --------------------------------
3074 procedure Conditional_Statements_End
is
3076 pragma Assert
(Saved_Checks_TOS
> 0);
3078 -- If the saved checks stack overflowed, then we killed all checks, so
3079 -- setting the number of saved checks back to zero is correct. This
3080 -- should never occur in practice.
3082 if Saved_Checks_TOS
> Saved_Checks_Stack
'Last then
3083 Num_Saved_Checks
:= 0;
3085 -- In the normal case, restore the number of saved checks from the top
3089 Num_Saved_Checks
:= Saved_Checks_Stack
(Saved_Checks_TOS
);
3090 if Debug_Flag_CC
then
3091 w
("Conditional_Statements_End: Num_Saved_Checks = ",
3096 Saved_Checks_TOS
:= Saved_Checks_TOS
- 1;
3097 end Conditional_Statements_End
;
3099 ---------------------
3100 -- Determine_Range --
3101 ---------------------
3103 Cache_Size
: constant := 2 ** 10;
3104 type Cache_Index
is range 0 .. Cache_Size
- 1;
3105 -- Determine size of below cache (power of 2 is more efficient!)
3107 Determine_Range_Cache_N
: array (Cache_Index
) of Node_Id
;
3108 Determine_Range_Cache_V
: array (Cache_Index
) of Boolean;
3109 Determine_Range_Cache_Lo
: array (Cache_Index
) of Uint
;
3110 Determine_Range_Cache_Hi
: array (Cache_Index
) of Uint
;
3111 -- The above arrays are used to implement a small direct cache for
3112 -- Determine_Range calls. Because of the way Determine_Range recursively
3113 -- traces subexpressions, and because overflow checking calls the routine
3114 -- on the way up the tree, a quadratic behavior can otherwise be
3115 -- encountered in large expressions. The cache entry for node N is stored
3116 -- in the (N mod Cache_Size) entry, and can be validated by checking the
3117 -- actual node value stored there. The Range_Cache_V array records the
3118 -- setting of Assume_Valid for the cache entry.
3120 procedure Determine_Range
3125 Assume_Valid
: Boolean := False)
3127 Typ
: Entity_Id
:= Etype
(N
);
3128 -- Type to use, may get reset to base type for possibly invalid entity
3132 -- Lo and Hi bounds of left operand
3136 -- Lo and Hi bounds of right (or only) operand
3139 -- Temp variable used to hold a bound node
3142 -- High bound of base type of expression
3146 -- Refined values for low and high bounds, after tightening
3149 -- Used in lower level calls to indicate if call succeeded
3151 Cindex
: Cache_Index
;
3152 -- Used to search cache
3154 function OK_Operands
return Boolean;
3155 -- Used for binary operators. Determines the ranges of the left and
3156 -- right operands, and if they are both OK, returns True, and puts
3157 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
3163 function OK_Operands
return Boolean is
3166 (Left_Opnd
(N
), OK1
, Lo_Left
, Hi_Left
, Assume_Valid
);
3173 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
3177 -- Start of processing for Determine_Range
3180 -- For temporary constants internally generated to remove side effects
3181 -- we must use the corresponding expression to determine the range of
3184 if Is_Entity_Name
(N
)
3185 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
3186 and then Ekind
(Entity
(N
)) = E_Constant
3187 and then Is_Internal_Name
(Chars
(Entity
(N
)))
3190 (Expression
(Parent
(Entity
(N
))), OK
, Lo
, Hi
, Assume_Valid
);
3194 -- Prevent junk warnings by initializing range variables
3201 -- If type is not defined, we can't determine its range
3205 -- We don't deal with anything except discrete types
3207 or else not Is_Discrete_Type
(Typ
)
3209 -- Ignore type for which an error has been posted, since range in
3210 -- this case may well be a bogosity deriving from the error. Also
3211 -- ignore if error posted on the reference node.
3213 or else Error_Posted
(N
) or else Error_Posted
(Typ
)
3219 -- For all other cases, we can determine the range
3223 -- If value is compile time known, then the possible range is the one
3224 -- value that we know this expression definitely has!
3226 if Compile_Time_Known_Value
(N
) then
3227 Lo
:= Expr_Value
(N
);
3232 -- Return if already in the cache
3234 Cindex
:= Cache_Index
(N
mod Cache_Size
);
3236 if Determine_Range_Cache_N
(Cindex
) = N
3238 Determine_Range_Cache_V
(Cindex
) = Assume_Valid
3240 Lo
:= Determine_Range_Cache_Lo
(Cindex
);
3241 Hi
:= Determine_Range_Cache_Hi
(Cindex
);
3245 -- Otherwise, start by finding the bounds of the type of the expression,
3246 -- the value cannot be outside this range (if it is, then we have an
3247 -- overflow situation, which is a separate check, we are talking here
3248 -- only about the expression value).
3250 -- First a check, never try to find the bounds of a generic type, since
3251 -- these bounds are always junk values, and it is only valid to look at
3252 -- the bounds in an instance.
3254 if Is_Generic_Type
(Typ
) then
3259 -- First step, change to use base type unless we know the value is valid
3261 if (Is_Entity_Name
(N
) and then Is_Known_Valid
(Entity
(N
)))
3262 or else Assume_No_Invalid_Values
3263 or else Assume_Valid
3267 Typ
:= Underlying_Type
(Base_Type
(Typ
));
3270 -- We use the actual bound unless it is dynamic, in which case use the
3271 -- corresponding base type bound if possible. If we can't get a bound
3272 -- then we figure we can't determine the range (a peculiar case, that
3273 -- perhaps cannot happen, but there is no point in bombing in this
3274 -- optimization circuit.
3276 -- First the low bound
3278 Bound
:= Type_Low_Bound
(Typ
);
3280 if Compile_Time_Known_Value
(Bound
) then
3281 Lo
:= Expr_Value
(Bound
);
3283 elsif Compile_Time_Known_Value
(Type_Low_Bound
(Base_Type
(Typ
))) then
3284 Lo
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
3291 -- Now the high bound
3293 Bound
:= Type_High_Bound
(Typ
);
3295 -- We need the high bound of the base type later on, and this should
3296 -- always be compile time known. Again, it is not clear that this
3297 -- can ever be false, but no point in bombing.
3299 if Compile_Time_Known_Value
(Type_High_Bound
(Base_Type
(Typ
))) then
3300 Hbound
:= Expr_Value
(Type_High_Bound
(Base_Type
(Typ
)));
3308 -- If we have a static subtype, then that may have a tighter bound so
3309 -- use the upper bound of the subtype instead in this case.
3311 if Compile_Time_Known_Value
(Bound
) then
3312 Hi
:= Expr_Value
(Bound
);
3315 -- We may be able to refine this value in certain situations. If any
3316 -- refinement is possible, then Lor and Hir are set to possibly tighter
3317 -- bounds, and OK1 is set to True.
3321 -- For unary plus, result is limited by range of operand
3325 (Right_Opnd
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
3327 -- For unary minus, determine range of operand, and negate it
3331 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
3338 -- For binary addition, get range of each operand and do the
3339 -- addition to get the result range.
3343 Lor
:= Lo_Left
+ Lo_Right
;
3344 Hir
:= Hi_Left
+ Hi_Right
;
3347 -- Division is tricky. The only case we consider is where the right
3348 -- operand is a positive constant, and in this case we simply divide
3349 -- the bounds of the left operand
3353 if Lo_Right
= Hi_Right
3354 and then Lo_Right
> 0
3356 Lor
:= Lo_Left
/ Lo_Right
;
3357 Hir
:= Hi_Left
/ Lo_Right
;
3364 -- For binary subtraction, get range of each operand and do the worst
3365 -- case subtraction to get the result range.
3367 when N_Op_Subtract
=>
3369 Lor
:= Lo_Left
- Hi_Right
;
3370 Hir
:= Hi_Left
- Lo_Right
;
3373 -- For MOD, if right operand is a positive constant, then result must
3374 -- be in the allowable range of mod results.
3378 if Lo_Right
= Hi_Right
3379 and then Lo_Right
/= 0
3381 if Lo_Right
> 0 then
3383 Hir
:= Lo_Right
- 1;
3385 else -- Lo_Right < 0
3386 Lor
:= Lo_Right
+ 1;
3395 -- For REM, if right operand is a positive constant, then result must
3396 -- be in the allowable range of mod results.
3400 if Lo_Right
= Hi_Right
3401 and then Lo_Right
/= 0
3404 Dval
: constant Uint
:= (abs Lo_Right
) - 1;
3407 -- The sign of the result depends on the sign of the
3408 -- dividend (but not on the sign of the divisor, hence
3409 -- the abs operation above).
3429 -- Attribute reference cases
3431 when N_Attribute_Reference
=>
3432 case Attribute_Name
(N
) is
3434 -- For Pos/Val attributes, we can refine the range using the
3435 -- possible range of values of the attribute expression.
3437 when Name_Pos | Name_Val
=>
3439 (First
(Expressions
(N
)), OK1
, Lor
, Hir
, Assume_Valid
);
3441 -- For Length attribute, use the bounds of the corresponding
3442 -- index type to refine the range.
3446 Atyp
: Entity_Id
:= Etype
(Prefix
(N
));
3454 if Is_Access_Type
(Atyp
) then
3455 Atyp
:= Designated_Type
(Atyp
);
3458 -- For string literal, we know exact value
3460 if Ekind
(Atyp
) = E_String_Literal_Subtype
then
3462 Lo
:= String_Literal_Length
(Atyp
);
3463 Hi
:= String_Literal_Length
(Atyp
);
3467 -- Otherwise check for expression given
3469 if No
(Expressions
(N
)) then
3473 UI_To_Int
(Expr_Value
(First
(Expressions
(N
))));
3476 Indx
:= First_Index
(Atyp
);
3477 for J
in 2 .. Inum
loop
3478 Indx
:= Next_Index
(Indx
);
3481 -- If the index type is a formal type or derived from
3482 -- one, the bounds are not static.
3484 if Is_Generic_Type
(Root_Type
(Etype
(Indx
))) then
3490 (Type_Low_Bound
(Etype
(Indx
)), OK1
, LL
, LU
,
3495 (Type_High_Bound
(Etype
(Indx
)), OK1
, UL
, UU
,
3500 -- The maximum value for Length is the biggest
3501 -- possible gap between the values of the bounds.
3502 -- But of course, this value cannot be negative.
3504 Hir
:= UI_Max
(Uint_0
, UU
- LL
+ 1);
3506 -- For constrained arrays, the minimum value for
3507 -- Length is taken from the actual value of the
3508 -- bounds, since the index will be exactly of this
3511 if Is_Constrained
(Atyp
) then
3512 Lor
:= UI_Max
(Uint_0
, UL
- LU
+ 1);
3514 -- For an unconstrained array, the minimum value
3515 -- for length is always zero.
3524 -- No special handling for other attributes
3525 -- Probably more opportunities exist here???
3532 -- For type conversion from one discrete type to another, we can
3533 -- refine the range using the converted value.
3535 when N_Type_Conversion
=>
3536 Determine_Range
(Expression
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
3538 -- Nothing special to do for all other expression kinds
3546 -- At this stage, if OK1 is true, then we know that the actual result of
3547 -- the computed expression is in the range Lor .. Hir. We can use this
3548 -- to restrict the possible range of results.
3550 -- If one of the computed bounds is outside the range of the base type,
3551 -- the expression may raise an exception and we had better indicate that
3552 -- the evaluation has failed, at least if checks are enabled.
3555 and then Enable_Overflow_Checks
3556 and then not Is_Entity_Name
(N
)
3557 and then (Lor
< Lo
or else Hir
> Hi
)
3565 -- If the refined value of the low bound is greater than the type
3566 -- high bound, then reset it to the more restrictive value. However,
3567 -- we do NOT do this for the case of a modular type where the
3568 -- possible upper bound on the value is above the base type high
3569 -- bound, because that means the result could wrap.
3572 and then not (Is_Modular_Integer_Type
(Typ
) and then Hir
> Hbound
)
3577 -- Similarly, if the refined value of the high bound is less than the
3578 -- value so far, then reset it to the more restrictive value. Again,
3579 -- we do not do this if the refined low bound is negative for a
3580 -- modular type, since this would wrap.
3583 and then not (Is_Modular_Integer_Type
(Typ
) and then Lor
< Uint_0
)
3589 -- Set cache entry for future call and we are all done
3591 Determine_Range_Cache_N
(Cindex
) := N
;
3592 Determine_Range_Cache_V
(Cindex
) := Assume_Valid
;
3593 Determine_Range_Cache_Lo
(Cindex
) := Lo
;
3594 Determine_Range_Cache_Hi
(Cindex
) := Hi
;
3597 -- If any exception occurs, it means that we have some bug in the compiler,
3598 -- possibly triggered by a previous error, or by some unforeseen peculiar
3599 -- occurrence. However, this is only an optimization attempt, so there is
3600 -- really no point in crashing the compiler. Instead we just decide, too
3601 -- bad, we can't figure out a range in this case after all.
3606 -- Debug flag K disables this behavior (useful for debugging)
3608 if Debug_Flag_K
then
3616 end Determine_Range
;
3618 ------------------------------------
3619 -- Discriminant_Checks_Suppressed --
3620 ------------------------------------
3622 function Discriminant_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
3625 if Is_Unchecked_Union
(E
) then
3627 elsif Checks_May_Be_Suppressed
(E
) then
3628 return Is_Check_Suppressed
(E
, Discriminant_Check
);
3632 return Scope_Suppress
(Discriminant_Check
);
3633 end Discriminant_Checks_Suppressed
;
3635 --------------------------------
3636 -- Division_Checks_Suppressed --
3637 --------------------------------
3639 function Division_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
3641 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
3642 return Is_Check_Suppressed
(E
, Division_Check
);
3644 return Scope_Suppress
(Division_Check
);
3646 end Division_Checks_Suppressed
;
3648 -----------------------------------
3649 -- Elaboration_Checks_Suppressed --
3650 -----------------------------------
3652 function Elaboration_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
3654 -- The complication in this routine is that if we are in the dynamic
3655 -- model of elaboration, we also check All_Checks, since All_Checks
3656 -- does not set Elaboration_Check explicitly.
3659 if Kill_Elaboration_Checks
(E
) then
3662 elsif Checks_May_Be_Suppressed
(E
) then
3663 if Is_Check_Suppressed
(E
, Elaboration_Check
) then
3665 elsif Dynamic_Elaboration_Checks
then
3666 return Is_Check_Suppressed
(E
, All_Checks
);
3673 if Scope_Suppress
(Elaboration_Check
) then
3675 elsif Dynamic_Elaboration_Checks
then
3676 return Scope_Suppress
(All_Checks
);
3680 end Elaboration_Checks_Suppressed
;
3682 ---------------------------
3683 -- Enable_Overflow_Check --
3684 ---------------------------
3686 procedure Enable_Overflow_Check
(N
: Node_Id
) is
3687 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
3696 if Debug_Flag_CC
then
3697 w
("Enable_Overflow_Check for node ", Int
(N
));
3698 Write_Str
(" Source location = ");
3703 -- No check if overflow checks suppressed for type of node
3705 if Present
(Etype
(N
))
3706 and then Overflow_Checks_Suppressed
(Etype
(N
))
3710 -- Nothing to do for unsigned integer types, which do not overflow
3712 elsif Is_Modular_Integer_Type
(Typ
) then
3715 -- Nothing to do if the range of the result is known OK. We skip this
3716 -- for conversions, since the caller already did the check, and in any
3717 -- case the condition for deleting the check for a type conversion is
3720 elsif Nkind
(N
) /= N_Type_Conversion
then
3721 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> True);
3723 -- Note in the test below that we assume that the range is not OK
3724 -- if a bound of the range is equal to that of the type. That's not
3725 -- quite accurate but we do this for the following reasons:
3727 -- a) The way that Determine_Range works, it will typically report
3728 -- the bounds of the value as being equal to the bounds of the
3729 -- type, because it either can't tell anything more precise, or
3730 -- does not think it is worth the effort to be more precise.
3732 -- b) It is very unusual to have a situation in which this would
3733 -- generate an unnecessary overflow check (an example would be
3734 -- a subtype with a range 0 .. Integer'Last - 1 to which the
3735 -- literal value one is added).
3737 -- c) The alternative is a lot of special casing in this routine
3738 -- which would partially duplicate Determine_Range processing.
3741 and then Lo
> Expr_Value
(Type_Low_Bound
(Typ
))
3742 and then Hi
< Expr_Value
(Type_High_Bound
(Typ
))
3744 if Debug_Flag_CC
then
3745 w
("No overflow check required");
3752 -- If not in optimizing mode, set flag and we are done. We are also done
3753 -- (and just set the flag) if the type is not a discrete type, since it
3754 -- is not worth the effort to eliminate checks for other than discrete
3755 -- types. In addition, we take this same path if we have stored the
3756 -- maximum number of checks possible already (a very unlikely situation,
3757 -- but we do not want to blow up!)
3759 if Optimization_Level
= 0
3760 or else not Is_Discrete_Type
(Etype
(N
))
3761 or else Num_Saved_Checks
= Saved_Checks
'Last
3763 Activate_Overflow_Check
(N
);
3765 if Debug_Flag_CC
then
3766 w
("Optimization off");
3772 -- Otherwise evaluate and check the expression
3777 Target_Type
=> Empty
,
3783 if Debug_Flag_CC
then
3784 w
("Called Find_Check");
3788 w
(" Check_Num = ", Chk
);
3789 w
(" Ent = ", Int
(Ent
));
3790 Write_Str
(" Ofs = ");
3795 -- If check is not of form to optimize, then set flag and we are done
3798 Activate_Overflow_Check
(N
);
3802 -- If check is already performed, then return without setting flag
3805 if Debug_Flag_CC
then
3806 w
("Check suppressed!");
3812 -- Here we will make a new entry for the new check
3814 Activate_Overflow_Check
(N
);
3815 Num_Saved_Checks
:= Num_Saved_Checks
+ 1;
3816 Saved_Checks
(Num_Saved_Checks
) :=
3821 Target_Type
=> Empty
);
3823 if Debug_Flag_CC
then
3824 w
("Make new entry, check number = ", Num_Saved_Checks
);
3825 w
(" Entity = ", Int
(Ent
));
3826 Write_Str
(" Offset = ");
3828 w
(" Check_Type = O");
3829 w
(" Target_Type = Empty");
3832 -- If we get an exception, then something went wrong, probably because of
3833 -- an error in the structure of the tree due to an incorrect program. Or it
3834 -- may be a bug in the optimization circuit. In either case the safest
3835 -- thing is simply to set the check flag unconditionally.
3839 Activate_Overflow_Check
(N
);
3841 if Debug_Flag_CC
then
3842 w
(" exception occurred, overflow flag set");
3846 end Enable_Overflow_Check
;
3848 ------------------------
3849 -- Enable_Range_Check --
3850 ------------------------
3852 procedure Enable_Range_Check
(N
: Node_Id
) is
3861 -- Return if unchecked type conversion with range check killed. In this
3862 -- case we never set the flag (that's what Kill_Range_Check is about!)
3864 if Nkind
(N
) = N_Unchecked_Type_Conversion
3865 and then Kill_Range_Check
(N
)
3870 -- Do not set range check flag if parent is assignment statement or
3871 -- object declaration with Suppress_Assignment_Checks flag set
3873 if Nkind_In
(Parent
(N
), N_Assignment_Statement
, N_Object_Declaration
)
3874 and then Suppress_Assignment_Checks
(Parent
(N
))
3879 -- Check for various cases where we should suppress the range check
3881 -- No check if range checks suppressed for type of node
3883 if Present
(Etype
(N
))
3884 and then Range_Checks_Suppressed
(Etype
(N
))
3888 -- No check if node is an entity name, and range checks are suppressed
3889 -- for this entity, or for the type of this entity.
3891 elsif Is_Entity_Name
(N
)
3892 and then (Range_Checks_Suppressed
(Entity
(N
))
3893 or else Range_Checks_Suppressed
(Etype
(Entity
(N
))))
3897 -- No checks if index of array, and index checks are suppressed for
3898 -- the array object or the type of the array.
3900 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
then
3902 Pref
: constant Node_Id
:= Prefix
(Parent
(N
));
3904 if Is_Entity_Name
(Pref
)
3905 and then Index_Checks_Suppressed
(Entity
(Pref
))
3908 elsif Index_Checks_Suppressed
(Etype
(Pref
)) then
3914 -- Debug trace output
3916 if Debug_Flag_CC
then
3917 w
("Enable_Range_Check for node ", Int
(N
));
3918 Write_Str
(" Source location = ");
3923 -- If not in optimizing mode, set flag and we are done. We are also done
3924 -- (and just set the flag) if the type is not a discrete type, since it
3925 -- is not worth the effort to eliminate checks for other than discrete
3926 -- types. In addition, we take this same path if we have stored the
3927 -- maximum number of checks possible already (a very unlikely situation,
3928 -- but we do not want to blow up!)
3930 if Optimization_Level
= 0
3931 or else No
(Etype
(N
))
3932 or else not Is_Discrete_Type
(Etype
(N
))
3933 or else Num_Saved_Checks
= Saved_Checks
'Last
3935 Activate_Range_Check
(N
);
3937 if Debug_Flag_CC
then
3938 w
("Optimization off");
3944 -- Otherwise find out the target type
3948 -- For assignment, use left side subtype
3950 if Nkind
(P
) = N_Assignment_Statement
3951 and then Expression
(P
) = N
3953 Ttyp
:= Etype
(Name
(P
));
3955 -- For indexed component, use subscript subtype
3957 elsif Nkind
(P
) = N_Indexed_Component
then
3964 Atyp
:= Etype
(Prefix
(P
));
3966 if Is_Access_Type
(Atyp
) then
3967 Atyp
:= Designated_Type
(Atyp
);
3969 -- If the prefix is an access to an unconstrained array,
3970 -- perform check unconditionally: it depends on the bounds of
3971 -- an object and we cannot currently recognize whether the test
3972 -- may be redundant.
3974 if not Is_Constrained
(Atyp
) then
3975 Activate_Range_Check
(N
);
3979 -- Ditto if the prefix is an explicit dereference whose designated
3980 -- type is unconstrained.
3982 elsif Nkind
(Prefix
(P
)) = N_Explicit_Dereference
3983 and then not Is_Constrained
(Atyp
)
3985 Activate_Range_Check
(N
);
3989 Indx
:= First_Index
(Atyp
);
3990 Subs
:= First
(Expressions
(P
));
3993 Ttyp
:= Etype
(Indx
);
4002 -- For now, ignore all other cases, they are not so interesting
4005 if Debug_Flag_CC
then
4006 w
(" target type not found, flag set");
4009 Activate_Range_Check
(N
);
4013 -- Evaluate and check the expression
4018 Target_Type
=> Ttyp
,
4024 if Debug_Flag_CC
then
4025 w
("Called Find_Check");
4026 w
("Target_Typ = ", Int
(Ttyp
));
4030 w
(" Check_Num = ", Chk
);
4031 w
(" Ent = ", Int
(Ent
));
4032 Write_Str
(" Ofs = ");
4037 -- If check is not of form to optimize, then set flag and we are done
4040 if Debug_Flag_CC
then
4041 w
(" expression not of optimizable type, flag set");
4044 Activate_Range_Check
(N
);
4048 -- If check is already performed, then return without setting flag
4051 if Debug_Flag_CC
then
4052 w
("Check suppressed!");
4058 -- Here we will make a new entry for the new check
4060 Activate_Range_Check
(N
);
4061 Num_Saved_Checks
:= Num_Saved_Checks
+ 1;
4062 Saved_Checks
(Num_Saved_Checks
) :=
4067 Target_Type
=> Ttyp
);
4069 if Debug_Flag_CC
then
4070 w
("Make new entry, check number = ", Num_Saved_Checks
);
4071 w
(" Entity = ", Int
(Ent
));
4072 Write_Str
(" Offset = ");
4074 w
(" Check_Type = R");
4075 w
(" Target_Type = ", Int
(Ttyp
));
4076 pg
(Union_Id
(Ttyp
));
4079 -- If we get an exception, then something went wrong, probably because of
4080 -- an error in the structure of the tree due to an incorrect program. Or
4081 -- it may be a bug in the optimization circuit. In either case the safest
4082 -- thing is simply to set the check flag unconditionally.
4086 Activate_Range_Check
(N
);
4088 if Debug_Flag_CC
then
4089 w
(" exception occurred, range flag set");
4093 end Enable_Range_Check
;
4099 procedure Ensure_Valid
(Expr
: Node_Id
; Holes_OK
: Boolean := False) is
4100 Typ
: constant Entity_Id
:= Etype
(Expr
);
4103 -- Ignore call if we are not doing any validity checking
4105 if not Validity_Checks_On
then
4108 -- Ignore call if range or validity checks suppressed on entity or type
4110 elsif Range_Or_Validity_Checks_Suppressed
(Expr
) then
4113 -- No check required if expression is from the expander, we assume the
4114 -- expander will generate whatever checks are needed. Note that this is
4115 -- not just an optimization, it avoids infinite recursions!
4117 -- Unchecked conversions must be checked, unless they are initialized
4118 -- scalar values, as in a component assignment in an init proc.
4120 -- In addition, we force a check if Force_Validity_Checks is set
4122 elsif not Comes_From_Source
(Expr
)
4123 and then not Force_Validity_Checks
4124 and then (Nkind
(Expr
) /= N_Unchecked_Type_Conversion
4125 or else Kill_Range_Check
(Expr
))
4129 -- No check required if expression is known to have valid value
4131 elsif Expr_Known_Valid
(Expr
) then
4134 -- Ignore case of enumeration with holes where the flag is set not to
4135 -- worry about holes, since no special validity check is needed
4137 elsif Is_Enumeration_Type
(Typ
)
4138 and then Has_Non_Standard_Rep
(Typ
)
4143 -- No check required on the left-hand side of an assignment
4145 elsif Nkind
(Parent
(Expr
)) = N_Assignment_Statement
4146 and then Expr
= Name
(Parent
(Expr
))
4150 -- No check on a universal real constant. The context will eventually
4151 -- convert it to a machine number for some target type, or report an
4154 elsif Nkind
(Expr
) = N_Real_Literal
4155 and then Etype
(Expr
) = Universal_Real
4159 -- If the expression denotes a component of a packed boolean array,
4160 -- no possible check applies. We ignore the old ACATS chestnuts that
4161 -- involve Boolean range True..True.
4163 -- Note: validity checks are generated for expressions that yield a
4164 -- scalar type, when it is possible to create a value that is outside of
4165 -- the type. If this is a one-bit boolean no such value exists. This is
4166 -- an optimization, and it also prevents compiler blowing up during the
4167 -- elaboration of improperly expanded packed array references.
4169 elsif Nkind
(Expr
) = N_Indexed_Component
4170 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Expr
)))
4171 and then Root_Type
(Etype
(Expr
)) = Standard_Boolean
4175 -- An annoying special case. If this is an out parameter of a scalar
4176 -- type, then the value is not going to be accessed, therefore it is
4177 -- inappropriate to do any validity check at the call site.
4180 -- Only need to worry about scalar types
4182 if Is_Scalar_Type
(Typ
) then
4192 -- Find actual argument (which may be a parameter association)
4193 -- and the parent of the actual argument (the call statement)
4198 if Nkind
(P
) = N_Parameter_Association
then
4203 -- Only need to worry if we are argument of a procedure call
4204 -- since functions don't have out parameters. If this is an
4205 -- indirect or dispatching call, get signature from the
4208 if Nkind
(P
) = N_Procedure_Call_Statement
then
4209 L
:= Parameter_Associations
(P
);
4211 if Is_Entity_Name
(Name
(P
)) then
4212 E
:= Entity
(Name
(P
));
4214 pragma Assert
(Nkind
(Name
(P
)) = N_Explicit_Dereference
);
4215 E
:= Etype
(Name
(P
));
4218 -- Only need to worry if there are indeed actuals, and if
4219 -- this could be a procedure call, otherwise we cannot get a
4220 -- match (either we are not an argument, or the mode of the
4221 -- formal is not OUT). This test also filters out the
4224 if Is_Non_Empty_List
(L
)
4225 and then Is_Subprogram
(E
)
4227 -- This is the loop through parameters, looking for an
4228 -- OUT parameter for which we are the argument.
4230 F
:= First_Formal
(E
);
4232 while Present
(F
) loop
4233 if Ekind
(F
) = E_Out_Parameter
and then A
= N
then
4246 -- If this is a boolean expression, only its elementary operands need
4247 -- checking: if they are valid, a boolean or short-circuit operation
4248 -- with them will be valid as well.
4250 if Base_Type
(Typ
) = Standard_Boolean
4252 (Nkind
(Expr
) in N_Op
or else Nkind
(Expr
) in N_Short_Circuit
)
4257 -- If we fall through, a validity check is required
4259 Insert_Valid_Check
(Expr
);
4261 if Is_Entity_Name
(Expr
)
4262 and then Safe_To_Capture_Value
(Expr
, Entity
(Expr
))
4264 Set_Is_Known_Valid
(Entity
(Expr
));
4268 ----------------------
4269 -- Expr_Known_Valid --
4270 ----------------------
4272 function Expr_Known_Valid
(Expr
: Node_Id
) return Boolean is
4273 Typ
: constant Entity_Id
:= Etype
(Expr
);
4276 -- Non-scalar types are always considered valid, since they never give
4277 -- rise to the issues of erroneous or bounded error behavior that are
4278 -- the concern. In formal reference manual terms the notion of validity
4279 -- only applies to scalar types. Note that even when packed arrays are
4280 -- represented using modular types, they are still arrays semantically,
4281 -- so they are also always valid (in particular, the unused bits can be
4282 -- random rubbish without affecting the validity of the array value).
4284 if not Is_Scalar_Type
(Typ
) or else Is_Packed_Array_Type
(Typ
) then
4287 -- If no validity checking, then everything is considered valid
4289 elsif not Validity_Checks_On
then
4292 -- Floating-point types are considered valid unless floating-point
4293 -- validity checks have been specifically turned on.
4295 elsif Is_Floating_Point_Type
(Typ
)
4296 and then not Validity_Check_Floating_Point
4300 -- If the expression is the value of an object that is known to be
4301 -- valid, then clearly the expression value itself is valid.
4303 elsif Is_Entity_Name
(Expr
)
4304 and then Is_Known_Valid
(Entity
(Expr
))
4308 -- References to discriminants are always considered valid. The value
4309 -- of a discriminant gets checked when the object is built. Within the
4310 -- record, we consider it valid, and it is important to do so, since
4311 -- otherwise we can try to generate bogus validity checks which
4312 -- reference discriminants out of scope. Discriminants of concurrent
4313 -- types are excluded for the same reason.
4315 elsif Is_Entity_Name
(Expr
)
4316 and then Denotes_Discriminant
(Expr
, Check_Concurrent
=> True)
4320 -- If the type is one for which all values are known valid, then we are
4321 -- sure that the value is valid except in the slightly odd case where
4322 -- the expression is a reference to a variable whose size has been
4323 -- explicitly set to a value greater than the object size.
4325 elsif Is_Known_Valid
(Typ
) then
4326 if Is_Entity_Name
(Expr
)
4327 and then Ekind
(Entity
(Expr
)) = E_Variable
4328 and then Esize
(Entity
(Expr
)) > Esize
(Typ
)
4335 -- Integer and character literals always have valid values, where
4336 -- appropriate these will be range checked in any case.
4338 elsif Nkind
(Expr
) = N_Integer_Literal
4340 Nkind
(Expr
) = N_Character_Literal
4344 -- If we have a type conversion or a qualification of a known valid
4345 -- value, then the result will always be valid.
4347 elsif Nkind
(Expr
) = N_Type_Conversion
4349 Nkind
(Expr
) = N_Qualified_Expression
4351 return Expr_Known_Valid
(Expression
(Expr
));
4353 -- The result of any operator is always considered valid, since we
4354 -- assume the necessary checks are done by the operator. For operators
4355 -- on floating-point operations, we must also check when the operation
4356 -- is the right-hand side of an assignment, or is an actual in a call.
4358 elsif Nkind
(Expr
) in N_Op
then
4359 if Is_Floating_Point_Type
(Typ
)
4360 and then Validity_Check_Floating_Point
4362 (Nkind
(Parent
(Expr
)) = N_Assignment_Statement
4363 or else Nkind
(Parent
(Expr
)) = N_Function_Call
4364 or else Nkind
(Parent
(Expr
)) = N_Parameter_Association
)
4371 -- The result of a membership test is always valid, since it is true or
4372 -- false, there are no other possibilities.
4374 elsif Nkind
(Expr
) in N_Membership_Test
then
4377 -- For all other cases, we do not know the expression is valid
4382 end Expr_Known_Valid
;
4388 procedure Find_Check
4390 Check_Type
: Character;
4391 Target_Type
: Entity_Id
;
4392 Entry_OK
: out Boolean;
4393 Check_Num
: out Nat
;
4394 Ent
: out Entity_Id
;
4397 function Within_Range_Of
4398 (Target_Type
: Entity_Id
;
4399 Check_Type
: Entity_Id
) return Boolean;
4400 -- Given a requirement for checking a range against Target_Type, and
4401 -- and a range Check_Type against which a check has already been made,
4402 -- determines if the check against check type is sufficient to ensure
4403 -- that no check against Target_Type is required.
4405 ---------------------
4406 -- Within_Range_Of --
4407 ---------------------
4409 function Within_Range_Of
4410 (Target_Type
: Entity_Id
;
4411 Check_Type
: Entity_Id
) return Boolean
4414 if Target_Type
= Check_Type
then
4419 Tlo
: constant Node_Id
:= Type_Low_Bound
(Target_Type
);
4420 Thi
: constant Node_Id
:= Type_High_Bound
(Target_Type
);
4421 Clo
: constant Node_Id
:= Type_Low_Bound
(Check_Type
);
4422 Chi
: constant Node_Id
:= Type_High_Bound
(Check_Type
);
4426 or else (Compile_Time_Known_Value
(Tlo
)
4428 Compile_Time_Known_Value
(Clo
)
4430 Expr_Value
(Clo
) >= Expr_Value
(Tlo
)))
4433 or else (Compile_Time_Known_Value
(Thi
)
4435 Compile_Time_Known_Value
(Chi
)
4437 Expr_Value
(Chi
) <= Expr_Value
(Clo
)))
4445 end Within_Range_Of
;
4447 -- Start of processing for Find_Check
4450 -- Establish default, in case no entry is found
4454 -- Case of expression is simple entity reference
4456 if Is_Entity_Name
(Expr
) then
4457 Ent
:= Entity
(Expr
);
4460 -- Case of expression is entity + known constant
4462 elsif Nkind
(Expr
) = N_Op_Add
4463 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
4464 and then Is_Entity_Name
(Left_Opnd
(Expr
))
4466 Ent
:= Entity
(Left_Opnd
(Expr
));
4467 Ofs
:= Expr_Value
(Right_Opnd
(Expr
));
4469 -- Case of expression is entity - known constant
4471 elsif Nkind
(Expr
) = N_Op_Subtract
4472 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
4473 and then Is_Entity_Name
(Left_Opnd
(Expr
))
4475 Ent
:= Entity
(Left_Opnd
(Expr
));
4476 Ofs
:= UI_Negate
(Expr_Value
(Right_Opnd
(Expr
)));
4478 -- Any other expression is not of the right form
4487 -- Come here with expression of appropriate form, check if entity is an
4488 -- appropriate one for our purposes.
4490 if (Ekind
(Ent
) = E_Variable
4491 or else Is_Constant_Object
(Ent
))
4492 and then not Is_Library_Level_Entity
(Ent
)
4500 -- See if there is matching check already
4502 for J
in reverse 1 .. Num_Saved_Checks
loop
4504 SC
: Saved_Check
renames Saved_Checks
(J
);
4507 if SC
.Killed
= False
4508 and then SC
.Entity
= Ent
4509 and then SC
.Offset
= Ofs
4510 and then SC
.Check_Type
= Check_Type
4511 and then Within_Range_Of
(Target_Type
, SC
.Target_Type
)
4519 -- If we fall through entry was not found
4524 ---------------------------------
4525 -- Generate_Discriminant_Check --
4526 ---------------------------------
4528 -- Note: the code for this procedure is derived from the
4529 -- Emit_Discriminant_Check Routine in trans.c.
4531 procedure Generate_Discriminant_Check
(N
: Node_Id
) is
4532 Loc
: constant Source_Ptr
:= Sloc
(N
);
4533 Pref
: constant Node_Id
:= Prefix
(N
);
4534 Sel
: constant Node_Id
:= Selector_Name
(N
);
4536 Orig_Comp
: constant Entity_Id
:=
4537 Original_Record_Component
(Entity
(Sel
));
4538 -- The original component to be checked
4540 Discr_Fct
: constant Entity_Id
:=
4541 Discriminant_Checking_Func
(Orig_Comp
);
4542 -- The discriminant checking function
4545 -- One discriminant to be checked in the type
4547 Real_Discr
: Entity_Id
;
4548 -- Actual discriminant in the call
4550 Pref_Type
: Entity_Id
;
4551 -- Type of relevant prefix (ignoring private/access stuff)
4554 -- List of arguments for function call
4557 -- Keep track of the formal corresponding to the actual we build for
4558 -- each discriminant, in order to be able to perform the necessary type
4562 -- Selected component reference for checking function argument
4565 Pref_Type
:= Etype
(Pref
);
4567 -- Force evaluation of the prefix, so that it does not get evaluated
4568 -- twice (once for the check, once for the actual reference). Such a
4569 -- double evaluation is always a potential source of inefficiency,
4570 -- and is functionally incorrect in the volatile case, or when the
4571 -- prefix may have side-effects. An entity or a component of an
4572 -- entity requires no evaluation.
4574 if Is_Entity_Name
(Pref
) then
4575 if Treat_As_Volatile
(Entity
(Pref
)) then
4576 Force_Evaluation
(Pref
, Name_Req
=> True);
4579 elsif Treat_As_Volatile
(Etype
(Pref
)) then
4580 Force_Evaluation
(Pref
, Name_Req
=> True);
4582 elsif Nkind
(Pref
) = N_Selected_Component
4583 and then Is_Entity_Name
(Prefix
(Pref
))
4588 Force_Evaluation
(Pref
, Name_Req
=> True);
4591 -- For a tagged type, use the scope of the original component to
4592 -- obtain the type, because ???
4594 if Is_Tagged_Type
(Scope
(Orig_Comp
)) then
4595 Pref_Type
:= Scope
(Orig_Comp
);
4597 -- For an untagged derived type, use the discriminants of the parent
4598 -- which have been renamed in the derivation, possibly by a one-to-many
4599 -- discriminant constraint. For non-tagged type, initially get the Etype
4603 if Is_Derived_Type
(Pref_Type
)
4604 and then Number_Discriminants
(Pref_Type
) /=
4605 Number_Discriminants
(Etype
(Base_Type
(Pref_Type
)))
4607 Pref_Type
:= Etype
(Base_Type
(Pref_Type
));
4611 -- We definitely should have a checking function, This routine should
4612 -- not be called if no discriminant checking function is present.
4614 pragma Assert
(Present
(Discr_Fct
));
4616 -- Create the list of the actual parameters for the call. This list
4617 -- is the list of the discriminant fields of the record expression to
4618 -- be discriminant checked.
4621 Formal
:= First_Formal
(Discr_Fct
);
4622 Discr
:= First_Discriminant
(Pref_Type
);
4623 while Present
(Discr
) loop
4625 -- If we have a corresponding discriminant field, and a parent
4626 -- subtype is present, then we want to use the corresponding
4627 -- discriminant since this is the one with the useful value.
4629 if Present
(Corresponding_Discriminant
(Discr
))
4630 and then Ekind
(Pref_Type
) = E_Record_Type
4631 and then Present
(Parent_Subtype
(Pref_Type
))
4633 Real_Discr
:= Corresponding_Discriminant
(Discr
);
4635 Real_Discr
:= Discr
;
4638 -- Construct the reference to the discriminant
4641 Make_Selected_Component
(Loc
,
4643 Unchecked_Convert_To
(Pref_Type
,
4644 Duplicate_Subexpr
(Pref
)),
4645 Selector_Name
=> New_Occurrence_Of
(Real_Discr
, Loc
));
4647 -- Manually analyze and resolve this selected component. We really
4648 -- want it just as it appears above, and do not want the expander
4649 -- playing discriminal games etc with this reference. Then we append
4650 -- the argument to the list we are gathering.
4652 Set_Etype
(Scomp
, Etype
(Real_Discr
));
4653 Set_Analyzed
(Scomp
, True);
4654 Append_To
(Args
, Convert_To
(Etype
(Formal
), Scomp
));
4656 Next_Formal_With_Extras
(Formal
);
4657 Next_Discriminant
(Discr
);
4660 -- Now build and insert the call
4663 Make_Raise_Constraint_Error
(Loc
,
4665 Make_Function_Call
(Loc
,
4666 Name
=> New_Occurrence_Of
(Discr_Fct
, Loc
),
4667 Parameter_Associations
=> Args
),
4668 Reason
=> CE_Discriminant_Check_Failed
));
4669 end Generate_Discriminant_Check
;
4671 ---------------------------
4672 -- Generate_Index_Checks --
4673 ---------------------------
4675 procedure Generate_Index_Checks
(N
: Node_Id
) is
4677 function Entity_Of_Prefix
return Entity_Id
;
4678 -- Returns the entity of the prefix of N (or Empty if not found)
4680 ----------------------
4681 -- Entity_Of_Prefix --
4682 ----------------------
4684 function Entity_Of_Prefix
return Entity_Id
is
4689 while not Is_Entity_Name
(P
) loop
4690 if not Nkind_In
(P
, N_Selected_Component
,
4691 N_Indexed_Component
)
4700 end Entity_Of_Prefix
;
4704 Loc
: constant Source_Ptr
:= Sloc
(N
);
4705 A
: constant Node_Id
:= Prefix
(N
);
4706 A_Ent
: constant Entity_Id
:= Entity_Of_Prefix
;
4709 -- Start of processing for Generate_Index_Checks
4712 -- Ignore call if the prefix is not an array since we have a serious
4713 -- error in the sources. Ignore it also if index checks are suppressed
4714 -- for array object or type.
4716 if not Is_Array_Type
(Etype
(A
))
4717 or else (Present
(A_Ent
)
4718 and then Index_Checks_Suppressed
(A_Ent
))
4719 or else Index_Checks_Suppressed
(Etype
(A
))
4724 -- Generate a raise of constraint error with the appropriate reason and
4725 -- a condition of the form:
4727 -- Base_Type (Sub) not in Array'Range (Subscript)
4729 -- Note that the reason we generate the conversion to the base type here
4730 -- is that we definitely want the range check to take place, even if it
4731 -- looks like the subtype is OK. Optimization considerations that allow
4732 -- us to omit the check have already been taken into account in the
4733 -- setting of the Do_Range_Check flag earlier on.
4735 Sub
:= First
(Expressions
(N
));
4737 -- Handle string literals
4739 if Ekind
(Etype
(A
)) = E_String_Literal_Subtype
then
4740 if Do_Range_Check
(Sub
) then
4741 Set_Do_Range_Check
(Sub
, False);
4743 -- For string literals we obtain the bounds of the string from the
4744 -- associated subtype.
4747 Make_Raise_Constraint_Error
(Loc
,
4751 Convert_To
(Base_Type
(Etype
(Sub
)),
4752 Duplicate_Subexpr_Move_Checks
(Sub
)),
4754 Make_Attribute_Reference
(Loc
,
4755 Prefix
=> New_Reference_To
(Etype
(A
), Loc
),
4756 Attribute_Name
=> Name_Range
)),
4757 Reason
=> CE_Index_Check_Failed
));
4764 A_Idx
: Node_Id
:= Empty
;
4771 A_Idx
:= First_Index
(Etype
(A
));
4773 while Present
(Sub
) loop
4774 if Do_Range_Check
(Sub
) then
4775 Set_Do_Range_Check
(Sub
, False);
4777 -- Force evaluation except for the case of a simple name of
4778 -- a non-volatile entity.
4780 if not Is_Entity_Name
(Sub
)
4781 or else Treat_As_Volatile
(Entity
(Sub
))
4783 Force_Evaluation
(Sub
);
4786 if Nkind
(A_Idx
) = N_Range
then
4789 elsif Nkind
(A_Idx
) = N_Identifier
4790 or else Nkind
(A_Idx
) = N_Expanded_Name
4792 A_Range
:= Scalar_Range
(Entity
(A_Idx
));
4794 else pragma Assert
(Nkind
(A_Idx
) = N_Subtype_Indication
);
4795 A_Range
:= Range_Expression
(Constraint
(A_Idx
));
4798 -- For array objects with constant bounds we can generate
4799 -- the index check using the bounds of the type of the index
4802 and then Ekind
(A_Ent
) = E_Variable
4803 and then Is_Constant_Bound
(Low_Bound
(A_Range
))
4804 and then Is_Constant_Bound
(High_Bound
(A_Range
))
4807 Make_Attribute_Reference
(Loc
,
4809 New_Reference_To
(Etype
(A_Idx
), Loc
),
4810 Attribute_Name
=> Name_Range
);
4812 -- For arrays with non-constant bounds we cannot generate
4813 -- the index check using the bounds of the type of the index
4814 -- since it may reference discriminants of some enclosing
4815 -- type. We obtain the bounds directly from the prefix
4822 Num
:= New_List
(Make_Integer_Literal
(Loc
, Ind
));
4826 Make_Attribute_Reference
(Loc
,
4828 Duplicate_Subexpr_Move_Checks
(A
, Name_Req
=> True),
4829 Attribute_Name
=> Name_Range
,
4830 Expressions
=> Num
);
4834 Make_Raise_Constraint_Error
(Loc
,
4838 Convert_To
(Base_Type
(Etype
(Sub
)),
4839 Duplicate_Subexpr_Move_Checks
(Sub
)),
4840 Right_Opnd
=> Range_N
),
4841 Reason
=> CE_Index_Check_Failed
));
4844 A_Idx
:= Next_Index
(A_Idx
);
4850 end Generate_Index_Checks
;
4852 --------------------------
4853 -- Generate_Range_Check --
4854 --------------------------
4856 procedure Generate_Range_Check
4858 Target_Type
: Entity_Id
;
4859 Reason
: RT_Exception_Code
)
4861 Loc
: constant Source_Ptr
:= Sloc
(N
);
4862 Source_Type
: constant Entity_Id
:= Etype
(N
);
4863 Source_Base_Type
: constant Entity_Id
:= Base_Type
(Source_Type
);
4864 Target_Base_Type
: constant Entity_Id
:= Base_Type
(Target_Type
);
4867 -- First special case, if the source type is already within the range
4868 -- of the target type, then no check is needed (probably we should have
4869 -- stopped Do_Range_Check from being set in the first place, but better
4870 -- late than later in preventing junk code!
4872 -- We do NOT apply this if the source node is a literal, since in this
4873 -- case the literal has already been labeled as having the subtype of
4876 if In_Subrange_Of
(Source_Type
, Target_Type
)
4878 (Nkind
(N
) = N_Integer_Literal
4880 Nkind
(N
) = N_Real_Literal
4882 Nkind
(N
) = N_Character_Literal
4885 and then Ekind
(Entity
(N
)) = E_Enumeration_Literal
))
4890 -- We need a check, so force evaluation of the node, so that it does
4891 -- not get evaluated twice (once for the check, once for the actual
4892 -- reference). Such a double evaluation is always a potential source
4893 -- of inefficiency, and is functionally incorrect in the volatile case.
4895 if not Is_Entity_Name
(N
)
4896 or else Treat_As_Volatile
(Entity
(N
))
4898 Force_Evaluation
(N
);
4901 -- The easiest case is when Source_Base_Type and Target_Base_Type are
4902 -- the same since in this case we can simply do a direct check of the
4903 -- value of N against the bounds of Target_Type.
4905 -- [constraint_error when N not in Target_Type]
4907 -- Note: this is by far the most common case, for example all cases of
4908 -- checks on the RHS of assignments are in this category, but not all
4909 -- cases are like this. Notably conversions can involve two types.
4911 if Source_Base_Type
= Target_Base_Type
then
4913 Make_Raise_Constraint_Error
(Loc
,
4916 Left_Opnd
=> Duplicate_Subexpr
(N
),
4917 Right_Opnd
=> New_Occurrence_Of
(Target_Type
, Loc
)),
4920 -- Next test for the case where the target type is within the bounds
4921 -- of the base type of the source type, since in this case we can
4922 -- simply convert these bounds to the base type of T to do the test.
4924 -- [constraint_error when N not in
4925 -- Source_Base_Type (Target_Type'First)
4927 -- Source_Base_Type(Target_Type'Last))]
4929 -- The conversions will always work and need no check
4931 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
4932 -- of converting from an enumeration value to an integer type, such as
4933 -- occurs for the case of generating a range check on Enum'Val(Exp)
4934 -- (which used to be handled by gigi). This is OK, since the conversion
4935 -- itself does not require a check.
4937 elsif In_Subrange_Of
(Target_Type
, Source_Base_Type
) then
4939 Make_Raise_Constraint_Error
(Loc
,
4942 Left_Opnd
=> Duplicate_Subexpr
(N
),
4947 Unchecked_Convert_To
(Source_Base_Type
,
4948 Make_Attribute_Reference
(Loc
,
4950 New_Occurrence_Of
(Target_Type
, Loc
),
4951 Attribute_Name
=> Name_First
)),
4954 Unchecked_Convert_To
(Source_Base_Type
,
4955 Make_Attribute_Reference
(Loc
,
4957 New_Occurrence_Of
(Target_Type
, Loc
),
4958 Attribute_Name
=> Name_Last
)))),
4961 -- Note that at this stage we now that the Target_Base_Type is not in
4962 -- the range of the Source_Base_Type (since even the Target_Type itself
4963 -- is not in this range). It could still be the case that Source_Type is
4964 -- in range of the target base type since we have not checked that case.
4966 -- If that is the case, we can freely convert the source to the target,
4967 -- and then test the target result against the bounds.
4969 elsif In_Subrange_Of
(Source_Type
, Target_Base_Type
) then
4971 -- We make a temporary to hold the value of the converted value
4972 -- (converted to the base type), and then we will do the test against
4975 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
4976 -- [constraint_error when Tnn not in Target_Type]
4978 -- Then the conversion itself is replaced by an occurrence of Tnn
4981 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
4984 Insert_Actions
(N
, New_List
(
4985 Make_Object_Declaration
(Loc
,
4986 Defining_Identifier
=> Tnn
,
4987 Object_Definition
=>
4988 New_Occurrence_Of
(Target_Base_Type
, Loc
),
4989 Constant_Present
=> True,
4991 Make_Type_Conversion
(Loc
,
4992 Subtype_Mark
=> New_Occurrence_Of
(Target_Base_Type
, Loc
),
4993 Expression
=> Duplicate_Subexpr
(N
))),
4995 Make_Raise_Constraint_Error
(Loc
,
4998 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
4999 Right_Opnd
=> New_Occurrence_Of
(Target_Type
, Loc
)),
5001 Reason
=> Reason
)));
5003 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
5005 -- Set the type of N, because the declaration for Tnn might not
5006 -- be analyzed yet, as is the case if N appears within a record
5007 -- declaration, as a discriminant constraint or expression.
5009 Set_Etype
(N
, Target_Base_Type
);
5012 -- At this stage, we know that we have two scalar types, which are
5013 -- directly convertible, and where neither scalar type has a base
5014 -- range that is in the range of the other scalar type.
5016 -- The only way this can happen is with a signed and unsigned type.
5017 -- So test for these two cases:
5020 -- Case of the source is unsigned and the target is signed
5022 if Is_Unsigned_Type
(Source_Base_Type
)
5023 and then not Is_Unsigned_Type
(Target_Base_Type
)
5025 -- If the source is unsigned and the target is signed, then we
5026 -- know that the source is not shorter than the target (otherwise
5027 -- the source base type would be in the target base type range).
5029 -- In other words, the unsigned type is either the same size as
5030 -- the target, or it is larger. It cannot be smaller.
5033 (Esize
(Source_Base_Type
) >= Esize
(Target_Base_Type
));
5035 -- We only need to check the low bound if the low bound of the
5036 -- target type is non-negative. If the low bound of the target
5037 -- type is negative, then we know that we will fit fine.
5039 -- If the high bound of the target type is negative, then we
5040 -- know we have a constraint error, since we can't possibly
5041 -- have a negative source.
5043 -- With these two checks out of the way, we can do the check
5044 -- using the source type safely
5046 -- This is definitely the most annoying case!
5048 -- [constraint_error
5049 -- when (Target_Type'First >= 0
5051 -- N < Source_Base_Type (Target_Type'First))
5052 -- or else Target_Type'Last < 0
5053 -- or else N > Source_Base_Type (Target_Type'Last)];
5055 -- We turn off all checks since we know that the conversions
5056 -- will work fine, given the guards for negative values.
5059 Make_Raise_Constraint_Error
(Loc
,
5065 Left_Opnd
=> Make_Op_Ge
(Loc
,
5067 Make_Attribute_Reference
(Loc
,
5069 New_Occurrence_Of
(Target_Type
, Loc
),
5070 Attribute_Name
=> Name_First
),
5071 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
5075 Left_Opnd
=> Duplicate_Subexpr
(N
),
5077 Convert_To
(Source_Base_Type
,
5078 Make_Attribute_Reference
(Loc
,
5080 New_Occurrence_Of
(Target_Type
, Loc
),
5081 Attribute_Name
=> Name_First
)))),
5086 Make_Attribute_Reference
(Loc
,
5087 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
5088 Attribute_Name
=> Name_Last
),
5089 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
))),
5093 Left_Opnd
=> Duplicate_Subexpr
(N
),
5095 Convert_To
(Source_Base_Type
,
5096 Make_Attribute_Reference
(Loc
,
5097 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
5098 Attribute_Name
=> Name_Last
)))),
5101 Suppress
=> All_Checks
);
5103 -- Only remaining possibility is that the source is signed and
5104 -- the target is unsigned.
5107 pragma Assert
(not Is_Unsigned_Type
(Source_Base_Type
)
5108 and then Is_Unsigned_Type
(Target_Base_Type
));
5110 -- If the source is signed and the target is unsigned, then we
5111 -- know that the target is not shorter than the source (otherwise
5112 -- the target base type would be in the source base type range).
5114 -- In other words, the unsigned type is either the same size as
5115 -- the target, or it is larger. It cannot be smaller.
5117 -- Clearly we have an error if the source value is negative since
5118 -- no unsigned type can have negative values. If the source type
5119 -- is non-negative, then the check can be done using the target
5122 -- Tnn : constant Target_Base_Type (N) := Target_Type;
5124 -- [constraint_error
5125 -- when N < 0 or else Tnn not in Target_Type];
5127 -- We turn off all checks for the conversion of N to the target
5128 -- base type, since we generate the explicit check to ensure that
5129 -- the value is non-negative
5132 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
5135 Insert_Actions
(N
, New_List
(
5136 Make_Object_Declaration
(Loc
,
5137 Defining_Identifier
=> Tnn
,
5138 Object_Definition
=>
5139 New_Occurrence_Of
(Target_Base_Type
, Loc
),
5140 Constant_Present
=> True,
5142 Make_Unchecked_Type_Conversion
(Loc
,
5144 New_Occurrence_Of
(Target_Base_Type
, Loc
),
5145 Expression
=> Duplicate_Subexpr
(N
))),
5147 Make_Raise_Constraint_Error
(Loc
,
5152 Left_Opnd
=> Duplicate_Subexpr
(N
),
5153 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
5157 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
5159 New_Occurrence_Of
(Target_Type
, Loc
))),
5162 Suppress
=> All_Checks
);
5164 -- Set the Etype explicitly, because Insert_Actions may have
5165 -- placed the declaration in the freeze list for an enclosing
5166 -- construct, and thus it is not analyzed yet.
5168 Set_Etype
(Tnn
, Target_Base_Type
);
5169 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
5173 end Generate_Range_Check
;
5179 function Get_Check_Id
(N
: Name_Id
) return Check_Id
is
5181 -- For standard check name, we can do a direct computation
5183 if N
in First_Check_Name
.. Last_Check_Name
then
5184 return Check_Id
(N
- (First_Check_Name
- 1));
5186 -- For non-standard names added by pragma Check_Name, search table
5189 for J
in All_Checks
+ 1 .. Check_Names
.Last
loop
5190 if Check_Names
.Table
(J
) = N
then
5196 -- No matching name found
5201 ---------------------
5202 -- Get_Discriminal --
5203 ---------------------
5205 function Get_Discriminal
(E
: Entity_Id
; Bound
: Node_Id
) return Node_Id
is
5206 Loc
: constant Source_Ptr
:= Sloc
(E
);
5211 -- The bound can be a bona fide parameter of a protected operation,
5212 -- rather than a prival encoded as an in-parameter.
5214 if No
(Discriminal_Link
(Entity
(Bound
))) then
5218 -- Climb the scope stack looking for an enclosing protected type. If
5219 -- we run out of scopes, return the bound itself.
5222 while Present
(Sc
) loop
5223 if Sc
= Standard_Standard
then
5226 elsif Ekind
(Sc
) = E_Protected_Type
then
5233 D
:= First_Discriminant
(Sc
);
5234 while Present
(D
) loop
5235 if Chars
(D
) = Chars
(Bound
) then
5236 return New_Occurrence_Of
(Discriminal
(D
), Loc
);
5239 Next_Discriminant
(D
);
5243 end Get_Discriminal
;
5245 ----------------------
5246 -- Get_Range_Checks --
5247 ----------------------
5249 function Get_Range_Checks
5251 Target_Typ
: Entity_Id
;
5252 Source_Typ
: Entity_Id
:= Empty
;
5253 Warn_Node
: Node_Id
:= Empty
) return Check_Result
5256 return Selected_Range_Checks
5257 (Ck_Node
, Target_Typ
, Source_Typ
, Warn_Node
);
5258 end Get_Range_Checks
;
5264 function Guard_Access
5267 Ck_Node
: Node_Id
) return Node_Id
5270 if Nkind
(Cond
) = N_Or_Else
then
5271 Set_Paren_Count
(Cond
, 1);
5274 if Nkind
(Ck_Node
) = N_Allocator
then
5281 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
5282 Right_Opnd
=> Make_Null
(Loc
)),
5283 Right_Opnd
=> Cond
);
5287 -----------------------------
5288 -- Index_Checks_Suppressed --
5289 -----------------------------
5291 function Index_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5293 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
5294 return Is_Check_Suppressed
(E
, Index_Check
);
5296 return Scope_Suppress
(Index_Check
);
5298 end Index_Checks_Suppressed
;
5304 procedure Initialize
is
5306 for J
in Determine_Range_Cache_N
'Range loop
5307 Determine_Range_Cache_N
(J
) := Empty
;
5312 for J
in Int
range 1 .. All_Checks
loop
5313 Check_Names
.Append
(Name_Id
(Int
(First_Check_Name
) + J
- 1));
5317 -------------------------
5318 -- Insert_Range_Checks --
5319 -------------------------
5321 procedure Insert_Range_Checks
5322 (Checks
: Check_Result
;
5324 Suppress_Typ
: Entity_Id
;
5325 Static_Sloc
: Source_Ptr
:= No_Location
;
5326 Flag_Node
: Node_Id
:= Empty
;
5327 Do_Before
: Boolean := False)
5329 Internal_Flag_Node
: Node_Id
:= Flag_Node
;
5330 Internal_Static_Sloc
: Source_Ptr
:= Static_Sloc
;
5332 Check_Node
: Node_Id
;
5333 Checks_On
: constant Boolean :=
5334 (not Index_Checks_Suppressed
(Suppress_Typ
))
5336 (not Range_Checks_Suppressed
(Suppress_Typ
));
5339 -- For now we just return if Checks_On is false, however this should be
5340 -- enhanced to check for an always True value in the condition and to
5341 -- generate a compilation warning???
5343 if not Full_Expander_Active
or else not Checks_On
then
5347 if Static_Sloc
= No_Location
then
5348 Internal_Static_Sloc
:= Sloc
(Node
);
5351 if No
(Flag_Node
) then
5352 Internal_Flag_Node
:= Node
;
5355 for J
in 1 .. 2 loop
5356 exit when No
(Checks
(J
));
5358 if Nkind
(Checks
(J
)) = N_Raise_Constraint_Error
5359 and then Present
(Condition
(Checks
(J
)))
5361 if not Has_Dynamic_Range_Check
(Internal_Flag_Node
) then
5362 Check_Node
:= Checks
(J
);
5363 Mark_Rewrite_Insertion
(Check_Node
);
5366 Insert_Before_And_Analyze
(Node
, Check_Node
);
5368 Insert_After_And_Analyze
(Node
, Check_Node
);
5371 Set_Has_Dynamic_Range_Check
(Internal_Flag_Node
);
5376 Make_Raise_Constraint_Error
(Internal_Static_Sloc
,
5377 Reason
=> CE_Range_Check_Failed
);
5378 Mark_Rewrite_Insertion
(Check_Node
);
5381 Insert_Before_And_Analyze
(Node
, Check_Node
);
5383 Insert_After_And_Analyze
(Node
, Check_Node
);
5387 end Insert_Range_Checks
;
5389 ------------------------
5390 -- Insert_Valid_Check --
5391 ------------------------
5393 procedure Insert_Valid_Check
(Expr
: Node_Id
) is
5394 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
5398 -- Do not insert if checks off, or if not checking validity or
5399 -- if expression is known to be valid
5401 if not Validity_Checks_On
5402 or else Range_Or_Validity_Checks_Suppressed
(Expr
)
5403 or else Expr_Known_Valid
(Expr
)
5408 -- If we have a checked conversion, then validity check applies to
5409 -- the expression inside the conversion, not the result, since if
5410 -- the expression inside is valid, then so is the conversion result.
5413 while Nkind
(Exp
) = N_Type_Conversion
loop
5414 Exp
:= Expression
(Exp
);
5417 -- We are about to insert the validity check for Exp. We save and
5418 -- reset the Do_Range_Check flag over this validity check, and then
5419 -- put it back for the final original reference (Exp may be rewritten).
5422 DRC
: constant Boolean := Do_Range_Check
(Exp
);
5425 Set_Do_Range_Check
(Exp
, False);
5427 -- Force evaluation to avoid multiple reads for atomic/volatile
5429 if Is_Entity_Name
(Exp
)
5430 and then Is_Volatile
(Entity
(Exp
))
5432 Force_Evaluation
(Exp
, Name_Req
=> True);
5435 -- Insert the validity check. Note that we do this with validity
5436 -- checks turned off, to avoid recursion, we do not want validity
5437 -- checks on the validity checking code itself!
5441 Make_Raise_Constraint_Error
(Loc
,
5445 Make_Attribute_Reference
(Loc
,
5447 Duplicate_Subexpr_No_Checks
(Exp
, Name_Req
=> True),
5448 Attribute_Name
=> Name_Valid
)),
5449 Reason
=> CE_Invalid_Data
),
5450 Suppress
=> Validity_Check
);
5452 -- If the expression is a reference to an element of a bit-packed
5453 -- array, then it is rewritten as a renaming declaration. If the
5454 -- expression is an actual in a call, it has not been expanded,
5455 -- waiting for the proper point at which to do it. The same happens
5456 -- with renamings, so that we have to force the expansion now. This
5457 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
5460 if Is_Entity_Name
(Exp
)
5461 and then Nkind
(Parent
(Entity
(Exp
))) =
5462 N_Object_Renaming_Declaration
5465 Old_Exp
: constant Node_Id
:= Name
(Parent
(Entity
(Exp
)));
5467 if Nkind
(Old_Exp
) = N_Indexed_Component
5468 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Old_Exp
)))
5470 Expand_Packed_Element_Reference
(Old_Exp
);
5475 -- Put back the Do_Range_Check flag on the resulting (possibly
5476 -- rewritten) expression.
5478 -- Note: it might be thought that a validity check is not required
5479 -- when a range check is present, but that's not the case, because
5480 -- the back end is allowed to assume for the range check that the
5481 -- operand is within its declared range (an assumption that validity
5482 -- checking is all about NOT assuming!)
5484 -- Note: no need to worry about Possible_Local_Raise here, it will
5485 -- already have been called if original node has Do_Range_Check set.
5487 Set_Do_Range_Check
(Exp
, DRC
);
5489 end Insert_Valid_Check
;
5491 ----------------------------------
5492 -- Install_Null_Excluding_Check --
5493 ----------------------------------
5495 procedure Install_Null_Excluding_Check
(N
: Node_Id
) is
5496 Loc
: constant Source_Ptr
:= Sloc
(Parent
(N
));
5497 Typ
: constant Entity_Id
:= Etype
(N
);
5499 function Safe_To_Capture_In_Parameter_Value
return Boolean;
5500 -- Determines if it is safe to capture Known_Non_Null status for an
5501 -- the entity referenced by node N. The caller ensures that N is indeed
5502 -- an entity name. It is safe to capture the non-null status for an IN
5503 -- parameter when the reference occurs within a declaration that is sure
5504 -- to be executed as part of the declarative region.
5506 procedure Mark_Non_Null
;
5507 -- After installation of check, if the node in question is an entity
5508 -- name, then mark this entity as non-null if possible.
5510 function Safe_To_Capture_In_Parameter_Value
return Boolean is
5511 E
: constant Entity_Id
:= Entity
(N
);
5512 S
: constant Entity_Id
:= Current_Scope
;
5516 if Ekind
(E
) /= E_In_Parameter
then
5520 -- Two initial context checks. We must be inside a subprogram body
5521 -- with declarations and reference must not appear in nested scopes.
5523 if (Ekind
(S
) /= E_Function
and then Ekind
(S
) /= E_Procedure
)
5524 or else Scope
(E
) /= S
5529 S_Par
:= Parent
(Parent
(S
));
5531 if Nkind
(S_Par
) /= N_Subprogram_Body
5532 or else No
(Declarations
(S_Par
))
5542 -- Retrieve the declaration node of N (if any). Note that N
5543 -- may be a part of a complex initialization expression.
5547 while Present
(P
) loop
5549 -- If we have a short circuit form, and we are within the right
5550 -- hand expression, we return false, since the right hand side
5551 -- is not guaranteed to be elaborated.
5553 if Nkind
(P
) in N_Short_Circuit
5554 and then N
= Right_Opnd
(P
)
5559 -- Similarly, if we are in a conditional expression and not
5560 -- part of the condition, then we return False, since neither
5561 -- the THEN or ELSE expressions will always be elaborated.
5563 if Nkind
(P
) = N_Conditional_Expression
5564 and then N
/= First
(Expressions
(P
))
5569 -- If we are in a case expression, and not part of the
5570 -- expression, then we return False, since a particular
5571 -- branch may not always be elaborated
5573 if Nkind
(P
) = N_Case_Expression
5574 and then N
/= Expression
(P
)
5579 -- While traversing the parent chain, we find that N
5580 -- belongs to a statement, thus it may never appear in
5581 -- a declarative region.
5583 if Nkind
(P
) in N_Statement_Other_Than_Procedure_Call
5584 or else Nkind
(P
) = N_Procedure_Call_Statement
5589 -- If we are at a declaration, record it and exit
5591 if Nkind
(P
) in N_Declaration
5592 and then Nkind
(P
) not in N_Subprogram_Specification
5605 return List_Containing
(N_Decl
) = Declarations
(S_Par
);
5607 end Safe_To_Capture_In_Parameter_Value
;
5613 procedure Mark_Non_Null
is
5615 -- Only case of interest is if node N is an entity name
5617 if Is_Entity_Name
(N
) then
5619 -- For sure, we want to clear an indication that this is known to
5620 -- be null, since if we get past this check, it definitely is not!
5622 Set_Is_Known_Null
(Entity
(N
), False);
5624 -- We can mark the entity as known to be non-null if either it is
5625 -- safe to capture the value, or in the case of an IN parameter,
5626 -- which is a constant, if the check we just installed is in the
5627 -- declarative region of the subprogram body. In this latter case,
5628 -- a check is decisive for the rest of the body if the expression
5629 -- is sure to be elaborated, since we know we have to elaborate
5630 -- all declarations before executing the body.
5632 -- Couldn't this always be part of Safe_To_Capture_Value ???
5634 if Safe_To_Capture_Value
(N
, Entity
(N
))
5635 or else Safe_To_Capture_In_Parameter_Value
5637 Set_Is_Known_Non_Null
(Entity
(N
));
5642 -- Start of processing for Install_Null_Excluding_Check
5645 pragma Assert
(Is_Access_Type
(Typ
));
5647 -- No check inside a generic (why not???)
5649 if Inside_A_Generic
then
5653 -- No check needed if known to be non-null
5655 if Known_Non_Null
(N
) then
5659 -- If known to be null, here is where we generate a compile time check
5661 if Known_Null
(N
) then
5663 -- Avoid generating warning message inside init procs
5665 if not Inside_Init_Proc
then
5666 Apply_Compile_Time_Constraint_Error
5668 "null value not allowed here?",
5669 CE_Access_Check_Failed
);
5672 Make_Raise_Constraint_Error
(Loc
,
5673 Reason
=> CE_Access_Check_Failed
));
5680 -- If entity is never assigned, for sure a warning is appropriate
5682 if Is_Entity_Name
(N
) then
5683 Check_Unset_Reference
(N
);
5686 -- No check needed if checks are suppressed on the range. Note that we
5687 -- don't set Is_Known_Non_Null in this case (we could legitimately do
5688 -- so, since the program is erroneous, but we don't like to casually
5689 -- propagate such conclusions from erroneosity).
5691 if Access_Checks_Suppressed
(Typ
) then
5695 -- No check needed for access to concurrent record types generated by
5696 -- the expander. This is not just an optimization (though it does indeed
5697 -- remove junk checks). It also avoids generation of junk warnings.
5699 if Nkind
(N
) in N_Has_Chars
5700 and then Chars
(N
) = Name_uObject
5701 and then Is_Concurrent_Record_Type
5702 (Directly_Designated_Type
(Etype
(N
)))
5707 -- No check needed for the Get_Current_Excep.all.all idiom generated by
5708 -- the expander within exception handlers, since we know that the value
5709 -- can never be null.
5711 -- Is this really the right way to do this? Normally we generate such
5712 -- code in the expander with checks off, and that's how we suppress this
5713 -- kind of junk check ???
5715 if Nkind
(N
) = N_Function_Call
5716 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
5717 and then Nkind
(Prefix
(Name
(N
))) = N_Identifier
5718 and then Is_RTE
(Entity
(Prefix
(Name
(N
))), RE_Get_Current_Excep
)
5723 -- Otherwise install access check
5726 Make_Raise_Constraint_Error
(Loc
,
5729 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(N
),
5730 Right_Opnd
=> Make_Null
(Loc
)),
5731 Reason
=> CE_Access_Check_Failed
));
5734 end Install_Null_Excluding_Check
;
5736 --------------------------
5737 -- Install_Static_Check --
5738 --------------------------
5740 procedure Install_Static_Check
(R_Cno
: Node_Id
; Loc
: Source_Ptr
) is
5741 Stat
: constant Boolean := Is_Static_Expression
(R_Cno
);
5742 Typ
: constant Entity_Id
:= Etype
(R_Cno
);
5746 Make_Raise_Constraint_Error
(Loc
,
5747 Reason
=> CE_Range_Check_Failed
));
5748 Set_Analyzed
(R_Cno
);
5749 Set_Etype
(R_Cno
, Typ
);
5750 Set_Raises_Constraint_Error
(R_Cno
);
5751 Set_Is_Static_Expression
(R_Cno
, Stat
);
5753 -- Now deal with possible local raise handling
5755 Possible_Local_Raise
(R_Cno
, Standard_Constraint_Error
);
5756 end Install_Static_Check
;
5758 ---------------------
5759 -- Kill_All_Checks --
5760 ---------------------
5762 procedure Kill_All_Checks
is
5764 if Debug_Flag_CC
then
5765 w
("Kill_All_Checks");
5768 -- We reset the number of saved checks to zero, and also modify all
5769 -- stack entries for statement ranges to indicate that the number of
5770 -- checks at each level is now zero.
5772 Num_Saved_Checks
:= 0;
5774 -- Note: the Int'Min here avoids any possibility of J being out of
5775 -- range when called from e.g. Conditional_Statements_Begin.
5777 for J
in 1 .. Int
'Min (Saved_Checks_TOS
, Saved_Checks_Stack
'Last) loop
5778 Saved_Checks_Stack
(J
) := 0;
5780 end Kill_All_Checks
;
5786 procedure Kill_Checks
(V
: Entity_Id
) is
5788 if Debug_Flag_CC
then
5789 w
("Kill_Checks for entity", Int
(V
));
5792 for J
in 1 .. Num_Saved_Checks
loop
5793 if Saved_Checks
(J
).Entity
= V
then
5794 if Debug_Flag_CC
then
5795 w
(" Checks killed for saved check ", J
);
5798 Saved_Checks
(J
).Killed
:= True;
5803 ------------------------------
5804 -- Length_Checks_Suppressed --
5805 ------------------------------
5807 function Length_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5809 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
5810 return Is_Check_Suppressed
(E
, Length_Check
);
5812 return Scope_Suppress
(Length_Check
);
5814 end Length_Checks_Suppressed
;
5816 --------------------------------
5817 -- Overflow_Checks_Suppressed --
5818 --------------------------------
5820 function Overflow_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5822 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
5823 return Is_Check_Suppressed
(E
, Overflow_Check
);
5825 return Scope_Suppress
(Overflow_Check
);
5827 end Overflow_Checks_Suppressed
;
5829 -----------------------------
5830 -- Range_Checks_Suppressed --
5831 -----------------------------
5833 function Range_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5837 -- Note: for now we always suppress range checks on Vax float types,
5838 -- since Gigi does not know how to generate these checks.
5840 if Vax_Float
(E
) then
5842 elsif Kill_Range_Checks
(E
) then
5844 elsif Checks_May_Be_Suppressed
(E
) then
5845 return Is_Check_Suppressed
(E
, Range_Check
);
5849 return Scope_Suppress
(Range_Check
);
5850 end Range_Checks_Suppressed
;
5852 -----------------------------------------
5853 -- Range_Or_Validity_Checks_Suppressed --
5854 -----------------------------------------
5856 -- Note: the coding would be simpler here if we simply made appropriate
5857 -- calls to Range/Validity_Checks_Suppressed, but that would result in
5858 -- duplicated checks which we prefer to avoid.
5860 function Range_Or_Validity_Checks_Suppressed
5861 (Expr
: Node_Id
) return Boolean
5864 -- Immediate return if scope checks suppressed for either check
5866 if Scope_Suppress
(Range_Check
) or Scope_Suppress
(Validity_Check
) then
5870 -- If no expression, that's odd, decide that checks are suppressed,
5871 -- since we don't want anyone trying to do checks in this case, which
5872 -- is most likely the result of some other error.
5878 -- Expression is present, so perform suppress checks on type
5881 Typ
: constant Entity_Id
:= Etype
(Expr
);
5883 if Vax_Float
(Typ
) then
5885 elsif Checks_May_Be_Suppressed
(Typ
)
5886 and then (Is_Check_Suppressed
(Typ
, Range_Check
)
5888 Is_Check_Suppressed
(Typ
, Validity_Check
))
5894 -- If expression is an entity name, perform checks on this entity
5896 if Is_Entity_Name
(Expr
) then
5898 Ent
: constant Entity_Id
:= Entity
(Expr
);
5900 if Checks_May_Be_Suppressed
(Ent
) then
5901 return Is_Check_Suppressed
(Ent
, Range_Check
)
5902 or else Is_Check_Suppressed
(Ent
, Validity_Check
);
5907 -- If we fall through, no checks suppressed
5910 end Range_Or_Validity_Checks_Suppressed
;
5916 procedure Remove_Checks
(Expr
: Node_Id
) is
5917 function Process
(N
: Node_Id
) return Traverse_Result
;
5918 -- Process a single node during the traversal
5920 procedure Traverse
is new Traverse_Proc
(Process
);
5921 -- The traversal procedure itself
5927 function Process
(N
: Node_Id
) return Traverse_Result
is
5929 if Nkind
(N
) not in N_Subexpr
then
5933 Set_Do_Range_Check
(N
, False);
5937 Traverse
(Left_Opnd
(N
));
5940 when N_Attribute_Reference
=>
5941 Set_Do_Overflow_Check
(N
, False);
5943 when N_Function_Call
=>
5944 Set_Do_Tag_Check
(N
, False);
5947 Set_Do_Overflow_Check
(N
, False);
5951 Set_Do_Division_Check
(N
, False);
5954 Set_Do_Length_Check
(N
, False);
5957 Set_Do_Division_Check
(N
, False);
5960 Set_Do_Length_Check
(N
, False);
5963 Set_Do_Division_Check
(N
, False);
5966 Set_Do_Length_Check
(N
, False);
5973 Traverse
(Left_Opnd
(N
));
5976 when N_Selected_Component
=>
5977 Set_Do_Discriminant_Check
(N
, False);
5979 when N_Type_Conversion
=>
5980 Set_Do_Length_Check
(N
, False);
5981 Set_Do_Tag_Check
(N
, False);
5982 Set_Do_Overflow_Check
(N
, False);
5991 -- Start of processing for Remove_Checks
5997 ----------------------------
5998 -- Selected_Length_Checks --
5999 ----------------------------
6001 function Selected_Length_Checks
6003 Target_Typ
: Entity_Id
;
6004 Source_Typ
: Entity_Id
;
6005 Warn_Node
: Node_Id
) return Check_Result
6007 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
6010 Expr_Actual
: Node_Id
;
6012 Cond
: Node_Id
:= Empty
;
6013 Do_Access
: Boolean := False;
6014 Wnode
: Node_Id
:= Warn_Node
;
6015 Ret_Result
: Check_Result
:= (Empty
, Empty
);
6016 Num_Checks
: Natural := 0;
6018 procedure Add_Check
(N
: Node_Id
);
6019 -- Adds the action given to Ret_Result if N is non-Empty
6021 function Get_E_Length
(E
: Entity_Id
; Indx
: Nat
) return Node_Id
;
6022 function Get_N_Length
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
6023 -- Comments required ???
6025 function Same_Bounds
(L
: Node_Id
; R
: Node_Id
) return Boolean;
6026 -- True for equal literals and for nodes that denote the same constant
6027 -- entity, even if its value is not a static constant. This includes the
6028 -- case of a discriminal reference within an init proc. Removes some
6029 -- obviously superfluous checks.
6031 function Length_E_Cond
6032 (Exptyp
: Entity_Id
;
6034 Indx
: Nat
) return Node_Id
;
6035 -- Returns expression to compute:
6036 -- Typ'Length /= Exptyp'Length
6038 function Length_N_Cond
6041 Indx
: Nat
) return Node_Id
;
6042 -- Returns expression to compute:
6043 -- Typ'Length /= Expr'Length
6049 procedure Add_Check
(N
: Node_Id
) is
6053 -- For now, ignore attempt to place more than 2 checks ???
6055 if Num_Checks
= 2 then
6059 pragma Assert
(Num_Checks
<= 1);
6060 Num_Checks
:= Num_Checks
+ 1;
6061 Ret_Result
(Num_Checks
) := N
;
6069 function Get_E_Length
(E
: Entity_Id
; Indx
: Nat
) return Node_Id
is
6070 SE
: constant Entity_Id
:= Scope
(E
);
6072 E1
: Entity_Id
:= E
;
6075 if Ekind
(Scope
(E
)) = E_Record_Type
6076 and then Has_Discriminants
(Scope
(E
))
6078 N
:= Build_Discriminal_Subtype_Of_Component
(E
);
6081 Insert_Action
(Ck_Node
, N
);
6082 E1
:= Defining_Identifier
(N
);
6086 if Ekind
(E1
) = E_String_Literal_Subtype
then
6088 Make_Integer_Literal
(Loc
,
6089 Intval
=> String_Literal_Length
(E1
));
6091 elsif SE
/= Standard_Standard
6092 and then Ekind
(Scope
(SE
)) = E_Protected_Type
6093 and then Has_Discriminants
(Scope
(SE
))
6094 and then Has_Completion
(Scope
(SE
))
6095 and then not Inside_Init_Proc
6097 -- If the type whose length is needed is a private component
6098 -- constrained by a discriminant, we must expand the 'Length
6099 -- attribute into an explicit computation, using the discriminal
6100 -- of the current protected operation. This is because the actual
6101 -- type of the prival is constructed after the protected opera-
6102 -- tion has been fully expanded.
6105 Indx_Type
: Node_Id
;
6108 Do_Expand
: Boolean := False;
6111 Indx_Type
:= First_Index
(E
);
6113 for J
in 1 .. Indx
- 1 loop
6114 Next_Index
(Indx_Type
);
6117 Get_Index_Bounds
(Indx_Type
, Lo
, Hi
);
6119 if Nkind
(Lo
) = N_Identifier
6120 and then Ekind
(Entity
(Lo
)) = E_In_Parameter
6122 Lo
:= Get_Discriminal
(E
, Lo
);
6126 if Nkind
(Hi
) = N_Identifier
6127 and then Ekind
(Entity
(Hi
)) = E_In_Parameter
6129 Hi
:= Get_Discriminal
(E
, Hi
);
6134 if not Is_Entity_Name
(Lo
) then
6135 Lo
:= Duplicate_Subexpr_No_Checks
(Lo
);
6138 if not Is_Entity_Name
(Hi
) then
6139 Lo
:= Duplicate_Subexpr_No_Checks
(Hi
);
6145 Make_Op_Subtract
(Loc
,
6149 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
6154 Make_Attribute_Reference
(Loc
,
6155 Attribute_Name
=> Name_Length
,
6157 New_Occurrence_Of
(E1
, Loc
));
6160 Set_Expressions
(N
, New_List
(
6161 Make_Integer_Literal
(Loc
, Indx
)));
6170 Make_Attribute_Reference
(Loc
,
6171 Attribute_Name
=> Name_Length
,
6173 New_Occurrence_Of
(E1
, Loc
));
6176 Set_Expressions
(N
, New_List
(
6177 Make_Integer_Literal
(Loc
, Indx
)));
6188 function Get_N_Length
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
6191 Make_Attribute_Reference
(Loc
,
6192 Attribute_Name
=> Name_Length
,
6194 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
6195 Expressions
=> New_List
(
6196 Make_Integer_Literal
(Loc
, Indx
)));
6203 function Length_E_Cond
6204 (Exptyp
: Entity_Id
;
6206 Indx
: Nat
) return Node_Id
6211 Left_Opnd
=> Get_E_Length
(Typ
, Indx
),
6212 Right_Opnd
=> Get_E_Length
(Exptyp
, Indx
));
6219 function Length_N_Cond
6222 Indx
: Nat
) return Node_Id
6227 Left_Opnd
=> Get_E_Length
(Typ
, Indx
),
6228 Right_Opnd
=> Get_N_Length
(Expr
, Indx
));
6235 function Same_Bounds
(L
: Node_Id
; R
: Node_Id
) return Boolean is
6238 (Nkind
(L
) = N_Integer_Literal
6239 and then Nkind
(R
) = N_Integer_Literal
6240 and then Intval
(L
) = Intval
(R
))
6244 and then Ekind
(Entity
(L
)) = E_Constant
6245 and then ((Is_Entity_Name
(R
)
6246 and then Entity
(L
) = Entity
(R
))
6248 (Nkind
(R
) = N_Type_Conversion
6249 and then Is_Entity_Name
(Expression
(R
))
6250 and then Entity
(L
) = Entity
(Expression
(R
)))))
6254 and then Ekind
(Entity
(R
)) = E_Constant
6255 and then Nkind
(L
) = N_Type_Conversion
6256 and then Is_Entity_Name
(Expression
(L
))
6257 and then Entity
(R
) = Entity
(Expression
(L
)))
6261 and then Is_Entity_Name
(R
)
6262 and then Entity
(L
) = Entity
(R
)
6263 and then Ekind
(Entity
(L
)) = E_In_Parameter
6264 and then Inside_Init_Proc
);
6267 -- Start of processing for Selected_Length_Checks
6270 if not Full_Expander_Active
then
6274 if Target_Typ
= Any_Type
6275 or else Target_Typ
= Any_Composite
6276 or else Raises_Constraint_Error
(Ck_Node
)
6285 T_Typ
:= Target_Typ
;
6287 if No
(Source_Typ
) then
6288 S_Typ
:= Etype
(Ck_Node
);
6290 S_Typ
:= Source_Typ
;
6293 if S_Typ
= Any_Type
or else S_Typ
= Any_Composite
then
6297 if Is_Access_Type
(T_Typ
) and then Is_Access_Type
(S_Typ
) then
6298 S_Typ
:= Designated_Type
(S_Typ
);
6299 T_Typ
:= Designated_Type
(T_Typ
);
6302 -- A simple optimization for the null case
6304 if Known_Null
(Ck_Node
) then
6309 if Is_Array_Type
(T_Typ
) and then Is_Array_Type
(S_Typ
) then
6310 if Is_Constrained
(T_Typ
) then
6312 -- The checking code to be generated will freeze the
6313 -- corresponding array type. However, we must freeze the
6314 -- type now, so that the freeze node does not appear within
6315 -- the generated conditional expression, but ahead of it.
6317 Freeze_Before
(Ck_Node
, T_Typ
);
6319 Expr_Actual
:= Get_Referenced_Object
(Ck_Node
);
6320 Exptyp
:= Get_Actual_Subtype
(Ck_Node
);
6322 if Is_Access_Type
(Exptyp
) then
6323 Exptyp
:= Designated_Type
(Exptyp
);
6326 -- String_Literal case. This needs to be handled specially be-
6327 -- cause no index types are available for string literals. The
6328 -- condition is simply:
6330 -- T_Typ'Length = string-literal-length
6332 if Nkind
(Expr_Actual
) = N_String_Literal
6333 and then Ekind
(Etype
(Expr_Actual
)) = E_String_Literal_Subtype
6337 Left_Opnd
=> Get_E_Length
(T_Typ
, 1),
6339 Make_Integer_Literal
(Loc
,
6341 String_Literal_Length
(Etype
(Expr_Actual
))));
6343 -- General array case. Here we have a usable actual subtype for
6344 -- the expression, and the condition is built from the two types
6347 -- T_Typ'Length /= Exptyp'Length or else
6348 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
6349 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
6352 elsif Is_Constrained
(Exptyp
) then
6354 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
6367 -- At the library level, we need to ensure that the type of
6368 -- the object is elaborated before the check itself is
6369 -- emitted. This is only done if the object is in the
6370 -- current compilation unit, otherwise the type is frozen
6371 -- and elaborated in its unit.
6373 if Is_Itype
(Exptyp
)
6375 Ekind
(Cunit_Entity
(Current_Sem_Unit
)) = E_Package
6377 not In_Package_Body
(Cunit_Entity
(Current_Sem_Unit
))
6378 and then In_Open_Scopes
(Scope
(Exptyp
))
6380 Ref_Node
:= Make_Itype_Reference
(Sloc
(Ck_Node
));
6381 Set_Itype
(Ref_Node
, Exptyp
);
6382 Insert_Action
(Ck_Node
, Ref_Node
);
6385 L_Index
:= First_Index
(T_Typ
);
6386 R_Index
:= First_Index
(Exptyp
);
6388 for Indx
in 1 .. Ndims
loop
6389 if not (Nkind
(L_Index
) = N_Raise_Constraint_Error
6391 Nkind
(R_Index
) = N_Raise_Constraint_Error
)
6393 Get_Index_Bounds
(L_Index
, L_Low
, L_High
);
6394 Get_Index_Bounds
(R_Index
, R_Low
, R_High
);
6396 -- Deal with compile time length check. Note that we
6397 -- skip this in the access case, because the access
6398 -- value may be null, so we cannot know statically.
6401 and then Compile_Time_Known_Value
(L_Low
)
6402 and then Compile_Time_Known_Value
(L_High
)
6403 and then Compile_Time_Known_Value
(R_Low
)
6404 and then Compile_Time_Known_Value
(R_High
)
6406 if Expr_Value
(L_High
) >= Expr_Value
(L_Low
) then
6407 L_Length
:= Expr_Value
(L_High
) -
6408 Expr_Value
(L_Low
) + 1;
6410 L_Length
:= UI_From_Int
(0);
6413 if Expr_Value
(R_High
) >= Expr_Value
(R_Low
) then
6414 R_Length
:= Expr_Value
(R_High
) -
6415 Expr_Value
(R_Low
) + 1;
6417 R_Length
:= UI_From_Int
(0);
6420 if L_Length
> R_Length
then
6422 (Compile_Time_Constraint_Error
6423 (Wnode
, "too few elements for}?", T_Typ
));
6425 elsif L_Length
< R_Length
then
6427 (Compile_Time_Constraint_Error
6428 (Wnode
, "too many elements for}?", T_Typ
));
6431 -- The comparison for an individual index subtype
6432 -- is omitted if the corresponding index subtypes
6433 -- statically match, since the result is known to
6434 -- be true. Note that this test is worth while even
6435 -- though we do static evaluation, because non-static
6436 -- subtypes can statically match.
6439 Subtypes_Statically_Match
6440 (Etype
(L_Index
), Etype
(R_Index
))
6443 (Same_Bounds
(L_Low
, R_Low
)
6444 and then Same_Bounds
(L_High
, R_High
))
6447 (Cond
, Length_E_Cond
(Exptyp
, T_Typ
, Indx
));
6456 -- Handle cases where we do not get a usable actual subtype that
6457 -- is constrained. This happens for example in the function call
6458 -- and explicit dereference cases. In these cases, we have to get
6459 -- the length or range from the expression itself, making sure we
6460 -- do not evaluate it more than once.
6462 -- Here Ck_Node is the original expression, or more properly the
6463 -- result of applying Duplicate_Expr to the original tree, forcing
6464 -- the result to be a name.
6468 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
6471 -- Build the condition for the explicit dereference case
6473 for Indx
in 1 .. Ndims
loop
6475 (Cond
, Length_N_Cond
(Ck_Node
, T_Typ
, Indx
));
6482 -- Construct the test and insert into the tree
6484 if Present
(Cond
) then
6486 Cond
:= Guard_Access
(Cond
, Loc
, Ck_Node
);
6490 (Make_Raise_Constraint_Error
(Loc
,
6492 Reason
=> CE_Length_Check_Failed
));
6496 end Selected_Length_Checks
;
6498 ---------------------------
6499 -- Selected_Range_Checks --
6500 ---------------------------
6502 function Selected_Range_Checks
6504 Target_Typ
: Entity_Id
;
6505 Source_Typ
: Entity_Id
;
6506 Warn_Node
: Node_Id
) return Check_Result
6508 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
6511 Expr_Actual
: Node_Id
;
6513 Cond
: Node_Id
:= Empty
;
6514 Do_Access
: Boolean := False;
6515 Wnode
: Node_Id
:= Warn_Node
;
6516 Ret_Result
: Check_Result
:= (Empty
, Empty
);
6517 Num_Checks
: Integer := 0;
6519 procedure Add_Check
(N
: Node_Id
);
6520 -- Adds the action given to Ret_Result if N is non-Empty
6522 function Discrete_Range_Cond
6524 Typ
: Entity_Id
) return Node_Id
;
6525 -- Returns expression to compute:
6526 -- Low_Bound (Expr) < Typ'First
6528 -- High_Bound (Expr) > Typ'Last
6530 function Discrete_Expr_Cond
6532 Typ
: Entity_Id
) return Node_Id
;
6533 -- Returns expression to compute:
6538 function Get_E_First_Or_Last
6542 Nam
: Name_Id
) return Node_Id
;
6543 -- Returns an attribute reference
6544 -- E'First or E'Last
6545 -- with a source location of Loc.
6547 -- Nam is Name_First or Name_Last, according to which attribute is
6548 -- desired. If Indx is non-zero, it is passed as a literal in the
6549 -- Expressions of the attribute reference (identifying the desired
6550 -- array dimension).
6552 function Get_N_First
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
6553 function Get_N_Last
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
6554 -- Returns expression to compute:
6555 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
6557 function Range_E_Cond
6558 (Exptyp
: Entity_Id
;
6562 -- Returns expression to compute:
6563 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
6565 function Range_Equal_E_Cond
6566 (Exptyp
: Entity_Id
;
6568 Indx
: Nat
) return Node_Id
;
6569 -- Returns expression to compute:
6570 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
6572 function Range_N_Cond
6575 Indx
: Nat
) return Node_Id
;
6576 -- Return expression to compute:
6577 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
6583 procedure Add_Check
(N
: Node_Id
) is
6587 -- For now, ignore attempt to place more than 2 checks ???
6589 if Num_Checks
= 2 then
6593 pragma Assert
(Num_Checks
<= 1);
6594 Num_Checks
:= Num_Checks
+ 1;
6595 Ret_Result
(Num_Checks
) := N
;
6599 -------------------------
6600 -- Discrete_Expr_Cond --
6601 -------------------------
6603 function Discrete_Expr_Cond
6605 Typ
: Entity_Id
) return Node_Id
6613 Convert_To
(Base_Type
(Typ
),
6614 Duplicate_Subexpr_No_Checks
(Expr
)),
6616 Convert_To
(Base_Type
(Typ
),
6617 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_First
))),
6622 Convert_To
(Base_Type
(Typ
),
6623 Duplicate_Subexpr_No_Checks
(Expr
)),
6627 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_Last
))));
6628 end Discrete_Expr_Cond
;
6630 -------------------------
6631 -- Discrete_Range_Cond --
6632 -------------------------
6634 function Discrete_Range_Cond
6636 Typ
: Entity_Id
) return Node_Id
6638 LB
: Node_Id
:= Low_Bound
(Expr
);
6639 HB
: Node_Id
:= High_Bound
(Expr
);
6641 Left_Opnd
: Node_Id
;
6642 Right_Opnd
: Node_Id
;
6645 if Nkind
(LB
) = N_Identifier
6646 and then Ekind
(Entity
(LB
)) = E_Discriminant
6648 LB
:= New_Occurrence_Of
(Discriminal
(Entity
(LB
)), Loc
);
6651 if Nkind
(HB
) = N_Identifier
6652 and then Ekind
(Entity
(HB
)) = E_Discriminant
6654 HB
:= New_Occurrence_Of
(Discriminal
(Entity
(HB
)), Loc
);
6661 (Base_Type
(Typ
), Duplicate_Subexpr_No_Checks
(LB
)),
6666 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_First
)));
6668 if Base_Type
(Typ
) = Typ
then
6671 elsif Compile_Time_Known_Value
(High_Bound
(Scalar_Range
(Typ
)))
6673 Compile_Time_Known_Value
(High_Bound
(Scalar_Range
6676 if Is_Floating_Point_Type
(Typ
) then
6677 if Expr_Value_R
(High_Bound
(Scalar_Range
(Typ
))) =
6678 Expr_Value_R
(High_Bound
(Scalar_Range
(Base_Type
(Typ
))))
6684 if Expr_Value
(High_Bound
(Scalar_Range
(Typ
))) =
6685 Expr_Value
(High_Bound
(Scalar_Range
(Base_Type
(Typ
))))
6696 (Base_Type
(Typ
), Duplicate_Subexpr_No_Checks
(HB
)),
6701 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_Last
)));
6703 return Make_Or_Else
(Loc
, Left_Opnd
, Right_Opnd
);
6704 end Discrete_Range_Cond
;
6706 -------------------------
6707 -- Get_E_First_Or_Last --
6708 -------------------------
6710 function Get_E_First_Or_Last
6714 Nam
: Name_Id
) return Node_Id
6719 Exprs
:= New_List
(Make_Integer_Literal
(Loc
, UI_From_Int
(Indx
)));
6724 return Make_Attribute_Reference
(Loc
,
6725 Prefix
=> New_Occurrence_Of
(E
, Loc
),
6726 Attribute_Name
=> Nam
,
6727 Expressions
=> Exprs
);
6728 end Get_E_First_Or_Last
;
6734 function Get_N_First
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
6737 Make_Attribute_Reference
(Loc
,
6738 Attribute_Name
=> Name_First
,
6740 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
6741 Expressions
=> New_List
(
6742 Make_Integer_Literal
(Loc
, Indx
)));
6749 function Get_N_Last
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
6752 Make_Attribute_Reference
(Loc
,
6753 Attribute_Name
=> Name_Last
,
6755 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
6756 Expressions
=> New_List
(
6757 Make_Integer_Literal
(Loc
, Indx
)));
6764 function Range_E_Cond
6765 (Exptyp
: Entity_Id
;
6767 Indx
: Nat
) return Node_Id
6775 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_First
),
6777 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
6782 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_Last
),
6784 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
6787 ------------------------
6788 -- Range_Equal_E_Cond --
6789 ------------------------
6791 function Range_Equal_E_Cond
6792 (Exptyp
: Entity_Id
;
6794 Indx
: Nat
) return Node_Id
6802 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_First
),
6804 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
6809 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_Last
),
6811 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
6812 end Range_Equal_E_Cond
;
6818 function Range_N_Cond
6821 Indx
: Nat
) return Node_Id
6829 Get_N_First
(Expr
, Indx
),
6831 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
6836 Get_N_Last
(Expr
, Indx
),
6838 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
6841 -- Start of processing for Selected_Range_Checks
6844 if not Full_Expander_Active
then
6848 if Target_Typ
= Any_Type
6849 or else Target_Typ
= Any_Composite
6850 or else Raises_Constraint_Error
(Ck_Node
)
6859 T_Typ
:= Target_Typ
;
6861 if No
(Source_Typ
) then
6862 S_Typ
:= Etype
(Ck_Node
);
6864 S_Typ
:= Source_Typ
;
6867 if S_Typ
= Any_Type
or else S_Typ
= Any_Composite
then
6871 -- The order of evaluating T_Typ before S_Typ seems to be critical
6872 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
6873 -- in, and since Node can be an N_Range node, it might be invalid.
6874 -- Should there be an assert check somewhere for taking the Etype of
6875 -- an N_Range node ???
6877 if Is_Access_Type
(T_Typ
) and then Is_Access_Type
(S_Typ
) then
6878 S_Typ
:= Designated_Type
(S_Typ
);
6879 T_Typ
:= Designated_Type
(T_Typ
);
6882 -- A simple optimization for the null case
6884 if Known_Null
(Ck_Node
) then
6889 -- For an N_Range Node, check for a null range and then if not
6890 -- null generate a range check action.
6892 if Nkind
(Ck_Node
) = N_Range
then
6894 -- There's no point in checking a range against itself
6896 if Ck_Node
= Scalar_Range
(T_Typ
) then
6901 T_LB
: constant Node_Id
:= Type_Low_Bound
(T_Typ
);
6902 T_HB
: constant Node_Id
:= Type_High_Bound
(T_Typ
);
6903 Known_T_LB
: constant Boolean := Compile_Time_Known_Value
(T_LB
);
6904 Known_T_HB
: constant Boolean := Compile_Time_Known_Value
(T_HB
);
6906 LB
: Node_Id
:= Low_Bound
(Ck_Node
);
6907 HB
: Node_Id
:= High_Bound
(Ck_Node
);
6911 Null_Range
: Boolean;
6912 Out_Of_Range_L
: Boolean;
6913 Out_Of_Range_H
: Boolean;
6916 -- Compute what is known at compile time
6918 if Known_T_LB
and Known_T_HB
then
6919 if Compile_Time_Known_Value
(LB
) then
6922 -- There's no point in checking that a bound is within its
6923 -- own range so pretend that it is known in this case. First
6924 -- deal with low bound.
6926 elsif Ekind
(Etype
(LB
)) = E_Signed_Integer_Subtype
6927 and then Scalar_Range
(Etype
(LB
)) = Scalar_Range
(T_Typ
)
6936 -- Likewise for the high bound
6938 if Compile_Time_Known_Value
(HB
) then
6941 elsif Ekind
(Etype
(HB
)) = E_Signed_Integer_Subtype
6942 and then Scalar_Range
(Etype
(HB
)) = Scalar_Range
(T_Typ
)
6952 -- Check for case where everything is static and we can do the
6953 -- check at compile time. This is skipped if we have an access
6954 -- type, since the access value may be null.
6956 -- ??? This code can be improved since you only need to know that
6957 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
6958 -- compile time to emit pertinent messages.
6960 if Known_T_LB
and Known_T_HB
and Known_LB
and Known_HB
6963 -- Floating-point case
6965 if Is_Floating_Point_Type
(S_Typ
) then
6966 Null_Range
:= Expr_Value_R
(HB
) < Expr_Value_R
(LB
);
6968 (Expr_Value_R
(LB
) < Expr_Value_R
(T_LB
))
6970 (Expr_Value_R
(LB
) > Expr_Value_R
(T_HB
));
6973 (Expr_Value_R
(HB
) > Expr_Value_R
(T_HB
))
6975 (Expr_Value_R
(HB
) < Expr_Value_R
(T_LB
));
6977 -- Fixed or discrete type case
6980 Null_Range
:= Expr_Value
(HB
) < Expr_Value
(LB
);
6982 (Expr_Value
(LB
) < Expr_Value
(T_LB
))
6984 (Expr_Value
(LB
) > Expr_Value
(T_HB
));
6987 (Expr_Value
(HB
) > Expr_Value
(T_HB
))
6989 (Expr_Value
(HB
) < Expr_Value
(T_LB
));
6992 if not Null_Range
then
6993 if Out_Of_Range_L
then
6994 if No
(Warn_Node
) then
6996 (Compile_Time_Constraint_Error
6997 (Low_Bound
(Ck_Node
),
6998 "static value out of range of}?", T_Typ
));
7002 (Compile_Time_Constraint_Error
7004 "static range out of bounds of}?", T_Typ
));
7008 if Out_Of_Range_H
then
7009 if No
(Warn_Node
) then
7011 (Compile_Time_Constraint_Error
7012 (High_Bound
(Ck_Node
),
7013 "static value out of range of}?", T_Typ
));
7017 (Compile_Time_Constraint_Error
7019 "static range out of bounds of}?", T_Typ
));
7026 LB
: Node_Id
:= Low_Bound
(Ck_Node
);
7027 HB
: Node_Id
:= High_Bound
(Ck_Node
);
7030 -- If either bound is a discriminant and we are within the
7031 -- record declaration, it is a use of the discriminant in a
7032 -- constraint of a component, and nothing can be checked
7033 -- here. The check will be emitted within the init proc.
7034 -- Before then, the discriminal has no real meaning.
7035 -- Similarly, if the entity is a discriminal, there is no
7036 -- check to perform yet.
7038 -- The same holds within a discriminated synchronized type,
7039 -- where the discriminant may constrain a component or an
7042 if Nkind
(LB
) = N_Identifier
7043 and then Denotes_Discriminant
(LB
, True)
7045 if Current_Scope
= Scope
(Entity
(LB
))
7046 or else Is_Concurrent_Type
(Current_Scope
)
7047 or else Ekind
(Entity
(LB
)) /= E_Discriminant
7052 New_Occurrence_Of
(Discriminal
(Entity
(LB
)), Loc
);
7056 if Nkind
(HB
) = N_Identifier
7057 and then Denotes_Discriminant
(HB
, True)
7059 if Current_Scope
= Scope
(Entity
(HB
))
7060 or else Is_Concurrent_Type
(Current_Scope
)
7061 or else Ekind
(Entity
(HB
)) /= E_Discriminant
7066 New_Occurrence_Of
(Discriminal
(Entity
(HB
)), Loc
);
7070 Cond
:= Discrete_Range_Cond
(Ck_Node
, T_Typ
);
7071 Set_Paren_Count
(Cond
, 1);
7077 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(HB
),
7078 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(LB
)),
7079 Right_Opnd
=> Cond
);
7084 elsif Is_Scalar_Type
(S_Typ
) then
7086 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
7087 -- except the above simply sets a flag in the node and lets
7088 -- gigi generate the check base on the Etype of the expression.
7089 -- Sometimes, however we want to do a dynamic check against an
7090 -- arbitrary target type, so we do that here.
7092 if Ekind
(Base_Type
(S_Typ
)) /= Ekind
(Base_Type
(T_Typ
)) then
7093 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
7095 -- For literals, we can tell if the constraint error will be
7096 -- raised at compile time, so we never need a dynamic check, but
7097 -- if the exception will be raised, then post the usual warning,
7098 -- and replace the literal with a raise constraint error
7099 -- expression. As usual, skip this for access types
7101 elsif Compile_Time_Known_Value
(Ck_Node
)
7102 and then not Do_Access
7105 LB
: constant Node_Id
:= Type_Low_Bound
(T_Typ
);
7106 UB
: constant Node_Id
:= Type_High_Bound
(T_Typ
);
7108 Out_Of_Range
: Boolean;
7109 Static_Bounds
: constant Boolean :=
7110 Compile_Time_Known_Value
(LB
)
7111 and Compile_Time_Known_Value
(UB
);
7114 -- Following range tests should use Sem_Eval routine ???
7116 if Static_Bounds
then
7117 if Is_Floating_Point_Type
(S_Typ
) then
7119 (Expr_Value_R
(Ck_Node
) < Expr_Value_R
(LB
))
7121 (Expr_Value_R
(Ck_Node
) > Expr_Value_R
(UB
));
7123 -- Fixed or discrete type
7127 Expr_Value
(Ck_Node
) < Expr_Value
(LB
)
7129 Expr_Value
(Ck_Node
) > Expr_Value
(UB
);
7132 -- Bounds of the type are static and the literal is out of
7133 -- range so output a warning message.
7135 if Out_Of_Range
then
7136 if No
(Warn_Node
) then
7138 (Compile_Time_Constraint_Error
7140 "static value out of range of}?", T_Typ
));
7144 (Compile_Time_Constraint_Error
7146 "static value out of range of}?", T_Typ
));
7151 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
7155 -- Here for the case of a non-static expression, we need a runtime
7156 -- check unless the source type range is guaranteed to be in the
7157 -- range of the target type.
7160 if not In_Subrange_Of
(S_Typ
, T_Typ
) then
7161 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
7166 if Is_Array_Type
(T_Typ
) and then Is_Array_Type
(S_Typ
) then
7167 if Is_Constrained
(T_Typ
) then
7169 Expr_Actual
:= Get_Referenced_Object
(Ck_Node
);
7170 Exptyp
:= Get_Actual_Subtype
(Expr_Actual
);
7172 if Is_Access_Type
(Exptyp
) then
7173 Exptyp
:= Designated_Type
(Exptyp
);
7176 -- String_Literal case. This needs to be handled specially be-
7177 -- cause no index types are available for string literals. The
7178 -- condition is simply:
7180 -- T_Typ'Length = string-literal-length
7182 if Nkind
(Expr_Actual
) = N_String_Literal
then
7185 -- General array case. Here we have a usable actual subtype for
7186 -- the expression, and the condition is built from the two types
7188 -- T_Typ'First < Exptyp'First or else
7189 -- T_Typ'Last > Exptyp'Last or else
7190 -- T_Typ'First(1) < Exptyp'First(1) or else
7191 -- T_Typ'Last(1) > Exptyp'Last(1) or else
7194 elsif Is_Constrained
(Exptyp
) then
7196 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
7202 L_Index
:= First_Index
(T_Typ
);
7203 R_Index
:= First_Index
(Exptyp
);
7205 for Indx
in 1 .. Ndims
loop
7206 if not (Nkind
(L_Index
) = N_Raise_Constraint_Error
7208 Nkind
(R_Index
) = N_Raise_Constraint_Error
)
7210 -- Deal with compile time length check. Note that we
7211 -- skip this in the access case, because the access
7212 -- value may be null, so we cannot know statically.
7215 Subtypes_Statically_Match
7216 (Etype
(L_Index
), Etype
(R_Index
))
7218 -- If the target type is constrained then we
7219 -- have to check for exact equality of bounds
7220 -- (required for qualified expressions).
7222 if Is_Constrained
(T_Typ
) then
7225 Range_Equal_E_Cond
(Exptyp
, T_Typ
, Indx
));
7228 (Cond
, Range_E_Cond
(Exptyp
, T_Typ
, Indx
));
7238 -- Handle cases where we do not get a usable actual subtype that
7239 -- is constrained. This happens for example in the function call
7240 -- and explicit dereference cases. In these cases, we have to get
7241 -- the length or range from the expression itself, making sure we
7242 -- do not evaluate it more than once.
7244 -- Here Ck_Node is the original expression, or more properly the
7245 -- result of applying Duplicate_Expr to the original tree,
7246 -- forcing the result to be a name.
7250 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
7253 -- Build the condition for the explicit dereference case
7255 for Indx
in 1 .. Ndims
loop
7257 (Cond
, Range_N_Cond
(Ck_Node
, T_Typ
, Indx
));
7263 -- For a conversion to an unconstrained array type, generate an
7264 -- Action to check that the bounds of the source value are within
7265 -- the constraints imposed by the target type (RM 4.6(38)). No
7266 -- check is needed for a conversion to an access to unconstrained
7267 -- array type, as 4.6(24.15/2) requires the designated subtypes
7268 -- of the two access types to statically match.
7270 if Nkind
(Parent
(Ck_Node
)) = N_Type_Conversion
7271 and then not Do_Access
7274 Opnd_Index
: Node_Id
;
7275 Targ_Index
: Node_Id
;
7276 Opnd_Range
: Node_Id
;
7279 Opnd_Index
:= First_Index
(Get_Actual_Subtype
(Ck_Node
));
7280 Targ_Index
:= First_Index
(T_Typ
);
7281 while Present
(Opnd_Index
) loop
7283 -- If the index is a range, use its bounds. If it is an
7284 -- entity (as will be the case if it is a named subtype
7285 -- or an itype created for a slice) retrieve its range.
7287 if Is_Entity_Name
(Opnd_Index
)
7288 and then Is_Type
(Entity
(Opnd_Index
))
7290 Opnd_Range
:= Scalar_Range
(Entity
(Opnd_Index
));
7292 Opnd_Range
:= Opnd_Index
;
7295 if Nkind
(Opnd_Range
) = N_Range
then
7297 (Low_Bound
(Opnd_Range
), Etype
(Targ_Index
),
7298 Assume_Valid
=> True)
7301 (High_Bound
(Opnd_Range
), Etype
(Targ_Index
),
7302 Assume_Valid
=> True)
7306 -- If null range, no check needed
7309 Compile_Time_Known_Value
(High_Bound
(Opnd_Range
))
7311 Compile_Time_Known_Value
(Low_Bound
(Opnd_Range
))
7313 Expr_Value
(High_Bound
(Opnd_Range
)) <
7314 Expr_Value
(Low_Bound
(Opnd_Range
))
7318 elsif Is_Out_Of_Range
7319 (Low_Bound
(Opnd_Range
), Etype
(Targ_Index
),
7320 Assume_Valid
=> True)
7323 (High_Bound
(Opnd_Range
), Etype
(Targ_Index
),
7324 Assume_Valid
=> True)
7327 (Compile_Time_Constraint_Error
7328 (Wnode
, "value out of range of}?", T_Typ
));
7334 (Opnd_Range
, Etype
(Targ_Index
)));
7338 Next_Index
(Opnd_Index
);
7339 Next_Index
(Targ_Index
);
7346 -- Construct the test and insert into the tree
7348 if Present
(Cond
) then
7350 Cond
:= Guard_Access
(Cond
, Loc
, Ck_Node
);
7354 (Make_Raise_Constraint_Error
(Loc
,
7356 Reason
=> CE_Range_Check_Failed
));
7360 end Selected_Range_Checks
;
7362 -------------------------------
7363 -- Storage_Checks_Suppressed --
7364 -------------------------------
7366 function Storage_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
7368 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
7369 return Is_Check_Suppressed
(E
, Storage_Check
);
7371 return Scope_Suppress
(Storage_Check
);
7373 end Storage_Checks_Suppressed
;
7375 ---------------------------
7376 -- Tag_Checks_Suppressed --
7377 ---------------------------
7379 function Tag_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
7382 and then Checks_May_Be_Suppressed
(E
)
7384 return Is_Check_Suppressed
(E
, Tag_Check
);
7387 return Scope_Suppress
(Tag_Check
);
7388 end Tag_Checks_Suppressed
;
7390 --------------------------
7391 -- Validity_Check_Range --
7392 --------------------------
7394 procedure Validity_Check_Range
(N
: Node_Id
) is
7396 if Validity_Checks_On
and Validity_Check_Operands
then
7397 if Nkind
(N
) = N_Range
then
7398 Ensure_Valid
(Low_Bound
(N
));
7399 Ensure_Valid
(High_Bound
(N
));
7402 end Validity_Check_Range
;
7404 --------------------------------
7405 -- Validity_Checks_Suppressed --
7406 --------------------------------
7408 function Validity_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
7410 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
7411 return Is_Check_Suppressed
(E
, Validity_Check
);
7413 return Scope_Suppress
(Validity_Check
);
7415 end Validity_Checks_Suppressed
;