2012-02-25 Catherine Moore <clm@codesourcery.com>
[official-gcc.git] / gcc / ada / checks.adb
blob7afabd1c2c68e0b3f4f94b5474e43299ac600e69
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Exp_Ch2; use Exp_Ch2;
31 with Exp_Ch4; use Exp_Ch4;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Pakd; use Exp_Pakd;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Elists; use Elists;
37 with Expander; use Expander;
38 with Eval_Fat; use Eval_Fat;
39 with Freeze; use Freeze;
40 with Lib; use Lib;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Output; use Output;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Eval; use Sem_Eval;
51 with Sem_Ch3; use Sem_Ch3;
52 with Sem_Ch8; use Sem_Ch8;
53 with Sem_Res; use Sem_Res;
54 with Sem_Util; use Sem_Util;
55 with Sem_Warn; use Sem_Warn;
56 with Sinfo; use Sinfo;
57 with Sinput; use Sinput;
58 with Snames; use Snames;
59 with Sprint; use Sprint;
60 with Stand; use Stand;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Ttypes; use Ttypes;
64 with Urealp; use Urealp;
65 with Validsw; use Validsw;
67 package body Checks is
69 -- General note: many of these routines are concerned with generating
70 -- checking code to make sure that constraint error is raised at runtime.
71 -- Clearly this code is only needed if the expander is active, since
72 -- otherwise we will not be generating code or going into the runtime
73 -- execution anyway.
75 -- We therefore disconnect most of these checks if the expander is
76 -- inactive. This has the additional benefit that we do not need to
77 -- worry about the tree being messed up by previous errors (since errors
78 -- turn off expansion anyway).
80 -- There are a few exceptions to the above rule. For instance routines
81 -- such as Apply_Scalar_Range_Check that do not insert any code can be
82 -- safely called even when the Expander is inactive (but Errors_Detected
83 -- is 0). The benefit of executing this code when expansion is off, is
84 -- the ability to emit constraint error warning for static expressions
85 -- even when we are not generating code.
87 -------------------------------------
88 -- Suppression of Redundant Checks --
89 -------------------------------------
91 -- This unit implements a limited circuit for removal of redundant
92 -- checks. The processing is based on a tracing of simple sequential
93 -- flow. For any sequence of statements, we save expressions that are
94 -- marked to be checked, and then if the same expression appears later
95 -- with the same check, then under certain circumstances, the second
96 -- check can be suppressed.
98 -- Basically, we can suppress the check if we know for certain that
99 -- the previous expression has been elaborated (together with its
100 -- check), and we know that the exception frame is the same, and that
101 -- nothing has happened to change the result of the exception.
103 -- Let us examine each of these three conditions in turn to describe
104 -- how we ensure that this condition is met.
106 -- First, we need to know for certain that the previous expression has
107 -- been executed. This is done principally by the mechanism of calling
108 -- Conditional_Statements_Begin at the start of any statement sequence
109 -- and Conditional_Statements_End at the end. The End call causes all
110 -- checks remembered since the Begin call to be discarded. This does
111 -- miss a few cases, notably the case of a nested BEGIN-END block with
112 -- no exception handlers. But the important thing is to be conservative.
113 -- The other protection is that all checks are discarded if a label
114 -- is encountered, since then the assumption of sequential execution
115 -- is violated, and we don't know enough about the flow.
117 -- Second, we need to know that the exception frame is the same. We
118 -- do this by killing all remembered checks when we enter a new frame.
119 -- Again, that's over-conservative, but generally the cases we can help
120 -- with are pretty local anyway (like the body of a loop for example).
122 -- Third, we must be sure to forget any checks which are no longer valid.
123 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
124 -- used to note any changes to local variables. We only attempt to deal
125 -- with checks involving local variables, so we do not need to worry
126 -- about global variables. Second, a call to any non-global procedure
127 -- causes us to abandon all stored checks, since such a all may affect
128 -- the values of any local variables.
130 -- The following define the data structures used to deal with remembering
131 -- checks so that redundant checks can be eliminated as described above.
133 -- Right now, the only expressions that we deal with are of the form of
134 -- simple local objects (either declared locally, or IN parameters) or
135 -- such objects plus/minus a compile time known constant. We can do
136 -- more later on if it seems worthwhile, but this catches many simple
137 -- cases in practice.
139 -- The following record type reflects a single saved check. An entry
140 -- is made in the stack of saved checks if and only if the expression
141 -- has been elaborated with the indicated checks.
143 type Saved_Check is record
144 Killed : Boolean;
145 -- Set True if entry is killed by Kill_Checks
147 Entity : Entity_Id;
148 -- The entity involved in the expression that is checked
150 Offset : Uint;
151 -- A compile time value indicating the result of adding or
152 -- subtracting a compile time value. This value is to be
153 -- added to the value of the Entity. A value of zero is
154 -- used for the case of a simple entity reference.
156 Check_Type : Character;
157 -- This is set to 'R' for a range check (in which case Target_Type
158 -- is set to the target type for the range check) or to 'O' for an
159 -- overflow check (in which case Target_Type is set to Empty).
161 Target_Type : Entity_Id;
162 -- Used only if Do_Range_Check is set. Records the target type for
163 -- the check. We need this, because a check is a duplicate only if
164 -- it has the same target type (or more accurately one with a
165 -- range that is smaller or equal to the stored target type of a
166 -- saved check).
167 end record;
169 -- The following table keeps track of saved checks. Rather than use an
170 -- extensible table. We just use a table of fixed size, and we discard
171 -- any saved checks that do not fit. That's very unlikely to happen and
172 -- this is only an optimization in any case.
174 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
175 -- Array of saved checks
177 Num_Saved_Checks : Nat := 0;
178 -- Number of saved checks
180 -- The following stack keeps track of statement ranges. It is treated
181 -- as a stack. When Conditional_Statements_Begin is called, an entry
182 -- is pushed onto this stack containing the value of Num_Saved_Checks
183 -- at the time of the call. Then when Conditional_Statements_End is
184 -- called, this value is popped off and used to reset Num_Saved_Checks.
186 -- Note: again, this is a fixed length stack with a size that should
187 -- always be fine. If the value of the stack pointer goes above the
188 -- limit, then we just forget all saved checks.
190 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
191 Saved_Checks_TOS : Nat := 0;
193 -----------------------
194 -- Local Subprograms --
195 -----------------------
197 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
198 -- Used to apply arithmetic overflow checks for all cases except operators
199 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
200 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
201 -- signed integer arithmetic operator (but not an if or case expression).
202 -- It is also called for types other than signed integers.
204 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
205 -- Used to apply arithmetic overflow checks for the case where the overflow
206 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
207 -- arithmetic op (which includes the case of if and case expressions). Note
208 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
209 -- we have work to do even if overflow checking is suppressed.
211 procedure Apply_Division_Check
212 (N : Node_Id;
213 Rlo : Uint;
214 Rhi : Uint;
215 ROK : Boolean);
216 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
217 -- division checks as required if the Do_Division_Check flag is set.
218 -- Rlo and Rhi give the possible range of the right operand, these values
219 -- can be referenced and trusted only if ROK is set True.
221 procedure Apply_Float_Conversion_Check
222 (Ck_Node : Node_Id;
223 Target_Typ : Entity_Id);
224 -- The checks on a conversion from a floating-point type to an integer
225 -- type are delicate. They have to be performed before conversion, they
226 -- have to raise an exception when the operand is a NaN, and rounding must
227 -- be taken into account to determine the safe bounds of the operand.
229 procedure Apply_Selected_Length_Checks
230 (Ck_Node : Node_Id;
231 Target_Typ : Entity_Id;
232 Source_Typ : Entity_Id;
233 Do_Static : Boolean);
234 -- This is the subprogram that does all the work for Apply_Length_Check
235 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
236 -- described for the above routines. The Do_Static flag indicates that
237 -- only a static check is to be done.
239 procedure Apply_Selected_Range_Checks
240 (Ck_Node : Node_Id;
241 Target_Typ : Entity_Id;
242 Source_Typ : Entity_Id;
243 Do_Static : Boolean);
244 -- This is the subprogram that does all the work for Apply_Range_Check.
245 -- Expr, Target_Typ and Source_Typ are as described for the above
246 -- routine. The Do_Static flag indicates that only a static check is
247 -- to be done.
249 type Check_Type is new Check_Id range Access_Check .. Division_Check;
250 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
251 -- This function is used to see if an access or division by zero check is
252 -- needed. The check is to be applied to a single variable appearing in the
253 -- source, and N is the node for the reference. If N is not of this form,
254 -- True is returned with no further processing. If N is of the right form,
255 -- then further processing determines if the given Check is needed.
257 -- The particular circuit is to see if we have the case of a check that is
258 -- not needed because it appears in the right operand of a short circuited
259 -- conditional where the left operand guards the check. For example:
261 -- if Var = 0 or else Q / Var > 12 then
262 -- ...
263 -- end if;
265 -- In this example, the division check is not required. At the same time
266 -- we can issue warnings for suspicious use of non-short-circuited forms,
267 -- such as:
269 -- if Var = 0 or Q / Var > 12 then
270 -- ...
271 -- end if;
273 procedure Find_Check
274 (Expr : Node_Id;
275 Check_Type : Character;
276 Target_Type : Entity_Id;
277 Entry_OK : out Boolean;
278 Check_Num : out Nat;
279 Ent : out Entity_Id;
280 Ofs : out Uint);
281 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
282 -- to see if a check is of the form for optimization, and if so, to see
283 -- if it has already been performed. Expr is the expression to check,
284 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
285 -- Target_Type is the target type for a range check, and Empty for an
286 -- overflow check. If the entry is not of the form for optimization,
287 -- then Entry_OK is set to False, and the remaining out parameters
288 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
289 -- entity and offset from the expression. Check_Num is the number of
290 -- a matching saved entry in Saved_Checks, or zero if no such entry
291 -- is located.
293 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
294 -- If a discriminal is used in constraining a prival, Return reference
295 -- to the discriminal of the protected body (which renames the parameter
296 -- of the enclosing protected operation). This clumsy transformation is
297 -- needed because privals are created too late and their actual subtypes
298 -- are not available when analysing the bodies of the protected operations.
299 -- This function is called whenever the bound is an entity and the scope
300 -- indicates a protected operation. If the bound is an in-parameter of
301 -- a protected operation that is not a prival, the function returns the
302 -- bound itself.
303 -- To be cleaned up???
305 function Guard_Access
306 (Cond : Node_Id;
307 Loc : Source_Ptr;
308 Ck_Node : Node_Id) return Node_Id;
309 -- In the access type case, guard the test with a test to ensure
310 -- that the access value is non-null, since the checks do not
311 -- not apply to null access values.
313 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
314 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
315 -- Constraint_Error node.
317 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
318 -- Returns True if node N is for an arithmetic operation with signed
319 -- integer operands. This includes unary and binary operators, and also
320 -- if and case expression nodes where the dependent expressions are of
321 -- a signed integer type. These are the kinds of nodes for which special
322 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
324 function Range_Or_Validity_Checks_Suppressed
325 (Expr : Node_Id) return Boolean;
326 -- Returns True if either range or validity checks or both are suppressed
327 -- for the type of the given expression, or, if the expression is the name
328 -- of an entity, if these checks are suppressed for the entity.
330 function Selected_Length_Checks
331 (Ck_Node : Node_Id;
332 Target_Typ : Entity_Id;
333 Source_Typ : Entity_Id;
334 Warn_Node : Node_Id) return Check_Result;
335 -- Like Apply_Selected_Length_Checks, except it doesn't modify
336 -- anything, just returns a list of nodes as described in the spec of
337 -- this package for the Range_Check function.
339 function Selected_Range_Checks
340 (Ck_Node : Node_Id;
341 Target_Typ : Entity_Id;
342 Source_Typ : Entity_Id;
343 Warn_Node : Node_Id) return Check_Result;
344 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
345 -- just returns a list of nodes as described in the spec of this package
346 -- for the Range_Check function.
348 ------------------------------
349 -- Access_Checks_Suppressed --
350 ------------------------------
352 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
353 begin
354 if Present (E) and then Checks_May_Be_Suppressed (E) then
355 return Is_Check_Suppressed (E, Access_Check);
356 else
357 return Scope_Suppress.Suppress (Access_Check);
358 end if;
359 end Access_Checks_Suppressed;
361 -------------------------------------
362 -- Accessibility_Checks_Suppressed --
363 -------------------------------------
365 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
366 begin
367 if Present (E) and then Checks_May_Be_Suppressed (E) then
368 return Is_Check_Suppressed (E, Accessibility_Check);
369 else
370 return Scope_Suppress.Suppress (Accessibility_Check);
371 end if;
372 end Accessibility_Checks_Suppressed;
374 -----------------------------
375 -- Activate_Division_Check --
376 -----------------------------
378 procedure Activate_Division_Check (N : Node_Id) is
379 begin
380 Set_Do_Division_Check (N, True);
381 Possible_Local_Raise (N, Standard_Constraint_Error);
382 end Activate_Division_Check;
384 -----------------------------
385 -- Activate_Overflow_Check --
386 -----------------------------
388 procedure Activate_Overflow_Check (N : Node_Id) is
389 begin
390 if not Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
391 Set_Do_Overflow_Check (N, True);
392 Possible_Local_Raise (N, Standard_Constraint_Error);
393 end if;
394 end Activate_Overflow_Check;
396 --------------------------
397 -- Activate_Range_Check --
398 --------------------------
400 procedure Activate_Range_Check (N : Node_Id) is
401 begin
402 Set_Do_Range_Check (N, True);
403 Possible_Local_Raise (N, Standard_Constraint_Error);
404 end Activate_Range_Check;
406 ---------------------------------
407 -- Alignment_Checks_Suppressed --
408 ---------------------------------
410 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
411 begin
412 if Present (E) and then Checks_May_Be_Suppressed (E) then
413 return Is_Check_Suppressed (E, Alignment_Check);
414 else
415 return Scope_Suppress.Suppress (Alignment_Check);
416 end if;
417 end Alignment_Checks_Suppressed;
419 -------------------------
420 -- Append_Range_Checks --
421 -------------------------
423 procedure Append_Range_Checks
424 (Checks : Check_Result;
425 Stmts : List_Id;
426 Suppress_Typ : Entity_Id;
427 Static_Sloc : Source_Ptr;
428 Flag_Node : Node_Id)
430 Internal_Flag_Node : constant Node_Id := Flag_Node;
431 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
433 Checks_On : constant Boolean :=
434 (not Index_Checks_Suppressed (Suppress_Typ))
435 or else (not Range_Checks_Suppressed (Suppress_Typ));
437 begin
438 -- For now we just return if Checks_On is false, however this should
439 -- be enhanced to check for an always True value in the condition
440 -- and to generate a compilation warning???
442 if not Checks_On then
443 return;
444 end if;
446 for J in 1 .. 2 loop
447 exit when No (Checks (J));
449 if Nkind (Checks (J)) = N_Raise_Constraint_Error
450 and then Present (Condition (Checks (J)))
451 then
452 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
453 Append_To (Stmts, Checks (J));
454 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
455 end if;
457 else
458 Append_To
459 (Stmts,
460 Make_Raise_Constraint_Error (Internal_Static_Sloc,
461 Reason => CE_Range_Check_Failed));
462 end if;
463 end loop;
464 end Append_Range_Checks;
466 ------------------------
467 -- Apply_Access_Check --
468 ------------------------
470 procedure Apply_Access_Check (N : Node_Id) is
471 P : constant Node_Id := Prefix (N);
473 begin
474 -- We do not need checks if we are not generating code (i.e. the
475 -- expander is not active). This is not just an optimization, there
476 -- are cases (e.g. with pragma Debug) where generating the checks
477 -- can cause real trouble).
479 if not Full_Expander_Active then
480 return;
481 end if;
483 -- No check if short circuiting makes check unnecessary
485 if not Check_Needed (P, Access_Check) then
486 return;
487 end if;
489 -- No check if accessing the Offset_To_Top component of a dispatch
490 -- table. They are safe by construction.
492 if Tagged_Type_Expansion
493 and then Present (Etype (P))
494 and then RTU_Loaded (Ada_Tags)
495 and then RTE_Available (RE_Offset_To_Top_Ptr)
496 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
497 then
498 return;
499 end if;
501 -- Otherwise go ahead and install the check
503 Install_Null_Excluding_Check (P);
504 end Apply_Access_Check;
506 -------------------------------
507 -- Apply_Accessibility_Check --
508 -------------------------------
510 procedure Apply_Accessibility_Check
511 (N : Node_Id;
512 Typ : Entity_Id;
513 Insert_Node : Node_Id)
515 Loc : constant Source_Ptr := Sloc (N);
516 Param_Ent : Entity_Id := Param_Entity (N);
517 Param_Level : Node_Id;
518 Type_Level : Node_Id;
520 begin
521 if Ada_Version >= Ada_2012
522 and then not Present (Param_Ent)
523 and then Is_Entity_Name (N)
524 and then Ekind_In (Entity (N), E_Constant, E_Variable)
525 and then Present (Effective_Extra_Accessibility (Entity (N)))
526 then
527 Param_Ent := Entity (N);
528 while Present (Renamed_Object (Param_Ent)) loop
530 -- Renamed_Object must return an Entity_Name here
531 -- because of preceding "Present (E_E_A (...))" test.
533 Param_Ent := Entity (Renamed_Object (Param_Ent));
534 end loop;
535 end if;
537 if Inside_A_Generic then
538 return;
540 -- Only apply the run-time check if the access parameter has an
541 -- associated extra access level parameter and when the level of the
542 -- type is less deep than the level of the access parameter, and
543 -- accessibility checks are not suppressed.
545 elsif Present (Param_Ent)
546 and then Present (Extra_Accessibility (Param_Ent))
547 and then UI_Gt (Object_Access_Level (N),
548 Deepest_Type_Access_Level (Typ))
549 and then not Accessibility_Checks_Suppressed (Param_Ent)
550 and then not Accessibility_Checks_Suppressed (Typ)
551 then
552 Param_Level :=
553 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
555 Type_Level :=
556 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
558 -- Raise Program_Error if the accessibility level of the access
559 -- parameter is deeper than the level of the target access type.
561 Insert_Action (Insert_Node,
562 Make_Raise_Program_Error (Loc,
563 Condition =>
564 Make_Op_Gt (Loc,
565 Left_Opnd => Param_Level,
566 Right_Opnd => Type_Level),
567 Reason => PE_Accessibility_Check_Failed));
569 Analyze_And_Resolve (N);
570 end if;
571 end Apply_Accessibility_Check;
573 --------------------------------
574 -- Apply_Address_Clause_Check --
575 --------------------------------
577 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
578 pragma Assert (Nkind (N) = N_Freeze_Entity);
580 AC : constant Node_Id := Address_Clause (E);
581 Loc : constant Source_Ptr := Sloc (AC);
582 Typ : constant Entity_Id := Etype (E);
583 Aexp : constant Node_Id := Expression (AC);
585 Expr : Node_Id;
586 -- Address expression (not necessarily the same as Aexp, for example
587 -- when Aexp is a reference to a constant, in which case Expr gets
588 -- reset to reference the value expression of the constant.
590 procedure Compile_Time_Bad_Alignment;
591 -- Post error warnings when alignment is known to be incompatible. Note
592 -- that we do not go as far as inserting a raise of Program_Error since
593 -- this is an erroneous case, and it may happen that we are lucky and an
594 -- underaligned address turns out to be OK after all.
596 --------------------------------
597 -- Compile_Time_Bad_Alignment --
598 --------------------------------
600 procedure Compile_Time_Bad_Alignment is
601 begin
602 if Address_Clause_Overlay_Warnings then
603 Error_Msg_FE
604 ("?o?specified address for& may be inconsistent with alignment",
605 Aexp, E);
606 Error_Msg_FE
607 ("\?o?program execution may be erroneous (RM 13.3(27))",
608 Aexp, E);
609 Set_Address_Warning_Posted (AC);
610 end if;
611 end Compile_Time_Bad_Alignment;
613 -- Start of processing for Apply_Address_Clause_Check
615 begin
616 -- See if alignment check needed. Note that we never need a check if the
617 -- maximum alignment is one, since the check will always succeed.
619 -- Note: we do not check for checks suppressed here, since that check
620 -- was done in Sem_Ch13 when the address clause was processed. We are
621 -- only called if checks were not suppressed. The reason for this is
622 -- that we have to delay the call to Apply_Alignment_Check till freeze
623 -- time (so that all types etc are elaborated), but we have to check
624 -- the status of check suppressing at the point of the address clause.
626 if No (AC)
627 or else not Check_Address_Alignment (AC)
628 or else Maximum_Alignment = 1
629 then
630 return;
631 end if;
633 -- Obtain expression from address clause
635 Expr := Expression (AC);
637 -- The following loop digs for the real expression to use in the check
639 loop
640 -- For constant, get constant expression
642 if Is_Entity_Name (Expr)
643 and then Ekind (Entity (Expr)) = E_Constant
644 then
645 Expr := Constant_Value (Entity (Expr));
647 -- For unchecked conversion, get result to convert
649 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
650 Expr := Expression (Expr);
652 -- For (common case) of To_Address call, get argument
654 elsif Nkind (Expr) = N_Function_Call
655 and then Is_Entity_Name (Name (Expr))
656 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
657 then
658 Expr := First (Parameter_Associations (Expr));
660 if Nkind (Expr) = N_Parameter_Association then
661 Expr := Explicit_Actual_Parameter (Expr);
662 end if;
664 -- We finally have the real expression
666 else
667 exit;
668 end if;
669 end loop;
671 -- See if we know that Expr has a bad alignment at compile time
673 if Compile_Time_Known_Value (Expr)
674 and then (Known_Alignment (E) or else Known_Alignment (Typ))
675 then
676 declare
677 AL : Uint := Alignment (Typ);
679 begin
680 -- The object alignment might be more restrictive than the
681 -- type alignment.
683 if Known_Alignment (E) then
684 AL := Alignment (E);
685 end if;
687 if Expr_Value (Expr) mod AL /= 0 then
688 Compile_Time_Bad_Alignment;
689 else
690 return;
691 end if;
692 end;
694 -- If the expression has the form X'Address, then we can find out if
695 -- the object X has an alignment that is compatible with the object E.
696 -- If it hasn't or we don't know, we defer issuing the warning until
697 -- the end of the compilation to take into account back end annotations.
699 elsif Nkind (Expr) = N_Attribute_Reference
700 and then Attribute_Name (Expr) = Name_Address
701 and then Has_Compatible_Alignment (E, Prefix (Expr)) = Known_Compatible
702 then
703 return;
704 end if;
706 -- Here we do not know if the value is acceptable. Strictly we don't
707 -- have to do anything, since if the alignment is bad, we have an
708 -- erroneous program. However we are allowed to check for erroneous
709 -- conditions and we decide to do this by default if the check is not
710 -- suppressed.
712 -- However, don't do the check if elaboration code is unwanted
714 if Restriction_Active (No_Elaboration_Code) then
715 return;
717 -- Generate a check to raise PE if alignment may be inappropriate
719 else
720 -- If the original expression is a non-static constant, use the
721 -- name of the constant itself rather than duplicating its
722 -- defining expression, which was extracted above.
724 -- Note: Expr is empty if the address-clause is applied to in-mode
725 -- actuals (allowed by 13.1(22)).
727 if not Present (Expr)
728 or else
729 (Is_Entity_Name (Expression (AC))
730 and then Ekind (Entity (Expression (AC))) = E_Constant
731 and then Nkind (Parent (Entity (Expression (AC))))
732 = N_Object_Declaration)
733 then
734 Expr := New_Copy_Tree (Expression (AC));
735 else
736 Remove_Side_Effects (Expr);
737 end if;
739 if No (Actions (N)) then
740 Set_Actions (N, New_List);
741 end if;
743 Prepend_To (Actions (N),
744 Make_Raise_Program_Error (Loc,
745 Condition =>
746 Make_Op_Ne (Loc,
747 Left_Opnd =>
748 Make_Op_Mod (Loc,
749 Left_Opnd =>
750 Unchecked_Convert_To
751 (RTE (RE_Integer_Address), Expr),
752 Right_Opnd =>
753 Make_Attribute_Reference (Loc,
754 Prefix => New_Occurrence_Of (E, Loc),
755 Attribute_Name => Name_Alignment)),
756 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
757 Reason => PE_Misaligned_Address_Value));
758 Analyze (First (Actions (N)), Suppress => All_Checks);
759 return;
760 end if;
762 exception
763 -- If we have some missing run time component in configurable run time
764 -- mode then just skip the check (it is not required in any case).
766 when RE_Not_Available =>
767 return;
768 end Apply_Address_Clause_Check;
770 -------------------------------------
771 -- Apply_Arithmetic_Overflow_Check --
772 -------------------------------------
774 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
775 begin
776 -- Use old routine in almost all cases (the only case we are treating
777 -- specially is the case of a signed integer arithmetic op with the
778 -- overflow checking mode set to MINIMIZED or ELIMINATED).
780 if Overflow_Check_Mode = Strict
781 or else not Is_Signed_Integer_Arithmetic_Op (N)
782 then
783 Apply_Arithmetic_Overflow_Strict (N);
785 -- Otherwise use the new routine for the case of a signed integer
786 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
787 -- mode is MINIMIZED or ELIMINATED.
789 else
790 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
791 end if;
792 end Apply_Arithmetic_Overflow_Check;
794 --------------------------------------
795 -- Apply_Arithmetic_Overflow_Strict --
796 --------------------------------------
798 -- This routine is called only if the type is an integer type, and a
799 -- software arithmetic overflow check may be needed for op (add, subtract,
800 -- or multiply). This check is performed only if Software_Overflow_Checking
801 -- is enabled and Do_Overflow_Check is set. In this case we expand the
802 -- operation into a more complex sequence of tests that ensures that
803 -- overflow is properly caught.
805 -- This is used in CHECKED modes. It is identical to the code for this
806 -- cases before the big overflow earthquake, thus ensuring that in this
807 -- modes we have compatible behavior (and reliability) to what was there
808 -- before. It is also called for types other than signed integers, and if
809 -- the Do_Overflow_Check flag is off.
811 -- Note: we also call this routine if we decide in the MINIMIZED case
812 -- to give up and just generate an overflow check without any fuss.
814 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
815 Loc : constant Source_Ptr := Sloc (N);
816 Typ : constant Entity_Id := Etype (N);
817 Rtyp : constant Entity_Id := Root_Type (Typ);
819 begin
820 -- Nothing to do if Do_Overflow_Check not set or overflow checks
821 -- suppressed.
823 if not Do_Overflow_Check (N) then
824 return;
825 end if;
827 -- An interesting special case. If the arithmetic operation appears as
828 -- the operand of a type conversion:
830 -- type1 (x op y)
832 -- and all the following conditions apply:
834 -- arithmetic operation is for a signed integer type
835 -- target type type1 is a static integer subtype
836 -- range of x and y are both included in the range of type1
837 -- range of x op y is included in the range of type1
838 -- size of type1 is at least twice the result size of op
840 -- then we don't do an overflow check in any case, instead we transform
841 -- the operation so that we end up with:
843 -- type1 (type1 (x) op type1 (y))
845 -- This avoids intermediate overflow before the conversion. It is
846 -- explicitly permitted by RM 3.5.4(24):
848 -- For the execution of a predefined operation of a signed integer
849 -- type, the implementation need not raise Constraint_Error if the
850 -- result is outside the base range of the type, so long as the
851 -- correct result is produced.
853 -- It's hard to imagine that any programmer counts on the exception
854 -- being raised in this case, and in any case it's wrong coding to
855 -- have this expectation, given the RM permission. Furthermore, other
856 -- Ada compilers do allow such out of range results.
858 -- Note that we do this transformation even if overflow checking is
859 -- off, since this is precisely about giving the "right" result and
860 -- avoiding the need for an overflow check.
862 -- Note: this circuit is partially redundant with respect to the similar
863 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
864 -- with cases that do not come through here. We still need the following
865 -- processing even with the Exp_Ch4 code in place, since we want to be
866 -- sure not to generate the arithmetic overflow check in these cases
867 -- (Exp_Ch4 would have a hard time removing them once generated).
869 if Is_Signed_Integer_Type (Typ)
870 and then Nkind (Parent (N)) = N_Type_Conversion
871 then
872 Conversion_Optimization : declare
873 Target_Type : constant Entity_Id :=
874 Base_Type (Entity (Subtype_Mark (Parent (N))));
876 Llo, Lhi : Uint;
877 Rlo, Rhi : Uint;
878 LOK, ROK : Boolean;
880 Vlo : Uint;
881 Vhi : Uint;
882 VOK : Boolean;
884 Tlo : Uint;
885 Thi : Uint;
887 begin
888 if Is_Integer_Type (Target_Type)
889 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
890 then
891 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
892 Thi := Expr_Value (Type_High_Bound (Target_Type));
894 Determine_Range
895 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
896 Determine_Range
897 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
899 if (LOK and ROK)
900 and then Tlo <= Llo and then Lhi <= Thi
901 and then Tlo <= Rlo and then Rhi <= Thi
902 then
903 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
905 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
906 Rewrite (Left_Opnd (N),
907 Make_Type_Conversion (Loc,
908 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
909 Expression => Relocate_Node (Left_Opnd (N))));
911 Rewrite (Right_Opnd (N),
912 Make_Type_Conversion (Loc,
913 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
914 Expression => Relocate_Node (Right_Opnd (N))));
916 -- Rewrite the conversion operand so that the original
917 -- node is retained, in order to avoid the warning for
918 -- redundant conversions in Resolve_Type_Conversion.
920 Rewrite (N, Relocate_Node (N));
922 Set_Etype (N, Target_Type);
924 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
925 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
927 -- Given that the target type is twice the size of the
928 -- source type, overflow is now impossible, so we can
929 -- safely kill the overflow check and return.
931 Set_Do_Overflow_Check (N, False);
932 return;
933 end if;
934 end if;
935 end if;
936 end Conversion_Optimization;
937 end if;
939 -- Now see if an overflow check is required
941 declare
942 Siz : constant Int := UI_To_Int (Esize (Rtyp));
943 Dsiz : constant Int := Siz * 2;
944 Opnod : Node_Id;
945 Ctyp : Entity_Id;
946 Opnd : Node_Id;
947 Cent : RE_Id;
949 begin
950 -- Skip check if back end does overflow checks, or the overflow flag
951 -- is not set anyway, or we are not doing code expansion, or the
952 -- parent node is a type conversion whose operand is an arithmetic
953 -- operation on signed integers on which the expander can promote
954 -- later the operands to type Integer (see Expand_N_Type_Conversion).
956 -- Special case CLI target, where arithmetic overflow checks can be
957 -- performed for integer and long_integer
959 if Backend_Overflow_Checks_On_Target
960 or else not Do_Overflow_Check (N)
961 or else not Full_Expander_Active
962 or else (Present (Parent (N))
963 and then Nkind (Parent (N)) = N_Type_Conversion
964 and then Integer_Promotion_Possible (Parent (N)))
965 or else
966 (VM_Target = CLI_Target and then Siz >= Standard_Integer_Size)
967 then
968 return;
969 end if;
971 -- Otherwise, generate the full general code for front end overflow
972 -- detection, which works by doing arithmetic in a larger type:
974 -- x op y
976 -- is expanded into
978 -- Typ (Checktyp (x) op Checktyp (y));
980 -- where Typ is the type of the original expression, and Checktyp is
981 -- an integer type of sufficient length to hold the largest possible
982 -- result.
984 -- If the size of check type exceeds the size of Long_Long_Integer,
985 -- we use a different approach, expanding to:
987 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
989 -- where xxx is Add, Multiply or Subtract as appropriate
991 -- Find check type if one exists
993 if Dsiz <= Standard_Integer_Size then
994 Ctyp := Standard_Integer;
996 elsif Dsiz <= Standard_Long_Long_Integer_Size then
997 Ctyp := Standard_Long_Long_Integer;
999 -- No check type exists, use runtime call
1001 else
1002 if Nkind (N) = N_Op_Add then
1003 Cent := RE_Add_With_Ovflo_Check;
1005 elsif Nkind (N) = N_Op_Multiply then
1006 Cent := RE_Multiply_With_Ovflo_Check;
1008 else
1009 pragma Assert (Nkind (N) = N_Op_Subtract);
1010 Cent := RE_Subtract_With_Ovflo_Check;
1011 end if;
1013 Rewrite (N,
1014 OK_Convert_To (Typ,
1015 Make_Function_Call (Loc,
1016 Name => New_Reference_To (RTE (Cent), Loc),
1017 Parameter_Associations => New_List (
1018 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1019 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
1021 Analyze_And_Resolve (N, Typ);
1022 return;
1023 end if;
1025 -- If we fall through, we have the case where we do the arithmetic
1026 -- in the next higher type and get the check by conversion. In these
1027 -- cases Ctyp is set to the type to be used as the check type.
1029 Opnod := Relocate_Node (N);
1031 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1033 Analyze (Opnd);
1034 Set_Etype (Opnd, Ctyp);
1035 Set_Analyzed (Opnd, True);
1036 Set_Left_Opnd (Opnod, Opnd);
1038 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1040 Analyze (Opnd);
1041 Set_Etype (Opnd, Ctyp);
1042 Set_Analyzed (Opnd, True);
1043 Set_Right_Opnd (Opnod, Opnd);
1045 -- The type of the operation changes to the base type of the check
1046 -- type, and we reset the overflow check indication, since clearly no
1047 -- overflow is possible now that we are using a double length type.
1048 -- We also set the Analyzed flag to avoid a recursive attempt to
1049 -- expand the node.
1051 Set_Etype (Opnod, Base_Type (Ctyp));
1052 Set_Do_Overflow_Check (Opnod, False);
1053 Set_Analyzed (Opnod, True);
1055 -- Now build the outer conversion
1057 Opnd := OK_Convert_To (Typ, Opnod);
1058 Analyze (Opnd);
1059 Set_Etype (Opnd, Typ);
1061 -- In the discrete type case, we directly generate the range check
1062 -- for the outer operand. This range check will implement the
1063 -- required overflow check.
1065 if Is_Discrete_Type (Typ) then
1066 Rewrite (N, Opnd);
1067 Generate_Range_Check
1068 (Expression (N), Typ, CE_Overflow_Check_Failed);
1070 -- For other types, we enable overflow checking on the conversion,
1071 -- after setting the node as analyzed to prevent recursive attempts
1072 -- to expand the conversion node.
1074 else
1075 Set_Analyzed (Opnd, True);
1076 Enable_Overflow_Check (Opnd);
1077 Rewrite (N, Opnd);
1078 end if;
1080 exception
1081 when RE_Not_Available =>
1082 return;
1083 end;
1084 end Apply_Arithmetic_Overflow_Strict;
1086 ----------------------------------------------------
1087 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1088 ----------------------------------------------------
1090 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1091 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1093 Loc : constant Source_Ptr := Sloc (Op);
1094 P : constant Node_Id := Parent (Op);
1096 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1097 -- Operands and results are of this type when we convert
1099 Result_Type : constant Entity_Id := Etype (Op);
1100 -- Original result type
1102 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1103 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1105 Lo, Hi : Uint;
1106 -- Ranges of values for result
1108 begin
1109 -- Nothing to do if our parent is one of the following:
1111 -- Another signed integer arithmetic op
1112 -- A membership operation
1113 -- A comparison operation
1115 -- In all these cases, we will process at the higher level (and then
1116 -- this node will be processed during the downwards recursion that
1117 -- is part of the processing in Minimize_Eliminate_Overflows).
1119 if Is_Signed_Integer_Arithmetic_Op (P)
1120 or else Nkind (P) in N_Membership_Test
1121 or else Nkind (P) in N_Op_Compare
1123 -- This is also true for an alternative in a case expression
1125 or else Nkind (P) = N_Case_Expression_Alternative
1127 -- This is also true for a range operand in a membership test
1129 or else (Nkind (P) = N_Range
1130 and then Nkind (Parent (P)) in N_Membership_Test)
1131 then
1132 return;
1133 end if;
1135 -- Otherwise, we have a top level arithmetic operation node, and this
1136 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1137 -- modes. This is the case where we tell the machinery not to move into
1138 -- Bignum mode at this top level (of course the top level operation
1139 -- will still be in Bignum mode if either of its operands are of type
1140 -- Bignum).
1142 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1144 -- That call may but does not necessarily change the result type of Op.
1145 -- It is the job of this routine to undo such changes, so that at the
1146 -- top level, we have the proper type. This "undoing" is a point at
1147 -- which a final overflow check may be applied.
1149 -- If the result type was not fiddled we are all set. We go to base
1150 -- types here because things may have been rewritten to generate the
1151 -- base type of the operand types.
1153 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1154 return;
1156 -- Bignum case
1158 elsif Is_RTE (Etype (Op), RE_Bignum) then
1160 -- We need a sequence that looks like:
1162 -- Rnn : Result_Type;
1164 -- declare
1165 -- M : Mark_Id := SS_Mark;
1166 -- begin
1167 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1168 -- SS_Release (M);
1169 -- end;
1171 -- This block is inserted (using Insert_Actions), and then the node
1172 -- is replaced with a reference to Rnn.
1174 -- A special case arises if our parent is a conversion node. In this
1175 -- case no point in generating a conversion to Result_Type, we will
1176 -- let the parent handle this. Note that this special case is not
1177 -- just about optimization. Consider
1179 -- A,B,C : Integer;
1180 -- ...
1181 -- X := Long_Long_Integer'Base (A * (B ** C));
1183 -- Now the product may fit in Long_Long_Integer but not in Integer.
1184 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1185 -- overflow exception for this intermediate value.
1187 declare
1188 Blk : constant Node_Id := Make_Bignum_Block (Loc);
1189 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1190 RHS : Node_Id;
1192 Rtype : Entity_Id;
1194 begin
1195 RHS := Convert_From_Bignum (Op);
1197 if Nkind (P) /= N_Type_Conversion then
1198 Convert_To_And_Rewrite (Result_Type, RHS);
1199 Rtype := Result_Type;
1201 -- Interesting question, do we need a check on that conversion
1202 -- operation. Answer, not if we know the result is in range.
1203 -- At the moment we are not taking advantage of this. To be
1204 -- looked at later ???
1206 else
1207 Rtype := LLIB;
1208 end if;
1210 Insert_Before
1211 (First (Statements (Handled_Statement_Sequence (Blk))),
1212 Make_Assignment_Statement (Loc,
1213 Name => New_Occurrence_Of (Rnn, Loc),
1214 Expression => RHS));
1216 Insert_Actions (Op, New_List (
1217 Make_Object_Declaration (Loc,
1218 Defining_Identifier => Rnn,
1219 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1220 Blk));
1222 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1223 Analyze_And_Resolve (Op);
1224 end;
1226 -- Here we know the result is Long_Long_Integer'Base, of that it has
1227 -- been rewritten because the parent operation is a conversion. See
1228 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1230 else
1231 pragma Assert
1232 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1234 -- All we need to do here is to convert the result to the proper
1235 -- result type. As explained above for the Bignum case, we can
1236 -- omit this if our parent is a type conversion.
1238 if Nkind (P) /= N_Type_Conversion then
1239 Convert_To_And_Rewrite (Result_Type, Op);
1240 end if;
1242 Analyze_And_Resolve (Op);
1243 end if;
1244 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1246 ----------------------------
1247 -- Apply_Constraint_Check --
1248 ----------------------------
1250 procedure Apply_Constraint_Check
1251 (N : Node_Id;
1252 Typ : Entity_Id;
1253 No_Sliding : Boolean := False)
1255 Desig_Typ : Entity_Id;
1257 begin
1258 -- No checks inside a generic (check the instantiations)
1260 if Inside_A_Generic then
1261 return;
1262 end if;
1264 -- Apply required constraint checks
1266 if Is_Scalar_Type (Typ) then
1267 Apply_Scalar_Range_Check (N, Typ);
1269 elsif Is_Array_Type (Typ) then
1271 -- A useful optimization: an aggregate with only an others clause
1272 -- always has the right bounds.
1274 if Nkind (N) = N_Aggregate
1275 and then No (Expressions (N))
1276 and then Nkind
1277 (First (Choices (First (Component_Associations (N)))))
1278 = N_Others_Choice
1279 then
1280 return;
1281 end if;
1283 if Is_Constrained (Typ) then
1284 Apply_Length_Check (N, Typ);
1286 if No_Sliding then
1287 Apply_Range_Check (N, Typ);
1288 end if;
1289 else
1290 Apply_Range_Check (N, Typ);
1291 end if;
1293 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1294 and then Has_Discriminants (Base_Type (Typ))
1295 and then Is_Constrained (Typ)
1296 then
1297 Apply_Discriminant_Check (N, Typ);
1299 elsif Is_Access_Type (Typ) then
1301 Desig_Typ := Designated_Type (Typ);
1303 -- No checks necessary if expression statically null
1305 if Known_Null (N) then
1306 if Can_Never_Be_Null (Typ) then
1307 Install_Null_Excluding_Check (N);
1308 end if;
1310 -- No sliding possible on access to arrays
1312 elsif Is_Array_Type (Desig_Typ) then
1313 if Is_Constrained (Desig_Typ) then
1314 Apply_Length_Check (N, Typ);
1315 end if;
1317 Apply_Range_Check (N, Typ);
1319 elsif Has_Discriminants (Base_Type (Desig_Typ))
1320 and then Is_Constrained (Desig_Typ)
1321 then
1322 Apply_Discriminant_Check (N, Typ);
1323 end if;
1325 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1326 -- this check if the constraint node is illegal, as shown by having
1327 -- an error posted. This additional guard prevents cascaded errors
1328 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1330 if Can_Never_Be_Null (Typ)
1331 and then not Can_Never_Be_Null (Etype (N))
1332 and then not Error_Posted (N)
1333 then
1334 Install_Null_Excluding_Check (N);
1335 end if;
1336 end if;
1337 end Apply_Constraint_Check;
1339 ------------------------------
1340 -- Apply_Discriminant_Check --
1341 ------------------------------
1343 procedure Apply_Discriminant_Check
1344 (N : Node_Id;
1345 Typ : Entity_Id;
1346 Lhs : Node_Id := Empty)
1348 Loc : constant Source_Ptr := Sloc (N);
1349 Do_Access : constant Boolean := Is_Access_Type (Typ);
1350 S_Typ : Entity_Id := Etype (N);
1351 Cond : Node_Id;
1352 T_Typ : Entity_Id;
1354 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1355 -- A heap object with an indefinite subtype is constrained by its
1356 -- initial value, and assigning to it requires a constraint_check.
1357 -- The target may be an explicit dereference, or a renaming of one.
1359 function Is_Aliased_Unconstrained_Component return Boolean;
1360 -- It is possible for an aliased component to have a nominal
1361 -- unconstrained subtype (through instantiation). If this is a
1362 -- discriminated component assigned in the expansion of an aggregate
1363 -- in an initialization, the check must be suppressed. This unusual
1364 -- situation requires a predicate of its own.
1366 ----------------------------------
1367 -- Denotes_Explicit_Dereference --
1368 ----------------------------------
1370 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1371 begin
1372 return
1373 Nkind (Obj) = N_Explicit_Dereference
1374 or else
1375 (Is_Entity_Name (Obj)
1376 and then Present (Renamed_Object (Entity (Obj)))
1377 and then Nkind (Renamed_Object (Entity (Obj))) =
1378 N_Explicit_Dereference);
1379 end Denotes_Explicit_Dereference;
1381 ----------------------------------------
1382 -- Is_Aliased_Unconstrained_Component --
1383 ----------------------------------------
1385 function Is_Aliased_Unconstrained_Component return Boolean is
1386 Comp : Entity_Id;
1387 Pref : Node_Id;
1389 begin
1390 if Nkind (Lhs) /= N_Selected_Component then
1391 return False;
1392 else
1393 Comp := Entity (Selector_Name (Lhs));
1394 Pref := Prefix (Lhs);
1395 end if;
1397 if Ekind (Comp) /= E_Component
1398 or else not Is_Aliased (Comp)
1399 then
1400 return False;
1401 end if;
1403 return not Comes_From_Source (Pref)
1404 and then In_Instance
1405 and then not Is_Constrained (Etype (Comp));
1406 end Is_Aliased_Unconstrained_Component;
1408 -- Start of processing for Apply_Discriminant_Check
1410 begin
1411 if Do_Access then
1412 T_Typ := Designated_Type (Typ);
1413 else
1414 T_Typ := Typ;
1415 end if;
1417 -- Nothing to do if discriminant checks are suppressed or else no code
1418 -- is to be generated
1420 if not Full_Expander_Active
1421 or else Discriminant_Checks_Suppressed (T_Typ)
1422 then
1423 return;
1424 end if;
1426 -- No discriminant checks necessary for an access when expression is
1427 -- statically Null. This is not only an optimization, it is fundamental
1428 -- because otherwise discriminant checks may be generated in init procs
1429 -- for types containing an access to a not-yet-frozen record, causing a
1430 -- deadly forward reference.
1432 -- Also, if the expression is of an access type whose designated type is
1433 -- incomplete, then the access value must be null and we suppress the
1434 -- check.
1436 if Known_Null (N) then
1437 return;
1439 elsif Is_Access_Type (S_Typ) then
1440 S_Typ := Designated_Type (S_Typ);
1442 if Ekind (S_Typ) = E_Incomplete_Type then
1443 return;
1444 end if;
1445 end if;
1447 -- If an assignment target is present, then we need to generate the
1448 -- actual subtype if the target is a parameter or aliased object with
1449 -- an unconstrained nominal subtype.
1451 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1452 -- subtype to the parameter and dereference cases, since other aliased
1453 -- objects are unconstrained (unless the nominal subtype is explicitly
1454 -- constrained).
1456 if Present (Lhs)
1457 and then (Present (Param_Entity (Lhs))
1458 or else (Ada_Version < Ada_2005
1459 and then not Is_Constrained (T_Typ)
1460 and then Is_Aliased_View (Lhs)
1461 and then not Is_Aliased_Unconstrained_Component)
1462 or else (Ada_Version >= Ada_2005
1463 and then not Is_Constrained (T_Typ)
1464 and then Denotes_Explicit_Dereference (Lhs)
1465 and then Nkind (Original_Node (Lhs)) /=
1466 N_Function_Call))
1467 then
1468 T_Typ := Get_Actual_Subtype (Lhs);
1469 end if;
1471 -- Nothing to do if the type is unconstrained (this is the case where
1472 -- the actual subtype in the RM sense of N is unconstrained and no check
1473 -- is required).
1475 if not Is_Constrained (T_Typ) then
1476 return;
1478 -- Ada 2005: nothing to do if the type is one for which there is a
1479 -- partial view that is constrained.
1481 elsif Ada_Version >= Ada_2005
1482 and then Effectively_Has_Constrained_Partial_View
1483 (Typ => Base_Type (T_Typ),
1484 Scop => Current_Scope)
1485 then
1486 return;
1487 end if;
1489 -- Nothing to do if the type is an Unchecked_Union
1491 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1492 return;
1493 end if;
1495 -- Suppress checks if the subtypes are the same. the check must be
1496 -- preserved in an assignment to a formal, because the constraint is
1497 -- given by the actual.
1499 if Nkind (Original_Node (N)) /= N_Allocator
1500 and then (No (Lhs)
1501 or else not Is_Entity_Name (Lhs)
1502 or else No (Param_Entity (Lhs)))
1503 then
1504 if (Etype (N) = Typ
1505 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1506 and then not Is_Aliased_View (Lhs)
1507 then
1508 return;
1509 end if;
1511 -- We can also eliminate checks on allocators with a subtype mark that
1512 -- coincides with the context type. The context type may be a subtype
1513 -- without a constraint (common case, a generic actual).
1515 elsif Nkind (Original_Node (N)) = N_Allocator
1516 and then Is_Entity_Name (Expression (Original_Node (N)))
1517 then
1518 declare
1519 Alloc_Typ : constant Entity_Id :=
1520 Entity (Expression (Original_Node (N)));
1522 begin
1523 if Alloc_Typ = T_Typ
1524 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1525 and then Is_Entity_Name (
1526 Subtype_Indication (Parent (T_Typ)))
1527 and then Alloc_Typ = Base_Type (T_Typ))
1529 then
1530 return;
1531 end if;
1532 end;
1533 end if;
1535 -- See if we have a case where the types are both constrained, and all
1536 -- the constraints are constants. In this case, we can do the check
1537 -- successfully at compile time.
1539 -- We skip this check for the case where the node is rewritten`as
1540 -- an allocator, because it already carries the context subtype,
1541 -- and extracting the discriminants from the aggregate is messy.
1543 if Is_Constrained (S_Typ)
1544 and then Nkind (Original_Node (N)) /= N_Allocator
1545 then
1546 declare
1547 DconT : Elmt_Id;
1548 Discr : Entity_Id;
1549 DconS : Elmt_Id;
1550 ItemS : Node_Id;
1551 ItemT : Node_Id;
1553 begin
1554 -- S_Typ may not have discriminants in the case where it is a
1555 -- private type completed by a default discriminated type. In that
1556 -- case, we need to get the constraints from the underlying_type.
1557 -- If the underlying type is unconstrained (i.e. has no default
1558 -- discriminants) no check is needed.
1560 if Has_Discriminants (S_Typ) then
1561 Discr := First_Discriminant (S_Typ);
1562 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1564 else
1565 Discr := First_Discriminant (Underlying_Type (S_Typ));
1566 DconS :=
1567 First_Elmt
1568 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1570 if No (DconS) then
1571 return;
1572 end if;
1574 -- A further optimization: if T_Typ is derived from S_Typ
1575 -- without imposing a constraint, no check is needed.
1577 if Nkind (Original_Node (Parent (T_Typ))) =
1578 N_Full_Type_Declaration
1579 then
1580 declare
1581 Type_Def : constant Node_Id :=
1582 Type_Definition (Original_Node (Parent (T_Typ)));
1583 begin
1584 if Nkind (Type_Def) = N_Derived_Type_Definition
1585 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1586 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1587 then
1588 return;
1589 end if;
1590 end;
1591 end if;
1592 end if;
1594 -- Constraint may appear in full view of type
1596 if Ekind (T_Typ) = E_Private_Subtype
1597 and then Present (Full_View (T_Typ))
1598 then
1599 DconT :=
1600 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1601 else
1602 DconT :=
1603 First_Elmt (Discriminant_Constraint (T_Typ));
1604 end if;
1606 while Present (Discr) loop
1607 ItemS := Node (DconS);
1608 ItemT := Node (DconT);
1610 -- For a discriminated component type constrained by the
1611 -- current instance of an enclosing type, there is no
1612 -- applicable discriminant check.
1614 if Nkind (ItemT) = N_Attribute_Reference
1615 and then Is_Access_Type (Etype (ItemT))
1616 and then Is_Entity_Name (Prefix (ItemT))
1617 and then Is_Type (Entity (Prefix (ItemT)))
1618 then
1619 return;
1620 end if;
1622 -- If the expressions for the discriminants are identical
1623 -- and it is side-effect free (for now just an entity),
1624 -- this may be a shared constraint, e.g. from a subtype
1625 -- without a constraint introduced as a generic actual.
1626 -- Examine other discriminants if any.
1628 if ItemS = ItemT
1629 and then Is_Entity_Name (ItemS)
1630 then
1631 null;
1633 elsif not Is_OK_Static_Expression (ItemS)
1634 or else not Is_OK_Static_Expression (ItemT)
1635 then
1636 exit;
1638 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1639 if Do_Access then -- needs run-time check.
1640 exit;
1641 else
1642 Apply_Compile_Time_Constraint_Error
1643 (N, "incorrect value for discriminant&??",
1644 CE_Discriminant_Check_Failed, Ent => Discr);
1645 return;
1646 end if;
1647 end if;
1649 Next_Elmt (DconS);
1650 Next_Elmt (DconT);
1651 Next_Discriminant (Discr);
1652 end loop;
1654 if No (Discr) then
1655 return;
1656 end if;
1657 end;
1658 end if;
1660 -- Here we need a discriminant check. First build the expression
1661 -- for the comparisons of the discriminants:
1663 -- (n.disc1 /= typ.disc1) or else
1664 -- (n.disc2 /= typ.disc2) or else
1665 -- ...
1666 -- (n.discn /= typ.discn)
1668 Cond := Build_Discriminant_Checks (N, T_Typ);
1670 -- If Lhs is set and is a parameter, then the condition is guarded by:
1671 -- lhs'constrained and then (condition built above)
1673 if Present (Param_Entity (Lhs)) then
1674 Cond :=
1675 Make_And_Then (Loc,
1676 Left_Opnd =>
1677 Make_Attribute_Reference (Loc,
1678 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1679 Attribute_Name => Name_Constrained),
1680 Right_Opnd => Cond);
1681 end if;
1683 if Do_Access then
1684 Cond := Guard_Access (Cond, Loc, N);
1685 end if;
1687 Insert_Action (N,
1688 Make_Raise_Constraint_Error (Loc,
1689 Condition => Cond,
1690 Reason => CE_Discriminant_Check_Failed));
1691 end Apply_Discriminant_Check;
1693 -------------------------
1694 -- Apply_Divide_Checks --
1695 -------------------------
1697 procedure Apply_Divide_Checks (N : Node_Id) is
1698 Loc : constant Source_Ptr := Sloc (N);
1699 Typ : constant Entity_Id := Etype (N);
1700 Left : constant Node_Id := Left_Opnd (N);
1701 Right : constant Node_Id := Right_Opnd (N);
1703 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1704 -- Current overflow checking mode
1706 LLB : Uint;
1707 Llo : Uint;
1708 Lhi : Uint;
1709 LOK : Boolean;
1710 Rlo : Uint;
1711 Rhi : Uint;
1712 ROK : Boolean;
1714 pragma Warnings (Off, Lhi);
1715 -- Don't actually use this value
1717 begin
1718 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1719 -- operating on signed integer types, then the only thing this routine
1720 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1721 -- procedure will (possibly later on during recursive downward calls),
1722 -- ensure that any needed overflow/division checks are properly applied.
1724 if Mode in Minimized_Or_Eliminated
1725 and then Is_Signed_Integer_Type (Typ)
1726 then
1727 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1728 return;
1729 end if;
1731 -- Proceed here in SUPPRESSED or CHECKED modes
1733 if Full_Expander_Active
1734 and then not Backend_Divide_Checks_On_Target
1735 and then Check_Needed (Right, Division_Check)
1736 then
1737 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1739 -- Deal with division check
1741 if Do_Division_Check (N)
1742 and then not Division_Checks_Suppressed (Typ)
1743 then
1744 Apply_Division_Check (N, Rlo, Rhi, ROK);
1745 end if;
1747 -- Deal with overflow check
1749 if Do_Overflow_Check (N)
1750 and then not Overflow_Checks_Suppressed (Etype (N))
1751 then
1753 -- Test for extremely annoying case of xxx'First divided by -1
1754 -- for division of signed integer types (only overflow case).
1756 if Nkind (N) = N_Op_Divide
1757 and then Is_Signed_Integer_Type (Typ)
1758 then
1759 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1760 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1762 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1763 and then
1764 ((not LOK) or else (Llo = LLB))
1765 then
1766 Insert_Action (N,
1767 Make_Raise_Constraint_Error (Loc,
1768 Condition =>
1769 Make_And_Then (Loc,
1770 Left_Opnd =>
1771 Make_Op_Eq (Loc,
1772 Left_Opnd =>
1773 Duplicate_Subexpr_Move_Checks (Left),
1774 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1776 Right_Opnd =>
1777 Make_Op_Eq (Loc,
1778 Left_Opnd => Duplicate_Subexpr (Right),
1779 Right_Opnd => Make_Integer_Literal (Loc, -1))),
1781 Reason => CE_Overflow_Check_Failed));
1782 end if;
1783 end if;
1784 end if;
1785 end if;
1786 end Apply_Divide_Checks;
1788 --------------------------
1789 -- Apply_Division_Check --
1790 --------------------------
1792 procedure Apply_Division_Check
1793 (N : Node_Id;
1794 Rlo : Uint;
1795 Rhi : Uint;
1796 ROK : Boolean)
1798 pragma Assert (Do_Division_Check (N));
1800 Loc : constant Source_Ptr := Sloc (N);
1801 Right : constant Node_Id := Right_Opnd (N);
1803 begin
1804 if Full_Expander_Active
1805 and then not Backend_Divide_Checks_On_Target
1806 and then Check_Needed (Right, Division_Check)
1807 then
1808 -- See if division by zero possible, and if so generate test. This
1809 -- part of the test is not controlled by the -gnato switch, since
1810 -- it is a Division_Check and not an Overflow_Check.
1812 if Do_Division_Check (N) then
1813 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1814 Insert_Action (N,
1815 Make_Raise_Constraint_Error (Loc,
1816 Condition =>
1817 Make_Op_Eq (Loc,
1818 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1819 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1820 Reason => CE_Divide_By_Zero));
1821 end if;
1822 end if;
1823 end if;
1824 end Apply_Division_Check;
1826 ----------------------------------
1827 -- Apply_Float_Conversion_Check --
1828 ----------------------------------
1830 -- Let F and I be the source and target types of the conversion. The RM
1831 -- specifies that a floating-point value X is rounded to the nearest
1832 -- integer, with halfway cases being rounded away from zero. The rounded
1833 -- value of X is checked against I'Range.
1835 -- The catch in the above paragraph is that there is no good way to know
1836 -- whether the round-to-integer operation resulted in overflow. A remedy is
1837 -- to perform a range check in the floating-point domain instead, however:
1839 -- (1) The bounds may not be known at compile time
1840 -- (2) The check must take into account rounding or truncation.
1841 -- (3) The range of type I may not be exactly representable in F.
1842 -- (4) For the rounding case, The end-points I'First - 0.5 and
1843 -- I'Last + 0.5 may or may not be in range, depending on the
1844 -- sign of I'First and I'Last.
1845 -- (5) X may be a NaN, which will fail any comparison
1847 -- The following steps correctly convert X with rounding:
1849 -- (1) If either I'First or I'Last is not known at compile time, use
1850 -- I'Base instead of I in the next three steps and perform a
1851 -- regular range check against I'Range after conversion.
1852 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1853 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1854 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1855 -- In other words, take one of the closest floating-point numbers
1856 -- (which is an integer value) to I'First, and see if it is in
1857 -- range or not.
1858 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1859 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1860 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1861 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1862 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1864 -- For the truncating case, replace steps (2) and (3) as follows:
1865 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1866 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1867 -- Lo_OK be True.
1868 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1869 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1870 -- Hi_OK be True.
1872 procedure Apply_Float_Conversion_Check
1873 (Ck_Node : Node_Id;
1874 Target_Typ : Entity_Id)
1876 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1877 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1878 Loc : constant Source_Ptr := Sloc (Ck_Node);
1879 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1880 Target_Base : constant Entity_Id :=
1881 Implementation_Base_Type (Target_Typ);
1883 Par : constant Node_Id := Parent (Ck_Node);
1884 pragma Assert (Nkind (Par) = N_Type_Conversion);
1885 -- Parent of check node, must be a type conversion
1887 Truncate : constant Boolean := Float_Truncate (Par);
1888 Max_Bound : constant Uint :=
1889 UI_Expon
1890 (Machine_Radix_Value (Expr_Type),
1891 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1893 -- Largest bound, so bound plus or minus half is a machine number of F
1895 Ifirst, Ilast : Uint;
1896 -- Bounds of integer type
1898 Lo, Hi : Ureal;
1899 -- Bounds to check in floating-point domain
1901 Lo_OK, Hi_OK : Boolean;
1902 -- True iff Lo resp. Hi belongs to I'Range
1904 Lo_Chk, Hi_Chk : Node_Id;
1905 -- Expressions that are False iff check fails
1907 Reason : RT_Exception_Code;
1909 begin
1910 if not Compile_Time_Known_Value (LB)
1911 or not Compile_Time_Known_Value (HB)
1912 then
1913 declare
1914 -- First check that the value falls in the range of the base type,
1915 -- to prevent overflow during conversion and then perform a
1916 -- regular range check against the (dynamic) bounds.
1918 pragma Assert (Target_Base /= Target_Typ);
1920 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
1922 begin
1923 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1924 Set_Etype (Temp, Target_Base);
1926 Insert_Action (Parent (Par),
1927 Make_Object_Declaration (Loc,
1928 Defining_Identifier => Temp,
1929 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1930 Expression => New_Copy_Tree (Par)),
1931 Suppress => All_Checks);
1933 Insert_Action (Par,
1934 Make_Raise_Constraint_Error (Loc,
1935 Condition =>
1936 Make_Not_In (Loc,
1937 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1938 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1939 Reason => CE_Range_Check_Failed));
1940 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1942 return;
1943 end;
1944 end if;
1946 -- Get the (static) bounds of the target type
1948 Ifirst := Expr_Value (LB);
1949 Ilast := Expr_Value (HB);
1951 -- A simple optimization: if the expression is a universal literal,
1952 -- we can do the comparison with the bounds and the conversion to
1953 -- an integer type statically. The range checks are unchanged.
1955 if Nkind (Ck_Node) = N_Real_Literal
1956 and then Etype (Ck_Node) = Universal_Real
1957 and then Is_Integer_Type (Target_Typ)
1958 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
1959 then
1960 declare
1961 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
1963 begin
1964 if Int_Val <= Ilast and then Int_Val >= Ifirst then
1966 -- Conversion is safe
1968 Rewrite (Parent (Ck_Node),
1969 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
1970 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
1971 return;
1972 end if;
1973 end;
1974 end if;
1976 -- Check against lower bound
1978 if Truncate and then Ifirst > 0 then
1979 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
1980 Lo_OK := False;
1982 elsif Truncate then
1983 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
1984 Lo_OK := True;
1986 elsif abs (Ifirst) < Max_Bound then
1987 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1988 Lo_OK := (Ifirst > 0);
1990 else
1991 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
1992 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
1993 end if;
1995 if Lo_OK then
1997 -- Lo_Chk := (X >= Lo)
1999 Lo_Chk := Make_Op_Ge (Loc,
2000 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2001 Right_Opnd => Make_Real_Literal (Loc, Lo));
2003 else
2004 -- Lo_Chk := (X > Lo)
2006 Lo_Chk := Make_Op_Gt (Loc,
2007 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2008 Right_Opnd => Make_Real_Literal (Loc, Lo));
2009 end if;
2011 -- Check against higher bound
2013 if Truncate and then Ilast < 0 then
2014 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2015 Hi_OK := False;
2017 elsif Truncate then
2018 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2019 Hi_OK := True;
2021 elsif abs (Ilast) < Max_Bound then
2022 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2023 Hi_OK := (Ilast < 0);
2024 else
2025 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2026 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2027 end if;
2029 if Hi_OK then
2031 -- Hi_Chk := (X <= Hi)
2033 Hi_Chk := Make_Op_Le (Loc,
2034 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2035 Right_Opnd => Make_Real_Literal (Loc, Hi));
2037 else
2038 -- Hi_Chk := (X < Hi)
2040 Hi_Chk := Make_Op_Lt (Loc,
2041 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2042 Right_Opnd => Make_Real_Literal (Loc, Hi));
2043 end if;
2045 -- If the bounds of the target type are the same as those of the base
2046 -- type, the check is an overflow check as a range check is not
2047 -- performed in these cases.
2049 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2050 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2051 then
2052 Reason := CE_Overflow_Check_Failed;
2053 else
2054 Reason := CE_Range_Check_Failed;
2055 end if;
2057 -- Raise CE if either conditions does not hold
2059 Insert_Action (Ck_Node,
2060 Make_Raise_Constraint_Error (Loc,
2061 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2062 Reason => Reason));
2063 end Apply_Float_Conversion_Check;
2065 ------------------------
2066 -- Apply_Length_Check --
2067 ------------------------
2069 procedure Apply_Length_Check
2070 (Ck_Node : Node_Id;
2071 Target_Typ : Entity_Id;
2072 Source_Typ : Entity_Id := Empty)
2074 begin
2075 Apply_Selected_Length_Checks
2076 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2077 end Apply_Length_Check;
2079 -------------------------------------
2080 -- Apply_Parameter_Aliasing_Checks --
2081 -------------------------------------
2083 procedure Apply_Parameter_Aliasing_Checks
2084 (Call : Node_Id;
2085 Subp : Entity_Id)
2087 function May_Cause_Aliasing
2088 (Formal_1 : Entity_Id;
2089 Formal_2 : Entity_Id) return Boolean;
2090 -- Determine whether two formal parameters can alias each other
2091 -- depending on their modes.
2093 function Original_Actual (N : Node_Id) return Node_Id;
2094 -- The expander may replace an actual with a temporary for the sake of
2095 -- side effect removal. The temporary may hide a potential aliasing as
2096 -- it does not share the address of the actual. This routine attempts
2097 -- to retrieve the original actual.
2099 ------------------------
2100 -- May_Cause_Aliasing --
2101 ------------------------
2103 function May_Cause_Aliasing
2104 (Formal_1 : Entity_Id;
2105 Formal_2 : Entity_Id) return Boolean
2107 begin
2108 -- The following combination cannot lead to aliasing
2110 -- Formal 1 Formal 2
2111 -- IN IN
2113 if Ekind (Formal_1) = E_In_Parameter
2114 and then
2115 Ekind (Formal_2) = E_In_Parameter
2116 then
2117 return False;
2119 -- The following combinations may lead to aliasing
2121 -- Formal 1 Formal 2
2122 -- IN OUT
2123 -- IN IN OUT
2124 -- OUT IN
2125 -- OUT IN OUT
2126 -- OUT OUT
2128 else
2129 return True;
2130 end if;
2131 end May_Cause_Aliasing;
2133 ---------------------
2134 -- Original_Actual --
2135 ---------------------
2137 function Original_Actual (N : Node_Id) return Node_Id is
2138 begin
2139 if Nkind (N) = N_Type_Conversion then
2140 return Expression (N);
2142 -- The expander created a temporary to capture the result of a type
2143 -- conversion where the expression is the real actual.
2145 elsif Nkind (N) = N_Identifier
2146 and then Present (Original_Node (N))
2147 and then Nkind (Original_Node (N)) = N_Type_Conversion
2148 then
2149 return Expression (Original_Node (N));
2150 end if;
2152 return N;
2153 end Original_Actual;
2155 -- Local variables
2157 Loc : constant Source_Ptr := Sloc (Call);
2158 Actual_1 : Node_Id;
2159 Actual_2 : Node_Id;
2160 Check : Node_Id;
2161 Cond : Node_Id;
2162 Formal_1 : Entity_Id;
2163 Formal_2 : Entity_Id;
2165 -- Start of processing for Apply_Parameter_Aliasing_Checks
2167 begin
2168 Cond := Empty;
2170 Actual_1 := First_Actual (Call);
2171 Formal_1 := First_Formal (Subp);
2172 while Present (Actual_1) and then Present (Formal_1) loop
2174 -- Ensure that the actual is an object that is not passed by value.
2175 -- Elementary types are always passed by value, therefore actuals of
2176 -- such types cannot lead to aliasing.
2178 if Is_Object_Reference (Original_Actual (Actual_1))
2179 and then not Is_Elementary_Type (Etype (Original_Actual (Actual_1)))
2180 then
2181 Actual_2 := Next_Actual (Actual_1);
2182 Formal_2 := Next_Formal (Formal_1);
2183 while Present (Actual_2) and then Present (Formal_2) loop
2185 -- The other actual we are testing against must also denote
2186 -- a non pass-by-value object. Generate the check only when
2187 -- the mode of the two formals may lead to aliasing.
2189 if Is_Object_Reference (Original_Actual (Actual_2))
2190 and then not
2191 Is_Elementary_Type (Etype (Original_Actual (Actual_2)))
2192 and then May_Cause_Aliasing (Formal_1, Formal_2)
2193 then
2194 -- Generate:
2195 -- Actual_1'Overlaps_Storage (Actual_2)
2197 Check :=
2198 Make_Attribute_Reference (Loc,
2199 Prefix =>
2200 New_Copy_Tree (Original_Actual (Actual_1)),
2201 Attribute_Name => Name_Overlaps_Storage,
2202 Expressions =>
2203 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2205 if No (Cond) then
2206 Cond := Check;
2207 else
2208 Cond :=
2209 Make_And_Then (Loc,
2210 Left_Opnd => Cond,
2211 Right_Opnd => Check);
2212 end if;
2213 end if;
2215 Next_Actual (Actual_2);
2216 Next_Formal (Formal_2);
2217 end loop;
2218 end if;
2220 Next_Actual (Actual_1);
2221 Next_Formal (Formal_1);
2222 end loop;
2224 -- Place the check right before the call
2226 if Present (Cond) then
2227 Insert_Action (Call,
2228 Make_Raise_Program_Error (Loc,
2229 Condition => Cond,
2230 Reason => PE_Explicit_Raise));
2231 end if;
2232 end Apply_Parameter_Aliasing_Checks;
2234 -------------------------------------
2235 -- Apply_Parameter_Validity_Checks --
2236 -------------------------------------
2238 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2239 Subp_Decl : Node_Id;
2241 procedure Add_Validity_Check
2242 (Context : Entity_Id;
2243 PPC_Nam : Name_Id;
2244 For_Result : Boolean := False);
2245 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2246 -- of Context. PPC_Nam denotes the pre or post condition pragma name.
2247 -- Set flag For_Result when to verify the result of a function.
2249 procedure Build_PPC_Pragma (PPC_Nam : Name_Id; Check : Node_Id);
2250 -- Create a pre or post condition pragma with name PPC_Nam which
2251 -- tests expression Check.
2253 ------------------------
2254 -- Add_Validity_Check --
2255 ------------------------
2257 procedure Add_Validity_Check
2258 (Context : Entity_Id;
2259 PPC_Nam : Name_Id;
2260 For_Result : Boolean := False)
2262 Loc : constant Source_Ptr := Sloc (Subp);
2263 Typ : constant Entity_Id := Etype (Context);
2264 Check : Node_Id;
2265 Nam : Name_Id;
2267 begin
2268 -- Pick the proper version of 'Valid depending on the type of the
2269 -- context. If the context is not eligible for such a check, return.
2271 if Is_Scalar_Type (Typ) then
2272 Nam := Name_Valid;
2273 elsif not No_Scalar_Parts (Typ) then
2274 Nam := Name_Valid_Scalars;
2275 else
2276 return;
2277 end if;
2279 -- Step 1: Create the expression to verify the validity of the
2280 -- context.
2282 Check := New_Reference_To (Context, Loc);
2284 -- When processing a function result, use 'Result. Generate
2285 -- Context'Result
2287 if For_Result then
2288 Check :=
2289 Make_Attribute_Reference (Loc,
2290 Prefix => Check,
2291 Attribute_Name => Name_Result);
2292 end if;
2294 -- Generate:
2295 -- Context['Result]'Valid[_Scalars]
2297 Check :=
2298 Make_Attribute_Reference (Loc,
2299 Prefix => Check,
2300 Attribute_Name => Nam);
2302 -- Step 2: Create a pre or post condition pragma
2304 Build_PPC_Pragma (PPC_Nam, Check);
2305 end Add_Validity_Check;
2307 ----------------------
2308 -- Build_PPC_Pragma --
2309 ----------------------
2311 procedure Build_PPC_Pragma (PPC_Nam : Name_Id; Check : Node_Id) is
2312 Loc : constant Source_Ptr := Sloc (Subp);
2313 Decls : List_Id;
2314 Prag : Node_Id;
2316 begin
2317 Prag :=
2318 Make_Pragma (Loc,
2319 Pragma_Identifier => Make_Identifier (Loc, PPC_Nam),
2320 Pragma_Argument_Associations => New_List (
2321 Make_Pragma_Argument_Association (Loc,
2322 Chars => Name_Check,
2323 Expression => Check)));
2325 -- Add a message unless exception messages are suppressed
2327 if not Exception_Locations_Suppressed then
2328 Append_To (Pragma_Argument_Associations (Prag),
2329 Make_Pragma_Argument_Association (Loc,
2330 Chars => Name_Message,
2331 Expression =>
2332 Make_String_Literal (Loc,
2333 Strval => "failed " & Get_Name_String (PPC_Nam) &
2334 " from " & Build_Location_String (Loc))));
2335 end if;
2337 -- Insert the pragma in the tree
2339 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2340 Add_Global_Declaration (Prag);
2341 Analyze (Prag);
2343 -- PPC pragmas associated with subprogram bodies must be inserted in
2344 -- the declarative part of the body.
2346 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2347 Decls := Declarations (Subp_Decl);
2349 if No (Decls) then
2350 Decls := New_List;
2351 Set_Declarations (Subp_Decl, Decls);
2352 end if;
2354 Prepend_To (Decls, Prag);
2356 -- Ensure the proper visibility of the subprogram body and its
2357 -- parameters.
2359 Push_Scope (Subp);
2360 Analyze (Prag);
2361 Pop_Scope;
2363 -- For subprogram declarations insert the PPC pragma right after the
2364 -- declarative node.
2366 else
2367 Insert_After_And_Analyze (Subp_Decl, Prag);
2368 end if;
2369 end Build_PPC_Pragma;
2371 -- Local variables
2373 Formal : Entity_Id;
2374 Subp_Spec : Node_Id;
2376 -- Start of processing for Apply_Parameter_Validity_Checks
2378 begin
2379 -- Extract the subprogram specification and declaration nodes
2381 Subp_Spec := Parent (Subp);
2383 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2384 Subp_Spec := Parent (Subp_Spec);
2385 end if;
2387 Subp_Decl := Parent (Subp_Spec);
2389 if not Comes_From_Source (Subp)
2391 -- Do not process formal subprograms because the corresponding actual
2392 -- will receive the proper checks when the instance is analyzed.
2394 or else Is_Formal_Subprogram (Subp)
2396 -- Do not process imported subprograms since pre and post conditions
2397 -- are never verified on routines coming from a different language.
2399 or else Is_Imported (Subp)
2400 or else Is_Intrinsic_Subprogram (Subp)
2402 -- The PPC pragmas generated by this routine do not correspond to
2403 -- source aspects, therefore they cannot be applied to abstract
2404 -- subprograms.
2406 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2408 -- Do not consider subprogram renaminds because the renamed entity
2409 -- already has the proper PPC pragmas.
2411 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2413 -- Do not process null procedures because there is no benefit of
2414 -- adding the checks to a no action routine.
2416 or else (Nkind (Subp_Spec) = N_Procedure_Specification
2417 and then Null_Present (Subp_Spec))
2418 then
2419 return;
2420 end if;
2422 -- Inspect all the formals applying aliasing and scalar initialization
2423 -- checks where applicable.
2425 Formal := First_Formal (Subp);
2426 while Present (Formal) loop
2428 -- Generate the following scalar initialization checks for each
2429 -- formal parameter:
2431 -- mode IN - Pre => Formal'Valid[_Scalars]
2432 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2433 -- mode OUT - Post => Formal'Valid[_Scalars]
2435 if Check_Validity_Of_Parameters then
2436 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2437 Add_Validity_Check (Formal, Name_Precondition, False);
2438 end if;
2440 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2441 Add_Validity_Check (Formal, Name_Postcondition, False);
2442 end if;
2443 end if;
2445 Next_Formal (Formal);
2446 end loop;
2448 -- Generate following scalar initialization check for function result:
2450 -- Post => Subp'Result'Valid[_Scalars]
2452 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
2453 Add_Validity_Check (Subp, Name_Postcondition, True);
2454 end if;
2455 end Apply_Parameter_Validity_Checks;
2457 ---------------------------
2458 -- Apply_Predicate_Check --
2459 ---------------------------
2461 procedure Apply_Predicate_Check (N : Node_Id; Typ : Entity_Id) is
2462 S : Entity_Id;
2464 begin
2465 if Present (Predicate_Function (Typ)) then
2467 -- A predicate check does not apply within internally generated
2468 -- subprograms, such as TSS functions.
2470 S := Current_Scope;
2471 while Present (S) and then not Is_Subprogram (S) loop
2472 S := Scope (S);
2473 end loop;
2475 if Present (S) and then Get_TSS_Name (S) /= TSS_Null then
2476 return;
2478 -- If the check appears within the predicate function itself, it
2479 -- means that the user specified a check whose formal is the
2480 -- predicated subtype itself, rather than some covering type. This
2481 -- is likely to be a common error, and thus deserves a warning.
2483 elsif S = Predicate_Function (Typ) then
2484 Error_Msg_N
2485 ("predicate check includes a function call that "
2486 & "requires a predicate check??", Parent (N));
2487 Error_Msg_N
2488 ("\this will result in infinite recursion??", Parent (N));
2489 Insert_Action (N,
2490 Make_Raise_Storage_Error (Sloc (N),
2491 Reason => SE_Infinite_Recursion));
2493 -- Here for normal case of predicate active.
2495 else
2496 -- If the predicate is a static predicate and the operand is
2497 -- static, the predicate must be evaluated statically. If the
2498 -- evaluation fails this is a static constraint error. This check
2499 -- is disabled in -gnatc mode, because the compiler is incapable
2500 -- of evaluating static expressions in that case.
2502 if Is_OK_Static_Expression (N) then
2503 if Present (Static_Predicate (Typ)) then
2504 if Operating_Mode < Generate_Code
2505 or else Eval_Static_Predicate_Check (N, Typ)
2506 then
2507 return;
2508 else
2509 Error_Msg_NE
2510 ("static expression fails static predicate check on&",
2511 N, Typ);
2512 end if;
2513 end if;
2514 end if;
2516 Insert_Action (N,
2517 Make_Predicate_Check (Typ, Duplicate_Subexpr (N)));
2518 end if;
2519 end if;
2520 end Apply_Predicate_Check;
2522 -----------------------
2523 -- Apply_Range_Check --
2524 -----------------------
2526 procedure Apply_Range_Check
2527 (Ck_Node : Node_Id;
2528 Target_Typ : Entity_Id;
2529 Source_Typ : Entity_Id := Empty)
2531 begin
2532 Apply_Selected_Range_Checks
2533 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2534 end Apply_Range_Check;
2536 ------------------------------
2537 -- Apply_Scalar_Range_Check --
2538 ------------------------------
2540 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2541 -- off if it is already set on.
2543 procedure Apply_Scalar_Range_Check
2544 (Expr : Node_Id;
2545 Target_Typ : Entity_Id;
2546 Source_Typ : Entity_Id := Empty;
2547 Fixed_Int : Boolean := False)
2549 Parnt : constant Node_Id := Parent (Expr);
2550 S_Typ : Entity_Id;
2551 Arr : Node_Id := Empty; -- initialize to prevent warning
2552 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
2553 OK : Boolean;
2555 Is_Subscr_Ref : Boolean;
2556 -- Set true if Expr is a subscript
2558 Is_Unconstrained_Subscr_Ref : Boolean;
2559 -- Set true if Expr is a subscript of an unconstrained array. In this
2560 -- case we do not attempt to do an analysis of the value against the
2561 -- range of the subscript, since we don't know the actual subtype.
2563 Int_Real : Boolean;
2564 -- Set to True if Expr should be regarded as a real value even though
2565 -- the type of Expr might be discrete.
2567 procedure Bad_Value;
2568 -- Procedure called if value is determined to be out of range
2570 ---------------
2571 -- Bad_Value --
2572 ---------------
2574 procedure Bad_Value is
2575 begin
2576 Apply_Compile_Time_Constraint_Error
2577 (Expr, "value not in range of}??", CE_Range_Check_Failed,
2578 Ent => Target_Typ,
2579 Typ => Target_Typ);
2580 end Bad_Value;
2582 -- Start of processing for Apply_Scalar_Range_Check
2584 begin
2585 -- Return if check obviously not needed
2588 -- Not needed inside generic
2590 Inside_A_Generic
2592 -- Not needed if previous error
2594 or else Target_Typ = Any_Type
2595 or else Nkind (Expr) = N_Error
2597 -- Not needed for non-scalar type
2599 or else not Is_Scalar_Type (Target_Typ)
2601 -- Not needed if we know node raises CE already
2603 or else Raises_Constraint_Error (Expr)
2604 then
2605 return;
2606 end if;
2608 -- Now, see if checks are suppressed
2610 Is_Subscr_Ref :=
2611 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2613 if Is_Subscr_Ref then
2614 Arr := Prefix (Parnt);
2615 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
2617 if Is_Access_Type (Arr_Typ) then
2618 Arr_Typ := Designated_Type (Arr_Typ);
2619 end if;
2620 end if;
2622 if not Do_Range_Check (Expr) then
2624 -- Subscript reference. Check for Index_Checks suppressed
2626 if Is_Subscr_Ref then
2628 -- Check array type and its base type
2630 if Index_Checks_Suppressed (Arr_Typ)
2631 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
2632 then
2633 return;
2635 -- Check array itself if it is an entity name
2637 elsif Is_Entity_Name (Arr)
2638 and then Index_Checks_Suppressed (Entity (Arr))
2639 then
2640 return;
2642 -- Check expression itself if it is an entity name
2644 elsif Is_Entity_Name (Expr)
2645 and then Index_Checks_Suppressed (Entity (Expr))
2646 then
2647 return;
2648 end if;
2650 -- All other cases, check for Range_Checks suppressed
2652 else
2653 -- Check target type and its base type
2655 if Range_Checks_Suppressed (Target_Typ)
2656 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
2657 then
2658 return;
2660 -- Check expression itself if it is an entity name
2662 elsif Is_Entity_Name (Expr)
2663 and then Range_Checks_Suppressed (Entity (Expr))
2664 then
2665 return;
2667 -- If Expr is part of an assignment statement, then check left
2668 -- side of assignment if it is an entity name.
2670 elsif Nkind (Parnt) = N_Assignment_Statement
2671 and then Is_Entity_Name (Name (Parnt))
2672 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
2673 then
2674 return;
2675 end if;
2676 end if;
2677 end if;
2679 -- Do not set range checks if they are killed
2681 if Nkind (Expr) = N_Unchecked_Type_Conversion
2682 and then Kill_Range_Check (Expr)
2683 then
2684 return;
2685 end if;
2687 -- Do not set range checks for any values from System.Scalar_Values
2688 -- since the whole idea of such values is to avoid checking them!
2690 if Is_Entity_Name (Expr)
2691 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2692 then
2693 return;
2694 end if;
2696 -- Now see if we need a check
2698 if No (Source_Typ) then
2699 S_Typ := Etype (Expr);
2700 else
2701 S_Typ := Source_Typ;
2702 end if;
2704 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2705 return;
2706 end if;
2708 Is_Unconstrained_Subscr_Ref :=
2709 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2711 -- Special checks for floating-point type
2713 if Is_Floating_Point_Type (S_Typ) then
2715 -- Always do a range check if the source type includes infinities and
2716 -- the target type does not include infinities. We do not do this if
2717 -- range checks are killed.
2719 if Has_Infinities (S_Typ)
2720 and then not Has_Infinities (Target_Typ)
2721 then
2722 Enable_Range_Check (Expr);
2724 -- Always do a range check for operators if option set
2726 elsif Check_Float_Overflow and then Nkind (Expr) in N_Op then
2727 Enable_Range_Check (Expr);
2728 end if;
2729 end if;
2731 -- Return if we know expression is definitely in the range of the target
2732 -- type as determined by Determine_Range. Right now we only do this for
2733 -- discrete types, and not fixed-point or floating-point types.
2735 -- The additional less-precise tests below catch these cases
2737 -- Note: skip this if we are given a source_typ, since the point of
2738 -- supplying a Source_Typ is to stop us looking at the expression.
2739 -- We could sharpen this test to be out parameters only ???
2741 if Is_Discrete_Type (Target_Typ)
2742 and then Is_Discrete_Type (Etype (Expr))
2743 and then not Is_Unconstrained_Subscr_Ref
2744 and then No (Source_Typ)
2745 then
2746 declare
2747 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2748 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2749 Lo : Uint;
2750 Hi : Uint;
2752 begin
2753 if Compile_Time_Known_Value (Tlo)
2754 and then Compile_Time_Known_Value (Thi)
2755 then
2756 declare
2757 Lov : constant Uint := Expr_Value (Tlo);
2758 Hiv : constant Uint := Expr_Value (Thi);
2760 begin
2761 -- If range is null, we for sure have a constraint error
2762 -- (we don't even need to look at the value involved,
2763 -- since all possible values will raise CE).
2765 if Lov > Hiv then
2766 Bad_Value;
2767 return;
2768 end if;
2770 -- Otherwise determine range of value
2772 Determine_Range (Expr, OK, Lo, Hi, Assume_Valid => True);
2774 if OK then
2776 -- If definitely in range, all OK
2778 if Lo >= Lov and then Hi <= Hiv then
2779 return;
2781 -- If definitely not in range, warn
2783 elsif Lov > Hi or else Hiv < Lo then
2784 Bad_Value;
2785 return;
2787 -- Otherwise we don't know
2789 else
2790 null;
2791 end if;
2792 end if;
2793 end;
2794 end if;
2795 end;
2796 end if;
2798 Int_Real :=
2799 Is_Floating_Point_Type (S_Typ)
2800 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
2802 -- Check if we can determine at compile time whether Expr is in the
2803 -- range of the target type. Note that if S_Typ is within the bounds
2804 -- of Target_Typ then this must be the case. This check is meaningful
2805 -- only if this is not a conversion between integer and real types.
2807 if not Is_Unconstrained_Subscr_Ref
2808 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
2809 and then
2810 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
2811 or else
2812 Is_In_Range (Expr, Target_Typ,
2813 Assume_Valid => True,
2814 Fixed_Int => Fixed_Int,
2815 Int_Real => Int_Real))
2816 then
2817 return;
2819 elsif Is_Out_Of_Range (Expr, Target_Typ,
2820 Assume_Valid => True,
2821 Fixed_Int => Fixed_Int,
2822 Int_Real => Int_Real)
2823 then
2824 Bad_Value;
2825 return;
2827 -- Floating-point case
2828 -- In the floating-point case, we only do range checks if the type is
2829 -- constrained. We definitely do NOT want range checks for unconstrained
2830 -- types, since we want to have infinities
2832 elsif Is_Floating_Point_Type (S_Typ) then
2834 -- Normally, we only do range checks if the type is constrained. We do
2835 -- NOT want range checks for unconstrained types, since we want to have
2836 -- infinities. Override this decision in Check_Float_Overflow mode.
2838 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
2839 Enable_Range_Check (Expr);
2840 end if;
2842 -- For all other cases we enable a range check unconditionally
2844 else
2845 Enable_Range_Check (Expr);
2846 return;
2847 end if;
2848 end Apply_Scalar_Range_Check;
2850 ----------------------------------
2851 -- Apply_Selected_Length_Checks --
2852 ----------------------------------
2854 procedure Apply_Selected_Length_Checks
2855 (Ck_Node : Node_Id;
2856 Target_Typ : Entity_Id;
2857 Source_Typ : Entity_Id;
2858 Do_Static : Boolean)
2860 Cond : Node_Id;
2861 R_Result : Check_Result;
2862 R_Cno : Node_Id;
2864 Loc : constant Source_Ptr := Sloc (Ck_Node);
2865 Checks_On : constant Boolean :=
2866 (not Index_Checks_Suppressed (Target_Typ))
2867 or else (not Length_Checks_Suppressed (Target_Typ));
2869 begin
2870 if not Full_Expander_Active then
2871 return;
2872 end if;
2874 R_Result :=
2875 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2877 for J in 1 .. 2 loop
2878 R_Cno := R_Result (J);
2879 exit when No (R_Cno);
2881 -- A length check may mention an Itype which is attached to a
2882 -- subsequent node. At the top level in a package this can cause
2883 -- an order-of-elaboration problem, so we make sure that the itype
2884 -- is referenced now.
2886 if Ekind (Current_Scope) = E_Package
2887 and then Is_Compilation_Unit (Current_Scope)
2888 then
2889 Ensure_Defined (Target_Typ, Ck_Node);
2891 if Present (Source_Typ) then
2892 Ensure_Defined (Source_Typ, Ck_Node);
2894 elsif Is_Itype (Etype (Ck_Node)) then
2895 Ensure_Defined (Etype (Ck_Node), Ck_Node);
2896 end if;
2897 end if;
2899 -- If the item is a conditional raise of constraint error, then have
2900 -- a look at what check is being performed and ???
2902 if Nkind (R_Cno) = N_Raise_Constraint_Error
2903 and then Present (Condition (R_Cno))
2904 then
2905 Cond := Condition (R_Cno);
2907 -- Case where node does not now have a dynamic check
2909 if not Has_Dynamic_Length_Check (Ck_Node) then
2911 -- If checks are on, just insert the check
2913 if Checks_On then
2914 Insert_Action (Ck_Node, R_Cno);
2916 if not Do_Static then
2917 Set_Has_Dynamic_Length_Check (Ck_Node);
2918 end if;
2920 -- If checks are off, then analyze the length check after
2921 -- temporarily attaching it to the tree in case the relevant
2922 -- condition can be evaluated at compile time. We still want a
2923 -- compile time warning in this case.
2925 else
2926 Set_Parent (R_Cno, Ck_Node);
2927 Analyze (R_Cno);
2928 end if;
2929 end if;
2931 -- Output a warning if the condition is known to be True
2933 if Is_Entity_Name (Cond)
2934 and then Entity (Cond) = Standard_True
2935 then
2936 Apply_Compile_Time_Constraint_Error
2937 (Ck_Node, "wrong length for array of}??",
2938 CE_Length_Check_Failed,
2939 Ent => Target_Typ,
2940 Typ => Target_Typ);
2942 -- If we were only doing a static check, or if checks are not
2943 -- on, then we want to delete the check, since it is not needed.
2944 -- We do this by replacing the if statement by a null statement
2946 elsif Do_Static or else not Checks_On then
2947 Remove_Warning_Messages (R_Cno);
2948 Rewrite (R_Cno, Make_Null_Statement (Loc));
2949 end if;
2951 else
2952 Install_Static_Check (R_Cno, Loc);
2953 end if;
2954 end loop;
2955 end Apply_Selected_Length_Checks;
2957 ---------------------------------
2958 -- Apply_Selected_Range_Checks --
2959 ---------------------------------
2961 procedure Apply_Selected_Range_Checks
2962 (Ck_Node : Node_Id;
2963 Target_Typ : Entity_Id;
2964 Source_Typ : Entity_Id;
2965 Do_Static : Boolean)
2967 Cond : Node_Id;
2968 R_Result : Check_Result;
2969 R_Cno : Node_Id;
2971 Loc : constant Source_Ptr := Sloc (Ck_Node);
2972 Checks_On : constant Boolean :=
2973 (not Index_Checks_Suppressed (Target_Typ))
2974 or else (not Range_Checks_Suppressed (Target_Typ));
2976 begin
2977 if not Full_Expander_Active or else not Checks_On then
2978 return;
2979 end if;
2981 R_Result :=
2982 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2984 for J in 1 .. 2 loop
2986 R_Cno := R_Result (J);
2987 exit when No (R_Cno);
2989 -- If the item is a conditional raise of constraint error, then have
2990 -- a look at what check is being performed and ???
2992 if Nkind (R_Cno) = N_Raise_Constraint_Error
2993 and then Present (Condition (R_Cno))
2994 then
2995 Cond := Condition (R_Cno);
2997 if not Has_Dynamic_Range_Check (Ck_Node) then
2998 Insert_Action (Ck_Node, R_Cno);
3000 if not Do_Static then
3001 Set_Has_Dynamic_Range_Check (Ck_Node);
3002 end if;
3003 end if;
3005 -- Output a warning if the condition is known to be True
3007 if Is_Entity_Name (Cond)
3008 and then Entity (Cond) = Standard_True
3009 then
3010 -- Since an N_Range is technically not an expression, we have
3011 -- to set one of the bounds to C_E and then just flag the
3012 -- N_Range. The warning message will point to the lower bound
3013 -- and complain about a range, which seems OK.
3015 if Nkind (Ck_Node) = N_Range then
3016 Apply_Compile_Time_Constraint_Error
3017 (Low_Bound (Ck_Node), "static range out of bounds of}??",
3018 CE_Range_Check_Failed,
3019 Ent => Target_Typ,
3020 Typ => Target_Typ);
3022 Set_Raises_Constraint_Error (Ck_Node);
3024 else
3025 Apply_Compile_Time_Constraint_Error
3026 (Ck_Node, "static value out of range of}?",
3027 CE_Range_Check_Failed,
3028 Ent => Target_Typ,
3029 Typ => Target_Typ);
3030 end if;
3032 -- If we were only doing a static check, or if checks are not
3033 -- on, then we want to delete the check, since it is not needed.
3034 -- We do this by replacing the if statement by a null statement
3036 elsif Do_Static or else not Checks_On then
3037 Remove_Warning_Messages (R_Cno);
3038 Rewrite (R_Cno, Make_Null_Statement (Loc));
3039 end if;
3041 else
3042 Install_Static_Check (R_Cno, Loc);
3043 end if;
3044 end loop;
3045 end Apply_Selected_Range_Checks;
3047 -------------------------------
3048 -- Apply_Static_Length_Check --
3049 -------------------------------
3051 procedure Apply_Static_Length_Check
3052 (Expr : Node_Id;
3053 Target_Typ : Entity_Id;
3054 Source_Typ : Entity_Id := Empty)
3056 begin
3057 Apply_Selected_Length_Checks
3058 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3059 end Apply_Static_Length_Check;
3061 -------------------------------------
3062 -- Apply_Subscript_Validity_Checks --
3063 -------------------------------------
3065 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3066 Sub : Node_Id;
3068 begin
3069 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3071 -- Loop through subscripts
3073 Sub := First (Expressions (Expr));
3074 while Present (Sub) loop
3076 -- Check one subscript. Note that we do not worry about enumeration
3077 -- type with holes, since we will convert the value to a Pos value
3078 -- for the subscript, and that convert will do the necessary validity
3079 -- check.
3081 Ensure_Valid (Sub, Holes_OK => True);
3083 -- Move to next subscript
3085 Sub := Next (Sub);
3086 end loop;
3087 end Apply_Subscript_Validity_Checks;
3089 ----------------------------------
3090 -- Apply_Type_Conversion_Checks --
3091 ----------------------------------
3093 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3094 Target_Type : constant Entity_Id := Etype (N);
3095 Target_Base : constant Entity_Id := Base_Type (Target_Type);
3096 Expr : constant Node_Id := Expression (N);
3098 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3099 -- Note: if Etype (Expr) is a private type without discriminants, its
3100 -- full view might have discriminants with defaults, so we need the
3101 -- full view here to retrieve the constraints.
3103 begin
3104 if Inside_A_Generic then
3105 return;
3107 -- Skip these checks if serious errors detected, there are some nasty
3108 -- situations of incomplete trees that blow things up.
3110 elsif Serious_Errors_Detected > 0 then
3111 return;
3113 -- Scalar type conversions of the form Target_Type (Expr) require a
3114 -- range check if we cannot be sure that Expr is in the base type of
3115 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3116 -- are not quite the same condition from an implementation point of
3117 -- view, but clearly the second includes the first.
3119 elsif Is_Scalar_Type (Target_Type) then
3120 declare
3121 Conv_OK : constant Boolean := Conversion_OK (N);
3122 -- If the Conversion_OK flag on the type conversion is set and no
3123 -- floating point type is involved in the type conversion then
3124 -- fixed point values must be read as integral values.
3126 Float_To_Int : constant Boolean :=
3127 Is_Floating_Point_Type (Expr_Type)
3128 and then Is_Integer_Type (Target_Type);
3130 begin
3131 if not Overflow_Checks_Suppressed (Target_Base)
3132 and then not Overflow_Checks_Suppressed (Target_Type)
3133 and then not
3134 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3135 and then not Float_To_Int
3136 then
3137 Activate_Overflow_Check (N);
3138 end if;
3140 if not Range_Checks_Suppressed (Target_Type)
3141 and then not Range_Checks_Suppressed (Expr_Type)
3142 then
3143 if Float_To_Int then
3144 Apply_Float_Conversion_Check (Expr, Target_Type);
3145 else
3146 Apply_Scalar_Range_Check
3147 (Expr, Target_Type, Fixed_Int => Conv_OK);
3149 -- If the target type has predicates, we need to indicate
3150 -- the need for a check, even if Determine_Range finds
3151 -- that the value is within bounds. This may be the case
3152 -- e.g for a division with a constant denominator.
3154 if Has_Predicates (Target_Type) then
3155 Enable_Range_Check (Expr);
3156 end if;
3157 end if;
3158 end if;
3159 end;
3161 elsif Comes_From_Source (N)
3162 and then not Discriminant_Checks_Suppressed (Target_Type)
3163 and then Is_Record_Type (Target_Type)
3164 and then Is_Derived_Type (Target_Type)
3165 and then not Is_Tagged_Type (Target_Type)
3166 and then not Is_Constrained (Target_Type)
3167 and then Present (Stored_Constraint (Target_Type))
3168 then
3169 -- An unconstrained derived type may have inherited discriminant.
3170 -- Build an actual discriminant constraint list using the stored
3171 -- constraint, to verify that the expression of the parent type
3172 -- satisfies the constraints imposed by the (unconstrained!)
3173 -- derived type. This applies to value conversions, not to view
3174 -- conversions of tagged types.
3176 declare
3177 Loc : constant Source_Ptr := Sloc (N);
3178 Cond : Node_Id;
3179 Constraint : Elmt_Id;
3180 Discr_Value : Node_Id;
3181 Discr : Entity_Id;
3183 New_Constraints : constant Elist_Id := New_Elmt_List;
3184 Old_Constraints : constant Elist_Id :=
3185 Discriminant_Constraint (Expr_Type);
3187 begin
3188 Constraint := First_Elmt (Stored_Constraint (Target_Type));
3189 while Present (Constraint) loop
3190 Discr_Value := Node (Constraint);
3192 if Is_Entity_Name (Discr_Value)
3193 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3194 then
3195 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3197 if Present (Discr)
3198 and then Scope (Discr) = Base_Type (Expr_Type)
3199 then
3200 -- Parent is constrained by new discriminant. Obtain
3201 -- Value of original discriminant in expression. If the
3202 -- new discriminant has been used to constrain more than
3203 -- one of the stored discriminants, this will provide the
3204 -- required consistency check.
3206 Append_Elmt
3207 (Make_Selected_Component (Loc,
3208 Prefix =>
3209 Duplicate_Subexpr_No_Checks
3210 (Expr, Name_Req => True),
3211 Selector_Name =>
3212 Make_Identifier (Loc, Chars (Discr))),
3213 New_Constraints);
3215 else
3216 -- Discriminant of more remote ancestor ???
3218 return;
3219 end if;
3221 -- Derived type definition has an explicit value for this
3222 -- stored discriminant.
3224 else
3225 Append_Elmt
3226 (Duplicate_Subexpr_No_Checks (Discr_Value),
3227 New_Constraints);
3228 end if;
3230 Next_Elmt (Constraint);
3231 end loop;
3233 -- Use the unconstrained expression type to retrieve the
3234 -- discriminants of the parent, and apply momentarily the
3235 -- discriminant constraint synthesized above.
3237 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3238 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3239 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3241 Insert_Action (N,
3242 Make_Raise_Constraint_Error (Loc,
3243 Condition => Cond,
3244 Reason => CE_Discriminant_Check_Failed));
3245 end;
3247 -- For arrays, conversions are applied during expansion, to take into
3248 -- accounts changes of representation. The checks become range checks on
3249 -- the base type or length checks on the subtype, depending on whether
3250 -- the target type is unconstrained or constrained.
3252 else
3253 null;
3254 end if;
3255 end Apply_Type_Conversion_Checks;
3257 ----------------------------------------------
3258 -- Apply_Universal_Integer_Attribute_Checks --
3259 ----------------------------------------------
3261 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3262 Loc : constant Source_Ptr := Sloc (N);
3263 Typ : constant Entity_Id := Etype (N);
3265 begin
3266 if Inside_A_Generic then
3267 return;
3269 -- Nothing to do if checks are suppressed
3271 elsif Range_Checks_Suppressed (Typ)
3272 and then Overflow_Checks_Suppressed (Typ)
3273 then
3274 return;
3276 -- Nothing to do if the attribute does not come from source. The
3277 -- internal attributes we generate of this type do not need checks,
3278 -- and furthermore the attempt to check them causes some circular
3279 -- elaboration orders when dealing with packed types.
3281 elsif not Comes_From_Source (N) then
3282 return;
3284 -- If the prefix is a selected component that depends on a discriminant
3285 -- the check may improperly expose a discriminant instead of using
3286 -- the bounds of the object itself. Set the type of the attribute to
3287 -- the base type of the context, so that a check will be imposed when
3288 -- needed (e.g. if the node appears as an index).
3290 elsif Nkind (Prefix (N)) = N_Selected_Component
3291 and then Ekind (Typ) = E_Signed_Integer_Subtype
3292 and then Depends_On_Discriminant (Scalar_Range (Typ))
3293 then
3294 Set_Etype (N, Base_Type (Typ));
3296 -- Otherwise, replace the attribute node with a type conversion node
3297 -- whose expression is the attribute, retyped to universal integer, and
3298 -- whose subtype mark is the target type. The call to analyze this
3299 -- conversion will set range and overflow checks as required for proper
3300 -- detection of an out of range value.
3302 else
3303 Set_Etype (N, Universal_Integer);
3304 Set_Analyzed (N, True);
3306 Rewrite (N,
3307 Make_Type_Conversion (Loc,
3308 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3309 Expression => Relocate_Node (N)));
3311 Analyze_And_Resolve (N, Typ);
3312 return;
3313 end if;
3314 end Apply_Universal_Integer_Attribute_Checks;
3316 -------------------------------------
3317 -- Atomic_Synchronization_Disabled --
3318 -------------------------------------
3320 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3321 -- using a bogus check called Atomic_Synchronization. This is to make it
3322 -- more convenient to get exactly the same semantics as [Un]Suppress.
3324 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3325 begin
3326 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3327 -- looks enabled, since it is never disabled.
3329 if Debug_Flag_Dot_E then
3330 return False;
3332 -- If debug flag d.d is set then always return True, i.e. all atomic
3333 -- sync looks disabled, since it always tests True.
3335 elsif Debug_Flag_Dot_D then
3336 return True;
3338 -- If entity present, then check result for that entity
3340 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3341 return Is_Check_Suppressed (E, Atomic_Synchronization);
3343 -- Otherwise result depends on current scope setting
3345 else
3346 return Scope_Suppress.Suppress (Atomic_Synchronization);
3347 end if;
3348 end Atomic_Synchronization_Disabled;
3350 -------------------------------
3351 -- Build_Discriminant_Checks --
3352 -------------------------------
3354 function Build_Discriminant_Checks
3355 (N : Node_Id;
3356 T_Typ : Entity_Id) return Node_Id
3358 Loc : constant Source_Ptr := Sloc (N);
3359 Cond : Node_Id;
3360 Disc : Elmt_Id;
3361 Disc_Ent : Entity_Id;
3362 Dref : Node_Id;
3363 Dval : Node_Id;
3365 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3367 ----------------------------------
3368 -- Aggregate_Discriminant_Value --
3369 ----------------------------------
3371 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3372 Assoc : Node_Id;
3374 begin
3375 -- The aggregate has been normalized with named associations. We use
3376 -- the Chars field to locate the discriminant to take into account
3377 -- discriminants in derived types, which carry the same name as those
3378 -- in the parent.
3380 Assoc := First (Component_Associations (N));
3381 while Present (Assoc) loop
3382 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3383 return Expression (Assoc);
3384 else
3385 Next (Assoc);
3386 end if;
3387 end loop;
3389 -- Discriminant must have been found in the loop above
3391 raise Program_Error;
3392 end Aggregate_Discriminant_Val;
3394 -- Start of processing for Build_Discriminant_Checks
3396 begin
3397 -- Loop through discriminants evolving the condition
3399 Cond := Empty;
3400 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3402 -- For a fully private type, use the discriminants of the parent type
3404 if Is_Private_Type (T_Typ)
3405 and then No (Full_View (T_Typ))
3406 then
3407 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3408 else
3409 Disc_Ent := First_Discriminant (T_Typ);
3410 end if;
3412 while Present (Disc) loop
3413 Dval := Node (Disc);
3415 if Nkind (Dval) = N_Identifier
3416 and then Ekind (Entity (Dval)) = E_Discriminant
3417 then
3418 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3419 else
3420 Dval := Duplicate_Subexpr_No_Checks (Dval);
3421 end if;
3423 -- If we have an Unchecked_Union node, we can infer the discriminants
3424 -- of the node.
3426 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3427 Dref := New_Copy (
3428 Get_Discriminant_Value (
3429 First_Discriminant (T_Typ),
3430 T_Typ,
3431 Stored_Constraint (T_Typ)));
3433 elsif Nkind (N) = N_Aggregate then
3434 Dref :=
3435 Duplicate_Subexpr_No_Checks
3436 (Aggregate_Discriminant_Val (Disc_Ent));
3438 else
3439 Dref :=
3440 Make_Selected_Component (Loc,
3441 Prefix =>
3442 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
3443 Selector_Name =>
3444 Make_Identifier (Loc, Chars (Disc_Ent)));
3446 Set_Is_In_Discriminant_Check (Dref);
3447 end if;
3449 Evolve_Or_Else (Cond,
3450 Make_Op_Ne (Loc,
3451 Left_Opnd => Dref,
3452 Right_Opnd => Dval));
3454 Next_Elmt (Disc);
3455 Next_Discriminant (Disc_Ent);
3456 end loop;
3458 return Cond;
3459 end Build_Discriminant_Checks;
3461 ------------------
3462 -- Check_Needed --
3463 ------------------
3465 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3466 N : Node_Id;
3467 P : Node_Id;
3468 K : Node_Kind;
3469 L : Node_Id;
3470 R : Node_Id;
3472 begin
3473 -- Always check if not simple entity
3475 if Nkind (Nod) not in N_Has_Entity
3476 or else not Comes_From_Source (Nod)
3477 then
3478 return True;
3479 end if;
3481 -- Look up tree for short circuit
3483 N := Nod;
3484 loop
3485 P := Parent (N);
3486 K := Nkind (P);
3488 -- Done if out of subexpression (note that we allow generated stuff
3489 -- such as itype declarations in this context, to keep the loop going
3490 -- since we may well have generated such stuff in complex situations.
3491 -- Also done if no parent (probably an error condition, but no point
3492 -- in behaving nasty if we find it!)
3494 if No (P)
3495 or else (K not in N_Subexpr and then Comes_From_Source (P))
3496 then
3497 return True;
3499 -- Or/Or Else case, where test is part of the right operand, or is
3500 -- part of one of the actions associated with the right operand, and
3501 -- the left operand is an equality test.
3503 elsif K = N_Op_Or then
3504 exit when N = Right_Opnd (P)
3505 and then Nkind (Left_Opnd (P)) = N_Op_Eq;
3507 elsif K = N_Or_Else then
3508 exit when (N = Right_Opnd (P)
3509 or else
3510 (Is_List_Member (N)
3511 and then List_Containing (N) = Actions (P)))
3512 and then Nkind (Left_Opnd (P)) = N_Op_Eq;
3514 -- Similar test for the And/And then case, where the left operand
3515 -- is an inequality test.
3517 elsif K = N_Op_And then
3518 exit when N = Right_Opnd (P)
3519 and then Nkind (Left_Opnd (P)) = N_Op_Ne;
3521 elsif K = N_And_Then then
3522 exit when (N = Right_Opnd (P)
3523 or else
3524 (Is_List_Member (N)
3525 and then List_Containing (N) = Actions (P)))
3526 and then Nkind (Left_Opnd (P)) = N_Op_Ne;
3527 end if;
3529 N := P;
3530 end loop;
3532 -- If we fall through the loop, then we have a conditional with an
3533 -- appropriate test as its left operand. So test further.
3535 L := Left_Opnd (P);
3536 R := Right_Opnd (L);
3537 L := Left_Opnd (L);
3539 -- Left operand of test must match original variable
3541 if Nkind (L) not in N_Has_Entity
3542 or else Entity (L) /= Entity (Nod)
3543 then
3544 return True;
3545 end if;
3547 -- Right operand of test must be key value (zero or null)
3549 case Check is
3550 when Access_Check =>
3551 if not Known_Null (R) then
3552 return True;
3553 end if;
3555 when Division_Check =>
3556 if not Compile_Time_Known_Value (R)
3557 or else Expr_Value (R) /= Uint_0
3558 then
3559 return True;
3560 end if;
3562 when others =>
3563 raise Program_Error;
3564 end case;
3566 -- Here we have the optimizable case, warn if not short-circuited
3568 if K = N_Op_And or else K = N_Op_Or then
3569 case Check is
3570 when Access_Check =>
3571 Error_Msg_N
3572 ("Constraint_Error may be raised (access check)??",
3573 Parent (Nod));
3574 when Division_Check =>
3575 Error_Msg_N
3576 ("Constraint_Error may be raised (zero divide)??",
3577 Parent (Nod));
3579 when others =>
3580 raise Program_Error;
3581 end case;
3583 if K = N_Op_And then
3584 Error_Msg_N -- CODEFIX
3585 ("use `AND THEN` instead of AND??", P);
3586 else
3587 Error_Msg_N -- CODEFIX
3588 ("use `OR ELSE` instead of OR??", P);
3589 end if;
3591 -- If not short-circuited, we need the check
3593 return True;
3595 -- If short-circuited, we can omit the check
3597 else
3598 return False;
3599 end if;
3600 end Check_Needed;
3602 -----------------------------------
3603 -- Check_Valid_Lvalue_Subscripts --
3604 -----------------------------------
3606 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
3607 begin
3608 -- Skip this if range checks are suppressed
3610 if Range_Checks_Suppressed (Etype (Expr)) then
3611 return;
3613 -- Only do this check for expressions that come from source. We assume
3614 -- that expander generated assignments explicitly include any necessary
3615 -- checks. Note that this is not just an optimization, it avoids
3616 -- infinite recursions!
3618 elsif not Comes_From_Source (Expr) then
3619 return;
3621 -- For a selected component, check the prefix
3623 elsif Nkind (Expr) = N_Selected_Component then
3624 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3625 return;
3627 -- Case of indexed component
3629 elsif Nkind (Expr) = N_Indexed_Component then
3630 Apply_Subscript_Validity_Checks (Expr);
3632 -- Prefix may itself be or contain an indexed component, and these
3633 -- subscripts need checking as well.
3635 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3636 end if;
3637 end Check_Valid_Lvalue_Subscripts;
3639 ----------------------------------
3640 -- Null_Exclusion_Static_Checks --
3641 ----------------------------------
3643 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
3644 Error_Node : Node_Id;
3645 Expr : Node_Id;
3646 Has_Null : constant Boolean := Has_Null_Exclusion (N);
3647 K : constant Node_Kind := Nkind (N);
3648 Typ : Entity_Id;
3650 begin
3651 pragma Assert
3652 (K = N_Component_Declaration
3653 or else K = N_Discriminant_Specification
3654 or else K = N_Function_Specification
3655 or else K = N_Object_Declaration
3656 or else K = N_Parameter_Specification);
3658 if K = N_Function_Specification then
3659 Typ := Etype (Defining_Entity (N));
3660 else
3661 Typ := Etype (Defining_Identifier (N));
3662 end if;
3664 case K is
3665 when N_Component_Declaration =>
3666 if Present (Access_Definition (Component_Definition (N))) then
3667 Error_Node := Component_Definition (N);
3668 else
3669 Error_Node := Subtype_Indication (Component_Definition (N));
3670 end if;
3672 when N_Discriminant_Specification =>
3673 Error_Node := Discriminant_Type (N);
3675 when N_Function_Specification =>
3676 Error_Node := Result_Definition (N);
3678 when N_Object_Declaration =>
3679 Error_Node := Object_Definition (N);
3681 when N_Parameter_Specification =>
3682 Error_Node := Parameter_Type (N);
3684 when others =>
3685 raise Program_Error;
3686 end case;
3688 if Has_Null then
3690 -- Enforce legality rule 3.10 (13): A null exclusion can only be
3691 -- applied to an access [sub]type.
3693 if not Is_Access_Type (Typ) then
3694 Error_Msg_N
3695 ("`NOT NULL` allowed only for an access type", Error_Node);
3697 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
3698 -- be applied to a [sub]type that does not exclude null already.
3700 elsif Can_Never_Be_Null (Typ)
3701 and then Comes_From_Source (Typ)
3702 then
3703 Error_Msg_NE
3704 ("`NOT NULL` not allowed (& already excludes null)",
3705 Error_Node, Typ);
3706 end if;
3707 end if;
3709 -- Check that null-excluding objects are always initialized, except for
3710 -- deferred constants, for which the expression will appear in the full
3711 -- declaration.
3713 if K = N_Object_Declaration
3714 and then No (Expression (N))
3715 and then not Constant_Present (N)
3716 and then not No_Initialization (N)
3717 then
3718 -- Add an expression that assigns null. This node is needed by
3719 -- Apply_Compile_Time_Constraint_Error, which will replace this with
3720 -- a Constraint_Error node.
3722 Set_Expression (N, Make_Null (Sloc (N)));
3723 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
3725 Apply_Compile_Time_Constraint_Error
3726 (N => Expression (N),
3727 Msg =>
3728 "(Ada 2005) null-excluding objects must be initialized??",
3729 Reason => CE_Null_Not_Allowed);
3730 end if;
3732 -- Check that a null-excluding component, formal or object is not being
3733 -- assigned a null value. Otherwise generate a warning message and
3734 -- replace Expression (N) by an N_Constraint_Error node.
3736 if K /= N_Function_Specification then
3737 Expr := Expression (N);
3739 if Present (Expr) and then Known_Null (Expr) then
3740 case K is
3741 when N_Component_Declaration |
3742 N_Discriminant_Specification =>
3743 Apply_Compile_Time_Constraint_Error
3744 (N => Expr,
3745 Msg => "(Ada 2005) null not allowed " &
3746 "in null-excluding components??",
3747 Reason => CE_Null_Not_Allowed);
3749 when N_Object_Declaration =>
3750 Apply_Compile_Time_Constraint_Error
3751 (N => Expr,
3752 Msg => "(Ada 2005) null not allowed " &
3753 "in null-excluding objects?",
3754 Reason => CE_Null_Not_Allowed);
3756 when N_Parameter_Specification =>
3757 Apply_Compile_Time_Constraint_Error
3758 (N => Expr,
3759 Msg => "(Ada 2005) null not allowed " &
3760 "in null-excluding formals??",
3761 Reason => CE_Null_Not_Allowed);
3763 when others =>
3764 null;
3765 end case;
3766 end if;
3767 end if;
3768 end Null_Exclusion_Static_Checks;
3770 ----------------------------------
3771 -- Conditional_Statements_Begin --
3772 ----------------------------------
3774 procedure Conditional_Statements_Begin is
3775 begin
3776 Saved_Checks_TOS := Saved_Checks_TOS + 1;
3778 -- If stack overflows, kill all checks, that way we know to simply reset
3779 -- the number of saved checks to zero on return. This should never occur
3780 -- in practice.
3782 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
3783 Kill_All_Checks;
3785 -- In the normal case, we just make a new stack entry saving the current
3786 -- number of saved checks for a later restore.
3788 else
3789 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
3791 if Debug_Flag_CC then
3792 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
3793 Num_Saved_Checks);
3794 end if;
3795 end if;
3796 end Conditional_Statements_Begin;
3798 --------------------------------
3799 -- Conditional_Statements_End --
3800 --------------------------------
3802 procedure Conditional_Statements_End is
3803 begin
3804 pragma Assert (Saved_Checks_TOS > 0);
3806 -- If the saved checks stack overflowed, then we killed all checks, so
3807 -- setting the number of saved checks back to zero is correct. This
3808 -- should never occur in practice.
3810 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
3811 Num_Saved_Checks := 0;
3813 -- In the normal case, restore the number of saved checks from the top
3814 -- stack entry.
3816 else
3817 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
3818 if Debug_Flag_CC then
3819 w ("Conditional_Statements_End: Num_Saved_Checks = ",
3820 Num_Saved_Checks);
3821 end if;
3822 end if;
3824 Saved_Checks_TOS := Saved_Checks_TOS - 1;
3825 end Conditional_Statements_End;
3827 -------------------------
3828 -- Convert_From_Bignum --
3829 -------------------------
3831 function Convert_From_Bignum (N : Node_Id) return Node_Id is
3832 Loc : constant Source_Ptr := Sloc (N);
3834 begin
3835 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
3837 -- Construct call From Bignum
3839 return
3840 Make_Function_Call (Loc,
3841 Name =>
3842 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
3843 Parameter_Associations => New_List (Relocate_Node (N)));
3844 end Convert_From_Bignum;
3846 -----------------------
3847 -- Convert_To_Bignum --
3848 -----------------------
3850 function Convert_To_Bignum (N : Node_Id) return Node_Id is
3851 Loc : constant Source_Ptr := Sloc (N);
3853 begin
3854 -- Nothing to do if Bignum already except call Relocate_Node
3856 if Is_RTE (Etype (N), RE_Bignum) then
3857 return Relocate_Node (N);
3859 -- Otherwise construct call to To_Bignum, converting the operand to the
3860 -- required Long_Long_Integer form.
3862 else
3863 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
3864 return
3865 Make_Function_Call (Loc,
3866 Name =>
3867 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
3868 Parameter_Associations => New_List (
3869 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
3870 end if;
3871 end Convert_To_Bignum;
3873 ---------------------
3874 -- Determine_Range --
3875 ---------------------
3877 Cache_Size : constant := 2 ** 10;
3878 type Cache_Index is range 0 .. Cache_Size - 1;
3879 -- Determine size of below cache (power of 2 is more efficient!)
3881 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
3882 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
3883 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
3884 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
3885 -- The above arrays are used to implement a small direct cache for
3886 -- Determine_Range calls. Because of the way Determine_Range recursively
3887 -- traces subexpressions, and because overflow checking calls the routine
3888 -- on the way up the tree, a quadratic behavior can otherwise be
3889 -- encountered in large expressions. The cache entry for node N is stored
3890 -- in the (N mod Cache_Size) entry, and can be validated by checking the
3891 -- actual node value stored there. The Range_Cache_V array records the
3892 -- setting of Assume_Valid for the cache entry.
3894 procedure Determine_Range
3895 (N : Node_Id;
3896 OK : out Boolean;
3897 Lo : out Uint;
3898 Hi : out Uint;
3899 Assume_Valid : Boolean := False)
3901 Typ : Entity_Id := Etype (N);
3902 -- Type to use, may get reset to base type for possibly invalid entity
3904 Lo_Left : Uint;
3905 Hi_Left : Uint;
3906 -- Lo and Hi bounds of left operand
3908 Lo_Right : Uint;
3909 Hi_Right : Uint;
3910 -- Lo and Hi bounds of right (or only) operand
3912 Bound : Node_Id;
3913 -- Temp variable used to hold a bound node
3915 Hbound : Uint;
3916 -- High bound of base type of expression
3918 Lor : Uint;
3919 Hir : Uint;
3920 -- Refined values for low and high bounds, after tightening
3922 OK1 : Boolean;
3923 -- Used in lower level calls to indicate if call succeeded
3925 Cindex : Cache_Index;
3926 -- Used to search cache
3928 Btyp : Entity_Id;
3929 -- Base type
3931 function OK_Operands return Boolean;
3932 -- Used for binary operators. Determines the ranges of the left and
3933 -- right operands, and if they are both OK, returns True, and puts
3934 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
3936 -----------------
3937 -- OK_Operands --
3938 -----------------
3940 function OK_Operands return Boolean is
3941 begin
3942 Determine_Range
3943 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
3945 if not OK1 then
3946 return False;
3947 end if;
3949 Determine_Range
3950 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
3951 return OK1;
3952 end OK_Operands;
3954 -- Start of processing for Determine_Range
3956 begin
3957 -- For temporary constants internally generated to remove side effects
3958 -- we must use the corresponding expression to determine the range of
3959 -- the expression.
3961 if Is_Entity_Name (N)
3962 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3963 and then Ekind (Entity (N)) = E_Constant
3964 and then Is_Internal_Name (Chars (Entity (N)))
3965 then
3966 Determine_Range
3967 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
3968 return;
3969 end if;
3971 -- Prevent junk warnings by initializing range variables
3973 Lo := No_Uint;
3974 Hi := No_Uint;
3975 Lor := No_Uint;
3976 Hir := No_Uint;
3978 -- If type is not defined, we can't determine its range
3980 if No (Typ)
3982 -- We don't deal with anything except discrete types
3984 or else not Is_Discrete_Type (Typ)
3986 -- Ignore type for which an error has been posted, since range in
3987 -- this case may well be a bogosity deriving from the error. Also
3988 -- ignore if error posted on the reference node.
3990 or else Error_Posted (N) or else Error_Posted (Typ)
3991 then
3992 OK := False;
3993 return;
3994 end if;
3996 -- For all other cases, we can determine the range
3998 OK := True;
4000 -- If value is compile time known, then the possible range is the one
4001 -- value that we know this expression definitely has!
4003 if Compile_Time_Known_Value (N) then
4004 Lo := Expr_Value (N);
4005 Hi := Lo;
4006 return;
4007 end if;
4009 -- Return if already in the cache
4011 Cindex := Cache_Index (N mod Cache_Size);
4013 if Determine_Range_Cache_N (Cindex) = N
4014 and then
4015 Determine_Range_Cache_V (Cindex) = Assume_Valid
4016 then
4017 Lo := Determine_Range_Cache_Lo (Cindex);
4018 Hi := Determine_Range_Cache_Hi (Cindex);
4019 return;
4020 end if;
4022 -- Otherwise, start by finding the bounds of the type of the expression,
4023 -- the value cannot be outside this range (if it is, then we have an
4024 -- overflow situation, which is a separate check, we are talking here
4025 -- only about the expression value).
4027 -- First a check, never try to find the bounds of a generic type, since
4028 -- these bounds are always junk values, and it is only valid to look at
4029 -- the bounds in an instance.
4031 if Is_Generic_Type (Typ) then
4032 OK := False;
4033 return;
4034 end if;
4036 -- First step, change to use base type unless we know the value is valid
4038 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4039 or else Assume_No_Invalid_Values
4040 or else Assume_Valid
4041 then
4042 null;
4043 else
4044 Typ := Underlying_Type (Base_Type (Typ));
4045 end if;
4047 -- Retrieve the base type. Handle the case where the base type is a
4048 -- private enumeration type.
4050 Btyp := Base_Type (Typ);
4052 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4053 Btyp := Full_View (Btyp);
4054 end if;
4056 -- We use the actual bound unless it is dynamic, in which case use the
4057 -- corresponding base type bound if possible. If we can't get a bound
4058 -- then we figure we can't determine the range (a peculiar case, that
4059 -- perhaps cannot happen, but there is no point in bombing in this
4060 -- optimization circuit.
4062 -- First the low bound
4064 Bound := Type_Low_Bound (Typ);
4066 if Compile_Time_Known_Value (Bound) then
4067 Lo := Expr_Value (Bound);
4069 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4070 Lo := Expr_Value (Type_Low_Bound (Btyp));
4072 else
4073 OK := False;
4074 return;
4075 end if;
4077 -- Now the high bound
4079 Bound := Type_High_Bound (Typ);
4081 -- We need the high bound of the base type later on, and this should
4082 -- always be compile time known. Again, it is not clear that this
4083 -- can ever be false, but no point in bombing.
4085 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4086 Hbound := Expr_Value (Type_High_Bound (Btyp));
4087 Hi := Hbound;
4089 else
4090 OK := False;
4091 return;
4092 end if;
4094 -- If we have a static subtype, then that may have a tighter bound so
4095 -- use the upper bound of the subtype instead in this case.
4097 if Compile_Time_Known_Value (Bound) then
4098 Hi := Expr_Value (Bound);
4099 end if;
4101 -- We may be able to refine this value in certain situations. If any
4102 -- refinement is possible, then Lor and Hir are set to possibly tighter
4103 -- bounds, and OK1 is set to True.
4105 case Nkind (N) is
4107 -- For unary plus, result is limited by range of operand
4109 when N_Op_Plus =>
4110 Determine_Range
4111 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4113 -- For unary minus, determine range of operand, and negate it
4115 when N_Op_Minus =>
4116 Determine_Range
4117 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4119 if OK1 then
4120 Lor := -Hi_Right;
4121 Hir := -Lo_Right;
4122 end if;
4124 -- For binary addition, get range of each operand and do the
4125 -- addition to get the result range.
4127 when N_Op_Add =>
4128 if OK_Operands then
4129 Lor := Lo_Left + Lo_Right;
4130 Hir := Hi_Left + Hi_Right;
4131 end if;
4133 -- Division is tricky. The only case we consider is where the right
4134 -- operand is a positive constant, and in this case we simply divide
4135 -- the bounds of the left operand
4137 when N_Op_Divide =>
4138 if OK_Operands then
4139 if Lo_Right = Hi_Right
4140 and then Lo_Right > 0
4141 then
4142 Lor := Lo_Left / Lo_Right;
4143 Hir := Hi_Left / Lo_Right;
4145 else
4146 OK1 := False;
4147 end if;
4148 end if;
4150 -- For binary subtraction, get range of each operand and do the worst
4151 -- case subtraction to get the result range.
4153 when N_Op_Subtract =>
4154 if OK_Operands then
4155 Lor := Lo_Left - Hi_Right;
4156 Hir := Hi_Left - Lo_Right;
4157 end if;
4159 -- For MOD, if right operand is a positive constant, then result must
4160 -- be in the allowable range of mod results.
4162 when N_Op_Mod =>
4163 if OK_Operands then
4164 if Lo_Right = Hi_Right
4165 and then Lo_Right /= 0
4166 then
4167 if Lo_Right > 0 then
4168 Lor := Uint_0;
4169 Hir := Lo_Right - 1;
4171 else -- Lo_Right < 0
4172 Lor := Lo_Right + 1;
4173 Hir := Uint_0;
4174 end if;
4176 else
4177 OK1 := False;
4178 end if;
4179 end if;
4181 -- For REM, if right operand is a positive constant, then result must
4182 -- be in the allowable range of mod results.
4184 when N_Op_Rem =>
4185 if OK_Operands then
4186 if Lo_Right = Hi_Right
4187 and then Lo_Right /= 0
4188 then
4189 declare
4190 Dval : constant Uint := (abs Lo_Right) - 1;
4192 begin
4193 -- The sign of the result depends on the sign of the
4194 -- dividend (but not on the sign of the divisor, hence
4195 -- the abs operation above).
4197 if Lo_Left < 0 then
4198 Lor := -Dval;
4199 else
4200 Lor := Uint_0;
4201 end if;
4203 if Hi_Left < 0 then
4204 Hir := Uint_0;
4205 else
4206 Hir := Dval;
4207 end if;
4208 end;
4210 else
4211 OK1 := False;
4212 end if;
4213 end if;
4215 -- Attribute reference cases
4217 when N_Attribute_Reference =>
4218 case Attribute_Name (N) is
4220 -- For Pos/Val attributes, we can refine the range using the
4221 -- possible range of values of the attribute expression.
4223 when Name_Pos | Name_Val =>
4224 Determine_Range
4225 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
4227 -- For Length attribute, use the bounds of the corresponding
4228 -- index type to refine the range.
4230 when Name_Length =>
4231 declare
4232 Atyp : Entity_Id := Etype (Prefix (N));
4233 Inum : Nat;
4234 Indx : Node_Id;
4236 LL, LU : Uint;
4237 UL, UU : Uint;
4239 begin
4240 if Is_Access_Type (Atyp) then
4241 Atyp := Designated_Type (Atyp);
4242 end if;
4244 -- For string literal, we know exact value
4246 if Ekind (Atyp) = E_String_Literal_Subtype then
4247 OK := True;
4248 Lo := String_Literal_Length (Atyp);
4249 Hi := String_Literal_Length (Atyp);
4250 return;
4251 end if;
4253 -- Otherwise check for expression given
4255 if No (Expressions (N)) then
4256 Inum := 1;
4257 else
4258 Inum :=
4259 UI_To_Int (Expr_Value (First (Expressions (N))));
4260 end if;
4262 Indx := First_Index (Atyp);
4263 for J in 2 .. Inum loop
4264 Indx := Next_Index (Indx);
4265 end loop;
4267 -- If the index type is a formal type or derived from
4268 -- one, the bounds are not static.
4270 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4271 OK := False;
4272 return;
4273 end if;
4275 Determine_Range
4276 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4277 Assume_Valid);
4279 if OK1 then
4280 Determine_Range
4281 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4282 Assume_Valid);
4284 if OK1 then
4286 -- The maximum value for Length is the biggest
4287 -- possible gap between the values of the bounds.
4288 -- But of course, this value cannot be negative.
4290 Hir := UI_Max (Uint_0, UU - LL + 1);
4292 -- For constrained arrays, the minimum value for
4293 -- Length is taken from the actual value of the
4294 -- bounds, since the index will be exactly of this
4295 -- subtype.
4297 if Is_Constrained (Atyp) then
4298 Lor := UI_Max (Uint_0, UL - LU + 1);
4300 -- For an unconstrained array, the minimum value
4301 -- for length is always zero.
4303 else
4304 Lor := Uint_0;
4305 end if;
4306 end if;
4307 end if;
4308 end;
4310 -- No special handling for other attributes
4311 -- Probably more opportunities exist here???
4313 when others =>
4314 OK1 := False;
4316 end case;
4318 -- For type conversion from one discrete type to another, we can
4319 -- refine the range using the converted value.
4321 when N_Type_Conversion =>
4322 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4324 -- Nothing special to do for all other expression kinds
4326 when others =>
4327 OK1 := False;
4328 Lor := No_Uint;
4329 Hir := No_Uint;
4330 end case;
4332 -- At this stage, if OK1 is true, then we know that the actual result of
4333 -- the computed expression is in the range Lor .. Hir. We can use this
4334 -- to restrict the possible range of results.
4336 if OK1 then
4338 -- If the refined value of the low bound is greater than the type
4339 -- high bound, then reset it to the more restrictive value. However,
4340 -- we do NOT do this for the case of a modular type where the
4341 -- possible upper bound on the value is above the base type high
4342 -- bound, because that means the result could wrap.
4344 if Lor > Lo
4345 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
4346 then
4347 Lo := Lor;
4348 end if;
4350 -- Similarly, if the refined value of the high bound is less than the
4351 -- value so far, then reset it to the more restrictive value. Again,
4352 -- we do not do this if the refined low bound is negative for a
4353 -- modular type, since this would wrap.
4355 if Hir < Hi
4356 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
4357 then
4358 Hi := Hir;
4359 end if;
4360 end if;
4362 -- Set cache entry for future call and we are all done
4364 Determine_Range_Cache_N (Cindex) := N;
4365 Determine_Range_Cache_V (Cindex) := Assume_Valid;
4366 Determine_Range_Cache_Lo (Cindex) := Lo;
4367 Determine_Range_Cache_Hi (Cindex) := Hi;
4368 return;
4370 -- If any exception occurs, it means that we have some bug in the compiler,
4371 -- possibly triggered by a previous error, or by some unforeseen peculiar
4372 -- occurrence. However, this is only an optimization attempt, so there is
4373 -- really no point in crashing the compiler. Instead we just decide, too
4374 -- bad, we can't figure out a range in this case after all.
4376 exception
4377 when others =>
4379 -- Debug flag K disables this behavior (useful for debugging)
4381 if Debug_Flag_K then
4382 raise;
4383 else
4384 OK := False;
4385 Lo := No_Uint;
4386 Hi := No_Uint;
4387 return;
4388 end if;
4389 end Determine_Range;
4391 ------------------------------------
4392 -- Discriminant_Checks_Suppressed --
4393 ------------------------------------
4395 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
4396 begin
4397 if Present (E) then
4398 if Is_Unchecked_Union (E) then
4399 return True;
4400 elsif Checks_May_Be_Suppressed (E) then
4401 return Is_Check_Suppressed (E, Discriminant_Check);
4402 end if;
4403 end if;
4405 return Scope_Suppress.Suppress (Discriminant_Check);
4406 end Discriminant_Checks_Suppressed;
4408 --------------------------------
4409 -- Division_Checks_Suppressed --
4410 --------------------------------
4412 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
4413 begin
4414 if Present (E) and then Checks_May_Be_Suppressed (E) then
4415 return Is_Check_Suppressed (E, Division_Check);
4416 else
4417 return Scope_Suppress.Suppress (Division_Check);
4418 end if;
4419 end Division_Checks_Suppressed;
4421 -----------------------------------
4422 -- Elaboration_Checks_Suppressed --
4423 -----------------------------------
4425 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
4426 begin
4427 -- The complication in this routine is that if we are in the dynamic
4428 -- model of elaboration, we also check All_Checks, since All_Checks
4429 -- does not set Elaboration_Check explicitly.
4431 if Present (E) then
4432 if Kill_Elaboration_Checks (E) then
4433 return True;
4435 elsif Checks_May_Be_Suppressed (E) then
4436 if Is_Check_Suppressed (E, Elaboration_Check) then
4437 return True;
4438 elsif Dynamic_Elaboration_Checks then
4439 return Is_Check_Suppressed (E, All_Checks);
4440 else
4441 return False;
4442 end if;
4443 end if;
4444 end if;
4446 if Scope_Suppress.Suppress (Elaboration_Check) then
4447 return True;
4448 elsif Dynamic_Elaboration_Checks then
4449 return Scope_Suppress.Suppress (All_Checks);
4450 else
4451 return False;
4452 end if;
4453 end Elaboration_Checks_Suppressed;
4455 ---------------------------
4456 -- Enable_Overflow_Check --
4457 ---------------------------
4459 procedure Enable_Overflow_Check (N : Node_Id) is
4460 Typ : constant Entity_Id := Base_Type (Etype (N));
4461 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
4462 Chk : Nat;
4463 OK : Boolean;
4464 Ent : Entity_Id;
4465 Ofs : Uint;
4466 Lo : Uint;
4467 Hi : Uint;
4469 begin
4470 if Debug_Flag_CC then
4471 w ("Enable_Overflow_Check for node ", Int (N));
4472 Write_Str (" Source location = ");
4473 wl (Sloc (N));
4474 pg (Union_Id (N));
4475 end if;
4477 -- No check if overflow checks suppressed for type of node
4479 if Overflow_Checks_Suppressed (Etype (N)) then
4480 return;
4482 -- Nothing to do for unsigned integer types, which do not overflow
4484 elsif Is_Modular_Integer_Type (Typ) then
4485 return;
4486 end if;
4488 -- This is the point at which processing for STRICT mode diverges
4489 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
4490 -- probably more extreme that it needs to be, but what is going on here
4491 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
4492 -- to leave the processing for STRICT mode untouched. There were
4493 -- two reasons for this. First it avoided any incompatible change of
4494 -- behavior. Second, it guaranteed that STRICT mode continued to be
4495 -- legacy reliable.
4497 -- The big difference is that in STRICT mode there is a fair amount of
4498 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
4499 -- know that no check is needed. We skip all that in the two new modes,
4500 -- since really overflow checking happens over a whole subtree, and we
4501 -- do the corresponding optimizations later on when applying the checks.
4503 if Mode in Minimized_Or_Eliminated then
4504 if not (Overflow_Checks_Suppressed (Etype (N)))
4505 and then not (Is_Entity_Name (N)
4506 and then Overflow_Checks_Suppressed (Entity (N)))
4507 then
4508 Activate_Overflow_Check (N);
4509 end if;
4511 if Debug_Flag_CC then
4512 w ("Minimized/Eliminated mode");
4513 end if;
4515 return;
4516 end if;
4518 -- Remainder of processing is for STRICT case, and is unchanged from
4519 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
4521 -- Nothing to do if the range of the result is known OK. We skip this
4522 -- for conversions, since the caller already did the check, and in any
4523 -- case the condition for deleting the check for a type conversion is
4524 -- different.
4526 if Nkind (N) /= N_Type_Conversion then
4527 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
4529 -- Note in the test below that we assume that the range is not OK
4530 -- if a bound of the range is equal to that of the type. That's not
4531 -- quite accurate but we do this for the following reasons:
4533 -- a) The way that Determine_Range works, it will typically report
4534 -- the bounds of the value as being equal to the bounds of the
4535 -- type, because it either can't tell anything more precise, or
4536 -- does not think it is worth the effort to be more precise.
4538 -- b) It is very unusual to have a situation in which this would
4539 -- generate an unnecessary overflow check (an example would be
4540 -- a subtype with a range 0 .. Integer'Last - 1 to which the
4541 -- literal value one is added).
4543 -- c) The alternative is a lot of special casing in this routine
4544 -- which would partially duplicate Determine_Range processing.
4546 if OK
4547 and then Lo > Expr_Value (Type_Low_Bound (Typ))
4548 and then Hi < Expr_Value (Type_High_Bound (Typ))
4549 then
4550 if Debug_Flag_CC then
4551 w ("No overflow check required");
4552 end if;
4554 return;
4555 end if;
4556 end if;
4558 -- If not in optimizing mode, set flag and we are done. We are also done
4559 -- (and just set the flag) if the type is not a discrete type, since it
4560 -- is not worth the effort to eliminate checks for other than discrete
4561 -- types. In addition, we take this same path if we have stored the
4562 -- maximum number of checks possible already (a very unlikely situation,
4563 -- but we do not want to blow up!)
4565 if Optimization_Level = 0
4566 or else not Is_Discrete_Type (Etype (N))
4567 or else Num_Saved_Checks = Saved_Checks'Last
4568 then
4569 Activate_Overflow_Check (N);
4571 if Debug_Flag_CC then
4572 w ("Optimization off");
4573 end if;
4575 return;
4576 end if;
4578 -- Otherwise evaluate and check the expression
4580 Find_Check
4581 (Expr => N,
4582 Check_Type => 'O',
4583 Target_Type => Empty,
4584 Entry_OK => OK,
4585 Check_Num => Chk,
4586 Ent => Ent,
4587 Ofs => Ofs);
4589 if Debug_Flag_CC then
4590 w ("Called Find_Check");
4591 w (" OK = ", OK);
4593 if OK then
4594 w (" Check_Num = ", Chk);
4595 w (" Ent = ", Int (Ent));
4596 Write_Str (" Ofs = ");
4597 pid (Ofs);
4598 end if;
4599 end if;
4601 -- If check is not of form to optimize, then set flag and we are done
4603 if not OK then
4604 Activate_Overflow_Check (N);
4605 return;
4606 end if;
4608 -- If check is already performed, then return without setting flag
4610 if Chk /= 0 then
4611 if Debug_Flag_CC then
4612 w ("Check suppressed!");
4613 end if;
4615 return;
4616 end if;
4618 -- Here we will make a new entry for the new check
4620 Activate_Overflow_Check (N);
4621 Num_Saved_Checks := Num_Saved_Checks + 1;
4622 Saved_Checks (Num_Saved_Checks) :=
4623 (Killed => False,
4624 Entity => Ent,
4625 Offset => Ofs,
4626 Check_Type => 'O',
4627 Target_Type => Empty);
4629 if Debug_Flag_CC then
4630 w ("Make new entry, check number = ", Num_Saved_Checks);
4631 w (" Entity = ", Int (Ent));
4632 Write_Str (" Offset = ");
4633 pid (Ofs);
4634 w (" Check_Type = O");
4635 w (" Target_Type = Empty");
4636 end if;
4638 -- If we get an exception, then something went wrong, probably because of
4639 -- an error in the structure of the tree due to an incorrect program. Or it
4640 -- may be a bug in the optimization circuit. In either case the safest
4641 -- thing is simply to set the check flag unconditionally.
4643 exception
4644 when others =>
4645 Activate_Overflow_Check (N);
4647 if Debug_Flag_CC then
4648 w (" exception occurred, overflow flag set");
4649 end if;
4651 return;
4652 end Enable_Overflow_Check;
4654 ------------------------
4655 -- Enable_Range_Check --
4656 ------------------------
4658 procedure Enable_Range_Check (N : Node_Id) is
4659 Chk : Nat;
4660 OK : Boolean;
4661 Ent : Entity_Id;
4662 Ofs : Uint;
4663 Ttyp : Entity_Id;
4664 P : Node_Id;
4666 begin
4667 -- Return if unchecked type conversion with range check killed. In this
4668 -- case we never set the flag (that's what Kill_Range_Check is about!)
4670 if Nkind (N) = N_Unchecked_Type_Conversion
4671 and then Kill_Range_Check (N)
4672 then
4673 return;
4674 end if;
4676 -- Do not set range check flag if parent is assignment statement or
4677 -- object declaration with Suppress_Assignment_Checks flag set
4679 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
4680 and then Suppress_Assignment_Checks (Parent (N))
4681 then
4682 return;
4683 end if;
4685 -- Check for various cases where we should suppress the range check
4687 -- No check if range checks suppressed for type of node
4689 if Present (Etype (N))
4690 and then Range_Checks_Suppressed (Etype (N))
4691 then
4692 return;
4694 -- No check if node is an entity name, and range checks are suppressed
4695 -- for this entity, or for the type of this entity.
4697 elsif Is_Entity_Name (N)
4698 and then (Range_Checks_Suppressed (Entity (N))
4699 or else Range_Checks_Suppressed (Etype (Entity (N))))
4700 then
4701 return;
4703 -- No checks if index of array, and index checks are suppressed for
4704 -- the array object or the type of the array.
4706 elsif Nkind (Parent (N)) = N_Indexed_Component then
4707 declare
4708 Pref : constant Node_Id := Prefix (Parent (N));
4709 begin
4710 if Is_Entity_Name (Pref)
4711 and then Index_Checks_Suppressed (Entity (Pref))
4712 then
4713 return;
4714 elsif Index_Checks_Suppressed (Etype (Pref)) then
4715 return;
4716 end if;
4717 end;
4718 end if;
4720 -- Debug trace output
4722 if Debug_Flag_CC then
4723 w ("Enable_Range_Check for node ", Int (N));
4724 Write_Str (" Source location = ");
4725 wl (Sloc (N));
4726 pg (Union_Id (N));
4727 end if;
4729 -- If not in optimizing mode, set flag and we are done. We are also done
4730 -- (and just set the flag) if the type is not a discrete type, since it
4731 -- is not worth the effort to eliminate checks for other than discrete
4732 -- types. In addition, we take this same path if we have stored the
4733 -- maximum number of checks possible already (a very unlikely situation,
4734 -- but we do not want to blow up!)
4736 if Optimization_Level = 0
4737 or else No (Etype (N))
4738 or else not Is_Discrete_Type (Etype (N))
4739 or else Num_Saved_Checks = Saved_Checks'Last
4740 then
4741 Activate_Range_Check (N);
4743 if Debug_Flag_CC then
4744 w ("Optimization off");
4745 end if;
4747 return;
4748 end if;
4750 -- Otherwise find out the target type
4752 P := Parent (N);
4754 -- For assignment, use left side subtype
4756 if Nkind (P) = N_Assignment_Statement
4757 and then Expression (P) = N
4758 then
4759 Ttyp := Etype (Name (P));
4761 -- For indexed component, use subscript subtype
4763 elsif Nkind (P) = N_Indexed_Component then
4764 declare
4765 Atyp : Entity_Id;
4766 Indx : Node_Id;
4767 Subs : Node_Id;
4769 begin
4770 Atyp := Etype (Prefix (P));
4772 if Is_Access_Type (Atyp) then
4773 Atyp := Designated_Type (Atyp);
4775 -- If the prefix is an access to an unconstrained array,
4776 -- perform check unconditionally: it depends on the bounds of
4777 -- an object and we cannot currently recognize whether the test
4778 -- may be redundant.
4780 if not Is_Constrained (Atyp) then
4781 Activate_Range_Check (N);
4782 return;
4783 end if;
4785 -- Ditto if the prefix is an explicit dereference whose designated
4786 -- type is unconstrained.
4788 elsif Nkind (Prefix (P)) = N_Explicit_Dereference
4789 and then not Is_Constrained (Atyp)
4790 then
4791 Activate_Range_Check (N);
4792 return;
4793 end if;
4795 Indx := First_Index (Atyp);
4796 Subs := First (Expressions (P));
4797 loop
4798 if Subs = N then
4799 Ttyp := Etype (Indx);
4800 exit;
4801 end if;
4803 Next_Index (Indx);
4804 Next (Subs);
4805 end loop;
4806 end;
4808 -- For now, ignore all other cases, they are not so interesting
4810 else
4811 if Debug_Flag_CC then
4812 w (" target type not found, flag set");
4813 end if;
4815 Activate_Range_Check (N);
4816 return;
4817 end if;
4819 -- Evaluate and check the expression
4821 Find_Check
4822 (Expr => N,
4823 Check_Type => 'R',
4824 Target_Type => Ttyp,
4825 Entry_OK => OK,
4826 Check_Num => Chk,
4827 Ent => Ent,
4828 Ofs => Ofs);
4830 if Debug_Flag_CC then
4831 w ("Called Find_Check");
4832 w ("Target_Typ = ", Int (Ttyp));
4833 w (" OK = ", OK);
4835 if OK then
4836 w (" Check_Num = ", Chk);
4837 w (" Ent = ", Int (Ent));
4838 Write_Str (" Ofs = ");
4839 pid (Ofs);
4840 end if;
4841 end if;
4843 -- If check is not of form to optimize, then set flag and we are done
4845 if not OK then
4846 if Debug_Flag_CC then
4847 w (" expression not of optimizable type, flag set");
4848 end if;
4850 Activate_Range_Check (N);
4851 return;
4852 end if;
4854 -- If check is already performed, then return without setting flag
4856 if Chk /= 0 then
4857 if Debug_Flag_CC then
4858 w ("Check suppressed!");
4859 end if;
4861 return;
4862 end if;
4864 -- Here we will make a new entry for the new check
4866 Activate_Range_Check (N);
4867 Num_Saved_Checks := Num_Saved_Checks + 1;
4868 Saved_Checks (Num_Saved_Checks) :=
4869 (Killed => False,
4870 Entity => Ent,
4871 Offset => Ofs,
4872 Check_Type => 'R',
4873 Target_Type => Ttyp);
4875 if Debug_Flag_CC then
4876 w ("Make new entry, check number = ", Num_Saved_Checks);
4877 w (" Entity = ", Int (Ent));
4878 Write_Str (" Offset = ");
4879 pid (Ofs);
4880 w (" Check_Type = R");
4881 w (" Target_Type = ", Int (Ttyp));
4882 pg (Union_Id (Ttyp));
4883 end if;
4885 -- If we get an exception, then something went wrong, probably because of
4886 -- an error in the structure of the tree due to an incorrect program. Or
4887 -- it may be a bug in the optimization circuit. In either case the safest
4888 -- thing is simply to set the check flag unconditionally.
4890 exception
4891 when others =>
4892 Activate_Range_Check (N);
4894 if Debug_Flag_CC then
4895 w (" exception occurred, range flag set");
4896 end if;
4898 return;
4899 end Enable_Range_Check;
4901 ------------------
4902 -- Ensure_Valid --
4903 ------------------
4905 procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
4906 Typ : constant Entity_Id := Etype (Expr);
4908 begin
4909 -- Ignore call if we are not doing any validity checking
4911 if not Validity_Checks_On then
4912 return;
4914 -- Ignore call if range or validity checks suppressed on entity or type
4916 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
4917 return;
4919 -- No check required if expression is from the expander, we assume the
4920 -- expander will generate whatever checks are needed. Note that this is
4921 -- not just an optimization, it avoids infinite recursions!
4923 -- Unchecked conversions must be checked, unless they are initialized
4924 -- scalar values, as in a component assignment in an init proc.
4926 -- In addition, we force a check if Force_Validity_Checks is set
4928 elsif not Comes_From_Source (Expr)
4929 and then not Force_Validity_Checks
4930 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
4931 or else Kill_Range_Check (Expr))
4932 then
4933 return;
4935 -- No check required if expression is known to have valid value
4937 elsif Expr_Known_Valid (Expr) then
4938 return;
4940 -- Ignore case of enumeration with holes where the flag is set not to
4941 -- worry about holes, since no special validity check is needed
4943 elsif Is_Enumeration_Type (Typ)
4944 and then Has_Non_Standard_Rep (Typ)
4945 and then Holes_OK
4946 then
4947 return;
4949 -- No check required on the left-hand side of an assignment
4951 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
4952 and then Expr = Name (Parent (Expr))
4953 then
4954 return;
4956 -- No check on a universal real constant. The context will eventually
4957 -- convert it to a machine number for some target type, or report an
4958 -- illegality.
4960 elsif Nkind (Expr) = N_Real_Literal
4961 and then Etype (Expr) = Universal_Real
4962 then
4963 return;
4965 -- If the expression denotes a component of a packed boolean array,
4966 -- no possible check applies. We ignore the old ACATS chestnuts that
4967 -- involve Boolean range True..True.
4969 -- Note: validity checks are generated for expressions that yield a
4970 -- scalar type, when it is possible to create a value that is outside of
4971 -- the type. If this is a one-bit boolean no such value exists. This is
4972 -- an optimization, and it also prevents compiler blowing up during the
4973 -- elaboration of improperly expanded packed array references.
4975 elsif Nkind (Expr) = N_Indexed_Component
4976 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
4977 and then Root_Type (Etype (Expr)) = Standard_Boolean
4978 then
4979 return;
4981 -- An annoying special case. If this is an out parameter of a scalar
4982 -- type, then the value is not going to be accessed, therefore it is
4983 -- inappropriate to do any validity check at the call site.
4985 else
4986 -- Only need to worry about scalar types
4988 if Is_Scalar_Type (Typ) then
4989 declare
4990 P : Node_Id;
4991 N : Node_Id;
4992 E : Entity_Id;
4993 F : Entity_Id;
4994 A : Node_Id;
4995 L : List_Id;
4997 begin
4998 -- Find actual argument (which may be a parameter association)
4999 -- and the parent of the actual argument (the call statement)
5001 N := Expr;
5002 P := Parent (Expr);
5004 if Nkind (P) = N_Parameter_Association then
5005 N := P;
5006 P := Parent (N);
5007 end if;
5009 -- Only need to worry if we are argument of a procedure call
5010 -- since functions don't have out parameters. If this is an
5011 -- indirect or dispatching call, get signature from the
5012 -- subprogram type.
5014 if Nkind (P) = N_Procedure_Call_Statement then
5015 L := Parameter_Associations (P);
5017 if Is_Entity_Name (Name (P)) then
5018 E := Entity (Name (P));
5019 else
5020 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
5021 E := Etype (Name (P));
5022 end if;
5024 -- Only need to worry if there are indeed actuals, and if
5025 -- this could be a procedure call, otherwise we cannot get a
5026 -- match (either we are not an argument, or the mode of the
5027 -- formal is not OUT). This test also filters out the
5028 -- generic case.
5030 if Is_Non_Empty_List (L)
5031 and then Is_Subprogram (E)
5032 then
5033 -- This is the loop through parameters, looking for an
5034 -- OUT parameter for which we are the argument.
5036 F := First_Formal (E);
5037 A := First (L);
5038 while Present (F) loop
5039 if Ekind (F) = E_Out_Parameter and then A = N then
5040 return;
5041 end if;
5043 Next_Formal (F);
5044 Next (A);
5045 end loop;
5046 end if;
5047 end if;
5048 end;
5049 end if;
5050 end if;
5052 -- If this is a boolean expression, only its elementary operands need
5053 -- checking: if they are valid, a boolean or short-circuit operation
5054 -- with them will be valid as well.
5056 if Base_Type (Typ) = Standard_Boolean
5057 and then
5058 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
5059 then
5060 return;
5061 end if;
5063 -- If we fall through, a validity check is required
5065 Insert_Valid_Check (Expr);
5067 if Is_Entity_Name (Expr)
5068 and then Safe_To_Capture_Value (Expr, Entity (Expr))
5069 then
5070 Set_Is_Known_Valid (Entity (Expr));
5071 end if;
5072 end Ensure_Valid;
5074 ----------------------
5075 -- Expr_Known_Valid --
5076 ----------------------
5078 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
5079 Typ : constant Entity_Id := Etype (Expr);
5081 begin
5082 -- Non-scalar types are always considered valid, since they never give
5083 -- rise to the issues of erroneous or bounded error behavior that are
5084 -- the concern. In formal reference manual terms the notion of validity
5085 -- only applies to scalar types. Note that even when packed arrays are
5086 -- represented using modular types, they are still arrays semantically,
5087 -- so they are also always valid (in particular, the unused bits can be
5088 -- random rubbish without affecting the validity of the array value).
5090 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
5091 return True;
5093 -- If no validity checking, then everything is considered valid
5095 elsif not Validity_Checks_On then
5096 return True;
5098 -- Floating-point types are considered valid unless floating-point
5099 -- validity checks have been specifically turned on.
5101 elsif Is_Floating_Point_Type (Typ)
5102 and then not Validity_Check_Floating_Point
5103 then
5104 return True;
5106 -- If the expression is the value of an object that is known to be
5107 -- valid, then clearly the expression value itself is valid.
5109 elsif Is_Entity_Name (Expr)
5110 and then Is_Known_Valid (Entity (Expr))
5111 then
5112 return True;
5114 -- References to discriminants are always considered valid. The value
5115 -- of a discriminant gets checked when the object is built. Within the
5116 -- record, we consider it valid, and it is important to do so, since
5117 -- otherwise we can try to generate bogus validity checks which
5118 -- reference discriminants out of scope. Discriminants of concurrent
5119 -- types are excluded for the same reason.
5121 elsif Is_Entity_Name (Expr)
5122 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
5123 then
5124 return True;
5126 -- If the type is one for which all values are known valid, then we are
5127 -- sure that the value is valid except in the slightly odd case where
5128 -- the expression is a reference to a variable whose size has been
5129 -- explicitly set to a value greater than the object size.
5131 elsif Is_Known_Valid (Typ) then
5132 if Is_Entity_Name (Expr)
5133 and then Ekind (Entity (Expr)) = E_Variable
5134 and then Esize (Entity (Expr)) > Esize (Typ)
5135 then
5136 return False;
5137 else
5138 return True;
5139 end if;
5141 -- Integer and character literals always have valid values, where
5142 -- appropriate these will be range checked in any case.
5144 elsif Nkind (Expr) = N_Integer_Literal
5145 or else
5146 Nkind (Expr) = N_Character_Literal
5147 then
5148 return True;
5150 -- Real literals are assumed to be valid in VM targets
5152 elsif VM_Target /= No_VM
5153 and then Nkind (Expr) = N_Real_Literal
5154 then
5155 return True;
5157 -- If we have a type conversion or a qualification of a known valid
5158 -- value, then the result will always be valid.
5160 elsif Nkind (Expr) = N_Type_Conversion
5161 or else
5162 Nkind (Expr) = N_Qualified_Expression
5163 then
5164 return Expr_Known_Valid (Expression (Expr));
5166 -- The result of any operator is always considered valid, since we
5167 -- assume the necessary checks are done by the operator. For operators
5168 -- on floating-point operations, we must also check when the operation
5169 -- is the right-hand side of an assignment, or is an actual in a call.
5171 elsif Nkind (Expr) in N_Op then
5172 if Is_Floating_Point_Type (Typ)
5173 and then Validity_Check_Floating_Point
5174 and then
5175 (Nkind (Parent (Expr)) = N_Assignment_Statement
5176 or else Nkind (Parent (Expr)) = N_Function_Call
5177 or else Nkind (Parent (Expr)) = N_Parameter_Association)
5178 then
5179 return False;
5180 else
5181 return True;
5182 end if;
5184 -- The result of a membership test is always valid, since it is true or
5185 -- false, there are no other possibilities.
5187 elsif Nkind (Expr) in N_Membership_Test then
5188 return True;
5190 -- For all other cases, we do not know the expression is valid
5192 else
5193 return False;
5194 end if;
5195 end Expr_Known_Valid;
5197 ----------------
5198 -- Find_Check --
5199 ----------------
5201 procedure Find_Check
5202 (Expr : Node_Id;
5203 Check_Type : Character;
5204 Target_Type : Entity_Id;
5205 Entry_OK : out Boolean;
5206 Check_Num : out Nat;
5207 Ent : out Entity_Id;
5208 Ofs : out Uint)
5210 function Within_Range_Of
5211 (Target_Type : Entity_Id;
5212 Check_Type : Entity_Id) return Boolean;
5213 -- Given a requirement for checking a range against Target_Type, and
5214 -- and a range Check_Type against which a check has already been made,
5215 -- determines if the check against check type is sufficient to ensure
5216 -- that no check against Target_Type is required.
5218 ---------------------
5219 -- Within_Range_Of --
5220 ---------------------
5222 function Within_Range_Of
5223 (Target_Type : Entity_Id;
5224 Check_Type : Entity_Id) return Boolean
5226 begin
5227 if Target_Type = Check_Type then
5228 return True;
5230 else
5231 declare
5232 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
5233 Thi : constant Node_Id := Type_High_Bound (Target_Type);
5234 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
5235 Chi : constant Node_Id := Type_High_Bound (Check_Type);
5237 begin
5238 if (Tlo = Clo
5239 or else (Compile_Time_Known_Value (Tlo)
5240 and then
5241 Compile_Time_Known_Value (Clo)
5242 and then
5243 Expr_Value (Clo) >= Expr_Value (Tlo)))
5244 and then
5245 (Thi = Chi
5246 or else (Compile_Time_Known_Value (Thi)
5247 and then
5248 Compile_Time_Known_Value (Chi)
5249 and then
5250 Expr_Value (Chi) <= Expr_Value (Clo)))
5251 then
5252 return True;
5253 else
5254 return False;
5255 end if;
5256 end;
5257 end if;
5258 end Within_Range_Of;
5260 -- Start of processing for Find_Check
5262 begin
5263 -- Establish default, in case no entry is found
5265 Check_Num := 0;
5267 -- Case of expression is simple entity reference
5269 if Is_Entity_Name (Expr) then
5270 Ent := Entity (Expr);
5271 Ofs := Uint_0;
5273 -- Case of expression is entity + known constant
5275 elsif Nkind (Expr) = N_Op_Add
5276 and then Compile_Time_Known_Value (Right_Opnd (Expr))
5277 and then Is_Entity_Name (Left_Opnd (Expr))
5278 then
5279 Ent := Entity (Left_Opnd (Expr));
5280 Ofs := Expr_Value (Right_Opnd (Expr));
5282 -- Case of expression is entity - known constant
5284 elsif Nkind (Expr) = N_Op_Subtract
5285 and then Compile_Time_Known_Value (Right_Opnd (Expr))
5286 and then Is_Entity_Name (Left_Opnd (Expr))
5287 then
5288 Ent := Entity (Left_Opnd (Expr));
5289 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
5291 -- Any other expression is not of the right form
5293 else
5294 Ent := Empty;
5295 Ofs := Uint_0;
5296 Entry_OK := False;
5297 return;
5298 end if;
5300 -- Come here with expression of appropriate form, check if entity is an
5301 -- appropriate one for our purposes.
5303 if (Ekind (Ent) = E_Variable
5304 or else Is_Constant_Object (Ent))
5305 and then not Is_Library_Level_Entity (Ent)
5306 then
5307 Entry_OK := True;
5308 else
5309 Entry_OK := False;
5310 return;
5311 end if;
5313 -- See if there is matching check already
5315 for J in reverse 1 .. Num_Saved_Checks loop
5316 declare
5317 SC : Saved_Check renames Saved_Checks (J);
5319 begin
5320 if SC.Killed = False
5321 and then SC.Entity = Ent
5322 and then SC.Offset = Ofs
5323 and then SC.Check_Type = Check_Type
5324 and then Within_Range_Of (Target_Type, SC.Target_Type)
5325 then
5326 Check_Num := J;
5327 return;
5328 end if;
5329 end;
5330 end loop;
5332 -- If we fall through entry was not found
5334 return;
5335 end Find_Check;
5337 ---------------------------------
5338 -- Generate_Discriminant_Check --
5339 ---------------------------------
5341 -- Note: the code for this procedure is derived from the
5342 -- Emit_Discriminant_Check Routine in trans.c.
5344 procedure Generate_Discriminant_Check (N : Node_Id) is
5345 Loc : constant Source_Ptr := Sloc (N);
5346 Pref : constant Node_Id := Prefix (N);
5347 Sel : constant Node_Id := Selector_Name (N);
5349 Orig_Comp : constant Entity_Id :=
5350 Original_Record_Component (Entity (Sel));
5351 -- The original component to be checked
5353 Discr_Fct : constant Entity_Id :=
5354 Discriminant_Checking_Func (Orig_Comp);
5355 -- The discriminant checking function
5357 Discr : Entity_Id;
5358 -- One discriminant to be checked in the type
5360 Real_Discr : Entity_Id;
5361 -- Actual discriminant in the call
5363 Pref_Type : Entity_Id;
5364 -- Type of relevant prefix (ignoring private/access stuff)
5366 Args : List_Id;
5367 -- List of arguments for function call
5369 Formal : Entity_Id;
5370 -- Keep track of the formal corresponding to the actual we build for
5371 -- each discriminant, in order to be able to perform the necessary type
5372 -- conversions.
5374 Scomp : Node_Id;
5375 -- Selected component reference for checking function argument
5377 begin
5378 Pref_Type := Etype (Pref);
5380 -- Force evaluation of the prefix, so that it does not get evaluated
5381 -- twice (once for the check, once for the actual reference). Such a
5382 -- double evaluation is always a potential source of inefficiency,
5383 -- and is functionally incorrect in the volatile case, or when the
5384 -- prefix may have side-effects. An entity or a component of an
5385 -- entity requires no evaluation.
5387 if Is_Entity_Name (Pref) then
5388 if Treat_As_Volatile (Entity (Pref)) then
5389 Force_Evaluation (Pref, Name_Req => True);
5390 end if;
5392 elsif Treat_As_Volatile (Etype (Pref)) then
5393 Force_Evaluation (Pref, Name_Req => True);
5395 elsif Nkind (Pref) = N_Selected_Component
5396 and then Is_Entity_Name (Prefix (Pref))
5397 then
5398 null;
5400 else
5401 Force_Evaluation (Pref, Name_Req => True);
5402 end if;
5404 -- For a tagged type, use the scope of the original component to
5405 -- obtain the type, because ???
5407 if Is_Tagged_Type (Scope (Orig_Comp)) then
5408 Pref_Type := Scope (Orig_Comp);
5410 -- For an untagged derived type, use the discriminants of the parent
5411 -- which have been renamed in the derivation, possibly by a one-to-many
5412 -- discriminant constraint. For non-tagged type, initially get the Etype
5413 -- of the prefix
5415 else
5416 if Is_Derived_Type (Pref_Type)
5417 and then Number_Discriminants (Pref_Type) /=
5418 Number_Discriminants (Etype (Base_Type (Pref_Type)))
5419 then
5420 Pref_Type := Etype (Base_Type (Pref_Type));
5421 end if;
5422 end if;
5424 -- We definitely should have a checking function, This routine should
5425 -- not be called if no discriminant checking function is present.
5427 pragma Assert (Present (Discr_Fct));
5429 -- Create the list of the actual parameters for the call. This list
5430 -- is the list of the discriminant fields of the record expression to
5431 -- be discriminant checked.
5433 Args := New_List;
5434 Formal := First_Formal (Discr_Fct);
5435 Discr := First_Discriminant (Pref_Type);
5436 while Present (Discr) loop
5438 -- If we have a corresponding discriminant field, and a parent
5439 -- subtype is present, then we want to use the corresponding
5440 -- discriminant since this is the one with the useful value.
5442 if Present (Corresponding_Discriminant (Discr))
5443 and then Ekind (Pref_Type) = E_Record_Type
5444 and then Present (Parent_Subtype (Pref_Type))
5445 then
5446 Real_Discr := Corresponding_Discriminant (Discr);
5447 else
5448 Real_Discr := Discr;
5449 end if;
5451 -- Construct the reference to the discriminant
5453 Scomp :=
5454 Make_Selected_Component (Loc,
5455 Prefix =>
5456 Unchecked_Convert_To (Pref_Type,
5457 Duplicate_Subexpr (Pref)),
5458 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
5460 -- Manually analyze and resolve this selected component. We really
5461 -- want it just as it appears above, and do not want the expander
5462 -- playing discriminal games etc with this reference. Then we append
5463 -- the argument to the list we are gathering.
5465 Set_Etype (Scomp, Etype (Real_Discr));
5466 Set_Analyzed (Scomp, True);
5467 Append_To (Args, Convert_To (Etype (Formal), Scomp));
5469 Next_Formal_With_Extras (Formal);
5470 Next_Discriminant (Discr);
5471 end loop;
5473 -- Now build and insert the call
5475 Insert_Action (N,
5476 Make_Raise_Constraint_Error (Loc,
5477 Condition =>
5478 Make_Function_Call (Loc,
5479 Name => New_Occurrence_Of (Discr_Fct, Loc),
5480 Parameter_Associations => Args),
5481 Reason => CE_Discriminant_Check_Failed));
5482 end Generate_Discriminant_Check;
5484 ---------------------------
5485 -- Generate_Index_Checks --
5486 ---------------------------
5488 procedure Generate_Index_Checks (N : Node_Id) is
5490 function Entity_Of_Prefix return Entity_Id;
5491 -- Returns the entity of the prefix of N (or Empty if not found)
5493 ----------------------
5494 -- Entity_Of_Prefix --
5495 ----------------------
5497 function Entity_Of_Prefix return Entity_Id is
5498 P : Node_Id;
5500 begin
5501 P := Prefix (N);
5502 while not Is_Entity_Name (P) loop
5503 if not Nkind_In (P, N_Selected_Component,
5504 N_Indexed_Component)
5505 then
5506 return Empty;
5507 end if;
5509 P := Prefix (P);
5510 end loop;
5512 return Entity (P);
5513 end Entity_Of_Prefix;
5515 -- Local variables
5517 Loc : constant Source_Ptr := Sloc (N);
5518 A : constant Node_Id := Prefix (N);
5519 A_Ent : constant Entity_Id := Entity_Of_Prefix;
5520 Sub : Node_Id;
5522 -- Start of processing for Generate_Index_Checks
5524 begin
5525 -- Ignore call if the prefix is not an array since we have a serious
5526 -- error in the sources. Ignore it also if index checks are suppressed
5527 -- for array object or type.
5529 if not Is_Array_Type (Etype (A))
5530 or else (Present (A_Ent)
5531 and then Index_Checks_Suppressed (A_Ent))
5532 or else Index_Checks_Suppressed (Etype (A))
5533 then
5534 return;
5536 -- The indexed component we are dealing with contains 'Loop_Entry in its
5537 -- prefix. This case arises when analysis has determined that constructs
5538 -- such as
5540 -- Prefix'Loop_Entry (Expr)
5541 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
5543 -- require rewriting for error detection purposes. A side effect of this
5544 -- action is the generation of index checks that mention 'Loop_Entry.
5545 -- Delay the generation of the check until 'Loop_Entry has been properly
5546 -- expanded. This is done in Expand_Loop_Entry_Attributes.
5548 elsif Nkind (Prefix (N)) = N_Attribute_Reference
5549 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
5550 then
5551 return;
5552 end if;
5554 -- Generate a raise of constraint error with the appropriate reason and
5555 -- a condition of the form:
5557 -- Base_Type (Sub) not in Array'Range (Subscript)
5559 -- Note that the reason we generate the conversion to the base type here
5560 -- is that we definitely want the range check to take place, even if it
5561 -- looks like the subtype is OK. Optimization considerations that allow
5562 -- us to omit the check have already been taken into account in the
5563 -- setting of the Do_Range_Check flag earlier on.
5565 Sub := First (Expressions (N));
5567 -- Handle string literals
5569 if Ekind (Etype (A)) = E_String_Literal_Subtype then
5570 if Do_Range_Check (Sub) then
5571 Set_Do_Range_Check (Sub, False);
5573 -- For string literals we obtain the bounds of the string from the
5574 -- associated subtype.
5576 Insert_Action (N,
5577 Make_Raise_Constraint_Error (Loc,
5578 Condition =>
5579 Make_Not_In (Loc,
5580 Left_Opnd =>
5581 Convert_To (Base_Type (Etype (Sub)),
5582 Duplicate_Subexpr_Move_Checks (Sub)),
5583 Right_Opnd =>
5584 Make_Attribute_Reference (Loc,
5585 Prefix => New_Reference_To (Etype (A), Loc),
5586 Attribute_Name => Name_Range)),
5587 Reason => CE_Index_Check_Failed));
5588 end if;
5590 -- General case
5592 else
5593 declare
5594 A_Idx : Node_Id := Empty;
5595 A_Range : Node_Id;
5596 Ind : Nat;
5597 Num : List_Id;
5598 Range_N : Node_Id;
5600 begin
5601 A_Idx := First_Index (Etype (A));
5602 Ind := 1;
5603 while Present (Sub) loop
5604 if Do_Range_Check (Sub) then
5605 Set_Do_Range_Check (Sub, False);
5607 -- Force evaluation except for the case of a simple name of
5608 -- a non-volatile entity.
5610 if not Is_Entity_Name (Sub)
5611 or else Treat_As_Volatile (Entity (Sub))
5612 then
5613 Force_Evaluation (Sub);
5614 end if;
5616 if Nkind (A_Idx) = N_Range then
5617 A_Range := A_Idx;
5619 elsif Nkind (A_Idx) = N_Identifier
5620 or else Nkind (A_Idx) = N_Expanded_Name
5621 then
5622 A_Range := Scalar_Range (Entity (A_Idx));
5624 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
5625 A_Range := Range_Expression (Constraint (A_Idx));
5626 end if;
5628 -- For array objects with constant bounds we can generate
5629 -- the index check using the bounds of the type of the index
5631 if Present (A_Ent)
5632 and then Ekind (A_Ent) = E_Variable
5633 and then Is_Constant_Bound (Low_Bound (A_Range))
5634 and then Is_Constant_Bound (High_Bound (A_Range))
5635 then
5636 Range_N :=
5637 Make_Attribute_Reference (Loc,
5638 Prefix =>
5639 New_Reference_To (Etype (A_Idx), Loc),
5640 Attribute_Name => Name_Range);
5642 -- For arrays with non-constant bounds we cannot generate
5643 -- the index check using the bounds of the type of the index
5644 -- since it may reference discriminants of some enclosing
5645 -- type. We obtain the bounds directly from the prefix
5646 -- object.
5648 else
5649 if Ind = 1 then
5650 Num := No_List;
5651 else
5652 Num := New_List (Make_Integer_Literal (Loc, Ind));
5653 end if;
5655 Range_N :=
5656 Make_Attribute_Reference (Loc,
5657 Prefix =>
5658 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
5659 Attribute_Name => Name_Range,
5660 Expressions => Num);
5661 end if;
5663 Insert_Action (N,
5664 Make_Raise_Constraint_Error (Loc,
5665 Condition =>
5666 Make_Not_In (Loc,
5667 Left_Opnd =>
5668 Convert_To (Base_Type (Etype (Sub)),
5669 Duplicate_Subexpr_Move_Checks (Sub)),
5670 Right_Opnd => Range_N),
5671 Reason => CE_Index_Check_Failed));
5672 end if;
5674 A_Idx := Next_Index (A_Idx);
5675 Ind := Ind + 1;
5676 Next (Sub);
5677 end loop;
5678 end;
5679 end if;
5680 end Generate_Index_Checks;
5682 --------------------------
5683 -- Generate_Range_Check --
5684 --------------------------
5686 procedure Generate_Range_Check
5687 (N : Node_Id;
5688 Target_Type : Entity_Id;
5689 Reason : RT_Exception_Code)
5691 Loc : constant Source_Ptr := Sloc (N);
5692 Source_Type : constant Entity_Id := Etype (N);
5693 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
5694 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
5696 begin
5697 -- First special case, if the source type is already within the range
5698 -- of the target type, then no check is needed (probably we should have
5699 -- stopped Do_Range_Check from being set in the first place, but better
5700 -- late than never in preventing junk code!
5702 if In_Subrange_Of (Source_Type, Target_Type)
5704 -- We do NOT apply this if the source node is a literal, since in this
5705 -- case the literal has already been labeled as having the subtype of
5706 -- the target.
5708 and then not
5709 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
5710 or else
5711 (Is_Entity_Name (N)
5712 and then Ekind (Entity (N)) = E_Enumeration_Literal))
5714 -- Also do not apply this for floating-point if Check_Float_Overflow
5716 and then not
5717 (Is_Floating_Point_Type (Source_Type) and Check_Float_Overflow)
5718 then
5719 return;
5720 end if;
5722 -- We need a check, so force evaluation of the node, so that it does
5723 -- not get evaluated twice (once for the check, once for the actual
5724 -- reference). Such a double evaluation is always a potential source
5725 -- of inefficiency, and is functionally incorrect in the volatile case.
5727 if not Is_Entity_Name (N) or else Treat_As_Volatile (Entity (N)) then
5728 Force_Evaluation (N);
5729 end if;
5731 -- The easiest case is when Source_Base_Type and Target_Base_Type are
5732 -- the same since in this case we can simply do a direct check of the
5733 -- value of N against the bounds of Target_Type.
5735 -- [constraint_error when N not in Target_Type]
5737 -- Note: this is by far the most common case, for example all cases of
5738 -- checks on the RHS of assignments are in this category, but not all
5739 -- cases are like this. Notably conversions can involve two types.
5741 if Source_Base_Type = Target_Base_Type then
5742 Insert_Action (N,
5743 Make_Raise_Constraint_Error (Loc,
5744 Condition =>
5745 Make_Not_In (Loc,
5746 Left_Opnd => Duplicate_Subexpr (N),
5747 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
5748 Reason => Reason));
5750 -- Next test for the case where the target type is within the bounds
5751 -- of the base type of the source type, since in this case we can
5752 -- simply convert these bounds to the base type of T to do the test.
5754 -- [constraint_error when N not in
5755 -- Source_Base_Type (Target_Type'First)
5756 -- ..
5757 -- Source_Base_Type(Target_Type'Last))]
5759 -- The conversions will always work and need no check
5761 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
5762 -- of converting from an enumeration value to an integer type, such as
5763 -- occurs for the case of generating a range check on Enum'Val(Exp)
5764 -- (which used to be handled by gigi). This is OK, since the conversion
5765 -- itself does not require a check.
5767 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
5768 Insert_Action (N,
5769 Make_Raise_Constraint_Error (Loc,
5770 Condition =>
5771 Make_Not_In (Loc,
5772 Left_Opnd => Duplicate_Subexpr (N),
5774 Right_Opnd =>
5775 Make_Range (Loc,
5776 Low_Bound =>
5777 Unchecked_Convert_To (Source_Base_Type,
5778 Make_Attribute_Reference (Loc,
5779 Prefix =>
5780 New_Occurrence_Of (Target_Type, Loc),
5781 Attribute_Name => Name_First)),
5783 High_Bound =>
5784 Unchecked_Convert_To (Source_Base_Type,
5785 Make_Attribute_Reference (Loc,
5786 Prefix =>
5787 New_Occurrence_Of (Target_Type, Loc),
5788 Attribute_Name => Name_Last)))),
5789 Reason => Reason));
5791 -- Note that at this stage we now that the Target_Base_Type is not in
5792 -- the range of the Source_Base_Type (since even the Target_Type itself
5793 -- is not in this range). It could still be the case that Source_Type is
5794 -- in range of the target base type since we have not checked that case.
5796 -- If that is the case, we can freely convert the source to the target,
5797 -- and then test the target result against the bounds.
5799 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
5801 -- We make a temporary to hold the value of the converted value
5802 -- (converted to the base type), and then we will do the test against
5803 -- this temporary.
5805 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
5806 -- [constraint_error when Tnn not in Target_Type]
5808 -- Then the conversion itself is replaced by an occurrence of Tnn
5810 declare
5811 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
5813 begin
5814 Insert_Actions (N, New_List (
5815 Make_Object_Declaration (Loc,
5816 Defining_Identifier => Tnn,
5817 Object_Definition =>
5818 New_Occurrence_Of (Target_Base_Type, Loc),
5819 Constant_Present => True,
5820 Expression =>
5821 Make_Type_Conversion (Loc,
5822 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
5823 Expression => Duplicate_Subexpr (N))),
5825 Make_Raise_Constraint_Error (Loc,
5826 Condition =>
5827 Make_Not_In (Loc,
5828 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
5829 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
5831 Reason => Reason)));
5833 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
5835 -- Set the type of N, because the declaration for Tnn might not
5836 -- be analyzed yet, as is the case if N appears within a record
5837 -- declaration, as a discriminant constraint or expression.
5839 Set_Etype (N, Target_Base_Type);
5840 end;
5842 -- At this stage, we know that we have two scalar types, which are
5843 -- directly convertible, and where neither scalar type has a base
5844 -- range that is in the range of the other scalar type.
5846 -- The only way this can happen is with a signed and unsigned type.
5847 -- So test for these two cases:
5849 else
5850 -- Case of the source is unsigned and the target is signed
5852 if Is_Unsigned_Type (Source_Base_Type)
5853 and then not Is_Unsigned_Type (Target_Base_Type)
5854 then
5855 -- If the source is unsigned and the target is signed, then we
5856 -- know that the source is not shorter than the target (otherwise
5857 -- the source base type would be in the target base type range).
5859 -- In other words, the unsigned type is either the same size as
5860 -- the target, or it is larger. It cannot be smaller.
5862 pragma Assert
5863 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
5865 -- We only need to check the low bound if the low bound of the
5866 -- target type is non-negative. If the low bound of the target
5867 -- type is negative, then we know that we will fit fine.
5869 -- If the high bound of the target type is negative, then we
5870 -- know we have a constraint error, since we can't possibly
5871 -- have a negative source.
5873 -- With these two checks out of the way, we can do the check
5874 -- using the source type safely
5876 -- This is definitely the most annoying case!
5878 -- [constraint_error
5879 -- when (Target_Type'First >= 0
5880 -- and then
5881 -- N < Source_Base_Type (Target_Type'First))
5882 -- or else Target_Type'Last < 0
5883 -- or else N > Source_Base_Type (Target_Type'Last)];
5885 -- We turn off all checks since we know that the conversions
5886 -- will work fine, given the guards for negative values.
5888 Insert_Action (N,
5889 Make_Raise_Constraint_Error (Loc,
5890 Condition =>
5891 Make_Or_Else (Loc,
5892 Make_Or_Else (Loc,
5893 Left_Opnd =>
5894 Make_And_Then (Loc,
5895 Left_Opnd => Make_Op_Ge (Loc,
5896 Left_Opnd =>
5897 Make_Attribute_Reference (Loc,
5898 Prefix =>
5899 New_Occurrence_Of (Target_Type, Loc),
5900 Attribute_Name => Name_First),
5901 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
5903 Right_Opnd =>
5904 Make_Op_Lt (Loc,
5905 Left_Opnd => Duplicate_Subexpr (N),
5906 Right_Opnd =>
5907 Convert_To (Source_Base_Type,
5908 Make_Attribute_Reference (Loc,
5909 Prefix =>
5910 New_Occurrence_Of (Target_Type, Loc),
5911 Attribute_Name => Name_First)))),
5913 Right_Opnd =>
5914 Make_Op_Lt (Loc,
5915 Left_Opnd =>
5916 Make_Attribute_Reference (Loc,
5917 Prefix => New_Occurrence_Of (Target_Type, Loc),
5918 Attribute_Name => Name_Last),
5919 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
5921 Right_Opnd =>
5922 Make_Op_Gt (Loc,
5923 Left_Opnd => Duplicate_Subexpr (N),
5924 Right_Opnd =>
5925 Convert_To (Source_Base_Type,
5926 Make_Attribute_Reference (Loc,
5927 Prefix => New_Occurrence_Of (Target_Type, Loc),
5928 Attribute_Name => Name_Last)))),
5930 Reason => Reason),
5931 Suppress => All_Checks);
5933 -- Only remaining possibility is that the source is signed and
5934 -- the target is unsigned.
5936 else
5937 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
5938 and then Is_Unsigned_Type (Target_Base_Type));
5940 -- If the source is signed and the target is unsigned, then we
5941 -- know that the target is not shorter than the source (otherwise
5942 -- the target base type would be in the source base type range).
5944 -- In other words, the unsigned type is either the same size as
5945 -- the target, or it is larger. It cannot be smaller.
5947 -- Clearly we have an error if the source value is negative since
5948 -- no unsigned type can have negative values. If the source type
5949 -- is non-negative, then the check can be done using the target
5950 -- type.
5952 -- Tnn : constant Target_Base_Type (N) := Target_Type;
5954 -- [constraint_error
5955 -- when N < 0 or else Tnn not in Target_Type];
5957 -- We turn off all checks for the conversion of N to the target
5958 -- base type, since we generate the explicit check to ensure that
5959 -- the value is non-negative
5961 declare
5962 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
5964 begin
5965 Insert_Actions (N, New_List (
5966 Make_Object_Declaration (Loc,
5967 Defining_Identifier => Tnn,
5968 Object_Definition =>
5969 New_Occurrence_Of (Target_Base_Type, Loc),
5970 Constant_Present => True,
5971 Expression =>
5972 Make_Unchecked_Type_Conversion (Loc,
5973 Subtype_Mark =>
5974 New_Occurrence_Of (Target_Base_Type, Loc),
5975 Expression => Duplicate_Subexpr (N))),
5977 Make_Raise_Constraint_Error (Loc,
5978 Condition =>
5979 Make_Or_Else (Loc,
5980 Left_Opnd =>
5981 Make_Op_Lt (Loc,
5982 Left_Opnd => Duplicate_Subexpr (N),
5983 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
5985 Right_Opnd =>
5986 Make_Not_In (Loc,
5987 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
5988 Right_Opnd =>
5989 New_Occurrence_Of (Target_Type, Loc))),
5991 Reason => Reason)),
5992 Suppress => All_Checks);
5994 -- Set the Etype explicitly, because Insert_Actions may have
5995 -- placed the declaration in the freeze list for an enclosing
5996 -- construct, and thus it is not analyzed yet.
5998 Set_Etype (Tnn, Target_Base_Type);
5999 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6000 end;
6001 end if;
6002 end if;
6003 end Generate_Range_Check;
6005 ------------------
6006 -- Get_Check_Id --
6007 ------------------
6009 function Get_Check_Id (N : Name_Id) return Check_Id is
6010 begin
6011 -- For standard check name, we can do a direct computation
6013 if N in First_Check_Name .. Last_Check_Name then
6014 return Check_Id (N - (First_Check_Name - 1));
6016 -- For non-standard names added by pragma Check_Name, search table
6018 else
6019 for J in All_Checks + 1 .. Check_Names.Last loop
6020 if Check_Names.Table (J) = N then
6021 return J;
6022 end if;
6023 end loop;
6024 end if;
6026 -- No matching name found
6028 return No_Check_Id;
6029 end Get_Check_Id;
6031 ---------------------
6032 -- Get_Discriminal --
6033 ---------------------
6035 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
6036 Loc : constant Source_Ptr := Sloc (E);
6037 D : Entity_Id;
6038 Sc : Entity_Id;
6040 begin
6041 -- The bound can be a bona fide parameter of a protected operation,
6042 -- rather than a prival encoded as an in-parameter.
6044 if No (Discriminal_Link (Entity (Bound))) then
6045 return Bound;
6046 end if;
6048 -- Climb the scope stack looking for an enclosing protected type. If
6049 -- we run out of scopes, return the bound itself.
6051 Sc := Scope (E);
6052 while Present (Sc) loop
6053 if Sc = Standard_Standard then
6054 return Bound;
6056 elsif Ekind (Sc) = E_Protected_Type then
6057 exit;
6058 end if;
6060 Sc := Scope (Sc);
6061 end loop;
6063 D := First_Discriminant (Sc);
6064 while Present (D) loop
6065 if Chars (D) = Chars (Bound) then
6066 return New_Occurrence_Of (Discriminal (D), Loc);
6067 end if;
6069 Next_Discriminant (D);
6070 end loop;
6072 return Bound;
6073 end Get_Discriminal;
6075 ----------------------
6076 -- Get_Range_Checks --
6077 ----------------------
6079 function Get_Range_Checks
6080 (Ck_Node : Node_Id;
6081 Target_Typ : Entity_Id;
6082 Source_Typ : Entity_Id := Empty;
6083 Warn_Node : Node_Id := Empty) return Check_Result
6085 begin
6086 return Selected_Range_Checks
6087 (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
6088 end Get_Range_Checks;
6090 ------------------
6091 -- Guard_Access --
6092 ------------------
6094 function Guard_Access
6095 (Cond : Node_Id;
6096 Loc : Source_Ptr;
6097 Ck_Node : Node_Id) return Node_Id
6099 begin
6100 if Nkind (Cond) = N_Or_Else then
6101 Set_Paren_Count (Cond, 1);
6102 end if;
6104 if Nkind (Ck_Node) = N_Allocator then
6105 return Cond;
6106 else
6107 return
6108 Make_And_Then (Loc,
6109 Left_Opnd =>
6110 Make_Op_Ne (Loc,
6111 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
6112 Right_Opnd => Make_Null (Loc)),
6113 Right_Opnd => Cond);
6114 end if;
6115 end Guard_Access;
6117 -----------------------------
6118 -- Index_Checks_Suppressed --
6119 -----------------------------
6121 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
6122 begin
6123 if Present (E) and then Checks_May_Be_Suppressed (E) then
6124 return Is_Check_Suppressed (E, Index_Check);
6125 else
6126 return Scope_Suppress.Suppress (Index_Check);
6127 end if;
6128 end Index_Checks_Suppressed;
6130 ----------------
6131 -- Initialize --
6132 ----------------
6134 procedure Initialize is
6135 begin
6136 for J in Determine_Range_Cache_N'Range loop
6137 Determine_Range_Cache_N (J) := Empty;
6138 end loop;
6140 Check_Names.Init;
6142 for J in Int range 1 .. All_Checks loop
6143 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
6144 end loop;
6145 end Initialize;
6147 -------------------------
6148 -- Insert_Range_Checks --
6149 -------------------------
6151 procedure Insert_Range_Checks
6152 (Checks : Check_Result;
6153 Node : Node_Id;
6154 Suppress_Typ : Entity_Id;
6155 Static_Sloc : Source_Ptr := No_Location;
6156 Flag_Node : Node_Id := Empty;
6157 Do_Before : Boolean := False)
6159 Internal_Flag_Node : Node_Id := Flag_Node;
6160 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
6162 Check_Node : Node_Id;
6163 Checks_On : constant Boolean :=
6164 (not Index_Checks_Suppressed (Suppress_Typ))
6165 or else (not Range_Checks_Suppressed (Suppress_Typ));
6167 begin
6168 -- For now we just return if Checks_On is false, however this should be
6169 -- enhanced to check for an always True value in the condition and to
6170 -- generate a compilation warning???
6172 if not Full_Expander_Active or else not Checks_On then
6173 return;
6174 end if;
6176 if Static_Sloc = No_Location then
6177 Internal_Static_Sloc := Sloc (Node);
6178 end if;
6180 if No (Flag_Node) then
6181 Internal_Flag_Node := Node;
6182 end if;
6184 for J in 1 .. 2 loop
6185 exit when No (Checks (J));
6187 if Nkind (Checks (J)) = N_Raise_Constraint_Error
6188 and then Present (Condition (Checks (J)))
6189 then
6190 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
6191 Check_Node := Checks (J);
6192 Mark_Rewrite_Insertion (Check_Node);
6194 if Do_Before then
6195 Insert_Before_And_Analyze (Node, Check_Node);
6196 else
6197 Insert_After_And_Analyze (Node, Check_Node);
6198 end if;
6200 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
6201 end if;
6203 else
6204 Check_Node :=
6205 Make_Raise_Constraint_Error (Internal_Static_Sloc,
6206 Reason => CE_Range_Check_Failed);
6207 Mark_Rewrite_Insertion (Check_Node);
6209 if Do_Before then
6210 Insert_Before_And_Analyze (Node, Check_Node);
6211 else
6212 Insert_After_And_Analyze (Node, Check_Node);
6213 end if;
6214 end if;
6215 end loop;
6216 end Insert_Range_Checks;
6218 ------------------------
6219 -- Insert_Valid_Check --
6220 ------------------------
6222 procedure Insert_Valid_Check (Expr : Node_Id) is
6223 Loc : constant Source_Ptr := Sloc (Expr);
6224 Exp : Node_Id;
6226 begin
6227 -- Do not insert if checks off, or if not checking validity or
6228 -- if expression is known to be valid
6230 if not Validity_Checks_On
6231 or else Range_Or_Validity_Checks_Suppressed (Expr)
6232 or else Expr_Known_Valid (Expr)
6233 then
6234 return;
6235 end if;
6237 -- If we have a checked conversion, then validity check applies to
6238 -- the expression inside the conversion, not the result, since if
6239 -- the expression inside is valid, then so is the conversion result.
6241 Exp := Expr;
6242 while Nkind (Exp) = N_Type_Conversion loop
6243 Exp := Expression (Exp);
6244 end loop;
6246 -- We are about to insert the validity check for Exp. We save and
6247 -- reset the Do_Range_Check flag over this validity check, and then
6248 -- put it back for the final original reference (Exp may be rewritten).
6250 declare
6251 DRC : constant Boolean := Do_Range_Check (Exp);
6252 PV : Node_Id;
6253 CE : Node_Id;
6255 begin
6256 Set_Do_Range_Check (Exp, False);
6258 -- Force evaluation to avoid multiple reads for atomic/volatile
6260 if Is_Entity_Name (Exp)
6261 and then Is_Volatile (Entity (Exp))
6262 then
6263 Force_Evaluation (Exp, Name_Req => True);
6264 end if;
6266 -- Build the prefix for the 'Valid call
6268 PV := Duplicate_Subexpr_No_Checks (Exp, Name_Req => True);
6270 -- A rather specialized kludge. If PV is an analyzed expression
6271 -- which is an indexed component of a packed array that has not
6272 -- been properly expanded, turn off its Analyzed flag to make sure
6273 -- it gets properly reexpanded.
6275 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
6276 -- an analyze with the old parent pointer. This may point e.g. to
6277 -- a subprogram call, which deactivates this expansion.
6279 if Analyzed (PV)
6280 and then Nkind (PV) = N_Indexed_Component
6281 and then Present (Packed_Array_Type (Etype (Prefix (PV))))
6282 then
6283 Set_Analyzed (PV, False);
6284 end if;
6286 -- Build the raise CE node to check for validity
6288 CE :=
6289 Make_Raise_Constraint_Error (Loc,
6290 Condition =>
6291 Make_Op_Not (Loc,
6292 Right_Opnd =>
6293 Make_Attribute_Reference (Loc,
6294 Prefix => PV,
6295 Attribute_Name => Name_Valid)),
6296 Reason => CE_Invalid_Data);
6298 -- Insert the validity check. Note that we do this with validity
6299 -- checks turned off, to avoid recursion, we do not want validity
6300 -- checks on the validity checking code itself!
6302 Insert_Action (Expr, CE, Suppress => Validity_Check);
6304 -- If the expression is a reference to an element of a bit-packed
6305 -- array, then it is rewritten as a renaming declaration. If the
6306 -- expression is an actual in a call, it has not been expanded,
6307 -- waiting for the proper point at which to do it. The same happens
6308 -- with renamings, so that we have to force the expansion now. This
6309 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
6310 -- and exp_ch6.adb.
6312 if Is_Entity_Name (Exp)
6313 and then Nkind (Parent (Entity (Exp))) =
6314 N_Object_Renaming_Declaration
6315 then
6316 declare
6317 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
6318 begin
6319 if Nkind (Old_Exp) = N_Indexed_Component
6320 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
6321 then
6322 Expand_Packed_Element_Reference (Old_Exp);
6323 end if;
6324 end;
6325 end if;
6327 -- Put back the Do_Range_Check flag on the resulting (possibly
6328 -- rewritten) expression.
6330 -- Note: it might be thought that a validity check is not required
6331 -- when a range check is present, but that's not the case, because
6332 -- the back end is allowed to assume for the range check that the
6333 -- operand is within its declared range (an assumption that validity
6334 -- checking is all about NOT assuming!)
6336 -- Note: no need to worry about Possible_Local_Raise here, it will
6337 -- already have been called if original node has Do_Range_Check set.
6339 Set_Do_Range_Check (Exp, DRC);
6340 end;
6341 end Insert_Valid_Check;
6343 -------------------------------------
6344 -- Is_Signed_Integer_Arithmetic_Op --
6345 -------------------------------------
6347 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
6348 begin
6349 case Nkind (N) is
6350 when N_Op_Abs | N_Op_Add | N_Op_Divide | N_Op_Expon |
6351 N_Op_Minus | N_Op_Mod | N_Op_Multiply | N_Op_Plus |
6352 N_Op_Rem | N_Op_Subtract =>
6353 return Is_Signed_Integer_Type (Etype (N));
6355 when N_If_Expression | N_Case_Expression =>
6356 return Is_Signed_Integer_Type (Etype (N));
6358 when others =>
6359 return False;
6360 end case;
6361 end Is_Signed_Integer_Arithmetic_Op;
6363 ----------------------------------
6364 -- Install_Null_Excluding_Check --
6365 ----------------------------------
6367 procedure Install_Null_Excluding_Check (N : Node_Id) is
6368 Loc : constant Source_Ptr := Sloc (Parent (N));
6369 Typ : constant Entity_Id := Etype (N);
6371 function Safe_To_Capture_In_Parameter_Value return Boolean;
6372 -- Determines if it is safe to capture Known_Non_Null status for an
6373 -- the entity referenced by node N. The caller ensures that N is indeed
6374 -- an entity name. It is safe to capture the non-null status for an IN
6375 -- parameter when the reference occurs within a declaration that is sure
6376 -- to be executed as part of the declarative region.
6378 procedure Mark_Non_Null;
6379 -- After installation of check, if the node in question is an entity
6380 -- name, then mark this entity as non-null if possible.
6382 function Safe_To_Capture_In_Parameter_Value return Boolean is
6383 E : constant Entity_Id := Entity (N);
6384 S : constant Entity_Id := Current_Scope;
6385 S_Par : Node_Id;
6387 begin
6388 if Ekind (E) /= E_In_Parameter then
6389 return False;
6390 end if;
6392 -- Two initial context checks. We must be inside a subprogram body
6393 -- with declarations and reference must not appear in nested scopes.
6395 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
6396 or else Scope (E) /= S
6397 then
6398 return False;
6399 end if;
6401 S_Par := Parent (Parent (S));
6403 if Nkind (S_Par) /= N_Subprogram_Body
6404 or else No (Declarations (S_Par))
6405 then
6406 return False;
6407 end if;
6409 declare
6410 N_Decl : Node_Id;
6411 P : Node_Id;
6413 begin
6414 -- Retrieve the declaration node of N (if any). Note that N
6415 -- may be a part of a complex initialization expression.
6417 P := Parent (N);
6418 N_Decl := Empty;
6419 while Present (P) loop
6421 -- If we have a short circuit form, and we are within the right
6422 -- hand expression, we return false, since the right hand side
6423 -- is not guaranteed to be elaborated.
6425 if Nkind (P) in N_Short_Circuit
6426 and then N = Right_Opnd (P)
6427 then
6428 return False;
6429 end if;
6431 -- Similarly, if we are in an if expression and not part of the
6432 -- condition, then we return False, since neither the THEN or
6433 -- ELSE dependent expressions will always be elaborated.
6435 if Nkind (P) = N_If_Expression
6436 and then N /= First (Expressions (P))
6437 then
6438 return False;
6439 end if;
6441 -- If we are in a case expression, and not part of the
6442 -- expression, then we return False, since a particular
6443 -- dependent expression may not always be elaborated
6445 if Nkind (P) = N_Case_Expression
6446 and then N /= Expression (P)
6447 then
6448 return False;
6449 end if;
6451 -- While traversing the parent chain, we find that N
6452 -- belongs to a statement, thus it may never appear in
6453 -- a declarative region.
6455 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
6456 or else Nkind (P) = N_Procedure_Call_Statement
6457 then
6458 return False;
6459 end if;
6461 -- If we are at a declaration, record it and exit
6463 if Nkind (P) in N_Declaration
6464 and then Nkind (P) not in N_Subprogram_Specification
6465 then
6466 N_Decl := P;
6467 exit;
6468 end if;
6470 P := Parent (P);
6471 end loop;
6473 if No (N_Decl) then
6474 return False;
6475 end if;
6477 return List_Containing (N_Decl) = Declarations (S_Par);
6478 end;
6479 end Safe_To_Capture_In_Parameter_Value;
6481 -------------------
6482 -- Mark_Non_Null --
6483 -------------------
6485 procedure Mark_Non_Null is
6486 begin
6487 -- Only case of interest is if node N is an entity name
6489 if Is_Entity_Name (N) then
6491 -- For sure, we want to clear an indication that this is known to
6492 -- be null, since if we get past this check, it definitely is not!
6494 Set_Is_Known_Null (Entity (N), False);
6496 -- We can mark the entity as known to be non-null if either it is
6497 -- safe to capture the value, or in the case of an IN parameter,
6498 -- which is a constant, if the check we just installed is in the
6499 -- declarative region of the subprogram body. In this latter case,
6500 -- a check is decisive for the rest of the body if the expression
6501 -- is sure to be elaborated, since we know we have to elaborate
6502 -- all declarations before executing the body.
6504 -- Couldn't this always be part of Safe_To_Capture_Value ???
6506 if Safe_To_Capture_Value (N, Entity (N))
6507 or else Safe_To_Capture_In_Parameter_Value
6508 then
6509 Set_Is_Known_Non_Null (Entity (N));
6510 end if;
6511 end if;
6512 end Mark_Non_Null;
6514 -- Start of processing for Install_Null_Excluding_Check
6516 begin
6517 pragma Assert (Is_Access_Type (Typ));
6519 -- No check inside a generic (why not???)
6521 if Inside_A_Generic then
6522 return;
6523 end if;
6525 -- No check needed if known to be non-null
6527 if Known_Non_Null (N) then
6528 return;
6529 end if;
6531 -- If known to be null, here is where we generate a compile time check
6533 if Known_Null (N) then
6535 -- Avoid generating warning message inside init procs
6537 if not Inside_Init_Proc then
6538 Apply_Compile_Time_Constraint_Error
6540 "null value not allowed here??",
6541 CE_Access_Check_Failed);
6542 else
6543 Insert_Action (N,
6544 Make_Raise_Constraint_Error (Loc,
6545 Reason => CE_Access_Check_Failed));
6546 end if;
6548 Mark_Non_Null;
6549 return;
6550 end if;
6552 -- If entity is never assigned, for sure a warning is appropriate
6554 if Is_Entity_Name (N) then
6555 Check_Unset_Reference (N);
6556 end if;
6558 -- No check needed if checks are suppressed on the range. Note that we
6559 -- don't set Is_Known_Non_Null in this case (we could legitimately do
6560 -- so, since the program is erroneous, but we don't like to casually
6561 -- propagate such conclusions from erroneosity).
6563 if Access_Checks_Suppressed (Typ) then
6564 return;
6565 end if;
6567 -- No check needed for access to concurrent record types generated by
6568 -- the expander. This is not just an optimization (though it does indeed
6569 -- remove junk checks). It also avoids generation of junk warnings.
6571 if Nkind (N) in N_Has_Chars
6572 and then Chars (N) = Name_uObject
6573 and then Is_Concurrent_Record_Type
6574 (Directly_Designated_Type (Etype (N)))
6575 then
6576 return;
6577 end if;
6579 -- No check needed for the Get_Current_Excep.all.all idiom generated by
6580 -- the expander within exception handlers, since we know that the value
6581 -- can never be null.
6583 -- Is this really the right way to do this? Normally we generate such
6584 -- code in the expander with checks off, and that's how we suppress this
6585 -- kind of junk check ???
6587 if Nkind (N) = N_Function_Call
6588 and then Nkind (Name (N)) = N_Explicit_Dereference
6589 and then Nkind (Prefix (Name (N))) = N_Identifier
6590 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
6591 then
6592 return;
6593 end if;
6595 -- Otherwise install access check
6597 Insert_Action (N,
6598 Make_Raise_Constraint_Error (Loc,
6599 Condition =>
6600 Make_Op_Eq (Loc,
6601 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
6602 Right_Opnd => Make_Null (Loc)),
6603 Reason => CE_Access_Check_Failed));
6605 Mark_Non_Null;
6606 end Install_Null_Excluding_Check;
6608 --------------------------
6609 -- Install_Static_Check --
6610 --------------------------
6612 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
6613 Stat : constant Boolean := Is_Static_Expression (R_Cno);
6614 Typ : constant Entity_Id := Etype (R_Cno);
6616 begin
6617 Rewrite (R_Cno,
6618 Make_Raise_Constraint_Error (Loc,
6619 Reason => CE_Range_Check_Failed));
6620 Set_Analyzed (R_Cno);
6621 Set_Etype (R_Cno, Typ);
6622 Set_Raises_Constraint_Error (R_Cno);
6623 Set_Is_Static_Expression (R_Cno, Stat);
6625 -- Now deal with possible local raise handling
6627 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
6628 end Install_Static_Check;
6630 -------------------------
6631 -- Is_Check_Suppressed --
6632 -------------------------
6634 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
6635 Ptr : Suppress_Stack_Entry_Ptr;
6637 begin
6638 -- First search the local entity suppress stack. We search this from the
6639 -- top of the stack down so that we get the innermost entry that applies
6640 -- to this case if there are nested entries.
6642 Ptr := Local_Suppress_Stack_Top;
6643 while Ptr /= null loop
6644 if (Ptr.Entity = Empty or else Ptr.Entity = E)
6645 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
6646 then
6647 return Ptr.Suppress;
6648 end if;
6650 Ptr := Ptr.Prev;
6651 end loop;
6653 -- Now search the global entity suppress table for a matching entry.
6654 -- We also search this from the top down so that if there are multiple
6655 -- pragmas for the same entity, the last one applies (not clear what
6656 -- or whether the RM specifies this handling, but it seems reasonable).
6658 Ptr := Global_Suppress_Stack_Top;
6659 while Ptr /= null loop
6660 if (Ptr.Entity = Empty or else Ptr.Entity = E)
6661 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
6662 then
6663 return Ptr.Suppress;
6664 end if;
6666 Ptr := Ptr.Prev;
6667 end loop;
6669 -- If we did not find a matching entry, then use the normal scope
6670 -- suppress value after all (actually this will be the global setting
6671 -- since it clearly was not overridden at any point). For a predefined
6672 -- check, we test the specific flag. For a user defined check, we check
6673 -- the All_Checks flag. The Overflow flag requires special handling to
6674 -- deal with the General vs Assertion case
6676 if C = Overflow_Check then
6677 return Overflow_Checks_Suppressed (Empty);
6678 elsif C in Predefined_Check_Id then
6679 return Scope_Suppress.Suppress (C);
6680 else
6681 return Scope_Suppress.Suppress (All_Checks);
6682 end if;
6683 end Is_Check_Suppressed;
6685 ---------------------
6686 -- Kill_All_Checks --
6687 ---------------------
6689 procedure Kill_All_Checks is
6690 begin
6691 if Debug_Flag_CC then
6692 w ("Kill_All_Checks");
6693 end if;
6695 -- We reset the number of saved checks to zero, and also modify all
6696 -- stack entries for statement ranges to indicate that the number of
6697 -- checks at each level is now zero.
6699 Num_Saved_Checks := 0;
6701 -- Note: the Int'Min here avoids any possibility of J being out of
6702 -- range when called from e.g. Conditional_Statements_Begin.
6704 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
6705 Saved_Checks_Stack (J) := 0;
6706 end loop;
6707 end Kill_All_Checks;
6709 -----------------
6710 -- Kill_Checks --
6711 -----------------
6713 procedure Kill_Checks (V : Entity_Id) is
6714 begin
6715 if Debug_Flag_CC then
6716 w ("Kill_Checks for entity", Int (V));
6717 end if;
6719 for J in 1 .. Num_Saved_Checks loop
6720 if Saved_Checks (J).Entity = V then
6721 if Debug_Flag_CC then
6722 w (" Checks killed for saved check ", J);
6723 end if;
6725 Saved_Checks (J).Killed := True;
6726 end if;
6727 end loop;
6728 end Kill_Checks;
6730 ------------------------------
6731 -- Length_Checks_Suppressed --
6732 ------------------------------
6734 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
6735 begin
6736 if Present (E) and then Checks_May_Be_Suppressed (E) then
6737 return Is_Check_Suppressed (E, Length_Check);
6738 else
6739 return Scope_Suppress.Suppress (Length_Check);
6740 end if;
6741 end Length_Checks_Suppressed;
6743 -----------------------
6744 -- Make_Bignum_Block --
6745 -----------------------
6747 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
6748 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
6750 begin
6751 return
6752 Make_Block_Statement (Loc,
6753 Declarations => New_List (
6754 Make_Object_Declaration (Loc,
6755 Defining_Identifier => M,
6756 Object_Definition =>
6757 New_Occurrence_Of (RTE (RE_Mark_Id), Loc),
6758 Expression =>
6759 Make_Function_Call (Loc,
6760 Name => New_Reference_To (RTE (RE_SS_Mark), Loc)))),
6762 Handled_Statement_Sequence =>
6763 Make_Handled_Sequence_Of_Statements (Loc,
6764 Statements => New_List (
6765 Make_Procedure_Call_Statement (Loc,
6766 Name => New_Occurrence_Of (RTE (RE_SS_Release), Loc),
6767 Parameter_Associations => New_List (
6768 New_Reference_To (M, Loc))))));
6769 end Make_Bignum_Block;
6771 ----------------------------------
6772 -- Minimize_Eliminate_Overflows --
6773 ----------------------------------
6775 -- This is a recursive routine that is called at the top of an expression
6776 -- tree to properly process overflow checking for a whole subtree by making
6777 -- recursive calls to process operands. This processing may involve the use
6778 -- of bignum or long long integer arithmetic, which will change the types
6779 -- of operands and results. That's why we can't do this bottom up (since
6780 -- it would interfere with semantic analysis).
6782 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
6783 -- the operator expansion routines, as well as the expansion routines for
6784 -- if/case expression, do nothing (for the moment) except call the routine
6785 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
6786 -- routine does nothing for non top-level nodes, so at the point where the
6787 -- call is made for the top level node, the entire expression subtree has
6788 -- not been expanded, or processed for overflow. All that has to happen as
6789 -- a result of the top level call to this routine.
6791 -- As noted above, the overflow processing works by making recursive calls
6792 -- for the operands, and figuring out what to do, based on the processing
6793 -- of these operands (e.g. if a bignum operand appears, the parent op has
6794 -- to be done in bignum mode), and the determined ranges of the operands.
6796 -- After possible rewriting of a constituent subexpression node, a call is
6797 -- made to either reexpand the node (if nothing has changed) or reanalyze
6798 -- the node (if it has been modified by the overflow check processing). The
6799 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
6800 -- a recursive call into the whole overflow apparatus, an important rule
6801 -- for this call is that the overflow handling mode must be temporarily set
6802 -- to STRICT.
6804 procedure Minimize_Eliminate_Overflows
6805 (N : Node_Id;
6806 Lo : out Uint;
6807 Hi : out Uint;
6808 Top_Level : Boolean)
6810 Rtyp : constant Entity_Id := Etype (N);
6811 pragma Assert (Is_Signed_Integer_Type (Rtyp));
6812 -- Result type, must be a signed integer type
6814 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
6815 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
6817 Loc : constant Source_Ptr := Sloc (N);
6819 Rlo, Rhi : Uint;
6820 -- Ranges of values for right operand (operator case)
6822 Llo, Lhi : Uint;
6823 -- Ranges of values for left operand (operator case)
6825 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
6826 -- Operands and results are of this type when we convert
6828 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
6829 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
6830 -- Bounds of Long_Long_Integer
6832 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
6833 -- Indicates binary operator case
6835 OK : Boolean;
6836 -- Used in call to Determine_Range
6838 Bignum_Operands : Boolean;
6839 -- Set True if one or more operands is already of type Bignum, meaning
6840 -- that for sure (regardless of Top_Level setting) we are committed to
6841 -- doing the operation in Bignum mode (or in the case of a case or if
6842 -- expression, converting all the dependent expressions to Bignum).
6844 Long_Long_Integer_Operands : Boolean;
6845 -- Set True if one or more operands is already of type Long_Long_Integer
6846 -- which means that if the result is known to be in the result type
6847 -- range, then we must convert such operands back to the result type.
6849 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
6850 -- This is called when we have modified the node and we therefore need
6851 -- to reanalyze it. It is important that we reset the mode to STRICT for
6852 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
6853 -- we would reenter this routine recursively which would not be good!
6854 -- The argument Suppress is set True if we also want to suppress
6855 -- overflow checking for the reexpansion (this is set when we know
6856 -- overflow is not possible). Typ is the type for the reanalysis.
6858 procedure Reexpand (Suppress : Boolean := False);
6859 -- This is like Reanalyze, but does not do the Analyze step, it only
6860 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
6861 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
6862 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
6863 -- Note that skipping reanalysis is not just an optimization, testing
6864 -- has showed up several complex cases in which reanalyzing an already
6865 -- analyzed node causes incorrect behavior.
6867 function In_Result_Range return Boolean;
6868 -- Returns True iff Lo .. Hi are within range of the result type
6870 procedure Max (A : in out Uint; B : Uint);
6871 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
6873 procedure Min (A : in out Uint; B : Uint);
6874 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
6876 ---------------------
6877 -- In_Result_Range --
6878 ---------------------
6880 function In_Result_Range return Boolean is
6881 begin
6882 if Lo = No_Uint or else Hi = No_Uint then
6883 return False;
6885 elsif Is_Static_Subtype (Etype (N)) then
6886 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
6887 and then
6888 Hi <= Expr_Value (Type_High_Bound (Rtyp));
6890 else
6891 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
6892 and then
6893 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
6894 end if;
6895 end In_Result_Range;
6897 ---------
6898 -- Max --
6899 ---------
6901 procedure Max (A : in out Uint; B : Uint) is
6902 begin
6903 if A = No_Uint or else B > A then
6904 A := B;
6905 end if;
6906 end Max;
6908 ---------
6909 -- Min --
6910 ---------
6912 procedure Min (A : in out Uint; B : Uint) is
6913 begin
6914 if A = No_Uint or else B < A then
6915 A := B;
6916 end if;
6917 end Min;
6919 ---------------
6920 -- Reanalyze --
6921 ---------------
6923 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
6924 Svg : constant Overflow_Mode_Type :=
6925 Scope_Suppress.Overflow_Mode_General;
6926 Sva : constant Overflow_Mode_Type :=
6927 Scope_Suppress.Overflow_Mode_Assertions;
6928 Svo : constant Boolean :=
6929 Scope_Suppress.Suppress (Overflow_Check);
6931 begin
6932 Scope_Suppress.Overflow_Mode_General := Strict;
6933 Scope_Suppress.Overflow_Mode_Assertions := Strict;
6935 if Suppress then
6936 Scope_Suppress.Suppress (Overflow_Check) := True;
6937 end if;
6939 Analyze_And_Resolve (N, Typ);
6941 Scope_Suppress.Suppress (Overflow_Check) := Svo;
6942 Scope_Suppress.Overflow_Mode_General := Svg;
6943 Scope_Suppress.Overflow_Mode_Assertions := Sva;
6944 end Reanalyze;
6946 --------------
6947 -- Reexpand --
6948 --------------
6950 procedure Reexpand (Suppress : Boolean := False) is
6951 Svg : constant Overflow_Mode_Type :=
6952 Scope_Suppress.Overflow_Mode_General;
6953 Sva : constant Overflow_Mode_Type :=
6954 Scope_Suppress.Overflow_Mode_Assertions;
6955 Svo : constant Boolean :=
6956 Scope_Suppress.Suppress (Overflow_Check);
6958 begin
6959 Scope_Suppress.Overflow_Mode_General := Strict;
6960 Scope_Suppress.Overflow_Mode_Assertions := Strict;
6961 Set_Analyzed (N, False);
6963 if Suppress then
6964 Scope_Suppress.Suppress (Overflow_Check) := True;
6965 end if;
6967 Expand (N);
6969 Scope_Suppress.Suppress (Overflow_Check) := Svo;
6970 Scope_Suppress.Overflow_Mode_General := Svg;
6971 Scope_Suppress.Overflow_Mode_Assertions := Sva;
6972 end Reexpand;
6974 -- Start of processing for Minimize_Eliminate_Overflows
6976 begin
6977 -- Case where we do not have a signed integer arithmetic operation
6979 if not Is_Signed_Integer_Arithmetic_Op (N) then
6981 -- Use the normal Determine_Range routine to get the range. We
6982 -- don't require operands to be valid, invalid values may result in
6983 -- rubbish results where the result has not been properly checked for
6984 -- overflow, that's fine!
6986 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
6988 -- If Determine_Range did not work (can this in fact happen? Not
6989 -- clear but might as well protect), use type bounds.
6991 if not OK then
6992 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
6993 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
6994 end if;
6996 -- If we don't have a binary operator, all we have to do is to set
6997 -- the Hi/Lo range, so we are done
6999 return;
7001 -- Processing for if expression
7003 elsif Nkind (N) = N_If_Expression then
7004 declare
7005 Then_DE : constant Node_Id := Next (First (Expressions (N)));
7006 Else_DE : constant Node_Id := Next (Then_DE);
7008 begin
7009 Bignum_Operands := False;
7011 Minimize_Eliminate_Overflows
7012 (Then_DE, Lo, Hi, Top_Level => False);
7014 if Lo = No_Uint then
7015 Bignum_Operands := True;
7016 end if;
7018 Minimize_Eliminate_Overflows
7019 (Else_DE, Rlo, Rhi, Top_Level => False);
7021 if Rlo = No_Uint then
7022 Bignum_Operands := True;
7023 else
7024 Long_Long_Integer_Operands :=
7025 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
7027 Min (Lo, Rlo);
7028 Max (Hi, Rhi);
7029 end if;
7031 -- If at least one of our operands is now Bignum, we must rebuild
7032 -- the if expression to use Bignum operands. We will analyze the
7033 -- rebuilt if expression with overflow checks off, since once we
7034 -- are in bignum mode, we are all done with overflow checks!
7036 if Bignum_Operands then
7037 Rewrite (N,
7038 Make_If_Expression (Loc,
7039 Expressions => New_List (
7040 Remove_Head (Expressions (N)),
7041 Convert_To_Bignum (Then_DE),
7042 Convert_To_Bignum (Else_DE)),
7043 Is_Elsif => Is_Elsif (N)));
7045 Reanalyze (RTE (RE_Bignum), Suppress => True);
7047 -- If we have no Long_Long_Integer operands, then we are in result
7048 -- range, since it means that none of our operands felt the need
7049 -- to worry about overflow (otherwise it would have already been
7050 -- converted to long long integer or bignum). We reexpand to
7051 -- complete the expansion of the if expression (but we do not
7052 -- need to reanalyze).
7054 elsif not Long_Long_Integer_Operands then
7055 Set_Do_Overflow_Check (N, False);
7056 Reexpand;
7058 -- Otherwise convert us to long long integer mode. Note that we
7059 -- don't need any further overflow checking at this level.
7061 else
7062 Convert_To_And_Rewrite (LLIB, Then_DE);
7063 Convert_To_And_Rewrite (LLIB, Else_DE);
7064 Set_Etype (N, LLIB);
7066 -- Now reanalyze with overflow checks off
7068 Set_Do_Overflow_Check (N, False);
7069 Reanalyze (LLIB, Suppress => True);
7070 end if;
7071 end;
7073 return;
7075 -- Here for case expression
7077 elsif Nkind (N) = N_Case_Expression then
7078 Bignum_Operands := False;
7079 Long_Long_Integer_Operands := False;
7081 declare
7082 Alt : Node_Id;
7084 begin
7085 -- Loop through expressions applying recursive call
7087 Alt := First (Alternatives (N));
7088 while Present (Alt) loop
7089 declare
7090 Aexp : constant Node_Id := Expression (Alt);
7092 begin
7093 Minimize_Eliminate_Overflows
7094 (Aexp, Lo, Hi, Top_Level => False);
7096 if Lo = No_Uint then
7097 Bignum_Operands := True;
7098 elsif Etype (Aexp) = LLIB then
7099 Long_Long_Integer_Operands := True;
7100 end if;
7101 end;
7103 Next (Alt);
7104 end loop;
7106 -- If we have no bignum or long long integer operands, it means
7107 -- that none of our dependent expressions could raise overflow.
7108 -- In this case, we simply return with no changes except for
7109 -- resetting the overflow flag, since we are done with overflow
7110 -- checks for this node. We will reexpand to get the needed
7111 -- expansion for the case expression, but we do not need to
7112 -- reanalyze, since nothing has changed.
7114 if not (Bignum_Operands or Long_Long_Integer_Operands) then
7115 Set_Do_Overflow_Check (N, False);
7116 Reexpand (Suppress => True);
7118 -- Otherwise we are going to rebuild the case expression using
7119 -- either bignum or long long integer operands throughout.
7121 else
7122 declare
7123 Rtype : Entity_Id;
7124 New_Alts : List_Id;
7125 New_Exp : Node_Id;
7127 begin
7128 New_Alts := New_List;
7129 Alt := First (Alternatives (N));
7130 while Present (Alt) loop
7131 if Bignum_Operands then
7132 New_Exp := Convert_To_Bignum (Expression (Alt));
7133 Rtype := RTE (RE_Bignum);
7134 else
7135 New_Exp := Convert_To (LLIB, Expression (Alt));
7136 Rtype := LLIB;
7137 end if;
7139 Append_To (New_Alts,
7140 Make_Case_Expression_Alternative (Sloc (Alt),
7141 Actions => No_List,
7142 Discrete_Choices => Discrete_Choices (Alt),
7143 Expression => New_Exp));
7145 Next (Alt);
7146 end loop;
7148 Rewrite (N,
7149 Make_Case_Expression (Loc,
7150 Expression => Expression (N),
7151 Alternatives => New_Alts));
7153 Reanalyze (Rtype, Suppress => True);
7154 end;
7155 end if;
7156 end;
7158 return;
7159 end if;
7161 -- If we have an arithmetic operator we make recursive calls on the
7162 -- operands to get the ranges (and to properly process the subtree
7163 -- that lies below us!)
7165 Minimize_Eliminate_Overflows
7166 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
7168 if Binary then
7169 Minimize_Eliminate_Overflows
7170 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
7171 end if;
7173 -- Record if we have Long_Long_Integer operands
7175 Long_Long_Integer_Operands :=
7176 Etype (Right_Opnd (N)) = LLIB
7177 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
7179 -- If either operand is a bignum, then result will be a bignum and we
7180 -- don't need to do any range analysis. As previously discussed we could
7181 -- do range analysis in such cases, but it could mean working with giant
7182 -- numbers at compile time for very little gain (the number of cases
7183 -- in which we could slip back from bignum mode is small).
7185 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
7186 Lo := No_Uint;
7187 Hi := No_Uint;
7188 Bignum_Operands := True;
7190 -- Otherwise compute result range
7192 else
7193 Bignum_Operands := False;
7195 case Nkind (N) is
7197 -- Absolute value
7199 when N_Op_Abs =>
7200 Lo := Uint_0;
7201 Hi := UI_Max (abs Rlo, abs Rhi);
7203 -- Addition
7205 when N_Op_Add =>
7206 Lo := Llo + Rlo;
7207 Hi := Lhi + Rhi;
7209 -- Division
7211 when N_Op_Divide =>
7213 -- If the right operand can only be zero, set 0..0
7215 if Rlo = 0 and then Rhi = 0 then
7216 Lo := Uint_0;
7217 Hi := Uint_0;
7219 -- Possible bounds of division must come from dividing end
7220 -- values of the input ranges (four possibilities), provided
7221 -- zero is not included in the possible values of the right
7222 -- operand.
7224 -- Otherwise, we just consider two intervals of values for
7225 -- the right operand: the interval of negative values (up to
7226 -- -1) and the interval of positive values (starting at 1).
7227 -- Since division by 1 is the identity, and division by -1
7228 -- is negation, we get all possible bounds of division in that
7229 -- case by considering:
7230 -- - all values from the division of end values of input
7231 -- ranges;
7232 -- - the end values of the left operand;
7233 -- - the negation of the end values of the left operand.
7235 else
7236 declare
7237 Mrk : constant Uintp.Save_Mark := Mark;
7238 -- Mark so we can release the RR and Ev values
7240 Ev1 : Uint;
7241 Ev2 : Uint;
7242 Ev3 : Uint;
7243 Ev4 : Uint;
7245 begin
7246 -- Discard extreme values of zero for the divisor, since
7247 -- they will simply result in an exception in any case.
7249 if Rlo = 0 then
7250 Rlo := Uint_1;
7251 elsif Rhi = 0 then
7252 Rhi := -Uint_1;
7253 end if;
7255 -- Compute possible bounds coming from dividing end
7256 -- values of the input ranges.
7258 Ev1 := Llo / Rlo;
7259 Ev2 := Llo / Rhi;
7260 Ev3 := Lhi / Rlo;
7261 Ev4 := Lhi / Rhi;
7263 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
7264 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
7266 -- If the right operand can be both negative or positive,
7267 -- include the end values of the left operand in the
7268 -- extreme values, as well as their negation.
7270 if Rlo < 0 and then Rhi > 0 then
7271 Ev1 := Llo;
7272 Ev2 := -Llo;
7273 Ev3 := Lhi;
7274 Ev4 := -Lhi;
7276 Min (Lo,
7277 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
7278 Max (Hi,
7279 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
7280 end if;
7282 -- Release the RR and Ev values
7284 Release_And_Save (Mrk, Lo, Hi);
7285 end;
7286 end if;
7288 -- Exponentiation
7290 when N_Op_Expon =>
7292 -- Discard negative values for the exponent, since they will
7293 -- simply result in an exception in any case.
7295 if Rhi < 0 then
7296 Rhi := Uint_0;
7297 elsif Rlo < 0 then
7298 Rlo := Uint_0;
7299 end if;
7301 -- Estimate number of bits in result before we go computing
7302 -- giant useless bounds. Basically the number of bits in the
7303 -- result is the number of bits in the base multiplied by the
7304 -- value of the exponent. If this is big enough that the result
7305 -- definitely won't fit in Long_Long_Integer, switch to bignum
7306 -- mode immediately, and avoid computing giant bounds.
7308 -- The comparison here is approximate, but conservative, it
7309 -- only clicks on cases that are sure to exceed the bounds.
7311 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
7312 Lo := No_Uint;
7313 Hi := No_Uint;
7315 -- If right operand is zero then result is 1
7317 elsif Rhi = 0 then
7318 Lo := Uint_1;
7319 Hi := Uint_1;
7321 else
7322 -- High bound comes either from exponentiation of largest
7323 -- positive value to largest exponent value, or from
7324 -- the exponentiation of most negative value to an
7325 -- even exponent.
7327 declare
7328 Hi1, Hi2 : Uint;
7330 begin
7331 if Lhi > 0 then
7332 Hi1 := Lhi ** Rhi;
7333 else
7334 Hi1 := Uint_0;
7335 end if;
7337 if Llo < 0 then
7338 if Rhi mod 2 = 0 then
7339 Hi2 := Llo ** Rhi;
7340 else
7341 Hi2 := Llo ** (Rhi - 1);
7342 end if;
7343 else
7344 Hi2 := Uint_0;
7345 end if;
7347 Hi := UI_Max (Hi1, Hi2);
7348 end;
7350 -- Result can only be negative if base can be negative
7352 if Llo < 0 then
7353 if Rhi mod 2 = 0 then
7354 Lo := Llo ** (Rhi - 1);
7355 else
7356 Lo := Llo ** Rhi;
7357 end if;
7359 -- Otherwise low bound is minimum ** minimum
7361 else
7362 Lo := Llo ** Rlo;
7363 end if;
7364 end if;
7366 -- Negation
7368 when N_Op_Minus =>
7369 Lo := -Rhi;
7370 Hi := -Rlo;
7372 -- Mod
7374 when N_Op_Mod =>
7375 declare
7376 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
7377 -- This is the maximum absolute value of the result
7379 begin
7380 Lo := Uint_0;
7381 Hi := Uint_0;
7383 -- The result depends only on the sign and magnitude of
7384 -- the right operand, it does not depend on the sign or
7385 -- magnitude of the left operand.
7387 if Rlo < 0 then
7388 Lo := -Maxabs;
7389 end if;
7391 if Rhi > 0 then
7392 Hi := Maxabs;
7393 end if;
7394 end;
7396 -- Multiplication
7398 when N_Op_Multiply =>
7400 -- Possible bounds of multiplication must come from multiplying
7401 -- end values of the input ranges (four possibilities).
7403 declare
7404 Mrk : constant Uintp.Save_Mark := Mark;
7405 -- Mark so we can release the Ev values
7407 Ev1 : constant Uint := Llo * Rlo;
7408 Ev2 : constant Uint := Llo * Rhi;
7409 Ev3 : constant Uint := Lhi * Rlo;
7410 Ev4 : constant Uint := Lhi * Rhi;
7412 begin
7413 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
7414 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
7416 -- Release the Ev values
7418 Release_And_Save (Mrk, Lo, Hi);
7419 end;
7421 -- Plus operator (affirmation)
7423 when N_Op_Plus =>
7424 Lo := Rlo;
7425 Hi := Rhi;
7427 -- Remainder
7429 when N_Op_Rem =>
7430 declare
7431 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
7432 -- This is the maximum absolute value of the result. Note
7433 -- that the result range does not depend on the sign of the
7434 -- right operand.
7436 begin
7437 Lo := Uint_0;
7438 Hi := Uint_0;
7440 -- Case of left operand negative, which results in a range
7441 -- of -Maxabs .. 0 for those negative values. If there are
7442 -- no negative values then Lo value of result is always 0.
7444 if Llo < 0 then
7445 Lo := -Maxabs;
7446 end if;
7448 -- Case of left operand positive
7450 if Lhi > 0 then
7451 Hi := Maxabs;
7452 end if;
7453 end;
7455 -- Subtract
7457 when N_Op_Subtract =>
7458 Lo := Llo - Rhi;
7459 Hi := Lhi - Rlo;
7461 -- Nothing else should be possible
7463 when others =>
7464 raise Program_Error;
7465 end case;
7466 end if;
7468 -- Here for the case where we have not rewritten anything (no bignum
7469 -- operands or long long integer operands), and we know the result.
7470 -- If we know we are in the result range, and we do not have Bignum
7471 -- operands or Long_Long_Integer operands, we can just reexpand with
7472 -- overflow checks turned off (since we know we cannot have overflow).
7473 -- As always the reexpansion is required to complete expansion of the
7474 -- operator, but we do not need to reanalyze, and we prevent recursion
7475 -- by suppressing the check.
7477 if not (Bignum_Operands or Long_Long_Integer_Operands)
7478 and then In_Result_Range
7479 then
7480 Set_Do_Overflow_Check (N, False);
7481 Reexpand (Suppress => True);
7482 return;
7484 -- Here we know that we are not in the result range, and in the general
7485 -- case we will move into either the Bignum or Long_Long_Integer domain
7486 -- to compute the result. However, there is one exception. If we are
7487 -- at the top level, and we do not have Bignum or Long_Long_Integer
7488 -- operands, we will have to immediately convert the result back to
7489 -- the result type, so there is no point in Bignum/Long_Long_Integer
7490 -- fiddling.
7492 elsif Top_Level
7493 and then not (Bignum_Operands or Long_Long_Integer_Operands)
7495 -- One further refinement. If we are at the top level, but our parent
7496 -- is a type conversion, then go into bignum or long long integer node
7497 -- since the result will be converted to that type directly without
7498 -- going through the result type, and we may avoid an overflow. This
7499 -- is the case for example of Long_Long_Integer (A ** 4), where A is
7500 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
7501 -- but does not fit in Integer.
7503 and then Nkind (Parent (N)) /= N_Type_Conversion
7504 then
7505 -- Here keep original types, but we need to complete analysis
7507 -- One subtlety. We can't just go ahead and do an analyze operation
7508 -- here because it will cause recursion into the whole MINIMIZED/
7509 -- ELIMINATED overflow processing which is not what we want. Here
7510 -- we are at the top level, and we need a check against the result
7511 -- mode (i.e. we want to use STRICT mode). So do exactly that!
7512 -- Also, we have not modified the node, so this is a case where
7513 -- we need to reexpand, but not reanalyze.
7515 Reexpand;
7516 return;
7518 -- Cases where we do the operation in Bignum mode. This happens either
7519 -- because one of our operands is in Bignum mode already, or because
7520 -- the computed bounds are outside the bounds of Long_Long_Integer,
7521 -- which in some cases can be indicated by Hi and Lo being No_Uint.
7523 -- Note: we could do better here and in some cases switch back from
7524 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
7525 -- 0 .. 1, but the cases are rare and it is not worth the effort.
7526 -- Failing to do this switching back is only an efficiency issue.
7528 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
7530 -- OK, we are definitely outside the range of Long_Long_Integer. The
7531 -- question is whether to move to Bignum mode, or stay in the domain
7532 -- of Long_Long_Integer, signalling that an overflow check is needed.
7534 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
7535 -- the Bignum business. In ELIMINATED mode, we will normally move
7536 -- into Bignum mode, but there is an exception if neither of our
7537 -- operands is Bignum now, and we are at the top level (Top_Level
7538 -- set True). In this case, there is no point in moving into Bignum
7539 -- mode to prevent overflow if the caller will immediately convert
7540 -- the Bignum value back to LLI with an overflow check. It's more
7541 -- efficient to stay in LLI mode with an overflow check (if needed)
7543 if Check_Mode = Minimized
7544 or else (Top_Level and not Bignum_Operands)
7545 then
7546 if Do_Overflow_Check (N) then
7547 Enable_Overflow_Check (N);
7548 end if;
7550 -- The result now has to be in Long_Long_Integer mode, so adjust
7551 -- the possible range to reflect this. Note these calls also
7552 -- change No_Uint values from the top level case to LLI bounds.
7554 Max (Lo, LLLo);
7555 Min (Hi, LLHi);
7557 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
7559 else
7560 pragma Assert (Check_Mode = Eliminated);
7562 declare
7563 Fent : Entity_Id;
7564 Args : List_Id;
7566 begin
7567 case Nkind (N) is
7568 when N_Op_Abs =>
7569 Fent := RTE (RE_Big_Abs);
7571 when N_Op_Add =>
7572 Fent := RTE (RE_Big_Add);
7574 when N_Op_Divide =>
7575 Fent := RTE (RE_Big_Div);
7577 when N_Op_Expon =>
7578 Fent := RTE (RE_Big_Exp);
7580 when N_Op_Minus =>
7581 Fent := RTE (RE_Big_Neg);
7583 when N_Op_Mod =>
7584 Fent := RTE (RE_Big_Mod);
7586 when N_Op_Multiply =>
7587 Fent := RTE (RE_Big_Mul);
7589 when N_Op_Rem =>
7590 Fent := RTE (RE_Big_Rem);
7592 when N_Op_Subtract =>
7593 Fent := RTE (RE_Big_Sub);
7595 -- Anything else is an internal error, this includes the
7596 -- N_Op_Plus case, since how can plus cause the result
7597 -- to be out of range if the operand is in range?
7599 when others =>
7600 raise Program_Error;
7601 end case;
7603 -- Construct argument list for Bignum call, converting our
7604 -- operands to Bignum form if they are not already there.
7606 Args := New_List;
7608 if Binary then
7609 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
7610 end if;
7612 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
7614 -- Now rewrite the arithmetic operator with a call to the
7615 -- corresponding bignum function.
7617 Rewrite (N,
7618 Make_Function_Call (Loc,
7619 Name => New_Occurrence_Of (Fent, Loc),
7620 Parameter_Associations => Args));
7621 Reanalyze (RTE (RE_Bignum), Suppress => True);
7623 -- Indicate result is Bignum mode
7625 Lo := No_Uint;
7626 Hi := No_Uint;
7627 return;
7628 end;
7629 end if;
7631 -- Otherwise we are in range of Long_Long_Integer, so no overflow
7632 -- check is required, at least not yet.
7634 else
7635 Set_Do_Overflow_Check (N, False);
7636 end if;
7638 -- Here we are not in Bignum territory, but we may have long long
7639 -- integer operands that need special handling. First a special check:
7640 -- If an exponentiation operator exponent is of type Long_Long_Integer,
7641 -- it means we converted it to prevent overflow, but exponentiation
7642 -- requires a Natural right operand, so convert it back to Natural.
7643 -- This conversion may raise an exception which is fine.
7645 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
7646 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
7647 end if;
7649 -- Here we will do the operation in Long_Long_Integer. We do this even
7650 -- if we know an overflow check is required, better to do this in long
7651 -- long integer mode, since we are less likely to overflow!
7653 -- Convert right or only operand to Long_Long_Integer, except that
7654 -- we do not touch the exponentiation right operand.
7656 if Nkind (N) /= N_Op_Expon then
7657 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
7658 end if;
7660 -- Convert left operand to Long_Long_Integer for binary case
7662 if Binary then
7663 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
7664 end if;
7666 -- Reset node to unanalyzed
7668 Set_Analyzed (N, False);
7669 Set_Etype (N, Empty);
7670 Set_Entity (N, Empty);
7672 -- Now analyze this new node. This reanalysis will complete processing
7673 -- for the node. In particular we will complete the expansion of an
7674 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
7675 -- we will complete any division checks (since we have not changed the
7676 -- setting of the Do_Division_Check flag).
7678 -- We do this reanalysis in STRICT mode to avoid recursion into the
7679 -- MINIMIZED/ELIMINATED handling, since we are now done with that!
7681 declare
7682 SG : constant Overflow_Mode_Type :=
7683 Scope_Suppress.Overflow_Mode_General;
7684 SA : constant Overflow_Mode_Type :=
7685 Scope_Suppress.Overflow_Mode_Assertions;
7687 begin
7688 Scope_Suppress.Overflow_Mode_General := Strict;
7689 Scope_Suppress.Overflow_Mode_Assertions := Strict;
7691 if not Do_Overflow_Check (N) then
7692 Reanalyze (LLIB, Suppress => True);
7693 else
7694 Reanalyze (LLIB);
7695 end if;
7697 Scope_Suppress.Overflow_Mode_General := SG;
7698 Scope_Suppress.Overflow_Mode_Assertions := SA;
7699 end;
7700 end Minimize_Eliminate_Overflows;
7702 -------------------------
7703 -- Overflow_Check_Mode --
7704 -------------------------
7706 function Overflow_Check_Mode return Overflow_Mode_Type is
7707 begin
7708 if In_Assertion_Expr = 0 then
7709 return Scope_Suppress.Overflow_Mode_General;
7710 else
7711 return Scope_Suppress.Overflow_Mode_Assertions;
7712 end if;
7713 end Overflow_Check_Mode;
7715 --------------------------------
7716 -- Overflow_Checks_Suppressed --
7717 --------------------------------
7719 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
7720 begin
7721 if Present (E) and then Checks_May_Be_Suppressed (E) then
7722 return Is_Check_Suppressed (E, Overflow_Check);
7723 else
7724 return Scope_Suppress.Suppress (Overflow_Check);
7725 end if;
7726 end Overflow_Checks_Suppressed;
7728 -----------------------------
7729 -- Range_Checks_Suppressed --
7730 -----------------------------
7732 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
7733 begin
7734 if Present (E) then
7736 -- Note: for now we always suppress range checks on Vax float types,
7737 -- since Gigi does not know how to generate these checks.
7739 if Vax_Float (E) then
7740 return True;
7741 elsif Kill_Range_Checks (E) then
7742 return True;
7743 elsif Checks_May_Be_Suppressed (E) then
7744 return Is_Check_Suppressed (E, Range_Check);
7745 end if;
7746 end if;
7748 return Scope_Suppress.Suppress (Range_Check);
7749 end Range_Checks_Suppressed;
7751 -----------------------------------------
7752 -- Range_Or_Validity_Checks_Suppressed --
7753 -----------------------------------------
7755 -- Note: the coding would be simpler here if we simply made appropriate
7756 -- calls to Range/Validity_Checks_Suppressed, but that would result in
7757 -- duplicated checks which we prefer to avoid.
7759 function Range_Or_Validity_Checks_Suppressed
7760 (Expr : Node_Id) return Boolean
7762 begin
7763 -- Immediate return if scope checks suppressed for either check
7765 if Scope_Suppress.Suppress (Range_Check)
7767 Scope_Suppress.Suppress (Validity_Check)
7768 then
7769 return True;
7770 end if;
7772 -- If no expression, that's odd, decide that checks are suppressed,
7773 -- since we don't want anyone trying to do checks in this case, which
7774 -- is most likely the result of some other error.
7776 if No (Expr) then
7777 return True;
7778 end if;
7780 -- Expression is present, so perform suppress checks on type
7782 declare
7783 Typ : constant Entity_Id := Etype (Expr);
7784 begin
7785 if Vax_Float (Typ) then
7786 return True;
7787 elsif Checks_May_Be_Suppressed (Typ)
7788 and then (Is_Check_Suppressed (Typ, Range_Check)
7789 or else
7790 Is_Check_Suppressed (Typ, Validity_Check))
7791 then
7792 return True;
7793 end if;
7794 end;
7796 -- If expression is an entity name, perform checks on this entity
7798 if Is_Entity_Name (Expr) then
7799 declare
7800 Ent : constant Entity_Id := Entity (Expr);
7801 begin
7802 if Checks_May_Be_Suppressed (Ent) then
7803 return Is_Check_Suppressed (Ent, Range_Check)
7804 or else Is_Check_Suppressed (Ent, Validity_Check);
7805 end if;
7806 end;
7807 end if;
7809 -- If we fall through, no checks suppressed
7811 return False;
7812 end Range_Or_Validity_Checks_Suppressed;
7814 -------------------
7815 -- Remove_Checks --
7816 -------------------
7818 procedure Remove_Checks (Expr : Node_Id) is
7819 function Process (N : Node_Id) return Traverse_Result;
7820 -- Process a single node during the traversal
7822 procedure Traverse is new Traverse_Proc (Process);
7823 -- The traversal procedure itself
7825 -------------
7826 -- Process --
7827 -------------
7829 function Process (N : Node_Id) return Traverse_Result is
7830 begin
7831 if Nkind (N) not in N_Subexpr then
7832 return Skip;
7833 end if;
7835 Set_Do_Range_Check (N, False);
7837 case Nkind (N) is
7838 when N_And_Then =>
7839 Traverse (Left_Opnd (N));
7840 return Skip;
7842 when N_Attribute_Reference =>
7843 Set_Do_Overflow_Check (N, False);
7845 when N_Function_Call =>
7846 Set_Do_Tag_Check (N, False);
7848 when N_Op =>
7849 Set_Do_Overflow_Check (N, False);
7851 case Nkind (N) is
7852 when N_Op_Divide =>
7853 Set_Do_Division_Check (N, False);
7855 when N_Op_And =>
7856 Set_Do_Length_Check (N, False);
7858 when N_Op_Mod =>
7859 Set_Do_Division_Check (N, False);
7861 when N_Op_Or =>
7862 Set_Do_Length_Check (N, False);
7864 when N_Op_Rem =>
7865 Set_Do_Division_Check (N, False);
7867 when N_Op_Xor =>
7868 Set_Do_Length_Check (N, False);
7870 when others =>
7871 null;
7872 end case;
7874 when N_Or_Else =>
7875 Traverse (Left_Opnd (N));
7876 return Skip;
7878 when N_Selected_Component =>
7879 Set_Do_Discriminant_Check (N, False);
7881 when N_Type_Conversion =>
7882 Set_Do_Length_Check (N, False);
7883 Set_Do_Tag_Check (N, False);
7884 Set_Do_Overflow_Check (N, False);
7886 when others =>
7887 null;
7888 end case;
7890 return OK;
7891 end Process;
7893 -- Start of processing for Remove_Checks
7895 begin
7896 Traverse (Expr);
7897 end Remove_Checks;
7899 ----------------------------
7900 -- Selected_Length_Checks --
7901 ----------------------------
7903 function Selected_Length_Checks
7904 (Ck_Node : Node_Id;
7905 Target_Typ : Entity_Id;
7906 Source_Typ : Entity_Id;
7907 Warn_Node : Node_Id) return Check_Result
7909 Loc : constant Source_Ptr := Sloc (Ck_Node);
7910 S_Typ : Entity_Id;
7911 T_Typ : Entity_Id;
7912 Expr_Actual : Node_Id;
7913 Exptyp : Entity_Id;
7914 Cond : Node_Id := Empty;
7915 Do_Access : Boolean := False;
7916 Wnode : Node_Id := Warn_Node;
7917 Ret_Result : Check_Result := (Empty, Empty);
7918 Num_Checks : Natural := 0;
7920 procedure Add_Check (N : Node_Id);
7921 -- Adds the action given to Ret_Result if N is non-Empty
7923 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
7924 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
7925 -- Comments required ???
7927 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
7928 -- True for equal literals and for nodes that denote the same constant
7929 -- entity, even if its value is not a static constant. This includes the
7930 -- case of a discriminal reference within an init proc. Removes some
7931 -- obviously superfluous checks.
7933 function Length_E_Cond
7934 (Exptyp : Entity_Id;
7935 Typ : Entity_Id;
7936 Indx : Nat) return Node_Id;
7937 -- Returns expression to compute:
7938 -- Typ'Length /= Exptyp'Length
7940 function Length_N_Cond
7941 (Expr : Node_Id;
7942 Typ : Entity_Id;
7943 Indx : Nat) return Node_Id;
7944 -- Returns expression to compute:
7945 -- Typ'Length /= Expr'Length
7947 ---------------
7948 -- Add_Check --
7949 ---------------
7951 procedure Add_Check (N : Node_Id) is
7952 begin
7953 if Present (N) then
7955 -- For now, ignore attempt to place more than 2 checks ???
7957 if Num_Checks = 2 then
7958 return;
7959 end if;
7961 pragma Assert (Num_Checks <= 1);
7962 Num_Checks := Num_Checks + 1;
7963 Ret_Result (Num_Checks) := N;
7964 end if;
7965 end Add_Check;
7967 ------------------
7968 -- Get_E_Length --
7969 ------------------
7971 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
7972 SE : constant Entity_Id := Scope (E);
7973 N : Node_Id;
7974 E1 : Entity_Id := E;
7976 begin
7977 if Ekind (Scope (E)) = E_Record_Type
7978 and then Has_Discriminants (Scope (E))
7979 then
7980 N := Build_Discriminal_Subtype_Of_Component (E);
7982 if Present (N) then
7983 Insert_Action (Ck_Node, N);
7984 E1 := Defining_Identifier (N);
7985 end if;
7986 end if;
7988 if Ekind (E1) = E_String_Literal_Subtype then
7989 return
7990 Make_Integer_Literal (Loc,
7991 Intval => String_Literal_Length (E1));
7993 elsif SE /= Standard_Standard
7994 and then Ekind (Scope (SE)) = E_Protected_Type
7995 and then Has_Discriminants (Scope (SE))
7996 and then Has_Completion (Scope (SE))
7997 and then not Inside_Init_Proc
7998 then
7999 -- If the type whose length is needed is a private component
8000 -- constrained by a discriminant, we must expand the 'Length
8001 -- attribute into an explicit computation, using the discriminal
8002 -- of the current protected operation. This is because the actual
8003 -- type of the prival is constructed after the protected opera-
8004 -- tion has been fully expanded.
8006 declare
8007 Indx_Type : Node_Id;
8008 Lo : Node_Id;
8009 Hi : Node_Id;
8010 Do_Expand : Boolean := False;
8012 begin
8013 Indx_Type := First_Index (E);
8015 for J in 1 .. Indx - 1 loop
8016 Next_Index (Indx_Type);
8017 end loop;
8019 Get_Index_Bounds (Indx_Type, Lo, Hi);
8021 if Nkind (Lo) = N_Identifier
8022 and then Ekind (Entity (Lo)) = E_In_Parameter
8023 then
8024 Lo := Get_Discriminal (E, Lo);
8025 Do_Expand := True;
8026 end if;
8028 if Nkind (Hi) = N_Identifier
8029 and then Ekind (Entity (Hi)) = E_In_Parameter
8030 then
8031 Hi := Get_Discriminal (E, Hi);
8032 Do_Expand := True;
8033 end if;
8035 if Do_Expand then
8036 if not Is_Entity_Name (Lo) then
8037 Lo := Duplicate_Subexpr_No_Checks (Lo);
8038 end if;
8040 if not Is_Entity_Name (Hi) then
8041 Lo := Duplicate_Subexpr_No_Checks (Hi);
8042 end if;
8044 N :=
8045 Make_Op_Add (Loc,
8046 Left_Opnd =>
8047 Make_Op_Subtract (Loc,
8048 Left_Opnd => Hi,
8049 Right_Opnd => Lo),
8051 Right_Opnd => Make_Integer_Literal (Loc, 1));
8052 return N;
8054 else
8055 N :=
8056 Make_Attribute_Reference (Loc,
8057 Attribute_Name => Name_Length,
8058 Prefix =>
8059 New_Occurrence_Of (E1, Loc));
8061 if Indx > 1 then
8062 Set_Expressions (N, New_List (
8063 Make_Integer_Literal (Loc, Indx)));
8064 end if;
8066 return N;
8067 end if;
8068 end;
8070 else
8071 N :=
8072 Make_Attribute_Reference (Loc,
8073 Attribute_Name => Name_Length,
8074 Prefix =>
8075 New_Occurrence_Of (E1, Loc));
8077 if Indx > 1 then
8078 Set_Expressions (N, New_List (
8079 Make_Integer_Literal (Loc, Indx)));
8080 end if;
8082 return N;
8083 end if;
8084 end Get_E_Length;
8086 ------------------
8087 -- Get_N_Length --
8088 ------------------
8090 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
8091 begin
8092 return
8093 Make_Attribute_Reference (Loc,
8094 Attribute_Name => Name_Length,
8095 Prefix =>
8096 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
8097 Expressions => New_List (
8098 Make_Integer_Literal (Loc, Indx)));
8099 end Get_N_Length;
8101 -------------------
8102 -- Length_E_Cond --
8103 -------------------
8105 function Length_E_Cond
8106 (Exptyp : Entity_Id;
8107 Typ : Entity_Id;
8108 Indx : Nat) return Node_Id
8110 begin
8111 return
8112 Make_Op_Ne (Loc,
8113 Left_Opnd => Get_E_Length (Typ, Indx),
8114 Right_Opnd => Get_E_Length (Exptyp, Indx));
8115 end Length_E_Cond;
8117 -------------------
8118 -- Length_N_Cond --
8119 -------------------
8121 function Length_N_Cond
8122 (Expr : Node_Id;
8123 Typ : Entity_Id;
8124 Indx : Nat) return Node_Id
8126 begin
8127 return
8128 Make_Op_Ne (Loc,
8129 Left_Opnd => Get_E_Length (Typ, Indx),
8130 Right_Opnd => Get_N_Length (Expr, Indx));
8131 end Length_N_Cond;
8133 -----------------
8134 -- Same_Bounds --
8135 -----------------
8137 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
8138 begin
8139 return
8140 (Nkind (L) = N_Integer_Literal
8141 and then Nkind (R) = N_Integer_Literal
8142 and then Intval (L) = Intval (R))
8144 or else
8145 (Is_Entity_Name (L)
8146 and then Ekind (Entity (L)) = E_Constant
8147 and then ((Is_Entity_Name (R)
8148 and then Entity (L) = Entity (R))
8149 or else
8150 (Nkind (R) = N_Type_Conversion
8151 and then Is_Entity_Name (Expression (R))
8152 and then Entity (L) = Entity (Expression (R)))))
8154 or else
8155 (Is_Entity_Name (R)
8156 and then Ekind (Entity (R)) = E_Constant
8157 and then Nkind (L) = N_Type_Conversion
8158 and then Is_Entity_Name (Expression (L))
8159 and then Entity (R) = Entity (Expression (L)))
8161 or else
8162 (Is_Entity_Name (L)
8163 and then Is_Entity_Name (R)
8164 and then Entity (L) = Entity (R)
8165 and then Ekind (Entity (L)) = E_In_Parameter
8166 and then Inside_Init_Proc);
8167 end Same_Bounds;
8169 -- Start of processing for Selected_Length_Checks
8171 begin
8172 if not Full_Expander_Active then
8173 return Ret_Result;
8174 end if;
8176 if Target_Typ = Any_Type
8177 or else Target_Typ = Any_Composite
8178 or else Raises_Constraint_Error (Ck_Node)
8179 then
8180 return Ret_Result;
8181 end if;
8183 if No (Wnode) then
8184 Wnode := Ck_Node;
8185 end if;
8187 T_Typ := Target_Typ;
8189 if No (Source_Typ) then
8190 S_Typ := Etype (Ck_Node);
8191 else
8192 S_Typ := Source_Typ;
8193 end if;
8195 if S_Typ = Any_Type or else S_Typ = Any_Composite then
8196 return Ret_Result;
8197 end if;
8199 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
8200 S_Typ := Designated_Type (S_Typ);
8201 T_Typ := Designated_Type (T_Typ);
8202 Do_Access := True;
8204 -- A simple optimization for the null case
8206 if Known_Null (Ck_Node) then
8207 return Ret_Result;
8208 end if;
8209 end if;
8211 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
8212 if Is_Constrained (T_Typ) then
8214 -- The checking code to be generated will freeze the corresponding
8215 -- array type. However, we must freeze the type now, so that the
8216 -- freeze node does not appear within the generated if expression,
8217 -- but ahead of it.
8219 Freeze_Before (Ck_Node, T_Typ);
8221 Expr_Actual := Get_Referenced_Object (Ck_Node);
8222 Exptyp := Get_Actual_Subtype (Ck_Node);
8224 if Is_Access_Type (Exptyp) then
8225 Exptyp := Designated_Type (Exptyp);
8226 end if;
8228 -- String_Literal case. This needs to be handled specially be-
8229 -- cause no index types are available for string literals. The
8230 -- condition is simply:
8232 -- T_Typ'Length = string-literal-length
8234 if Nkind (Expr_Actual) = N_String_Literal
8235 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
8236 then
8237 Cond :=
8238 Make_Op_Ne (Loc,
8239 Left_Opnd => Get_E_Length (T_Typ, 1),
8240 Right_Opnd =>
8241 Make_Integer_Literal (Loc,
8242 Intval =>
8243 String_Literal_Length (Etype (Expr_Actual))));
8245 -- General array case. Here we have a usable actual subtype for
8246 -- the expression, and the condition is built from the two types
8247 -- (Do_Length):
8249 -- T_Typ'Length /= Exptyp'Length or else
8250 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
8251 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
8252 -- ...
8254 elsif Is_Constrained (Exptyp) then
8255 declare
8256 Ndims : constant Nat := Number_Dimensions (T_Typ);
8258 L_Index : Node_Id;
8259 R_Index : Node_Id;
8260 L_Low : Node_Id;
8261 L_High : Node_Id;
8262 R_Low : Node_Id;
8263 R_High : Node_Id;
8264 L_Length : Uint;
8265 R_Length : Uint;
8266 Ref_Node : Node_Id;
8268 begin
8269 -- At the library level, we need to ensure that the type of
8270 -- the object is elaborated before the check itself is
8271 -- emitted. This is only done if the object is in the
8272 -- current compilation unit, otherwise the type is frozen
8273 -- and elaborated in its unit.
8275 if Is_Itype (Exptyp)
8276 and then
8277 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
8278 and then
8279 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
8280 and then In_Open_Scopes (Scope (Exptyp))
8281 then
8282 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
8283 Set_Itype (Ref_Node, Exptyp);
8284 Insert_Action (Ck_Node, Ref_Node);
8285 end if;
8287 L_Index := First_Index (T_Typ);
8288 R_Index := First_Index (Exptyp);
8290 for Indx in 1 .. Ndims loop
8291 if not (Nkind (L_Index) = N_Raise_Constraint_Error
8292 or else
8293 Nkind (R_Index) = N_Raise_Constraint_Error)
8294 then
8295 Get_Index_Bounds (L_Index, L_Low, L_High);
8296 Get_Index_Bounds (R_Index, R_Low, R_High);
8298 -- Deal with compile time length check. Note that we
8299 -- skip this in the access case, because the access
8300 -- value may be null, so we cannot know statically.
8302 if not Do_Access
8303 and then Compile_Time_Known_Value (L_Low)
8304 and then Compile_Time_Known_Value (L_High)
8305 and then Compile_Time_Known_Value (R_Low)
8306 and then Compile_Time_Known_Value (R_High)
8307 then
8308 if Expr_Value (L_High) >= Expr_Value (L_Low) then
8309 L_Length := Expr_Value (L_High) -
8310 Expr_Value (L_Low) + 1;
8311 else
8312 L_Length := UI_From_Int (0);
8313 end if;
8315 if Expr_Value (R_High) >= Expr_Value (R_Low) then
8316 R_Length := Expr_Value (R_High) -
8317 Expr_Value (R_Low) + 1;
8318 else
8319 R_Length := UI_From_Int (0);
8320 end if;
8322 if L_Length > R_Length then
8323 Add_Check
8324 (Compile_Time_Constraint_Error
8325 (Wnode, "too few elements for}??", T_Typ));
8327 elsif L_Length < R_Length then
8328 Add_Check
8329 (Compile_Time_Constraint_Error
8330 (Wnode, "too many elements for}??", T_Typ));
8331 end if;
8333 -- The comparison for an individual index subtype
8334 -- is omitted if the corresponding index subtypes
8335 -- statically match, since the result is known to
8336 -- be true. Note that this test is worth while even
8337 -- though we do static evaluation, because non-static
8338 -- subtypes can statically match.
8340 elsif not
8341 Subtypes_Statically_Match
8342 (Etype (L_Index), Etype (R_Index))
8344 and then not
8345 (Same_Bounds (L_Low, R_Low)
8346 and then Same_Bounds (L_High, R_High))
8347 then
8348 Evolve_Or_Else
8349 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
8350 end if;
8352 Next (L_Index);
8353 Next (R_Index);
8354 end if;
8355 end loop;
8356 end;
8358 -- Handle cases where we do not get a usable actual subtype that
8359 -- is constrained. This happens for example in the function call
8360 -- and explicit dereference cases. In these cases, we have to get
8361 -- the length or range from the expression itself, making sure we
8362 -- do not evaluate it more than once.
8364 -- Here Ck_Node is the original expression, or more properly the
8365 -- result of applying Duplicate_Expr to the original tree, forcing
8366 -- the result to be a name.
8368 else
8369 declare
8370 Ndims : constant Nat := Number_Dimensions (T_Typ);
8372 begin
8373 -- Build the condition for the explicit dereference case
8375 for Indx in 1 .. Ndims loop
8376 Evolve_Or_Else
8377 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
8378 end loop;
8379 end;
8380 end if;
8381 end if;
8382 end if;
8384 -- Construct the test and insert into the tree
8386 if Present (Cond) then
8387 if Do_Access then
8388 Cond := Guard_Access (Cond, Loc, Ck_Node);
8389 end if;
8391 Add_Check
8392 (Make_Raise_Constraint_Error (Loc,
8393 Condition => Cond,
8394 Reason => CE_Length_Check_Failed));
8395 end if;
8397 return Ret_Result;
8398 end Selected_Length_Checks;
8400 ---------------------------
8401 -- Selected_Range_Checks --
8402 ---------------------------
8404 function Selected_Range_Checks
8405 (Ck_Node : Node_Id;
8406 Target_Typ : Entity_Id;
8407 Source_Typ : Entity_Id;
8408 Warn_Node : Node_Id) return Check_Result
8410 Loc : constant Source_Ptr := Sloc (Ck_Node);
8411 S_Typ : Entity_Id;
8412 T_Typ : Entity_Id;
8413 Expr_Actual : Node_Id;
8414 Exptyp : Entity_Id;
8415 Cond : Node_Id := Empty;
8416 Do_Access : Boolean := False;
8417 Wnode : Node_Id := Warn_Node;
8418 Ret_Result : Check_Result := (Empty, Empty);
8419 Num_Checks : Integer := 0;
8421 procedure Add_Check (N : Node_Id);
8422 -- Adds the action given to Ret_Result if N is non-Empty
8424 function Discrete_Range_Cond
8425 (Expr : Node_Id;
8426 Typ : Entity_Id) return Node_Id;
8427 -- Returns expression to compute:
8428 -- Low_Bound (Expr) < Typ'First
8429 -- or else
8430 -- High_Bound (Expr) > Typ'Last
8432 function Discrete_Expr_Cond
8433 (Expr : Node_Id;
8434 Typ : Entity_Id) return Node_Id;
8435 -- Returns expression to compute:
8436 -- Expr < Typ'First
8437 -- or else
8438 -- Expr > Typ'Last
8440 function Get_E_First_Or_Last
8441 (Loc : Source_Ptr;
8442 E : Entity_Id;
8443 Indx : Nat;
8444 Nam : Name_Id) return Node_Id;
8445 -- Returns an attribute reference
8446 -- E'First or E'Last
8447 -- with a source location of Loc.
8449 -- Nam is Name_First or Name_Last, according to which attribute is
8450 -- desired. If Indx is non-zero, it is passed as a literal in the
8451 -- Expressions of the attribute reference (identifying the desired
8452 -- array dimension).
8454 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
8455 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
8456 -- Returns expression to compute:
8457 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
8459 function Range_E_Cond
8460 (Exptyp : Entity_Id;
8461 Typ : Entity_Id;
8462 Indx : Nat)
8463 return Node_Id;
8464 -- Returns expression to compute:
8465 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
8467 function Range_Equal_E_Cond
8468 (Exptyp : Entity_Id;
8469 Typ : Entity_Id;
8470 Indx : Nat) return Node_Id;
8471 -- Returns expression to compute:
8472 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
8474 function Range_N_Cond
8475 (Expr : Node_Id;
8476 Typ : Entity_Id;
8477 Indx : Nat) return Node_Id;
8478 -- Return expression to compute:
8479 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
8481 ---------------
8482 -- Add_Check --
8483 ---------------
8485 procedure Add_Check (N : Node_Id) is
8486 begin
8487 if Present (N) then
8489 -- For now, ignore attempt to place more than 2 checks ???
8491 if Num_Checks = 2 then
8492 return;
8493 end if;
8495 pragma Assert (Num_Checks <= 1);
8496 Num_Checks := Num_Checks + 1;
8497 Ret_Result (Num_Checks) := N;
8498 end if;
8499 end Add_Check;
8501 -------------------------
8502 -- Discrete_Expr_Cond --
8503 -------------------------
8505 function Discrete_Expr_Cond
8506 (Expr : Node_Id;
8507 Typ : Entity_Id) return Node_Id
8509 begin
8510 return
8511 Make_Or_Else (Loc,
8512 Left_Opnd =>
8513 Make_Op_Lt (Loc,
8514 Left_Opnd =>
8515 Convert_To (Base_Type (Typ),
8516 Duplicate_Subexpr_No_Checks (Expr)),
8517 Right_Opnd =>
8518 Convert_To (Base_Type (Typ),
8519 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
8521 Right_Opnd =>
8522 Make_Op_Gt (Loc,
8523 Left_Opnd =>
8524 Convert_To (Base_Type (Typ),
8525 Duplicate_Subexpr_No_Checks (Expr)),
8526 Right_Opnd =>
8527 Convert_To
8528 (Base_Type (Typ),
8529 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
8530 end Discrete_Expr_Cond;
8532 -------------------------
8533 -- Discrete_Range_Cond --
8534 -------------------------
8536 function Discrete_Range_Cond
8537 (Expr : Node_Id;
8538 Typ : Entity_Id) return Node_Id
8540 LB : Node_Id := Low_Bound (Expr);
8541 HB : Node_Id := High_Bound (Expr);
8543 Left_Opnd : Node_Id;
8544 Right_Opnd : Node_Id;
8546 begin
8547 if Nkind (LB) = N_Identifier
8548 and then Ekind (Entity (LB)) = E_Discriminant
8549 then
8550 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
8551 end if;
8553 Left_Opnd :=
8554 Make_Op_Lt (Loc,
8555 Left_Opnd =>
8556 Convert_To
8557 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
8559 Right_Opnd =>
8560 Convert_To
8561 (Base_Type (Typ),
8562 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
8564 if Nkind (HB) = N_Identifier
8565 and then Ekind (Entity (HB)) = E_Discriminant
8566 then
8567 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
8568 end if;
8570 Right_Opnd :=
8571 Make_Op_Gt (Loc,
8572 Left_Opnd =>
8573 Convert_To
8574 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
8576 Right_Opnd =>
8577 Convert_To
8578 (Base_Type (Typ),
8579 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
8581 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
8582 end Discrete_Range_Cond;
8584 -------------------------
8585 -- Get_E_First_Or_Last --
8586 -------------------------
8588 function Get_E_First_Or_Last
8589 (Loc : Source_Ptr;
8590 E : Entity_Id;
8591 Indx : Nat;
8592 Nam : Name_Id) return Node_Id
8594 Exprs : List_Id;
8595 begin
8596 if Indx > 0 then
8597 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
8598 else
8599 Exprs := No_List;
8600 end if;
8602 return Make_Attribute_Reference (Loc,
8603 Prefix => New_Occurrence_Of (E, Loc),
8604 Attribute_Name => Nam,
8605 Expressions => Exprs);
8606 end Get_E_First_Or_Last;
8608 -----------------
8609 -- Get_N_First --
8610 -----------------
8612 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
8613 begin
8614 return
8615 Make_Attribute_Reference (Loc,
8616 Attribute_Name => Name_First,
8617 Prefix =>
8618 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
8619 Expressions => New_List (
8620 Make_Integer_Literal (Loc, Indx)));
8621 end Get_N_First;
8623 ----------------
8624 -- Get_N_Last --
8625 ----------------
8627 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
8628 begin
8629 return
8630 Make_Attribute_Reference (Loc,
8631 Attribute_Name => Name_Last,
8632 Prefix =>
8633 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
8634 Expressions => New_List (
8635 Make_Integer_Literal (Loc, Indx)));
8636 end Get_N_Last;
8638 ------------------
8639 -- Range_E_Cond --
8640 ------------------
8642 function Range_E_Cond
8643 (Exptyp : Entity_Id;
8644 Typ : Entity_Id;
8645 Indx : Nat) return Node_Id
8647 begin
8648 return
8649 Make_Or_Else (Loc,
8650 Left_Opnd =>
8651 Make_Op_Lt (Loc,
8652 Left_Opnd =>
8653 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
8654 Right_Opnd =>
8655 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
8657 Right_Opnd =>
8658 Make_Op_Gt (Loc,
8659 Left_Opnd =>
8660 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
8661 Right_Opnd =>
8662 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
8663 end Range_E_Cond;
8665 ------------------------
8666 -- Range_Equal_E_Cond --
8667 ------------------------
8669 function Range_Equal_E_Cond
8670 (Exptyp : Entity_Id;
8671 Typ : Entity_Id;
8672 Indx : Nat) return Node_Id
8674 begin
8675 return
8676 Make_Or_Else (Loc,
8677 Left_Opnd =>
8678 Make_Op_Ne (Loc,
8679 Left_Opnd =>
8680 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
8681 Right_Opnd =>
8682 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
8684 Right_Opnd =>
8685 Make_Op_Ne (Loc,
8686 Left_Opnd =>
8687 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
8688 Right_Opnd =>
8689 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
8690 end Range_Equal_E_Cond;
8692 ------------------
8693 -- Range_N_Cond --
8694 ------------------
8696 function Range_N_Cond
8697 (Expr : Node_Id;
8698 Typ : Entity_Id;
8699 Indx : Nat) return Node_Id
8701 begin
8702 return
8703 Make_Or_Else (Loc,
8704 Left_Opnd =>
8705 Make_Op_Lt (Loc,
8706 Left_Opnd =>
8707 Get_N_First (Expr, Indx),
8708 Right_Opnd =>
8709 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
8711 Right_Opnd =>
8712 Make_Op_Gt (Loc,
8713 Left_Opnd =>
8714 Get_N_Last (Expr, Indx),
8715 Right_Opnd =>
8716 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
8717 end Range_N_Cond;
8719 -- Start of processing for Selected_Range_Checks
8721 begin
8722 if not Full_Expander_Active then
8723 return Ret_Result;
8724 end if;
8726 if Target_Typ = Any_Type
8727 or else Target_Typ = Any_Composite
8728 or else Raises_Constraint_Error (Ck_Node)
8729 then
8730 return Ret_Result;
8731 end if;
8733 if No (Wnode) then
8734 Wnode := Ck_Node;
8735 end if;
8737 T_Typ := Target_Typ;
8739 if No (Source_Typ) then
8740 S_Typ := Etype (Ck_Node);
8741 else
8742 S_Typ := Source_Typ;
8743 end if;
8745 if S_Typ = Any_Type or else S_Typ = Any_Composite then
8746 return Ret_Result;
8747 end if;
8749 -- The order of evaluating T_Typ before S_Typ seems to be critical
8750 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
8751 -- in, and since Node can be an N_Range node, it might be invalid.
8752 -- Should there be an assert check somewhere for taking the Etype of
8753 -- an N_Range node ???
8755 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
8756 S_Typ := Designated_Type (S_Typ);
8757 T_Typ := Designated_Type (T_Typ);
8758 Do_Access := True;
8760 -- A simple optimization for the null case
8762 if Known_Null (Ck_Node) then
8763 return Ret_Result;
8764 end if;
8765 end if;
8767 -- For an N_Range Node, check for a null range and then if not
8768 -- null generate a range check action.
8770 if Nkind (Ck_Node) = N_Range then
8772 -- There's no point in checking a range against itself
8774 if Ck_Node = Scalar_Range (T_Typ) then
8775 return Ret_Result;
8776 end if;
8778 declare
8779 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
8780 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
8781 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
8782 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
8784 LB : Node_Id := Low_Bound (Ck_Node);
8785 HB : Node_Id := High_Bound (Ck_Node);
8786 Known_LB : Boolean;
8787 Known_HB : Boolean;
8789 Null_Range : Boolean;
8790 Out_Of_Range_L : Boolean;
8791 Out_Of_Range_H : Boolean;
8793 begin
8794 -- Compute what is known at compile time
8796 if Known_T_LB and Known_T_HB then
8797 if Compile_Time_Known_Value (LB) then
8798 Known_LB := True;
8800 -- There's no point in checking that a bound is within its
8801 -- own range so pretend that it is known in this case. First
8802 -- deal with low bound.
8804 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
8805 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
8806 then
8807 LB := T_LB;
8808 Known_LB := True;
8810 else
8811 Known_LB := False;
8812 end if;
8814 -- Likewise for the high bound
8816 if Compile_Time_Known_Value (HB) then
8817 Known_HB := True;
8819 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
8820 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
8821 then
8822 HB := T_HB;
8823 Known_HB := True;
8825 else
8826 Known_HB := False;
8827 end if;
8828 end if;
8830 -- Check for case where everything is static and we can do the
8831 -- check at compile time. This is skipped if we have an access
8832 -- type, since the access value may be null.
8834 -- ??? This code can be improved since you only need to know that
8835 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
8836 -- compile time to emit pertinent messages.
8838 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
8839 and not Do_Access
8840 then
8841 -- Floating-point case
8843 if Is_Floating_Point_Type (S_Typ) then
8844 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
8845 Out_Of_Range_L :=
8846 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
8847 or else
8848 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
8850 Out_Of_Range_H :=
8851 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
8852 or else
8853 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
8855 -- Fixed or discrete type case
8857 else
8858 Null_Range := Expr_Value (HB) < Expr_Value (LB);
8859 Out_Of_Range_L :=
8860 (Expr_Value (LB) < Expr_Value (T_LB))
8861 or else
8862 (Expr_Value (LB) > Expr_Value (T_HB));
8864 Out_Of_Range_H :=
8865 (Expr_Value (HB) > Expr_Value (T_HB))
8866 or else
8867 (Expr_Value (HB) < Expr_Value (T_LB));
8868 end if;
8870 if not Null_Range then
8871 if Out_Of_Range_L then
8872 if No (Warn_Node) then
8873 Add_Check
8874 (Compile_Time_Constraint_Error
8875 (Low_Bound (Ck_Node),
8876 "static value out of range of}??", T_Typ));
8878 else
8879 Add_Check
8880 (Compile_Time_Constraint_Error
8881 (Wnode,
8882 "static range out of bounds of}??", T_Typ));
8883 end if;
8884 end if;
8886 if Out_Of_Range_H then
8887 if No (Warn_Node) then
8888 Add_Check
8889 (Compile_Time_Constraint_Error
8890 (High_Bound (Ck_Node),
8891 "static value out of range of}??", T_Typ));
8893 else
8894 Add_Check
8895 (Compile_Time_Constraint_Error
8896 (Wnode,
8897 "static range out of bounds of}??", T_Typ));
8898 end if;
8899 end if;
8900 end if;
8902 else
8903 declare
8904 LB : Node_Id := Low_Bound (Ck_Node);
8905 HB : Node_Id := High_Bound (Ck_Node);
8907 begin
8908 -- If either bound is a discriminant and we are within the
8909 -- record declaration, it is a use of the discriminant in a
8910 -- constraint of a component, and nothing can be checked
8911 -- here. The check will be emitted within the init proc.
8912 -- Before then, the discriminal has no real meaning.
8913 -- Similarly, if the entity is a discriminal, there is no
8914 -- check to perform yet.
8916 -- The same holds within a discriminated synchronized type,
8917 -- where the discriminant may constrain a component or an
8918 -- entry family.
8920 if Nkind (LB) = N_Identifier
8921 and then Denotes_Discriminant (LB, True)
8922 then
8923 if Current_Scope = Scope (Entity (LB))
8924 or else Is_Concurrent_Type (Current_Scope)
8925 or else Ekind (Entity (LB)) /= E_Discriminant
8926 then
8927 return Ret_Result;
8928 else
8929 LB :=
8930 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
8931 end if;
8932 end if;
8934 if Nkind (HB) = N_Identifier
8935 and then Denotes_Discriminant (HB, True)
8936 then
8937 if Current_Scope = Scope (Entity (HB))
8938 or else Is_Concurrent_Type (Current_Scope)
8939 or else Ekind (Entity (HB)) /= E_Discriminant
8940 then
8941 return Ret_Result;
8942 else
8943 HB :=
8944 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
8945 end if;
8946 end if;
8948 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
8949 Set_Paren_Count (Cond, 1);
8951 Cond :=
8952 Make_And_Then (Loc,
8953 Left_Opnd =>
8954 Make_Op_Ge (Loc,
8955 Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
8956 Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
8957 Right_Opnd => Cond);
8958 end;
8959 end if;
8960 end;
8962 elsif Is_Scalar_Type (S_Typ) then
8964 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
8965 -- except the above simply sets a flag in the node and lets
8966 -- gigi generate the check base on the Etype of the expression.
8967 -- Sometimes, however we want to do a dynamic check against an
8968 -- arbitrary target type, so we do that here.
8970 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
8971 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
8973 -- For literals, we can tell if the constraint error will be
8974 -- raised at compile time, so we never need a dynamic check, but
8975 -- if the exception will be raised, then post the usual warning,
8976 -- and replace the literal with a raise constraint error
8977 -- expression. As usual, skip this for access types
8979 elsif Compile_Time_Known_Value (Ck_Node)
8980 and then not Do_Access
8981 then
8982 declare
8983 LB : constant Node_Id := Type_Low_Bound (T_Typ);
8984 UB : constant Node_Id := Type_High_Bound (T_Typ);
8986 Out_Of_Range : Boolean;
8987 Static_Bounds : constant Boolean :=
8988 Compile_Time_Known_Value (LB)
8989 and Compile_Time_Known_Value (UB);
8991 begin
8992 -- Following range tests should use Sem_Eval routine ???
8994 if Static_Bounds then
8995 if Is_Floating_Point_Type (S_Typ) then
8996 Out_Of_Range :=
8997 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
8998 or else
8999 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
9001 -- Fixed or discrete type
9003 else
9004 Out_Of_Range :=
9005 Expr_Value (Ck_Node) < Expr_Value (LB)
9006 or else
9007 Expr_Value (Ck_Node) > Expr_Value (UB);
9008 end if;
9010 -- Bounds of the type are static and the literal is out of
9011 -- range so output a warning message.
9013 if Out_Of_Range then
9014 if No (Warn_Node) then
9015 Add_Check
9016 (Compile_Time_Constraint_Error
9017 (Ck_Node,
9018 "static value out of range of}??", T_Typ));
9020 else
9021 Add_Check
9022 (Compile_Time_Constraint_Error
9023 (Wnode,
9024 "static value out of range of}??", T_Typ));
9025 end if;
9026 end if;
9028 else
9029 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9030 end if;
9031 end;
9033 -- Here for the case of a non-static expression, we need a runtime
9034 -- check unless the source type range is guaranteed to be in the
9035 -- range of the target type.
9037 else
9038 if not In_Subrange_Of (S_Typ, T_Typ) then
9039 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9040 end if;
9041 end if;
9042 end if;
9044 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9045 if Is_Constrained (T_Typ) then
9047 Expr_Actual := Get_Referenced_Object (Ck_Node);
9048 Exptyp := Get_Actual_Subtype (Expr_Actual);
9050 if Is_Access_Type (Exptyp) then
9051 Exptyp := Designated_Type (Exptyp);
9052 end if;
9054 -- String_Literal case. This needs to be handled specially be-
9055 -- cause no index types are available for string literals. The
9056 -- condition is simply:
9058 -- T_Typ'Length = string-literal-length
9060 if Nkind (Expr_Actual) = N_String_Literal then
9061 null;
9063 -- General array case. Here we have a usable actual subtype for
9064 -- the expression, and the condition is built from the two types
9066 -- T_Typ'First < Exptyp'First or else
9067 -- T_Typ'Last > Exptyp'Last or else
9068 -- T_Typ'First(1) < Exptyp'First(1) or else
9069 -- T_Typ'Last(1) > Exptyp'Last(1) or else
9070 -- ...
9072 elsif Is_Constrained (Exptyp) then
9073 declare
9074 Ndims : constant Nat := Number_Dimensions (T_Typ);
9076 L_Index : Node_Id;
9077 R_Index : Node_Id;
9079 begin
9080 L_Index := First_Index (T_Typ);
9081 R_Index := First_Index (Exptyp);
9083 for Indx in 1 .. Ndims loop
9084 if not (Nkind (L_Index) = N_Raise_Constraint_Error
9085 or else
9086 Nkind (R_Index) = N_Raise_Constraint_Error)
9087 then
9088 -- Deal with compile time length check. Note that we
9089 -- skip this in the access case, because the access
9090 -- value may be null, so we cannot know statically.
9092 if not
9093 Subtypes_Statically_Match
9094 (Etype (L_Index), Etype (R_Index))
9095 then
9096 -- If the target type is constrained then we
9097 -- have to check for exact equality of bounds
9098 -- (required for qualified expressions).
9100 if Is_Constrained (T_Typ) then
9101 Evolve_Or_Else
9102 (Cond,
9103 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
9104 else
9105 Evolve_Or_Else
9106 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
9107 end if;
9108 end if;
9110 Next (L_Index);
9111 Next (R_Index);
9112 end if;
9113 end loop;
9114 end;
9116 -- Handle cases where we do not get a usable actual subtype that
9117 -- is constrained. This happens for example in the function call
9118 -- and explicit dereference cases. In these cases, we have to get
9119 -- the length or range from the expression itself, making sure we
9120 -- do not evaluate it more than once.
9122 -- Here Ck_Node is the original expression, or more properly the
9123 -- result of applying Duplicate_Expr to the original tree,
9124 -- forcing the result to be a name.
9126 else
9127 declare
9128 Ndims : constant Nat := Number_Dimensions (T_Typ);
9130 begin
9131 -- Build the condition for the explicit dereference case
9133 for Indx in 1 .. Ndims loop
9134 Evolve_Or_Else
9135 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
9136 end loop;
9137 end;
9138 end if;
9140 else
9141 -- For a conversion to an unconstrained array type, generate an
9142 -- Action to check that the bounds of the source value are within
9143 -- the constraints imposed by the target type (RM 4.6(38)). No
9144 -- check is needed for a conversion to an access to unconstrained
9145 -- array type, as 4.6(24.15/2) requires the designated subtypes
9146 -- of the two access types to statically match.
9148 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
9149 and then not Do_Access
9150 then
9151 declare
9152 Opnd_Index : Node_Id;
9153 Targ_Index : Node_Id;
9154 Opnd_Range : Node_Id;
9156 begin
9157 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
9158 Targ_Index := First_Index (T_Typ);
9159 while Present (Opnd_Index) loop
9161 -- If the index is a range, use its bounds. If it is an
9162 -- entity (as will be the case if it is a named subtype
9163 -- or an itype created for a slice) retrieve its range.
9165 if Is_Entity_Name (Opnd_Index)
9166 and then Is_Type (Entity (Opnd_Index))
9167 then
9168 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
9169 else
9170 Opnd_Range := Opnd_Index;
9171 end if;
9173 if Nkind (Opnd_Range) = N_Range then
9174 if Is_In_Range
9175 (Low_Bound (Opnd_Range), Etype (Targ_Index),
9176 Assume_Valid => True)
9177 and then
9178 Is_In_Range
9179 (High_Bound (Opnd_Range), Etype (Targ_Index),
9180 Assume_Valid => True)
9181 then
9182 null;
9184 -- If null range, no check needed
9186 elsif
9187 Compile_Time_Known_Value (High_Bound (Opnd_Range))
9188 and then
9189 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
9190 and then
9191 Expr_Value (High_Bound (Opnd_Range)) <
9192 Expr_Value (Low_Bound (Opnd_Range))
9193 then
9194 null;
9196 elsif Is_Out_Of_Range
9197 (Low_Bound (Opnd_Range), Etype (Targ_Index),
9198 Assume_Valid => True)
9199 or else
9200 Is_Out_Of_Range
9201 (High_Bound (Opnd_Range), Etype (Targ_Index),
9202 Assume_Valid => True)
9203 then
9204 Add_Check
9205 (Compile_Time_Constraint_Error
9206 (Wnode, "value out of range of}??", T_Typ));
9208 else
9209 Evolve_Or_Else
9210 (Cond,
9211 Discrete_Range_Cond
9212 (Opnd_Range, Etype (Targ_Index)));
9213 end if;
9214 end if;
9216 Next_Index (Opnd_Index);
9217 Next_Index (Targ_Index);
9218 end loop;
9219 end;
9220 end if;
9221 end if;
9222 end if;
9224 -- Construct the test and insert into the tree
9226 if Present (Cond) then
9227 if Do_Access then
9228 Cond := Guard_Access (Cond, Loc, Ck_Node);
9229 end if;
9231 Add_Check
9232 (Make_Raise_Constraint_Error (Loc,
9233 Condition => Cond,
9234 Reason => CE_Range_Check_Failed));
9235 end if;
9237 return Ret_Result;
9238 end Selected_Range_Checks;
9240 -------------------------------
9241 -- Storage_Checks_Suppressed --
9242 -------------------------------
9244 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
9245 begin
9246 if Present (E) and then Checks_May_Be_Suppressed (E) then
9247 return Is_Check_Suppressed (E, Storage_Check);
9248 else
9249 return Scope_Suppress.Suppress (Storage_Check);
9250 end if;
9251 end Storage_Checks_Suppressed;
9253 ---------------------------
9254 -- Tag_Checks_Suppressed --
9255 ---------------------------
9257 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
9258 begin
9259 if Present (E)
9260 and then Checks_May_Be_Suppressed (E)
9261 then
9262 return Is_Check_Suppressed (E, Tag_Check);
9263 end if;
9265 return Scope_Suppress.Suppress (Tag_Check);
9266 end Tag_Checks_Suppressed;
9268 --------------------------
9269 -- Validity_Check_Range --
9270 --------------------------
9272 procedure Validity_Check_Range (N : Node_Id) is
9273 begin
9274 if Validity_Checks_On and Validity_Check_Operands then
9275 if Nkind (N) = N_Range then
9276 Ensure_Valid (Low_Bound (N));
9277 Ensure_Valid (High_Bound (N));
9278 end if;
9279 end if;
9280 end Validity_Check_Range;
9282 --------------------------------
9283 -- Validity_Checks_Suppressed --
9284 --------------------------------
9286 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
9287 begin
9288 if Present (E) and then Checks_May_Be_Suppressed (E) then
9289 return Is_Check_Suppressed (E, Validity_Check);
9290 else
9291 return Scope_Suppress.Suppress (Validity_Check);
9292 end if;
9293 end Validity_Checks_Suppressed;
9295 end Checks;