1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Ch7
; use Exp_Ch7
;
33 with Exp_Ch11
; use Exp_Ch11
;
34 with Exp_Pakd
; use Exp_Pakd
;
35 with Exp_Util
; use Exp_Util
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Layout
; use Layout
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Nlists
; use Nlists
;
40 with Nmake
; use Nmake
;
42 with Restrict
; use Restrict
;
43 with Rident
; use Rident
;
45 with Sem_Cat
; use Sem_Cat
;
46 with Sem_Ch6
; use Sem_Ch6
;
47 with Sem_Ch7
; use Sem_Ch7
;
48 with Sem_Ch8
; use Sem_Ch8
;
49 with Sem_Ch13
; use Sem_Ch13
;
50 with Sem_Eval
; use Sem_Eval
;
51 with Sem_Mech
; use Sem_Mech
;
52 with Sem_Prag
; use Sem_Prag
;
53 with Sem_Res
; use Sem_Res
;
54 with Sem_Util
; use Sem_Util
;
55 with Sinfo
; use Sinfo
;
56 with Snames
; use Snames
;
57 with Stand
; use Stand
;
58 with Targparm
; use Targparm
;
59 with Tbuild
; use Tbuild
;
60 with Ttypes
; use Ttypes
;
61 with Uintp
; use Uintp
;
62 with Urealp
; use Urealp
;
64 package body Freeze
is
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
70 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
);
71 -- Typ is a type that is being frozen. If no size clause is given,
72 -- but a default Esize has been computed, then this default Esize is
73 -- adjusted up if necessary to be consistent with a given alignment,
74 -- but never to a value greater than Long_Long_Integer'Size. This
75 -- is used for all discrete types and for fixed-point types.
77 procedure Build_And_Analyze_Renamed_Body
80 After
: in out Node_Id
);
81 -- Build body for a renaming declaration, insert in tree and analyze.
83 procedure Check_Address_Clause
(E
: Entity_Id
);
84 -- Apply legality checks to address clauses for object declarations,
85 -- at the point the object is frozen.
87 procedure Check_Strict_Alignment
(E
: Entity_Id
);
88 -- E is a base type. If E is tagged or has a component that is aliased
89 -- or tagged or contains something this is aliased or tagged, set
92 procedure Check_Unsigned_Type
(E
: Entity_Id
);
93 pragma Inline
(Check_Unsigned_Type
);
94 -- If E is a fixed-point or discrete type, then all the necessary work
95 -- to freeze it is completed except for possible setting of the flag
96 -- Is_Unsigned_Type, which is done by this procedure. The call has no
97 -- effect if the entity E is not a discrete or fixed-point type.
99 procedure Freeze_And_Append
102 Result
: in out List_Id
);
103 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
104 -- nodes to Result, modifying Result from No_List if necessary.
106 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
);
107 -- Freeze enumeration type. The Esize field is set as processing
108 -- proceeds (i.e. set by default when the type is declared and then
109 -- adjusted by rep clauses. What this procedure does is to make sure
110 -- that if a foreign convention is specified, and no specific size
111 -- is given, then the size must be at least Integer'Size.
113 procedure Freeze_Static_Object
(E
: Entity_Id
);
114 -- If an object is frozen which has Is_Statically_Allocated set, then
115 -- all referenced types must also be marked with this flag. This routine
116 -- is in charge of meeting this requirement for the object entity E.
118 procedure Freeze_Subprogram
(E
: Entity_Id
);
119 -- Perform freezing actions for a subprogram (create extra formals,
120 -- and set proper default mechanism values). Note that this routine
121 -- is not called for internal subprograms, for which neither of these
122 -- actions is needed (or desirable, we do not want for example to have
123 -- these extra formals present in initialization procedures, where they
124 -- would serve no purpose). In this call E is either a subprogram or
125 -- a subprogram type (i.e. an access to a subprogram).
127 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean;
128 -- True if T is not private and has no private components, or has a full
129 -- view. Used to determine whether the designated type of an access type
130 -- should be frozen when the access type is frozen. This is done when an
131 -- allocator is frozen, or an expression that may involve attributes of
132 -- the designated type. Otherwise freezing the access type does not freeze
133 -- the designated type.
135 procedure Process_Default_Expressions
137 After
: in out Node_Id
);
138 -- This procedure is called for each subprogram to complete processing
139 -- of default expressions at the point where all types are known to be
140 -- frozen. The expressions must be analyzed in full, to make sure that
141 -- all error processing is done (they have only been pre-analyzed). If
142 -- the expression is not an entity or literal, its analysis may generate
143 -- code which must not be executed. In that case we build a function
144 -- body to hold that code. This wrapper function serves no other purpose
145 -- (it used to be called to evaluate the default, but now the default is
146 -- inlined at each point of call).
148 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
);
149 -- Typ is a record or array type that is being frozen. This routine
150 -- sets the default component alignment from the scope stack values
151 -- if the alignment is otherwise not specified.
153 procedure Check_Debug_Info_Needed
(T
: Entity_Id
);
154 -- As each entity is frozen, this routine is called to deal with the
155 -- setting of Debug_Info_Needed for the entity. This flag is set if
156 -- the entity comes from source, or if we are in Debug_Generated_Code
157 -- mode or if the -gnatdV debug flag is set. However, it never sets
158 -- the flag if Debug_Info_Off is set.
160 procedure Set_Debug_Info_Needed
(T
: Entity_Id
);
161 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
162 -- also on any entities that are needed by T (for an object, the type
163 -- of the object is needed, and for a type, the subsidiary types are
164 -- needed -- see body for details). Never has any effect on T if the
165 -- Debug_Info_Off flag is set.
167 procedure Warn_Overlay
171 -- Expr is the expression for an address clause for entity Nam whose type
172 -- is Typ. If Typ has a default initialization, and there is no explicit
173 -- initialization in the source declaration, check whether the address
174 -- clause might cause overlaying of an entity, and emit a warning on the
175 -- side effect that the initialization will cause.
177 -------------------------------
178 -- Adjust_Esize_For_Alignment --
179 -------------------------------
181 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
) is
185 if Known_Esize
(Typ
) and then Known_Alignment
(Typ
) then
186 Align
:= Alignment_In_Bits
(Typ
);
188 if Align
> Esize
(Typ
)
189 and then Align
<= Standard_Long_Long_Integer_Size
191 Set_Esize
(Typ
, Align
);
194 end Adjust_Esize_For_Alignment
;
196 ------------------------------------
197 -- Build_And_Analyze_Renamed_Body --
198 ------------------------------------
200 procedure Build_And_Analyze_Renamed_Body
203 After
: in out Node_Id
)
205 Body_Node
: constant Node_Id
:= Build_Renamed_Body
(Decl
, New_S
);
208 Insert_After
(After
, Body_Node
);
209 Mark_Rewrite_Insertion
(Body_Node
);
212 end Build_And_Analyze_Renamed_Body
;
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
218 function Build_Renamed_Body
220 New_S
: Entity_Id
) return Node_Id
222 Loc
: constant Source_Ptr
:= Sloc
(New_S
);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
230 N
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
231 Nam
: constant Node_Id
:= Name
(N
);
233 Spec
: constant Node_Id
:= New_Copy_Tree
(Specification
(Decl
));
234 Actuals
: List_Id
:= No_List
;
239 O_Formal
: Entity_Id
;
240 Param_Spec
: Node_Id
;
243 -- Determine the entity being renamed, which is the target of the
244 -- call statement. If the name is an explicit dereference, this is
245 -- a renaming of a subprogram type rather than a subprogram. The
246 -- name itself is fully analyzed.
248 if Nkind
(Nam
) = N_Selected_Component
then
249 Old_S
:= Entity
(Selector_Name
(Nam
));
251 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
252 Old_S
:= Etype
(Nam
);
254 elsif Nkind
(Nam
) = N_Indexed_Component
then
255 if Is_Entity_Name
(Prefix
(Nam
)) then
256 Old_S
:= Entity
(Prefix
(Nam
));
258 Old_S
:= Entity
(Selector_Name
(Prefix
(Nam
)));
261 elsif Nkind
(Nam
) = N_Character_Literal
then
262 Old_S
:= Etype
(New_S
);
265 Old_S
:= Entity
(Nam
);
268 if Is_Entity_Name
(Nam
) then
270 -- If the renamed entity is a predefined operator, retain full
271 -- name to ensure its visibility.
273 if Ekind
(Old_S
) = E_Operator
274 and then Nkind
(Nam
) = N_Expanded_Name
276 Call_Name
:= New_Copy
(Name
(N
));
278 Call_Name
:= New_Reference_To
(Old_S
, Loc
);
282 Call_Name
:= New_Copy
(Name
(N
));
284 -- The original name may have been overloaded, but
285 -- is fully resolved now.
287 Set_Is_Overloaded
(Call_Name
, False);
290 -- For simple renamings, subsequent calls can be expanded directly
291 -- as called to the renamed entity. The body must be generated in
292 -- any case for calls they may appear elsewhere.
294 if (Ekind
(Old_S
) = E_Function
295 or else Ekind
(Old_S
) = E_Procedure
)
296 and then Nkind
(Decl
) = N_Subprogram_Declaration
298 Set_Body_To_Inline
(Decl
, Old_S
);
301 -- The body generated for this renaming is an internal artifact, and
302 -- does not constitute a freeze point for the called entity.
304 Set_Must_Not_Freeze
(Call_Name
);
306 Formal
:= First_Formal
(Defining_Entity
(Decl
));
308 if Present
(Formal
) then
311 while Present
(Formal
) loop
312 Append
(New_Reference_To
(Formal
, Loc
), Actuals
);
313 Next_Formal
(Formal
);
317 -- If the renamed entity is an entry, inherit its profile. For
318 -- other renamings as bodies, both profiles must be subtype
319 -- conformant, so it is not necessary to replace the profile given
320 -- in the declaration. However, default values that are aggregates
321 -- are rewritten when partially analyzed, so we recover the original
322 -- aggregate to insure that subsequent conformity checking works.
323 -- Similarly, if the default expression was constant-folded, recover
324 -- the original expression.
326 Formal
:= First_Formal
(Defining_Entity
(Decl
));
328 if Present
(Formal
) then
329 O_Formal
:= First_Formal
(Old_S
);
330 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
332 while Present
(Formal
) loop
333 if Is_Entry
(Old_S
) then
335 if Nkind
(Parameter_Type
(Param_Spec
)) /=
338 Set_Etype
(Formal
, Etype
(O_Formal
));
339 Set_Entity
(Parameter_Type
(Param_Spec
), Etype
(O_Formal
));
342 elsif Nkind
(Default_Value
(O_Formal
)) = N_Aggregate
343 or else Nkind
(Original_Node
(Default_Value
(O_Formal
))) /=
344 Nkind
(Default_Value
(O_Formal
))
346 Set_Expression
(Param_Spec
,
347 New_Copy_Tree
(Original_Node
(Default_Value
(O_Formal
))));
350 Next_Formal
(Formal
);
351 Next_Formal
(O_Formal
);
356 -- If the renamed entity is a function, the generated body contains a
357 -- return statement. Otherwise, build a procedure call. If the entity is
358 -- an entry, subsequent analysis of the call will transform it into the
359 -- proper entry or protected operation call. If the renamed entity is
360 -- a character literal, return it directly.
362 if Ekind
(Old_S
) = E_Function
363 or else Ekind
(Old_S
) = E_Operator
364 or else (Ekind
(Old_S
) = E_Subprogram_Type
365 and then Etype
(Old_S
) /= Standard_Void_Type
)
368 Make_Return_Statement
(Loc
,
370 Make_Function_Call
(Loc
,
372 Parameter_Associations
=> Actuals
));
374 elsif Ekind
(Old_S
) = E_Enumeration_Literal
then
376 Make_Return_Statement
(Loc
,
377 Expression
=> New_Occurrence_Of
(Old_S
, Loc
));
379 elsif Nkind
(Nam
) = N_Character_Literal
then
381 Make_Return_Statement
(Loc
,
382 Expression
=> Call_Name
);
386 Make_Procedure_Call_Statement
(Loc
,
388 Parameter_Associations
=> Actuals
);
391 -- Create entities for subprogram body and formals.
393 Set_Defining_Unit_Name
(Spec
,
394 Make_Defining_Identifier
(Loc
, Chars
=> Chars
(New_S
)));
396 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
398 while Present
(Param_Spec
) loop
399 Set_Defining_Identifier
(Param_Spec
,
400 Make_Defining_Identifier
(Loc
,
401 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
406 Make_Subprogram_Body
(Loc
,
407 Specification
=> Spec
,
408 Declarations
=> New_List
,
409 Handled_Statement_Sequence
=>
410 Make_Handled_Sequence_Of_Statements
(Loc
,
411 Statements
=> New_List
(Call_Node
)));
413 if Nkind
(Decl
) /= N_Subprogram_Declaration
then
415 Make_Subprogram_Declaration
(Loc
,
416 Specification
=> Specification
(N
)));
419 -- Link the body to the entity whose declaration it completes. If
420 -- the body is analyzed when the renamed entity is frozen, it may be
421 -- necessary to restore the proper scope (see package Exp_Ch13).
423 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
424 and then Present
(Corresponding_Spec
(N
))
426 Set_Corresponding_Spec
(Body_Node
, Corresponding_Spec
(N
));
428 Set_Corresponding_Spec
(Body_Node
, New_S
);
432 end Build_Renamed_Body
;
434 --------------------------
435 -- Check_Address_Clause --
436 --------------------------
438 procedure Check_Address_Clause
(E
: Entity_Id
) is
439 Addr
: constant Node_Id
:= Address_Clause
(E
);
441 Decl
: constant Node_Id
:= Declaration_Node
(E
);
442 Typ
: constant Entity_Id
:= Etype
(E
);
445 if Present
(Addr
) then
446 Expr
:= Expression
(Addr
);
448 -- If we have no initialization of any kind, then we don't
449 -- need to place any restrictions on the address clause, because
450 -- the object will be elaborated after the address clause is
451 -- evaluated. This happens if the declaration has no initial
452 -- expression, or the type has no implicit initialization, or
453 -- the object is imported.
455 -- The same holds for all initialized scalar types and all
456 -- access types. Packed bit arrays of size up to 64 are
457 -- represented using a modular type with an initialization
458 -- (to zero) and can be processed like other initialized
461 -- If the type is controlled, code to attach the object to a
462 -- finalization chain is generated at the point of declaration,
463 -- and therefore the elaboration of the object cannot be delayed:
464 -- the address expression must be a constant.
466 if (No
(Expression
(Decl
))
467 and then not Controlled_Type
(Typ
)
469 (not Has_Non_Null_Base_Init_Proc
(Typ
)
470 or else Is_Imported
(E
)))
473 (Present
(Expression
(Decl
))
474 and then Is_Scalar_Type
(Typ
))
480 (Is_Bit_Packed_Array
(Typ
)
482 Is_Modular_Integer_Type
(Packed_Array_Type
(Typ
)))
486 -- Otherwise, we require the address clause to be constant
487 -- because the call to the initialization procedure (or the
488 -- attach code) has to happen at the point of the declaration.
491 Check_Constant_Address_Clause
(Expr
, E
);
492 Set_Has_Delayed_Freeze
(E
, False);
495 if not Error_Posted
(Expr
)
496 and then not Controlled_Type
(Typ
)
498 Warn_Overlay
(Expr
, Typ
, Name
(Addr
));
501 end Check_Address_Clause
;
503 -----------------------------
504 -- Check_Compile_Time_Size --
505 -----------------------------
507 procedure Check_Compile_Time_Size
(T
: Entity_Id
) is
509 procedure Set_Small_Size
(S
: Uint
);
510 -- Sets the compile time known size (32 bits or less) in the Esize
511 -- field, checking for a size clause that was given which attempts
512 -- to give a smaller size.
514 function Size_Known
(T
: Entity_Id
) return Boolean;
515 -- Recursive function that does all the work
517 function Static_Discriminated_Components
(T
: Entity_Id
) return Boolean;
518 -- If T is a constrained subtype, its size is not known if any of its
519 -- discriminant constraints is not static and it is not a null record.
520 -- The test is conservative and doesn't check that the components are
521 -- in fact constrained by non-static discriminant values. Could be made
528 procedure Set_Small_Size
(S
: Uint
) is
533 elsif Has_Size_Clause
(T
) then
534 if RM_Size
(T
) < S
then
535 Error_Msg_Uint_1
:= S
;
537 ("size for & is too small, minimum is ^",
540 elsif Unknown_Esize
(T
) then
544 -- Set sizes if not set already
547 if Unknown_Esize
(T
) then
551 if Unknown_RM_Size
(T
) then
561 function Size_Known
(T
: Entity_Id
) return Boolean is
569 if Size_Known_At_Compile_Time
(T
) then
572 elsif Is_Scalar_Type
(T
)
573 or else Is_Task_Type
(T
)
575 return not Is_Generic_Type
(T
);
577 elsif Is_Array_Type
(T
) then
578 if Ekind
(T
) = E_String_Literal_Subtype
then
579 Set_Small_Size
(Component_Size
(T
) * String_Literal_Length
(T
));
582 elsif not Is_Constrained
(T
) then
585 -- Don't do any recursion on type with error posted, since
586 -- we may have a malformed type that leads us into a loop
588 elsif Error_Posted
(T
) then
591 elsif not Size_Known
(Component_Type
(T
)) then
595 -- Check for all indexes static, and also compute possible
596 -- size (in case it is less than 32 and may be packable).
599 Esiz
: Uint
:= Component_Size
(T
);
603 Index
:= First_Index
(T
);
604 while Present
(Index
) loop
605 if Nkind
(Index
) = N_Range
then
606 Get_Index_Bounds
(Index
, Low
, High
);
608 elsif Error_Posted
(Scalar_Range
(Etype
(Index
))) then
612 Low
:= Type_Low_Bound
(Etype
(Index
));
613 High
:= Type_High_Bound
(Etype
(Index
));
616 if not Compile_Time_Known_Value
(Low
)
617 or else not Compile_Time_Known_Value
(High
)
618 or else Etype
(Index
) = Any_Type
623 Dim
:= Expr_Value
(High
) - Expr_Value
(Low
) + 1;
635 Set_Small_Size
(Esiz
);
639 elsif Is_Access_Type
(T
) then
642 elsif Is_Private_Type
(T
)
643 and then not Is_Generic_Type
(T
)
644 and then Present
(Underlying_Type
(T
))
646 -- Don't do any recursion on type with error posted, since
647 -- we may have a malformed type that leads us into a loop
649 if Error_Posted
(T
) then
652 return Size_Known
(Underlying_Type
(T
));
655 elsif Is_Record_Type
(T
) then
657 -- A class-wide type is never considered to have a known size
659 if Is_Class_Wide_Type
(T
) then
662 -- A subtype of a variant record must not have non-static
663 -- discriminanted components.
665 elsif T
/= Base_Type
(T
)
666 and then not Static_Discriminated_Components
(T
)
670 -- Don't do any recursion on type with error posted, since
671 -- we may have a malformed type that leads us into a loop
673 elsif Error_Posted
(T
) then
677 -- Now look at the components of the record
680 -- The following two variables are used to keep track of
681 -- the size of packed records if we can tell the size of
682 -- the packed record in the front end. Packed_Size_Known
683 -- is True if so far we can figure out the size. It is
684 -- initialized to True for a packed record, unless the
685 -- record has discriminants. The reason we eliminate the
686 -- discriminated case is that we don't know the way the
687 -- back end lays out discriminated packed records. If
688 -- Packed_Size_Known is True, then Packed_Size is the
689 -- size in bits so far.
691 Packed_Size_Known
: Boolean :=
693 and then not Has_Discriminants
(T
);
695 Packed_Size
: Uint
:= Uint_0
;
698 -- Test for variant part present
700 if Has_Discriminants
(T
)
701 and then Present
(Parent
(T
))
702 and then Nkind
(Parent
(T
)) = N_Full_Type_Declaration
703 and then Nkind
(Type_Definition
(Parent
(T
))) =
705 and then not Null_Present
(Type_Definition
(Parent
(T
)))
706 and then Present
(Variant_Part
707 (Component_List
(Type_Definition
(Parent
(T
)))))
709 -- If variant part is present, and type is unconstrained,
710 -- then we must have defaulted discriminants, or a size
711 -- clause must be present for the type, or else the size
712 -- is definitely not known at compile time.
714 if not Is_Constrained
(T
)
716 No
(Discriminant_Default_Value
717 (First_Discriminant
(T
)))
718 and then Unknown_Esize
(T
)
724 -- Loop through components
726 Comp
:= First_Entity
(T
);
727 while Present
(Comp
) loop
728 if Ekind
(Comp
) = E_Component
730 Ekind
(Comp
) = E_Discriminant
732 Ctyp
:= Etype
(Comp
);
734 -- We do not know the packed size if there is a
735 -- component clause present (we possibly could,
736 -- but this would only help in the case of a record
737 -- with partial rep clauses. That's because in the
738 -- case of full rep clauses, the size gets figured
739 -- out anyway by a different circuit).
741 if Present
(Component_Clause
(Comp
)) then
742 Packed_Size_Known
:= False;
745 -- We need to identify a component that is an array
746 -- where the index type is an enumeration type with
747 -- non-standard representation, and some bound of the
748 -- type depends on a discriminant.
750 -- This is because gigi computes the size by doing a
751 -- substituation of the appropriate discriminant value
752 -- in the size expression for the base type, and gigi
753 -- is not clever enough to evaluate the resulting
754 -- expression (which involves a call to rep_to_pos)
757 -- It would be nice if gigi would either recognize that
758 -- this expression can be computed at compile time, or
759 -- alternatively figured out the size from the subtype
760 -- directly, where all the information is at hand ???
762 if Is_Array_Type
(Etype
(Comp
))
763 and then Present
(Packed_Array_Type
(Etype
(Comp
)))
766 Ocomp
: constant Entity_Id
:=
767 Original_Record_Component
(Comp
);
768 OCtyp
: constant Entity_Id
:= Etype
(Ocomp
);
774 Ind
:= First_Index
(OCtyp
);
775 while Present
(Ind
) loop
776 Indtyp
:= Etype
(Ind
);
778 if Is_Enumeration_Type
(Indtyp
)
779 and then Has_Non_Standard_Rep
(Indtyp
)
781 Lo
:= Type_Low_Bound
(Indtyp
);
782 Hi
:= Type_High_Bound
(Indtyp
);
784 if Is_Entity_Name
(Lo
)
786 Ekind
(Entity
(Lo
)) = E_Discriminant
790 elsif Is_Entity_Name
(Hi
)
792 Ekind
(Entity
(Hi
)) = E_Discriminant
803 -- Clearly size of record is not known if the size of
804 -- one of the components is not known.
806 if not Size_Known
(Ctyp
) then
810 -- Accumulate packed size if possible
812 if Packed_Size_Known
then
814 -- We can only deal with elementary types, since for
815 -- non-elementary components, alignment enters into
816 -- the picture, and we don't know enough to handle
817 -- proper alignment in this context. Packed arrays
818 -- count as elementary if the representation is a
821 if Is_Elementary_Type
(Ctyp
)
822 or else (Is_Array_Type
(Ctyp
)
824 Present
(Packed_Array_Type
(Ctyp
))
826 Is_Modular_Integer_Type
827 (Packed_Array_Type
(Ctyp
)))
829 -- If RM_Size is known and static, then we can
830 -- keep accumulating the packed size.
832 if Known_Static_RM_Size
(Ctyp
) then
834 -- A little glitch, to be removed sometime ???
835 -- gigi does not understand zero sizes yet.
837 if RM_Size
(Ctyp
) = Uint_0
then
838 Packed_Size_Known
:= False;
840 -- Normal case where we can keep accumulating
841 -- the packed array size.
844 Packed_Size
:= Packed_Size
+ RM_Size
(Ctyp
);
847 -- If we have a field whose RM_Size is not known
848 -- then we can't figure out the packed size here.
851 Packed_Size_Known
:= False;
854 -- If we have a non-elementary type we can't figure
855 -- out the packed array size (alignment issues).
858 Packed_Size_Known
:= False;
866 if Packed_Size_Known
then
867 Set_Small_Size
(Packed_Size
);
878 -------------------------------------
879 -- Static_Discriminated_Components --
880 -------------------------------------
882 function Static_Discriminated_Components
883 (T
: Entity_Id
) return Boolean
885 Constraint
: Elmt_Id
;
888 if Has_Discriminants
(T
)
889 and then Present
(Discriminant_Constraint
(T
))
890 and then Present
(First_Component
(T
))
892 Constraint
:= First_Elmt
(Discriminant_Constraint
(T
));
893 while Present
(Constraint
) loop
894 if not Compile_Time_Known_Value
(Node
(Constraint
)) then
898 Next_Elmt
(Constraint
);
903 end Static_Discriminated_Components
;
905 -- Start of processing for Check_Compile_Time_Size
908 Set_Size_Known_At_Compile_Time
(T
, Size_Known
(T
));
909 end Check_Compile_Time_Size
;
911 -----------------------------
912 -- Check_Debug_Info_Needed --
913 -----------------------------
915 procedure Check_Debug_Info_Needed
(T
: Entity_Id
) is
917 if Needs_Debug_Info
(T
) or else Debug_Info_Off
(T
) then
920 elsif Comes_From_Source
(T
)
921 or else Debug_Generated_Code
922 or else Debug_Flag_VV
924 Set_Debug_Info_Needed
(T
);
926 end Check_Debug_Info_Needed
;
928 ----------------------------
929 -- Check_Strict_Alignment --
930 ----------------------------
932 procedure Check_Strict_Alignment
(E
: Entity_Id
) is
936 if Is_Tagged_Type
(E
) or else Is_Concurrent_Type
(E
) then
937 Set_Strict_Alignment
(E
);
939 elsif Is_Array_Type
(E
) then
940 Set_Strict_Alignment
(E
, Strict_Alignment
(Component_Type
(E
)));
942 elsif Is_Record_Type
(E
) then
943 if Is_Limited_Record
(E
) then
944 Set_Strict_Alignment
(E
);
948 Comp
:= First_Component
(E
);
950 while Present
(Comp
) loop
951 if not Is_Type
(Comp
)
952 and then (Strict_Alignment
(Etype
(Comp
))
953 or else Is_Aliased
(Comp
))
955 Set_Strict_Alignment
(E
);
959 Next_Component
(Comp
);
962 end Check_Strict_Alignment
;
964 -------------------------
965 -- Check_Unsigned_Type --
966 -------------------------
968 procedure Check_Unsigned_Type
(E
: Entity_Id
) is
969 Ancestor
: Entity_Id
;
974 if not Is_Discrete_Or_Fixed_Point_Type
(E
) then
978 -- Do not attempt to analyze case where range was in error
980 if Error_Posted
(Scalar_Range
(E
)) then
984 -- The situation that is non trivial is something like
986 -- subtype x1 is integer range -10 .. +10;
987 -- subtype x2 is x1 range 0 .. V1;
988 -- subtype x3 is x2 range V2 .. V3;
989 -- subtype x4 is x3 range V4 .. V5;
991 -- where Vn are variables. Here the base type is signed, but we still
992 -- know that x4 is unsigned because of the lower bound of x2.
994 -- The only way to deal with this is to look up the ancestor chain
998 if Ancestor
= Any_Type
or else Etype
(Ancestor
) = Any_Type
then
1002 Lo_Bound
:= Type_Low_Bound
(Ancestor
);
1004 if Compile_Time_Known_Value
(Lo_Bound
) then
1006 if Expr_Rep_Value
(Lo_Bound
) >= 0 then
1007 Set_Is_Unsigned_Type
(E
, True);
1013 Ancestor
:= Ancestor_Subtype
(Ancestor
);
1015 -- If no ancestor had a static lower bound, go to base type
1017 if No
(Ancestor
) then
1019 -- Note: the reason we still check for a compile time known
1020 -- value for the base type is that at least in the case of
1021 -- generic formals, we can have bounds that fail this test,
1022 -- and there may be other cases in error situations.
1024 Btyp
:= Base_Type
(E
);
1026 if Btyp
= Any_Type
or else Etype
(Btyp
) = Any_Type
then
1030 Lo_Bound
:= Type_Low_Bound
(Base_Type
(E
));
1032 if Compile_Time_Known_Value
(Lo_Bound
)
1033 and then Expr_Rep_Value
(Lo_Bound
) >= 0
1035 Set_Is_Unsigned_Type
(E
, True);
1042 end Check_Unsigned_Type
;
1044 -----------------------------
1045 -- Expand_Atomic_Aggregate --
1046 -----------------------------
1048 procedure Expand_Atomic_Aggregate
(E
: Entity_Id
; Typ
: Entity_Id
) is
1049 Loc
: constant Source_Ptr
:= Sloc
(E
);
1054 if (Nkind
(Parent
(E
)) = N_Object_Declaration
1055 or else Nkind
(Parent
(E
)) = N_Assignment_Statement
)
1056 and then Comes_From_Source
(Parent
(E
))
1057 and then Nkind
(E
) = N_Aggregate
1060 Make_Defining_Identifier
(Loc
,
1061 New_Internal_Name
('T'));
1064 Make_Object_Declaration
(Loc
,
1065 Defining_Identifier
=> Temp
,
1066 Object_definition
=> New_Occurrence_Of
(Typ
, Loc
),
1067 Expression
=> Relocate_Node
(E
));
1068 Insert_Before
(Parent
(E
), New_N
);
1071 Set_Expression
(Parent
(E
), New_Occurrence_Of
(Temp
, Loc
));
1073 -- To prevent the temporary from being constant-folded (which
1074 -- would lead to the same piecemeal assignment on the original
1075 -- target) indicate to the back-end that the temporary is a
1076 -- variable with real storage. See description of this flag
1077 -- in Einfo, and the notes on N_Assignment_Statement and
1078 -- N_Object_Declaration in Sinfo.
1080 Set_Is_True_Constant
(Temp
, False);
1082 end Expand_Atomic_Aggregate
;
1088 -- Note: the easy coding for this procedure would be to just build a
1089 -- single list of freeze nodes and then insert them and analyze them
1090 -- all at once. This won't work, because the analysis of earlier freeze
1091 -- nodes may recursively freeze types which would otherwise appear later
1092 -- on in the freeze list. So we must analyze and expand the freeze nodes
1093 -- as they are generated.
1095 procedure Freeze_All
(From
: Entity_Id
; After
: in out Node_Id
) is
1096 Loc
: constant Source_Ptr
:= Sloc
(After
);
1100 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
);
1101 -- This is the internal recursive routine that does freezing of
1102 -- entities (but NOT the analysis of default expressions, which
1103 -- should not be recursive, we don't want to analyze those till
1104 -- we are sure that ALL the types are frozen).
1106 --------------------
1107 -- Freeze_All_Ent --
1108 --------------------
1110 procedure Freeze_All_Ent
1112 After
: in out Node_Id
)
1118 procedure Process_Flist
;
1119 -- If freeze nodes are present, insert and analyze, and reset
1120 -- cursor for next insertion.
1126 procedure Process_Flist
is
1128 if Is_Non_Empty_List
(Flist
) then
1129 Lastn
:= Next
(After
);
1130 Insert_List_After_And_Analyze
(After
, Flist
);
1132 if Present
(Lastn
) then
1133 After
:= Prev
(Lastn
);
1135 After
:= Last
(List_Containing
(After
));
1140 -- Start or processing for Freeze_All_Ent
1144 while Present
(E
) loop
1146 -- If the entity is an inner package which is not a package
1147 -- renaming, then its entities must be frozen at this point.
1148 -- Note that such entities do NOT get frozen at the end of
1149 -- the nested package itself (only library packages freeze).
1151 -- Same is true for task declarations, where anonymous records
1152 -- created for entry parameters must be frozen.
1154 if Ekind
(E
) = E_Package
1155 and then No
(Renamed_Object
(E
))
1156 and then not Is_Child_Unit
(E
)
1157 and then not Is_Frozen
(E
)
1160 Install_Visible_Declarations
(E
);
1161 Install_Private_Declarations
(E
);
1163 Freeze_All
(First_Entity
(E
), After
);
1165 End_Package_Scope
(E
);
1167 elsif Ekind
(E
) in Task_Kind
1169 (Nkind
(Parent
(E
)) = N_Task_Type_Declaration
1171 Nkind
(Parent
(E
)) = N_Single_Task_Declaration
)
1174 Freeze_All
(First_Entity
(E
), After
);
1177 -- For a derived tagged type, we must ensure that all the
1178 -- primitive operations of the parent have been frozen, so
1179 -- that their addresses will be in the parent's dispatch table
1180 -- at the point it is inherited.
1182 elsif Ekind
(E
) = E_Record_Type
1183 and then Is_Tagged_Type
(E
)
1184 and then Is_Tagged_Type
(Etype
(E
))
1185 and then Is_Derived_Type
(E
)
1188 Prim_List
: constant Elist_Id
:=
1189 Primitive_Operations
(Etype
(E
));
1195 Prim
:= First_Elmt
(Prim_List
);
1197 while Present
(Prim
) loop
1198 Subp
:= Node
(Prim
);
1200 if Comes_From_Source
(Subp
)
1201 and then not Is_Frozen
(Subp
)
1203 Flist
:= Freeze_Entity
(Subp
, Loc
);
1212 if not Is_Frozen
(E
) then
1213 Flist
:= Freeze_Entity
(E
, Loc
);
1217 -- If an incomplete type is still not frozen, this may be
1218 -- a premature freezing because of a body declaration that
1219 -- follows. Indicate where the freezing took place.
1221 -- If the freezing is caused by the end of the current
1222 -- declarative part, it is a Taft Amendment type, and there
1225 if not Is_Frozen
(E
)
1226 and then Ekind
(E
) = E_Incomplete_Type
1229 Bod
: constant Node_Id
:= Next
(After
);
1232 if (Nkind
(Bod
) = N_Subprogram_Body
1233 or else Nkind
(Bod
) = N_Entry_Body
1234 or else Nkind
(Bod
) = N_Package_Body
1235 or else Nkind
(Bod
) = N_Protected_Body
1236 or else Nkind
(Bod
) = N_Task_Body
1237 or else Nkind
(Bod
) in N_Body_Stub
)
1239 List_Containing
(After
) = List_Containing
(Parent
(E
))
1241 Error_Msg_Sloc
:= Sloc
(Next
(After
));
1243 ("type& is frozen# before its full declaration",
1253 -- Start of processing for Freeze_All
1256 Freeze_All_Ent
(From
, After
);
1258 -- Now that all types are frozen, we can deal with default expressions
1259 -- that require us to build a default expression functions. This is the
1260 -- point at which such functions are constructed (after all types that
1261 -- might be used in such expressions have been frozen).
1263 -- We also add finalization chains to access types whose designated
1264 -- types are controlled. This is normally done when freezing the type,
1265 -- but this misses recursive type definitions where the later members
1266 -- of the recursion introduce controlled components (e.g. 5624-001).
1268 -- Loop through entities
1271 while Present
(E
) loop
1272 if Is_Subprogram
(E
) then
1274 if not Default_Expressions_Processed
(E
) then
1275 Process_Default_Expressions
(E
, After
);
1278 if not Has_Completion
(E
) then
1279 Decl
:= Unit_Declaration_Node
(E
);
1281 if Nkind
(Decl
) = N_Subprogram_Renaming_Declaration
then
1282 Build_And_Analyze_Renamed_Body
(Decl
, E
, After
);
1284 elsif Nkind
(Decl
) = N_Subprogram_Declaration
1285 and then Present
(Corresponding_Body
(Decl
))
1287 Nkind
(Unit_Declaration_Node
(Corresponding_Body
(Decl
)))
1288 = N_Subprogram_Renaming_Declaration
1290 Build_And_Analyze_Renamed_Body
1291 (Decl
, Corresponding_Body
(Decl
), After
);
1295 elsif Ekind
(E
) in Task_Kind
1297 (Nkind
(Parent
(E
)) = N_Task_Type_Declaration
1299 Nkind
(Parent
(E
)) = N_Single_Task_Declaration
)
1304 Ent
:= First_Entity
(E
);
1306 while Present
(Ent
) loop
1309 and then not Default_Expressions_Processed
(Ent
)
1311 Process_Default_Expressions
(Ent
, After
);
1318 elsif Is_Access_Type
(E
)
1319 and then Comes_From_Source
(E
)
1320 and then Ekind
(Directly_Designated_Type
(E
)) = E_Incomplete_Type
1321 and then Controlled_Type
(Designated_Type
(E
))
1322 and then No
(Associated_Final_Chain
(E
))
1324 Build_Final_List
(Parent
(E
), E
);
1331 -----------------------
1332 -- Freeze_And_Append --
1333 -----------------------
1335 procedure Freeze_And_Append
1338 Result
: in out List_Id
)
1340 L
: constant List_Id
:= Freeze_Entity
(Ent
, Loc
);
1342 if Is_Non_Empty_List
(L
) then
1343 if Result
= No_List
then
1346 Append_List
(L
, Result
);
1349 end Freeze_And_Append
;
1355 procedure Freeze_Before
(N
: Node_Id
; T
: Entity_Id
) is
1356 Freeze_Nodes
: constant List_Id
:= Freeze_Entity
(T
, Sloc
(N
));
1358 if Is_Non_Empty_List
(Freeze_Nodes
) then
1359 Insert_Actions
(N
, Freeze_Nodes
);
1367 function Freeze_Entity
(E
: Entity_Id
; Loc
: Source_Ptr
) return List_Id
is
1375 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
);
1376 -- Check that an Access or Unchecked_Access attribute with
1377 -- a prefix which is the current instance type can only be
1378 -- applied when the type is limited.
1380 function After_Last_Declaration
return Boolean;
1381 -- If Loc is a freeze_entity that appears after the last declaration
1382 -- in the scope, inhibit error messages on late completion.
1384 procedure Freeze_Record_Type
(Rec
: Entity_Id
);
1385 -- Freeze each component, handle some representation clauses, and
1386 -- freeze primitive operations if this is a tagged type.
1388 ----------------------------
1389 -- After_Last_Declaration --
1390 ----------------------------
1392 function After_Last_Declaration
return Boolean is
1393 Spec
: constant Node_Id
:= Parent
(Current_Scope
);
1396 if Nkind
(Spec
) = N_Package_Specification
then
1397 if Present
(Private_Declarations
(Spec
)) then
1398 return Loc
>= Sloc
(Last
(Private_Declarations
(Spec
)));
1400 elsif Present
(Visible_Declarations
(Spec
)) then
1401 return Loc
>= Sloc
(Last
(Visible_Declarations
(Spec
)));
1409 end After_Last_Declaration
;
1411 ----------------------------
1412 -- Check_Current_Instance --
1413 ----------------------------
1415 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
) is
1417 function Process
(N
: Node_Id
) return Traverse_Result
;
1418 -- Process routine to apply check to given node.
1424 function Process
(N
: Node_Id
) return Traverse_Result
is
1427 when N_Attribute_Reference
=>
1428 if (Attribute_Name
(N
) = Name_Access
1430 Attribute_Name
(N
) = Name_Unchecked_Access
)
1431 and then Is_Entity_Name
(Prefix
(N
))
1432 and then Is_Type
(Entity
(Prefix
(N
)))
1433 and then Entity
(Prefix
(N
)) = E
1436 ("current instance must be a limited type", Prefix
(N
));
1442 when others => return OK
;
1446 procedure Traverse
is new Traverse_Proc
(Process
);
1448 -- Start of processing for Check_Current_Instance
1451 Traverse
(Comp_Decl
);
1452 end Check_Current_Instance
;
1454 ------------------------
1455 -- Freeze_Record_Type --
1456 ------------------------
1458 procedure Freeze_Record_Type
(Rec
: Entity_Id
) is
1464 Unplaced_Component
: Boolean := False;
1465 -- Set True if we find at least one component with no component
1466 -- clause (used to warn about useless Pack pragmas).
1468 Placed_Component
: Boolean := False;
1469 -- Set True if we find at least one component with a component
1470 -- clause (used to warn about useless Bit_Order pragmas).
1472 procedure Check_Itype
(Desig
: Entity_Id
);
1473 -- If the component subtype is an access to a constrained subtype
1474 -- of an already frozen type, make the subtype frozen as well. It
1475 -- might otherwise be frozen in the wrong scope, and a freeze node
1476 -- on subtype has no effect.
1482 procedure Check_Itype
(Desig
: Entity_Id
) is
1484 if not Is_Frozen
(Desig
)
1485 and then Is_Frozen
(Base_Type
(Desig
))
1487 Set_Is_Frozen
(Desig
);
1489 -- In addition, add an Itype_Reference to ensure that the
1490 -- access subtype is elaborated early enough. This cannot
1491 -- be done if the subtype may depend on discriminants.
1493 if Ekind
(Comp
) = E_Component
1494 and then Is_Itype
(Etype
(Comp
))
1495 and then not Has_Discriminants
(Rec
)
1497 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
1498 Set_Itype
(IR
, Desig
);
1501 Result
:= New_List
(IR
);
1503 Append
(IR
, Result
);
1509 -- Start of processing for Freeze_Record_Type
1512 -- If this is a subtype of a controlled type, declared without
1513 -- a constraint, the _controller may not appear in the component
1514 -- list if the parent was not frozen at the point of subtype
1515 -- declaration. Inherit the _controller component now.
1517 if Rec
/= Base_Type
(Rec
)
1518 and then Has_Controlled_Component
(Rec
)
1520 if Nkind
(Parent
(Rec
)) = N_Subtype_Declaration
1521 and then Is_Entity_Name
(Subtype_Indication
(Parent
(Rec
)))
1523 Set_First_Entity
(Rec
, First_Entity
(Base_Type
(Rec
)));
1525 -- If this is an internal type without a declaration, as for a
1526 -- record component, the base type may not yet be frozen, and its
1527 -- controller has not been created. Add an explicit freeze node
1528 -- for the itype, so it will be frozen after the base type.
1530 elsif Is_Itype
(Rec
)
1531 and then Has_Delayed_Freeze
(Base_Type
(Rec
))
1533 Nkind
(Associated_Node_For_Itype
(Rec
)) =
1534 N_Component_Declaration
1536 Ensure_Freeze_Node
(Rec
);
1540 -- Freeze components and embedded subtypes
1542 Comp
:= First_Entity
(Rec
);
1543 while Present
(Comp
) loop
1544 if not Is_Type
(Comp
) then
1545 Freeze_And_Append
(Etype
(Comp
), Loc
, Result
);
1548 -- If the component is an access type with an allocator
1549 -- as default value, the designated type will be frozen
1550 -- by the corresponding expression in init_proc. In order
1551 -- to place the freeze node for the designated type before
1552 -- that for the current record type, freeze it now.
1554 -- Same process if the component is an array of access types,
1555 -- initialized with an aggregate. If the designated type is
1556 -- private, it cannot contain allocators, and it is premature
1557 -- to freeze the type, so we check for this as well.
1559 if Is_Access_Type
(Etype
(Comp
))
1560 and then Present
(Parent
(Comp
))
1561 and then Present
(Expression
(Parent
(Comp
)))
1562 and then Nkind
(Expression
(Parent
(Comp
))) = N_Allocator
1565 Alloc
: constant Node_Id
:= Expression
(Parent
(Comp
));
1568 -- If component is pointer to a classwide type, freeze
1569 -- the specific type in the expression being allocated.
1570 -- The expression may be a subtype indication, in which
1571 -- case freeze the subtype mark.
1573 if Is_Class_Wide_Type
(Designated_Type
(Etype
(Comp
))) then
1574 if Is_Entity_Name
(Expression
(Alloc
)) then
1576 (Entity
(Expression
(Alloc
)), Loc
, Result
);
1578 Nkind
(Expression
(Alloc
)) = N_Subtype_Indication
1581 (Entity
(Subtype_Mark
(Expression
(Alloc
))),
1585 elsif Is_Itype
(Designated_Type
(Etype
(Comp
))) then
1586 Check_Itype
(Designated_Type
(Etype
(Comp
)));
1590 (Designated_Type
(Etype
(Comp
)), Loc
, Result
);
1594 elsif Is_Access_Type
(Etype
(Comp
))
1595 and then Is_Itype
(Designated_Type
(Etype
(Comp
)))
1597 Check_Itype
(Designated_Type
(Etype
(Comp
)));
1599 elsif Is_Array_Type
(Etype
(Comp
))
1600 and then Is_Access_Type
(Component_Type
(Etype
(Comp
)))
1601 and then Present
(Parent
(Comp
))
1602 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
1603 and then Present
(Expression
(Parent
(Comp
)))
1604 and then Nkind
(Expression
(Parent
(Comp
))) = N_Aggregate
1605 and then Is_Fully_Defined
1606 (Designated_Type
(Component_Type
(Etype
(Comp
))))
1610 (Component_Type
(Etype
(Comp
))), Loc
, Result
);
1613 -- Processing for real components (exclude anonymous subtypes)
1615 if Ekind
(Comp
) = E_Component
1616 or else Ekind
(Comp
) = E_Discriminant
1619 CC
: constant Node_Id
:= Component_Clause
(Comp
);
1622 -- Check for error of component clause given for variable
1623 -- sized type. We have to delay this test till this point,
1624 -- since the component type has to be frozen for us to know
1625 -- if it is variable length. We omit this test in a generic
1626 -- context, it will be applied at instantiation time.
1628 if Present
(CC
) then
1629 Placed_Component
:= True;
1631 if Inside_A_Generic
then
1634 elsif not Size_Known_At_Compile_Time
1635 (Underlying_Type
(Etype
(Comp
)))
1638 ("component clause not allowed for variable " &
1639 "length component", CC
);
1643 Unplaced_Component
:= True;
1646 -- Case of component requires byte alignment
1648 if Must_Be_On_Byte_Boundary
(Etype
(Comp
)) then
1650 -- Set the enclosing record to also require byte align
1652 Set_Must_Be_On_Byte_Boundary
(Rec
);
1654 -- Check for component clause that is inconsistent
1655 -- with the required byte boundary alignment.
1658 and then Normalized_First_Bit
(Comp
) mod
1659 System_Storage_Unit
/= 0
1662 ("component & must be byte aligned",
1663 Component_Name
(Component_Clause
(Comp
)));
1667 -- If component clause is present, then deal with the
1668 -- non-default bit order case. We cannot do this before
1669 -- the freeze point, because there is no required order
1670 -- for the component clause and the bit_order clause.
1672 -- We only do this processing for the base type, and in
1673 -- fact that's important, since otherwise if there are
1674 -- record subtypes, we could reverse the bits once for
1675 -- each subtype, which would be incorrect.
1678 and then Reverse_Bit_Order
(Rec
)
1679 and then Ekind
(E
) = E_Record_Type
1682 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
1683 CSZ
: constant Uint
:= Esize
(Comp
);
1684 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
1685 Pos
: constant Node_Id
:= Position
(CLC
);
1686 FB
: constant Node_Id
:= First_Bit
(CLC
);
1688 Storage_Unit_Offset
: constant Uint
:=
1689 CFB
/ System_Storage_Unit
;
1691 Start_Bit
: constant Uint
:=
1692 CFB
mod System_Storage_Unit
;
1695 -- Cases where field goes over storage unit boundary
1697 if Start_Bit
+ CSZ
> System_Storage_Unit
then
1699 -- Allow multi-byte field but generate warning
1701 if Start_Bit
mod System_Storage_Unit
= 0
1702 and then CSZ
mod System_Storage_Unit
= 0
1705 ("multi-byte field specified with non-standard"
1706 & " Bit_Order?", CLC
);
1708 if Bytes_Big_Endian
then
1710 ("bytes are not reversed "
1711 & "(component is big-endian)?", CLC
);
1714 ("bytes are not reversed "
1715 & "(component is little-endian)?", CLC
);
1718 -- Do not allow non-contiguous field
1722 ("attempt to specify non-contiguous field"
1723 & " not permitted", CLC
);
1725 ("\(caused by non-standard Bit_Order "
1726 & "specified)", CLC
);
1729 -- Case where field fits in one storage unit
1732 -- Give warning if suspicious component clause
1734 if Intval
(FB
) >= System_Storage_Unit
then
1736 ("?Bit_Order clause does not affect " &
1737 "byte ordering", Pos
);
1739 Intval
(Pos
) + Intval
(FB
) /
1740 System_Storage_Unit
;
1742 ("?position normalized to ^ before bit " &
1743 "order interpreted", Pos
);
1746 -- Here is where we fix up the Component_Bit_Offset
1747 -- value to account for the reverse bit order.
1748 -- Some examples of what needs to be done are:
1750 -- First_Bit .. Last_Bit Component_Bit_Offset
1753 -- 0 .. 0 7 .. 7 0 7
1754 -- 0 .. 1 6 .. 7 0 6
1755 -- 0 .. 2 5 .. 7 0 5
1756 -- 0 .. 7 0 .. 7 0 4
1758 -- 1 .. 1 6 .. 6 1 6
1759 -- 1 .. 4 3 .. 6 1 3
1760 -- 4 .. 7 0 .. 3 4 0
1762 -- The general rule is that the first bit is
1763 -- is obtained by subtracting the old ending bit
1764 -- from storage_unit - 1.
1766 Set_Component_Bit_Offset
1768 (Storage_Unit_Offset
* System_Storage_Unit
) +
1769 (System_Storage_Unit
- 1) -
1770 (Start_Bit
+ CSZ
- 1));
1772 Set_Normalized_First_Bit
1774 Component_Bit_Offset
(Comp
) mod
1775 System_Storage_Unit
);
1785 -- Check for useless pragma Bit_Order
1787 if not Placed_Component
and then Reverse_Bit_Order
(Rec
) then
1788 ADC
:= Get_Attribute_Definition_Clause
(Rec
, Attribute_Bit_Order
);
1789 Error_Msg_N
("?Bit_Order specification has no effect", ADC
);
1790 Error_Msg_N
("\?since no component clauses were specified", ADC
);
1793 -- Check for useless pragma Pack when all components placed
1796 and then not Unplaced_Component
1797 and then Warn_On_Redundant_Constructs
1800 ("?pragma Pack has no effect, no unplaced components",
1801 Get_Rep_Pragma
(Rec
, Name_Pack
));
1802 Set_Is_Packed
(Rec
, False);
1805 -- If this is the record corresponding to a remote type,
1806 -- freeze the remote type here since that is what we are
1807 -- semantically freezing. This prevents having the freeze
1808 -- node for that type in an inner scope.
1810 -- Also, Check for controlled components and unchecked unions.
1811 -- Finally, enforce the restriction that access attributes with
1812 -- a current instance prefix can only apply to limited types.
1814 if Ekind
(Rec
) = E_Record_Type
then
1815 if Present
(Corresponding_Remote_Type
(Rec
)) then
1817 (Corresponding_Remote_Type
(Rec
), Loc
, Result
);
1820 Comp
:= First_Component
(Rec
);
1821 while Present
(Comp
) loop
1822 if Has_Controlled_Component
(Etype
(Comp
))
1823 or else (Chars
(Comp
) /= Name_uParent
1824 and then Is_Controlled
(Etype
(Comp
)))
1825 or else (Is_Protected_Type
(Etype
(Comp
))
1827 (Corresponding_Record_Type
(Etype
(Comp
)))
1828 and then Has_Controlled_Component
1829 (Corresponding_Record_Type
(Etype
(Comp
))))
1831 Set_Has_Controlled_Component
(Rec
);
1835 if Has_Unchecked_Union
(Etype
(Comp
)) then
1836 Set_Has_Unchecked_Union
(Rec
);
1839 if Has_Per_Object_Constraint
(Comp
)
1840 and then not Is_Limited_Type
(Rec
)
1842 -- Scan component declaration for likely misuses of
1843 -- current instance, either in a constraint or in a
1844 -- default expression.
1846 Check_Current_Instance
(Parent
(Comp
));
1849 Next_Component
(Comp
);
1853 Set_Component_Alignment_If_Not_Set
(Rec
);
1855 -- For first subtypes, check if there are any fixed-point
1856 -- fields with component clauses, where we must check the size.
1857 -- This is not done till the freeze point, since for fixed-point
1858 -- types, we do not know the size until the type is frozen.
1859 -- Similar processing applies to bit packed arrays.
1861 if Is_First_Subtype
(Rec
) then
1862 Comp
:= First_Component
(Rec
);
1864 while Present
(Comp
) loop
1865 if Present
(Component_Clause
(Comp
))
1866 and then (Is_Fixed_Point_Type
(Etype
(Comp
))
1868 Is_Bit_Packed_Array
(Etype
(Comp
)))
1871 (Component_Name
(Component_Clause
(Comp
)),
1877 Next_Component
(Comp
);
1880 end Freeze_Record_Type
;
1882 -- Start of processing for Freeze_Entity
1885 -- Do not freeze if already frozen since we only need one freeze node
1887 if Is_Frozen
(E
) then
1890 -- It is improper to freeze an external entity within a generic
1891 -- because its freeze node will appear in a non-valid context.
1892 -- The entity will be frozen in the proper scope after the current
1893 -- generic is analyzed.
1895 elsif Inside_A_Generic
and then External_Ref_In_Generic
(E
) then
1898 -- Do not freeze a global entity within an inner scope created during
1899 -- expansion. A call to subprogram E within some internal procedure
1900 -- (a stream attribute for example) might require freezing E, but the
1901 -- freeze node must appear in the same declarative part as E itself.
1902 -- The two-pass elaboration mechanism in gigi guarantees that E will
1903 -- be frozen before the inner call is elaborated. We exclude constants
1904 -- from this test, because deferred constants may be frozen early, and
1905 -- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram
1906 -- comes from source, or is a generic instance, then the freeze point
1907 -- is the one mandated by the language. and we freze the entity.
1909 elsif In_Open_Scopes
(Scope
(E
))
1910 and then Scope
(E
) /= Current_Scope
1911 and then Ekind
(E
) /= E_Constant
1914 S
: Entity_Id
:= Current_Scope
;
1917 while Present
(S
) loop
1918 if Is_Overloadable
(S
) then
1919 if Comes_From_Source
(S
)
1920 or else Is_Generic_Instance
(S
)
1932 -- Similarly, an inlined instance body may make reference to global
1933 -- entities, but these references cannot be the proper freezing point
1934 -- for them, and the the absence of inlining freezing will take place
1935 -- in their own scope. Normally instance bodies are analyzed after
1936 -- the enclosing compilation, and everything has been frozen at the
1937 -- proper place, but with front-end inlining an instance body is
1938 -- compiled before the end of the enclosing scope, and as a result
1939 -- out-of-order freezing must be prevented.
1941 elsif Front_End_Inlining
1942 and then In_Instance_Body
1943 and then Present
(Scope
(E
))
1946 S
: Entity_Id
:= Scope
(E
);
1948 while Present
(S
) loop
1949 if Is_Generic_Instance
(S
) then
1962 -- Here to freeze the entity
1967 -- Case of entity being frozen is other than a type
1969 if not Is_Type
(E
) then
1971 -- If entity is exported or imported and does not have an external
1972 -- name, now is the time to provide the appropriate default name.
1973 -- Skip this if the entity is stubbed, since we don't need a name
1974 -- for any stubbed routine.
1976 if (Is_Imported
(E
) or else Is_Exported
(E
))
1977 and then No
(Interface_Name
(E
))
1978 and then Convention
(E
) /= Convention_Stubbed
1980 Set_Encoded_Interface_Name
1981 (E
, Get_Default_External_Name
(E
));
1983 -- Special processing for atomic objects appearing in object decls
1986 and then Nkind
(Parent
(E
)) = N_Object_Declaration
1987 and then Present
(Expression
(Parent
(E
)))
1990 Expr
: constant Node_Id
:= Expression
(Parent
(E
));
1993 -- If expression is an aggregate, assign to a temporary to
1994 -- ensure that the actual assignment is done atomically rather
1995 -- than component-wise (the assignment to the temp may be done
1996 -- component-wise, but that is harmless.
1998 if Nkind
(Expr
) = N_Aggregate
then
1999 Expand_Atomic_Aggregate
(Expr
, Etype
(E
));
2001 -- If the expression is a reference to a record or array
2002 -- object entity, then reset Is_True_Constant to False so
2003 -- that the compiler will not optimize away the intermediate
2004 -- object, which we need in this case for the same reason
2005 -- (to ensure that the actual assignment is atomic, rather
2006 -- than component-wise).
2008 elsif Is_Entity_Name
(Expr
)
2009 and then (Is_Record_Type
(Etype
(Expr
))
2011 Is_Array_Type
(Etype
(Expr
)))
2013 Set_Is_True_Constant
(Entity
(Expr
), False);
2018 -- For a subprogram, freeze all parameter types and also the return
2019 -- type (RM 13.14(14)). However skip this for internal subprograms.
2020 -- This is also the point where any extra formal parameters are
2021 -- created since we now know whether the subprogram will use
2022 -- a foreign convention.
2024 if Is_Subprogram
(E
) then
2025 if not Is_Internal
(E
) then
2028 Warn_Node
: Node_Id
;
2030 function Is_Fat_C_Ptr_Type
(T
: Entity_Id
) return Boolean;
2031 -- Determines if given type entity is a fat pointer type
2032 -- used as an argument type or return type to a subprogram
2033 -- with C or C++ convention set.
2035 --------------------------
2036 -- Is_Fat_C_Access_Type --
2037 --------------------------
2039 function Is_Fat_C_Ptr_Type
(T
: Entity_Id
) return Boolean is
2041 return (Convention
(E
) = Convention_C
2043 Convention
(E
) = Convention_CPP
)
2044 and then Is_Access_Type
(T
)
2045 and then Esize
(T
) > Ttypes
.System_Address_Size
;
2046 end Is_Fat_C_Ptr_Type
;
2049 -- Loop through formals
2051 Formal
:= First_Formal
(E
);
2052 while Present
(Formal
) loop
2053 F_Type
:= Etype
(Formal
);
2054 Freeze_And_Append
(F_Type
, Loc
, Result
);
2056 if Is_Private_Type
(F_Type
)
2057 and then Is_Private_Type
(Base_Type
(F_Type
))
2058 and then No
(Full_View
(Base_Type
(F_Type
)))
2059 and then not Is_Generic_Type
(F_Type
)
2060 and then not Is_Derived_Type
(F_Type
)
2062 -- If the type of a formal is incomplete, subprogram
2063 -- is being frozen prematurely. Within an instance
2064 -- (but not within a wrapper package) this is an
2065 -- an artifact of our need to regard the end of an
2066 -- instantiation as a freeze point. Otherwise it is
2067 -- a definite error.
2069 -- and then not Is_Wrapper_Package (Current_Scope) ???
2072 Set_Is_Frozen
(E
, False);
2075 elsif not After_Last_Declaration
then
2076 Error_Msg_Node_1
:= F_Type
;
2078 ("type& must be fully defined before this point",
2083 -- Check bad use of fat C pointer
2085 if Warn_On_Export_Import
and then
2086 Is_Fat_C_Ptr_Type
(F_Type
)
2088 Error_Msg_Qual_Level
:= 1;
2090 ("?type of & does not correspond to C pointer",
2092 Error_Msg_Qual_Level
:= 0;
2095 -- Check for unconstrained array in exported foreign
2098 if Convention
(E
) in Foreign_Convention
2099 and then not Is_Imported
(E
)
2100 and then Is_Array_Type
(F_Type
)
2101 and then not Is_Constrained
(F_Type
)
2102 and then Warn_On_Export_Import
2104 Error_Msg_Qual_Level
:= 1;
2106 -- If this is an inherited operation, place the
2107 -- warning on the derived type declaration, rather
2108 -- than on the original subprogram.
2110 if Nkind
(Original_Node
(Parent
(E
))) =
2111 N_Full_Type_Declaration
2113 Warn_Node
:= Parent
(E
);
2115 if Formal
= First_Formal
(E
) then
2117 ("?in inherited operation&!", Warn_Node
, E
);
2120 Warn_Node
:= Formal
;
2124 ("?type of argument& is unconstrained array",
2127 ("?foreign caller must pass bounds explicitly",
2129 Error_Msg_Qual_Level
:= 0;
2132 Next_Formal
(Formal
);
2135 -- Check return type
2137 if Ekind
(E
) = E_Function
then
2138 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
2140 if Warn_On_Export_Import
2141 and then Is_Fat_C_Ptr_Type
(Etype
(E
))
2144 ("?return type of& does not correspond to C pointer",
2147 elsif Is_Array_Type
(Etype
(E
))
2148 and then not Is_Constrained
(Etype
(E
))
2149 and then not Is_Imported
(E
)
2150 and then Convention
(E
) in Foreign_Convention
2151 and then Warn_On_Export_Import
2154 ("?foreign convention function& should not " &
2155 "return unconstrained array", E
);
2161 -- Must freeze its parent first if it is a derived subprogram
2163 if Present
(Alias
(E
)) then
2164 Freeze_And_Append
(Alias
(E
), Loc
, Result
);
2167 -- If the return type requires a transient scope, and we are on
2168 -- a target allowing functions to return with a depressed stack
2169 -- pointer, then we mark the function as requiring this treatment.
2171 if Ekind
(E
) = E_Function
2172 and then Functions_Return_By_DSP_On_Target
2173 and then Requires_Transient_Scope
(Etype
(E
))
2175 Set_Function_Returns_With_DSP
(E
);
2178 if not Is_Internal
(E
) then
2179 Freeze_Subprogram
(E
);
2182 -- Here for other than a subprogram or type
2185 -- If entity has a type, and it is not a generic unit, then
2186 -- freeze it first (RM 13.14(10))
2188 if Present
(Etype
(E
))
2189 and then Ekind
(E
) /= E_Generic_Function
2191 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
2194 -- For object created by object declaration, perform required
2195 -- categorization (preelaborate and pure) checks. Defer these
2196 -- checks to freeze time since pragma Import inhibits default
2197 -- initialization and thus pragma Import affects these checks.
2199 if Nkind
(Declaration_Node
(E
)) = N_Object_Declaration
then
2200 Validate_Object_Declaration
(Declaration_Node
(E
));
2201 Check_Address_Clause
(E
);
2204 -- Check that a constant which has a pragma Volatile[_Components]
2205 -- or Atomic[_Components] also has a pragma Import (RM C.6(13))
2207 -- Note: Atomic[_Components] also sets Volatile[_Components]
2209 if Ekind
(E
) = E_Constant
2210 and then (Has_Volatile_Components
(E
) or else Is_Volatile
(E
))
2211 and then not Is_Imported
(E
)
2213 -- Make sure we actually have a pragma, and have not merely
2214 -- inherited the indication from elsewhere (e.g. an address
2215 -- clause, which is not good enough in RM terms!)
2217 if Present
(Get_Rep_Pragma
(E
, Name_Atomic
))
2219 Present
(Get_Rep_Pragma
(E
, Name_Atomic_Components
))
2222 ("stand alone atomic constant must be " &
2223 "imported ('R'M 'C.6(13))", E
);
2225 elsif Present
(Get_Rep_Pragma
(E
, Name_Volatile
))
2227 Present
(Get_Rep_Pragma
(E
, Name_Volatile_Components
))
2230 ("stand alone volatile constant must be " &
2231 "imported ('R'M 'C.6(13))", E
);
2235 -- Static objects require special handling
2237 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
2238 and then Is_Statically_Allocated
(E
)
2240 Freeze_Static_Object
(E
);
2243 -- Remaining step is to layout objects
2245 if Ekind
(E
) = E_Variable
2247 Ekind
(E
) = E_Constant
2249 Ekind
(E
) = E_Loop_Parameter
2257 -- Case of a type or subtype being frozen
2260 -- The type may be defined in a generic unit. This can occur when
2261 -- freezing a generic function that returns the type (which is
2262 -- defined in a parent unit). It is clearly meaningless to freeze
2263 -- this type. However, if it is a subtype, its size may be determi-
2264 -- nable and used in subsequent checks, so might as well try to
2267 if Present
(Scope
(E
))
2268 and then Is_Generic_Unit
(Scope
(E
))
2270 Check_Compile_Time_Size
(E
);
2274 -- Deal with special cases of freezing for subtype
2276 if E
/= Base_Type
(E
) then
2278 -- If ancestor subtype present, freeze that first.
2279 -- Note that this will also get the base type frozen.
2281 Atype
:= Ancestor_Subtype
(E
);
2283 if Present
(Atype
) then
2284 Freeze_And_Append
(Atype
, Loc
, Result
);
2286 -- Otherwise freeze the base type of the entity before
2287 -- freezing the entity itself, (RM 13.14(15)).
2289 elsif E
/= Base_Type
(E
) then
2290 Freeze_And_Append
(Base_Type
(E
), Loc
, Result
);
2293 -- For a derived type, freeze its parent type first (RM 13.14(15))
2295 elsif Is_Derived_Type
(E
) then
2296 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
2297 Freeze_And_Append
(First_Subtype
(Etype
(E
)), Loc
, Result
);
2300 -- For array type, freeze index types and component type first
2301 -- before freezing the array (RM 13.14(15)).
2303 if Is_Array_Type
(E
) then
2305 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
2308 Non_Standard_Enum
: Boolean := False;
2309 -- Set true if any of the index types is an enumeration
2310 -- type with a non-standard representation.
2313 Freeze_And_Append
(Ctyp
, Loc
, Result
);
2315 Indx
:= First_Index
(E
);
2316 while Present
(Indx
) loop
2317 Freeze_And_Append
(Etype
(Indx
), Loc
, Result
);
2319 if Is_Enumeration_Type
(Etype
(Indx
))
2320 and then Has_Non_Standard_Rep
(Etype
(Indx
))
2322 Non_Standard_Enum
:= True;
2328 -- Processing that is done only for base types
2330 if Ekind
(E
) = E_Array_Type
then
2332 -- Propagate flags for component type
2334 if Is_Controlled
(Component_Type
(E
))
2335 or else Has_Controlled_Component
(Ctyp
)
2337 Set_Has_Controlled_Component
(E
);
2340 if Has_Unchecked_Union
(Component_Type
(E
)) then
2341 Set_Has_Unchecked_Union
(E
);
2344 -- If packing was requested or if the component size was set
2345 -- explicitly, then see if bit packing is required. This
2346 -- processing is only done for base types, since all the
2347 -- representation aspects involved are type-related. This
2348 -- is not just an optimization, if we start processing the
2349 -- subtypes, they intefere with the settings on the base
2350 -- type (this is because Is_Packed has a slightly different
2351 -- meaning before and after freezing).
2358 if (Is_Packed
(E
) or else Has_Pragma_Pack
(E
))
2359 and then not Has_Atomic_Components
(E
)
2360 and then Known_Static_RM_Size
(Ctyp
)
2362 Csiz
:= UI_Max
(RM_Size
(Ctyp
), 1);
2364 elsif Known_Component_Size
(E
) then
2365 Csiz
:= Component_Size
(E
);
2367 elsif not Known_Static_Esize
(Ctyp
) then
2371 Esiz
:= Esize
(Ctyp
);
2373 -- We can set the component size if it is less than
2374 -- 16, rounding it up to the next storage unit size.
2378 elsif Esiz
<= 16 then
2384 -- Set component size up to match alignment if
2385 -- it would otherwise be less than the alignment.
2386 -- This deals with cases of types whose alignment
2387 -- exceeds their sizes (padded types).
2391 A
: constant Uint
:= Alignment_In_Bits
(Ctyp
);
2402 if 1 <= Csiz
and then Csiz
<= 64 then
2404 -- We set the component size for all cases 1-64
2406 Set_Component_Size
(Base_Type
(E
), Csiz
);
2408 -- Check for base type of 8,16,32 bits, where the
2409 -- subtype has a length one less than the base type
2410 -- and is unsigned (e.g. Natural subtype of Integer)
2412 -- In such cases, if a component size was not set
2413 -- explicitly, then generate a warning.
2415 if Has_Pragma_Pack
(E
)
2416 and then not Has_Component_Size_Clause
(E
)
2418 (Csiz
= 7 or else Csiz
= 15 or else Csiz
= 31)
2419 and then Esize
(Base_Type
(Ctyp
)) = Csiz
+ 1
2421 Error_Msg_Uint_1
:= Csiz
;
2423 Get_Rep_Pragma
(First_Subtype
(E
), Name_Pack
);
2425 if Present
(Pnod
) then
2427 ("pragma Pack causes component size to be ^?",
2430 ("\use Component_Size to set desired value",
2435 -- Actual packing is not needed for 8,16,32,64
2436 -- Also not needed for 24 if alignment is 1
2442 or else (Csiz
= 24 and then Alignment
(Ctyp
) = 1)
2444 -- Here the array was requested to be packed, but
2445 -- the packing request had no effect, so Is_Packed
2448 -- Note: semantically this means that we lose
2449 -- track of the fact that a derived type inherited
2450 -- a pack pragma that was non-effective, but that
2453 -- We regard a Pack pragma as a request to set a
2454 -- representation characteristic, and this request
2457 Set_Is_Packed
(Base_Type
(E
), False);
2459 -- In all other cases, packing is indeed needed
2462 Set_Has_Non_Standard_Rep
(Base_Type
(E
));
2463 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
2464 Set_Is_Packed
(Base_Type
(E
));
2469 -- Processing that is done only for subtypes
2472 -- Acquire alignment from base type
2474 if Unknown_Alignment
(E
) then
2475 Set_Alignment
(E
, Alignment
(Base_Type
(E
)));
2479 -- For bit-packed arrays, check the size
2481 if Is_Bit_Packed_Array
(E
)
2482 and then Known_Esize
(E
)
2486 SizC
: constant Node_Id
:= Size_Clause
(E
);
2489 -- It is not clear if it is possible to have no size
2490 -- clause at this stage, but this is not worth worrying
2491 -- about. Post the error on the entity name in the size
2492 -- clause if present, else on the type entity itself.
2494 if Present
(SizC
) then
2495 Check_Size
(Name
(SizC
), E
, Esize
(E
), Discard
);
2497 Check_Size
(E
, E
, Esize
(E
), Discard
);
2502 -- Check one common case of a size given where the array
2503 -- needs to be packed, but was not so the size cannot be
2504 -- honored. This would of course be caught by the backend,
2505 -- and indeed we don't catch all cases. The point is that
2506 -- we can give a better error message in those cases that
2507 -- we do catch with the circuitry here.
2511 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
2514 if Present
(Size_Clause
(E
))
2515 and then Known_Static_Esize
(E
)
2516 and then not Is_Bit_Packed_Array
(E
)
2517 and then not Has_Pragma_Pack
(E
)
2518 and then Number_Dimensions
(E
) = 1
2519 and then not Has_Component_Size_Clause
(E
)
2520 and then Known_Static_Esize
(Ctyp
)
2522 Get_Index_Bounds
(First_Index
(E
), Lo
, Hi
);
2524 if Compile_Time_Known_Value
(Lo
)
2525 and then Compile_Time_Known_Value
(Hi
)
2526 and then Known_Static_RM_Size
(Ctyp
)
2527 and then RM_Size
(Ctyp
) < 64
2530 Lov
: constant Uint
:= Expr_Value
(Lo
);
2531 Hiv
: constant Uint
:= Expr_Value
(Hi
);
2532 Len
: constant Uint
:=
2533 UI_Max
(Uint_0
, Hiv
- Lov
+ 1);
2534 Rsiz
: constant Uint
:= RM_Size
(Ctyp
);
2536 -- What we are looking for here is the situation
2537 -- where the Esize given would be exactly right
2538 -- if there was a pragma Pack (resulting in the
2539 -- component size being the same as the RM_Size).
2540 -- Furthermore, the component type size must be
2541 -- an odd size (not a multiple of storage unit)
2544 if Esize
(E
) = Len
* Rsiz
2545 and then Rsiz
mod System_Storage_Unit
/= 0
2548 ("size given for& too small",
2549 Size_Clause
(E
), E
);
2551 ("\explicit pragma Pack is required",
2559 -- If any of the index types was an enumeration type with
2560 -- a non-standard rep clause, then we indicate that the
2561 -- array type is always packed (even if it is not bit packed).
2563 if Non_Standard_Enum
then
2564 Set_Has_Non_Standard_Rep
(Base_Type
(E
));
2565 Set_Is_Packed
(Base_Type
(E
));
2568 Set_Component_Alignment_If_Not_Set
(E
);
2570 -- If the array is packed, we must create the packed array
2571 -- type to be used to actually implement the type. This is
2572 -- only needed for real array types (not for string literal
2573 -- types, since they are present only for the front end).
2576 and then Ekind
(E
) /= E_String_Literal_Subtype
2578 Create_Packed_Array_Type
(E
);
2579 Freeze_And_Append
(Packed_Array_Type
(E
), Loc
, Result
);
2581 -- Size information of packed array type is copied to the
2582 -- array type, since this is really the representation.
2584 Set_Size_Info
(E
, Packed_Array_Type
(E
));
2585 Set_RM_Size
(E
, RM_Size
(Packed_Array_Type
(E
)));
2588 -- For non-packed arrays set the alignment of the array
2589 -- to the alignment of the component type if it is unknown.
2590 -- Skip this in the atomic case, since atomic arrays may
2591 -- need larger alignments.
2593 if not Is_Packed
(E
)
2594 and then Unknown_Alignment
(E
)
2595 and then Known_Alignment
(Ctyp
)
2596 and then Known_Static_Component_Size
(E
)
2597 and then Known_Static_Esize
(Ctyp
)
2598 and then Esize
(Ctyp
) = Component_Size
(E
)
2599 and then not Is_Atomic
(E
)
2601 Set_Alignment
(E
, Alignment
(Component_Type
(E
)));
2605 -- For a class-wide type, the corresponding specific type is
2606 -- frozen as well (RM 13.14(15))
2608 elsif Is_Class_Wide_Type
(E
) then
2609 Freeze_And_Append
(Root_Type
(E
), Loc
, Result
);
2611 -- If the Class_Wide_Type is an Itype (when type is the anonymous
2612 -- parent of a derived type) and it is a library-level entity,
2613 -- generate an itype reference for it. Otherwise, its first
2614 -- explicit reference may be in an inner scope, which will be
2615 -- rejected by the back-end.
2618 and then Is_Compilation_Unit
(Scope
(E
))
2621 Ref
: constant Node_Id
:= Make_Itype_Reference
(Loc
);
2626 Result
:= New_List
(Ref
);
2628 Append
(Ref
, Result
);
2633 -- The equivalent type associated with a class-wide subtype
2634 -- needs to be frozen to ensure that its layout is done.
2635 -- Class-wide subtypes are currently only frozen on targets
2636 -- requiring front-end layout (see New_Class_Wide_Subtype
2637 -- and Make_CW_Equivalent_Type in exp_util.adb).
2639 if Ekind
(E
) = E_Class_Wide_Subtype
2640 and then Present
(Equivalent_Type
(E
))
2642 Freeze_And_Append
(Equivalent_Type
(E
), Loc
, Result
);
2645 -- For a record (sub)type, freeze all the component types (RM
2646 -- 13.14(15). We test for E_Record_(sub)Type here, rather than
2647 -- using Is_Record_Type, because we don't want to attempt the
2648 -- freeze for the case of a private type with record extension
2649 -- (we will do that later when the full type is frozen).
2651 elsif Ekind
(E
) = E_Record_Type
2652 or else Ekind
(E
) = E_Record_Subtype
2654 Freeze_Record_Type
(E
);
2656 -- For a concurrent type, freeze corresponding record type. This
2657 -- does not correpond to any specific rule in the RM, but the
2658 -- record type is essentially part of the concurrent type.
2659 -- Freeze as well all local entities. This includes record types
2660 -- created for entry parameter blocks, and whatever local entities
2661 -- may appear in the private part.
2663 elsif Is_Concurrent_Type
(E
) then
2664 if Present
(Corresponding_Record_Type
(E
)) then
2666 (Corresponding_Record_Type
(E
), Loc
, Result
);
2669 Comp
:= First_Entity
(E
);
2671 while Present
(Comp
) loop
2672 if Is_Type
(Comp
) then
2673 Freeze_And_Append
(Comp
, Loc
, Result
);
2675 elsif (Ekind
(Comp
)) /= E_Function
then
2676 Freeze_And_Append
(Etype
(Comp
), Loc
, Result
);
2682 -- Private types are required to point to the same freeze node
2683 -- as their corresponding full views. The freeze node itself
2684 -- has to point to the partial view of the entity (because
2685 -- from the partial view, we can retrieve the full view, but
2686 -- not the reverse). However, in order to freeze correctly,
2687 -- we need to freeze the full view. If we are freezing at the
2688 -- end of a scope (or within the scope of the private type),
2689 -- the partial and full views will have been swapped, the
2690 -- full view appears first in the entity chain and the swapping
2691 -- mechanism ensures that the pointers are properly set (on
2694 -- If we encounter the partial view before the full view
2695 -- (e.g. when freezing from another scope), we freeze the
2696 -- full view, and then set the pointers appropriately since
2697 -- we cannot rely on swapping to fix things up (subtypes in an
2698 -- outer scope might not get swapped).
2700 elsif Is_Incomplete_Or_Private_Type
(E
)
2701 and then not Is_Generic_Type
(E
)
2703 -- Case of full view present
2705 if Present
(Full_View
(E
)) then
2707 -- If full view has already been frozen, then no
2708 -- further processing is required
2710 if Is_Frozen
(Full_View
(E
)) then
2712 Set_Has_Delayed_Freeze
(E
, False);
2713 Set_Freeze_Node
(E
, Empty
);
2714 Check_Debug_Info_Needed
(E
);
2716 -- Otherwise freeze full view and patch the pointers
2717 -- so that the freeze node will elaborate both views
2722 Full
: constant Entity_Id
:= Full_View
(E
);
2725 if Is_Private_Type
(Full
)
2726 and then Present
(Underlying_Full_View
(Full
))
2729 (Underlying_Full_View
(Full
), Loc
, Result
);
2732 Freeze_And_Append
(Full
, Loc
, Result
);
2734 if Has_Delayed_Freeze
(E
) then
2735 F_Node
:= Freeze_Node
(Full
);
2737 if Present
(F_Node
) then
2738 Set_Freeze_Node
(E
, F_Node
);
2739 Set_Entity
(F_Node
, E
);
2742 -- {Incomplete,Private}_Subtypes
2743 -- with Full_Views constrained by discriminants
2745 Set_Has_Delayed_Freeze
(E
, False);
2746 Set_Freeze_Node
(E
, Empty
);
2751 Check_Debug_Info_Needed
(E
);
2754 -- AI-117 requires that the convention of a partial view
2755 -- be the same as the convention of the full view. Note
2756 -- that this is a recognized breach of privacy, but it's
2757 -- essential for logical consistency of representation,
2758 -- and the lack of a rule in RM95 was an oversight.
2760 Set_Convention
(E
, Convention
(Full_View
(E
)));
2762 Set_Size_Known_At_Compile_Time
(E
,
2763 Size_Known_At_Compile_Time
(Full_View
(E
)));
2765 -- Size information is copied from the full view to the
2766 -- incomplete or private view for consistency
2768 -- We skip this is the full view is not a type. This is
2769 -- very strange of course, and can only happen as a result
2770 -- of certain illegalities, such as a premature attempt to
2771 -- derive from an incomplete type.
2773 if Is_Type
(Full_View
(E
)) then
2774 Set_Size_Info
(E
, Full_View
(E
));
2775 Set_RM_Size
(E
, RM_Size
(Full_View
(E
)));
2780 -- Case of no full view present. If entity is derived or subtype,
2781 -- it is safe to freeze, correctness depends on the frozen status
2782 -- of parent. Otherwise it is either premature usage, or a Taft
2783 -- amendment type, so diagnosis is at the point of use and the
2784 -- type might be frozen later.
2786 elsif E
/= Base_Type
(E
)
2787 or else Is_Derived_Type
(E
)
2792 Set_Is_Frozen
(E
, False);
2796 -- For access subprogram, freeze types of all formals, the return
2797 -- type was already frozen, since it is the Etype of the function.
2799 elsif Ekind
(E
) = E_Subprogram_Type
then
2800 Formal
:= First_Formal
(E
);
2801 while Present
(Formal
) loop
2802 Freeze_And_Append
(Etype
(Formal
), Loc
, Result
);
2803 Next_Formal
(Formal
);
2806 -- If the return type requires a transient scope, and we are on
2807 -- a target allowing functions to return with a depressed stack
2808 -- pointer, then we mark the function as requiring this treatment.
2810 if Functions_Return_By_DSP_On_Target
2811 and then Requires_Transient_Scope
(Etype
(E
))
2813 Set_Function_Returns_With_DSP
(E
);
2816 Freeze_Subprogram
(E
);
2818 -- For access to a protected subprogram, freeze the equivalent
2819 -- type (however this is not set if we are not generating code)
2820 -- or if this is an anonymous type used just for resolution).
2822 elsif Ekind
(E
) = E_Access_Protected_Subprogram_Type
2823 and then Operating_Mode
= Generate_Code
2824 and then Present
(Equivalent_Type
(E
))
2826 Freeze_And_Append
(Equivalent_Type
(E
), Loc
, Result
);
2829 -- Generic types are never seen by the back-end, and are also not
2830 -- processed by the expander (since the expander is turned off for
2831 -- generic processing), so we never need freeze nodes for them.
2833 if Is_Generic_Type
(E
) then
2837 -- Some special processing for non-generic types to complete
2838 -- representation details not known till the freeze point.
2840 if Is_Fixed_Point_Type
(E
) then
2841 Freeze_Fixed_Point_Type
(E
);
2843 -- Some error checks required for ordinary fixed-point type.
2844 -- Defer these till the freeze-point since we need the small
2845 -- and range values. We only do these checks for base types
2847 if Is_Ordinary_Fixed_Point_Type
(E
)
2848 and then E
= Base_Type
(E
)
2850 if Small_Value
(E
) < Ureal_2_M_80
then
2851 Error_Msg_Name_1
:= Name_Small
;
2853 ("`&''%` is too small, minimum is 2.0'*'*(-80)", E
);
2855 elsif Small_Value
(E
) > Ureal_2_80
then
2856 Error_Msg_Name_1
:= Name_Small
;
2858 ("`&''%` is too large, maximum is 2.0'*'*80", E
);
2861 if Expr_Value_R
(Type_Low_Bound
(E
)) < Ureal_M_10_36
then
2862 Error_Msg_Name_1
:= Name_First
;
2864 ("`&''%` is too small, minimum is -10.0'*'*36", E
);
2867 if Expr_Value_R
(Type_High_Bound
(E
)) > Ureal_10_36
then
2868 Error_Msg_Name_1
:= Name_Last
;
2870 ("`&''%` is too large, maximum is 10.0'*'*36", E
);
2874 elsif Is_Enumeration_Type
(E
) then
2875 Freeze_Enumeration_Type
(E
);
2877 elsif Is_Integer_Type
(E
) then
2878 Adjust_Esize_For_Alignment
(E
);
2880 elsif Is_Access_Type
(E
)
2881 and then No
(Associated_Storage_Pool
(E
))
2883 Check_Restriction
(No_Standard_Storage_Pools
, E
);
2886 -- If the current entity is an array or record subtype and has
2887 -- discriminants used to constrain it, it must not freeze, because
2888 -- Freeze_Entity nodes force Gigi to process the frozen type.
2890 if Is_Composite_Type
(E
) then
2892 if Is_Array_Type
(E
) then
2894 Index
: Node_Id
:= First_Index
(E
);
2899 while Present
(Index
) loop
2900 if Etype
(Index
) /= Any_Type
then
2901 Get_Index_Bounds
(Index
, Expr1
, Expr2
);
2903 for J
in 1 .. 2 loop
2904 if Nkind
(Expr1
) = N_Identifier
2905 and then Ekind
(Entity
(Expr1
)) = E_Discriminant
2907 Set_Has_Delayed_Freeze
(E
, False);
2908 Set_Freeze_Node
(E
, Empty
);
2909 Check_Debug_Info_Needed
(E
);
2921 elsif Has_Discriminants
(E
)
2922 and Is_Constrained
(E
)
2925 Constraint
: Elmt_Id
;
2929 Constraint
:= First_Elmt
(Discriminant_Constraint
(E
));
2930 while Present
(Constraint
) loop
2931 Expr
:= Node
(Constraint
);
2932 if Nkind
(Expr
) = N_Identifier
2933 and then Ekind
(Entity
(Expr
)) = E_Discriminant
2935 Set_Has_Delayed_Freeze
(E
, False);
2936 Set_Freeze_Node
(E
, Empty
);
2937 Check_Debug_Info_Needed
(E
);
2941 Next_Elmt
(Constraint
);
2946 -- AI-117 requires that all new primitives of a tagged type
2947 -- must inherit the convention of the full view of the type.
2948 -- Inherited and overriding operations are defined to inherit
2949 -- the convention of their parent or overridden subprogram
2950 -- (also specified in AI-117), and that will have occurred
2951 -- earlier (in Derive_Subprogram and New_Overloaded_Entity).
2952 -- Here we set the convention of primitives that are still
2953 -- convention Ada, which will ensure that any new primitives
2954 -- inherit the type's convention. Class-wide types can have
2955 -- a foreign convention inherited from their specific type,
2956 -- but are excluded from this since they don't have any
2957 -- associated primitives.
2959 if Is_Tagged_Type
(E
)
2960 and then not Is_Class_Wide_Type
(E
)
2961 and then Convention
(E
) /= Convention_Ada
2964 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
2967 Prim
:= First_Elmt
(Prim_List
);
2968 while Present
(Prim
) loop
2969 if Convention
(Node
(Prim
)) = Convention_Ada
then
2970 Set_Convention
(Node
(Prim
), Convention
(E
));
2979 -- Generate primitive operation references for a tagged type
2981 if Is_Tagged_Type
(E
)
2982 and then not Is_Class_Wide_Type
(E
)
2985 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
2990 Prim
:= First_Elmt
(Prim_List
);
2991 while Present
(Prim
) loop
2994 -- If the operation is derived, get the original for
2995 -- cross-reference purposes (it is the original for
2996 -- which we want the xref, and for which the comes
2997 -- from source test needs to be performed).
2999 while Present
(Alias
(Ent
)) loop
3003 Generate_Reference
(E
, Ent
, 'p', Set_Ref
=> False);
3007 -- If we get an exception, then something peculiar has happened
3008 -- probably as a result of a previous error. Since this is only
3009 -- for non-critical cross-references, ignore the error.
3012 when others => null;
3016 -- Now that all types from which E may depend are frozen, see
3017 -- if the size is known at compile time, if it must be unsigned,
3018 -- or if strict alignent is required
3020 Check_Compile_Time_Size
(E
);
3021 Check_Unsigned_Type
(E
);
3023 if Base_Type
(E
) = E
then
3024 Check_Strict_Alignment
(E
);
3027 -- Do not allow a size clause for a type which does not have a size
3028 -- that is known at compile time
3030 if Has_Size_Clause
(E
)
3031 and then not Size_Known_At_Compile_Time
(E
)
3033 -- Supress this message if errors posted on E, even if we are
3034 -- in all errors mode, since this is often a junk message
3036 if not Error_Posted
(E
) then
3038 ("size clause not allowed for variable length type",
3043 -- Remaining process is to set/verify the representation information,
3044 -- in particular the size and alignment values. This processing is
3045 -- not required for generic types, since generic types do not play
3046 -- any part in code generation, and so the size and alignment values
3047 -- for suhc types are irrelevant.
3049 if Is_Generic_Type
(E
) then
3052 -- Otherwise we call the layout procedure
3058 -- End of freeze processing for type entities
3061 -- Here is where we logically freeze the current entity. If it has a
3062 -- freeze node, then this is the point at which the freeze node is
3063 -- linked into the result list.
3065 if Has_Delayed_Freeze
(E
) then
3067 -- If a freeze node is already allocated, use it, otherwise allocate
3068 -- a new one. The preallocation happens in the case of anonymous base
3069 -- types, where we preallocate so that we can set First_Subtype_Link.
3070 -- Note that we reset the Sloc to the current freeze location.
3072 if Present
(Freeze_Node
(E
)) then
3073 F_Node
:= Freeze_Node
(E
);
3074 Set_Sloc
(F_Node
, Loc
);
3077 F_Node
:= New_Node
(N_Freeze_Entity
, Loc
);
3078 Set_Freeze_Node
(E
, F_Node
);
3079 Set_Access_Types_To_Process
(F_Node
, No_Elist
);
3080 Set_TSS_Elist
(F_Node
, No_Elist
);
3081 Set_Actions
(F_Node
, No_List
);
3084 Set_Entity
(F_Node
, E
);
3086 if Result
= No_List
then
3087 Result
:= New_List
(F_Node
);
3089 Append
(F_Node
, Result
);
3092 -- A final pass over record types with discriminants. If the type
3093 -- has an incomplete declaration, there may be constrained access
3094 -- subtypes declared elsewhere, which do not depend on the discrimi-
3095 -- nants of the type, and which are used as component types (i.e.
3096 -- the full view is a recursive type). The designated types of these
3097 -- subtypes can only be elaborated after the type itself, and they
3098 -- need an itype reference.
3100 if Ekind
(E
) = E_Record_Type
3101 and then Has_Discriminants
(E
)
3109 Comp
:= First_Component
(E
);
3111 while Present
(Comp
) loop
3112 Typ
:= Etype
(Comp
);
3114 if Ekind
(Comp
) = E_Component
3115 and then Is_Access_Type
(Typ
)
3116 and then Scope
(Typ
) /= E
3117 and then Base_Type
(Designated_Type
(Typ
)) = E
3118 and then Is_Itype
(Designated_Type
(Typ
))
3120 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
3121 Set_Itype
(IR
, Designated_Type
(Typ
));
3122 Append
(IR
, Result
);
3125 Next_Component
(Comp
);
3131 -- When a type is frozen, the first subtype of the type is frozen as
3132 -- well (RM 13.14(15)). This has to be done after freezing the type,
3133 -- since obviously the first subtype depends on its own base type.
3136 Freeze_And_Append
(First_Subtype
(E
), Loc
, Result
);
3138 -- If we just froze a tagged non-class wide record, then freeze the
3139 -- corresponding class-wide type. This must be done after the tagged
3140 -- type itself is frozen, because the class-wide type refers to the
3141 -- tagged type which generates the class.
3143 if Is_Tagged_Type
(E
)
3144 and then not Is_Class_Wide_Type
(E
)
3145 and then Present
(Class_Wide_Type
(E
))
3147 Freeze_And_Append
(Class_Wide_Type
(E
), Loc
, Result
);
3151 Check_Debug_Info_Needed
(E
);
3153 -- Special handling for subprograms
3155 if Is_Subprogram
(E
) then
3157 -- If subprogram has address clause then reset Is_Public flag, since
3158 -- we do not want the backend to generate external references.
3160 if Present
(Address_Clause
(E
))
3161 and then not Is_Library_Level_Entity
(E
)
3163 Set_Is_Public
(E
, False);
3165 -- If no address clause and not intrinsic, then for imported
3166 -- subprogram in main unit, generate descriptor if we are in
3167 -- Propagate_Exceptions mode.
3169 elsif Propagate_Exceptions
3170 and then Is_Imported
(E
)
3171 and then not Is_Intrinsic_Subprogram
(E
)
3172 and then Convention
(E
) /= Convention_Stubbed
3174 if Result
= No_List
then
3175 Result
:= Empty_List
;
3178 Generate_Subprogram_Descriptor_For_Imported_Subprogram
3186 -----------------------------
3187 -- Freeze_Enumeration_Type --
3188 -----------------------------
3190 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
) is
3192 if Has_Foreign_Convention
(Typ
)
3193 and then not Has_Size_Clause
(Typ
)
3194 and then Esize
(Typ
) < Standard_Integer_Size
3196 Init_Esize
(Typ
, Standard_Integer_Size
);
3198 Adjust_Esize_For_Alignment
(Typ
);
3200 end Freeze_Enumeration_Type
;
3202 -----------------------
3203 -- Freeze_Expression --
3204 -----------------------
3206 procedure Freeze_Expression
(N
: Node_Id
) is
3207 In_Def_Exp
: constant Boolean := In_Default_Expression
;
3210 Desig_Typ
: Entity_Id
;
3214 Freeze_Outside
: Boolean := False;
3215 -- This flag is set true if the entity must be frozen outside the
3216 -- current subprogram. This happens in the case of expander generated
3217 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3218 -- not freeze all entities like other bodies, but which nevertheless
3219 -- may reference entities that have to be frozen before the body and
3220 -- obviously cannot be frozen inside the body.
3222 function In_Exp_Body
(N
: Node_Id
) return Boolean;
3223 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3224 -- it is the handled statement sequence of an expander generated
3225 -- subprogram (init proc, or stream subprogram). If so, it returns
3226 -- True, otherwise False.
3232 function In_Exp_Body
(N
: Node_Id
) return Boolean is
3236 if Nkind
(N
) = N_Subprogram_Body
then
3242 if Nkind
(P
) /= N_Subprogram_Body
then
3246 P
:= Defining_Unit_Name
(Specification
(P
));
3248 if Nkind
(P
) = N_Defining_Identifier
3249 and then (Is_Init_Proc
(P
) or else
3250 Is_TSS
(P
, TSS_Stream_Input
) or else
3251 Is_TSS
(P
, TSS_Stream_Output
) or else
3252 Is_TSS
(P
, TSS_Stream_Read
) or else
3253 Is_TSS
(P
, TSS_Stream_Write
))
3262 -- Start of processing for Freeze_Expression
3265 -- Immediate return if freezing is inhibited. This flag is set by
3266 -- the analyzer to stop freezing on generated expressions that would
3267 -- cause freezing if they were in the source program, but which are
3268 -- not supposed to freeze, since they are created.
3270 if Must_Not_Freeze
(N
) then
3274 -- If expression is non-static, then it does not freeze in a default
3275 -- expression, see section "Handling of Default Expressions" in the
3276 -- spec of package Sem for further details. Note that we have to
3277 -- make sure that we actually have a real expression (if we have
3278 -- a subtype indication, we can't test Is_Static_Expression!)
3281 and then Nkind
(N
) in N_Subexpr
3282 and then not Is_Static_Expression
(N
)
3287 -- Freeze type of expression if not frozen already
3291 if Nkind
(N
) in N_Has_Etype
then
3292 if not Is_Frozen
(Etype
(N
)) then
3295 -- Base type may be an derived numeric type that is frozen at
3296 -- the point of declaration, but first_subtype is still unfrozen.
3298 elsif not Is_Frozen
(First_Subtype
(Etype
(N
))) then
3299 Typ
:= First_Subtype
(Etype
(N
));
3303 -- For entity name, freeze entity if not frozen already. A special
3304 -- exception occurs for an identifier that did not come from source.
3305 -- We don't let such identifiers freeze a non-internal entity, i.e.
3306 -- an entity that did come from source, since such an identifier was
3307 -- generated by the expander, and cannot have any semantic effect on
3308 -- the freezing semantics. For example, this stops the parameter of
3309 -- an initialization procedure from freezing the variable.
3311 if Is_Entity_Name
(N
)
3312 and then not Is_Frozen
(Entity
(N
))
3313 and then (Nkind
(N
) /= N_Identifier
3314 or else Comes_From_Source
(N
)
3315 or else not Comes_From_Source
(Entity
(N
)))
3322 -- For an allocator freeze designated type if not frozen already.
3324 -- For an aggregate whose component type is an access type, freeze
3325 -- the designated type now, so that its freeze does not appear within
3326 -- the loop that might be created in the expansion of the aggregate.
3327 -- If the designated type is a private type without full view, the
3328 -- expression cannot contain an allocator, so the type is not frozen.
3334 Desig_Typ
:= Designated_Type
(Etype
(N
));
3337 if Is_Array_Type
(Etype
(N
))
3338 and then Is_Access_Type
(Component_Type
(Etype
(N
)))
3340 Desig_Typ
:= Designated_Type
(Component_Type
(Etype
(N
)));
3343 when N_Selected_Component |
3344 N_Indexed_Component |
3347 if Is_Access_Type
(Etype
(Prefix
(N
))) then
3348 Desig_Typ
:= Designated_Type
(Etype
(Prefix
(N
)));
3355 if Desig_Typ
/= Empty
3356 and then (Is_Frozen
(Desig_Typ
)
3357 or else (not Is_Fully_Defined
(Desig_Typ
)))
3362 -- All done if nothing needs freezing
3366 and then No
(Desig_Typ
)
3371 -- Loop for looking at the right place to insert the freeze nodes
3372 -- exiting from the loop when it is appropriate to insert the freeze
3373 -- node before the current node P.
3375 -- Also checks some special exceptions to the freezing rules. These
3376 -- cases result in a direct return, bypassing the freeze action.
3380 Parent_P
:= Parent
(P
);
3382 -- If we don't have a parent, then we are not in a well-formed
3383 -- tree. This is an unusual case, but there are some legitimate
3384 -- situations in which this occurs, notably when the expressions
3385 -- in the range of a type declaration are resolved. We simply
3386 -- ignore the freeze request in this case. Is this right ???
3388 if No
(Parent_P
) then
3392 -- See if we have got to an appropriate point in the tree
3394 case Nkind
(Parent_P
) is
3396 -- A special test for the exception of (RM 13.14(8)) for the
3397 -- case of per-object expressions (RM 3.8(18)) occurring in a
3398 -- component definition or a discrete subtype definition. Note
3399 -- that we test for a component declaration which includes both
3400 -- cases we are interested in, and furthermore the tree does not
3401 -- have explicit nodes for either of these two constructs.
3403 when N_Component_Declaration
=>
3405 -- The case we want to test for here is an identifier that is
3406 -- a per-object expression, this is either a discriminant that
3407 -- appears in a context other than the component declaration
3408 -- or it is a reference to the type of the enclosing construct.
3410 -- For either of these cases, we skip the freezing
3412 if not In_Default_Expression
3413 and then Nkind
(N
) = N_Identifier
3414 and then (Present
(Entity
(N
)))
3416 -- We recognize the discriminant case by just looking for
3417 -- a reference to a discriminant. It can only be one for
3418 -- the enclosing construct. Skip freezing in this case.
3420 if Ekind
(Entity
(N
)) = E_Discriminant
then
3423 -- For the case of a reference to the enclosing record,
3424 -- (or task or protected type), we look for a type that
3425 -- matches the current scope.
3427 elsif Entity
(N
) = Current_Scope
then
3432 -- If we have an enumeration literal that appears as the
3433 -- choice in the aggregate of an enumeration representation
3434 -- clause, then freezing does not occur (RM 13.14(10)).
3436 when N_Enumeration_Representation_Clause
=>
3438 -- The case we are looking for is an enumeration literal
3440 if (Nkind
(N
) = N_Identifier
or Nkind
(N
) = N_Character_Literal
)
3441 and then Is_Enumeration_Type
(Etype
(N
))
3443 -- If enumeration literal appears directly as the choice,
3444 -- do not freeze (this is the normal non-overloade case)
3446 if Nkind
(Parent
(N
)) = N_Component_Association
3447 and then First
(Choices
(Parent
(N
))) = N
3451 -- If enumeration literal appears as the name of a
3452 -- function which is the choice, then also do not freeze.
3453 -- This happens in the overloaded literal case, where the
3454 -- enumeration literal is temporarily changed to a function
3455 -- call for overloading analysis purposes.
3457 elsif Nkind
(Parent
(N
)) = N_Function_Call
3459 Nkind
(Parent
(Parent
(N
))) = N_Component_Association
3461 First
(Choices
(Parent
(Parent
(N
)))) = Parent
(N
)
3467 -- Normally if the parent is a handled sequence of statements,
3468 -- then the current node must be a statement, and that is an
3469 -- appropriate place to insert a freeze node.
3471 when N_Handled_Sequence_Of_Statements
=>
3473 -- An exception occurs when the sequence of statements is
3474 -- for an expander generated body that did not do the usual
3475 -- freeze all operation. In this case we usually want to
3476 -- freeze outside this body, not inside it, and we skip
3477 -- past the subprogram body that we are inside.
3479 if In_Exp_Body
(Parent_P
) then
3481 -- However, we *do* want to freeze at this point if we have
3482 -- an entity to freeze, and that entity is declared *inside*
3483 -- the body of the expander generated procedure. This case
3484 -- is recognized by the scope of the type, which is either
3485 -- the spec for some enclosing body, or (in the case of
3486 -- init_procs, for which there are no separate specs) the
3490 Subp
: constant Node_Id
:= Parent
(Parent_P
);
3494 if Nkind
(Subp
) = N_Subprogram_Body
then
3495 Cspc
:= Corresponding_Spec
(Subp
);
3497 if (Present
(Typ
) and then Scope
(Typ
) = Cspc
)
3499 (Present
(Nam
) and then Scope
(Nam
) = Cspc
)
3504 and then Scope
(Typ
) = Current_Scope
3505 and then Current_Scope
= Defining_Entity
(Subp
)
3512 -- If not that exception to the exception, then this is
3513 -- where we delay the freeze till outside the body.
3515 Parent_P
:= Parent
(Parent_P
);
3516 Freeze_Outside
:= True;
3518 -- Here if normal case where we are in handled statement
3519 -- sequence and want to do the insertion right there.
3525 -- If parent is a body or a spec or a block, then the current
3526 -- node is a statement or declaration and we can insert the
3527 -- freeze node before it.
3529 when N_Package_Specification |
3535 N_Block_Statement
=> exit;
3537 -- The expander is allowed to define types in any statements list,
3538 -- so any of the following parent nodes also mark a freezing point
3539 -- if the actual node is in a list of statements or declarations.
3541 when N_Exception_Handler |
3544 N_Case_Statement_Alternative |
3545 N_Compilation_Unit_Aux |
3546 N_Selective_Accept |
3547 N_Accept_Alternative |
3548 N_Delay_Alternative |
3549 N_Conditional_Entry_Call |
3550 N_Entry_Call_Alternative |
3551 N_Triggering_Alternative |
3555 exit when Is_List_Member
(P
);
3557 -- Note: The N_Loop_Statement is a special case. A type that
3558 -- appears in the source can never be frozen in a loop (this
3559 -- occurs only because of a loop expanded by the expander),
3560 -- so we keep on going. Otherwise we terminate the search.
3561 -- Same is true of any entity which comes from source. (if they
3562 -- have a predefined type, that type does not appear to come
3563 -- from source, but the entity should not be frozen here).
3565 when N_Loop_Statement
=>
3566 exit when not Comes_From_Source
(Etype
(N
))
3567 and then (No
(Nam
) or else not Comes_From_Source
(Nam
));
3569 -- For all other cases, keep looking at parents
3575 -- We fall through the case if we did not yet find the proper
3576 -- place in the free for inserting the freeze node, so climb!
3581 -- If the expression appears in a record or an initialization
3582 -- procedure, the freeze nodes are collected and attached to
3583 -- the current scope, to be inserted and analyzed on exit from
3584 -- the scope, to insure that generated entities appear in the
3585 -- correct scope. If the expression is a default for a discriminant
3586 -- specification, the scope is still void. The expression can also
3587 -- appear in the discriminant part of a private or concurrent type.
3589 -- The other case requiring this special handling is if we are in
3590 -- a default expression, since in that case we are about to freeze
3591 -- a static type, and the freeze scope needs to be the outer scope,
3592 -- not the scope of the subprogram with the default parameter.
3594 -- For default expressions in generic units, the Move_Freeze_Nodes
3595 -- mechanism (see sem_ch12.adb) takes care of placing them at the
3596 -- proper place, after the generic unit.
3598 if (In_Def_Exp
and not Inside_A_Generic
)
3599 or else Freeze_Outside
3600 or else (Is_Type
(Current_Scope
)
3601 and then (not Is_Concurrent_Type
(Current_Scope
)
3602 or else not Has_Completion
(Current_Scope
)))
3603 or else Ekind
(Current_Scope
) = E_Void
3606 Loc
: constant Source_Ptr
:= Sloc
(Current_Scope
);
3607 Freeze_Nodes
: List_Id
:= No_List
;
3610 if Present
(Desig_Typ
) then
3611 Freeze_And_Append
(Desig_Typ
, Loc
, Freeze_Nodes
);
3614 if Present
(Typ
) then
3615 Freeze_And_Append
(Typ
, Loc
, Freeze_Nodes
);
3618 if Present
(Nam
) then
3619 Freeze_And_Append
(Nam
, Loc
, Freeze_Nodes
);
3622 if Is_Non_Empty_List
(Freeze_Nodes
) then
3623 if No
(Scope_Stack
.Table
3624 (Scope_Stack
.Last
).Pending_Freeze_Actions
)
3627 (Scope_Stack
.Last
).Pending_Freeze_Actions
:=
3630 Append_List
(Freeze_Nodes
, Scope_Stack
.Table
3631 (Scope_Stack
.Last
).Pending_Freeze_Actions
);
3639 -- Now we have the right place to do the freezing. First, a special
3640 -- adjustment, if we are in default expression analysis mode, these
3641 -- freeze actions must not be thrown away (normally all inserted
3642 -- actions are thrown away in this mode. However, the freeze actions
3643 -- are from static expressions and one of the important reasons we
3644 -- are doing this special analysis is to get these freeze actions.
3645 -- Therefore we turn off the In_Default_Expression mode to propagate
3646 -- these freeze actions. This also means they get properly analyzed
3649 In_Default_Expression
:= False;
3651 -- Freeze the designated type of an allocator (RM 13.14(13))
3653 if Present
(Desig_Typ
) then
3654 Freeze_Before
(P
, Desig_Typ
);
3657 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
3658 -- the enumeration representation clause exception in the loop above.
3660 if Present
(Typ
) then
3661 Freeze_Before
(P
, Typ
);
3664 -- Freeze name if one is present (RM 13.14(11))
3666 if Present
(Nam
) then
3667 Freeze_Before
(P
, Nam
);
3670 In_Default_Expression
:= In_Def_Exp
;
3671 end Freeze_Expression
;
3673 -----------------------------
3674 -- Freeze_Fixed_Point_Type --
3675 -----------------------------
3677 -- Certain fixed-point types and subtypes, including implicit base
3678 -- types and declared first subtypes, have not yet set up a range.
3679 -- This is because the range cannot be set until the Small and Size
3680 -- values are known, and these are not known till the type is frozen.
3682 -- To signal this case, Scalar_Range contains an unanalyzed syntactic
3683 -- range whose bounds are unanalyzed real literals. This routine will
3684 -- recognize this case, and transform this range node into a properly
3685 -- typed range with properly analyzed and resolved values.
3687 procedure Freeze_Fixed_Point_Type
(Typ
: Entity_Id
) is
3688 Rng
: constant Node_Id
:= Scalar_Range
(Typ
);
3689 Lo
: constant Node_Id
:= Low_Bound
(Rng
);
3690 Hi
: constant Node_Id
:= High_Bound
(Rng
);
3691 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
3692 Brng
: constant Node_Id
:= Scalar_Range
(Btyp
);
3693 BLo
: constant Node_Id
:= Low_Bound
(Brng
);
3694 BHi
: constant Node_Id
:= High_Bound
(Brng
);
3695 Small
: constant Ureal
:= Small_Value
(Typ
);
3702 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
;
3703 -- Returns size of type with given bounds. Also leaves these
3704 -- bounds set as the current bounds of the Typ.
3710 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
is
3712 Set_Realval
(Lo
, Lov
);
3713 Set_Realval
(Hi
, Hiv
);
3714 return Minimum_Size
(Typ
);
3717 -- Start of processing for Freeze_Fixed_Point_Type
3720 -- If Esize of a subtype has not previously been set, set it now
3722 if Unknown_Esize
(Typ
) then
3723 Atype
:= Ancestor_Subtype
(Typ
);
3725 if Present
(Atype
) then
3726 Set_Esize
(Typ
, Esize
(Atype
));
3728 Set_Esize
(Typ
, Esize
(Base_Type
(Typ
)));
3732 -- Immediate return if the range is already analyzed. This means
3733 -- that the range is already set, and does not need to be computed
3736 if Analyzed
(Rng
) then
3740 -- Immediate return if either of the bounds raises Constraint_Error
3742 if Raises_Constraint_Error
(Lo
)
3743 or else Raises_Constraint_Error
(Hi
)
3748 Loval
:= Realval
(Lo
);
3749 Hival
:= Realval
(Hi
);
3751 -- Ordinary fixed-point case
3753 if Is_Ordinary_Fixed_Point_Type
(Typ
) then
3755 -- For the ordinary fixed-point case, we are allowed to fudge the
3756 -- end-points up or down by small. Generally we prefer to fudge
3757 -- up, i.e. widen the bounds for non-model numbers so that the
3758 -- end points are included. However there are cases in which this
3759 -- cannot be done, and indeed cases in which we may need to narrow
3760 -- the bounds. The following circuit makes the decision.
3762 -- Note: our terminology here is that Incl_EP means that the
3763 -- bounds are widened by Small if necessary to include the end
3764 -- points, and Excl_EP means that the bounds are narrowed by
3765 -- Small to exclude the end-points if this reduces the size.
3767 -- Note that in the Incl case, all we care about is including the
3768 -- end-points. In the Excl case, we want to narrow the bounds as
3769 -- much as permitted by the RM, to give the smallest possible size.
3772 Loval_Incl_EP
: Ureal
;
3773 Hival_Incl_EP
: Ureal
;
3775 Loval_Excl_EP
: Ureal
;
3776 Hival_Excl_EP
: Ureal
;
3782 First_Subt
: Entity_Id
;
3787 -- First step. Base types are required to be symmetrical. Right
3788 -- now, the base type range is a copy of the first subtype range.
3789 -- This will be corrected before we are done, but right away we
3790 -- need to deal with the case where both bounds are non-negative.
3791 -- In this case, we set the low bound to the negative of the high
3792 -- bound, to make sure that the size is computed to include the
3793 -- required sign. Note that we do not need to worry about the
3794 -- case of both bounds negative, because the sign will be dealt
3795 -- with anyway. Furthermore we can't just go making such a bound
3796 -- symmetrical, since in a twos-complement system, there is an
3797 -- extra negative value which could not be accomodated on the
3801 and then not UR_Is_Negative
(Loval
)
3802 and then Hival
> Loval
3805 Set_Realval
(Lo
, Loval
);
3808 -- Compute the fudged bounds. If the number is a model number,
3809 -- then we do nothing to include it, but we are allowed to
3810 -- backoff to the next adjacent model number when we exclude
3811 -- it. If it is not a model number then we straddle the two
3812 -- values with the model numbers on either side.
3814 Model_Num
:= UR_Trunc
(Loval
/ Small
) * Small
;
3816 if Loval
= Model_Num
then
3817 Loval_Incl_EP
:= Model_Num
;
3819 Loval_Incl_EP
:= Model_Num
- Small
;
3822 -- The low value excluding the end point is Small greater, but
3823 -- we do not do this exclusion if the low value is positive,
3824 -- since it can't help the size and could actually hurt by
3825 -- crossing the high bound.
3827 if UR_Is_Negative
(Loval_Incl_EP
) then
3828 Loval_Excl_EP
:= Loval_Incl_EP
+ Small
;
3830 Loval_Excl_EP
:= Loval_Incl_EP
;
3833 -- Similar processing for upper bound and high value
3835 Model_Num
:= UR_Trunc
(Hival
/ Small
) * Small
;
3837 if Hival
= Model_Num
then
3838 Hival_Incl_EP
:= Model_Num
;
3840 Hival_Incl_EP
:= Model_Num
+ Small
;
3843 if UR_Is_Positive
(Hival_Incl_EP
) then
3844 Hival_Excl_EP
:= Hival_Incl_EP
- Small
;
3846 Hival_Excl_EP
:= Hival_Incl_EP
;
3849 -- One further adjustment is needed. In the case of subtypes,
3850 -- we cannot go outside the range of the base type, or we get
3851 -- peculiarities, and the base type range is already set. This
3852 -- only applies to the Incl values, since clearly the Excl
3853 -- values are already as restricted as they are allowed to be.
3856 Loval_Incl_EP
:= UR_Max
(Loval_Incl_EP
, Realval
(BLo
));
3857 Hival_Incl_EP
:= UR_Min
(Hival_Incl_EP
, Realval
(BHi
));
3860 -- Get size including and excluding end points
3862 Size_Incl_EP
:= Fsize
(Loval_Incl_EP
, Hival_Incl_EP
);
3863 Size_Excl_EP
:= Fsize
(Loval_Excl_EP
, Hival_Excl_EP
);
3865 -- No need to exclude end-points if it does not reduce size
3867 if Fsize
(Loval_Incl_EP
, Hival_Excl_EP
) = Size_Excl_EP
then
3868 Loval_Excl_EP
:= Loval_Incl_EP
;
3871 if Fsize
(Loval_Excl_EP
, Hival_Incl_EP
) = Size_Excl_EP
then
3872 Hival_Excl_EP
:= Hival_Incl_EP
;
3875 -- Now we set the actual size to be used. We want to use the
3876 -- bounds fudged up to include the end-points but only if this
3877 -- can be done without violating a specifically given size
3878 -- size clause or causing an unacceptable increase in size.
3880 -- Case of size clause given
3882 if Has_Size_Clause
(Typ
) then
3884 -- Use the inclusive size only if it is consistent with
3885 -- the explicitly specified size.
3887 if Size_Incl_EP
<= RM_Size
(Typ
) then
3888 Actual_Lo
:= Loval_Incl_EP
;
3889 Actual_Hi
:= Hival_Incl_EP
;
3890 Actual_Size
:= Size_Incl_EP
;
3892 -- If the inclusive size is too large, we try excluding
3893 -- the end-points (will be caught later if does not work).
3896 Actual_Lo
:= Loval_Excl_EP
;
3897 Actual_Hi
:= Hival_Excl_EP
;
3898 Actual_Size
:= Size_Excl_EP
;
3901 -- Case of size clause not given
3904 -- If we have a base type whose corresponding first subtype
3905 -- has an explicit size that is large enough to include our
3906 -- end-points, then do so. There is no point in working hard
3907 -- to get a base type whose size is smaller than the specified
3908 -- size of the first subtype.
3910 First_Subt
:= First_Subtype
(Typ
);
3912 if Has_Size_Clause
(First_Subt
)
3913 and then Size_Incl_EP
<= Esize
(First_Subt
)
3915 Actual_Size
:= Size_Incl_EP
;
3916 Actual_Lo
:= Loval_Incl_EP
;
3917 Actual_Hi
:= Hival_Incl_EP
;
3919 -- If excluding the end-points makes the size smaller and
3920 -- results in a size of 8,16,32,64, then we take the smaller
3921 -- size. For the 64 case, this is compulsory. For the other
3922 -- cases, it seems reasonable. We like to include end points
3923 -- if we can, but not at the expense of moving to the next
3924 -- natural boundary of size.
3926 elsif Size_Incl_EP
/= Size_Excl_EP
3928 (Size_Excl_EP
= 8 or else
3929 Size_Excl_EP
= 16 or else
3930 Size_Excl_EP
= 32 or else
3933 Actual_Size
:= Size_Excl_EP
;
3934 Actual_Lo
:= Loval_Excl_EP
;
3935 Actual_Hi
:= Hival_Excl_EP
;
3937 -- Otherwise we can definitely include the end points
3940 Actual_Size
:= Size_Incl_EP
;
3941 Actual_Lo
:= Loval_Incl_EP
;
3942 Actual_Hi
:= Hival_Incl_EP
;
3945 -- One pathological case: normally we never fudge a low
3946 -- bound down, since it would seem to increase the size
3947 -- (if it has any effect), but for ranges containing a
3948 -- single value, or no values, the high bound can be
3949 -- small too large. Consider:
3951 -- type t is delta 2.0**(-14)
3952 -- range 131072.0 .. 0;
3954 -- That lower bound is *just* outside the range of 32
3955 -- bits, and does need fudging down in this case. Note
3956 -- that the bounds will always have crossed here, since
3957 -- the high bound will be fudged down if necessary, as
3960 -- type t is delta 2.0**(-14)
3961 -- range 131072.0 .. 131072.0;
3963 -- So we can detect the situation by looking for crossed
3964 -- bounds, and if the bounds are crossed, and the low
3965 -- bound is greater than zero, we will always back it
3966 -- off by small, since this is completely harmless.
3968 if Actual_Lo
> Actual_Hi
then
3969 if UR_Is_Positive
(Actual_Lo
) then
3970 Actual_Lo
:= Loval_Incl_EP
- Small
;
3971 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
3973 -- And of course, we need to do exactly the same parallel
3974 -- fudge for flat ranges in the negative region.
3976 elsif UR_Is_Negative
(Actual_Hi
) then
3977 Actual_Hi
:= Hival_Incl_EP
+ Small
;
3978 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
3983 Set_Realval
(Lo
, Actual_Lo
);
3984 Set_Realval
(Hi
, Actual_Hi
);
3987 -- For the decimal case, none of this fudging is required, since there
3988 -- are no end-point problems in the decimal case (the end-points are
3989 -- always included).
3992 Actual_Size
:= Fsize
(Loval
, Hival
);
3995 -- At this stage, the actual size has been calculated and the proper
3996 -- required bounds are stored in the low and high bounds.
3998 if Actual_Size
> 64 then
3999 Error_Msg_Uint_1
:= UI_From_Int
(Actual_Size
);
4001 ("size required (^) for type& too large, maximum is 64", Typ
);
4005 -- Check size against explicit given size
4007 if Has_Size_Clause
(Typ
) then
4008 if Actual_Size
> RM_Size
(Typ
) then
4009 Error_Msg_Uint_1
:= RM_Size
(Typ
);
4010 Error_Msg_Uint_2
:= UI_From_Int
(Actual_Size
);
4012 ("size given (^) for type& too small, minimum is ^",
4013 Size_Clause
(Typ
), Typ
);
4016 Actual_Size
:= UI_To_Int
(Esize
(Typ
));
4019 -- Increase size to next natural boundary if no size clause given
4022 if Actual_Size
<= 8 then
4024 elsif Actual_Size
<= 16 then
4026 elsif Actual_Size
<= 32 then
4032 Init_Esize
(Typ
, Actual_Size
);
4033 Adjust_Esize_For_Alignment
(Typ
);
4036 -- If we have a base type, then expand the bounds so that they
4037 -- extend to the full width of the allocated size in bits, to
4038 -- avoid junk range checks on intermediate computations.
4040 if Base_Type
(Typ
) = Typ
then
4041 Set_Realval
(Lo
, -(Small
* (Uint_2
** (Actual_Size
- 1))));
4042 Set_Realval
(Hi
, (Small
* (Uint_2
** (Actual_Size
- 1) - 1)));
4045 -- Final step is to reanalyze the bounds using the proper type
4046 -- and set the Corresponding_Integer_Value fields of the literals.
4048 Set_Etype
(Lo
, Empty
);
4049 Set_Analyzed
(Lo
, False);
4052 -- Resolve with universal fixed if the base type, and the base
4053 -- type if it is a subtype. Note we can't resolve the base type
4054 -- with itself, that would be a reference before definition.
4057 Resolve
(Lo
, Universal_Fixed
);
4062 -- Set corresponding integer value for bound
4064 Set_Corresponding_Integer_Value
4065 (Lo
, UR_To_Uint
(Realval
(Lo
) / Small
));
4067 -- Similar processing for high bound
4069 Set_Etype
(Hi
, Empty
);
4070 Set_Analyzed
(Hi
, False);
4074 Resolve
(Hi
, Universal_Fixed
);
4079 Set_Corresponding_Integer_Value
4080 (Hi
, UR_To_Uint
(Realval
(Hi
) / Small
));
4082 -- Set type of range to correspond to bounds
4084 Set_Etype
(Rng
, Etype
(Lo
));
4086 -- Set Esize to calculated size if not set already
4088 if Unknown_Esize
(Typ
) then
4089 Init_Esize
(Typ
, Actual_Size
);
4092 -- Set RM_Size if not already set. If already set, check value
4095 Minsiz
: constant Uint
:= UI_From_Int
(Minimum_Size
(Typ
));
4098 if RM_Size
(Typ
) /= Uint_0
then
4099 if RM_Size
(Typ
) < Minsiz
then
4100 Error_Msg_Uint_1
:= RM_Size
(Typ
);
4101 Error_Msg_Uint_2
:= Minsiz
;
4103 ("size given (^) for type& too small, minimum is ^",
4104 Size_Clause
(Typ
), Typ
);
4108 Set_RM_Size
(Typ
, Minsiz
);
4111 end Freeze_Fixed_Point_Type
;
4117 procedure Freeze_Itype
(T
: Entity_Id
; N
: Node_Id
) is
4121 Set_Has_Delayed_Freeze
(T
);
4122 L
:= Freeze_Entity
(T
, Sloc
(N
));
4124 if Is_Non_Empty_List
(L
) then
4125 Insert_Actions
(N
, L
);
4129 --------------------------
4130 -- Freeze_Static_Object --
4131 --------------------------
4133 procedure Freeze_Static_Object
(E
: Entity_Id
) is
4135 Cannot_Be_Static
: exception;
4136 -- Exception raised if the type of a static object cannot be made
4137 -- static. This happens if the type depends on non-global objects.
4139 procedure Ensure_Expression_Is_SA
(N
: Node_Id
);
4140 -- Called to ensure that an expression used as part of a type
4141 -- definition is statically allocatable, which means that the type
4142 -- of the expression is statically allocatable, and the expression
4143 -- is either static, or a reference to a library level constant.
4145 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
);
4146 -- Called to mark a type as static, checking that it is possible
4147 -- to set the type as static. If it is not possible, then the
4148 -- exception Cannot_Be_Static is raised.
4150 -----------------------------
4151 -- Ensure_Expression_Is_SA --
4152 -----------------------------
4154 procedure Ensure_Expression_Is_SA
(N
: Node_Id
) is
4158 Ensure_Type_Is_SA
(Etype
(N
));
4160 if Is_Static_Expression
(N
) then
4163 elsif Nkind
(N
) = N_Identifier
then
4167 and then Ekind
(Ent
) = E_Constant
4168 and then Is_Library_Level_Entity
(Ent
)
4174 raise Cannot_Be_Static
;
4175 end Ensure_Expression_Is_SA
;
4177 -----------------------
4178 -- Ensure_Type_Is_SA --
4179 -----------------------
4181 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
) is
4186 -- If type is library level, we are all set
4188 if Is_Library_Level_Entity
(Typ
) then
4192 -- We are also OK if the type is already marked as statically
4193 -- allocated, which means we processed it before.
4195 if Is_Statically_Allocated
(Typ
) then
4199 -- Mark type as statically allocated
4201 Set_Is_Statically_Allocated
(Typ
);
4203 -- Check that it is safe to statically allocate this type
4205 if Is_Scalar_Type
(Typ
) or else Is_Real_Type
(Typ
) then
4206 Ensure_Expression_Is_SA
(Type_Low_Bound
(Typ
));
4207 Ensure_Expression_Is_SA
(Type_High_Bound
(Typ
));
4209 elsif Is_Array_Type
(Typ
) then
4210 N
:= First_Index
(Typ
);
4211 while Present
(N
) loop
4212 Ensure_Type_Is_SA
(Etype
(N
));
4216 Ensure_Type_Is_SA
(Component_Type
(Typ
));
4218 elsif Is_Access_Type
(Typ
) then
4219 if Ekind
(Designated_Type
(Typ
)) = E_Subprogram_Type
then
4223 T
: constant Entity_Id
:= Etype
(Designated_Type
(Typ
));
4226 if T
/= Standard_Void_Type
then
4227 Ensure_Type_Is_SA
(T
);
4230 F
:= First_Formal
(Designated_Type
(Typ
));
4232 while Present
(F
) loop
4233 Ensure_Type_Is_SA
(Etype
(F
));
4239 Ensure_Type_Is_SA
(Designated_Type
(Typ
));
4242 elsif Is_Record_Type
(Typ
) then
4243 C
:= First_Entity
(Typ
);
4245 while Present
(C
) loop
4246 if Ekind
(C
) = E_Discriminant
4247 or else Ekind
(C
) = E_Component
4249 Ensure_Type_Is_SA
(Etype
(C
));
4251 elsif Is_Type
(C
) then
4252 Ensure_Type_Is_SA
(C
);
4258 elsif Ekind
(Typ
) = E_Subprogram_Type
then
4259 Ensure_Type_Is_SA
(Etype
(Typ
));
4261 C
:= First_Formal
(Typ
);
4262 while Present
(C
) loop
4263 Ensure_Type_Is_SA
(Etype
(C
));
4268 raise Cannot_Be_Static
;
4270 end Ensure_Type_Is_SA
;
4272 -- Start of processing for Freeze_Static_Object
4275 Ensure_Type_Is_SA
(Etype
(E
));
4277 -- Reset True_Constant flag, since something strange is going on
4278 -- with the scoping here, and our simple value tracing may not
4279 -- be sufficient for this indication to be reliable. We kill the
4280 -- Constant_Value indication for the same reason.
4282 Set_Is_True_Constant
(E
, False);
4283 Set_Current_Value
(E
, Empty
);
4286 when Cannot_Be_Static
=>
4288 -- If the object that cannot be static is imported or exported,
4289 -- then we give an error message saying that this object cannot
4290 -- be imported or exported.
4292 if Is_Imported
(E
) then
4294 ("& cannot be imported (local type is not constant)", E
);
4296 -- Otherwise must be exported, something is wrong if compiler
4297 -- is marking something as statically allocated which cannot be).
4299 else pragma Assert
(Is_Exported
(E
));
4301 ("& cannot be exported (local type is not constant)", E
);
4303 end Freeze_Static_Object
;
4305 -----------------------
4306 -- Freeze_Subprogram --
4307 -----------------------
4309 procedure Freeze_Subprogram
(E
: Entity_Id
) is
4314 -- Subprogram may not have an address clause unless it is imported
4316 if Present
(Address_Clause
(E
)) then
4317 if not Is_Imported
(E
) then
4319 ("address clause can only be given " &
4320 "for imported subprogram",
4321 Name
(Address_Clause
(E
)));
4325 -- Reset the Pure indication on an imported subprogram unless an
4326 -- explicit Pure_Function pragma was present. We do this because
4327 -- otherwise it is an insidious error to call a non-pure function
4328 -- from a pure unit and have calls mysteriously optimized away.
4329 -- What happens here is that the Import can bypass the normal
4330 -- check to ensure that pure units call only pure subprograms.
4333 and then Is_Pure
(E
)
4334 and then not Has_Pragma_Pure_Function
(E
)
4336 Set_Is_Pure
(E
, False);
4339 -- For non-foreign convention subprograms, this is where we create
4340 -- the extra formals (for accessibility level and constrained bit
4341 -- information). We delay this till the freeze point precisely so
4342 -- that we know the convention!
4344 if not Has_Foreign_Convention
(E
) then
4345 Create_Extra_Formals
(E
);
4348 -- If this is convention Ada and a Valued_Procedure, that's odd
4350 if Ekind
(E
) = E_Procedure
4351 and then Is_Valued_Procedure
(E
)
4352 and then Convention
(E
) = Convention_Ada
4353 and then Warn_On_Export_Import
4356 ("?Valued_Procedure has no effect for convention Ada", E
);
4357 Set_Is_Valued_Procedure
(E
, False);
4360 -- Case of foreign convention
4365 -- For foreign conventions, warn about return of an
4366 -- unconstrained array.
4368 -- Note: we *do* allow a return by descriptor for the VMS case,
4369 -- though here there is probably more to be done ???
4371 if Ekind
(E
) = E_Function
then
4372 Retype
:= Underlying_Type
(Etype
(E
));
4374 -- If no return type, probably some other error, e.g. a
4375 -- missing full declaration, so ignore.
4380 -- If the return type is generic, we have emitted a warning
4381 -- earlier on, and there is nothing else to check here.
4382 -- Specific instantiations may lead to erroneous behavior.
4384 elsif Is_Generic_Type
(Etype
(E
)) then
4387 elsif Is_Array_Type
(Retype
)
4388 and then not Is_Constrained
(Retype
)
4389 and then Mechanism
(E
) not in Descriptor_Codes
4390 and then Warn_On_Export_Import
4393 ("?foreign convention function& should not return " &
4394 "unconstrained array", E
);
4399 -- If any of the formals for an exported foreign convention
4400 -- subprogram have defaults, then emit an appropriate warning
4401 -- since this is odd (default cannot be used from non-Ada code)
4403 if Is_Exported
(E
) then
4404 F
:= First_Formal
(E
);
4405 while Present
(F
) loop
4406 if Warn_On_Export_Import
4407 and then Present
(Default_Value
(F
))
4410 ("?parameter cannot be defaulted in non-Ada call",
4419 -- For VMS, descriptor mechanisms for parameters are allowed only
4420 -- for imported subprograms.
4422 if OpenVMS_On_Target
then
4423 if not Is_Imported
(E
) then
4424 F
:= First_Formal
(E
);
4425 while Present
(F
) loop
4426 if Mechanism
(F
) in Descriptor_Codes
then
4428 ("descriptor mechanism for parameter not permitted", F
);
4430 ("\can only be used for imported subprogram", F
);
4437 end Freeze_Subprogram
;
4439 ----------------------
4440 -- Is_Fully_Defined --
4441 ----------------------
4443 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean is
4445 if Ekind
(T
) = E_Class_Wide_Type
then
4446 return Is_Fully_Defined
(Etype
(T
));
4448 elsif Is_Array_Type
(T
) then
4449 return Is_Fully_Defined
(Component_Type
(T
));
4451 elsif Is_Record_Type
(T
)
4452 and not Is_Private_Type
(T
)
4454 -- Verify that the record type has no components with
4455 -- private types without completion.
4461 Comp
:= First_Component
(T
);
4463 while Present
(Comp
) loop
4464 if not Is_Fully_Defined
(Etype
(Comp
)) then
4468 Next_Component
(Comp
);
4473 else return not Is_Private_Type
(T
)
4474 or else Present
(Full_View
(Base_Type
(T
)));
4476 end Is_Fully_Defined
;
4478 ---------------------------------
4479 -- Process_Default_Expressions --
4480 ---------------------------------
4482 procedure Process_Default_Expressions
4484 After
: in out Node_Id
)
4486 Loc
: constant Source_Ptr
:= Sloc
(E
);
4493 Set_Default_Expressions_Processed
(E
);
4495 -- A subprogram instance and its associated anonymous subprogram
4496 -- share their signature. The default expression functions are defined
4497 -- in the wrapper packages for the anonymous subprogram, and should
4498 -- not be generated again for the instance.
4500 if Is_Generic_Instance
(E
)
4501 and then Present
(Alias
(E
))
4502 and then Default_Expressions_Processed
(Alias
(E
))
4507 Formal
:= First_Formal
(E
);
4509 while Present
(Formal
) loop
4510 if Present
(Default_Value
(Formal
)) then
4512 -- We work with a copy of the default expression because we
4513 -- do not want to disturb the original, since this would mess
4514 -- up the conformance checking.
4516 Dcopy
:= New_Copy_Tree
(Default_Value
(Formal
));
4518 -- The analysis of the expression may generate insert actions,
4519 -- which of course must not be executed. We wrap those actions
4520 -- in a procedure that is not called, and later on eliminated.
4521 -- The following cases have no side-effects, and are analyzed
4524 if Nkind
(Dcopy
) = N_Identifier
4525 or else Nkind
(Dcopy
) = N_Expanded_Name
4526 or else Nkind
(Dcopy
) = N_Integer_Literal
4527 or else (Nkind
(Dcopy
) = N_Real_Literal
4528 and then not Vax_Float
(Etype
(Dcopy
)))
4529 or else Nkind
(Dcopy
) = N_Character_Literal
4530 or else Nkind
(Dcopy
) = N_String_Literal
4531 or else Nkind
(Dcopy
) = N_Null
4532 or else (Nkind
(Dcopy
) = N_Attribute_Reference
4534 Attribute_Name
(Dcopy
) = Name_Null_Parameter
)
4537 -- If there is no default function, we must still do a full
4538 -- analyze call on the default value, to ensure that all
4539 -- error checks are performed, e.g. those associated with
4540 -- static evaluation. Note that this branch will always be
4541 -- taken if the analyzer is turned off (but we still need the
4544 -- Note: the setting of parent here is to meet the requirement
4545 -- that we can only analyze the expression while attached to
4546 -- the tree. Really the requirement is that the parent chain
4547 -- be set, we don't actually need to be in the tree.
4549 Set_Parent
(Dcopy
, Declaration_Node
(Formal
));
4552 -- Default expressions are resolved with their own type if the
4553 -- context is generic, to avoid anomalies with private types.
4555 if Ekind
(Scope
(E
)) = E_Generic_Package
then
4558 Resolve
(Dcopy
, Etype
(Formal
));
4561 -- If that resolved expression will raise constraint error,
4562 -- then flag the default value as raising constraint error.
4563 -- This allows a proper error message on the calls.
4565 if Raises_Constraint_Error
(Dcopy
) then
4566 Set_Raises_Constraint_Error
(Default_Value
(Formal
));
4569 -- If the default is a parameterless call, we use the name of
4570 -- the called function directly, and there is no body to build.
4572 elsif Nkind
(Dcopy
) = N_Function_Call
4573 and then No
(Parameter_Associations
(Dcopy
))
4577 -- Else construct and analyze the body of a wrapper procedure
4578 -- that contains an object declaration to hold the expression.
4579 -- Given that this is done only to complete the analysis, it
4580 -- simpler to build a procedure than a function which might
4581 -- involve secondary stack expansion.
4585 Make_Defining_Identifier
(Loc
, New_Internal_Name
('D'));
4588 Make_Subprogram_Body
(Loc
,
4590 Make_Procedure_Specification
(Loc
,
4591 Defining_Unit_Name
=> Dnam
),
4593 Declarations
=> New_List
(
4594 Make_Object_Declaration
(Loc
,
4595 Defining_Identifier
=>
4596 Make_Defining_Identifier
(Loc
,
4597 New_Internal_Name
('T')),
4598 Object_Definition
=>
4599 New_Occurrence_Of
(Etype
(Formal
), Loc
),
4600 Expression
=> New_Copy_Tree
(Dcopy
))),
4602 Handled_Statement_Sequence
=>
4603 Make_Handled_Sequence_Of_Statements
(Loc
,
4604 Statements
=> New_List
));
4606 Set_Scope
(Dnam
, Scope
(E
));
4607 Set_Assignment_OK
(First
(Declarations
(Dbody
)));
4608 Set_Is_Eliminated
(Dnam
);
4609 Insert_After
(After
, Dbody
);
4615 Next_Formal
(Formal
);
4618 end Process_Default_Expressions
;
4620 ----------------------------------------
4621 -- Set_Component_Alignment_If_Not_Set --
4622 ----------------------------------------
4624 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
) is
4626 -- Ignore if not base type, subtypes don't need anything
4628 if Typ
/= Base_Type
(Typ
) then
4632 -- Do not override existing representation
4634 if Is_Packed
(Typ
) then
4637 elsif Has_Specified_Layout
(Typ
) then
4640 elsif Component_Alignment
(Typ
) /= Calign_Default
then
4644 Set_Component_Alignment
4645 (Typ
, Scope_Stack
.Table
4646 (Scope_Stack
.Last
).Component_Alignment_Default
);
4648 end Set_Component_Alignment_If_Not_Set
;
4650 ---------------------------
4651 -- Set_Debug_Info_Needed --
4652 ---------------------------
4654 procedure Set_Debug_Info_Needed
(T
: Entity_Id
) is
4657 or else Needs_Debug_Info
(T
)
4658 or else Debug_Info_Off
(T
)
4662 Set_Needs_Debug_Info
(T
);
4665 if Is_Object
(T
) then
4666 Set_Debug_Info_Needed
(Etype
(T
));
4668 elsif Is_Type
(T
) then
4669 Set_Debug_Info_Needed
(Etype
(T
));
4671 if Is_Record_Type
(T
) then
4673 Ent
: Entity_Id
:= First_Entity
(T
);
4675 while Present
(Ent
) loop
4676 Set_Debug_Info_Needed
(Ent
);
4681 elsif Is_Array_Type
(T
) then
4682 Set_Debug_Info_Needed
(Component_Type
(T
));
4685 Indx
: Node_Id
:= First_Index
(T
);
4687 while Present
(Indx
) loop
4688 Set_Debug_Info_Needed
(Etype
(Indx
));
4689 Indx
:= Next_Index
(Indx
);
4693 if Is_Packed
(T
) then
4694 Set_Debug_Info_Needed
(Packed_Array_Type
(T
));
4697 elsif Is_Access_Type
(T
) then
4698 Set_Debug_Info_Needed
(Directly_Designated_Type
(T
));
4700 elsif Is_Private_Type
(T
) then
4701 Set_Debug_Info_Needed
(Full_View
(T
));
4703 elsif Is_Protected_Type
(T
) then
4704 Set_Debug_Info_Needed
(Corresponding_Record_Type
(T
));
4707 end Set_Debug_Info_Needed
;
4713 procedure Warn_Overlay
4718 Ent
: constant Entity_Id
:= Entity
(Nam
);
4719 -- The object to which the address clause applies.
4722 Old
: Entity_Id
:= Empty
;
4726 -- No warning if address clause overlay warnings are off
4728 if not Address_Clause_Overlay_Warnings
then
4732 -- No warning if there is an explicit initialization
4734 Init
:= Original_Node
(Expression
(Declaration_Node
(Ent
)));
4736 if Present
(Init
) and then Comes_From_Source
(Init
) then
4740 -- We only give the warning for non-imported entities of a type
4741 -- for which a non-null base init proc is defined (or for access
4742 -- types which have implicit null initialization).
4745 and then (Has_Non_Null_Base_Init_Proc
(Typ
)
4746 or else Is_Access_Type
(Typ
))
4747 and then not Is_Imported
(Ent
)
4749 if Nkind
(Expr
) = N_Attribute_Reference
4750 and then Is_Entity_Name
(Prefix
(Expr
))
4752 Old
:= Entity
(Prefix
(Expr
));
4754 elsif Is_Entity_Name
(Expr
)
4755 and then Ekind
(Entity
(Expr
)) = E_Constant
4757 Decl
:= Declaration_Node
(Entity
(Expr
));
4759 if Nkind
(Decl
) = N_Object_Declaration
4760 and then Present
(Expression
(Decl
))
4761 and then Nkind
(Expression
(Decl
)) = N_Attribute_Reference
4762 and then Is_Entity_Name
(Prefix
(Expression
(Decl
)))
4764 Old
:= Entity
(Prefix
(Expression
(Decl
)));
4766 elsif Nkind
(Expr
) = N_Function_Call
then
4770 -- A function call (most likely to To_Address) is probably not
4771 -- an overlay, so skip warning. Ditto if the function call was
4772 -- inlined and transformed into an entity.
4774 elsif Nkind
(Original_Node
(Expr
)) = N_Function_Call
then
4778 Decl
:= Next
(Parent
(Expr
));
4780 -- If a pragma Import follows, we assume that it is for the current
4781 -- target of the address clause, and skip the warning.
4784 and then Nkind
(Decl
) = N_Pragma
4785 and then Chars
(Decl
) = Name_Import
4790 if Present
(Old
) then
4791 Error_Msg_Node_2
:= Old
;
4793 ("default initialization of & may modify &?",
4797 ("default initialization of & may modify overlaid storage?",
4801 -- Add friendly warning if initialization comes from a packed array
4804 if Is_Record_Type
(Typ
) then
4809 Comp
:= First_Component
(Typ
);
4811 while Present
(Comp
) loop
4812 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
4813 and then Present
(Expression
(Parent
(Comp
)))
4816 elsif Is_Array_Type
(Etype
(Comp
))
4817 and then Present
(Packed_Array_Type
(Etype
(Comp
)))
4820 ("packed array component& will be initialized to zero?",
4824 Next_Component
(Comp
);
4831 ("use pragma Import for & to " &
4832 "suppress initialization ('R'M B.1(24))?",